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Abstract: We study the focusing nonlinear Schrödinger equation i∂t u+�u+|u|p−1u =
0, x ∈ R

N in the L2-supercritical regime with finite energy and finite variance initial
data. We investigate solutions above the energy (or mass–energy) threshold. In our
first result, we extend the known scattering versus blow-up dichotomy above the mass–
energy threshold for finite variance solutions in the energy-subcritical and energy-critical
regimes, obtaining scattering and blow-up criteria for solutions with arbitrary large mass
and energy. As a consequence, we characterize the behavior of the ground state initial data
modulated by a quadratic phase. Our second result gives two blow up criteria, which are
also applicable in the energy-supercritical NLS setting. We finish with various examples
illustrating our results.

1. Introduction

Consider the focusing nonlinear Schrödinger (NLS) equation on R
N :

i∂t u + �u + |u|p−1u = 0, (x, t) ∈ R
N × R, (1.1)

where u = u(x, t) is complex-valued and the nonlinearity p > 1 + 4
N . The solutions of

this equation conserve mass, energy and momentum:

M[u](t) =
∫

|u(x, t)|2 dx = M[u](0),

E[u](t) = 1

2

∫
|∇u(x, t)|2 − 1

p + 1

∫
|u(x, t)|p+1 dx = E[u](0),

P[u](t) = Im
∫

∇u(x, t) ū(x, t) dx = P[u](0).
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The Eq. (1.1) has scaling: uλ(x, t) = λ
2

p−1 u(λx, λ2t) is a solution if u(x, t) is as
well. This scaling produces a scale-invariant Sobolev norm Ḣ sc with

sc = N

2
− 2

p − 1
.

The nonlinearity restriction p > 1 + 4
N implies that we only consider the case sc > 0.

1.1. Scattering and blow up in the energy subcritical and critical cases. For p > 1,
N ≥ 1 such that 0 ≤ sc < 1, we let Q = Q p,N be the unique H1 radial positive solution
of

�Q − (1 − sc) Q + |Q|p−1 Q = 0. (1.2)

If sc = 1, i.e., N ≥ 3 and p = 2N
N−2 , since the Eq. (1.2) is invariant by scaling, the radial

positive solution Eq. (1.2) is no longer unique. In this case, we let

Q 2N
N−2 ,N = 1(

1 + |x |2
N (N−2)

) N−2
2

,

which is often denoted by W , see [24]. In both cases, Q p,N is smooth. If sc < 1, Q p,N
and all its derivatives decay exponentially at infinity. If sc = 1, Q p,N = W belongs to
the homogeneous space Ḣ1. It is in L2 if and only if N ≥ 5. In all cases,

uQ(x, t) = ei(1−sc)t Q(x) (1.3)

is a solution of (1.1). Let us emphasize that the choice of the constant 1 − sc in front of
(1.2) is for convenience. If sc < 1, we can replace this constant by any positive constant
by scaling. Similarly, if sc = 1, the choice Q p,N = W is arbitrary, and we could replace

W by λ
N
2 −1W (λx) for any λ > 0. We will state all our results using scale invariant

quantities that do not depend on these choices.
One useful constant scaling quantity is M[u]1−sc E[u]sc , which we renormalize (for

sc > 0) as

ME = M[u] 1−sc
sc E[u]

M[Q] 1−sc
sc E[Q]

(1.4)

and call it the mass–energy. As it turns out, it is important to know its size relative
to 1. We refer to ME = 1 as the mass–energy threshold (or the energy threshold,
E = 1, when sc = 1). The other useful scaling quantities (changing in time) are

‖u‖1−sc
L2(RN )

‖∇u(t)‖sc
L2(RN )

and ‖u‖1−sc
L2(RN )

‖u(t)‖
p+1
2 sc

L p+1(RN )
, for the purpose of this paper

we use the last one.

The case 0 < sc < 1 (the mass-supercritical and energy-subcritical NLS), or

4

N
+ 1 < p < ∞ when N = 1, 2 and

4

N
+ 1 < p <

4

N − 2
+ 1 when N ≥ 3. (1.5)

A physically important equation in this range (sc = 1
2 ) is the 3d cubic NLS equation, for

which the behavior of solutions was studied in series of papers [12,15,21–23]. It was
later extended in [5] to the 2d quintic NLS (also sc = 1

2 ) and then generalized to other
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dimension and nonlinearities (0 < sc < 1) in [17] (see also [1,8,18]). When ME < 1,
the global behavior of solutions is completely understood, which we summarize in the
following

Theorem 1.1. Let u(x, t) be a solution of (1.1), 0 < sc < 1, with u0 ∈ H1(RN ).
Assume 0 < ME < 1.

(a) If M[u0]1−sc
(∫ |u0|p+1

)sc
< M[Q]1−sc

(∫ |Q|p+1
)sc , then u(t) exists globally and,

in fact, scatters in both time directions, in H1, to a linear solution.
(b) If M[u0]1−sc

(∫ |u0|p+1
)sc

> M[Q]1−sc
(∫ |Q|p+1

)sc , either u(t) blows-up in finite
positive time or there exists a sequence tn ↗ +∞ such that limn ‖∇u(tn)‖L2 = ∞.
A similar statement holds for negative time. Furthermore, if u0 has finite variance or
u0 is radial, then u(t) blows-up in finite positive time and finite negative time.

Remark 1.2. The above theorem is usually formulated with the gradient ‖∇u‖L2 instead
of the ‖u‖L p+1 norm, we show the equivalence in Claim 2.3.

Behavior of solutions at the mass–energy threshold ME = 1 is completely classified in
[15] in the case N = 3, p = 3, see Theorems 2 and 3 there.

The case sc = 1 (the energy-critical NLS), or

p = 4

N − 2
+ 1, N ≥ 3. (1.6)

In this case instead of ME we simply use the notation E = E[u]/E[W ]. In the case of
E < 1 the behavior of solutions is also completely understood and is summarized in

Theorem 1.3. Let sc = 1 and u(x, t) be a solution of (1.1) with u0 ∈ Ḣ1(RN ). Assume
0 < E < 1.

(a) If
∫ |u0|p+1 <

∫ |W |p+1 and u is radial if N = 3, 4, then u(t) exists globally and, in
fact, scatters in Ḣ1 in both time directions.

(b) If
∫ |u0|p+1 >

∫ |W |p+1 and either u0 is radial with u0 ∈ L2 or xu0 ∈ L2, then u(t)
blows-up in finite positive time and finite negative time.

The above results in both cases 0 < sc ≤ 1 use the concentration compactness—
rigidity method, first introduced in the energy-critical case by Kenig and Merle [24],
where they proved Theorem 1.3 in dimensions N = 3, 4, 5. The higher dimensions
extensions and non-radial assumption are in [28].

Behavior of radial solutions at the energy threshold E = 1 is classified in [13], see
Theorem 2 there.

Above the mass–energy threshold, i.e., ME > 1, the question about the global
behavior of solutions is mostly open. For the radial 3d cubic NLS (sc < 1), in [31]
Nakanishi and Schlag described the global dynamics of H1 solutions slightly above
the mass–energy threshold, ME < 1 + ε. Beceanu in [4] constructs a co-dimension
1 manifold invariant by the flow of Ḣ1/2 solutions close to uQ . The only other result
which also works above the threshold is the two blow up criteria in [20] (for the 3d cubic
NLS).

In this paper we investigate solutions above this threshold, in particular, we improve
the results of Theorems 1.1 and 1.3 for the finite variance solutions, where for globally
existing solutions we also show scattering. Note that we can now describe solutions
which are not necessarily ε-close to the threshold.
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Before we state the main results of the paper, we define the variance as

V (t) =
∫

|x |2|u(x, t)|2 dx . (1.7)

Assuming V (0) < ∞ (referred to as finite variance), the following virial identities hold:

Vt (t) = 4 Im
∫

x · ∇u(x, t) u(x, t) dx, and (1.8)

Vtt (t) = 8
∫

|∇u(t)|2 − 4N (p − 1)

p + 1

∫
|u(t)|p+1 (1.9)

≡ 4N (p − 1) E[u] − 4(p − 1)sc ‖∇u(t)‖2
L2(RN )

. (1.10)

We abbreviate Q = Q p,N from (1.2).

Theorem 1.4. Let u be a solution of (1.1), where p satisfies (1.5) or (1.6). Assume
V (0) < ∞, u0 ∈ H1(RN ), and

ME[u]
(

1 − (Vt (0))2

32 E[u] V (0)

)
≤ 1. (1.11)

Part 1 (Blow up) If

M[u0]1−sc

(∫
|u0|p+1

)sc

> M[Q]1−sc

(∫
|Q|p+1

)sc

(1.12)

and
Vt (0) ≤ 0, (1.13)

then u(t) blows-up in finite positive time, T+(u) < ∞.
Part 2 (Boundedness and scattering) If

M[u0]1−sc

(∫
|u0|p+1

)sc

< M[Q]1−sc

(∫
|Q|p+1

)sc

(1.14)

and
Vt (0) ≥ 0, (1.15)

then

lim sup
t→T+(u)

M[u0]1−sc

(∫
|u(t)|p+1

)sc

< M[Q]1−sc

(∫
|Q|p+1

)sc

, (1.16)

in particular, in the energy-subcritical case when p < N+2
N−2 , we get T+ = +∞.

Furthermore, if sc < 1, u scatters forward in time in H1; if sc = 1, u scatters
forward in time in Ḣ1 provided N ≥ 5 or u is radial.

Remark 1.5. If ME < 1, the conclusion of Theorem 1.4 follows from Theorems 1.1 (if
sc < 1) and 1.3 (sc = 1). Theorem 1.4 is new only in the case when ME ≥ 1.
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Remark 1.6. Let � = { f ∈ H1,
∫ |x |2 f < ∞}. The proof of Theorem 1.4 shows that

the two subsets of �: �Bup defined by the conditions (1.11), (1.12) and (1.13), and
�sc defined by the conditions (1.11), (1.14), (1.15) are stable by the forward flow of
(1.1). These two sets contain solutions with zero momentum and arbitrary large mass
and energy (see Remark 1.11 below).

Remark 1.7. We prove in Sect. 3 that any solution of (1.1) with property (1.16) scatters
for positive time (see Theorems 3.1 and 3.7). Note that if the L p+1 norm is replaced by
the gradient norm, the result is known; for example, see [24, Cor 5.16] in the energy-
critical case. Our assumption (1.16) is weaker, due to the one side implication in (2.7);
thus, Theorems 3.1 and 3.7 improve known results.

Remark 1.8. The statement of Theorem 1.4 is not symmetric in time as are the statements
in Theorems 1.1 and 1.3.

Remark 1.9. The scattering statement (Part 2) of Theorem 1.4 is optimal in the following
sense: if u0 ∈ H1 has finite variance, and u scatters forward in time, then there exists
t0 such that (1.11), (1.14) and (1.15) are satisfied by u(t), V (t) and Vt (t) for all t ≥ t0.
Indeed, if u(t) scatters forward in times, then E[u] > 0,

‖u(t)‖L p+1 → 0 V (t) ∼ 8E[u]t2, Vt (t) ∼ 16E[u]t, as t → +∞,

which proves these three conditions.

As a consequence of Theorem 1.4, we obtain the behavior of solutions that are
obtained by multiplying a finite-variance solutions with ME ≤ 1 by eiγ |x |2 , γ ∈ R:

Corollary 1.10. Let γ ∈ R\{0}, v0 ∈ H1 with finite variance be such that ME[v0] ≤ 1,
and uγ be the solution of (1.1) with initial data

uγ
0 = eiγ |x |2v0.

If M[uγ
0 ]1−sc

(∫ |uγ
0 |p+1

)sc
> M[Q]1−sc

(∫ |Q|p+1
)sc , then ∀ γ < 0, T+(uγ ) < ∞.

If M[uγ
0 ]1−sc

(∫ |uγ
0 |p+1

)sc
< M[Q]1−sc

(∫ |Q|p+1
)sc , then for all γ > 0, uγ sat-

isfies (1.16). Furthermore, if sc < 1, uγ scatters forward in time in H1. If sc = 1, uγ

scatters forward in time in Ḣ1 provided N ≥ 5, or u is radial.

Remark 1.11. The above corollary implies that we can predict the behavior of some
solutions with arbitrary large energy: for example, if v0 is such that ME[v0] ≤ 1 and
γ > 0 is large, then

E[uγ
0 ] = E[v0] + 4γ 2‖xv0‖2

L2 + 4γ Im
∫

x · ∇v0v̄0,

and E[uγ
0 ] ↗ ∞ as γ → ±∞. Note that we can have P[uγ

0 ] = 0 for all γ (this is
the case for example if v0 is radial): in particular, our results cannot be obtained from
Theorem 1.4 by Galilean invariance, as for example in [15, Theorem 4].
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The second part of Corollary 1.10 is in accordance with the observation, made in [9],
that if v0 ∈ H1 has finite variance, then the solution of (1.1) with initial data eiγ |x |2v0
scatters forward in time for large, positive γ . Let us also mention that in the mass-
critical case sc = 0, the solution with initial data eiγ |x |2v0 can be obtained explicitly
by the pseudo-conformal transformation from the solution with initial data eiγ |x |2 . This
transformation is not available if sc = 0.

Another consequence of Theorem 1.4 is that we now understand the behavior of the
ground state modulated by a quadratic phase in both time directions (which is important
in studying blow up solutions, for example, see [19]).

Corollary 1.12. Subcritical case: Let p be as in (1.5) (i.e., 0 < sc < 1). Let γ ∈ R and
Qγ be the solution of (1.1) with initial data

Qγ
0 = eiγ |x |2 Q(x),

where Q = Q p,N is as in (1.2).
If γ > 0, then Qγ is globally defined, bounded and scatters forward in time and

blows up backward in time. If γ < 0, then Qγ blows up forward in time and is globally
defined, bounded and scatters backward in time.

Critical case: Let p be as in (1.6) (i.e., sc = 1) with N ≥ 7. Let W γ be the solution of
(1.1) with initial data

W γ
0 = eiγ |x |2 W (x),

where W = Q p,N as in (1.2) for p, N such that sc = 1.
If γ > 0, then W γ is globally defined, bounded and scatters forward in time and

blows up backward in time. If γ < 0, then W γ blows up forward in time and is globally
defined, bounded and scatters backward in time.

Remark 1.13. In the case p = 3, N = 3, Nakanishi and Schlag have proved in [31]
the existence of an open subset of initial data such that the corresponding solutions
scatters forward in time and blows up in finite negative time. Corollary 1.12 gives an
explicit family of examples of such solutions for all mass-supercritical energy-subcritical
nonlinearities. See also the discussion after Conjecture 1 in [20], where such solutions
(not necessarily close to Q) were exhibited.

Another consequence of Theorem 1.4 is the behavior of the initial data with Vt (0) = 0
(e.g., real-valued data) at the threshold ME = 1.

Corollary 1.14. Let u(x, t) be a solution of (1.1), 0 < sc ≤ 1, with V (0) < ∞,
Vt (0) = 0 and u0 ∈ H1(RN ). Assume ME = 1.

(a) If M[u0]1−sc
(∫ |u0|p+1

)sc
< M[Q]1−sc

(∫ |Q|p+1
)sc , then the solution u(t) is

bounded in H1 (Ḣ1 if sc = 1). Moreover, if sc < 1, then u is global and scat-
ters in H1 in both time directions; if sc = 1, then u is global and scatters in Ḣ1 in
both time directions, provided u is radial in dimensions N = 3, 4.

(b) If M[u0]1−sc
(∫ |u0|p+1

)sc
> M[Q]1−sc

(∫ |Q|p+1
)sc , then u(t) blows-up in both

time directions.

Note that this result is a consequence of the classification of the solutions at the threshold
in the energy-critical case [13] and in the 3d cubic case [15].
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1.2. Blow up criteria in the mass-supercritical case. We next consider any mass-supercritical
NLS (sc > 0), including the energy-supercritical case:

p >
4

N − 2
+ 1, N ≥ 3. (1.17)

There is not much known in this case. For the focusing NLS, one has small data theory in
the critical Sobolev space for global-in-time solutions and negative energy finite variance
criteria for blow up in finite time solutions. In the defocusing case (when the sign in front
of the nonlinearity is changed to minus), in [29] it is shown that the a priori boundedness
of solutions in the critical Sobolev norm implies scattering in high dimensions (N ≥ 5),
with additional technical assumptions on p, and numerical simulations in [10] confirm
boundedness of the corresponding invariant Sobolev norm (H2 in that case) for the 5d
quintic NLS equation (sc = 2). The motivation for these papers came from similar results
in the energy-subcritical case (see [25]), as well as results in the energy-supercritical
regime for the nonlinear wave equation, initiated in [26] (see also [14] and references
therein). We refer to [11] for the description of a stable blow-up in this context.

The classical blow up criterion of Vlasov et al. [34], Zakharov [36], Glassey [16] use
the convexity argument on the variance V (t) to show that finite variance, negative energy
solutions break down in finite time. In [30], the second time derivative of the variance is
used as well, however, it is expressed in a dynamic way, which with a classical mechanics
approach gives a more refined blow-up criterion. In [20] that and another criteria were
shown for the 3d cubic NLS equation; in particular, it was shown that there is an open
set of blow up solutions above the mass–energy threshold ME > 1. We extend this
argument to any focusing mass-supercritical NLS equation in all dimensions and show
that these conditions indeed produce new blow up solutions; for example, in the energy-
critical case see Sect. 5.2 and Figs. 2 and 3, and in the energy-supercritical case refer to
Sect. 5.2.1 and Fig. 4.

If sc > 1, Eq. (1.1) is not well-posed in H1. To prove local well-posedness in the
critical Sobolev space Ḣ sc , one needs the nonlinearity to be at least Csc , i.e.,

p is an odd integer or N ≤ 7 or p >
N + 2 +

√
N 2 − 4N − 28

4
(1.18)

(note that the condition “N ≤ 7 or p > N+2+
√

N 2−4N−28
4 ” is equivalent to p > sc). We

abbreviate M = M[u] and E = E[u], and state the following two criteria:

Theorem 1.15. Suppose that u0 ∈ H1 and V (0) < ∞. If sc > 1, assume furthermore
(1.18) and u0 ∈ Ḣ sc . The following is a sufficient condition for blow-up in finite time
for (1.1) with sc > 0 and E[u] > 0:

Vt (0)

M
<

√
8Nsc g

(
4

Nsc

EV (0)

M2

)
, (1.19)

where

g(x) =
⎧⎨
⎩
√

1
kxk + x − (

1 + 1
k

)
if 0 < x ≤ 1

−
√

1
kxk + x − (

1 + 1
k

)
if x ≥ 1

with k = (p − 1)sc

2
, (1.20)

and the function g is graphed in Fig. 1 for various values of k.
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Fig. 1. A plot of the function g(x) defined in (1.20) for various values of k, where k = (p−1)sc
2 . This function

appears in Theorems 1.15 and 1.16. The two limiting cases, k → 0 (corresponding to p → 1+ 4
N ) and k → ∞

(corresponding to p → ∞ or N → ∞), are also indicated on the graph, for details refer to (4.17)

Theorem 1.16. Suppose that u0 ∈ H1 and V (0) < ∞. If sc > 1, assume furthermore
(1.18) and u0 ∈ Ḣ sc . The following is a sufficient condition for blow-up in finite time
for NLS (1.1) with sc > 0 and E[u] > 0:

Vt (0)

M
<

4
√

2(M1−sc Esc )
1
N

C
g

⎛
⎝C2 E

4
N (p−1) V (0)

M1+ 2(p+1)
N (p−1)

⎞
⎠ , (1.21)

where

C =
(

2(p + 1)

sc(p − 1)

(
C p,N

) N (p−1)
2 +(p+1)

) 2
N (p−1)

(1.22)

and C p,N is a sharp constant in the interpolation inequality (4.18), given by (4.24), the
function g is defined in (1.20) and graphed in Fig.1.

Let us emphasize that in both Theorems, the additional assumption in the supercritical
case sc > 1 is only needed to ensure local well-posedness of the solution (see [29,
Theorem 3.1]).

Observe that both conditions deal with the normalized first derivative of the variance
Vt (0)

M
and the scaling-invariant quantities:

V (0)E

M2 in Theorem 1.15 and
V (0) E

4
N (p−1)

M1+ 2(p+1)
N (p−1)

in Theorem 1.16. For different values of p and N , each criterion produces a different
range of blow up solutions. For example, for the real-valued data that depends on the
size of M[u]1−sc E[u]sc , see (4.29). A simplified version of Theorems 1.15 and 1.16 for
real data is given in Sect. 4.4.

The structure of this paper is as follows: in Sect. 2 we consider the energy-critical and
energy-subcritical NLS equations and prove the boundedness and blow up in finite time
parts of Theorem 1.4, then in Sect. 3 we show scattering for the bounded solutions (in
the same range 0 < sc ≤ 1). In Sect. 4, we investigate other blow up criteria, which are
also valid for the energy-supercritical NLS equation. A sharp interpolation inequality is
discussed in Sect. 4.2, which is the key for Theorem 1.16. We conclude the paper with
Sect. 5, where we illustrate Theorems 1.15 and 1.16 on the Gaussian initial data in the
energy-critical, supercritical and subcritical cases.
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2. Boundedness and Blow-Up in the Case 0 < sc ≤ 1

We start with recalling the Gagliardo–Nirenberg inequality from [35] which is valid for
values p and N such that 0 ≤ sc ≤ 1 (when sc = 1 it is the critical Sobolev inequality):

‖ f ‖p+1
L p+1(RN )

≤ cG N ‖∇ f ‖
N (p−1)

2
L2(RN )

‖ f ‖2− (N−2)(p−1)
2

L2(RN )
, (2.1)

with equality when f = Q, where Q is the ground state solution of (1.2). Rewriting
(2.1) as

(∫
| f |p+1

) 4
N (p−1) ≤ cQ M[ f ]κ

∫
|∇ f |2, κ = 2(p + 1)

N (p − 1)
− 1, (2.2)

we have

cQ = (cG N )
4

N (p−1) =
(∫

Q p+1
) 4

N (p−1)

M[Q]κ ∫ |∇Q|2 . (2.3)

Note that κ > 0 if 0 ≤ sc < 1 and κ = 0 if sc = 1. Using the Pohozaev identity:∫
|∇Q|2 = N (p − 1)

2(p + 1)

∫
Q p+1, (2.4)

we get the following expressions for cQ

cQ = 2(p + 1)

N (p − 1)

(∫
Q p+1

) 4
N (p−1)

−1

M[Q]κ =
(

8(p + 1)

A

) 4
N (p−1) sc

N

(E[Q]) 4
N (p−1)

−1

M[Q]κ , (2.5)

where
A = 2(N (p − 1) − 4). (2.6)

Our next observation is the following inequality, a consequence of (2.2) and Cauchy–
Schwarz inequality in the spirit of Lemma 2.1, from the work of Banica [3]:

Lemma 2.1. Let f ∈ H1 such that x f ∈ L2. Then

(
Im

∫
x · ∇ f f̄

)2

≤
∫

|x |2| f |2
[∫

|∇ f |2 − 1

cQ M[ f ]κ
(∫

| f |p+1
) 4

N (p−1)

]
.

Proof. The proof is similar to the one in [3]. We provide it for the sake of completeness.
We apply (2.2) to eiλ|x |2 f , λ ∈ R. Using that∫ ∣∣∣∇(

eiλ|x |2 f
)∣∣∣2 = 4λ2

∫
|x |2| f |2 + 4λ Im

∫
x · ∇ f f̄ +

∫
|∇ f |2,

and using the Gagliardo–Nirenberg inequality (2.2), we get

∀λ ∈ R, cQ M[ f ]κ
[

4λ2
∫

|x |2| f |2 + 4λ Im
∫

x · ∇ f f +
∫

|∇ f |2
]

−
(∫

| f |p+1
) 4

N (p−1) ≥ 0,

where the left-hand side is a polynomial in λ. The discriminant of this polynomial in λ

must be negative, which yields the conclusion of the Lemma. ��
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Remark 2.2. Assume f = eiλ|x |2 Q for some λ ∈ R. Then the polynomial in the proof
of Lemma 2.1 admits −λ as a double root, and its discriminant is 0. As a consequence,
the inequality in the conclusion of Lemma 2.1 is an equality. Combining with (2.5), we
get

f = eiλ|x |2 Q �⇒
(

Im
∫

x · ∇ f f

)2

=
∫

|x |2| f |2
(∫

|∇ f |2 − N (p − 1)

2(p + 1)

∫
| f |p+1

)
.

We next show a variational result which is a consequence of Gagliardo–Nirenberg
(or Sobolev) inequality (2.2).

Claim 2.3. Let f be in H1 ( f in Ḣ1 if sc = 1). Then

(∫
|∇ f |2

)sc

M[ f ]1−sc <

(∫
|∇Q|2

)sc

M[Q]1−sc

�⇒
(∫

| f |p+1
)sc

M[ f ]1−sc <

(∫
|Q|p+1

)sc

M[Q]1−sc . (2.7)

Assume furthermore that

M[ f ] 1−sc
sc E[ f ] ≤ M[Q] 1−sc

sc E[Q], or ME ≤ 1. (2.8)

Then the reverse implication to (2.7) holds, and we obtain

(∫
|∇ f |2

)sc

M[ f ]1−sc <

(∫
|∇Q|2

)sc

M[Q]1−sc

⇐⇒
(∫

| f |p+1
)sc

M[ f ]1−sc <

(∫
|Q|p+1

)sc

M[Q]1−sc . (2.9)

Moreover, (2.9) also holds with non-strict inequalities (in the case of equality, f is equal
to Q up to space translation, scaling and phase).

Proof. Using the inequality (2.2) with the value of cQ as in (2.3), we write it in the
renormalized form:

⎛
⎝ M[ f ] 1−sc

sc
∫ | f |p+1

M[Q] 1−sc
sc

∫ |Q|p+1

⎞
⎠

4
N (p−1)

≤ M[ f ] 1−sc
sc

∫ |∇ f |2
M[Q] 1−sc

sc
∫ |∇Q|2

. (2.10)

The implication (2.7) follows immediately.
Assume (2.8). In view of (2.7), we only have to show the implication from right to

left in (2.9). Assume

(∫
|∇ f |2

)sc

M[ f ]1−sc >

(∫
|∇Q|2

)sc

M[Q]1−sc .
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Then

E[Q]M[Q] 1−sc
sc ≥ E[ f ]M[ f ] 1−sc

sc >
1

2

∫
|∇Q|2 M[Q] 1−sc

sc

− 1

p + 1

∫
| f |p+1 M[ f ] 1−sc

sc ,

and the desired inequality

(∫
| f |p+1

)sc

M[ f ]1−sc >

(∫
|Q|p+1

)sc

M[Q]1−sc

follows. ��

2.1. Proof of Theorem 1.4. In this part we prove Theorem 1.4, except for the scattering
statement in the end of this theorem which is proved in Sect. 3.

The conclusion of Theorem 1.4 is known if ME ≤ 1 (see Remark 1.5). We will thus
assume

ME > 1. (2.11)

Recalling the variance V (t) from (1.7) and its second derivative (1.10), we obtain
∫

|u|p+1 = (p + 1)(16E[u] − Vtt )

2A
,

∫
|∇u|2 = 4N (p − 1)E[u] − Vtt

A
, (2.12)

where A is defined in (2.6). Note that the first expression in (2.12) implies that Vtt ≤
16E[u] for all t .

Using the definition of Vt from (1.8) and Lemma 2.1, we get

(Vt (t))
2 ≤ 16V (t)

[∫
|∇u(t)|2 − 1

cQ M[u]κ
(∫

|u(t)|p+1
) 4

N (p−1)

]
. (2.13)

Substituting (2.12) into (2.13) and abbreviating E = E[u], we obtain

(zt )
2 ≤ 4 ϕ(Vtt ), (2.14)

where

z(t) = √
V (t)

and

ϕ(σ) = −σ

A
+

4N (p − 1)E

A
− 1

cQ M[u]κ
(

(p + 1)(16E − σ)

2A

) 4
N (p−1)

(2.15)

is defined for σ ∈ (−∞, 16E]. We have

ϕ′(σ ) = − 1

A
+

4

cQ M[u]κ N (p − 1)

(
p + 1

2A

) 4
N (p−1)

(16E − σ)
4

N (p−1)
−1

.



1584 T. Duyckaerts, S. Roudenko

Since 4
N (p−1)

−1 < 0 (sc > 0), ϕ is decreasing on (−∞, σm), increasing on (σm, 16E],
where σm is given by the equation

1

A
= 4

cQ M[u]κ N (p − 1)

(
p + 1

2A

) 4
N (p−1)

(16E − σm)
4

N (p−1)
−1

. (2.16)

Note that this implies that

ϕ(σm) = σm

8
. (2.17)

Furthermore, using (2.5), we can rewrite (2.16) as

(
M[u]
M[Q]

)1−sc
(

E[u] − 1
16σm

E[Q]

)sc

= 1. (2.18)

As a consequence, (2.11) is equivalent to

σm ≥ 0, (2.19)

and (1.11) is equivalent to

zt (0)2 ≥ 4ϕ(σm) = σm

2
. (2.20)

First case: we assume (1.13) and (1.12). Note that (1.13) means exactly

zt (0) ≤ 0. (2.21)

In view of (2.5), the assumption (1.12) is equivalent to

(
M[u]
M[Q]

)1−sc
( A

8(p+1)

∫ |u0|p+1

E[Q]

)sc

> 1 =
(

M[u]
M[Q]

)1−sc
(

E[u] − σm
16

E[Q]
)sc

,

that is, by (2.12),
Vtt (0) < σm . (2.22)

We will show by contradiction that

∀t ∈ [0, T+(u)), ztt (t) < 0. (2.23)

Note that

ztt = 1

z

(
Vtt

2
− (zt )

2
)

, (2.24)

and that ztt is continuous on [0, T+(u)). By (2.20) and (2.22),

ztt (0) < 0.

Assume that (2.23) does not hold. Then there exists t0 ∈ (0, T+(u)) such that

∀t ∈ [0, t0), ztt (t) < 0 and ztt (t0) = 0.

By (2.20) and (2.21),

∀t ∈ (0, t0], zt (t) < zt (0) ≤ −√
4ϕ(σm). (2.25)
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Hence, (zt )
2 > 4ϕ(σm), which, combined with (2.14), implies that

∀t ∈ (0, t0], ϕ(Vtt ) > ϕ(σm).

As a consequence, Vtt (t) = σm for t ∈ (0, t0], and by (2.21) and continuity of Vtt ,

∀t ∈ [0, t0], Vtt (t) < σm . (2.26)

Combining (2.25) and (2.26), we obtain

ztt (t0) = 1

z(t0)

(
Vtt (t0)

2
− (zt (t0))

2
)

<
1

z(t0)

(σm

2
− σm

2

)
= 0,

contrary to the definition of t0. Thus, the proof of (2.23) is complete.
Assume that T+(u) = +∞. Then by (2.21) and (2.23),

∀t ≥ 1, zt (t) ≤ zt (1) < 0,

a contradiction with the fact that z(t) is positive.

Second case: we now assume, in addition to (1.11) and (2.11), that (1.15) and (1.14)
hold. In other words, in addition to (2.19) and (2.20), we also assume the following
inequalities

zt (0) ≥ 0 (2.27)

Vtt (0) > σm . (2.28)

We first notice that there exists t0 ≥ 0 such that

zt (t0) > 2
√

ϕ(σm). (2.29)

Indeed, by (2.20) and (2.27), zt (0) ≥ 2
√

ϕ(σm). If the inequality is strict, then we are
done with t0 = 0. If not, then by (2.24) and (2.28), ztt (0) > 0 and (2.29) follows for
small t0 > 0.

Let ε0 > 0 be a small parameter and assume

zt (t0) ≥ 2
√

ϕ(σm) + 2ε0. (2.30)

We will prove by contradiction

∀t ≥ t0 zt (t) > 2
√

ϕ(σm) + ε0. (2.31)

Assume that (2.31) does not hold, and let

t1 = inf{t ≥ t0 : zt (t) ≤ 2
√

ϕ(σm) + ε0}. (2.32)

By (2.30) t1 > t0. By continuity

zt (t1) = 2
√

ϕ(σm) + ε0 (2.33)

and
∀t ∈ [t0, t1] zt (t) ≥ 2

√
ϕ(σm) + ε0. (2.34)

By (2.14)
∀t ∈ [t0, t1] (2

√
ϕ(σm) + ε0)

2 ≤ (zt (t))
2 ≤ 4ϕ(Vtt (t)). (2.35)
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As a consequence, ϕ(Vtt (t)) > ϕ(σm) for all t ∈ [t0, t1], thus, Vtt (t) = σm and by
continuity Vtt (t) > σm for t ∈ [t0, t1].

We prove that there exists a universal constant D > 0 such that

∀t ∈ [t0, t1] Vtt (t) ≥ σm +
√

ε0

D
. (2.36)

Indeed, by the Taylor expansion of ϕ around σ = σm , there exists a > 0 such that

|σ − σm | ≤ 1 ⇒ ϕ(σ) ≤ ϕ(σm) + a(σ − σm)2. (2.37)

If Vtt (t) ≥ σm + 1, then (2.36) holds (taking D large). If σm < Vtt (t) ≤ σ + 1, then by
(2.35) and (2.37), we obtain

(2
√

ϕ(σm) + ε0)
2 ≤ (zt (t))

2 ≤ 4 ϕ(Vtt (t)) ≤ 4 ϕ(σm) + 4a(Vtt (t) − σm)2,

thus

4
√

ϕ(σm)ε0 + ε2
0 ≤ 4a(Vtt − σm)2,

and we get (2.36) with D = √
a (ϕ(σm))−1/4.

However, by (2.24) and (2.33) we have

ztt (t1) = 1

z(t1)

(
Vtt (t1)

2
− (zt (t1))

2
)

≥ 1

z(t1)

(
σm

2
+

√
ε0

2D
− (2

√
ϕ(σm) + ε0)

2
)

≥ 1

z(t1)

(√
ε0

2D
− 4ε0

√
ϕ(σm) − ε2

0

)
> 0,

if ε0 is small enough, thus, contradicting (2.33) and (2.34). Therefore, we obtain (2.31).
Note that we have also shown that the inequality (2.36) holds for all t ∈ [t0, T+(u)).
Hence (using the first equality in (2.12), Pohozaev identity (2.4) and the characterization
(2.18) of σm),

M[u]1−sc

(∫
|u(t)|p+1

)sc

≤ M[u]1−sc

(
p + 1

2A
(16E − σm − √

ε0 M)

)sc

< M[u]1−sc

(
p + 1

2A
(16E − σm)

)sc

= M[Q]1−sc

(∫
|Q|p+1

)sc

,

which gives (1.16). This concludes the proof of Theorem 1.4, except for the fact that
(1.16) implies that the solution u scatters forward in time, which is proved in Sect. 3.
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2.2. Dichotomy for quadratic phase initial data. We next study the behavior of solu-
tions with data modulated by a quadratic phase, proving Corollary 1.10 except for the
scattering statement which will follow from (2.38) and Sect. 3:

Corollary 2.4. Let γ ∈ R\{0}, v0 be such that ME[v0] ≤ 1, and uγ be the solution of
(1.1) with initial data

uγ
0 = eiγ |x |2v0.

• If
(∫ |v0|p+1

)sc M[v0]1−sc >
(∫ |Q|p+1

)sc M[Q]1−sc , then

∀ γ < 0, T+(uγ ) < ∞.

• If
(∫ |v0|p+1

)sc M[v0]1−sc <
(∫ |Q|p+1

)sc M[Q]1−sc , then

∀ γ > 0, lim sup
t→T+(u)

M[u0]1−sc

(∫
|uγ (t)|p+1

)sc

< M[Q]1−sc

(∫
|Q|p+1

)sc

.

(2.38)

Proof. Let v0 satisfy ME[v0] ≤ 1, γ ∈ R\{0} and u be the solution with initial data
u0 = eiγ |x |2v0 (we drop the superscripts γ to simplify the notation). If ME[u0] ≤ 1,
then (2.9) in Claim 2.3 and the usual blow-up/scattering dichotomy implies the result
(see [24] or Theorem 1.3 for the energy-critical case [17,21] or Theorem 1.1 for a general
energy-subcritical case). We thus assume

ME[u0] ≥ 1, or, E[u0]M[u0]
1−sc

sc ≥ E[Q]M[Q] 1−sc
sc . (2.39)

We will show that u0 satisfies the assumptions of Theorem 1.4. We have

E[u0] = E[v0] + 2γ Im
∫

x · ∇v0 v0 + 2γ 2
∫

|x |2|v0|2 and (2.40)

Im
∫

u0 x · ∇u0 = Im
∫

v0 x · ∇v0 + 2γ

∫
|x |2|v0|2. (2.41)

As a consequence,

E[u0] −
(
Im

∫
x · ∇u0 u0

)2

2
∫ |x |2|u0|2 = E[v0] −

(
Im

∫
x · ∇v0 v0

)2

2
∫ |x |2|v0|2 , (2.42)

and the assumption (1.11) follows from writing out explicitly ME[v0] ≤ 1.
We will only treat the case when

γ > 0 and M[v0]
1−sc

sc

∫
|v0|p+1 < M[Q] 1−sc

sc

∫
|Q|p+1, (2.43)

the proof of the other case is similar and is left to the reader. Of course,

M[u0]
1−sc

sc

∫
|u0|p+1 = M[v0]

1−sc
sc

∫
|v0|p+1 < M[Q] 1−sc

sc

∫
|Q|p+1, (2.44)
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which shows that (1.14) is satisfied. Since γ is positive, we see by (2.40) that (2.39)
implies that γ ≥ γ +

c , where γ +
c is the unique positive solution of

(
E[v0] + 2γ +

c Im
∫

x · ∇v0v0 + 2(γ +
c )2

∫
|x |2|v0|2

)
M[v0]

1−sc
sc = E[Q]M[Q] 1−sc

sc .

Since ME[v0] < 1, or equivalently, M[v0]
1−sc

sc E[v0] ≤ M[Q] 1−sc
sc E[Q], the above line

implies

Im
∫

x · ∇v0v0 + γ +
c

∫
|x |2|v0|2 ≥ 0.

Using that γ ≥ γ +
c , we see that

Im
∫

x · ∇u0u0 = Im
∫

x · ∇v0v0 + 2γ

∫
|x |2|v0|2 > γ

∫
|x |2|v0|2 > 0,

which yields the assumption (1.15). Theorem 1.4 applies, which concludes the proof of
Corollary 1.10. ��

We now consider the ground state with the quadratic phase and prove Corollary 1.12.

Proof of Corollary 1.12. Denoting Q = W , the proof is the same in the energy-critical
case as in the energy-subcritical case and we shall not distinguish the two cases. Note
that xW ∈ L2(RN ) if and only if N ≥ 7, hence our assumption on the dimension in the
energy-critical case.

Using that if u(x, t) is a solution, then u(x,−t) is also a solution, it is sufficient
to prove the assertions on Qγ for positive times. Assume that γ is positive. Then Qγ

almost satisfies the assumptions of Theorem 1.4, in the sense that it satisfies (1.11),
(1.15) and the equality corresponding to the strict inequality in (1.14). We will show
that the solution Qγ

t0(x, t) = Qγ (t0 + t, x) satisfies the assumptions (1.11), (1.15) and
(1.14) for small positive t0, which will imply by Theorem 1.4 that Qγ is bounded for
positive time t > 0.

We first note that

Im
∫

x · ∇Qγ
0 Qγ

0 = 2γ

∫
|x |2|Q|2,

so that

Im
∫

x · ∇Qγ
t0 Qγ

t0 > 0 (2.45)

for small t0, which shows that Qγ
t0 satisfies (1.15) for small t0.

Now using that Qγ satisfies (1.1), we get

d

dt

∫
|Qγ |p+1 = (p +1) Re

∫ ∣∣Qγ
∣∣p−1

Qγ ∂t Qγ = −(p +1) Im
∫

|Qγ |p−1 Qγ �Qγ .

Since, at t = 0,

�Qγ
0 = eiγ |x |2 (2Niγ Q + 4iγ x · ∇Q − 4γ 2|x |2 Q + �Q

)
,
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we get[
d

dt

∫
|Qγ |p+1

]
�t=0

= −2γ N (p + 1)

∫
Q p+1 − 4γ (p + 1)

∫
Q px · ∇Q

= −2γ N (p − 1)

∫
Q p+1 < 0.

As

M
[
Qγ

0

] 1−sc
sc

∫ ∣∣Qγ
0

∣∣p+1 = M[Q] 1−sc
sc

∫
|Q|p+1,

we obtain that Qγ
t0 satisfies assumption (1.14) for small t0. It remains to check (1.11).

Let

F(t) = M[Qγ ] 1−sc
sc

(
E[Qγ ] −

(
Im

∫
x · ∇Qγ (t) Qγ (t)

)2

2
∫ |x |2|Qγ (t)|2

)
− M[Q] 1−sc

sc E[Q].

By (2.42) with v0 = Q, F(0) = 0. We must check that F(t) ≤ 0 for small positive t .
We will use the same notations as in the proof of Theorem 1.4:

V (t) =
∫

|x |2|Qγ (x, t)|2 dx, z(t) = √
V (t).

Then

F(t) = M[Qγ ] 1−sc
sc

(
E[Qγ ] − 1

8
(zt (t)

2)

)
− M[Q] 1−sc

sc E[Q].
Thus,

Ft (t) = −1

4
M[Qγ ] 1−sc

sc zt (t)ztt (t),

and

Ftt (0) = −1

4
M[Qγ ] 1−sc

sc

(
zt (0)zttt (0) + (ztt (0))2

)
.

By Remark 2.2 and (1.9), ztt (0) = 0, and thus, Ft (0) = 0 and

Ftt (0) = −1

4
M[Qγ ] 1−sc

sc zt (0)zttt (0).

Using that

Vtt = 2(zt )
2 + 2zztt , Vttt = 6zt ztt + 2z zttt ,

we obtain that Vttt (0) = 2z(0) zttt (0), and (since, by (2.45), zt (0) > 0) the sign of
Ftt (0) and −Vttt (0) is the same. By (2.12), we get that this sign is the same as the one
of [

d

dt

∫
|Qγ |p+1

]
�t=0

.

Hence, Ftt (0) < 0, which shows that F(t) is negative for small t = 0, thus, completing
the proof.

If γ < 0, one shows by a very close proof to the above that Qγ (t0 + t, x) satisfies the
assumptions (1.11), (1.13) and (1.12) for small positive t0, implying the blow-up result
and concluding the proof of Corollary 1.12. ��
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3. Scattering

In this section, we show that the bound from above (1.16), obtained in the previous
section for the boundedness part of Theorem 1.4, implies scattering of the solution.
Section 3.1 is devoted to the energy-critical case, and Sect. 3.2 to the energy-subcritical
case. Proofs rely on a compactness-rigidity argument of the type initiated in [24]. A
refinement of this argument is necessary since smallness of the L p+1 norm of the initial
data does not insure global well-posedness and scattering of the corresponding solution.

3.1. Energy-critical case. Recall the NLS equation (1.1) when sc = 1 or (1.6), i.e., in
dimension N ≥ 3 we have

i∂t u + �u + |u| 4
N−2 u = 0, u�t=0 = u0 ∈ Ḣ1(RN ). (3.1)

In this part we show the scattering result of Theorem 1.4, namely,

Theorem 3.1. Let u be a solution of (3.1) with maximal time of existence T+(u), and
assume

lim sup
t→T+(u)

∫
RN

|u(x, t)| 2N
N−2 dx <

∫
|W (x)| 2N

N−2 dx . (3.2)

Assume furthermore that u is radial if N = 3, 4. Then T+(u) = +∞ and u scatters
forward in time.

If I is a real interval, we define

S(I ) = L
2(N+2)

N−2 (I × R
N ),

noting that the pair (
2(N+2)

N−2 ,
2(N+2)

N−2 ) is Ḣ1-admissible. Recall (see e.g. Cazenave’s book
[7]) that if u is a solution of (3.1) such that ‖u‖S(0,T+(u)) < ∞, then T+(u) = +∞ and
u scatters forward in time.

If A > 0, E0 ∈ R, we let S(E0, A) be the supremum of ‖u‖S(I ), where I is a real
interval, and u a solution of (3.1) on I × R

N such that

E[u] ≤ E0 (3.3)

sup
t∈I

∫
|u(x, t)| 2N

N−2 ≤ A (3.4)

if N = 3, 4, u is radial. (3.5)

We deduce Theorem 3.1 from a slightly stronger result:

Theorem 3.2. Assume that 0 < A <
∫ |W | 2N

N−2 and E0 ∈ R. Then S(E0, A) is finite.

Of course, Theorem 3.2 implies Theorem 3.1.
Theorem 3.1 is a variant of the scattering part of the main Theorem of [24] (see also

Corollary 5.18). We also refer to Theorem 1.7 of [28], which states that if A <
∫ |∇W |2

and T (A) = sup ‖u‖S(I ), where the supremum is taken over all solutions on I × R
N

such that supt∈I

∫ |∇u(t)|2 ≤ A, then T (A) < ∞. Note that by the critical Sobolev
embedding, ∫

|∇u|2 <

∫
|∇W |2 �⇒

∫
|u| 2N

N−2 <

∫
|W | 2N

N−2 ,

which shows that Theorem 3.2 is slightly stronger than Theorem 1.7 of [28].
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The proof of Theorem 3.2 follows the general strategy initiated in [24], and is very
close to the proof of [24], with the extra argument given in [28] to deal with nonradial
solutions in dimension N ≥ 5. We only sketch the proof, highlighting the differences.
We start by a purely variational result:

Claim 3.3. Let a, A ∈ R such that 0 < a < A <
∫ |W | 2N

N−2 . Then there exists ε0 =
ε0(a, A) > 0 such that for all f ∈ Ḣ1(RN ) with

a ≤
∫

| f | 2N
N−2 ≤ A

one has
∫

|∇ f |2 −
∫

| f | 2N
N−2 ≥ ε0 (3.6)

E[ f ] ≥ ε0

2
. (3.7)

Proof. By Sobolev inequality

∫
|∇ f |2 −

∫
| f | 2N

N−2 ≥
(∫

| f | 2N
N−2

) N−2
N

(∫
|W | 2N

N−2

) 2
N −

∫
| f | 2N

N−2 .

Observing that the function

ϕ : y �→
(∫

|W | 2N
N−2

) 2
N

y
N−2

N − y

is continuous and strictly positive on
(

0,
∫ |W | 2N

N−2

)
, we get (3.6). The inequality (3.7)

is an immediate consequence of (3.6). ��
We divide the proof of Theorem 3.2 into two propositions.

Proposition 3.4. Assume that there exists E0 ∈ R and a positive number A <
∫ |W | 2N

N−2

such that S(E0, A) = +∞. Then there exists a solution uc of (3.1) with maximal interval
of existence Imax, and functions t �→ λ(t) ∈ (0, +∞) and t �→ x(t) ∈ R

N , defined on
Imax such that

K =
{ 1

λ(t)
N−2

2

uc

(
x − x(t)

λ(t)
, t

)
, t ∈ Imax

}
(3.8)

has compact closure in Ḣ1(RN ) and satisfies supt∈Imax

∫
RN |uc(t)| 2N

N−2 ≤ A and
E[uc] > 0.

If N = 3, 4, then one can assume that uc is radial and x(t) = 0 for all t .

Proposition 3.5. There exist no solution uc of (3.1) satisfying the conclusion of Propo-
sition 3.4.
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Sketch of proof of Proposition 3.4. Step 1. We first notice that by purely variational

arguments and the small data theory, if A <
∫ |W | 2N

N−2 and E0 > 0 is small, then
S(E0, A) is finite. Indeed, if u is a solution of (3.1) such that E[u] ≤ E0 < E[W ] and∫ |u0| 2N

N−2 <
∫ |W | 2N

N−2 , then by Claim 2.3,
∫ |∇u0|2 <

∫ |∇W |2, which, combined with
the inequality E[u] ≤ E0 < E[W ], implies, by Claim 2.6 of [13] that

∫ |∇u0|2 ≤ N E0,
and the fact that S(E0, A) is finite follows from the small data theory.

Step 2. We next construct the critical element uc. Let A <
∫ |W | 2N

N−2 and assume that
S(E0, A) = +∞ for some E0 ∈ R. Consider

Ec = Ec(A) = inf{E0 ∈ R s.t. S(E0, A) = +∞}.
Note that by the preceding step, Ec is well defined and positive. We will prove the
existence of uc as a consequence of the following lemma, analogous to Proposition 3.1
of [28]:

Lemma 3.6. Let In = (T −
n , T +

n ) be a sequence of intervals containing 0. Let {un}n be
a sequence of solutions of (3.1) on In, with initial data u0,n ∈ Ḣ1(RN ) at t = 0, such
that un is radial if N = 3, 4 and

lim
n→+∞ ‖un‖S(T −

n ,0) = lim
n→∞ ‖un‖S(0,T +

n ) = +∞ (3.9)

lim
n→∞ E[un] = Ec (3.10)

sup
t∈In

∫
|un(x, t)| 2N

N−2 dx ≤ A. (3.11)

Then there exists a subsequence of {u0,n}n (still denoted by {u0,n}n) and sequences {xn}n,

{λn}n such that

{
1

λ
1/2
n

u0,n

( ·−xn
λn

)}
n

converges in Ḣ1.

(Of course, if N = 3, 4 in the lemma, we can assume xn = 0 for all n).
We omit the proof of Lemma 3.6, which is close to the one of [24, section 3] and the

proof of Proposition 3.1 of [28]. The main ingredients of the proof are the critical profile
decomposition of Keraani [27], long-time perturbation arguments and the criticality of
Ec. We note that by Claim 3.3, any nonzero profile in a profile decomposition of {u0,n}n
has strictly positive energy, which is crucial in the argument.

Let us assume Lemma 3.6 and conclude the proof of Proposition 3.4. By the definition
of Ec, there exists a sequence of intervals {In}n and a sequence of solutions {un}n of
(3.1) on In such that

lim
n→∞ E[un] = Ec (3.12)

lim
n→∞ ‖un‖S(In) = +∞ (3.13)

∀n, ∀t ∈ In,

∫
|un(x, t)| 2N

N−2 dx ≤ A. (3.14)

Time translating un if necessary, we may assume by (3.13) that In = (θ−
n , θ+

n ) with
θ−

n < 0 < θ+
n and

lim
n→∞ ‖un‖S(θ−

n ,0) = lim
n→∞ ‖un‖S(0,θ+

n ) = +∞. (3.15)
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By Lemma 3.6 (with T −
n = θ−

n , T +
n = θ+

n ) extracting a subsequence in n, rescaling and
space-translating un , we can assume that there exists u0,c ∈ Ḣ(RN ) such that

lim
n→∞ ‖u0,n − u0,c‖Ḣ1 = 0. (3.16)

Let (T−, T+) be the maximal interval of existence of uc. Then by the continuity of the
flow of (3.1),

lim inf θ+
n ≥ T+, lim sup θ−

n ≤ T−. (3.17)

Furthermore,
‖uc‖S(0,T+) = ‖uc‖S(T−,0) = +∞. (3.18)

Indeed, assume for example that ‖uc‖S(0,T+) is finite. Then T+ = +∞ and for large n,
un is globally defined forward in time and satisfies ‖un‖S(0,+∞) ≤ 1 + ‖uc‖S(0,+∞), a
contradiction with (3.15). By (3.12), we get

E[uc] = Ec ≥ E[W ]. (3.19)

Furthermore, by (3.14) and (3.17),

sup
t∈(T−,T+)

∫
|uc(x, t)| 2N

N−2 dx ≤ A. (3.20)

Let {tn}n be a sequence in (T−, T+). By (3.18),(3.19) and (3.20), the sequence of solutions
{uc(tn + ·)}n satisfies the assumptions of Lemma 3.6 with T −

n = T− and T +
n = T+,

which shows that there exist sequences {λn}n and {xn}n such that a subsequence of{
1

λ
1/2
n

uc

(
tn,

x−xn
λn

)}
n

converges in Ḣ1. By a standard lifting Lemma (e.g., see [12,

Appendix A]), one can deduce the existence of λ(t) and x(t) such that K (defined by
(3.8)) has compact closure, which concludes the proof of Proposition 3.4. ��
Proof of Proposition 3.5. We divide the proof into three parts, following again very
closely [24] and, in Part 3, [28]. For simplicity, we will often omit the subscript c and
write u = uc.

Part 1. We show in this step that uc is global. Assume, for example, that T+(uc) is finite.
Let ϕ ∈ C∞

0 (RN ) such that ϕ(x) = 1 if |x | ≤ 1 and ϕ(x) = 0 if |x | ≥ 2. Let

MR(t) =
∫

ϕ
( x

R

)
|u(x, t)|2 dx .

Then using that u is bounded in Ḣ1 and Hardy’s inequality,

|M ′
R(t)| =

∣∣∣∣2 Im
∫

1

R
∇ϕ

( x

R

)
· ∇u u dx

∣∣∣∣ ≤ C‖∇u(t)‖2 ≤ C,

where C is independent of t and R. Thus, if 0 ≤ s < t < T+(u), R ≥ 1,

|MR(s) − MR(t)| ≤ C |t − s|. (3.21)

We next notice that there exists tn → T+(u) such that

lim
n→∞ MR(tn) = 0. (3.22)
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Indeed, if |x(t)| + λ(t) + λ(t)−1 is bounded as t → T+(u), then by the compactness of
K , there exists a sequence tn → T+(u) such that u(tn) converges in Ḣ1, contradicting
the fact that T+(u) is the maximal time of existence of u. Thus, there exists a sequence
tn → T+(u) such that one of the following holds:

lim
n→∞ |x(tn)| = +∞ or lim

n→∞ λ(tn) = 0 or lim
n→∞ λ(tn) = +∞.

In each case, (3.22) follows easily.
Combining (3.21) and (3.22), we see that for all R ≥ 1 and for all s ∈ [0, T+(u)),

MR(s) ≤ C |T+(u) − s|.
Letting R → ∞, we get by conservation of mass that u0 ∈ L2 and that M(u0) ≤
C |T+(u) − s|. Letting s → T+(u), we get that u0 = 0, contradicting the fact that the
energy of u is positive.

Note that to show T+(uc) = +∞, we only used that

K+ =
{ 1

λ(t)
N−2

2

uc

(
x − x(t)

λ(t)
, t

)
, t ∈ [0, T+(uc))

}
(3.23)

has compact closure in Ḣ1(RN ).
We next treat the global case. Let

a = inf
t∈R

∫
|u(x, t)| 2N

N−2 .

We note that by compactness of K , a > 0. We let ε0 = ε0(a, A) given by Claim 3.3.
We distinguish between space dimensions N = 3, 4 and N ≥ 5.

Part 2. Global radial case, N = 3, 4. Here, x(t) = 0 for all t .
We first assume

inf
t∈[0,+∞)

λ(t) > 0. (3.24)

Let R be a large constant to be specified later, and

zR(t) =
∫

R2 χ
( x

R

)
|u(x, t)|2 dx, (3.25)

where χ is smooth, χ(x) = |x |2 if |x | ≤ 1 and χ(x) = 0 if |x | ≥ 2. Then

|z′
R(t)| =

∣∣∣∣2 Im
∫

R ∇χ
( x

R

)
· ∇u u dx

∣∣∣∣ . (3.26)

Since u is bounded in Ḣ1, there exists C > 0 such that

∀t ∈ [0, +∞),
∣∣z′

R(t)
∣∣ ≤ C R2. (3.27)

By an explicit computation, using that u is a solution of (3.1), we get

z′′
R(t) ≥ 8

(∫
|∇u(t)|2 −

∫
|u| 2N

N−2

)
︸ ︷︷ ︸

(A)

− C
∫

|x |≥R
|∇u|2 +

|u|2
|x |2 + |u| 2N

N−2

︸ ︷︷ ︸
(B)

. (3.28)
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By Claim 3.3, the term (A) in (3.28) is greater than 8ε0. By the compactness of K , one
can chose R large so that |(B)| ≤ ε0. Combining, we get that if R is large,

∀t ≥ 0, z′′
R(t) ≥ 7ε0. (3.29)

Integrating (3.29) between 0 and T > 0, we get

C R2 ≥ z′
R(T ) ≥ 7ε0T + z′

R(0),

a contradiction if T → +∞, R being fixed. This concludes the proof when (3.24) holds.
Again we only used that K+ defined by (3.23) has compact closure in Ḣ1.

We next assume that (3.24) does not hold. Using the compactness of K , one can
construct another solution ũc of (3.1) such that 0 ∈ Imax(ũc),

E[uc] = E[ũc], sup
t∈[0,T+(ũc))

∫
|ũc| 2N

N−2 ≤ A

and there exists λ̃(t) such that

K̃+ =
{

1

λ̃
N−2

2 (t)
ũc

(
x

λ̃(t)
, t

)
, t ∈ [0, T+(ũc))

}

has compact closure in Ḣ1 and

inf
t∈[0,T+(ũc))

λ̃(t) > 0.

We refer to the proof of Theorem 5.1 in [24] for the construction of ũc and λ̃.
By Part 1 of the proof, T+(ũc) = +∞. We are thus reduced to the case where (3.24)

holds, concluding this part.

Part 3. Global case, N ≥ 5, without radial assumption.
By Part 1 of the proof, we can assume again that u is globally defined. By Section 4

of [28], we can assume that one of the following holds:

∀t ∈ R, λ(t) = 1 (3.30)

sup
t∈R

λ(t) < ∞ and lim
t→+∞ λ(t) → 0 (3.31)

By Theorem 6.1 of [28], in both cases

u0 ∈ L2(RN ). (3.32)

According to Theorem 7.1 of [28], (3.31) does not hold. In this case we do not need the

assumption that supt

∫ |u(t)| 2N
N−2 <

∫ |W | 2N
N−2 .

We next assume that (3.30) holds. By Lemma 8.2 of [28], K defined by (3.8) (with
λ(t) = 1) has compact closure in H1(RN ). Applying the Galilean transform

u(x, t) �→ eix ·ξ0 e−i t |ξ0|2 u(x − 2ξ0t, t),

with a suitable choice of ξ0, one can assume that the conserved momentum Im
∫ ∇uu

is zero. Following [12], one can deduce

lim
t→∞

x(t)

t
= 0. (3.33)
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Let C0 > 0 be a large constant (depending only on a and A). Let T > 0 and

R = C0 + max
0≤t≤T

|x(t)|.

Consider zR(t) defined by (3.25). Using that u(t) is bounded in H1(RN ) we obtain that
there is a constant C > 0 independent of R such that

∀t ∈ R, |z′
R(t)| ≤ C R. (3.34)

Furthermore, as before

z′′
R(t) ≥ 8

(∫
|∇u(t)|2 −

∫
|u| 2N

N−2

)
︸ ︷︷ ︸

(A)

− C
∫

|x |≥R
|∇u|2 +

|u|2
|x |2 + |u| 2N

N−2

︸ ︷︷ ︸
(B)

. (3.35)

Using Claim 3.3, the compactness of K in Ḣ1 and the choice of R, we get, for C0 large
(independently of 0 and T ),

∀t ∈ [0, T ], z′′
R(t) ≥ 7ε0.

Integrating between 0 and T , we deduce

C R ≥ 7ε0T,

that is

C

(
C0 + max

0≤t≤T
|x(t)|

)
≥ 7ε0|T |,

which contradicts (3.33), which concludes this sketch of proof.
We note that we could have (as in Part 2) reduced to a critical solution u satisfying

inf
t≥0

λ(t) > 0,

however, such a solution does not necessarily satisfy supt λ(t) < ∞, a condition that is
needed in [28] to prove that u0 ∈ L2. ��

3.2. Energy-subcritical case. Now we consider the NLS equation (1.1) when 0 < sc <

1 and obtain scattering for bounded solutions in Theorem 1.4:

Theorem 3.7. Let u be a solution of (1.1), where p satisfies (1.5), and assume that
T+(u) = +∞ and

lim sup
t→+∞

(∫
|u(t)|p+1

)sc

M[u]1−sc <

(∫
|Q|p+1

)sc

M[Q]1−sc .

Then u scatters forward in time in H1.
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As in the previous subsection, we first state a slightly stronger result. Define

‖u‖S(I ) = ‖u‖Lα(I,L p+1(RN )),

where α = 2(p−1)(p+1)
4−(N−2)(p−1)

. Observe1 that (α, p + 1) is Ḣ sc -admissible, i.e., 2
α

+ N
p+1 =

N
2 − sc. We note that if u is a solution of (1.1) which is bounded in H1 on [0, +∞) and

such that ‖u‖S(0,+∞) is finite, then u scatters forward in time (see [7]).
For L ∈ R, A > 0, we let S(L , A) be the supremum of all ‖u‖S(I ), where I is a real

interval, and u a solution of (1.1) on I × R
N such that

sup
t∈I

(∫
|u(t)|p+1

)sc

M[u]1−sc ≤ A and E[u]sc M[u]1−sc ≤ L .

Theorem 3.8. If (1.5) holds and A <
(∫ |Q|p+1

)sc M[Q]1−sc , then for all L in R,

S(L , A) < ∞.

The proof is very close to the one of Sect. 3.1, but two things are simpler in the subcritical
setting: all solutions that are bounded in H1 are global, and there is no need for the
scaling parameter λ(t). The adaptation of the arguments of [24] in the critical case
to a radial subcritical setting (cubic equation in dimension 3), was done in [22]. The
radiality assumption was removed in [12]. We refer to [17] (and also to [8]) for a general
energy-subcritical and mass-supercritical NLS equation.

We start by proving the analog of Claim 3.3, which is the only new ingredient of the
proof. We will then state the analogs of Proposition 3.4 and 3.5.

Claim 3.9. Let a, A be such that

0 < a < A <

(∫
|Q|p+1

)sc

M[Q]1−sc .

Then there exists ε0 = ε0(a, A) such that, for all f ∈ H1(RN ), if

a ≤
(∫

| f |p+1
)sc

M[ f ]1−sc ≤ A,

the two following properties hold:

∫
|∇ f |2 − N (p − 1)

2(p + 1)

∫
| f |p+1 ≥ ε0 M[ f ]1− 1

sc (3.36)

E[ f ] ≥ ε0

2
M[ f ]1− 1

sc . (3.37)

1 In [17, section 2.2.1], S(I ) is defined as the intersection of all Lq (I, Lr ) spaces with (q, r) Ḣ sc -admissible.
It is sufficient for this paper to use just one such admissible paper, as in [8] for example.
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Proof. By Pohozaev equality (2.4),
∫ |∇Q|2 = N (p−1)

2(p+1)

∫ |Q|p+1. Recalling the
Gagliardo–Nirenberg inequality (2.2), we have

M[ f ] 1
sc

−1
∫

|∇ f |2 − N (p − 1)

2(p + 1)
M[ f ] 1

sc
−1

∫
| f |p+1

≥ 1

cQ
M[ f ] 1

sc
−1−κ

(∫
| f |p+1

) 4
N (p−1) − N (p − 1)

2(p + 1)
M[ f ] 1

sc
−1

∫
| f |p+1

= y
4

N (p−1)

cQ
− N (p − 1)

2(p + 1)
y, (3.38)

where y = ∫ | f |p+1 M[ f ] 1
sc

−1. The function y �→ y
4

N (p−1)

cQ
− N (p−1)

2(p+1)
y has only one zero

y∗ on (0,∞), such that y
1− 4

N (p−1)∗ = 2(p+1)
N (p−1)cQ

, and is positive between 0 and y∗. Since
the inequality (3.38) is an equality when f = Q, we get

y∗ = M[Q] 1
sc

−1
∫

|Q|p+1,

and (3.36) follows. Noting that

E[ f ] ≥ 1

2

(∫
|∇ f |2 − N (p − 1)

2(p + 1)

∫
| f |p+1

)

(indeed N (p−1)
4 ≥ 1), we get (3.37). ��

The following propositions are the energy-subcritical analogs of Propositions 3.4
and 3.5.

Proposition 3.10. Assume that there exists A <
(∫ |Q|p+1

)sc M[Q]1−sc , and L ∈ R

such that S(L , A) = +∞. Then there exists a global solution uc of (1.1), and a function
t �→ x(t) defined on R such that

K = {uc(x − x(t), t), t ∈ R}
has a compact closure in H1.

Proposition 3.11. There exist no solution uc satisfying the conclusion of Proposition 3.10.

The proof of Proposition 3.10 goes along the same lines as the proof of Proposi-
tion 3.4: first, by purely variational arguments and the small data theory, one notice that
S(L , A) is finite if A <

(∫ |Q|p+1
)sc M[Q]1−sc and L is small. Then, using a suit-

able profile decomposition (see [17,27]), one shows the analog of Lemma 3.6 to prove
the existence of uc and the compactness of its trajectory up to the translation parame-
ter x(t). We note that the fact that uc is bounded in H1 implies (since nonlinearity is
energy-subcritical) that it is a global solution.

The proof of Proposition 3.11 is very close to Part 3 of the proof of Proposition 3.4
in the case where (3.30) holds. Let us just mention the analog of (3.35):

z′′
R(t) ≥ 8

(∫
|∇u|2 − N (p − 1)

2(p + 1)

∫
|u|p+1

)
− C

∫
|x |≥R

|∇u|2 +
1

|x |2 |u|2 + |u| 2N
N−2 ,

which yields a contradiction in the same way as in the above proof, replacing Claim 3.3
by Claim 3.9.
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4. Blow Up Criteria

In this section we obtain two criteria for blow up in finite time: the first one is a gen-
eralization of Lushnikov’s criteria [30] and the second one is the modification of the
first approach where the generalized uncertainty principle is replaced by an interpola-
tion inequality (4.18). Note that both criteria are applicable in the case of the energy-
supercritical NLS equations with positive energy. For a specific case of the focusing 3d
cubic NLS equation see [20, Sections 3.1 and 3.2].

4.1. Proof of Theorem 1.15. We first obtain a version of an uncertainty principle. By
integration by parts

‖u‖2
L2 = 1

N

∫
(∇ · x)|u|2 dx = − 2

N
Re

∫
(x · ∇u)ū dx .

Since |z|2 = | Re z|2 + | Im z|2, we have

N 2

4
‖u‖4

L2 +

∣∣∣∣Im
∫

(x · ∇u)ū dx

∣∣∣∣
2

=
∣∣∣∣
∫

(x · ∇u)ū dx

∣∣∣∣
2

≤ ‖xu‖2
L2‖∇u‖2

L2 ,

where the last one is by Cauchy–Schwarz. Recalling the variance and its first derivative
from (1.7), we obtain the uncertainty principle

N 2

4
‖u‖4

L2 +

∣∣∣∣Vt (t)

4

∣∣∣∣
2

≤ V (t) ‖∇u‖2
L2 . (4.1)

Recalling the second (time) derivative of the variance

Vtt (t) = 4N (p − 1)E[u] − 4(p − 1)sc‖∇u(t)‖2
L2(RN )

, (4.2)

we substitute the bound on ‖∇u‖2
L2 from (4.1) into (4.2) to obtain

Vtt (t) ≤ 4N (p − 1)E[u] − N 2(p − 1)sc
(M[u])2

V (t)
− (p − 1)sc

4

|Vt (t)|2
V (t)

. (4.3)

We rewrite the Eq. (4.3) to remove the last term with V 2
t by making the substitution

V = B
1

α+1 , α = (p − 1)sc

4
= N (p − 1) + 4

8
, (4.4)

and thus,

Vt = 1

α + 1
B− α

α+1 Bt and Vtt = − α

(α + 1)2 B− 2α+1
α+1 B2

t +
1

α + 1
B− α

α+1 Btt ,

which gives

Btt ≤ 4(α + 1)N (p − 1)E[u]B
α

α+1 − (α + 1)N 2(p − 1)sc(M[u])2 B
α−1
α+1 ,
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or equivalently,

Btt ≤ N (p − 1)(N (p − 1) + 4)

2

×
(

E[u] B
N (p−1)−4
N (p−1)+4 − Nsc

4
(M[u])2 B

N (p−1)−12
N (p−1)+4

)
, t ∈ [0, T+). (4.5)

We rescale B as follows: let B(t) = Bmax b(at), where

Bmax =
(

Nsc(M[u])2

4E[u]
) N (p−1)+4

8

, a = 8
√

2√
N sc

E[u]
M[u] . (4.6)

Then letting s = at , we get

ω bss ≤ bγ − bδ, s ∈ [0, T +/a), (4.7)

where

γ = N (p−1) − 4

N (p−1) + 4
, δ = N (p−1) − 12

N (p−1) + 4
≡ 2γ − 1, ω = 64

N (p − 1)(N (p − 1) + 4)
.

Note that, since p > 1 + 4
N ,

0 < γ < 1, −1 < δ < γ. (4.8)

To analyze Eq. (4.7), a mechanical analogy of a particle moving in a field with a potential
barrier is used as it was adapted in [20] from work of Lushnikov [30]. We rewrite (4.7)
as

ω bss +
∂U

∂b
≤ 0, t ∈ [0, T +/a), (4.9)

where U (b) = bδ+1

δ+1 − bγ +1

γ +1 . The analogy from mechanics is as follows: Let b = b(t) be
a coordinate of a particle (of mass 1) with a motion under 2 forces: btt = F1 + F2, where
F1 = − 1

ω
∂U
∂ B , and F2 = −g2(t) is some unknown external force which pulls the particle

towards zero. The collapse occurs when this particle reaches the origin in a finite period
of time, i.e., when b(t) = 0 for some 0 < t < ∞. If the particle reaches the origin
without the force −g2(t), then it should also reach the origin in the situation when this
force is applied. We are thus lead to consider equation:

ω bss +
∂U

∂b
= 0. (4.10)

Define the energy of the particle

E(s) = ω

2
b2

s (s) + U (b(s)), (4.11)

which is conserved for solutions of (4.10). Note that ∂U
∂b = bδ − bγ . Thus, in terms

of dependence of U on the particle’s coordinate b, it is a bell-shaped function near 1
(for positive b) with the local maximum Umax = 1

δ+1 − 1
γ +1 attained at b = 1. Using

conservation of the energy for (4.11), we obtain immediately two blow-up criteria for
solutions of (4.10):
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(a) If E(0) < Umax and b(0) < 1 (to the left of the bump), then (it does not matter what
bs(0) is, since there in not enough energy to escape this region) the particle fall onto
the origin, and collapse occurs.

(b) If E(0) > Umax , then the particle can overcome the energy barrier. Indeed, by energy
conservation the sign of bt does not change, and the condition bt (0) < 0 is sufficient
to produce collapse.

Proposition 4.1 shows that these two sufficient conditions for blow-up in finite time
remains valid in case of the Eq. (4.7) (as well as a third condition corresponding to the
limit case E = Umax ).

Proposition 4.1. Let b be a nonnegative solution of (4.9) such that one of the following
holds:

(A) E(0) < Umax and b(0) < 1,
(B) E(0) > Umax and bs(0) < 0.
(C) E(0) = Umax , bs(0) < 0 and b(0) < 1.

Then T+ < ∞.

Proof. Multiplying Eq. (4.9) by bs , we get

bs(s) > 0 �⇒ Es(s) < 0 bs(s) < 0 �⇒ Es(s) > 0. (4.12)

We argue by contradiction, assuming T+ = T+(u) = +∞.
We first assume (A). Let us prove by contradiction:

∃s > 0, bs(s) < 0. (4.13)

If not, bs(s) ≥ 0 for all s, and (4.12) implies that the energy decay. By (A), E(s) ≤
E(0) < Umax for all s. Thus, |b(s) − 1| ≥ ε0 (where ε0 > 0 depends on E(0)) for all
t . Since by (A) b(0) < 1, we obtain by continuity of b that b(s) ≤ 1 − ε0 for all s. By
Eq. (4.7), we deduce bss(s) ≤ −ε1 for all s, where ε1 > 0 depends on ε0. Thus, b is
strictly concave, a contradiction with the fact that b is positive and T+ = +∞.

We have proved that there exists s ≥ 0 such that bs(s) ≤ 0. Letting

t1 = inf
{
s ≥ 0 : bs(s) ≤ 0

}
,

we get by (4.12) that the energy is nonincreasing on [0, t1]. Thus, E(s) < E(0) ≤ Umax
on [0, t1], which proves that b(s) = 1 on [0, t1]. Since b(0) < 1, we deduce by the
intermediate value theorem that b(t1) < 1 and by (4.7) that bss(t1) < 0. Since bs(t1) ≤ 0,
an elementary bootstrap argument, together with Eq. (4.7) shows that b(s) ≤ 1 − ε0,
bs(s) < 0 and bss(s) ≤ −ε1 for s > t1, for some positive constants ε0, ε1. This is again
a contradiction with the positivity of b.

We next assume (B). Let t1 be an interval such that bs(s) < 0 on [0, t1]. By (4.12),
E is nondecreasing on [0, t1], and thus, E(s) ≥ E(0) > Umax for all s on [0, t1]. As
a consequence, 1

2 bs(s)2 ≥ E(0) − Umax > 0 for all s in [0, t1], which shows that
bs(s) ≤ −√

E(0) − Umax on [0, t1]. Finally, an elementary bootstrap argument shows
that the inequality bs(s) ≤ −√

E(0) − Umax is valid for all s ≥ 0, a contradiction with
the positivity of b.

Finally, we assume (C). By bootstrap again, bs(s) < 0, b(s) < 1 and bss(s) < 0 for
all positive s, proving again that b is a strictly concave function, a contradiction. ��
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We now formulate the conditions (A), (B) and (C) in a concise manner, in the spirit
of [20].

Define v by b = vα+1, where as before α = sc(p−1)
4 . Note that 2α + 1 = N (p−1)

4 ,

α + 1 = N (p−1)+4
8 , (α + 1)(δ + 1) = 2α, (α + 1)(γ + 1) = 2α + 1, ω = 2

(2α+1)(α+1)
. Thus,

E = α + 1

2α + 1
v′2v2α +

α + 1

2α
v2α − α + 1

2α + 1
v2α+1 and Umax = 1

2α

α + 1

2α + 1
.

Let k = (p−1)sc
2 = 2α and introduce the function

f (x) =
√

1

k xk
+ x −

(
1 +

1

k

)
. (4.14)

Then

E < Umax ⇐⇒ |vs | < f (v).

The condition (A) equates to

v(0) < 1 and − f (v(0)) < vs(0) < f (v(0)),

the condition (B) holds if and only if

vs(0) < − f (v(0))

and the condition (C) means:

v(0) < 1 and vs(0) = − f (v(0)).

Merging the above three conditions together, we obtain

vs(0) <

{
+ f (v(0)) if v(0) < 1
− f (v(0)) if v(0) ≥ 1.

(4.15)

Finally, recalling that V (t) = (Bmax b(at))
1

1+α , and thus, by (4.6)

V (t) = (Bmax )
8

N (p−1)+4 v

(
8
√

2 E√
Nsc M

t

)
,

we obtain
Vt (0)

M
<

√
8Nsc g

(
4

Nsc

V (0)E

M2

)
, (4.16)

which is the desired statement of Theorem 1.15.

Remark 4.2. Observe that the function f (x) can be written as

f (x) =
√

1

k

(
1

xk
− 1

)
+ x − 1.

The limiting cases are

lim
k→0

f (x) = √
x − 1 − ln x and lim

k→∞ f (x) =
⎧⎨
⎩

√
x − 1 if x > 1

0 if x = 1
∞ if 0 < x < 1.

(4.17)

The graph of f (x) for various values of parameter k is given in Fig. 1.
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4.2. Sharp constant for an interpolation inequality. Before we prove Theorem 1.16, we
obtain an interpolation inequality:

Proposition 4.3. Assume p > 1 and N ≥ 1. The inequality

‖u‖L2 ≤ C p,N

(
‖xu‖

N (p−1)
2

L2 ‖u‖p+1
L p+1

)1/
(

N (p−1)
2 +(p+1)

)
(4.18)

holds with the sharp constant C p,N (depending on the nonlinearity p and dimension N)
given by (4.24). Moreover, equality is achieved if and only if there exists β ≥ 0, α > 0
such that |u(x)| = βφ(αx), where

φ(x) =
{

(1 − |x |2) 1
p−1 if 0 ≤ |x | ≤ 1

0 if |x | > 1.

Proposition 4.3 was proved in [20] in the case p = 3 using variational arguments. We
give a shorter, direct proof.

Proof. Let R > 0 be a parameter to be specified later. Split the mass of u as follows
∫

|u(x)|2 dx = 1

R2

∫
|x |≤R

(R2 − |x |2)|u(x)|2 dx +
1

R2

∫
|x |≤R

|x |2|u(x)|2 dx

+
∫

|x |≥R
|u(x)|2 dx . (4.19)

By Hölder’s inequality we have

1

R2

∫
|x |≤R

(R2 − |x |2)|u(x)|2 dx

≤ 1

R2

(∫
|x |≤R

(
R2 − |x |2

) p+1
p−1

dx

) p−1
p+1 (∫

|u(x)|p+1 dx

) 2
p+1

= 1

R2

(∫
|y|≤1

(
R2 − R2|y|2

) p+1
p−1

RN dy

) p−1
p+1

‖u‖2
L p+1

= R
N (p−1)

p+1 Dp,N ‖u‖2
L p+1 , where Dp,N =

(∫
|y|≤1

(
1 − |y|2

) p+1
p−1

dy

) p−1
p+1

.

(4.20)

Note that

Dp,N =
(

σN

∫ 1

0
(1 − r2)

p+1
p−1 r N−1 dr

) p−1
p+1

,

where σN stands for the surface area of the N − 1 dimensional sphere, i.e.,

σN = 2π N/2

�( N
2 )

, �(s + 1) =
∫ ∞

0
e−t t s dt.
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By the change of variable s = r2,

∫ 1

0
(1 − r2)

p+1
p−1 r N−1 dr = 1

2

∫ 1

0
(1 − s)

p+1
p−1 s

N
2 −1 ds =

�
( N

2

)
�
(

2p
p−1

)

2 �
(

2p
p−1 + N

2

) ,

where we have used the property of the Beta distribution (e.g., see [6, p.623] or [32,
p.396 #586])

∫ 1

0
xa−1(1 − x)b−1 dx = �(a)�(b)

�(a + b)
.

Hence,

Dp,N =
⎛
⎝π

N
2

�
(

2p
p−1

)

�
(

2p
p−1 + N

2

)
⎞
⎠

p−1
p+1

. (4.21)

Furthermore,

1

R2

∫
|x |≤R

|x |2|u(x)|2 dx +
∫

|x |≥R
|u(x)|2 dx ≤ 1

R2

∫
|x |2|u(x)|2 dx . (4.22)

Combining (4.19), (4.20), (4.21) and (4.22), we obtain

∀R > 0, ‖u‖2
L2 ≤

⎛
⎝π

N
2

�
(

2p
p−1

)

�
(

2p
p−1 + N

2

)
⎞
⎠

p−1
p+1

‖u‖2
L p+1 R

N (p−1)
p+1 +

1

R2 ‖xu‖2
L2 . (4.23)

Noting that the minimum of the function F(R) = ARα + B R−2 (with A, B > 0 and

α > 0), attained at R = ( 2B
αA

) 1
α+2 on (0, +∞), is

Fmin = 2 + α

2α
(αA)

2
α+2 (2B)

α
α+2 ,

we deduce from (4.23) that

‖u‖2
L2 ≤

(
N (p − 1) + 2(p + 1)

2N (p − 1)

)

×

⎛
⎜⎜⎝N (p − 1)

p + 1

⎛
⎝π

N
2

�
(

2p
p−1

)

�
(

2p
p−1 + N

2

)
⎞
⎠

p−1
p+1

‖u‖2
L p+1

⎞
⎟⎟⎠

2(p+1)
N (p−1)+2(p+1)(

2 ‖xu‖2
L2

) N (p−1)
N (p−1)+2(p+1)

.

Using

�

(
2p

p − 1

)
= p + 1

p − 1
�

(
p + 1

p − 1

)
and

�

(
2p

p − 1
+

N

2

)
=

(
p + 1

p − 1
+

N

2

)
�

(
p + 1

p − 1
+

N

2

)
,
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we get (after tedious but straightforward computations) the inequality (4.18) with

(
C p,N

) N (p−1)
2 +(p+1)

= N

2π

(
p − 1

p + 1

)(
π
(

1 +
2(p + 1)

N (p − 1)

)) N (p−1)
4 +1

⎛
⎝ �

(
p+1
p−1

)

�
(

p+1
p−1 + N

2

)
⎞
⎠

p−1
2

. (4.24)

Note that equality in (4.18) holds if and only if there exists R > 0 such that (4.23)
is an equality. This is equivalent to the fact that for some R > 0, both (4.20) and
(4.22) are equalities. The inequality (4.20) is an equality if and only if |u(x)|p+1 =
c
(
R2 − |x |2) p+1

p−1 for some constant c ≥ 0, and the inequality (4.22) is an equality if and
only if u(x) = 0 for |x | ≥ R. This completes the proof of Proposition 4.3. ��

For several specific cases we compute the sharp constant C p,N explicitly in Appen-
dix A.

4.3. Second approach and Proof of Theorem 1.16. Recall the energy

E[u] = 1

2

∥∥∇u(t)
∥∥2

L2(RN )
− 1

p + 1

∥∥u(t)
∥∥p+1

L p+1(RN )
,

then solving for the kinetic energy term and substituting into (1.10), we obtain

Vtt (t) = 16E − 8(p − 1)sc

p + 1

∥∥u(t)
∥∥p+1

L p+1(RN )
.

Using the sharp interpolation inequality from (4.18), we get

Vtt (t) ≤ 16E − 8(p − 1)sc

(p + 1)
(
C p,N

) N (p−1)
2 +(p+1)

M
N (p−1)

4 + (p+1)
2

V
N (p−1)

4

(4.25)

with C p,N from (4.18). We next apply the same mechanical approach as in Sect. 4.1.
We introduce again rescaling: define v(s) (with s = at) as

V (t) = Vmaxv(at), a =
√

32E

Vmax
,

where

Vmax =
(

sc(p − 1)

2(p + 1)

) 4
N (p−1) M1+ 2(p+1)

N (p−1)

(C p,N )
2+ 4(p+1)

N (p−1) E
4

N (p−1)

.

Then the inequality in (4.25) becomes

vss(s) ≤ 1

2

(
1 − v− N (p−1)

4 (s)
)

.
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When the inequality in the previous expression is replaced by an equality, we obtain that
the following energy is conserved:

E(s) = k

1 + k

(
(vs(s))

2 − v(s) − 1

kv(s)k

)
,

where as before k = (p−1)sc
2 = N (p−1)

4 − 1. Note that the maximum of the function

x �→ − k
1+k

(
x + 1

kxk

)
, attained at x = 1, is −1.

Similar to (A), (B) and (C), we identify the three sufficient conditions for blow up in
finite time:

(A∗) E(0) < −1 and v(0) < 1.
(B∗) E(0) > −1 and ∂sv(0) < 0.
(C∗) E(0) = −1, ∂sv(0) < 0 and v(0) < 1.

Recalling the function f from (4.14) and using the definition of E , we obtain

E < −1 ⇐⇒ |∂sv| < f (v),
E ≥ −1 ⇐⇒ |∂sv| ≥ f (v).

Then condition (A∗) holds if and only if

v(0) < 1 and − f (v(0)) < ∂sv(0) < f (v(0)),

the condition (B∗) holds if and only if

∂sv(0) < − f (v(0)),

and the condition (C∗) holds if and only if

∂sv(0) = − f (v(0)), v(0) < 1.

Merging the three conditions together, we obtain

∂sv(0) <

{
f (v(0)) if v(0) < 1
− f (v(0)) if v(0) ≥ 1.

(4.26)

Substituting back V (t), we obtain

Vt (0)

4
√

2

(
C p,N

)1+ 2(p+1)
N (p−1)

E
sc
N M

1
2 + p+1

N (p−1)

(
2(p + 1)

sc(p − 1)

) 2
N (p−1)

< g(θ),

where g is defined in (1.20) and

θ =
(

2(p + 1)

sc(p − 1)

(
C p,N

) N (p−1)
2 +(p+1)

) 4
N (p−1) E

4
N (p−1)

M1+ 2(p+1)
N (p−1)

V (0).

Simplifying, we complete the proof of Theorem 1.16.
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4.4. Reformulation of blow up criteria for real-valued data. Both Theorems 1.15 and
1.16 are significantly simplified for the real-valued data, since Vt (0) = 0 and the criteria
(B) and (C) are irrelevant. Respectively,

Theorem 1.15 ⇔ V (0) <
Nsc

4

M2

E
(4.27)

Theorem 1.16 ⇔ V (0) < K
M

2(p+1)
N (p−1)

+1

E
4

N (p−1)

,

where K =
⎛
⎝ sc(p − 1)

2(p + 1)

1
(
C p,N

) N (p−1)
2 +(p+1)

⎞
⎠

4
N (p−1)

.

(4.28)

The second condition (4.28) is an improvement over the first one (4.27) when

M[u]1−sc E[u]sc >

(
Nsc

4

) N
2
(

2(p + 1)

sc(p − 1)

(
C p,N

) N (p−1)
2 +(p+1)

) 2
p−1

. (4.29)

5. Examples

In this section we consider examples of initial data for which Theorems 1.4, 1.15 and 1.16
describe global behavior in the energy-critical case, and then in the energy-supercritical
case, we finish with a 1d example in the energy-subcritical case. We first review some
properties of the stationary solution W , and then consider Gaussian data.

5.1. Useful properties of W , the energy-critical case. Recall that W is a stationary
solution of (1.1) in the energy-critical case, given by

W = 1(
1 + |x |2

N (N−2)

) N−2
2

, N ≥ 3,

and hence, solves �W + W
N+2
N−2 = 0. We compute ‖∇W‖2 and E[W ]. By the work of

Aubin [2] and Talenti [33], W is, up to symmetries, the only solution of

(∫
RN

W
2N

N−2

) N−2
2N = CN

(∫
RN

|∇W |2
) 1

2

,

where CN is the best constant for the Sobolev inequality

(∫
RN

u
2N

N−2

) N−2
2N ≤ CN

(∫
RN

|∇u|2
) 1

2

.

The constant CN is known (see e.g. [33]), namely,

CN = 1√
N (N − 2)π

(
�(N )

�(N/2)

)1/N

.
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Furthermore, by a direct integration by parts and the equation �W = −W
N+2
N−2 , we have

∫
|∇W |2 =

∫
W

2N
N−2 .

Thus,

(∫
|∇W |2

) N−2
2N = CN

(∫
|∇W |2

) 1
2

from which we deduce ∫
|∇W |2 = 1

C N
N

.

Hence,

Proposition 5.1.
∫

|∇W |2 = (N (N − 2)π)
N
2 × �(N/2)

�(N )

and

E[W ] = N
N
2 −1((N − 2)π)

N
2 × �(N/2)

�(N )
. (5.1)

5.2. Gaussian initial data. We consider the Gaussian initial data:

ug(x) = β e− 1
2 α |x |2 , x ∈ R

N , α, β ∈ (0,∞). (5.2)

The mass and initial variance are

M[ug] = β2
(π

α

) N
2

, V (0) = N β2 π
N
2

2 α
N
2 +1

. (5.3)

Since in the case s = 1 the energy is

E[ug] = π N/2

2

(
β

α(N−2)/4

)2
(

N

2
−

(
N − 2

N

) N+2
2

(
β

α(N−2)/4

) 4
N−2

)
,

we obtain that E[ug] > E[W ] holds when

κs <
β

α(N−2)/4
< κb, (5.4)

where κs and κb are the smallest and the largest positive roots (there are only 2 positive
roots) of the equation

N

4
κ2 − 1

2

(
N − 2

N

) N+2
2

κ
2N

N−2 − N
N−2

2 (N − 2)
N
2

�(N/2)

�(N )
= 0, (5.5)

and several values are listed in Table 1.
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Table 1. Values of κs and κb in (5.4), the two positive roots in (5.5) for N = 3, 4, 5, 6, 7, 8

N N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

κs 1.0376 1.8388 3.4406 6.8142 14.1738 30.7504
κb 2.0510 3.5523 6.5483 12.8229 26.4385 56.9593

Table 2. Blow up threshold values from Theorems 1.15 and 1.16 for real Gaussian for N = 3, 4, 5, 6, 7, 8

N N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

κT 1 1.6709 2.8284 5.1811 10.1250 20.8639 44.9492
κT 2 1.1511 3.0237 6.6738 14.0643 30.0765 66.1524

We now apply the blow up criteria from Theorems 1.15 and 1.16 to data (5.2): by
Theorem 1.15, or (4.27), we have

β >

(
N

2

(
N

N − 2

) N
2
) N−2

4

α
N−2

4 := κT 1 α
N−2

4 , (5.6)

we list some of κT 1 in Table 2. By Theorem 1.16, or (4.28), we have

β >

⎛
⎜⎜⎝

N
2

(
N

N−2

) N
2

2
N

(
N

N−2

) N
2 ( 2π

N

) N
N−2

(
C p,N

)− 4N
N−2 + N−2

N

⎞
⎟⎟⎠

N−2
4

α
N−2

4 := κT 2 α
N−2

4 , (5.7)

where C p,N = 8π N/2

(�(N/2)) N−6
N−2 (�(N ))

2
N−2

is from (4.24) (with p = N+2
N−2 ) and κT 2 is listed

also in Table 2.

Example: N = 3, p = 5.
Note that E[ug] > E[W ] if (see Table 1)

1.0376 <
β

α1/4 < 2.0510. (5.8)

Thus, by Theorem 1.3 (and also Theorem 1.14 for the threshold) solutions scatter when
β

α1/4 ≤ κs ≈ 1.0376 and from the same results solutions blow up in finite time if β

α1/4 >

κb ≈ 2.0510. From Table 2, we obtain that the blow up occurs when β > 1.6709α1/4

(Theorem 1.15) or when β > 1.1511α1/4 (Theorem 1.16). The last threshold provides
the wider range, so Theorem 1.16 gives a better result in this case. We plot all these
thresholds in Fig. 2.

Example: N = 4, p = 4.
The condition E[ug] > E[W ] holds when (see Table 1)

1.8388 <
β√
α

< 3.5523, (5.9)

and the blow up criteria (see Table 2) give β > 2.8284
√

α (by Theorem 1.15) and
β > 3.0237

√
α (by Theorem 1.16), thus, Theorem 1.15 produces a better result in this

case. We plot the ranges for blow up and scattering in Fig. 3.
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Fig. 2. Global behavior of solutions to the 3d quintic NLS (sc = 1) with the gaussian initial data u0(x) =
β eα|x |2/2. The top line (E = 0) indicates the range above which (for β > 2.20α1/4) solutions blow up in
finite time by the negative energy criterion. The line denoted by V (0) = cM2 E−1 is the threshold for blow up
from Theorem 1.15, see (5.6) and Table 2; similarly, the line denoted by V (0) = cM2 E−1/3 is the threshold
for blow up from Theorem 1.16, see (5.7) and Table 2. In this example, Theorem 1.16 gives the best result.
The range for scattering is given by Theorem 1.3

5.2.1. The energy-supercritical case. We now point out that both Theorems 1.15 and 1.16
work in the energy-supercritical case of NLS (s > 1), and thus, it is possible to predict
a blow up behavior for an open set of initial data in this case.

Example sc > 1: p = 5, N = 4.

In this case sc = 3
2 . The standard negative energy condition E[ug] < 0 produces

the range β >
4
√

54 α1/4 ≈ 2.7108 α1/4 for initial data to blow up in finite time. By
Theorem 1.15, or (4.27), we have V (0) < 1.5M2 E−1, which gives the range

β

α1/4 >
33/4

21/4 ≈ 1.9168 (5.10)
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Fig. 3. Global behavior of solutions to the 4d cubic NLS (sc = 1) with the gaussian initial data u0(x) =
β eα|x |2/2. The top line (E = 0) indicates the range above which (for β > 4

√
α) solutions blow up by the

negative energy criterion. The line denoted by V (0) = cM2 E−1 is the threshold for blow up from Theo-
rem 1.15, similarly, the line denoted by V (0) = cM2 E−1/2 is the threshold for blow up from Theorem 1.16.
In this example, Theorem 1.15 gives a wider range, i.e., solutions blow up when β ≥ 2.82

√
α. The range for

scattering is given by Theorem 1.3

and by Theorem 1.16, or (4.28), we have V (0) < C M7/4 E−1/4, which produces the
range

β

α1/4 >

(
27

36·52π2

75 + 1
2

)1/4

≈ 1.2460. (5.11)

See Fig. 4 for a graph of thresholds in this case. Note that except for the small data
theory (global existence and scattering for small in the invariant norm data), no other
information about scattering or blow up thresholds is known in the energy-supercritical
case.

5.2.2. The energy-subcritical case. Finally, we consider one-dimensional (N = 1) ex-
ample of the NLS equation when 0 < s < 1, or the nonlinearity p > 5. In this case the
scaling index is sc = p−5

2(p−1)
, the energy is

E[ug] = β2√π α

(
1

4
−

√
2

(p + 1)3

β p−1

α

)
. (5.12)
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Fig. 4. Global behavior of solutions to the 4d quintic NLS (sc = 3
2 > 1) with real Gaussian initial condition

u0(x) = β eα|x |2/2. The top line (E = 0) indicates the range above which (for β > 2.71 4√α) solutions blow
up by the negative energy criterion. The line denoted by V (0) = 1.5M2 E−1 is the threshold for blow up
from Theorem 1.15, similarly, the line denoted by V (0) = cM7/4 E−1/4 is the threshold for blow up from
Theorem 1.16. In this example, Theorem 1.16 gives a wider range of blow up solutions. There are no other
thresholds known in this energy-supercritical case

Theorem 1.15 guarantees blow up in finite time if

β p−1

α
>

p + 1

p − 1

(
p + 1

2

) 1
2 =: (κT 1)

p−1, (5.13)

and by Theorem 1.16 the blow-up occurs if

β p−1

α
>

p+1
p−1

(
p+1
2

) 1
2 1

4(
sc
2

(
p+1
2

) 1
2
(2π)

(p−1)
4 (C p,1)

−
(

(p−1)
2 +(p+1)

)
+ 1

p−1

) =: (κT 2)
p−1. (5.14)

Example sc < 1: p = 7, N = 1.

In this case the scaling index is sc = 1
6 , the threshold values from (5.13) and (5.14) are

κT 1 = 1.1776 and κT 2 = 1.1996. The mass–energy threshold from Theorem 1.1 gives
the blow up range when β > 1.2312α1/6 and the scattering range β < 1.0844α1/6. We
graph these results in Fig. 5.
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Fig. 5. Global behavior of solutions to 1d septic (p = 7) NLS equation (sc = 1
6 < 1) with the gaussian initial

data u0(x) = β eαx2/2. The top line (E = 0) indicates the range above which (for β > 1.260α1/6) solutions
blow up by the negative energy criterion. The line denoted by V (0) = cM2 E−1 is the threshold for blow
up from Theorem 1.15, see (5.13); similarly, the line denoted by V (0) = cM11/3 E−2/3 is the threshold for
blow up from Theorem 1.16, see (5.14). In this example, Theorem 1.16 gives a wider range. The range for
scattering is given by Theorem 1.1
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Appendix A. Values of Sharp Constant C p,N

Remark A.1. For N = 1, we obtain

(
C p,1

) 3p+1
2 = (3p + 1)

p+3
4

2(p + 1)

(
π

(p − 1)

) p−1
4

⎛
⎝ �

(
p+1
p−1

)

�
(

p+1
p−1 + 1

2

)
⎞
⎠

p−1
2

. (A.1)

For N = 2, we get

(
C p,2

)2p = π
p−1

2

(
2p

p + 1

) p+1
2

. (A.2)

For N = 3, we have

(
C p,3

) 5p−1
2 =

(
π

3(p − 1)

) 3(p−1)
4 (5p − 1)

3p+1
4

2(p + 1)

⎛
⎝ �

(
p+1
p−1

)

�
(

p+1
p−1 + 3

2

)
⎞
⎠

p−1
2

. (A.3)
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When N = 4, we obtain

(
C p,4

)3p−1 =
( π

23/2

)p−1 (3p − 1)p

p
p−1

2 (p + 1)
p+1
2

. (A.4)

Now we fix p and vary the dimension. Let p = 3. Then

(
C3,N

)N+4 = π N/2

�( N
2 )

1

N + 2

(
N + 4

N

) N+2
2

. (A.5)

Let p = 5. Then

(
C5,N

)2N+6 = N

12

(
π

(
N + 3

N

))N+1 [
�
( N + 3

2

)]−2

. (A.6)

Finally, for p = 7 we have

(
C7,N

)3N+8 =
(

π

(
3N + 8

3N

)) 3N
2
(

3

8
N + 1

)(
�( 4

3 )

�( 4
3 + N

2 )

)3

. (A.7)
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