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Abstract: We present a way to study the conformal structure of random planar maps.
The main idea is to explore the map along an SLE (Schramm–Loewner evolution)
process of parameter κ = 6 and to combine the locality property of the SLE6 together
with the spatial Markov property of the underlying lattice in order to get a non-trivial
geometric information. We follow this path in the case of the conformal structure of
random triangulations with a boundary.

Under a reasonable assumption called (∗) that we have unfortunately not been able to
verify, we prove that the limit of uniformized random planar triangulations has a fractal
boundary measure of Hausdorff dimension 1

3 almost surely. This agrees with the physics
KPZ predictions and represents a first step towards a rigorous understanding of the links
between random planar maps and the Gaussian free field (GFF).
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1. Introduction

What does a typical random metric on the two-dimensional sphere look like? This con-
cept plays a crucial role in the theory of two-dimensional quantum gravity where the
famous KPZ relations (Knizhnik et al. [26]) are supposed to relate the dimensions of
(some) sets under the random—or “quantum”—metric on the sphere S2 to their dimen-
sions with respect to the standard Euclidean metric; see [19] for a smooth introduction.
Nowadays, there are two mathematically rigorous approaches trying to make sense of
“the random metric on S2”.

Random planar triangulations. The first one is the theory of random planar triangula-
tions (RPT) known as “dynamical triangulations” in theoretical physics [2]. The basic
idea is to discretize a continuous surface into finitely many triangles (or in any other
basic tile) glued together: a triangulation that approximates the space. It seems natural
to expect that such a discretization of “the random metric on S2” into n triangles should
yield a random triangulation Tn uniformly distributed over the set of all triangulations
of S2 with n faces.

Starting from this discrete model, Le Gall [32] (see also Miermont [38] for the quad-
rangular case) has shown that after renormalizing the distances in Tn by n−1/4, the re-
sulting random compact metric space indeed converges in distribution (for the Gromov–
Hausdorff topology) towards a random compact metric space called the Brownian map.
This random metric space thus captures the metric properties of what a random metric on
S2 should be (in particular it is of Hausdorff dimension 4 [31]). However, although the
Brownian map is known to be homeomorphic to the sphere (see [33,37]) the embedding
is not canonically defined. The Brownian map cannot yet be seen as S2 endowed with a
canonical random metric.

Gaussian free field. The second approach is based on the Gaussian free field (GFF)
which is a conformally invariant random distribution h on the sphere. The “random
metric on S2” is then formally given by

e�h(z)dz2, (1)
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Fig. 1. A random triangulation embedded (not isometrically) in R
3 and an approximation of its uniformization

on the two-dimensional sphere

where dz2 is the infinitesimal metric element on S2 and � ≥ 0 is a parameter. The last
display would be easy to define if h were a random smooth function, but unfortunately
up to now, no rigorous construction is known to make sense of (1) (except in dimension
one [12]); see [39] for recent progress. Still, there are several equivalent ways to make
sense of (1) in terms of a random measure and certain forms of the KPZ relations have
been proved in this setup, see [18,24,41,42].

1.1. Conformal structure of RPT. Though both paths have not succeeded in formally
constructing a random metric living on S2, we see that these approaches have different
drawbacks: The RPT theory does yield a continuous metric but the embedding on the
sphere is lacking, whereas in the GFF approach, the sphere (hence the embedding) is a
built-in feature of the model, but the random metric seems hard to construct. However,
the two theories are believed to eventually converge. This conjectured link has been
made particularly clear (but remains unproven) by Duplantier and Sheffield in [18] and
consists in understanding the conformal structure of random planar maps (triangulations
in this work) and to relate it to the GFF (Fig. 1). For a nice exposition, see Garban’s
survey [19]. The goal of this work is to propose a possible way to rigorously begin this
understanding.

Formally, we focus here on the model of the uniform infinite half-planar triangula-
tion (UIHPT) which is an infinite random triangulation T∞,∞ with an infinite simple
boundary obtained by Angel [3] as the local limit of triangulations with simple boundary
whose size and perimeter both tend to infinity, see Sect. 2 for its definition and basics
about planar maps. The UIHPT is also given with a distinguished oriented edge, called
the root edge and oriented so that the infinite face is lying on its right, see Fig. 2. From
many respects, this model of random planar map is the simplest of all. The key property
of this random lattice is its particularly simple spatial Markov property which roughly
says that after exploring a finite simply connected region of the map, then the remaining
part is independent of the explored region and has the same law as the original lattice.
See Sect. 2.2 for a precise statement. The spatial Markov property of random planar
maps has been studied in details in [6] and was at the core of many non-trivial results,
see [4,5,10,35].
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Fig. 2. A part of a UIHPT—left—and its uniformization—right—(artistic drawing)

Our goal is to study the conformal structure of the boundary of the UIHPT. Formally,
one consider T∞,∞ as a random Riemann surface by seeing each triangle as an (Euclid-
ean) equilateral triangle and gluing the charts along the edges and vertices of the map,
see [20] and Sect. 3.2 for details. Using the uniformization theorem, one can map the
simply connected Riemann surface with a boundary obtained by the previous device
onto the upper half plane H = {z ∈ C : �(z) > 0}. This mapping is unique provided
that we fix the images of the origin and target of the root edge to be −1/2 and 1/2 and
send∞ to∞.

The conformal drawing of the UIHPT (that is the image of the edges of T∞,∞ by the
above mapping) will be denoted by T∞,∞ and we will commit an abuse of terminology
when we will still speak about its vertices, edges and faces which are defined in an
obvious way. For k ≥ 0, the position of the kth vertex on the right of the origin of T∞,∞
is denoted by Xk , in particular X0 = −1/2 and X1 = 1/2. For n ≥ 1, we consider the
random probability measure μn on [0, 1] defined by

μn = 1

n

n∑

k=1

δXk/Xn .

Theorem* 1. From any sequence of integers tending to +∞ one can extract a subse-
quence nk →∞, such that μnk converges as k →∞ in distribution towards a random
probability measure μ, such that almost surely

• μ is non-atomic,
• μ has topological support equal to [0, 1],
• the Hausdorff dimension1 of μ is 1/3.

The star condition. We used the label Theorem* because our proof relies on an assump-
tion denoted by (∗) (see Sect. 3.5 for its definition) that we strongly believe to hold, but
have not been able to rigorously derive. Similarly, the results denoted by Proposition*,
Corollary*, Lemma* etc... all rely on (∗). Interesting on its own, the assumption (∗) is
thus strongly motivated by the conditional results proved in this paper. See Sect. 6 for a
discussion and supports for (∗).

The random measures μn are believed to converge (without the need to pass to a
subsequence), and the candidate for the limiting random measureμ is defined as follows,
see [18,19]. Let h = h̃ + h0 where h̃ is an instance of the mean zero Gaussian free field
(GFF) on H with zero boundary condition (see [45, Section 3]) and h0(z) = −� log |z|.

1 Recall that the dimension of a measure is the infimum of the dimensions of Borel sets of full mass.
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We can define a random measure μ� on R formally obtained as

e�h(z)/2dz,

where dz is the Lebesgue measure on R. This random measure can be constructed
using Kahane’s theory of Gaussian multiplicative chaos or by means of regularization
procedures, see [43], [18, Section 6] and [42, Section 5].

Question 1 (see [18, Conjecture 7.1], [45]). Do the random measures μn converge in
law towards the random measure

μ̃� = μ�(· ∩ [0, 1])
μ�[0, 1] with � = √

8/3 ?

Duplantier and Sheffield [18] and Rhodes and Vargas [41] recently showed that the
KPZ relations derive from the analysis of the multi-fractal spectrum of the random mea-
sureμ�. This analysis has been undertaken first in [8] where it is shown that the dimension
of μ� is 1/3 when � = √8/3. Hence Theorem* 1 strongly supports Question 1.

It might be the case that our approach actually yields a characterization of the
subsequential-limits of the μn’s which is shared with μ̃ρ for ρ = √

8/3, see Ques-
tion 3 below. A positive answer to Question 3 and assumption (∗)would turn Question 1
into a theorem.

1.2. Strategy. Our approach to investigate the conformal structure of random planar
triangulations is based on their exploration by an independent SLE6 process. Recall
that for κ ≥ 0, the SLEκ processes have been introduced by Schramm [44] in order to
describe interfaces of conformally invariant models in two dimensions. See [29,48] for
background. The SLE6 process has a characteristic feature (that it shares with Brownian
motion), which is called the locality property. The latter roughly means that its growth
is locally defined and does not depend on the full curve, see Sect. 3.4. This property is
one of the keys in the determination of the Brownian intersection exponents by Lawler
et al. [30] and is also central in this work.

Formally, the exploration of the UIHPT by an SLE6 is defined as the exploration of
T∞,∞ by an independent chordal SLE6 on H started from 0. A priori, the exploration
of the UIHPT thus depends on its whole conformal structure since we formally need its
uniformization T∞,∞ to define it. However, the locality property of SLE6 will imply
that this exploration can in fact be performed by discovering the UIHPT “step-by-step”
revealing only the parts necessary for the SLE6 to displace.

This will show that the SLE6 exploration of the UIHPT is Markovian, in the sense
that the submap discovered after some time (made of the triangles traversed by the SLE
as well as the finite regions they enclose) is independent of the remaining of the map
which is distributed as a standard UIHPT, see Sect. 2.2. Using Angel’s peeling process
(see [4,5] and Sect. 2.2), we are able to understand the algebraic lengths of the boundary
seen from ±∞ in the unexplored map. More precisely when the SLE is located on
a boundary edge of the explored region, we can define two integer numbers H+ and
H− representing the variations of the boundary lengths towards ±∞ from this edge
compared to the original boundary lengths from the root edge of the map, see Fig. 3.

In Theorem* 2 we show, under assumption (∗), that this horodistance process (H+(i),
H−(i))i≥0 is mainly driven by the spatial Markov property of the map and converges
(in distribution in the Skorokhod sense) after normalization by n2/3 towards a pair
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H− = 3 − 4
= −1

H− = 7 − 2
= 5

Fig. 3. Definition of the horodistances. After a piece of the UIHPT has been explored by the SLE process,
one can define the variations of the boundary distances in the remaining triangulation from the edge on which
the SLE is located

(S+, S−) made of independent standard 3
2 -stable spectrally negative Lévy processes,

more precisely
(H+([nt])

n2/3 ,
H−([nt])

n2/3

)
(d)−−−→

n→∞ 3−2/3 · (S+
t , S−t

)
t≥0. (2)

The basic idea of the proof of Theorem* 1 is to connect these horodistance processes
to a geometric property, namely the fact that the SLE6 bounces off R+ and R−, [47].
On an intuitive level at least, the times when H− (resp. H+) reaches a new minimum
correspond to the visits of R− (resp. R+) by the SLE6 process, see Sect. 4. We then
compute, in two ways, the number C(ε, n) of times the SLE6 exploration of T∞,∞
is alternatively bouncing off R+ and R− between the point X[εn] and Xn . On the one
hand, using the scaling limit of the horodistance process (2) one is capable of computing
C(ε, n) (to be precise, its limit) in terms of interlaced minimal records of S+ and S−
(see Corollary 11) and we find that as n →∞

C(ε, n) ≈ 3
√

3

2π
| log ε|. (3)

On the other hand, conditionally on T∞,∞ (and a fortiori on (Xk)k≥0) it is known
(see Corollary 14 below or the related computation of Hongler and Smirnov [22]) that
the number of alternative commutings to R+ and R− an SLE6 is doing after having
swallowed the point X[εn] until it swallows the point Xn is roughly of order

C(ε, n) ≈
√

3

2π
log

Xn

X[εn]
. (4)

Equalizing (3) and (4) we find that X[εn]/Xn ≈ ε3 or in terms of the limiting random
measure μ that μ[0, ε3] ≈ ε or equivalently μ[0, ε] ≈ ε1/3. This is the main idea of the
proof of Theorem* 1 (iii).

The paper is organized as follows. In the first section we recall the background on the
UIHPT including its construction and the crucial spatial Markov property. The notion
of Markovian exploration is introduced, as well as basics on the 3

2 -stable process. The
second section is devoted to the SLE6 exploration of the UIHPT. We explain there why the
locality property of the SLE resonates with the spatial Markov property of the underlying
lattice and implies under assumption (∗) the convergence (2). In Sect. 4, we show how
to translate (2) into geometric information by studying the alternative bouncings of the
SLE and interlaced minimal records of two independent stable processes. The proof of
Theorem* 1 can be found in Sect. 5. The last section contains conjectures, comments
and possible extensions for future works.
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Fig. 4. A triangulation of the 12-gon of size 7

2. Background on the Half-Plane UIPT

2.1. The UIHPT.

Triangulations. Recall that a planar map is a finite connected planar graph embedded
in the sphere S2 seen up to continuous deformations that preserve the orientation. There
is a natural notion of vertex, edge and face in a planar map. The degree of a face is the
number of half-edges surrounding the face. As usual, all the maps considered in this
work are rooted, that is, given with a distinguished oriented edge �e called the root of the
map. A triangulation is a map whose faces are all of degree 3. We will focus on type-II
triangulations, that are triangulations without loops but possibly multiple edges.

A triangulation with a simple boundary is a planar map whose faces are all triangles
except possibly the face on the right-hand side of the root edge called the external face
which is bounded by a non-intersecting cycle (no pinch-points) (Fig. 4). In this work we
only deal with simple boundaries and thus sometimes drop the adjective simple to lighten
the writing. The perimeter of a triangulation with boundary is the degree of the external
face, and a triangulation with a boundary of perimeter p is also called a triangulation
of the p-gon. The size of a triangulation with a boundary is its number of inner vertices
(i.e. not located on the boundary). By convention, the only triangulation of the 2-gon of
size 0 is made of a single oriented edge.

Local limits. Following [7,11] we recall the local topology on the set of planar maps.
If m,m′ are two rooted maps, the local distance between m and m′ is

dloc(m,m′) = (
1 + sup{r ≥ 0 : Br (m) = Br (m

′)})−1
,

where Br (m) denotes the map formed by the vertices and edges of m which are at graph
distance smaller than or equal to r from the origin of the root edge in m. The set of all finite
rooted triangulations with boundary in not complete for this metric and we shall work
in its completion obtained by adding infinite maps (see [15] for a detailed exposition in
the quadrangular case). For any p ≥ 2, we denote by Tn,p a random variable uniformly
distributed on the set Tn,p of all triangulations (of type II) of the p-gon having size n.
The Uniform Infinite Half-Planar Triangulation (UIHPT) is obtained as a local limit of
uniform triangulations with boundary by first letting their sizes tend to infinity and next
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sending their perimeters to infinity. More precisely, Angel and Schramm [7] and Angel
[3] proved the following convergences in distribution for dloc

Tn,p
(d)−−−→

n→∞ T∞,p
(d)−−−→

p→∞ T∞,∞,

where T∞,p is a random rooted infinite triangulation of the p-gon called the UIPT (for
Uniform Infinite Planar Triangulation) of the p-gon and T∞,∞ is the UIPT of the half-
plane denoted by UIHPT (see [16] for similar statements in the quadrangular case). This
is the main character of this paper.

The root edge of T∞,∞ will always be denoted by �e (the external face is on its right)
or e if we consider the unoriented edge. The infinite simple boundary of T∞,∞ can
be identified with Z by declaring that the root edge is 0 → 1. The UIHPT enjoys an
invariance under re-rooting: for any k ∈ Z the planar map obtained from T∞,∞ by re-
rooting at the edge k → k + 1 is still distributed as the UIHPT. For this reason we might
be loose on the precise location of the root edge in what follows.

2.2. One-step peeling of the UIHPT. One of the very nice features of the UIHPT is its
spatial Markov property that can roughly be described as follows: Assume that we explore
a simply connected region R of T∞,∞ that contains the root edge, then the exterior of
R is independent of R and is distributed as UIHPT. This describes the conditional laws
of the different maps we obtain from T∞,∞ after conditioning on the face that contains
the root edge e. See [3,5] for details and proofs.

First we recall the standard asymptotic #Tn,p ∼
n→∞ C p

(
27/2

)n
n−5/2 for some

C p > 0. So the series
∑

n≥0 #Tn,p(2/27)n is finite and its sum is denoted by Z p (see
[4] for exact expressions of Z p and C p).

Definition 1. The free Boltzmann distribution of the p-gon is the probability measure
on ∪n≥0Tn,p that assigns a weight (2/27)n Z−1

p to each triangulation of the p-gon of
size n.

Let T∞,∞ be a UIHPT. Assume that we reveal the face on the left of the root edge
�e, this operation is called the one-step peeling transition. Three (or two by symmetry)
situations may appear depending on the “form” of the triangle revealed. Let us make a
list of the possibilities and describe the probabilities and the conditional laws for each
case. The set of forms is

Forms := (C, 1) ∪
⋃

k≥1

{(G,−k), (D,−k)}.

To help the reader remind the notation remember that “C” stands for center, “G” for
gauche (left in French) and “D” for droite (right in French) and that the numbers 1 or−k
represent the variation of the number of edges on the boundary. Here are all the possible
cases:

• The revealed triangle could simply be a triangle with a vertex lying in the interior of
T∞,∞ (i.e. not on the boundary), see Fig. 5. We say that the revealed triangle is of
form (C, 1). This event happens with probability q1 where

q1 = 2

3
.
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Fig. 5. Case (C, 1)

k

Fig. 6. Case (G,−k)

The remaining triangulation (in gray in Fig. 5) denoted by Peel(T∞,∞; e) is formed
after removing the revealed triangle from T∞,∞ and rooting the resulting map at the
edge of the revealed triangle which is incident to the initial root vertex. Conditionally
on this event Peel(T∞,∞; e) has the same distribution as T∞,∞.

• Otherwise, the revealed triangle has its three vertices lying on the boundary of T∞,∞
and the third one is either k ≥ 1 edges on the left of the root edge, in which case
the triangle is said to be of form (G,−k) or k edges on the right of the root edge in
which case the triangle is said to be of form (D,−k), see Fig. 6. Note that k > 0
because loops are not allowed since we are working with 2-connected triangulations.
By symmetry, these two events have the same probability q−k where

q−k = (2k − 2)!
4k(k − 1)!(k + 1)! .

The revealed triangle thus encloses a triangulation with simple boundary of perimeter
k + 1 (the part in dark gray on Fig. 6). Since T∞,∞ has only one end, this enclosed
part must be finite. The remaining infinite triangulation Peel(T∞,∞; e) is formed by
removing the revealed triangle and the enclosed triangulation from T∞,∞ and rooting
the resulting infinite triangulation with infinite boundary at the only edge adjacent to
the revealed triangle.
Then, conditionally on the fact that the revealed triangle has its third vertex lying
k edges away from the root edge, the enclosed triangulation and Peel(T∞,∞; e) are
independent, the first one follows a Boltzmann of the k + 1-gon (see Definition 1) and
Peel(T∞,∞; e) is a UIHPT.

Remark 1. Conditionally on k = 1, the enclosed triangulation can be of size 0 with
probability Z−1

2 = 8/9 in which case the revealed triangle is glued on the boundary,
see Fig. 7 below.

After peeling the root edge, the triangle revealed may thus have two -if the form is
(C, 1)) or one (if the form is (G,−k) or (D,−k)) edges which are part of the boundary
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Fig. 7. The exposed edges are in fat black lines and the swallowed ones are in fat gray lines. One the right,
the two cases when the form is respectively (G,−1) and (D,−1) and the enclosed triangulation is of size 0

of Peel(T∞,∞; e). These edges are called the exposed edges as in [5]. Also the edges of
the boundary of T∞,∞ except the peeled edge which are not part of the new boundary
of Peel(T∞,∞; e) are called the swallowed edges. See Fig. 7. In the rest of the paper, we
denote by F a random variable over Forms which has the law of the form of a one-step
peeling of the UIHPT, that is

P
(
F=(C, 1)

) = q1, and P
(
F=(G,−k)

) = P
(
F = (D,−k)

) = q−k for k ≥ 1.

(5)

2.3. Markovian exploration. Let T be an infinite triangulation with an infinite simple
boundary such that T has only one end. Extending what we have done in the case of the
one-step peeling of T∞,∞, for any non-oriented edge a on the boundary of T we denote
by Peel(T ; a) the triangulation obtained from T by removing the triangle adjacent to a
as well as the finite region it may enclose, rooted as in the preceding section. Similarly,
define the form of the revealed triangle as before. We call this operation peeling the edge
a in T .

An exploration of T∞,∞ is a sequence of nested subtriangulations2 of T∞,∞
· · · ⊂ Tn ⊂ · · · ⊂ T2 ⊂ T1 ⊂ T0 = T∞,∞

such that for any i ≥ 0 the triangulation Ti+1 is obtained from Ti by the peeling of an
edge ai on the boundary of Ti . For each i ≥ 0, we denote by Ki the “complement”
triangulation of Ti in T∞,∞ made of all the triangles peeled at time i as well as the
finite regions they enclose. For definiteness, K0 is the empty set. Alternatively, Ki is
obtained by cutting in T∞,∞ along the boundary of Ti . This object is necessarily made
of finitely many disjoint finite triangulations with simple boundary and will be called the
“known, explored or discovered” part at time i as opposed to Ti which is the “unknown,
unexplored or undiscovered” part.

In this work, we further assume that a0 is the root edge and that for i ≥ 0 the edge ai
to be peeled at time i ≥ 1 is located on the boundary of Ki so that (Ki )i≥0 is a sequence
of growing triangulations with simple boundary (there is a single growing component).

Here comes the central notion introduced by Angel [4]:

Definition 2 (Markovian exploration). An exploration process is Markovian if for every
i ≥ 0 the edge ai to peel at time i is chosen using a (possibly random) algorithm that
can use the knowledge of Ki but does not depend on the unknown part Ti .

During a Markovian exploration of the UIHPT (also called a peeling process in [5])
the peeling steps are iid. This has first been used by Angel in [4], see also [5, Proposition
4].

2 When we say a sequence of nested subtriangulations, we imagine that they are already given by nested
embeddings. Indeed, in the case of presence of symmetries there could be many ways to see T1 as a subtri-
angulation of T0 etc... We do not intend to give a formal meaning to this and count on the intuition of the
reader.
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Ki

H− = 5 − 4 = 1 H+ = 7 − 2 = 5

Ti

�e

�ai

Fig. 8. Definition of the horodistances

Proposition 1. During a Markovian exploration of T∞,∞ we have:

• For each i ≥ 0, the half-planar triangulation Ti is independent of Ki and has the
law of T∞,∞,

• The forms (Fi )i≥0 of the triangles revealed during the exploration are i.i.d. copies
of F.

2.4. Horodistances. Let E be an exploration process of the UIHPT. We will now keep
track of the position of the peeling position with respect to −∞ and +∞ by using
“horodistances”. We use the notation introduced in the last sections where the depen-
dance in E is implicit.

Definition. Imagine that at step i ≥ 0 we have discovered a subtriangulation Ki ⊂ T∞,∞
and that the next edge to peel is �ai oriented such that the external face of Ti is on its
right. We define two integer numbers H−(i) and H+(i)which represent the variations of
the distances seen from −∞ and +∞ of the edge �ai along the boundary. The definition
should be clear on Fig. 8.

Formally, denote �a−i the origin of �ai and �e− the origin of the root edge in T∞,∞.
Next consider the path γ going from �e− towards “−∞” along the boundary of T∞,∞
and γ ′ the path going from �a−i towards “−∞” along the boundary of Ti . Since Ki is
finite, these two paths eventually merge and γ \(γ ∩ γ ′) as well as γ ′\(γ ∩ γ ′) are both
finite. We define H−(i) as the difference of the lengths of γ ′ and γ that is

H−(i) = |γ ′\(γ ∩ γ ′)| − |γ \(γ ∩ γ ′)|.

The quantity H+(i) is defined similarly using the other endpoints of ai and e.

Splitting the variation. One might think that during an exploration process of T∞,∞
the horodistances from ±∞ are only ruled by the peeling forms (Fi )i≥0 of the explo-
ration. This is not true since after peeling the edge ai , the next edge ai+1 to peel can
be located anywhere on the boundary of Ki+1 and could thus introduce a change in the
horodistances. For convenience, we will thus consider intermediate half-integer steps
in the horodistance processes H± which take into account only the variation of the
horodistances due to the peeling steps.
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Specifically, we introduce the following functions of forms: for every f ∈ Forms

�−( f ) = 1

2
· 1 f=(C,1) −

∑

k≥1

k · 1 f=(G,−k), (6)

�+( f ) = 1

2
· 1 f=(C,1) −

∑

k≥1

k · 1 f=(D,−k). (7)

One can clearly recover f using the pair (�−( f ),�+( f )). Then for every i ≥ 0 we set

H±
(

i +
1

2

)
= H±(i) +�±(Fi ).

In particular, when the exploration is Markovian then H±(i + 1
2 )−H±(i) are i.i.d. of law

�±(F). Geometrically if Fi �= (C, 1) then H±(i + 1
2 ) corresponds to horodistances of

the only edge of the revealed triangle in Ti+1, thus H±(i +1)would be equal to H±(i + 1
2 )

if the next edge to peel would be that one. However, when Fi = (C, 1) the quantities
H±(i + 1

2 ) do not represent actual horodistances (since they are half-integers) but an
“imaginary horodistance” of an edge sitting in between of the two edges of the revealed
triangle in Ti+1. The quantity

η±(i) := H±(i + 1)−H±
(

i +
1

2

)

thus corresponds to the difference of the new edge with respect to the “predicted” next
edge to peel and heavily depends on the algorithm chosen for the exploration. When
Fi �= (C, 1) then η±i ∈ Z and η±i ∈ Z + 1

2 otherwise. Besides we always have

η+(i) + η−(i) = 0, for every i ≥ 0. (8)

Minimum process. Finally, we will use an important geometric quantity that can be read
from the horodistance process. Recall that in this work, we always peel on the boundary
of the explored part so that (Ki ) is a growing triangulation with simple boundary. For any
i ≥ 0 we introduce the infimum process of the horodistance along half-integer times :

H+(i) = inf

{
H+

(
j +

1

2

)
: j ≤ i

}
∧ 0 and

H−(i) = inf

{
H−

(
j +

1

2

)
: j ≤ i

}
∧ 0.

It is easy to see by induction that −H+(i) (resp. −H−(i)) can be interpreted as the
number of edges of T∞,∞ on the right (resp. left) of the root edge �e that have been
swallowed in Ki so far. For example on Fig. 3 we have H−(i) = −4 and H+(i) = −2.
In particular, at time i ≥ 0 the exploration process discovers a new triangle of form
(D, ·) and such that the third vertex of this triangle is lying on the original boundary of
T∞,∞ if and only if we have

H+
(

i +
1

2

)
= H+(i), (9)

and similarly for the left-hand side with “+” replaced by “−”.
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Fig. 9. Two (approximated) samples of the process S

2.5. The spectrally negative 3
2 -stable process. Using the exact expression of the prob-

abilities (qk) defined in Sect. 2.2 one sees that the random variables �±(F) defined by
(6) and (7) are bounded above by 1/2 and satisfy

E[�±(F)] = 0 and P(�±(F) = −n) ∼
n→∞

n−5/2

4
√
π
. (10)

In other words, �+(F) and �−(F) are both in the domain of attraction of the totally
asymmetric stable random variable of parameter 3

2 . Let us recall some basic facts about
the standard 3

2 -stable spectrally negative Lévy process (with no positive jumps) with no
drift which will be denoted by (St : t ≥ 0) and simply referred to as the “3/2-stable
process” in the rest of this paper (Fig. 9). We refer to [13] for details. By standard we
mean that the process S satisfies E[exp(λSt )] = exp(tλ3/2) for all λ > 0 or equivalently
its Lévy measure is given by

�(dx) = 3

4
√
π
|x |−5/2dx1x<0.

This process enjoys the scaling property with parameter 3/2 that is (St : t ≥ 0) =
(λ−2/3Sλt : t ≥ 0) in distribution for any λ > 0.

The process S will appear in this work as the scaling limit of discrete walks. Recall
that if ξ is a centered probability distribution over R with increments bounded from above
and such that P(ξ ≤ −k) ∼ ck−3/2 as k → ∞, if X1, . . . , Xn, . . . are i.i.d. copies of
ξ with cumulative sum Yn = X1 + · · · + Xn then we have the following convergence in
distribution in the sense of Skorokhod

(
Y[nt]

(K n)2/3

)

t≥0

(d)−−−→
n→∞ (St )t≥0, (11)

with K = 2c
√
π and where [x] denotes the largest integer less than or equal to x , see

[23].

Proposition 2. If (Fi )i≥0 are i.i.d. random variables distributed as F then we have the
following convergence in the sense of Skorokhod

n−2/3 ·
( [nt]∑

i=0

�+(Fi ),

[nt]∑

i=0

�−(Fi )

)

t≥0

(d)−−−→
n→∞ 3−2/3 · (S+

t , S−t
)

t≥0,

where S+ and S− are independent standard 3
2 -stable processes with no positive jumps.



1430 N. Curien

Proof. Although the variables �+(Fi ) and �−(Fi ) are not exactly independent, this is
more or less an easy consequence of (11). Let us provide the details. To gain indepen-
dence we Poissonize time. More precisely, we give us a Poisson clock of parameter 1
and at each time (si , i ≥ 1) the clock rings, we sample a form Fi according to F. Equiv-
alently, every form f ∈ Forms appears with an independent Poisson clock of parameter
P(F = f ). For t ≥ 0 let

Gt =
∑

Fi=(G,−k)
si≤t

−k and Dt =
∑

Fi=(D,−k)
si≤t

−k

respectively be the sums of the (negative) jumps of left and right forms. We also put Ct
for the number of centered forms (C, 1) appeared before time t (which is thus a Poisson
variable of parameter 2t/3). Then we have

(
∑

si≤t

�−(Fi ),
∑

si≤t

�+(Fi )

)

t≥0

= (Gt , Dt )t≥0 +
1

2
(Ct ,Ct )t≥0. (12)

On the one hand, by Donsker’s theorem, we have
(

Cnt − 2
3 nt√

n

)

t≥0

(d)−−−→
n→∞ (Bt )t≥0,

where B is a (multiple of a) Brownian motion. On the other hand, since Gt and Dt are
now independent, by (10) and the fact that

∑
k≥1 kq−k = 1/3 we have

(
Gnt + nt

3

n2/3 ,
Dnt + nt

3

n2/3

)

t≥0

(d)−−−→
n→∞ 3−2/3 · (S−t , S+

t )t≥0, (13)

in distribution for the Skorokhod topology where S− and S+ are independent standard
3
2 -stable processes with no positive jumps. Remark now that the last display holds if we
replace nt

3 by Cnt/2 since the
√

n fluctuations of Cnt around 2n/3 are crushed by the
n2/3 renormalization. Using (12) and a standard depoissonization argument, this implies
the proposition. ��
3. SLE6 on the Half-Plane UIPT

The goal of this section is to explain how to discover a half-plane UIPT using an SLE6
process and to prove that, under hypothesis (∗), this exploration is the continuous limit
of the discrete critical percolation interface in an appropriate sense. To help the reader
digest our argument, we first recall the results of Angel [3,4] on site percolation interface
in T∞,∞ using our formalism. We refer to [5] for more details.

3.1. Percolation exploration. Let T∞,∞ be the half-plane UIPT. Conditionally on T∞,∞
we color each vertex of the triangulation independently white or black with equal prob-
ability, except for the vertices of the boundary: color in white those on the right of the
root edge and in black those on the left. See Fig. 10.

It is possible to use the spatial Markov property of the UIHPT in order to discover
step-by-step the percolation interface: at each step we reveal the triangle of the current
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Fig. 10. Site percolation exploration on the UIHPT

boundary that lies between the black and the white component. If this triangle discovers
a new vertex then reveal its color as well. It is easy to see that if this algorithm has
been used since the beginning, then at each step there is a unique edge • − ◦ located
on the current boundary, see Fig. 10 above. This defines a Markovian exploration of the
UIHPT, see [3–5]. If we denote by H−

Perc(n) and H+
Perc(n) the horodistances of the edge

an at the nth step of peeling then we have

Theorem 3 (Angel [3]). We have the following convergence in distribution

(
H−

Perc([nt])
n2/3 ,

H+
Perc([nt])

n2/3

)
(d)−−−→

n→∞ 3−2/3 · (S−t , S+
t )t≥0

where S− and S+ are independent standard 3
2 -stable processes with no positive jumps.

Proof (Sketch). For every i ≥ 0, if the revealed face at time i is of the form (C, 1) then
we let εi = 1

2 when the revealed vertex is white and εi = − 1
2 when it is black. We set

εi = 0 otherwise. The description of the exploration process shows that for every i ≥ 0
we have

η−Perc(i) = H−
Perc(i + 1)−H−

Perc(i + 1
2 ) = −εi ,

η+
Perc(i) = H+

Perc(i + 1)−H+
Perc(i + 1

2 ) = +εi .

Indeed, when the revealed face is not of the form (C, 1) then εi = 0 and the next edge to
peel is necessarily the unique edge of the revealed triangle belonging to the new infinite
boundary (this edge is easily seen to be of type •−◦). However, when the revealed face
is of form (C, 1) then it has two edges belonging to the new infinite boundary and the
next edge to peel is either the “left” edge of the revealed triangle if εi = 1

2 or its “right”
edge if εi = − 1

2 . Since the variables εi are i.i.d. bounded centered variables we deduce
that

ε1 + · · · + ε[nt]√
n

(d)−−−→
n→∞ (Bt )t≥0,

where B is a multiple of a Brownian motion. On the other hand, since the exploration
is Markovian the increments of the horodistances between i and i + 1

2 are independent
copies of (�−(F),�+(F)). We can thus combine the last display with Proposition 2
to get the desired result (notice again that the

√
n scaling of the Bernoulli variables is

crushed by the n2/3 renormalization as in the proof of Proposition 2). ��
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3.2. The Riemann surface construction. In this section we show how to associate with
the UIHPT a Riemann surface that we will later use to define SLE processes on T∞,∞.
We follow the presentation of [20] where the authors showed that the Riemann surface
associated to the UIPT (of the full plane) is conformally equivalent to C.

We associate with any locally finite triangulation T a Riemann surface T by consid-
ering each triangle of the map as a standard Euclidean equilateral triangle endowed with
its distance and use the combinatorics of the map to glue the triangles between each
other. Formally, we first construct a topological space by gluing triangles according to
the pattern of the map; this topological space is then endowed with a Riemann surface
structure using the following coordinate charts:

• for any point located in the interior of a triangle or on a boundary edge we simply
see this triangle as a standard equilateral triangle (whose sides have length 1) in the
complex plane and use the identity map,

• if the point belongs to an interior edge, then place the two adjacent triangles (there
must be two different triangles since we are considering type II triangulations) next
to each other in the complex plane and use again the identity map,

• if the point is located on an interior vertex with d ≥ 2 adjacent equilateral triangles
t1, t2, . . . , td arranged in cyclic order then we use the map z �→ z6/d as coordinate,
that is, the point z = reit for t ∈ [0, π/3] and r < 1/2 belonging to the triangle t j

is sent to
(
r exp(i(t + ( j − 1)π/3))

)6/d .
• If the point is a vertex on the boundary we modify the above chart by using z �→ z3/d .

It is easy to check that the coordinate changes are analytic and thus this atlas does define
a Riemann surface structure (in fact a Euclidean surface with conical singularities at
vertices of degree different from 6), see [20] for details.

In the case of the UIHPT we obtain a (random) simply connected Riemann surface
with a boundary denoted by T∞,∞. By the uniformization theorem, this surface can be
mapped onto the upper half-plane H = {z ∈ C,�(z) > 0}, i.e. there exists a (random)
bi-holomorphic function φT∞,∞ : T∞,∞ → H. This map is unique provided that we fix
the images of three points : the origin of the root edge is sent to −1/2, its target to 1/2
and the infinity of T∞,∞ is sent to the infinity of H. The image of the edges of T∞,∞
in T∞,∞ under this conformal map is thus a canonical proper embedding of T∞,∞ in H

and is denoted by T∞,∞, see Fig. 2.
Once we have constructed this canonical representation of the UIHPT, one can con-

sider various stochastic processes on it. For example we can define a Brownian motion
(up to time parametrization) moving over T∞,∞ (more precisely over T∞,∞) as the pre-
image under φT∞,∞ of a standard reflected Brownian motion on H. The goal of the next
subsection is to study one very special random process over T∞,∞ : the SLE process of
parameter κ = 6.

Remark 2. They are various ways to construct a canonical embedding of a planar map,
see [9]. However, we work here with Riemann’s uniformization because it is well-suited
to define and use the SLE6 exploration (see below).

3.3. SLE6 exploration. We recall the definition of the chordal SLE6 in the upper half-
plane. The reader is referred to [29,48] for details and proofs. Let Bt be a standard linear
Brownian motion and consider the flow of conformal mappings obtained by solving the
following PDE:
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Fig. 11. Simulation of an SLE6 in the half-plane, courtesy of Vincent Beffara. On top of it, the uniformization
of a UIHPT

∂t gt (z) = 2

gt (z)−
√

6Bt
, g0(z) = z. (14)

For each t ≥ 0, the function gt maps a certain simply connected domain Ht ⊂ H onto
the upper half-plane H. Furthermore, it is by now classical that H\Ht can be represented
as the hull of a random curve γ : R+ → H starting from 0, that is

Ht = infinite open component of H\γ ([0, t]).
This curve is called the Schramm–Loewner curve of parameter κ = 6 and abbreviated
by SLE6. For κ > 4, the SLE6 is not a simple curve (it touches itself) and furthermore
bounces on the real axis infinitely many often (this will be crucial in the sequel).

Independently of T∞,∞, consider a standard SLE6 curve (γt )t≥0 on H started from
0. We define the SLE6 on the (Riemann surface associated to the) half-plane UIPT as
the path

(
φ−1

T∞,∞(γt )
)

t≥0. (15)

Although this process runs over the Riemann surface T∞,∞, one will abuse notation and
say that the SLE6 explores the UIHPT itself and that γ is running directly over T∞,∞.
One can thus make sense of the discrete notion of face, edge or point of T∞,∞ visited
by the SLE6 (Fig. 11).

In the following, “exploration of the UIHPT” will always refer to the above SLE6
exploration.

Let us begin with a few remarks concerning this process. Since the points are polar
sets for the SLE6 on H, it follows that the curve γ on the UIHPT almost surely does
not visit the vertices of T∞,∞ (recall that the root edge is uniformized onto [− 1

2 ,
1
2 ]).

The SLE6 defines an (a priori non-Markovian) exploration of the half-plane UIPT: For
any t ≥ 0, we denote by Hull(t) the subtriangulation of T∞,∞ obtained as the union
of all the faces visited by the curve γ before time t as well as the finite regions they
enclose. The growing subtriangulations {Hull(t)}t↑ are then naturally associated with an
(a priori non-Markovian) exploration process of T∞,∞. After forgetting the continuous
time parametrization, we denote by

(ai )i≥0, (Ki )i≥0, (Ti )i≥0, (H−(i),H+(i))i≥0
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the sequences of peeled edges, explored and remaining parts, and horodistances in this
exploration. Note that we used only the curve γ up to time parametrization to define this
exploration. Finally, we denote by Fn the σ -field generated by the knowledge of the part
Kn at (the discrete) time n as well as the curve γ restricted up to the first visit of a face
not in Kn (whose tip is thus located on an).

3.4. Locality of SLE6 and the spatial Markov property. Remark that one could have
considered other explorations (on the Riemann surface) of T∞,∞ using different SLEκ
curves by mimicking Definition (15). However, the SLE of parameter κ = 6 plays a
very special role since it defines a Markovian exploration in the sense of Definition 2.
Let us explain this crucial point in more details.

A characteristic property of the SLE6 process that it shares with Brownian motion is
the locality property, see [29, Section 6.3]. This property is reminiscent of the fact that
SLE6 is the scaling limit of site percolation interface on the triangular lattice [46] and
loosely speaking means that the SLE6 curve does not feel the boundary of the domain it
explores until it touches it. A key consequence for us is the following :

Although the definition of the SLE6 over T∞,∞ given via (15) a priori depends
on the Riemann uniformization of the UIHPT, the locality property enables us to
define the curve γ (up to time reparametrization) running over T∞,∞ by discov-
ering the UIHPT “step-by-step” and revealing only the parts necessary for the
SLE6 to displace.

More precisely, fix a finite triangulation K with a simple boundary having a distin-
guished segment S of boundary edges not containing the root edge; and let T be an
infinite triangulation with an infinite boundary. We consider the triangulation K + T
obtained by gluing T on the segment of K and keeping the root of K . After uniformiz-
ing this triangulation onto H as in Sect. 3.3 we consider an independent SLE6 curve γ
running on K + T . We denote by γ |K the curve γ seen up to time-reparametrization
stopped at the first hitting of an edge of S, see Fig. 12.

Lemma 4. The law of γ |K does not depend on T . In other words, the evolution of the
SLE6 inside K can be performed without requiring the information outside K .

Proof. Consider two infinite triangulations with infinite boundary T and T ′. After form-
ing the two gluings of K with T and T ′ along S, uniformize these two maps onto H by
sending the root edge to [−1/2, 1/2] and∞ to∞, see Fig. 12. In these uniformizations,
the images of K thus form two different H-neighborhoods N1 and N2 of the origin (in
gray in Fig. 12), see [29, Chapter 6.3]. The composition of the uniformizing maps thus
yields a locally real3 conformal transformation fT,T ′ sending N1 to N2. The locality
property of the SLE6 [29, Theorem 6.13] precisely tells us that the image of an SLE6
curve in N1 has the law of an SLE6 in N2. Otherwise said, the image of the SLE6 run-
ning on the uniformization of K + T and stopped when touching (the image of) S, once
pushed by fT,T ′ , is an SLE6 exploring K + T ′ stopped when touching S. The statement
of the lemma follows. ��

A repetitive use (left to the reader) of the last lemma shows that the edge to peel at
time i ≥ 0 is independent of the remaining part Ti and so:

Corollary 5. The exploration process of T∞,∞ induced by the SLE6 is Markovian.

3 A univalent function φ : N → H is locally real at x0 if φ(z) = a0 + a1(z − x0) + a2(z − x0)
2 + · · ·

locally around x0 with a0, a1, a2, ... ∈ R, see [29, Section 4.6].
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Fig. 12. Rephrasing the locality property in our context

3.5. The (∗) property. The goal of this section is to introduce the condition (∗) under
which the scaling limit of the horodistance processes is known. Although we have been
unable to prove it, we will try to convince the reader it is true, see Sect. 6. Recall the
notation

H−(i + 1)−H−(i +
1

2
) = η−i , and H+(i + 1)−H+(i +

1

2
) = η+

i .

Our hypothesis (∗) on which most of the interesting results of this paper rely is

(∗) sup
t∈[0,1]

η+
1 + η+

2 + · · · + η+[tn]
n2/3

(P)−−−→
n→∞ 0,

where (P) denotes convergence in probability.

Theorem* 2. We have the following convergence in distribution

(H+([2nt]/2)
n2/3 ,

H−([2nt]/2)
n2/3

)
(d)−−−→

n→∞ 3−2/3 · (S+
t , S−t )t≥0

in the Skorokhod sense where (S+, S−) is a pair of independent standard 3
2 -stable

processes.

Remark 3. Theorem* 2 has to be compared with Theorem 3. In a weak sense, it says
that the SLE6 indeed is the scaling limit of critical percolation interfaces in the UIHPT
(see [46] for the regular case), at least from the horodistances point of view. See Sect. 6
for comments and open questions.

Proof*. By Corollary 5 the SLE6 exploration is Markovian and so by Proposition 1 the
variations of the horodistances between i and i + 1

2 are independent and distributed as
(�−(F),�+(F)). By Proposition 2, we thus have

n−2/3 ·
( [nt]∑

i=0

H−(i +
1

2
)−H−(i),

[nt]∑

i=0

H+(i +
1

2
)−H+(i)

)

t≥0

(d)−−−→
n→∞ 3−2/3 · (S+

t , S−t )t≥0.
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The condition (∗) then precisely entails that the increments between i + 1/2 and i + 1
cannot perturb the scaling limit. More precisely, since η+

i = −η−i by (8), condition (∗)
implies

n−2/3 ·
( [nt]∑

i=0

H−(i + 1)−H−(i +
1

2
),

[nt]∑

i=0

H+(i + 1)−H+(i +
1

2
)

)

t≥0

−−−→
n→∞ 0,

in probability for the Skorokhod topology. Combining the last two displays yields to
Theorem* 2 when [2nt]/2 is replaced by [nt]. To get the full statement, notice that
condition (∗) together with (8) also implies that n−2/3 · supi≤n η

±
i → 0 in probability

(see also Proposition 6 below for a stronger statement not depending on (∗)). ��
Remark 4. At this point, the cautious reader may wonder why we have not chosen to
explore the UIHPT using a Brownian motion instead of an SLE6. Indeed, Brownian
motion also enjoys the locality property and hence produces a Markovian exploration.
The problem is that, contrary to the SLE6, from time to time two consecutive peeling
points for the Brownian motion may be far apart (in terms of horodistance): this occurs
when the Brownian motion dive deep into the explored part so that the next peeling point
is almost uncorrelated with the preceding one. Clearly, the analogous of condition (∗)
for the Brownian exploration of T∞,∞ does not hold and understanding the behavior of
the horodistances, even on a heuristic level, is a very difficult problem.

3.6. Tail bound for the η±i . Although the collective behavior of the η±i is the content of
the condition (∗) and remains conjectural, one can establish almost exponential bounds
on the tails of the η±i .

Proposition 6 (Bounds for the η±i ). For i ≥ 0, denote by Di the maximal degree of a
vertex in Ki within distance 2 of its exposed boundary (that is the boundary in common
with Ti ). There exist some constants c1, c2 > 0 such that for every i ≥ 0 and every
k ≥ 1

(i) P(Di ≥ k) ≤ ic1 exp(−c2k),
(ii) conditionally on Fi , we have P(|η±i | ≥ k) ≤ c1 exp(−c2kD−4

i ).

(iii) Consequently we have for every ε > 0

lim
n→∞

supi≤n |η±i |
log5+ε n

= 0.

Proof of Proposition 6. (i). This statement should not be surprising for experts since it
is more-or-less folklore that the maximal degree in a random triangulation is logarithmic
in its size, see [7, Lemma 4.2] and [10, Proposition 12] for similar statements. However,
we give a full proof for completeness. First of all, an easy adaptation of [7, Lemma 4.2]
to the case of the UIHPT shows that the degree of the origin of the root edge in T∞,∞
has an exponential tail. Actually, a slight generalization of it (left to the reader) shows
that the maximal degree of a vertex within distance 3 of the root edge e of T∞,∞ (that
is of one of its extremities) also has an exponential tail, namely there exist c1, c2 > 0
such that for every k ≥ 0

P
(
∃v ∈ T∞,∞, d

T∞,∞
gr (v, e) ≤ 3 : deg(v) ≥ k

)
≤ c1e−c2k, (16)
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aiai+1

Fig. 13. Illustration of the proof. The hull of the SLE is represented in red. To get to the desired next edge to
peel, the SLE has to cross the channel and avoid the boundary edges

where the notation dG
gr stands for the graph distance in the graph G. Next, for i ≥ 1 if v is

a vertex of Ki within distance 2 of its exposed boundary, then if j = inf{n ≤ i : v ∈ Kn}
is the first time at which v is discovered (note that since K0 = ∅ we have j ≥ 1), then
v is necessarily a vertex of Tj−1 and an easy geometric argument shows that

d
Tj−1
gr (v, a j−1) ≤ 3.

Recall from Proposition 1 that for a Markovian exploration process, for every j ≥ 0 the
unexplored part Tj rooted at a j is distributed as a standard UIHPT. By the union bound
and (16) we thus have

P
(
Di ≥ k

) ≤ P
(
∃v ∈ T∞,∞, d

Tj
gr (v, a j ) ≤ 3 for some 0 ≤ j ≤ i : deg(v) ≥ k

)

≤ i P
(
∃v ∈ T∞,∞, d

T∞,∞
gr (v, e) ≤ 3 : deg(v) ≥ k

)

≤
(16)

ic1e−c2k .

(ii) We only give a detailed sketch and leave the precise details to the careful reader.
Imagine the situation just after having peeled the i th edge. Let k ≥ 1 (large) and let us
evaluate the probability that the next edge to peel is the kth edge on the left of the root
of the triangulation Ti+1. Since all the triangles that share an edge with the boundary
of Ti have been visited by the SLE6 process, that means that the curve γ has to travel
in a narrow region towards the left to finally exit at the desired edge while bumping on
its past and without touching any edge on the boundary of Ti+1 during its journey. See
Fig. 13.

In particular, we can define a “channel” (in light blue on Figs. 13, 14) as being the
region separating the target edge from the current position of the SLE with two edges
playing the role of the entry and exit of the channel, see Fig. 14. To show the bound
of the proposition, we will prove that the probability that an SLE6 crosses the channel
without touching the above boundary edges is very low. This is intuitively clear since the
latter is a narrow and long path (when k is large), but what really matters is its conformal
width.

More precisely, we consider the Riemann surface C associated to the channel made
by the parts of the triangles that are not contained in the hull of the SLE6, see Fig. 14.
By the uniformization theorem, we can map C onto a rectangle where the vertical sides
correspond to the entry and exit of the channel. Then by standard properties, the proba-
bility that an SLE6 process crosses such a rectangle without touching its above boundary
is at most c1 exp(−c2 L) where c1, c2 > 0 and L is the ratio (which does not depend on
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=

EntryExit

Fig. 14. The channel and its associated conformally equivalent rectangle (artistic representation)

the uniformization) of the horizontal length by the vertical length of the rectangle also
called the extremal length or conformal moduli. The statement of the proposition thus
reduces to show that the extremal length of the channel is at least

L ≥ c
k

D4
i

, (17)

for some constant c > 0.
For this we use the definition of the extremal length of the channel C which is seen

as a gluing of parts of equilateral triangles and thus endowed with the locally Euclidean
metric and measure. If ρ : C → R+ is a positive function (also called “metric”) we let
Area(ρ) be the integral of ρ2 with respect to the Lebesgue measure on C. Also, if � is a
smooth path going from the Entry to the Exit of the channel, we define the ρ-length of
� as

Lengthρ(�) =
∫

�

|ds| ρ,

where |ds| denotes the Euclidean element of length. With this piece of notation, the
extremal length L of C is expressed as (see [1, Chapter 4])

L = sup
ρ

inf
�

(
Lengthρ(�)

)2

Area(ρ)
, (18)

where the supremum is taken over all “metrics” ρ : C → R+ and the infimum runs over
all rectifiable paths joining Entry to Exit in the channel. To show (17) we consider a
particular metric ρ0 defined as follows: the function ρ0 is constant and equals to 1 on
every (part of) triangle of C which contains a vertex at combinatorial distance less than
1 from the above boundary of the channel. Otherwise ρ0 = 0 on the rest of the channel.
Because Di is the maximum vertex degree within distance 2 of the exposed boundary
of Ki we have

Area(ρ0) ≤
√

3

4
· (k + 1) · D2

i . (19)

We now have to bound from below the ρ0-length of a smooth path crossing C. To do so,
we will identify a combinatorial pattern in the channel that requires a minimal ρ0-length
to be traversed. First notice that all the combinatorial triangles adjacent to the above
boundary of the channel are either pointing upwards � or downwards ∇. A block is
a sequence ∇,�, . . . ,�,∇ together with the triangles “grafted” on the bottom of the
upwards triangles. See Fig. 15.

As already mentioned, all the downwards triangles ∇ contain a piece of the curve γ
for otherwise they would not have been discovered. An easy geometrical argument shows
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Fig. 15. A block requires a minimal ρ0-length to be crossed

that the ρ0-length needed to cross a block is bounded from below by some universal
constant c′ > 0. Hence, the minimal ρ0-length of a curve � crossing the channel is at
least c′ times the number B of blocks of this channel. However, it is easy to see that

B ≥ � k

10Di
�,

which combined with (19) and the definition (18) of L finishes the proof of the (i i).
(i i i) For the final item we have using (i) and (i i)

P(|η+
i | ≥ log5+ε i) ≤ P(Di ≥ log1+ε/5 i) + P(|η+

i | ≥ log5+ε i | Di ≤ log1+ε/5 i)

≤ ic1e−c2 log1+ε/5 i + c1e−c2 log1+ε/5 i .

The right-hand side is obviously summable in i ≥ 1 and so an application of Borel–
Cantelli’s lemma finishes the proof of the proposition. ��

4. Bouncing Off the Walls

The basic idea of Theorem* 1 is the following: When the horodistance H+ (resp. H−)
reaches a new minimum value, this geometrically corresponds to a visit of R+ (resp.R−)
by the SLE curve γ . This heuristic is not exact on a discrete level but becomes true in
the limit (see Proposition* 3). This enables us to relate the number of alternative visits
to R+ and R− by the curve γ in terms of alternative minimal records of S+ and S−
(Proposition 8).

4.1. Discrete bouncing. For any n ≥ 0, we introduce the first time τ+(n) after n such
that the peeling of the edge aτ+(n) discovers a triangle of form (D, ·) whose third vertex
is lying on the original boundary of T∞,∞. Equivalently, using (9) we have

τ+(n) = inf

{
k ≥ n : H+

(
k +

1

2

)
= H+(k)

}
. (20)

The quantity τ−(n) is defined by similar means. Thanks to Theorem* 2 and since
lim inf S+ = lim inf S− = −∞ we have τ+(n) <∞ and τ−(n) <∞ almost surely for
every n ≥ 0.

A peeling time n is good if the tip of the SL E6 is located in the middle third of the
edge to be peeled.
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Fig. 16. Illustration of the proof

Lemma 7 (Discrete bouncing). There exists some constant c > 0 such that on the event
{H+(n + 1/2) = H+(n)} and n being a good peeling time, then conditionally on Fn
there is a probability at least c that γ touches R+ within the next two peeling steps.

Obviously, a similar lemma holds when “+” is replaced by “−”.

Proof (Sketch). Conditionally on the event considered, there is a probability bounded
away from 0 that the next peeling edge is good and is the left-most edge of the revealing
triangle at time n and that furthermore, the peeling of that edge discovers a triangle
“glued” on the boundary as in the following picture (see Remark 1). It is then easy to
see that on this event the SLE6 can touch R+ with a probability bounded away from 0
(Fig. 16). ��

Commutings. We will now describe the limit as n → ∞ of the random times τ+(n)
using the scaling limit of the horodistance processes given by Theorem* 2. Recall that
S+ and S− are two independent standard 3

2 -stable processes with only negative jumps.
We denote by

S+
t = inf{S+

u : 0 ≤ u ≤ t} and S−t = inf{S−u : 0 ≤ u ≤ t}
be the running infimum processes of S+ and S−. For every t ≥ 0 introduce

ξ+(t) = inf
{
u ≥ t : S+

u = S+
u

}
,

and put a similar definition for ξ−(t). By standard properties of the spectrally negative
3
2 -stable process, for every t > 0 we have ξ+(t) > t almost surely. Furthermore the time
ξ+(t) a.s. corresponds to a jump of the process which reaches a strict new minimum,
that is

S+
t > S+

ξ+(t). (21)

Using standard properties of the Skorokhod topology [23, Chapter VI], we deduce from
the above display, (20) and Theorem* 2 that for every t > 0 we have the following
convergence in distribution

τ+([nt])
n

(d)−−−→
n→∞ ξ+(t), (22)

and similarly when “+” is replaced by “−”. We denote by

R+ = {t ≥ 0 : S+
t = S+

t } and R− = {t ≥ 0 : S−t = S−t }
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the set of times corresponding to minimal records of the processes S+ and S−. These
two random closed sets are a.s. perfect (not isolated points), also it is known that we
almost surely have

R+ ∩ R− = {0},
see [14, Chapter 5]. The last display entails that for every k ∈ {0, 1, 2, . . .} the kth
alternate composition

ξ (k) = ξ± ◦ · · · ◦ ξ+ ◦ ξ− ◦ ξ+
︸ ︷︷ ︸

k terms

,

is well-defined and that we have t < ξ(1)(t) < ξ(2)(t) < · · · as well as ξ (n)(t) → ∞
for every t > 0 as n goes to infinity. Note that for any t > 0, by the scaling property of
the stable processes we have the following equality in distribution

(
ξ (k)(t)

)

k≥0
= t ·

(
ξ (k)(1)

)

k≥0
. (23)

We will later study the behavior of ξ (n)(1) as n →∞, see Proposition 8. In the spirit of
(21) one can check that ξ (k)(t) is a jump time of S± (depending on the parity of k) that
reaches a strict new minimum a.s. We mimic the definition of ξ (k) and set τ (k) to be the
kth alternate composition

τ (k) = τ± ◦ · · · ◦ τ+ ◦ τ− ◦ τ+
︸ ︷︷ ︸

k terms

.

The above considerations show that Theorem* 2 actually leads to the following extension
of (22): for every t > 0 we have the following convergence in distribution

(
τ (k)([nt])

n

)

k≥0

(d)−−−→
n→∞

(
ξ (k)(t)

)

k≥0
, (24)

for the topology of simple convergence.
We now introduce similar notions in order to describe the alternative bouncings of

the SLE on R+ and R−. In the following lines, it is important to parametrize the SLE6
and we recall from Sect. 3.3 that (γt )t≥0 is a standard chordal SLE6 on H starting from
0 and parametrized by its half-plane capacity. In accordance to the above notation, for
every t ≥ 0 we put

θ+(t) = inf{s ≥ t : γs ∈ R+},
where an obvious definition holds for θ−. Here also, for every k ≥ 0 we denote by θ(k)

the kth alternated composition θ± ◦ . . .◦θ− ◦θ+. Again, the scaling property of the SLE
process implies that

(
θ(k)(t)

)

k≥0
= t ·

(
θ(k)(1)

)

k≥0
(25)

in distribution for every t > 0. Proposition 12 studies the behavior of θ(n)(1) as n →∞.
When the SLE6 curve γ is used to explore the half-planar triangulation T∞,∞ we

will need to tie the continuous parametrization of the curve γ to the discrete exploration
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steps. If ti for i = 0, 1, 2, . . . are the continuous times at which the i th edge to peel is
discovered by the SLE process then for every k, i ∈ {0, 1, 2, . . .} we let

θ̃ (k)(i) = inf
{

j ≥ 0 : θ(k)(ti ) ≤ t j
}
.

As promised in the introduction of this section, we prove that the scaling limit of the
alternative bouncing on R+ and R− by the SLE are described by the alternative minimal
records of the processes S+ and S−. More precisely, we have

Proposition* 3 (Connecting θ and τ ). For every k ≥ 1 we have

θ̃ (k)(n)

τ (k)(n)

(P)−−−→
n→∞ 1.

Proof. Lower bound. Assume that at time t ≥ 0 we have γt ∈ R+. Intuitively the next
edge to peel will be close to the extreme-right edge of the explored part, that is with a
minimal horodistance. Indeed, an easy adaptation of the proof of Proposition 6 shows
that the next edge to peel ai has a horodistance H+(i) close to H+(i − 1) in the sense
that asymptotically we have

H+(i)−H+(i − 1)

log5+ε i
≤ 1.

Since by Theorem* 2, the quantity H+(i−1) is of order i2/3 that means that H+(i) is very
close to its past infimum. Using the fact that the set of minimal records of a 3/2-stable
process has no isolated point and standard properties of stable processes, Theorem* 2
implies that for any ε > 0 with high probability there exists (1− ε) ≤ j ≤ (1 + ε)i such
that H+( j) = H+( j + 1/2). Iterating this argument we get that

P
(
τ (k)(n) ≤ (1 + ε)θ̃ (k)(n)

)
−−−→
n→∞ 1,

for any k ∈ {1, 2, . . .} and any ε > 0.
Upper bound. Fix n ≥ 0 (large). By Lemma 7 if τ+(n) is a good peeling time then

there is a positive probability that γ touches R+ between the peeling steps τ+(n) and
τ+(n) + 2. We claim that in fact, the SLE curve will hit R+ between the peeling steps
τ (1)(n) = τ+(n) and τ (2)(n) = τ−(τ+(n)) with a probability tending to 1 as n →∞.

Indeed, by standard properties of the stable process, the time ξ+(1) ∈ R+ is not
isolated from the right in R+. Using (21) and properties of the Skorokhod topology, it
follows from Theorem* 2 that for any p ≥ 0 we have

τ+,(p)(n)− τ+(n)

n
(P)−−−→

n→∞ 0,

where τ+,(p) is the p-fold composition of τ+. Since n−1τ (2)(n) converges in distribution
towards ξ (2)(1) > ξ+(1), we have

#
{
τ+(n) ≤ i ≤ τ−(τ+(n)) : H+(i + 1/2) = H+(i)

} (P)−−−→
n→∞ ∞.

We then claim that the last display remains true if we only restrict to good peeling times.
A formal proof of this fact is tedious and we shall not enter these details since we anyway
rely on (∗). Applying successively Lemma 7 to these times, we deduce that with high
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probability the SLE curve touches R+ after the step τ+(n) but before step τ (2)(n). An
easy extension of the above argument then yields

P
(
θ̃ (k)(n) ≤ (1 + ε)τ (k)(n)

)
−−−→
n→∞ 1,

for any k ∈ {1, 2, . . .} and any ε > 0. ��
The next two sections are devoted to two computations which investigate the behavior

of θ(n)(1) and ξ (n)(1) as n →∞. These are technical propositions and their proofs can
be skipped at first reading. This piece of information, combined with Proposition* 3 is
the heart of the proof of Theorem* 1. Since we will heavily deal with large deviations
estimates we introduce a special notation for it.

A notation for large deviations . Let I = Z+,R+ or (0, 1) and ω ∈ {0,∞}. If a real
stochastic process (Xi )i∈I indexed by I satisfies a weak law of large numbers:

lim
i→ω

Xi

f (i)
= K ,

in probability for some function f such that | f | → ∞ as i → ω (e.g. f (i) = i or
f (i) = log i) and some constant K ∈ R, we will say that large deviations hold if for
every η > 0 there exist c1, c2 > 0 (which depend on η) such that for all i ∈ I sufficiently
close to ω we have

P

(∣∣∣∣
Xi

f (i)
− K

∣∣∣∣ > η

)
≤ c1e−c2| f (i)|,

and we write

limLD
i→ω

(Xi , f (i)) = K .

Let us give a few examples. The most basic one is to consider a sequence ζ1, . . . , ζn of
i.i.d. random variables such that E[exp(λ|ζ |)] <∞ for some λ > 0. Then by classical
results on large deviations, their partial sums Sn = ζ1 + · · · + ζn satisfy

limLD
n→∞ (Sn, n) = E[ζ ]. (26)

Various other examples will arise in this work and are based on scale invariance. E.g.,
consider the 3

2 -stable process S+ and its infimum process S+. For any t > 0, by the
scaling property we have S+

t = t2/3S+
1 . Also, by standard properties, the law of S+

1 has a
polynomial tail in−∞ and a bounded density around 0, thus we have P(| log(−S+

1)| >
x) ≤ e−cx for some c > 0 as x →∞. For every η > 0 and t ≥ 1 we have

P

(∣∣∣∣
log−S+

t

log t
− 2

3

∣∣∣∣ > η

)
= P

(∣∣log−S+
1

∣∣ > η log t
)

≤ c1 exp(−c2 log t)

⇒ limLD
t→∞

(
log |S+

t |, log t
) = 2

3
. (27)

The last display also holds if we replace t → ∞ by t → 0. Another useful example
comes from the SLE6 curve (γt ) on H. For any t > 0 we consider the random variable
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γ +
t
= sup

{
γ[0,t] ∩ R+

}
. By the scaling property of the SLE process, for any t > 0 we

have

γ +
t
= t1/2γ +

1

in distribution. Furthermore, by standard properties [29, Chapter 6] there exists c > 0
such that we have P(γ +

1
≤ ε) ≤ εc as ε→ 0 as well as P(γ +

1
≥ x) ≤ x−c as x →∞.

Using the same proof as above we deduce that

limLD
t→∞

(
log γ +

t
, log t

)
= 1

2
. (28)

Again, the last display holds when t → 0 instead of t →∞.

4.2. A 3
2 -stable calculation: estimates for ξ (n). Recall the definition of ξ (n)(t) from

Sect. 4.1. In order to lighten notation, in this section we put ξ (n) := ξ (n)(1) for every
n ≥ 0.

Proposition 8. We have limLD
n→∞

(
log ξ (n), n

)
= π√

3
.

Before starting the proof, let us recall some useful facts about the 3
2 -stable process.

We refer to [13,14] for the derivations of these classical identities. Let S be a standard 3
2 -

stable Lévy process with no positive jumps and let S be its running infimum process. The
reflected process S− S admits a local time at 0 denoted by (Lt )t≥0. Its right-continuous
inverse L−1 is a 1

3 -stable subordinator ([13, Chap. VIII, Lemma 1]) and thus follows the
generalized arcsine law ([13, Chap. III, Theorem 6]): For every x > 0

x−1 sup{t ≤ x : St = St } (d)=
√

3

2π
s−2/3(1− s)−1/3ds1(0,1)(s). (29)

Recall that a random closed set S ⊂ R+ such that almost surely S is not bounded, has
no isolated point and such that 0 ∈ S is a regenerative set if for any t ≥ 0, conditionally
on Zt = min[t,∞) ∩ S, the set (S ∩ [Zt ,∞)) − Zt is independent of (S ∩ [0, Zt ])
and is distributed as S. Any regenerative set can be seen as the range of a subordinator
unique up to multiplicative constant, see [14]. A regenerative set is thus characterized by
a drift parameter d ≥ 0 and a positive Lévy measure π (called the regenerative measure)
unique up to multiplication by the same constant.

In our case, the random closed set R = {t ≥ 0 : St = St } is a regenerative set (it
corresponds to the range of the subordinator L−1) with no drift and regenerative measure

x−4/31x>0dx . (30)

For every t > 0, almost surely t /∈ R and R has Hausdorff dimension 1/3. Also recall
from [14, Chap. 5] that the intersection of two independent copies of R is almost surely
reduced to {0}.
Proof of Proposition 8. Due to the logarithm in the statement of Proposition 8 it is more
convenient to deal with the logarithm of R+ and R−: we set L+ = log(R+\{0}) and
L− = log(R−\{0}). Clearly we have L+ ∩L− = ∅ and ξ (n) is measurable with respect
to L+ and L−, see Fig. 17. It turns out that L+ and L− are again regenerative sets, but
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L+

L−

t = 0
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Fig. 17. The sets L+ and L− and the steps of the chain (log ξ(n))n≥0

not started at 0: Let L be a random set having the law of L+ or L− translated at its first
positive value

L
(d)= (

L+ − inf L+ ∩ [0,∞)) ∩ [0,∞).
��

Lemma 9. The random set L is a regenerative set with no drift and regenerative measure

ν(dx) = ex

(ex − 1)4/3
dx .

Proof. This comes from a straightforward calculation: For every x0 ∈ R
∗
+ the push-

forward of the measure dx
x4/3 on R+ given in (30) by the map u �→ log(u + x0)− log(x0)

is a multiple (depending of x0) of the measure ν(dx). ��
The main observation is the following.

Lemma 10. The process Xn := log ξ (n+1) − log ξ (n) for n ≥ 2 is a Markov chain with
transition kernel

p(x, dy) =
√

3

2π

(
ex − 1

ex (ey − 1)

)1/3 dy

1− e−x−y
.

Proof. For x > 0 we denote by Gx = sup{s ≤ x : s ∈ L} and Dx = inf{s ≥ x : s ∈ L}.
Since almost surely x /∈ L, we have Gx < x < Dx . We denote by px (dy) the law of
Dx − x and will show that (Xi )i≥2 is a Markov chain with transition kernel p(x, dy) =
px (dy).

Let i ≥ 2 be odd (say). The point log ξ (i) thus belongs to L+. Note that X1, . . . , Xi−1
are measurable with respect to

Fi := σ(L+ ∩ [0, log ξ (i)],L− ∩ [0, log ξ (i−1)]).
We thus condition on Fi and look for the next point larger than or equal to log ξ (i)

belonging to L−. By the regenerative property of L−, the conditional distribution of
L− ∩ [log ξ (i−1),∞) is that of L + log ξ (i−1) (here we use that i ≥ 2). The conditional
law of Xi = log ξ (i+1) − log ξ (i) is that of the law of DXi−1 − Xi−1. Consequently,
conditionally on X1, . . . , Xi−1, the variable Xi is distributed as pXi−1(dy) as desired.

Let us now compute the distribution px (dy) for x > 0. This is a pretty straightforward
calculation but we provide the details for the reader’s convenience. We first compute the
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distribution of Gx . For this we use the arcsine law (29) on the original regenerative set
R. Indeed if R is a version of R started at time 1 then Gx has the same distribution as

Gx
(d)= log

(
sup{s ≤ ex : s ∈ R}).

The law of the random variable inside the logarithm on the right-hand side minus 1
and divided by ex − 1 is the arcsine law (29) of parameter 1/3. In other words, for any
positive measurable function f we have

E[ f (Gx )] =
∫ 1

0
ds

√
3

2π
s−2/3(1− s)−1/3 f

(
log

(
(ex − 1)s + 1

))
.

Performing the change of variable u = log((ex − 1)s + 1), the law of Gx is given by

Gx
(d)=
√

3

2π

eu10<u<x

(eu − 1)2/3(ex − eu)1/3
du. (31)

Finally, conditionally on Gx , by the regenerative property of L, the law of Dx−x is given
by ν(dy | y > x−Gx ). Using Lemma 9 (and the easy identity ν[x,∞) = 3/(ex−1)1/3

for x > 0) we get that for any positive measurable f

E[ f (Dx − x)] =
∫ x

0
du

√
3

2π

eu

(eu − 1)2/3(ex − eu)1/3

· (e
x−u − 1)1/3

3

∫ ∞

x−u
da

ea

(ea − 1)4/3
f
(
a − (x − u)

)

=
v=x−u
y=a−v

1

2π
√

3

∫ x

0
dv

ex−v(ev − 1)1/3

(ex−v − 1)2/3(ex − ex−v)1/3

×
∫ ∞

0
dy

ey+v

(ey+v − 1)4/3
f (y)

= 1

2π
√

3

∫ ∞

0
dy f (y)

∫ x

0
dv

ey+v

(ey+v − 1)4/3
e−2v/3

(e−v − e−x )2/3
.

The last integral has been computed using Mathematica©, however it is easy (but tedious)
to check a posteriori that it is equal to the formula provided in the statement of the
lemma. ��

Using the exact form of the probability transitions of the chain (Xi ) it is easy to see
that this chain is aperiodic, recurrent and ergodic. Furthermore, its unique invariant and
reversible probability measure is given by

�(dx) = 22/3√π
�(1/3)�(1/6)

ex

(
ex (ex − 1)

)2/3 .

An application of the ergodic theorem implies that n−1 log ξ (n) = n−1(X0 + X1 + · · · +
Xn−1) converges almost surely and in L

1 towards4

∫

R+

�(dx)x = π√
3
,

which is the constant appearing in the statement of the Proposition 8.

4 Here and later, unexplained integrations have been realized using Mathematica©.
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We now set up large deviations estimates. Recall that a set C ⊂ R+ is small [36, p
102] if there exists a probability measure ν and ε > 0 such that for some k ≥ 1 the
k-steps transition kernel satisfies

pk(x, A) ≥ εν(A), ∀x ∈ C, ∀A Borel.

The chain is uniformly ergodic (see [36, Theorem 16.0.2]) if the full space is small.
Unfortunately for us, it is easy to see that p(x, dy) is concentrated around 0 when x
is close to 0. Hence the chain is not uniformly ergodic and some care is needed. It is
however easy to see from the exact form of the transition kernels that any set [b,∞)with
b > 0 is a small set. We now establish that the chain (Xi ) is V -geometrically ergodic
(see [36, Theorem 16.0.1]) with the function

V : x ∈ R+ �→ (x ∨ x−1/4) ∈ R+.

This will allow us to apply the powerful machinery developed in [36, Chapter 16]. For
this, we compute the variation of V after applying a one step transition of the chain:

pV (x) :=
∫

p(x, dy)V (y) =
√

3

2π

(
ex − 1

ex

)1/3 ∫ ∞

0

dy (y ∨ y−1/4)

(ey − 1)1/31− e−x−y
.

It is easy to see that pV (x) ≤ K for some constant K > 0 uniformly in x ≥ 1. On the
other hand, when x → 0 we have

pV (x) ∼
√

3

2π
x1/3

∫ ∞

0

dy y−1/4

y1/3(x + y)
= x−1/4 ·

√
3

2π

∫ ∞

0

dz

z7/12(1 + z)

where we have performed the change of variable y = xz. The right-hand side can be

computed exactly and is equal to V (x) ·
√

6
1+
√

3
for x < 1. Since

√
6

1+
√

3
< 1 we deduce that

the condition (V 4) of [36, p 376] is indeed satisfied and thus the chain is V -geometrically
ergodic.

We first establish upper large deviations for the partial sums of the Xi . Fix η > 0 and
find a ≥ 0 such that

∫ ∞

a

dy y

(1− e−y)(ey − 1)1/3
≤ η

10
. (32)

We have

P

(
n−1

n−1∑

i=0

Xi − π√
3
> η

)
≤ P

(
n−1

n−1∑

i=0

Xi 1Xi≥a > η/2

)

+ P

(
n−1

n−1∑

i=0

Xi 1Xi<a − π√
3
> η/2

)
. (33)

Note that F : x �→ x1x<a is a bounded function, so we can apply the results of [27]
and get that limLD

n→∞
(∑n

i=0 F(Xi ), n
) = Eπ [F(X)]. In particular since Eπ [F(X)] ≤

Eπ [X ] = π/
√

3 we deduce that for some c1, c2 > 0 we have

P

(
n−1

n−1∑

i=0

Xi 1Xi<a > η/2 +
π√

3

)
≤ c1e−c2n .
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To control the other term of the right-hand side of (33), we remark that the probability
transitions of the chain (X) are bounded from above by

p(x, dy) ≤ dy

(1− e−y)(ey − 1)1/3
.

And so

P

(
n−1

n−1∑

i=0

Xi 1Xi≥a > η/2

)
≤ P

(
n−1

n−1∑

i=0

Zi > η/2

)
,

where (Zi ) are i.i.d. random variables of law given by

1y>a
dy

(1− e−y)(ey − 1)1/3
+

(
1−

∫ ∞

a

dx

(1− e−x )(ex − 1)1/3

)
δ0.

Since Zi has mean less than η/10 by (32) and has exponential moments, large deviations
estimates (26) show that the last term is bounded by c1e−c2n for some c1, c2 > 0. This
completes the upper large deviations for the partial sums of the chain X , the lower large
deviations are similar and left to the reader. ��

As a corollary of the last proposition, we study the number of alternative minimal
records of two independent stable processes (S+, S−) between the times when S+ is
between two fixed values. More precisely, for any x > 0 set ϑx = inf{t ≥ 0 : S+

t ≤ −x}
and for 0 < x < y put

ComStable(x, y) = inf
{

k ∈ {1, 3, 5, . . .} : ξ (k)(ϑx ) ≥ ϑy

}
.

Remark that by scale invariance of the stable processes we have ComStable(x, y) =
ComStable(1, y/x) in distribution.

Corollary 11. We have limLD
x→∞ (ComStable(1, x), log x) = 3

√
3

2π
.

Proof. By monotonicity of t �→ ξ (k)(t) and of k �→ ξ (k)(t), note that if [b log x] is odd
and if we have simultaneously ϑx ≤ xa , ϑ1 ≥ x−ε and ξ ([b log x])(x−ε) ≥ xa then we
have ComStable(1, x) ≤ [b log x]. Taking π√

3
b > (a + ε) > a > 3/2 and using the

last proposition together with (27) we get that for large x so that [b log x] is odd

P(ComStable(1, x) > [b log x])
≤ P(ξ ([b log x])(x−ε) ≤ xa) + P(ϑx ≥ xa) + P(ϑ1 ≤ x−ε)
= P

(
xε · ξ ([b log x])(x−ε) ≤ xa+ε

)
+ P(S+

xa ≥ −x) + P(S+
x−ε ≤ −1)

=
scaling

P

(
log ξ ([b log x])

log x
≤ (a + ε)

)
+ P(S+

1 ≥ −x1−2a/3) + P(S+
1 ≤ −x2ε/3)

≤
Prop.8

and (27)

c1e−c2 log x

for some c1, c2 > 0 (depending on a, b and ε). This thus holds for any b > 3
√

3
2π . The

other inequality is similar. This proves the corollary. ��
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4.3. An SLE6 calculation: estimates for θ(n). In order to lighten notation, in this section
we put θ(n) := θ(n)(1).

Proposition 12. We have limLD
n→∞

(
log θ(n), n

)
= 4π√

3
.

Proof. Recall the notation of Sect. 3.3. We start by a few classical facts on the SLE
processes, see e.g. [28, Section 8.3] for details. The image of the boundary of the hull
H\Ht inside H is sent by the uniformization mapping gt to a segment [Lt , Rt ] and
gt (γt ), denoted by Ut , lies inside [Lt , Rt ]. In particular, the times when γ touches R+
correspond to the times when Ut = Rt and similarly for the left part. That is θ(0) = 1
and θ(i+1) = inf{t ≥ θ(i) : Ut = Rt } for i even and θ(i+1) = inf{t ≥ θ(i) : Ut = Lt }
for i odd. We now derive the equations driving these processes, we refer to [28, Section
8.3] for more details. The Loewner equation (14) tells us that

dUt =
√

6d Bt ,

where B is a standard Brownian motion. Also an easy calculation using (14) shows that
as long as Ut �= Rt and Ut �= Lt we have

d Lt = 2dt

Lt −Ut
, and d Rt = 2dt

Rt −Ut
. (34)

However, since the parameter of the SLE is κ = 6, we will have infinitely many times
at which Lt = Ut or Rt = Ut and the meaning of the last display is not clear anymore.
One way to cope with this to first define simultaneously the processes Gt = (Ut − Lt )

2

and Dt = (Rt −Ut )
2 as the solutions of

dGt = 2
√

Gt dUt + 10 dt and d Dt = −2
√

Dt dUt + 10 dt,

starting from 0 (with the same Brownian motion). Consequently, both Gt and Dt are
distributed as 1/6 times a squared Bessel process of dimension 5/3 and are defined
for all t ≥ 0, see [40, Chap. XI]. From the triplet (Gt ,Ut , Dt ) we can then construct
(Lt ,Ut , Rt ) = (Ut −√Gt ,Ut ,

√
Dt −Ut ) for all times t ≥ 0, see [28, Chapter 8.3]. If

we put

Xt = Ut − Lt

Rt − Lt

and �t = Rt − Lt applying Ito’s formula we get

d Xt = dUt

�t
+

2dt

�2
t

( 1

Xt
− 1

1− Xt

)
,

which can be defined for all t ≥ 0 using the above device. Performing the following
time-change

r(t) =
∫ t

1

ds

�2
s
, Zr(t) = Xt

we obtain that Z satisfies
⎧
⎨

⎩

Z0 = X1

d Zt = dUt + 2dt
( 1

Zt
− 1

1− Zt

)
.
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After these transformations the alternative hitting times of 1 and 0 by the process Z are
given by r(θ(i)) for i ≥ 1. We now have two tasks. Firstly, understand the number of
commutings between 0 and 1 for the process Z as time goes to infinity, and secondly
understand the asymptotics of the time change r(t) in order to translate these results
back to the θ(i).

Commutings of Z . The process Z is strong Markov and symmetric with respect to
1/2. By looking at the SDE governing Z we see that it evolves like a Bessel of dimension
5/3 around 0 and symmetrically around 1. In particular, starting from 0 the process Z
will eventually hit 1 in finite time a.s. and vice versa. For x ∈ [0, 1], under Ex the
process Z starts from x . We let t0 and t1 be the hitting times of 0 and 1 respectively by
the process Z . We now state a technical lemma:

Lemma 13. For some λ > 0 we have

E0

[
exp

(
λ

∫ t1

0

du

Zu(1− Zu)

)]
<∞.

In particular E0[exp(λt1)] <∞. Furthermore we have

E0[t1] = E1[t0] = π

7
√

3
.

Proof of Lemma 13. By symmetry in space and time of the process Z , to prove the first
assertion of the lemma, it is sufficient to prove that for some λ > 0 we have

E1/2

[
exp

(
λ

∫ t0∧t1

0

du

Zu(1− Zu)

)]
<∞. (35)

For this we introduce the scale function φ of the process Z which is defined for x ∈ [0, 1]
by

φ(x) =
∫ x

0

du
(
u(1− u)

)2/3 .

In particular we have � := φ(1) = �(1/6)�(1/3)
22/3√π and φ satisfies 2φ′(x)( 1

x − 1
1−x ) +

3φ′′(x) = 0. Applying Ito’s formula, it comes as no surprise that Yt = φ(Zt∧t0∧t1) is a
local martingale under E1/2. Since the later is bounded it is even a true martingale. By
the Dubins–Schwarz theorem, Y is a time change of a Brownian motion. Specifically,
we can write Yt = β<Y>t where β is a standard Brownian motion started from �/2.
Stochastic calculus shows that d<Y>u= 6(φ′ ◦ φ−1)2(β<Y>u )du, consequently after
the change of variable v =<Y>u we have

∫ t0∧t1

0

du

Zu(1− Zu)
=

∫ t0∧t1

0

du

φ−1(β<Y>u )(1− φ−1(β<Y>u )

=
∫ τ0∧τ�

0

dv

6(φ′ ◦ φ−1)2 · φ−1(1− φ−1)(βv)

=
∫ τ0∧τ�

0
dv ψ ◦ φ−1(βv)
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where ψ : x �→ 6(x(1 − x))1/3 and β is a Brownian motion started from �/2 and
stopped at τ0 ∧ τ�, the first hitting time of 0 or of � by β. Since the function ψ is
bounded by 6 over [0, 1] we deduce that

∫ t0∧t1

0

du

Zu(1− Zu)
≤ 6 · τ0 ∧ τ�.

It is classical that τ0 ∧ τ� has some exponential moment and so (35) follows.
We easily deduce from the first point that under E0 the variable t1 possesses some

exponential moments and is in particular integrable. To compute its expectation consider
now the function f : [0, 1] → R which is C2 over [0, 1), with f (0) = 0, f ′(0) = 0 and
which satisfies the differential equation

2 f ′(x)
( 1

x
− 1

1− x

)
+ 3 f ′′(x) = 1.

Such a function exists and an can be expressed using hypergeometric functions.5 This
function is positive, continuous over [0, 1] and f (1)− f (0) = π

7
√

3
. Another application

of Ito’s formula shows that

( f (Zt )− t)t<t1

is a local martingale. Since f is bounded it is even a true martingale. Applying the
optional sampling theorem we deduce that E0[ f (Zt∧t1)] = E0[t1 ∧ t] for every t ≥ 0.
Letting t →∞ we get by the dominated and monotone convergences theorems that

E0[t1] = f (1)− f (0) = π

7
√

3
.

��
Let us now come back to the proof of Proposition 12. By applying the strong Markov

property at the successive and alternate hitting times of 1 and 0 by the process Z , we
deduce that the nth interlaced hitting time r(θ(n)) of {0, 1} by the process Z is given
by r(θ(1)) + t(2) + · · · + t(n) where t(i) are i.i.d. copies of t1 under E0. We deduce from
Lemma 13 and (26) that

limLD
n→∞

(
r(θ(n)), n

)
= π

7
√

3
. (36)

Asymptotics of the time- change. We now prove that

limLD
t→∞ (r(t), log t) = 1

28
, (37)

which will together with the last display imply the proposition. Indeed, by monotonicity
of t �→ r(t) and k �→ θ(k), if for some number c ≥ 0 we have both r(θ(n)) ≥ c and

5 A computation with Mathematica gives f (x) = 1/14(−x + x2 + xHypergeometricPFQ[{1, 1, 4/3},
{5/3, 2}, x]).
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r(t) ≤ c then θ(n) ≥ t . Choosing π

7
√

3
> a and b > 1

28 and setting c = b log t = an we
have

P
(
θ(n) < t

)
= P

(
log θ(n)

n
<

a

b

)
≤ P

(
r(θ(n)) ≤ an

)
+ P (r(t) ≥ b log t)

≤
(36) and (37)

c1 exp(−c2n),

for some constants c1, c2 > 0. Since a/b can be made arbitrarily close to 4π/
√

3 this
proves one side of the proposition, the other inequality is similar.

From the SDE satisfied by �s we get that

d�s = 2ds

�s Xs(1− Xs)

d(log�s) = ds

�2
s

2

Xs(1− Xs)
.

Integrating over [1, t] and performing the change of variable u = r(t)with du = dt/�2
t

we get

log(�t )− log(�1) =
∫ r(t)

0

2du

Zu(1− Zu)
. (38)

Recall that �t = Rt − Lt is the sum of two (depend) multiples of Bessel processes of
dimension 5/3. The scaling property of these then imply that�t = √t�1 in distribution
and easy estimates actually show that

limLD
t→∞ (log�t , log t) = 1

2
. (39)

On the other hand, recall that the invariant measure of a diffusion d Zt = −∇ψ(t)dt +√
2β−1d Bt is proportional to ρ(dx) ∝ exp(−βψ(x))dx . In the case of Z , the invariant

probability measure is thus

ρ(dx) = �(10/3)

�(5/3)2
(
x(1− x)

)2/3
.

In particular an application of the ergodic theorem shows that

lim
t→∞ t−1

∫ t

0

du

Zu(1− Zu)
=

∫ 1

0

ρ(dx)

x(1− x)
= 7,

almost surely and in L1. We can strengthen the last display. Indeed, by decomposing the
process Z into independent excursions between 0 and 1, and using Lemma 13 and (26)
one deduces that large deviations hold for the last display, that is

limLD
t→∞

(∫ t

0

du

Zu(1− Zu)
, t

)
= 7.

It is now easy to combine the last display with (39) and (38) to complete the proof of
(37). ��
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As a corollary of the last proposition, we study the number of alternative bouncings
on R+ and R− that the curve γ is doing between two fixed points. Recall the notation
introduced before (28). For any x > 0, set κx = inf{t ≥ 0 : γ +

t
≥ x} and for 0 < x < y

put

ComSLE(x, y) = inf
{

k ∈ {1, 3, 5, . . .} : θ(k)(κx ) ≥ κy

}
.

Remark that by scale invariance of the stable processes we have ComSLE(x, y) =
ComSLE(1, y/x) in distribution.

Corollary 14. We have limLD
x→∞ (ComSLE(1, x), log x) =

√
3

2π
.

Proof. The proof is similar to that of Corollary 11 and follows from the last proposition
together with the square-root scaling property of the SLE6 process. Let us repeat the
argument. By monotonicity of t �→ θ(k)(t) and of k �→ θ(k)(t), note that if [b log x] is
odd and if we have simultaneously κx ≤ xa , κ1 ≥ x−ε and θ([b log x])(x−ε) ≥ xa then
we have ComSLE(1, x) ≤ [b log x]. Taking 4π√

3
b > (a + ε) > a > 2 and using the last

proposition together with (28) we get that for large x so that [b log x] is odd

P(ComSLE(1, x) > [b log x])
≤ P(θ([b log x])(x−ε) ≤ xa) + P(κx ≥ xa) + P(κ1 ≤ x−ε)
= P

(
xε · θ([b log x])(x−ε) ≤ xa+ε

)
+ P(γ +

xa ≤ x) + P(γ +
x−ε ≥ 1)

=
scaling

P

(
log θ([b log x])

log x
≤ (a + ε)

)
+ P(γ +

1
≤ x1−a/2) + P(γ +

1
≥ xε/2)

≤
Prop.12
and (28)

c1e−c2 log x

for some c1, c2 > 0 (depending on a, b, ε). This thus holds for any b >
√

3
2π . The other

inequality is similar. ��
Remark 5. These commuting estimates for the SLE6 are closely related to the work of
Hongler and Smirnov [22]. Indeed, these authors computed the limit of the expected
number of clusters for critical site percolation on the triangular lattice in a rectangle of
fixed aspect ratio as the mesh goes to 0. In terms of SLE6 (the limit of the percolation
interface), this boils down to computing the expectation of the number of commutings
the latter is doing between the top and bottom boundaries of the rectangle or equivalently
(by conformal invariance) the expected number of times an SLE6 bounces off R+ and
R− in a semi-ring region, see Fig. 18.

5. Conformal Measure on the Boundary

With all the ingredients that we have gathered we can now proceed to the proof of
Theorem* 1. Consider the uniformization of a UIHPT onto H such that the origin and
target of the root edge are sent to− 1

2 and 1
2 and∞ to∞. Recall also that the kth vertex

on the right of the origin of T∞,∞ has image Xk ∈ R+. The sketch of the proof of
Theorem* 1 (i i i) can be found in the introduction, however the following lines are a bit
more technical since we will need precise estimates to rigorously derive the Hausdorff
dimension of μ.
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0

i

R

i + R

1 eR−1−eR

log

Fig. 18. Connecting Proposition 12 with the work [22]

5.1. Discrete estimates.

Proposition* 4. Let η, ε ∈ (0, 1). Then there exist c1, c2 > 0 such that

lim sup
n→∞

P

(∣∣∣∣log
X[εn]
Xn

− 3log ε

∣∣∣∣ > η| log ε|
)
≤ c1 exp(−c2| log ε|).

Proof. Fix ε ∈ (0, 1). Denote by tε,n the first time the exploration process triggers a
peeling step that “swallows” or touches the [εn]th vertex on the right of the root edge,
recalling (9) we thus have

tε,n = inf
{
k ≥ 0 : H+(k) ≤ −[εn]}.

(Note that this time is almost surely finite by Theorem* 2.) Introduce then the number of
discrete remaining commutings necessary to discover the nth point on the right boundary,
that is

Cdis(ε, n) = inf
{

k ∈ {1, 3, 5, . . .} : H+
(
τ (k)(tε,n)

)
≤ −n

}
.

By Theorem* 2 and using standard arguments as those developed in Sect. 4.1, the random
variable Cdis(ε, n) converges in distribution as n → ∞ towards the random variable
ComStable(ε, 1) defined just before Corollary 11. The same Corollary 11 thus entails
that for every η > 0 there exist c1, c2 > 0 such that

lim sup
n→∞

P

(∣∣∣∣∣
log Cdis(ε, n)

| log ε| − 3
√

3

2π

∣∣∣∣∣ > η

)
≤ c1 exp(−c2| log ε|). (40)

Let us now focus on the SLE exploration. An easy adaptation of Proposition* 3 implies
that the number Cdis(ε, n) is asymptotically equal as n → ∞ to the number of com-
mutings the SLE6 is doing after having swallowed the point X[εn] until it swallows Xn ,
i.e.

∣∣Cdis(ε, n)− ComSLE(X[εn],Xn)
∣∣ (P)−−−→

n→∞ 0.

Consequently, by the last display and (40) we have

lim sup
n→∞

P

(∣∣∣∣∣
log ComSLE(X[εn],Xn)

| log ε| − 3
√

3

2π

∣∣∣∣∣ > η

)
≤ c1 exp(−c2| log ε|). (41)
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Since the SLE6 is independent of the map, if we condition on T∞,∞, using Corollary 14

we get that for small enough ε > 0 we have (note that 4 ·
√

3
2π > 1)

P

(∣∣∣∣∣
log ComSLE(X[εn],Xn)

| log ε| − 3
√

3

2π

∣∣∣∣∣>η
∣∣∣∣∣

{∣∣∣∣log
X[εn]
Xn

−3log ε

∣∣∣∣>4η| log ε|
})

≥ 1

2
.

(42)

So that for small enough ε > 0:

lim sup
n→∞

P

(∣∣∣∣log
X[εn]
Xn

− 3log ε

∣∣∣∣ > 4η| log ε|
)
· 1

2

≤
(42)

lim sup
n→∞

P

(∣∣∣∣∣
log ComSLE(X[εn],Xn)

| log ε| − 3
√

3

2π

∣∣∣∣∣ > η

)

≤
(41)

c1 exp(−c2| log ε|).

This completes the proof of the proposition*. ��
We will also rely on an adaptation of the last proposition* in order to compare the

relative positions of Xk and Xk′ when k and k′ are of the same order.

Proposition* 5. For every u > 0 and for every η > 0, there exist c1, c2 > 0 such that
we have

lim sup
n→∞

P

(∣∣∣∣log
X[un]
Xn

∣∣∣∣ ≥ η| log ε|
)
≤ c1e−c2| log ε|.

Sketch of the proof. The proof uses the same arguments as in Proposition* 4 so we
only sketch it. Fix u < 1 for definiteness and consider Cdis(u, n) to be the number of
commutings realized by the horodistance process between the discovery of the [un]th
vertex on the right of �e and the nth one. On the one hand, as in Proposition* 4, Cdis(u, n)
converges as n →∞ towards ComStable(u, 1) which is of order 1. On the other hand,
using the SLE6 interpretation of the exploration (and Proposition* 3) we also get that
Cdis(u, n)−ComSLE(X[un],Xn) converges towards 0 in probability as n →∞. Using
Corollaries 11 and 14 we thus get that

1 ≈ ComStable(u, 1) ≈ ComSLE(X[un],Xn) ≈
√

3

2π
log

Xn

X[un]
,

so that X[un] and Xn are of the same order of magnitude. Details are left to the reader. ��
We extend the definition of Xk to every integer k ∈ Z in a straightforward manner.

Proposition 15 (Re-rooting and symmetry). For every n ≥ 0 and every integer un we
have the following identity in distribution

(Xk+un − Xun

Xn+un − Xun

)

k∈Z

(d)=
(Xk

Xn

)

k∈Z

(d)=
(X−k

X−n

)

k∈Z

.
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Proof. For n ≥ 0, the lattice T̃∞,∞ obtained from T∞,∞ after re-rooting at the un th edge
on the right of �e is still distributed as the UIHPT. The uniformization T̃∞,∞ of T̃∞,∞
(with the root edge sent to [−1/2, 1/2] and infinity to infinity) is obtained from T∞,∞
by translation and dilation. Thus if (X̃k) denotes the positions of the vertices on the right
of the root edge of the uniformization of T̃∞,∞ we get that

(Xk+un − Xun

Xn+un − Xun

)

k≥0
=

(
X̃k

X̃n

)

k≥0

.

Since (X̃k)k≥0 has the same law as (Xk)k≥0 the first identity in distribution follows.
The second one is obtained by flipping T∞,∞ horizontally, operation which leaves its
distribution unchanged. ��

Combining Proposition* 5 with Proposition 15 we deduce that

lim sup
n→∞

P
(
� ≥ η| log ε|

)
≤ c1e−c2| log ε|

where � can be replaced by

� = X[n/2]
Xn

or
Xn − X[n/2]

Xn
or

X[3n/2]
Xn

or
X[3n/2] − Xn

X[3n/2] − X[n/2]
.

After some manipulations this eventually implies

lim sup
n→∞

P

(∣∣∣∣log
(X[3/2n] − Xn) ∧ (Xn − X[n/2])

Xn

∣∣∣∣ ≥ η| log ε|
)
≤ c1e−c2| log ε|.

(43)

5.2. Dimension of the random measure. Recall that we consider the random measure
μn defined by

μn = 1

n

n∑

k=1

δXk/Xn .

Hence μn is a random probability measure on [0, 1]. We briefly remind the reader about
the basics of convergence in distribution for random measures on R (the interested should
consult the authoritative reference [25] for proofs and more general statements and [21]
for a smooth introduction). We endow the set M of all positive Radon measures on R

with the topology T of vague convergence, that is, the weakest topology which makes
the mappings

μ ∈ M �→ μ f :=
∫

R

dμ f, f ∈ CK ,

continuous. (Here, CK is the set of continuous functions f : R → R with compact sup-
port.) A random measure is a random element of the space (M, T ), viewed as a measur-
able space with σ -algebra generated by the sets in T . A sequence λ1, λ2, . . . of random
measures converges in distribution towards a random measure λ if for any bounded
continuous mapping F : (M, T )→ R we have E[F(λi )] → E[F(λ)] as i →∞.
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Actually, convergence of λn to λ in distribution is equivalent to: λn f −→ λ f , for any
continuous f ∈ CK (see Theorem 4.2 in [25]). The latter convergence is convergence in
distribution of real-valued random variables. The set of all random probability measures
on [0, 1] is tight for this convergence in distribution. Hence, from any sequence of
integers going to ∞ we can extract a subsequence nk → ∞ such that there exists a
random probability measure μ satisfying

μnk

(d)−−−→
k→∞ μ.

To lighten notation, we suppose in the rest of this section that above extraction has
been realized and that all the statements n →∞ have to be interpreted along this

subsequence.

To get the third part of Theorem* 1 we will prove that balls of radius r around typical
points of μ roughly have volume r1/3 when r → 0. Indeed, Theorem* 1 (i i i) is a
standard consequence of the following result* (see for example [34, Lemma 4.1]):

Corollary* 6 (Hölder exponent). Almost surely, for μ-almost all x ∈ [0, 1] we have

lim
r↓0

logμ(Br (x))

log r
= 1

3
,

where Br (x) = [x − r, x + r ] is the ball of radius r around x.

Proof. Conditionally onμn , let Xn be a random point sampled accord toμn and similarly
conditionally on μ, let X be sampled according to μ. By definition of μn notice that we
can write Xn = X#Un$/Xn where U ∈ (0, 1) is a uniform random variable independent
of T∞,∞ and #a$ is the lowest integer larger than a. Now fix a < 1/3 and write x = ra .
Since μ is the (subsequential limit) of the μn’s we have

P
(
μBr/2(X)≥8x

) ≤ lim sup
n→∞

P (μn Br (Xn)≥4x)

≤ lim sup
n→∞

P (μn[Xn, Xn + r ] ≥ 2x)

+ lim sup
n→∞

P (μn[Xn − r, Xn] ≥ 2x) . (44)

By definition of μn , note that the event {μn[Xn, Xn + r ] ≥ 2x} can be written as

{μn[Xn, Xn + r ] ≥ 2x}
=

{X#Un$+#2xn$−1 − X#Un$
Xn

≤ r

}
⊂

large n′s

{X[xn]+#Un$ − X#Un$
Xn

≤ r

}
.

We now write

P

(X[xn]+#Un$ −X#Un$
Xn

≤ r

)

= P

(X[xn]+#Un$ − X#Un$
Xn+#Un$ − X#Un$

· Xn+#Un$ − X#Un$
Xn

≤ r

)
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≤ P

(
log

X[xn]+#Un$ − X#Un$
Xn+#Un$ − X#Un$

≤ (1− ε) log r

)
+ P

(
log

Xn+#Un$ − X#Un$
Xn

≤ ε log r

)

≤ P

(
log

X[xn]+un −Xun

Xn+un −Xun

≤ (1− ε) log r

)
+ P

(
log

(X[3n/2] − Xn)∧(Xn−X[n/2])
Xn

≤ε log r

)
,

where we have chosen ε > 0 so that (1− ε)/a > 3 and put un = #Un$. Indeed notice
that when U ∈ (0, 1) then [#Un$, n + #Un$] contains either [[n/2], n] or [n, [3n/2]].
We can take lim sup and apply Proposition 15 together with Proposition* 4 to the first
member of the right-hand side and (43) to the second member of the right-hand side to
deduce that there exist constants c1, c2 > 0 so that

lim sup
n→∞

P (μn[Xn, Xn + r ] ≥ 2x) ≤ c1 exp(−c2| log r |).

A similar reasoning holds for lim supn→∞ P (μn[Xn − r, Xn] ≥ 2x). Gather-up the
pieces of (44) and establishing the corresponding lower bound (left to the reader) we
finally get that

limLD
r→0

(logμBr (X), log r) = 1

3
.

Taking r = 2−k , the Borel–Cantelli lemma shows that
logμB2−k (X)

log 2−k → 1
3 almost surely

as k →∞ which easily implies the statement of the corollary*. ��
Corollary* 7. The random probability measure μ is almost surely non-atomic.

Proof. This is a straightforward consequence of the last corollary*. Indeed, if μ had a
probability at least ε > 0 of having an atom of mass at least ε then X would be located
on a point of μ-mass ε with probability at least ε2 and Corollary* 6 would not hold. ��

5.3. Full support.

Proposition* 8. The random probability measure μ has topological support equal to
[0, 1] a.s.

Proof. Let us argue by contradiction and suppose that with positive probability μ has
not full support i.e. P(∃x ∈ [0, 1] and ε > 0 : μBε(x) = 0) > 0. By compactness, we
can thus suppose that for some some x ∈ [0, 1] and ε ∈ (0, 1) we have P(μB2ε(x) =
0) ≥ 2ε. We will further assume that x > 2ε and

P(μB2ε(x) = 0 and μBε/2(0) ≥ 2ε) ≥ 2ε.

(The boundary case x = 0 is similar and left to the reader). Going back to a discrete
level we deduce that we have a sequence of integers nk such that for every δ > 0 the
event

Enk =
{
μnk Bε(x) ≤ δ and μnk Bε(0) ≥ ε

}

is asymptotically of probability larger than or equal to ε. As before, we will lighten
notation and assume that all the statements involving n in the following lines have to
be restricted to this subsequence. Unsurprisingly, we consider the exploration of the
UIHPT by an SLE6. Since the SLE6 process is independent of the map (and thus of
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its uniformization) conditionally on T∞,∞ (and a fortiori on En) there is a positive
probability c > 0 (depending on x and ε, but not on δ) that the curve γ touches the
interval [x − ε, x + ε] then touches R− and finally touches the interval [x − ε, x + ε]
again, that is with our notation

P
(
ComSLE(x − ε, x + ε) ≥ 5

)
> c.

Recall now the notation tε,n and Cdis(ε, n) from the proof of Proposition* 4. In terms
of horodistance process, using (a variant of) Proposition* 3, with high probability these
visits in [x − ε, x + ε] by the SLE process can be associated with some peeling time
k such that H+(k) = H+(k + 1/2) where H+(k) ∈ (εn, n). That is with some time
τ (k)(tε,n) and τ (k+2)(tε,n) for k ≤ Cdis(ε, n). By definition of the event En , for large
n ≥ 0 we have

P
(
∃k ≤ Cdis(ε, n) :

∣∣∣H+(
τ (k)(tε,n)

)−H+(
τ (k+2)(tε,n)

)∣∣∣ ≤ δn
)
> c′,

for some positive constant c′ > 0 (depending on x and ε but not on δ). Taking the scaling
limit of the horodistance processes using Theorem* 2, a similar statement must hold for
the stable processes (S+, S−) more precisely: There exists some constant c′′ > 0 such
that for any δ > 0 we have

P
(
∃k ≤ ComStable(ε, 1) :

∣∣∣S+(
ξ (k)(ϑε)

)− S+(
ξ (k+2)(ϑε)

)∣∣∣ ≤ δ
)
> c′′.

Letting δ → 0 we reach a contradiction since k �→ S+(ξ (k)(ϑε)) is strictly decreasing
a.s. ��

6. Discussion and Comments

First of all, let us mention that although this paper was focused on the case of triangu-
lations, we do not perceive any major conceptual obstacle in deriving the same results
(provided that a variant of (∗) holds) for other classes of maps like quadrangulations
or general planar maps. Indeed, though the peeling transitions of Sect. 2.2 are more
complicated, they exhibit the same large-scale property and a variant of Proposition 2
should hold (see [5]).

A first natural question is to sharpen Proposition* 4 to get a (more) precise result on
the location Xn of the nth vertex on the right of the root in the uniformized UIHPT:

Question 2. Prove that
log Xn

log n
(P)−−−→

n→∞ 3. Do we actually have (n−3Xn)n≥0 tight?

6.1. Discussion on the (∗) property. We give here some elements supporting (∗).
• First of all, we have seen in Proposition 6 that the tail of η+

i is very light and that
η+

i ≤ log5+ε i eventually. We believe that the exponent 5 could be brought down to 1
with some work. Thus only a collective behavior of the η+

i could violate (∗)
• Although not independent, the η+

i decorrelate. Quantifying the speed of mixing is a
path towards a proof of (∗). In particular, it happens that during the exploration the
SLE6 creates a “bubble”: it explores for some time a new region connected to the
past by a single triangle. This should correspond on a continuous level to the pinch-
points of the SLE6. On an intuitive level, the η+

i in such a region can be thought of as
independent of the past.
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• Another heuristic for the decorrelation of the η+
i is the following. On a rough level,

one can imagine that η+
i is correlated with η+

j with i < j only if during the j th peeling
step the curve γ comes back close to its location at time i and touches a part of the
continuous hull which was close (say within horodistance 10) from the edge ai :

η+
i correlated with η+

j ⇐⇒
{

The edge ai is still on the boundary of K j
and H+( j) ≈ H+(i)

}
,

we call this event Corr(i, j). However, it is easy to see that conditionally on Corr(i, j)
and on the past before j , there is probability bounded away from 0 that the next peeling
step swallows ai . Hence, the number of j ≥ i such that Corr(i, j) holds has an
exponential tail. So if we believe in the last display we would have E[(∑i≤n η

+
i )

2] ≤
Cn for some C > 0 and by Markov inequality

∑
i≤n η

+
i could not be much larger

than
√

n (condition (∗) just needs o(n2/3)).

Percolation interface. Recall from Remark 3 that Theorem* 2 and Theorem 3 show
that the interfaces in critical site percolation on the UIHPT (see Theorem 3) converge,
in terms of horodistances, towards the SLE6 exploration. Obviously, one can wonder if
a geometric statement holds: Conditionally on T∞,∞ sample a critical site percolation
(with parameter 1/2) with boundary condition black-white as in Sect. 3.1. This naturally
defines a curve on the Riemann surface T∞,∞ (join with straight lines the middle of
the edges • − ◦ in each peeled triangle), see Fig. 10. Denoting by P the image of this
interface on the uniformization T∞,∞ one would like to show that λ · P converges as
λ→ 0 in distribution (for the Hausdorff distance on any compact sets of H) towards a
standard chordal SLE6.

6.2. Towards a characterization of μ. In this work we used Theorem* 2 on exploration
along an SLE6 in order to derive a few properties of the sequential limits of the μn’s
(Theorem* 1). Theorem* 2 is actually much stronger and it may be the case that it implies
alone the convergence of the μn’s towards the random measure μ̃ρ with ρ = √8/3 of
Question 1. Let us comment on this.

First, we can extend the definition ofμn to a infinite random measure on R: for n ≥ 1
in this section we let

µn = 1

n

∑

k∈Z

δXk/Xn ,

where Xk are the location of the vertices of the boundary of the UIHPT in the uni-
formization T∞,∞. Clearly, µn is an infinite measure and µn(· ∩ [0, 1]) = μn . Using
similar arguments as those developed in Sect. 5 one can show that (µn)n is tight and we
denote µ∞ one possible limiting random measure on R. Let us now present a corollary
of Theorem* 2 just in terms of µ∞:

If ν is a random measure on R, independently of it let (γt )t≥0 be a chordal SLE6 on
H starting from 0 and denote by �+

ν = {(t, ν[0, γt ]) : γt ∈ R+} and similarly for �−ν . On
the other hand, let S+ and S− be two independent stable processes and recall the notation
S+ and S− for their running infimum processes. We denote M+ = {(t,−S+

t ) : S+
t = S+

t }
and define M− similarly from S−.
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Then the analog of Theorem* 2 gives the following identity in distribution up to time
reparametrization of the first coordinate

(
�+

µ∞ , �
−
µ∞

) (d)= (
M+,M−)

. (45)

Question 3 (Characterization). Does the last display characterize the law of µ∞?

A positive answer to the last question would imply a positive answer to Question 1.
Indeed, in the recent work [17] the authors show (among other things) that we have the
identity in distribution up to time reparametrization of the first coordinate

(
�+
μ�
, �−μ�

) (d)= (
M+,M−)

, (46)

where μ� is the random measure defined in Question 1 (see Sect. 1).

6.3. Full-plane. To conclude, we would like to mention that our tools might be extended
to investigate the conformal structure of random maps “in the bulk”. Similarly as in this
work, the limiting random measures in the plane induced by the conformal uniformiza-
tion of random planar maps is conjectured to be described by the exponential of the GFF
with the same parameter � = √8/3 and should be of fractal dimension 2/3.

This time one should use a full-plane version of the SLE6 instead of the chordal
version. Again, the locality property of the SLE6 will imply that the exploration is
Markovian (see [4,10] for Markovian exploration of the UIPT/UIPQ) and thus under a
similar (∗) condition one would be able to understand the change in the boundary length
on the left and right of the peeling point. Two difficulties will then arise: first the scaling
limit of the variations of the boundary length in a full-plane exploration (of the UIPT
say) now involves 3/2-stable processes conditioned to survive, second the geometric
property (bouncing on the real line) used in this work has to be replaced by another
geometric property computable in terms of the “horodistances”: the winding number.
We cherish the hope of pursuing these ideas in future works.
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