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Abstract: On any simply connected Sasaki–Einstein five dimensional manifold one
can construct a super Yang–Mills theory which preserves at least two supersymmetries.
We study the special case of toric Sasaki–Einstein manifolds known as Y p,q manifolds.
We use the localisation technique to compute the full perturbative part of the partition
function. The full equivariant result is expressed in terms of a certain special function
which appears to be a curious generalisation of the triple sine function. As an application
of our general result we study the large N behaviour for the case of single hypermultiplet
in adjoint representation and we derive the N 3-behaviour in this case.
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1. Introduction

Recently the five dimensionalYang–Mills theory has attracted renewed attention and
interesting results were derived. These theories are interesting mainly due to their rela-
tions to, first of all, the magical (2, 0) 6D theory and secondly, the 5D N = 1 SCFTs.
Inspired by Pestun’s work [1] on localisation on S4, many exact results have now been
derived in diverse dimensions. For the case of 5D Yang–Mills theory on S5, the partition
function was derived and studied in a number of papers [2,3]; further extension to the
squashed sphere was done in [4–7]; and last but not least the case of S1× S4 was studied
in [8,9], and other related background, see for example [10]. These results were used in
providing checks on the dualities AdS6/CFT5 [11,12], AdS7/CFT6 [3,7,13] and as well
as the AGT-inspired ideas [14].

In this work we go beyond the standard case of spheres and study the 5D susy
gauge theory on a specific family of toric Sasaki–Einstein (SE) manifolds, the so called
Y p,q manifolds [here (p, q) are two coprime integers]. One major motivation is the
intriguing results of Lockhart and Vafa [5], which indicate how one may obtain the
non-perturbative partition function from the purely perturvative part, as was inspired
by the topological string consideration; thus we see it fit to extend our earlier com-
putation on S5 to a more intricate toric Sasaki–Einstein manifold, hoping that the
non-trivial homology of Y p,q may provide more insight on the interpretation of the
results.

Let us summarise briefly the results of the present paper. The six dimensional cone
over Y p,q can be obtained by the standard Kähler reduction of C

4 under a U (1) with
charge [p + q, p−q,−p,−p], where we use the standard notation for U (1)-actions on
C

4. Although only U (1)3 acts on Y p,q , it is convenient to discuss U (1)4-actions on C
4.

The full equivariant perturbative partition function for the 5D vector multiplet coupled
to a hypermultiplet with mass M in representation R has the following form

Zpert =
∫
t
dx exp(−8π3r�

g2
Y M

Tr[x2])

× det′adjS
�(i x |ω1, ω2, ω3, ω4)

detR S�(i x + i M + 1
2 (ω1 + ω2 + ω3 + ω4)|ω1, ω2, ω3, ω4)

, (1)
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where � = VolY p,q /VolS5 [with VolY p,q being the equivariant volume, see (41) for
details] and the function S� is defined as the zeta regularised infinite products

S�(x |ω1, ω2, ω3, ω4) =
∏

(i, j,k,l)∈�+

(
iω1 + jω2 + kω3 + lω4 + x

)

×
∏

(i, j,k,l)∈�+
0

(
iω1 + jω2 + kω3 + lω4 − x

)
, (2)

where the lattices are defined as follows

�+ = {
i, j, k, l ∈ Z≥0 | i(p + q) + j (p − q)− kp − lp = 0

}
, (3)

�+
0 =

{
i, j, k, l ∈ Z>0 | i(p + q) + j (p − q)− kp − lp = 0

}
, (4)

and ω1, ω2, ω3, ω4 are equivariant parameters corresponding to U (1)4-action on C
4.

The lattice conditions (3) and (4) reduce the product to a three-dimensional lattice and
S� depends effectively only on three parameters, i.e.,

(
(p + q)∂ω1 + (p − q)∂ω2 − p∂ω3 − p∂ω4

)
S�(x |ω1, ω2, ω3, ω4) = 0, (5)

reflecting the effective U (1)3 action on Y p,q -space. The function S�(x |ω1, ω2, ω3, ω4)

resembles in many ways the triple sine functions and indicates how one may generalise
the latter. The case of Sasaki–Einstein metric (or equivalently, the existence of two
Killing spinors) on Y p,q space corresponds to the following specific choice of equivariant
parameters

ω1 = 0, ω2 = 1

(p + q)�
, ω3 = ω4 = 3

2
− 1

2(p + q)�
.

Following the analogy with S5 we refer to this as unsquashed Y p,q space, whereas
the case of arbitrary equivariant parameters will be called the squashed Y p,q space. In
this paper we study the asymptotics of S� for a general set of equivariant parameters
[with some minor restrictions (42) related to the moment cone and convergence]. As
a concrete application of our result we study the case of SU (N ) gauge theory with a
single hypermultiplet in the adjoint representation. For the large N -limit, in the case of
large ’t Hooft coupling the free energy behaves as follows

F = −g2
Y M N 3

96πr
�

(
9

4
+ M2

)2

, (6)

where � = VolY p,q /VolS5 and this for the case of unsquashed Y p,q space admitting
Sasaki–Einstein metric. Thus we find the result which is identical to the calculation on
S5 up to the volume factor �.

The paper is organised as follows: in Sect. 2 we review the construction of supersym-
metric 5D Yang–Mills theory with matter on general Sasaki–Einstein manifolds. We also
review some basic properties of the Saski-Einstein geometry. Section 3 is a review of the
definitions of Y p,q , with some discussions on certain properties of Y p,q relevant for the
subsequent index calculation. Section 4 contains the localisation argument and discusses
the relation between supersymmetry and cohomological complexes. Section 5 contains
the technical calculation of one-loop determinants and the final result is given in terms of
infinite products. In Sect. 6 we study the asymptotic behaviour of these infinite products.
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Using this asymptotic behaviour in Sect. 7 we provide the application of our results for
the case of single hypermultiplet in adjoint representation and we derive N 3-behaviour.
Section 8 summarises the results of the paper and indicates the possible generalisation
for other toric Sasaki–Einstein manifolds. Many technical details and calculations are
collected in the appendices.

2. Super Yang–Mills Theory on Sasaki–Einstein 5-Folds

We start from the N = 1 supersymmetric gauge theory on S5 constructed in [15],
which has eight super-charges, and place the theory on some other Sasaki–Einstein (SE)
manifolds. Assuming that the SE manifold is simply connected, then one is guaranteed
a pair of Killing spinors of type (1, 1), and consequently a quarter supersymmetry (2
supercharges). It turns out that without turning on more background fields from the
supergravity multiplet, only S5 can have more super-charges, but on the other hand a
quarter of the supersymmetry is sufficient for the purpose of localisation and we will
not spend much effort in enlarging the supersymmetry, except some brief discussions in
Sect. 8.

2.1. 5D Yang–Mills theory with matter on S5. The field content of the susy YM theory
on S5 consists of a vector-multiplet and a hyper-multiplet. The vector-multiplet contains
the gauge field Am , a scalarσ , an SU (2)-triplet of scalars DI J and a symplectic Majarona
gaugino λI , with the following off-shell supersymmetry transformation [see (84) for our
notation of spinor bi-linears]

δAm = iξI�mλ
I ,

δσ = iξIλ
I ,

δλI = −1

2
(�mnξI )Fmn + (�mξI )Dmσ − ξ J DJ I +

2

r
t J
I ξJσ, (7)

δDI J = −iξI�
m DmλJ + [σ, ξIλJ ] +

i

r
t K
I ξKλJ + (I ↔ J ),

where ξI is a spinor, satisfying the Killing equation

DmξI = 1

r
t J
I �mξJ , t J

I =
i

2
(σ3)

J
I , (ξI ξJ ) = −1

2
εI J , (8)

where σ3 = diag[1,−1]. The quantity t J
I is the vev of an SU (2)R-triplet auxiliary

field in the Weyl multiplet. We remark that in checking the closure property of the susy
transformation, only the Killing spinor equation and the dimensionality of the space is
used.

The Lagrangian density for the vector multiplet on S5 is

Lvec = 1

g2
Y M

Tr
[1

2
Fmn Fmn − DmσDmσ − 1

2
DI J DI J +

2

r
σ t I J DI J − 10

r2 t I J tI Jσ
2

+iλI�
m Dmλ

I − λI [σ, λI ] − i

r
t I JλIλJ

]
, (9)

where Fmn is the field strength for Am . The vector indices are raised and lowered with the
metric, while the SU (2)R-indices are raised using ε I J (see Appendix A). The action is
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susy invariant, and also in checking this, only the Killing equation (8) is used. Therefore
we can take the supersymmetry transformations (7) and the action (9) from S5 and use
them on any simply connected SE manifold, but with of course only a fraction of the
supersymmetry retained due to a smaller number of Killing spinor solutions.

The hyper-multiplet on S5 consists of an SU (2)R-doublet of complex scalars q A
I , I =

1, 2 and an SU (2)R-singlet fermionψ A, with the reality conditions (A = 1, 2, . . . , 2N )

(q A
I )
∗ = �ABε

I J q B
J , (ψ A)∗ = �ABCψ B, (10)

where �AB is the invariant tensor of Sp(N )

� =
∣∣∣∣ 0 1N
−1N 0

∣∣∣∣ ,
and C is the charge conjugation matrix.

The gauge group will be a subgroup of Sp(N ), in particular we consider the hyper-
multiplet with the representation N ⊕ N̄ of SU (N ), which is embedded in Sp(N ) in the
standard manner

U →
∣∣∣∣U 0

0 U−T

∣∣∣∣ , U ∈ SU (N ).

One can rewrite the scalar field q into a more familiar form as

q1 = 1√
2

∣∣∣∣ φ+
φ−

∣∣∣∣ , q2 = 1√
2

∣∣∣∣−φ
∗−

φ∗+

∣∣∣∣ , (11)

where φ± transform in the N and N̄ of SU (N ) respectively. The fermion can be written
in a similar manner

ψ A = 1

2

∣∣∣∣ ψα

−Cψ∗β

∣∣∣∣ , (12)

where ψα is now an unconstrained Dirac spinor transforming in N (here α is the index
for the representation). Analogously we can discuss the adjoint representation of SU (N )
when two copies of the adjoint are embedded into that of Sp(N ).

Suppressing the gauge group index, the supersymmetry on-shell transformations are
written as:

δqI = −2iξIψ,

δψ = �mξI (Dmq I ) + iσξI q I − 3

r
t I J ξI qJ .

(13)

These transformations leave invariant the action with the following Lagrangian density

Lhyp = ε I J�AB Dmq A
I Dmq B

J − ε I J q A
I σACσ

C
Bq B

J +
15

2r2 ε
I J�ABt2q A

I q B
J

−2i�ABψ
A /Dψ B − 2ψ AσABψ

B − 4�ABψ
AλI q I B − iq A

I DI J
ABq B

J , (14)

where t2 = t I J tI J = 1/2 and σAB = �ACσ
C
B . Here again, only the Killing spinor

equation plus the Einstein relation Rmn = 4gmn is used for the check. A mass term can be
generated through the standard trick of coupling the hypermultiplet to an auxillary vector
multiplet and giving an expectation value to the scalar in the multiplet, see [15]. For the
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localisation we will need to have off-sheel realisation of supersymmetry transformations
and for the hypermultiplet it will be resolved later on.

To summarise, with no modification, we have a supperymmetric Yang–Mills theory
with matter on any SE manifold, with two supersymmetries. As we saw, the existence of
supersymmetry depends on the existence of Killing spinors. In the next two subsections,
we quickly go over some necessary facts about SE manifolds and the explicit construction
of Killing spinors. This material is quite well-known by now and thus our review is mainly
to set the notations. The reader may consult the short but nice review [16].

2.2. Sasaki–Einstein manifolds. A contact metric structure on M5 consists of a 1-form
κ such that κ(dκ)2 
= 0 and a complex structure J on the sub-bundle ker κ , which we
call the horizontal plane

J ∈ Aut(ker κ), J 2 = −1,
and that J is compatible with dκ in the sense that 1/2dκ J is a metric for the horizontal
plane ker κ . One can choose a unique vector field R such that

ιRκ = 1, ιRdκ = 0,

and we extend J to act also on R as zero J R = 0, leading to

J 2 = −1 + R ⊗ κ.
The metric of the tangent bundle is the direct sum of the one on ker κ and the one
along R

g = 1

2
dκ J + κ ⊗ κ.

As a consequence

g(J X, JY ) = g(X,Y )− κ(X)κ(Y ),
dκ = − 2g J,

R = g−1κ.

(15)

If R is a Killing vector field, then (κ, R, J ) gives a K-contact structure, the Killing
condition is equivalent to

∇X R = J X. (16)

A Sasaki-manifold is a K-contact manifold such that its metric cone M × (0,∞)
with metric and symplectic form

G = r2g + dr2, � = d(r2κ), J = 2�−1G.

is Kähler. The complex structure is written explicitly as

J = J + r−1
R ⊗ dr − r∂r ⊗ κ,

it is easy to check J 2 = −16. The vector field

ε = r
∂

∂r
(17)
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is called the homothetic vector field, and it is clear that

J (ε) = R.

The Kähler condition is equivalent to the covariant constancy of J with respect to
the Levi-Civita connection.1 Thus a K-contact manifold is Sasaki iff J satisfies the
integrability condition

〈Z , (∇X J )Y 〉 = −κ(Z)〈X,Y 〉 + 〈Z , X〉κ(Y ), (18)

where 〈−,−〉 is the inner product using the metric. From now on we will use the same
letter J for the complex structure as well as the 2-form g J .

If the cone metric is in addition Ricci-flat i.e. the cone is actually Calabi–Yau, then
M is said to be Sasaki–Einstein (SE). The Ricci flatness is equivalent to

Rmn = 4gmn . (19)

Using the Reeb, one can define the horizontal forms

ω ∈ �•
H (M), if ιRω = 0.

Let us fix the volume form of M5 as2

vol = 1

2
κ ∧ J ∧ J, (20)

and one can define a duality for the horizontal 2-forms as

ω→ ∗Rω = ιR ∗ ω, ω ∈ �2
H (M

5), (21)

Next one can prove that for an SE manifold, the Weyl tensor is horizontal and anti-
selfdual

ιR WXY = 0, ∗R WXY = −WXY , (22)

where

WXY = XmY n(Rmnpq − gp[m gn]q
)
, X,Y ∈ T M. (23)

The proof makes use of (18) and the details can be found in chapter 5 of [18].

1 It can be shown that the closedness of the wouldbe Kähler form GJ plus the vanishing of the Nijenhuis
tensor is equivalent to the covariant constancy of J , see lemma 4.15 in [17].

2 Due to a historical accident, the choice of volume form in [2] is opposite to the current one, see also
footnote 4. The reader should bear this in mind when comparing results between the two papers, especially
some anti-self-dualities there will become self-dualities here.
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2.3. Sasaki–Einstein 5-folds and killing spinors. Using the horizontal complex structure
one can define the so called canonical spinc-structure. Let

Wcan =
⊕

�
0,•
H (M), (24)

where �0,•
H consists of horizontal forms anti-holomorphic with respect to J . One then

has a representation of the Clifford algebra: letψ be any section of Wcan and χ a 1-form,
define the Clifford action

χ ·ψ =

⎧⎪⎨
⎪⎩

√
2χ ∧ ψ χ ∈ �0,1

H (M)√
2ιg−1χψ χ ∈ �1,0

H (M)

(−1)deg +1ψ χ = κ
. (25)

In this way, one has a spinc-structure whose characteristic line bundle (see chapter 5
in [19]) is the anti-canonical line bundle associated with the complex structure J . If M
is actually SE, then condition (19), (15) together with the condition H1(M,Z)tor = 0
would imply that M is spin (theorem 7.5.27 in [20]).

For a 5D SE spin manifold one can show that there exists a pair of killing spinors
satisfying

Dmξ
1 = − i

2
�mξ

1, Dmξ
2 = +

i

2
�mξ

2,

we will review the construction from [21]. Consider the following dimension 1 sub-
bundle W0 within the spin bundle W

ψ ∈ W0 ⊂ W, Rψ = −ψ, 1

2
(1 + iμJ )X⊥·ψ = 0, ∀X ∈ �(T M), (26)

where μ = ±1 and to keep the formulae neat, we have omitted � whenever the Clifford
multiplication is obvious. In view of the construction (25), the condition above says that
ψ is in �0,0

H (M) or �0,2
H (M) depending on μ. One can rewrite the second condition in

(26) into

A(X)ψ =
(
μJ X − i

2
R X − i

2
X
)
ψ = 0.

One then defines a connection for the subbundle W0

D̃X = DX +
iμ

2
X,

and checks that this is indeed a connection, i.e.

(1) [D̃X , R]ψ = 0, (2) [D̃X , A(Y )]ψ = 0, ψ ∈ W0.

The crucial step now is to show that the curvature of D̃ is zero when restricted to W0.
First an explicit calculation shows that the curvature is given by the Weyl-tensor

[D̃X , D̃Y ] − D̃[X,Y ] = 1

4
RXY pq�

pq − 1

4
[X,Y ] = 1

4
XmY n(Rmnpq − gp[m gn]q)� pq

= 1

4
WXY pq�

pq .
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which was shown to be horizontal and anti-self-dual. In fact, for any such 2-form Z pq
one has /Zψ = 0 for ψ ∈ W0

/Zψ = Z pq�
pqψ = −

√
g

2
Zrsε

rs
pqt R

t� pqψ

= Zrs�rst R
tψ = Zrs(�rs�t − 2�r gst )R

tψ = −/Zψ, (27)

where we used ιR Z = 0 and (86). To summarise the foregoing arguments, we have
reached the conclusion:

If a Sasaki–Einstein manifold M5 is simply connected, then the solution to the Killing
equation

DXψ = − iμ

2
X ψ, μ = ±1

exists and is unique up to a constant scale factor. The simply connectedness is needed
to ensure we have no non-trivial flat bundle. Moreover, the solution satisfy

Rψ = −ψ, (
μJ X − i

2
(1 + R)X

)
ψ = 0, (28)

/Jψ = −4iμψ, (29)

where the second line is a simple consequence of the first.

3. Geometry of Y p,q Manifolds

In this section we briefly review some relevant facts about the family of toric SE manifolds
known as Y p,q manifold. For further details the reader may consult [22–24].

3.1. Y p,q from reduction. Take C
4 with coordinates [z1, z2, z3, z4] and the standard

complex structure. Let us introduce the vector fields ei and one forms ηi

ei = i(zi∂zi − c.c), ηi = i

2
(zi d z̄i − c.c), η =

∑
i

ηi , (30)

where ei generates the phase rotation of zi and ηi is its dual 1-form. It is clear that dη
gives the standard Kähler form on C

4.
Consider now a U (1)T acting on C

4 with charge [p + q, p− q,−p,−p], the vector
field generated by the action is3

T = (p + q)e1 + (p − q)e2 − pe3 − pe4. (31)

We perform a Kähler reduction with respect to T . The moment map for T is

μT = (p + q)|z1|2 + (p − q)|z2|2 − p|z3|2 − p|z4|2,
and the reduction

C(Y p,q) = μ−1
T (0)/U (1)T

3 Here we follow the convention from [22], but the explicit metric given in [25] corresponds to the charge
vector [p, p,−(p − q),−(p + q)].
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is again Kähler and has a cone structure due to the special form of μT . This will be the
Kähler cone over a base which is by definition a Sasaki-manifold. One can get the base
of the cone by imposing

∑
i ai |zi |2 = 1, with ai � 0. One possible choice is that of a

squashed S7

(p + q)|z1|2 + (p − q)|z2|2 + p|z3|2 + p|z4|2 = 1, (32)

which together with μT = 0 leads to S3 × S3

μ−1
T (0)

∣∣
S7 = {(z1, z2, z3, z4) | (p + q)|z1|2 + (p − q)|z2|2 = 1/2,

p|z3|2 + p|z4|2 = 1/2} ∼ S3 × S3.

Of course, there is nothing special about the choice (32), if one chooses instead
∑

i |zi |2 =
1, one still gets S3× S3. We remark that the T action is free on S3× S3 if gcd(p, q) = 1,
since z1,2 cannot be zero together nor can z3,4. So Y p,q can also be presented as a
quotient of S3 × S3 by T .

With the choice (32), one has the Reeb vector field

R1 = (p + q)e1 + (p − q)e2 + pe3 + pe4, (33)

it is easy to check that on Y p,q , we have ιR1η = 1, and ιR1 dη = 0. Moreover η will
descend to Y p,q and be the contact 1-form κ there. This Reeb will not admit an SE
metric, but it does help us to get a better handle on the geometry of our SE manifold.

• The orbifold Base of Y p,q .

In contrast to T , the Reeb vector field (33) does not in general induce a free action,
even though it is nowhere zero. Indeed, if one takes the quotient of Y p,q with respect to
R1, one gets the weighted projective space

CP(p + q, p − q)× CP(1, 1).

In fact, this is easier to see if one takes the double quotient of S3 × S3 with respect to
both T and R1. The spaces CP(r, s) are orbifolds except when r = s. This special case
happens when p = 1 and q = 0, which leads to the SE manifold called T 1,1, whose
cone is the well-known conifold

|z1|2 + |z2|2 − |z3|2 − |z4|2 = 0. (34)

In fact T 1,1 is a regular SE manifold, since the Reeb orbit is closed and thus T 1,1 is a
U (1)-fibration over S2 × S2 of degree 1 and 1.

For an orbifold, we can still apply some version of the Riemann–Roch theorem, and
our computation of the super-determinant in Sect. 5.3 is similar to this in spirit. In the
next section, we will instead look at the possibility of presenting Y p,q as a U (1)-fibration.
Our result will concur with the geometric interpretation of the explicit metric found in
[25].
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3.2. Looking for free U (1) in Y p,q . Next we try to find free U (1)-actions in this geom-
etry. Let α be the U (1) with charge [a, c, b, d]

z1 z2 z3 z4
T p + q p − q −p −p
α a c b d
R1 p + q p − q p p

.

The result is that if gcd(p, q) = 1, then a free U (1) has charge vector

[a, c, b, d] = [a,−a − 2b, b, b], where a, b, c, d ∈ Z, (a + b)p + bq = 1.

(35)

For the proof, note first that for α to be free, it can be nowhere parallel with T ,
otherwise it will have a zero on the quotient. Even when this is satisfied, at special points
there might still be discrete stability groups. For example, when z2 = z4 = 0, if (where
k, l ∈ Z)

θ

2π
a = φ

2π
(p + q) + k,

θ

2π
b = φ

2π
(−p) + l,

then a rotation eiθα can be undone by e−iφT . So if θ/(2π) and φ/(2π) have rational (but
non-integer) solutions, then there is a non-trivial stability group. The solution to these
equations is given by

θ

2π
= pk + (p + q)l

ap + b(p + q)
,

φ

2π
= −bk + al

ap + b(p + q)
.

To exclude any non-integer solution, we need to have θ/(2π) to be an integer for any
k and l, but as p, q are coprime, one can find k, l s.t. kp + l(p + q) = 1, thus the
denominator ap + b(p + q) must be ±1. And similar reasonings lead to three more
equations

{
(a + b)p + bq = ±1
(a + d)p + dq = ±1 ,{
(c + b)p − bq = ±1
(c + d)p − dq = ±1 .

Let us first assume that the rhs of the first pair is +1, which implies b = d, and that the
rhs of the second pair must also have the same sign. Take this first to be +1, then we
have

(a + b)p + bq = 1, (c + b)p − bq = 1,

which would have a solution only when p = 1, 2, so we do not consider this possibility.
Now take the −1 option

(a + b)p + bq = 1, (c + b)p − bq = −1,
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which admits a family of solutions

[a, c, b, d] = [a,−a − 2b, b, b], (a + b)p + bq = 1.

One possibility left is when the right hand side of the first pair have +1,−1
{
(a + b)p + bq = +1
(a + d)p + dq = −1,

then subtracting the two equations one get (b − d)(p + q) = 2, which again admits no
solutions since p > q > 0. Thus we have only the set of solutions (35) that works for
generic p, q.

3.3. The base of the U (1) fibration. We investigate the base of the U (1) fibration by a
taking further quotient of Y p,q by α. To this end, one may consider modding out S3× S3

by any SL(2,Z) combinations of the two U (1)’s T and α. We choose

− aT + (p + q)α = [0,−2, 1, 1],
−bT − pα = [−1, 1, 0, 0], det

(−a p + q
−b −p

)
= 1. (36)

This shows that the quotient consists of a twisted product S2
� S2. Indeed, from the first

equation, one sees that the first S2 is fibred over the second one with degree−2, as such
we will call the two S2’s the fibre and base S2 respectively. From the second equation,
the complex structure of the fibre S2 is quite unconventional, if we choose it to agrees
with the standard one at z2 = 0 then at z1 = 0, it will be opposite, see section 5.3 in
[23] for more discussion on this fact.

We can cover the base of the U (1)-bundle with four patches, let U00 denote the
patch with z2 
= 0, z4 
= 0, and U10 be the patch z1 
= 0, z4 
= 0, etc. For later
computation of the index, we pick on patch U00 two vector fields e3 = [0, 0, 1, 0] and
e1 = [1, 0, 0, 0], and we tabulate the expression of these vector fields in other patches
(change of coordinates)

e3 e1
U00 [0, 0, 1, 0] [1, 0, 0, 0]
U01 [2, 0, 0,−1] + (q − p)α − (a + 2b)T [1, 0, 0, 0]
U10 [0, 0, 1, 0] [0, 1, 0, 0] + pα + bT
U11 [0, 2, 0,−1] − aT + (p + q)α [0, 1, 0, 0] + bT + pα

(37)

where T of course descends to zero on Y p,q . In the appendix, we will see that this change
of coordinates can be precisely reproduced by analyzing the explicit SE metric.

3.4. The Reeb that admits a Sasaki–Einstein metric. The above Reeb vector field will
lead only to a Sasaki structure on the manifold, but not an Einstein metric. In a beautiful
paper [26], it is shown how to find the Reeb vector that admits an SE metric, which for
the computation of partition function is sufficient.

The SE manifold Y p,q correspond to what is known as being of the Reeb type,
meaning that it is a torus fibration over a base and that the Reeb vector field is generated



5D Super Yang–Mills 873

by the torus action. Let us again start from C
4 with the standard Kähler structure given

by dη. Performing the symplectic reduction as before

C
4//T = μ−1

T (0)/T, μT = (p + q)|z1|2 + (p − q)|z2|2 − p(|z3|2 + |z4|2),
one obtains a cone over a base Y p,q . This cone inherits a Kähler structure from C

4,
which will be held fixed in the deformation to come later. One can choose the following
effectively acting 3-tori

T1 : [0, 0, 1, 0], T2 = [−1, 0, 1, 0], T3 = α, (38)

there is quite some freedom in the choice of the tori, here we are following [23]. It is
easy to write down the moment map

μ1 = |z3|2, μ2 = |z3|3 − |z1|2, pμ3 = |z1|2 − |z2|2,
where for the third relation, we used the second equation of (36). From |zi |2 ≥ 0, the
range of μi is a polytope cone, described as

C = {[μ1, μ2, μ3] |µ· va ≥ 0}, (39)

where va, a = 1 . . . 4 are the inward pointing normal of the facets of the cone

v1 = [1, 0, 0], v2 = [1,−2,−p + q], v3 = [1,−1,−p], v4 = [1,−1, 0].
Then all possible Reeb vectors must live in the interior of the cone C∗ generated by va ,
i.e.

R = b1T1 + b2T2 + b3T3, b =
∑

λava, λa > 0.

This is easy to see, let μR be the moment map corresponding to R, then μR =const will
intersect the cone C at a polygon precisely when b ∈ (C∗)◦. This polygon will serve as
the base of the torus fibration mentioned earlier.

In deforming the Reeb vector, one holds the Kähler form fixed and deform the complex
structure and hence the Kähler metric of the cone. One can write down the Einstein
Hilbert action of the metric

S[R] =
∫

Y p,q
dμ (R − 12),

where R is the Ricci scalar and the stationary point of the action gives the Einstein
metric Rmn = 4gmn . The insight from [26] is that the action only depends on the Reeb
vector and the action has a unique stationary point within the interior of the dual cone
C∗. Quite remarkably, the value of the Hilbert–Einstein action can be written as some
simple elementary geometrical quantities of the moment cone C, which can in turn be
related to the volume of the Y p,q space

S[R] = 8(b1 − 2)Vol Y p,q [R], (40)

where Vol Y p,q [R] is a function of the Reeb. With our choice of basis of U (1)’s in (38),
the parameters bi are related to the general equivariant parameters as

b1 = ω1 + ω2 + ω3 + ω4, b2 = −ω1 − ω2 − 2ω4, b3 = −pω2 + (q − p)ω4,
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and the volume is computed to be

�[R] = Vol Y p,q [R]
Vol S5

=
(

p2ω1 + p2ω2 + p2ω3 + p2ω4 − pqω1 + pqω2 − q2ω3 − q2ω4
)

p

(pω1 + pω4 + qω4) (pω2 + pω4 − qω4) (pω2 + pω3 − qω3) (pω1 + pω3 + qω3)
.

(41)

The condition that b be within the dual cone translates to some conditions on ωi

p(ω2 + ω4) > qω4, p(ω2 + ω3) > qω3, p(ω3 + ω1) + qω3 > 0,

p(ω4 + ω1) + qω4 > 0, (42)

as a by product, one sees that any free U (1) found in Sect. 3.2 will necessarily be
disqualified as a Reeb.

To continue, one can then find the unique Reeb vector field admitting the SE metric
by finding the stationary point of (40), the result is

R = (3

2
− 1

2(p + q)�

)
(e3 + e4) +

1

(p + q)�
e2, (43)

where

� = q

3q2 − 2p2 + p
√

4p2 − 3q2
= 2p2 − 3q2 + p

√
4p2 − 3q2

9q(p2 − q2)
. (44)

This is exactly the one found using the explicit metric from [25]. One can plug back the
value of R and get the volume of Y p,q with the SE metric

� = VolY p,q

VolS5
= q2[2p + (4p2 − 3q2)1/2]

3p2[3q2 − 2p2 + p(4p2 − 3q2)1/2]
= 1

27p2(q2 − p2)

(− 8p3 + 9pq2 − (4p2 − 3q2)3/2
)
. (45)

As for Y p,q with a general R, we will call it the squashed Y p,q , whose volume is given
by (41).

Notice that � here appears in the explicit metric as the period of the fibre coordinate of
the U (1)-fibre over the base S2

� S2, see Appendix C. Moreover, since � is generically
irrational, the resulting Reeb vector field is of an irregular type, i.e. its orbit is not closed.
But for the T 1,1 case �−1 goes to zero when one sets p = 1 and q = 0, and the Reeb
vecotr R = 3/2[0, 0, 1, 1] is freely acting and has closed orbit.

4. The Cohomological Complex and Localisation

The key step of the localisation procedure is to make a change of variable in the fields,
so that the fields would behave as coordinates and their conjugate momenta (both even
and odd) on some space. In this process, a combination of the susy transformation will
behave like the equivariant differential, and thus one has the standard localisation in
equivariant cohomology.

The process of change of variable is given in [2] and here we will just sketch the
steps.
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4.1. Vector-multiplet. We first define some geometrical quantities using the Killing
spinor. First, define the vector field

R
p = −ξI�

pξ I .

The Killing spinor equation implies that R is a Killing vector field, in fact, it is the Reeb
vector field of our SE geometry,4 from the way our Killing spinor is constructed in
Sect. 2.3. Furthermore, the spinor bi-linear

t I J ξI�mnξJ = −1

2
Jmn

is the horizontal Kähler 2-form.5 It satisfies

ιR J = 0, ∗R J = J,

where ∗R is defined in (21).
The gaugino λI in (7) can be converted into a 1-form and a 2-form:

�m = ξI�mλ
I , χmn = ξI�mnλ

I + R[mξI�n]λI , (46)

where Rm = gmn Rn is the contact 1-form κ . The 1-form� is an unrestricted 1-form, the
2-form χ satisfies the same conditions as J :

ιRχ = 0, ιR ∗ χ = χ. (47)

The formula (46) can be inverted to write λI as

λI = −1

2
ξ J (ξJ�

mnξI )χmn + (�mξI )�m, (48)

The fermion λI has eight real components which is the same as the five components
from � plus 3 more from χ .

In the new variables the susy transformations (7) can be rewritten as

δAm = i�m, δ�m = −R
n Fnm + Dmσ,

δχmn = Hmn, δHmn = −iLA
R χmn − [σ, χmn], (49)

δσ = −i R
m�m,

where LA
R = L R + i[ , ιR A]. Here the 2-form H is a redefinition of D

Hmn = 2(F+
H )mn + (ξ I�mnξ

J )(DI J +
2

r
tI Jσ), (50)

where

F+
H =

1

2
(1 + ∗R)F − 1

2
(κ ∧ ιR F)

is the horizontal self-dual component of F . The field H satisfies exactly the same con-
ditions (47) as χ .

4 The vector field—R takes the place of v used in [2].
5 Recall that we use the same letter for the horizontal complex structure and the Kähler 2-form.
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The square of the transformations (49) reads

δ2 = −i L R + Gi(σ+ιR A), (51)

where Gi(σ+ιR A) is a gauge transformation with parameter i(σ + ιR A). With our conven-
tions Gε acts as

Gε A = dε − i[A, ε], Gεφ = −i[φ, ε],
where φ is any field in the adjoint.

As promised, (51) shows that the susy transformation written in the new variables can
be regarded as an equivariant differential, with the fields Am , χmn being the coordinates
of some space and�m, Hmn their conjugate momenta. The field σ is a bit special, since
the combination� = σ − ιvA is annihilated by δ, but this field will also be incorporated
as a momentum once the ghost sector is included [1].

4.2. Hyper-multiplet. For the hyper-multiplet, we would do what is opposite to the
previous section, and combine the scalar field qI in (13) with the Kiling spinors and
formulate the cohomoogical complex in terms of spinors (the goal is always to work
with a complex that is SU (2)R-singlet). We define a new bosonic spinor field q

q = ξI q I , qI = −2ξI q.

From the reality condition satisfied by ξI and qI one can see that the spinor field q now
satisfies the same reality condition as ψ .

The susy transformation (13) expressed in terms of q and ψ will only close on-
shell, to mend this we need introduce a bosonic spinor field F of opposite γ5 = −R·�
eigenvalue. One can obtain an off-shell susy enlarging (13)

δq A = i P+ψ
A,

δψ A = − 1

4r
Jpq(�

pqq A) + ( /D + iσ)q A + F A, (52)

δF A = −i P− /Dψ A − σ P−ψ A −�m(�m + Rm)q
A,

where we use the projector P± = 1/2(1 ± γ5) and P+q = q, P−F = F . Notice
that σq A should be understood as σ A

Bq B and similarly for the term involving �m . The
transformations above square to the following:

δ2� = (− i Ls
R − σ − ιR A

)
�, � = {q, ψ,F}, (53)

where Ls
R is the spinor Lie derivative, see Appendix A. After a further linear shift of F ,

one can break the middle line of (52) according to its eigenvalue under γ5, and get a nice
complex that parallels (49)

δq A = iψ A
+ , δψ A

+ =
(− Ls

R + i(σ + ιR A)
)
q A,

δψ A− = F̃ A, δF̃ A = (− i Ls
R − (σ + ιR A)

)
ψ A− .

(54)

The above complex is written in terms of the fields q, ψ and F̃ which satisfy the reality
conditions. We can solve these reality conditions in terms of the unconstrained fields as
we did in (12). Let

q A = [qα,−Cq∗β ]T , ψ A = [ψα,−Cψ∗β ]T , F̃ A = [F̃α,−CF̃∗β ]T . (55)
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Now we can rewrite the complex (54) in terms of the new fields and it looks exactly the
same, except for the change of indices A → α

δqα = iψα+ , δψα+ = · · · .
One property that we will need for the transformations is that it acts holomorphically,
in that it does not mix qα, ψα, F̃α with their conjugates. This point will be important
later when we decide over what spaces do we compute the determinant of the operator
δ2, see next section.

4.3. Localisation. The localisation argument has now become fairly standard, so we
will not give all the details. Take a finite dimensional example∫

dn x dnψ ω(x, ψ),

where x is regarded as the coordinate (even or odd) of certain space andψ its momentum
of the opposite statistics. Assume that ω(x, ψ) is invariant under an odd symmetry

δx = ψ, δψ = Lvx .

Pick a function V odd, such that δ2V = 0, one can insert into the integral a factor∫
dn xdnψ ω(x, ψ)e−tδV , δ2V = 0,

without changing the value of the integral. The last statement can be seen by differenti-
ating with respect to t , and using

∫
δ(· · · ) = 0. If one then sends t →∞, the integral

will be concentrated at the critical points of the bosonic part of δV∫
dn x dnψ ω(x, ψ)e−tδV =

∑
cr pt

ω sdet−1/2((δV )
′′)
,

where of course we assume that the critical points are non-degenerate.
Furthermore, at each critical point, the equality δ2V = 0 leads to certain relations

among the coefficients of Hessian (δV )′′, and consequently the simplification

sdet−1/2((δV )
′′) = sdet−1/2

x (δ2),

where sdetx means to take the super-determinant only on the coordinates.
In the case one has complex coordinates x, x̄ , complex momenta ψ, ψ̄ and δ acts

holomorphically, then a similar argument as above gives, up to a constant phase, the
determinant

sdet−1/2((δV )
′′) = sdet−1

hol x (δ
2),

where the subscript hol x means taking the super-determinant only on the holomorphic
coordinates. Furthermore, one has sdethol x (δ

2) = sdetahol x (δ
2), again up to a constant

phase. Note that this phase can be computed for a finite dimensional case, but for an
infinite dimensional problem, we have yet no means to handle it systematically, this
problem is left open both in [2] and in the current work.

To summarise, the final result of the integral is just the sum of contribution from each
critical point of the above form. The first case above applies to the vector multiplet while
the second to the hyper-multiplet.
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4.4. Localisation locus. To put this knowledge to practice, we look at the vector multi-
plet first. One adds to the action an exact term

Svec → Svec + tδ
∫

Vvec,

Vvec = Tr
[1

2
� ∧ ∗(−ιR F − Dσ)− χ ∧ ∗H + 2χ ∧ ∗F

]
.

The bosonic part of δVvec is

δVvec
∣∣
bos = Tr

[1

2
(−ιR F + Dσ) ∧ ∗(−ιR F − Dσ)− H ∧ ∗H + 2H ∧ ∗F

]

= Tr
[1

2
(ιR F)2 − 1

2
(Dσ)2 + F+

H ∧ ∗F+
H − (H − F+

H ) ∧ ∗(H − F+
H )
]
.

One can integrate out H , while the rest is a perfect square,6 so the localisation locus is

F+
H = 0, ιR F = 0, Dσ = 0. (56)

The first two equations describe the so called ‘contact instanton’ while the last says σ
is a covariant constant. To keep the discussion lucid, we have not mentioned the gauge
fixing ghost sector, but the details can be found in [27].

For the geometry S5, the Reeb vector is generated by a free U (1) action and the
quotient is CP2, one calls these SE manifolds regular. From the analysis of [2], the
contact instantons on S5 correspond to usual instantons on CP2, and only the irreducible
ones contribute. The argument leading to this relies on a specific choice of gauge. To
reach this gauge one needs to use the regularity condition. The SE manifolds Y p,q are
generically irregular as the Reeb vector field does not have closed orbit. In the best
case, for certain values of p, q, when the Reeb generates a locally free action, then the
manifolds are a U (1) fibration over a base orbifold. Due to these concerns, it is not clear
to us whether the contact instanton on Y p,q can be thought of as usual instantons on the
base orbifold in the quasi-regular case, let alone the irregular case. But at any rate, it is
likely to be more advantageous to reverse the game and study 4D instantons by lifting
them to 5D rather than pushing 5D instantons to 4D. We leave this subject for a future
enterprise and focus on the zero-instanton sector for the rest of the paper. We do want to
point out that the vanishing argument proved in Sect. 4.5 is valid for all contact instanton
backgrounds.

• For the hyper-multiplet, one can add to the action a δ-exact term

Shyp → Shyp + tδ
∫

Vhyp, where Vhyp = 1

2
(δψ A)†ψ A.

The bosonic part of δVhyp is7

δVhyp
∣∣
bos =

∣∣
(

1

4
/J + /D

)
q
∣∣2 +

∣∣σq
∣∣2 +

∣∣F ∣∣2,
6 Keep in mind that σ has been Wick rotated and hence is valued in ig.
7 In writing δVhyp we used the original complex (52), in particular we used the field F instead of the shifted

variable F̃ . This is different from what we did in [2].
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where we have already used (55) to write all fields in terms of their unconstrained
components. In the manipulation above σ and F̃ are Wick rotated, which is crucial for
having a complete square as above.

Since δV is positive definite the localization locus is given by the following equations

(1

4
/J + /D

)
qα = 0, σαβqβ = 0, Fα = 0. (57)

We first point out that by applying the chiral projector to the first equation, one gets two
conditions

P− /Dq = 0,
(− R· D − 1

4
/J
)
q = (− Ls

R + i ιR A
)
q = 0, (58)

in fact if one had used the complex (54), then P− /Dq is absorbed into F̃ .
It was shown in [2] that this set of conditions implies q = F = 0 at the A = 0

configuration. Now we make a digression and prove a vanishing theorem that strengthens
this result, then we will resume with the partition function.

4.5. The vanishing argument for hyper-multiplet. We start from the equation ( /D +
/J/4)q = 0 and show that q = 0 at an instanton background. Consider the intergral

0 =
∫

M

(
(
1

4
/J + /D)q

)† · (1

4
/J + /D)q =

∫
M

q†(−1

4
/J +

←−
/D )(

1

4
/J + /D)q

=
∫

M
q†(− /D2 − 1

4
/J /D +

1

4

←−
/D /J − 1

16
/J 2)q =

∫
M

q†(− /D2 +
1

8
/J 2 − 1

16
/J 2)q

=
∫

M
q†( 1

16
/J 2 − /D2)q.

The two terms in the integral are

/D2 = D2 − 5− i

2
/F, /J 2 = −16P+.

We also put the gauge field in an instanton configuration ιvF = 0 = F+
H . Then we have

q† /Fq = q†(F+
H )mn�

mnq = 0.

Assembling everything altogether

0 =
∫

M
q†( 1

16
/J 2 − D2 + 5

)
q =

∫
M

q†(− D2 + 4
)
q =

∫
M
(Dmq)†(Dmq) + 4

∫
M

q†q.

So we must have q = 0.
Now we can write down schematically the perturbative part of the partition function.

From the discussion of Sect. 4.3, we first need to evaluate the classical action at the
localisation locus. The hyper-multiplet action completely vanishes, while from the vector
multiplet action (9), we get only

Scr =
∫

d5x
√

g
1

g2
Y M

Tr
[− 1

2
DI J DI J +

2

r
σ t I J DI J − 10

r2 t I J tI Jσ
2]∣∣∣

DI J=−2tI J σ/r, σ=const
,
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where DI J = −2tI Jσ/r is deduced from the change of variable (50), and that at the
critical point H = F+

H = 0. Thus we get

Scr = VolY p,q

g2
Y M

Tr
[− 16

r2 t I J tI Jσ
2] = −8VolY p,q

g2
Y Mr2

Tr[σ 2].

The volume of Y p,q is given in Eq. 45. So we trade VolY p,q for �VolS5 = π3�r5

Scr = −8π3r�

g2
Y M

Tr[r2σ 2]. (59)

Putting together also the determinant factor at the localisation locus, we get (keep in
mind that σ is purely imaginary)

Zpert =
∫

ig
dσ exp

(8π3�r

g2
Y M

Tr[r2σ 2]) sdet′vec(−i L R − σ)1/2
sdethyp(−i Ls

R − σ)
,

where the super-determinant for the vector multiplet is taken over the sections of the
complex

E : 0 → �0(M)→ �1
H (M)→ �2+

H (M)→ 0, (60)

and sdet′ denotes the exclusion of constant modes.8 In contrast, the super-determinant
for the hyper-multiplet is taken over the sections of the spin bundle

Wcan : 0 → �0,0(M)→ �
0,1
H (M)→ �

0,2
H (M)→ 0.

In fact one can directly see that E � Wcan⊕W ∗
can, which shows that if one considers the

hyper-multiplet in the adjoint, there will be extra cancellation between the vector and
hyper-multiplet.

We can do some re-writings of the result, first it is convenient to use the dimensionless
combination x = rσ , and factor out (an infinite power of) r , and consider the determinant
of (−ir Ls

R − x) and (−ir L R − x) instead. Secondly, since the function to be integrated
is ad-invariant, one can write the integral over g as an integral over h with a Jacobian
factor

Zpert = 1

|W |
Vol(G)

Vol(T )

∫
it

dx (
∏
β>0

〈β, x〉2) exp
(8π3r�

g2
Y M

Tr[x2]) sdet′vec(−ir L R − x)1/2

sdethyp(−ir Ls
R − x)

,

(61)

where β runs over positive roots.
The remainder of the paper is about computing these two determinants, we write

down here the result, discarding all the irrelevant multiplicative constants. Let R =
8 See Appendices C.2 and C.3 in [27]. We only consider the trivial background A = 0, so the gauge sector

of [27] derived for S5 is still applicable.
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[ω1, ω2, ω3, ω4], assuming of course that R is in the interior of the cone dual to the
moment map cone (see Sect. 3.4)

Zpert =
∫

it
dx

∏
β>0

〈β, x〉2· exp
(8π3r�[R]

g2
Y M

Tr[x2]) Pvec

Phyp
,

Phyp = detR

∏
i, j,k,l∈�+

((
iω1 + jω2 + kω3 + lω4 +

1

2
(ω1 + ω2 + ω3 + ω4)

)2 − x2
)
,

Pvec = detadj

∏
i, j,k,l∈�+

0

((
iω1 + jω2 + kω3 + lω4

)2 − x2
)

·
∏

i, j,k,l∈�+
1

((
iω1 + jω2 + kω3 + lω4

)2 − x2
)1/2

, (62)

where the lattices for the products are defined

�+ = {
i, j, k, l ∈ Z≥0 | i(p + q) + j (p − q) = kp + lp

}
,

�+
0 =

{
i, j, k, l ∈ Z>0 | i(p + q) + j (p − q) = kp + lp

}
,

�+
1 = �+\(�+

0 ∪ {0, 0, 0, 0}).
We have also used the volume associated with a general Reeb correspondingly9 given
in (41). If one sets

ω1 = 0, ω2 = 1

(p + q)�
, ω3 = ω4 = 3

2
− 1

2(p + q)�
,

one obtains the partition function of the supersymmetric theory. However one may leave
the parameters (ω1, ω2, ω3, ω4) unfix and study how the partition function responds to
the U (1) isometries of the geometry.

We can do some more rewriting and relate these infinite products to certain gener-
alisation of the Barne’s function, or triple sine function. For Pvec factor, we can write
detadj f (x) = f (0)rkG

∏
β∈roots f (〈β, x〉), but f (0)rkG is a (non-zero) multiplicative

constant that can be discarded. We will also combine the factor
∏
β>0〈β, x〉2 with Pvec

to get

Pvec

∏
β>0

〈β, x〉2 = det′adjS
�(x |ω1, ω2, ω3, ω4),

where det′adj f (x) is short for
∏
β∈roots f (〈β, x〉), i.e. the determinant taken in the adjoint

representation with the zero weight subspace excluded. The function S� is defined as

S�(x |ω1, ω2, ω3, ω4) =
∏

(i, j,k,l)∈�+

(
iω1 + jω2 + kω3 + lω4 + x

)

×
∏

(i, j,k,l)∈�+
0

(
iω1 + jω2 + kω3 + lω4 − x

)
. (63)

9 Surely, for a general Reeb, one does not have an SE metric and hence no susy a priori, but one may take
the cohomological complexes (49) and (54) as the starting point and compute the partition function.
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With this new function, the factor Phyp is just

Phyp = detR S�(x +
1

2
(ω1 + ω2 + ω3 + ω4)|ω1, ω2, ω3, ω4).

Thus finally we get the answer in the form (1) presented in introduction. Since mass M for
hypermultiplet can be generated through the standard trick of coupling the hypermultiplet
to an auxillary vector multiplet we end up with the general expression (1) for the massive
hypermultiplet. We will leave the investigation of the function S�(x |ω1, ω2, ω3, ω4) to
the future work. Here we will be content with establishing that we do get a sensible
matrix model, by computing in Sect. 6 the asymptotic behaviour of the products, the
result is

Zpert =
∫

it

dx exp
(8π3r�

g2
Y M

Tr[x2]) exp(πV (x)),

V (x) ∼Tradj

(
|x |( q

2p
� +

3

4
�
)− |x |3

6
�
)
− TrR

(
|x |( q

2p
�− 3

8
�
)− |x |3

6
�
))
,

(64)

which is similar to the case of S5. There is a limit of how big the hyper-multiplet
representation can be, beyond this limit, the potential flips over and the matrix is ill-
defined. If the hyper multiplet is in the adjoint, then the cubic term cancels, and the
linear potential has coefficient 9/4�, we have exact matching with the S5 result up to
volume factor. If we will look at the large volume limit (analogously to the analysis in
[13]) then we reproduce the known flat case results.

Let us also set p = 1 and q = 0 to get the result for T 1,1. In particular, one has
� = 16/27 and q� = 4/9, and the potential tends to

V (x) ∼ Tradj

(2

3
|x | − 8

81
|x |3

)
+ TrR

( 8

81
|x |3

)
.

5. Computation of the Partition Function

5.1. Spectrum of Ls
R. The computation of the super-determinant requires one to find

the spectrum of the operators Lv and Ls
v . The former is quite straightforward, while the

latter will be shown to be equivalent to the former up to a constant but important shift.
We pick the Killing spinor satisfying DXψ0 = −i/2Xψ0 [in fact ψ0 would corre-

spond to a zero form in the canonical spin representation (25)], which satisfies

1

2
(1 + i J )Xψ0 = 0, ∀X,

so ψ0 serves as the ‘vacuum’ and any other form can be constructed by applying the
‘raising operators’

α1 ∧ · · · ∧ α pψ0 ∈ Wcan, where αi ∈ �(T ∗M),
1

2
(1 + i J )αi = 0,

to the vacuum.
By using the fact that Ls

X preserves J and
[
Ls

X , �·α
] = �· (L Xα), we get

Ls
X (α

1 ∧ · · · ∧ α pψ0) = L X (α
1 ∧ · · · ∧ α p)ψ0 + α1 ∧ · · · ∧ α p Ls

Xψ0,
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i.e. up to its action on the vacuum, the operator Ls
X is just the usual Lie-derivative on

forms.
The next few steps are a bit technical and is presented in the appendix. It turns out

that Ls
Xψ0 = i/r fXψ0 with fX being a real constant, and so Ls

X can be identified as
L X with a numerical shift

Ls
X = L X +

i

r
fX .

The value of this shift is crucial in many ways, and we have our rule of thumb: assume that
X has a zero (or is decomposable into a sum of commuting Killing vectors X =∑

ui ,
[ui , v] = 0, each with a zero). At one of its zeros, one can assume that X induces
rotations of disjoint 2-planes, for each such rotation of degree k on a 2-plane with the
standard complex structure, one gets a shift of k/2, and the sum of all the shifts gives
fX .

As an example, for the case of S5 embedded in C
3, the Reeb vector field R = e1+e2+e3,

where ei is the rotation of the i th factor in C
3, thus we get 3 shifts of 1/2 and fR = 3/2

(this shift was obtained in [2] through more or less brute force). While for squashed S5,
the relevant R is decomposed as v =∑

ai ei , where ai are the squashing parameters and
the shift becomes fR = 1/2

∑
ai , and this shift plays an important role in [5,7]. For our

situation we have the decomposition (43), and the shift is also fR = 3/2.

5.2. Transversally elliptic operators. In this section, we will temporarily suppress the
dimensionful parameter r , and also treat x as a c-number. Both ingredients can be
reinstated easily later. The type of super-determinants we need to compute for the hyper-
multiplet is

sdet(−i Ls
X + x) =

det(−i L X + fX + x)
∣∣
ψ−

det(−i L X + fX + x)
∣∣
q+

, (65)

where we have replaced the vector field v with a general isometry X , which descends
from a vector field acting on C

4

X = ω1e1 + ω2e2 + ω3e3 + ω4e4.

Clearly X commutes with R and L X J = 0. We do so to put extra knobs onto the partition
function, and to see how the latter responds to the symmetry of the geometry.

For the hyper-multiplet, the statistics of the fields q+ and ψ− is determined by their
eigen-value under γ5 = −R·�, thus one can use the operator

D = P−(�i Di )P+, P± = 1

2
(1± γ5) = 1

2
(1∓ R·�) (66)

to keep track of the cancellation between bosons and fermions. That is to say, the operator
D sends every non-zero mode of q to a non-zero mode of ψ , with equal Ls

X eigenvalue,
and hence the non-zero modes do not contribute anything to (65). The mismatch of
eigenmodes of Ls

X between q and ψ is then in the kernel and cokernel of D and is
captured by the index theorem.
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To summarise, we need to obtain the kernel and cokernel of D, moreover, we need to
decompose the (co)kernel into the simultaneous eigen-modes of ei . Put more formally,
we need to compute the equivariant index

indG(D) = charG(ker D)− charG(coker D), (67)

where G is the group generated by the three U (1)’s and charG denotes the character. In
the case D is an elliptic operator, the right hand side of (67) is also known as the Lefschetz
number, which, upon evaluating the character at 1 ∈ G, gives the usual index. But now
the key difference is that D is not elliptic, its symbol σ(D) (obtained by replacing ∂m
with pm in D, where pm is coordinate for T ∗M) has a kernel along the Reeb direction.

What we here is a transversally elliptic operator. To be more precise, let G be a Lie
group acting on M by isometry and τ : g→ T M be the infinitesimal action. Let E, F
be two G-equivariant vector bundles on M and D : E → F be a differential operator
that commutes with the G-action. Define

T ∗G M = {α ∈ T ∗M | 〈α, τ(x)〉 = 0, ∀x ∈ g},
then D is transversally elliptic if its symbol is invertible on T ∗G M except at the zero
section. In our case, since R is a linear combination of ei , so the possible kernel of D is
precluded by the above condition for T ∗G M .

It is important to remember that the equivariant index defined in (67) will not be a
function (ad-invariant if G is not abelian) on G, but rather a distribution. For example,
over S1 with the standard U (1)-action, the 0 operator is transversally elliptic, and has
delta function δ(1 − t) as index, where t ∈ U (1). Thus in general, the index will have
torsions and it will be illegal to evaluate the index at a given point.

In the lectures notes [28] of Sir Michael Atiyah, the index homomorphism was in
principle completely worked out. In the following, we will use two different formulae
given in [28]. The first is quite simple and is applicable only because of the simplicity
of the Y p,q geometry, especially since it is a quotient of S3 × S3.

5.3. Computing the index on Y p,q -method I. The easiest derivation of index theorem
is through the equivariant K-theory. To explain the index calculation, we find ourself
in need of making a big digression to review a small portion of the book by Atiyah.
The symbol σ(D) induces a bundle map π∗E → π∗F (where π : T ∗G M → M is the
projection), and since σ(D) is an isomorphism away from the zero section, it gives a
complex

0 → π∗E
σ(D)→ π∗F → 0

exact except at the zero section, thus the complex is an element of

K 0
G(T

∗
G M)

which by definition consists of stable isomorphism classes of pairs of bundles [E1, E2]
such that E1 � E2 outside of a compact subset of T ∗G M . It is also convenient to choose
a G-invariant metric and thereby identify T ∗G M with TG M , where the latter consists of
tangent vectors perpendicular to the G-action.

The index homomorphism associates an element ofσ(D) ∈ K 0
G(TG M)with the index

of D. But the crucial point is that it is possible to give a topological characterisation
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of this homomorphism, which then tremendously simplifies the index calculation since
manipulating isomorphism classes of vector bundles is much simpler than manipulating
the differential operators.

We start from a simple example that could actually carry us a long way in our
computation for Y p,q . Take a single sphere S2n−1 embedded in C

n and a group G =
U (1) acts on C

n with charge vector [m1, . . . ,mn], with mi > 0. Let H also be a
U (1) acting with charge [1, . . . , 1], we remark that through demanding all mi > 0
(of course all of them < 0 is equally good), the two K-groups K 0

G(TG S2n−1) and
K 0

G(TH S2n−1) are isomorphic, because the bundle TG S2n−1 is isomorphic to TH S2n−1.
The latter isomorphism is constructed by simply projecting TH S2n−1 to TG S2n−1; since
on the sphere the vector field given by the charge vector [m1, . . . ,mn] is nowhere
orthogonal to the one with charge vector [1, . . . , 1], and hence the projection has no
kernel. On TH S2n−1 there is a ∂̄ symbol which is formed by pulling back the ∂̄ operator
defined on the quotient S2n−1/H � CPn−1. We will call this symbol the horizontal
∂̄-symbol, denoted as [∂̄H ], as it is defined on the plane perpendicular to the Reeb vector
H of S2n−1. This symbol, when regarded as an element of K 0

G(TG S2n−1), has index
(proposition 5.4 in [28])

indG[∂̄H ] =
[∏ 1

1− t−m j

]−
−
[∏ 1

1− t−m j

]+

,

where [ ]± means to expand the content in the brace in positive/negative powers of t .
For example, let n = 2 and mi = 1

indG[∂̄H ] =
∑
k∈Z

(k + 1)t−k,

the way to read the result is that the coefficient of t−k is the index

dim H0(S2,O(k))− dim H1(S2,O(k)).
It is well-known that dim H0(S2,O(k)) = k + 1, k ≥ 0 and 0 if k < 0; while
dim H1(S2,O(k)) = 0, k ≥ 0 and −1 − k if k < 0. In general, if some mi 
= 1,
the index becomes

indG[∂̄] =
∑

k,l≥0

t−km1−lm2 −
∑

k,l<0

t−km1−lm2 , (68)

the coefficient of t−m then can be construed as the Riemann–Roch theorem of the
weighted projective space (proposition 10.1 in [28])

dim H0(CP(m̄1, m̄2),O(m))− dim H1(CP(m̄1, m̄2),O(m)),
where m̄1/m̄2 = m1/m2 and gcd(m̄1, m̄2) = 1. The weighted projective space is an
orbifold unless m̄1 = m̄2 = 1.

Back to operator D defined in (66). The group in question will be denoted H =
U (1)3 (recall that Y p,q is toric). We need to manipulate D into something manageable.
First notice that only the homotopy type of the symbol of D is important for the index
computation; second, if one uses the spinor representation by means of the horizontal

anti-holomorphic forms, one can unfold the complex 0 → �
0,even
H

D→ �
0,odd
H → 0 into

0 → �
0,0
H → �

0,1
H → �

0,2
H → 0,
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and the symbol [D] turns into the symbol [∂̄R] (the operator ∂̄ does not exist, but its
symbol does), the subscript R is there to remind us that the symbol depends on the
horizontal plane and hence R. We want to deform [∂̄R] into [∂̄R0 ] that is defined with
a more convenient Reeb. Notice that by looking at the charge vector of R0 and R, one
easily checks that R and R0 are never anti-parallel (in the dense open subset of Y p,q ,
this is obvious, one needs only pay attention to those points where certain torus action
degenerates). One then has an isomorphism between the two complexes �0,•

H � �
0,•
H0

,
defined for R and R0 respectively, by simply projecting one to the other. That R and
R0 are never anti-parallel guarantees that the projection has no kernel, and hence an
isomorphism. Under this isomorphism, the symbol [∂̄R] induces a symbol homotopic
to [∂̄R0 ], and we can thus compute the index using the new symbol [∂̄R0 ]. To compute
the index, we lift the symbol [∂̄R0 ] from Y p,q to S3 × S3, and enlarge the group H to
G = H × U (1), where the extra U (1) is the freely acting U (1) called U (1)T before.
We will lift the symbol to S3 × S3 through the projection S3 × S3 → Y p,q . Because
this U (1)T is free, once we have computed the index on S3 × S3, we can pick out the
terms that correspond to the trivial representations of U (1)T (see theorem 3.1 in [28]),
so as to go back down to the quotient space Y p,q . In lifting from Y p,q to S3 × S3,
the horizontal complex [∂̄R0 ] is lifted to the ∂̄-complex that is horizontal w.r.t both T
and R0. To see this, it is useful to keep in mind the following picture. One can obtain
the horizontal ∂̄-complex on Y p,q in two steps. One starts from the standard complex
structure on C

4, restricting oneself to the constant moment map levelμ−1
T (0) (whereμT

is the moment map for U (1)T ), one has a transverse complex structure transverse to T .
This complex structure is clearly invariant under U (1)T and will go down the symplectic
quotient to be the complex structure J on C

4//U (1)T , and as we recall, the latter is the
Kähler cone C(Y p,q). In the second step, we restrict J to the plane transverse to both
the homothetic vector field r∂r and the Reeb vector J (r∂r ), and we obtain the desired
transverse complex structure on Y p,q . Since S3 × S3 is obtained from C

4 by imposing
μT = 0 and

∑
i |zi |2 = 1, we need only restrict ourselves to the directions transverse

to T and Reeb to get the last mentioned transverse complex structure.
Having established this, the ∂̄R0 -complex splits into the horizontal ∂̄-complex of the

two S3’s individually. What remains is to compute the index of [∂̄] on the two S3, take
the product, and pick out the terms of trivial representation of U (1)T . Let now G1 (resp.
G2) be U (1)2 acting on the first (resp. second) S3 ⊂ C

2 in the standard manner. Denote
by s1,2 and t1,2 the coordinates of the two U (1)′s of G1 (resp. G2). Then as a simple
generalisation from the above example, the index is

indG1 [∂̄] =
∑

i, j≥0

s−i
1 s− j

2 −
∑

i, j<0

s−i
1 s− j

2 ,

indG2 [∂̄] =
∑

k,l≥0

t−k
1 t−l

2 −
∑

k,l<0

t−k
1 t−l

2 ,

and the index of the product S3 × S3 is the product of the two indices above. Since T
has charge vector [p + q, p − q,−p,−p], the terms in the product of the two indices
above that correspond to the trivial representation under T must satisfy

i(p + q) + j (p − q) = (k + l)p. (69)

This is possible only between the following combination∑
i, j≥0

s−i
1 s− j

2 ·
∑

k,l≥0

t−k
1 t−l

2 +
∑

i, j<0

s−i
1 s− j

2 ·
∑

k,l<0

t−k
1 t−l

2

∣∣∣
i(p+q)+ j (p−q)=(k+l)p

. (70)
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i

j

Γ+

Γ−

Fig. 1. The lattice � for summation for p = 3 and q = 1

We define a lattice

�+ = {i, j, k, l ≥ 0, i(p + q) + j (p − q) = p(k + l)},
�− = {i, j, k, l < 0, i(p + q) + j (p − q) = p(k + l)},

and our summation of the indices will take place on this lattice.
Let us pause for a minute and understand what we got. It was shown in Sect. 3 that Y p,q

is a U (1)-fibration over an orbifold base if one uses R1 instead of the irregular R. The Reeb
R1 is only locally free, and for given i, j, k, l its mode is n = (p+q)i +(p−q) j + p(k +l).
One can try to reorganise the lattice by fixing the level n, then the intersection of constant
n plane with the lattice �± has only finite number of lattice points (this amounts to
looking at Riemann–Roch theorem on an orbifold). But the intersection is quite jagged
in the sense that there is no general formula for the number of lattice points at each
given n, this reflects the fact that the Reeb acts non-freely and we have an orbifold
base. However, in the case of T 1,1, the intersection is nice, since T 1,1 is regular SE and
the base of the Reeb fibration is a (Kähler–Einstein) manifold. To see this, let us set
p = 1, q = 0, then for fixed n, the intersection has exactly (n + 1)2 lattice points, which
shows again that T 1,1 is a U (1) bundle over S2 × S2 of degree 1 and 1.

To investigate the lattice � further, we notice that the condition (69) is satisfied iff

{ i + j − (k + l) = mq
i − j = −mp , (71)

showing that i, j must be on the lattice � in Fig. 1, and k + l is determined by i and
j . For later use, we point out that the mode m appearing here is (negative) of the mode
along the free U (1) called α in Sect. 3.2, to see this, we plug (71) into the charge vector
of the free U (1):

[a,−a − 2b, b, b] → ai − (a + 2b)(i + mp) + b(2i + m(p − q))

= −m(ap + b(p + q)) = −m. (72)

5.4. The super-determinant of Ls
X . Now we can finish the calculation of the super-

determinant (65). From the index (70), a summand such as

s−i
1 s− j

2 t−k
1 t−l

2 ,
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corresponds to a mode with charge i, j, k, l under e1, e2, e3, e4, thus this mode has
−i L X eigen-value

ω1i + ω2 j + ω3k + ω4l

One then easily writes down the super-determinant as the product

sdethyp(−i Ls
X + x) =

∏
�+

(
h(i, j, k, l, x)

)·∏
�−

(
h(i, j, k, l, x)

)
,

h(i, j, k, l, x) = ω1i + ω2 j + ω3k + ω4l + (ω1 + ω2 + ω3 + ω4)/2 + x .

where we have the extra shift worked out earlier. We remark here that whenever we write
an infinite product, we mean implicitly the zeta regulated product [29], i.e.

∏
k

λk = exp
(
− ∂

∂s

1

�(s)

∫ ∞

0

∑
k

e−λk t t s−1dt
∣∣∣
s=0

)
(73)

and analytically continuated.
Notice that the product can be put in a form symmetric in x → −x . For the lattice

�−, one redefine i = −i−1, j = − j−1, k = −k−1 and l = −l−1, then the product
can be written as

∏
�−

h(i, j, k, l, x) =
∏
�+

h(−i,− j,−k,−l, x),

from the rhs one can pull out (an infinite number of) minus signs and rewrite

rhs = (−1)∞
∏
�+

h(i, j, k, l,−x).

If one so wishes, one can use the zeta function to regulate also (−1)∞, but as it is a
constant, we will just discard it. Finally the super-determinant is

sdethyp(−i Ls
X + x) =

∏
�+

h(i, j, k, l, x)· h(i, j, k, l,−x). (74)

We remark that the symmetry of x →−x in the result is no coincidence, since the matter
content of the hyper-multiplet transforms in the representation R⊕ R̄ of the gauge group,
and x →−x corresponds to taking R → R̄, so here we have a nice confirmation of this
symmetry.

For the sake of variation as well as double check, we present in the appendix a different
calculation also based on formulae given in [28]. This method resembles in appearance
the Lefschez fixed point formulae (see [30]) but differs drastically in its interpretation.
The computation can be performed on Y p,q without lifting the geometry to S3 × S3.

We need to put the product into a form more suitable for the asymptotic analysis.
Note that (71) has two subcases

m ≥ 0, i ≥ 0 : j = i + mp, k + l = 2i + m(p − q),

m > 0, j ≥ 0 : i = j + mp, k + l = 2 j + m(p + q),
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the first applies to the part of �+ above (and including) the diagonal while the second
below the diagonal. Plugging these into the product

sdethyp(−i Ls
X + x)=

∏
m, i≥0

2i+m(p−q)∏
k=0

h(i, i + mp, k, 2i + m(p − q)−k, x)· h(· · · ,−x)

∏
m>0, j≥0

2 j+m(p+q)∏
k=0

h( j + mp, j, k, 2 j + m(p + q)− k, x)· h(· · · ,−x). (75)

For the vector multiplet, one can recycle most of the results above by mapping the
complex in (60) to E � Wcan⊕W ∗

can. As such, the super determinant sdet′vec(−i L X + x)
will be the norm squared of that of the hyper-multiplet, but without the shift and without
the constant modes. In total we get

sdet′vec(−i L X + x) =
∏
�+\{0}

g(i, j, k, l, x)·
∏
�−

g(i, j, k, l, x),

g(i, j, k, l, x) = ((ω1i + ω2 j + ω3k + ω4l)2 − x2).
(76)

One can equally flip the�− part above to�+. It is convenient to divide�+\{0} into one
part �+

0 = �+ ∩ {i, j, k, l > 0} and another part �+
1 where at least one but not all of

i, j, k, l are zero. Finally the product becomes

sdet′vec(−i L X + x) =
∏
�+

0

g(i, j, k, l, x)2·
∏
�+

1

g(i, j, k, l, x).

6. Asymptotic Analysis of the Partition Function

6.1. General formulae. We can work out a slightly more general formula. Let x be a
complex variable with Re x = 0 and |Im x | � 0 and let g(t) be a function such that the
two integrals below converge.

∫ ∞

1

∣∣g(t)e−xt
∣∣dt <∞,

∫ ∞

1

∣∣g(t)′e−xt
∣∣dt <∞.

From the absolute convergence above, we know that

I =
∫ ∞

1
g(t)e−xt dt ∼ O(x−1). (77)

The technique that leads to this estimate is rather standard in asymptotic analysis. Con-
sider

I =
∫ ∞

1
g(t)e−xt dt

ibp= 1

x
e−x g(1) +

1

x

∫ ∞

1
e−xt g(t)′dt,

it is clear that both terms are of order O(x−1).
Let f (t) be a function that has Laurent expansion at t = 0 of the form

f (t) = fnt−n + · · · + f1t−1 + f0 + O(t) = f̄ (t) + O(t), (78)
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and that f (t) tends to constant at infinity. We investigate the asymptotic behaviour of
the following

J∞0 ( f ) = ∂s

(
�(s)−1

∫ ∞

0
f (t)e−xt t s−1dt

)∣∣∣
s=0
.

From the estimate (77), as well as the fact that �(0)−1 = 0 we will be free to alter the
limits of the integral as it suits us

J∞0 ( f ) = J 1
0 ( f ) + O(x−1) = J 1

0 ( f̄ ) + O(x−1) = J∞0 ( f̄ ) + O(x−1),

where f̄ is defined in (78). It is easy to see

J∞0 (t−k) = ∂

∂s

�(s − k)

�(s)
x−s+k

∣∣∣
s=0

= ∂

∂s

1

(s − k) · · · (s − 1)
x−s+k

∣∣∣
s=0

for some small k ≥ 0 we have10

J∞0 (t−k) : k = 0, − ln x; k = 1, x ln x − x;
k = 2, −1

2
x2 ln x +

3

4
x2; k = 3,

1

6
x3 ln x − 11

36
x3. (79)

From these and the Laurent expansion (78) one can completely determine the asymptotic
behaviour of J∞0 ( f (t)).

6.2. Application to Y p,q . For the hyper-multiplet, we need to work out the asymptotic
behaviour of a product of the form [the first line of (75)]

� =
∏

m,i≥0

2i+m(p−q)∏
k=0

h(i, i + mp, k, 2i + m(p − q)− k,±x).

From the definition of zeta-regulated product, the relevant integral to consider is

− ln � = ∂s
1

�(s)

∑
m,i≥0

2i+m(p−q)∑
k=0

∫ ∞

0
e−h(i, j,k,l,±x)t t s−1dt

∣∣∣
s=0

= ∂s
1

�(s)

∫ ∞

0
e−(

1
2 (ω1+ω2+ω3+ω4)±x)t t s−1dt · 1

1− e−(ω3−ω4)t( 1

1− e−(ω1+ω2+2ω4)t

1

1− e−(ω2 p+ω4(p−q))t

− 1

1− e−(ω1+ω2+2ω3)t

e−(ω3−ω4)t

1− e−(ω2 p+ω3(p−q))t

)∣∣∣
s=0
.

In performing the summation over i and m, one needs ω1 + ω2 + 2ω3,4 > 0 and ω2 p +
ω3,4(p − q) > 0, but these are implied by the dual cone condition (42).

The second line of (75) can be done similarly. It also follows from (42) that
∑
ωi > 0,

and then the function after the · satisfies the criteria laid out before and will serve as
our f (t). We can expand f (t) into a Laurent series, and follow the procedure given

10 Where ln x denotes log x in its principle branch i.e. −π < Im ln x ≤ π .
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previously to get the asymptotic behaviour. This involves a bit of meticulous calculation,
so we only give the results

− ln sdethyp = iπsgn(Im x)
(1

6
�[R]· x3 + Bh · x

)
,

Bh = − 1

24

(
(ω3 − ω4)

2 + (ω1 − ω2)
2)�[R]

− p2q(ω1 − ω2)(ω3ω4 − ω1ω2)− pq2(ω1ω2(ω3 + ω4) + (ω1 + ω2)ω3ω4)

6((ω1 + ω3)p + qω3)((ω1 + ω4)p + ω4q)((ω2 + ω3)p − qω3)((ω2 + ω4)p − ω4q)
.

(80)

That the coefficient of x3 term is proportional to the general squashed volume is perhaps
not surprising. The coefficient Bh satisfies the condition (5) as expected, but only when
taking the two terms together. The geometrical interpretation of Bh is beyond us for now,
but it may be related to some correction coming from the non-trivial topology, such as
the volume of the generator of H2(Y p,q) ∼ Z. It will be extremely interesting if one
can fix this. If we plug in the actual value of ωi for the Reeb vector (43), the result is

iπsgn(Im x)
(

x
( q

2p
�− 3

8
�
)

+
1

6
�x3

)
.

One can also allow x to have a real part, but it must be in the range

Re x ∈ [0, 1

2
(ω1 + ω2 + ω3 + ω4)

)
,

to make sure both (ω1 + ω2 + ω3 + ω4)/2± x have a positive real part so as to converge
the integral. We remark that, in the same computation on S5, the product gives the
Barne’s function and can be explicitly written in terms of poly-logarithms, which do
exhibit branching behaviour when Re x exceeds certain range. Here our function is a
generalisation of the Barne’s function, and it shows similar branching behaviours.

The calculation for the vector-multiplet is far less pleasant as it lacks the elegant
symmetry possessed by the hyper-multiplet, hence we will be just giving the result. But
we do point out that the exclusion of the constant modes in the vector part is crucial for
the convergence of the integral.

− 1

2
ln sdet′vec =

1

2
ln(−x2) + iπsgn(Im x)

(1

6
�[R]· x3 + Bv · x

)
,

Bv = 1

12
(ω2

3 + ω2
4 + 4ω3ω4 + 3(ω1 + ω2)(ω3 + ω4) + ω2

1 + 4ω1ω2 + ω2
2)�[R] (81)

− p2q(ω1 − ω2)(ω3ω4 − ω1ω2)− pq2(ω1ω2(ω3 + ω4) + (ω1 + ω2)ω3ω4)

6((ω1 + ω3)p + qω3)((ω1 + ω4)p + ω4q)((ω2 + ω3)p − qω3)((ω2 + ω4)p − ω4q)
.

If we plug in the value of ωi for the Reeb again, we get

1

2
ln(−x2) + iπsgn(Im x)

(
x
( q

2p
� +

3

4
�
)

+
1

6
�x3

)
.

It is an interesting feature that if one considers a single hyper-multiplet in the adjoint
representation, then the leading x3 term cancel just as in the S5 case and the asymptotic
behaviour of the potential for the matrix model will be |x |. In the next section we will
discuss the implication of this fact.
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7. N3-Behavior from Matrix Model

In this section we present one of the possible applications of our general result (1).
Let us consider the gauge group SU (N ) and the matter content consisting of a single
hypermultiplet in adjoint representation with mass M . We are interested in the large N
behaviour of the free energy for this model. Our analysis is completely analogous to the
treatment of the model on S5 from [13,31]. Thus we present the final result and for the
details we refer the readers to the references just given.

Let us introduce ’t Hooft coupling constant λ = g2
Y M N/r and rewrite the matrix

model (1) in terms of eigenvalues φi . In the limit λ � 1 we can assume the large
separation of eigenvalues |φi −φ j | � 1 and moreover we also assume |M | � λ. Using
the asymptotic expansions (80) and (81) the matrix model is drastically simplified the
large ’t Hooft coupling

Z =
∫ ∏

i

dφi exp
(
− 8π3 N

λ
�
∑

i

φ2
i +

π

2

[
1

4
(

4∑
i=1

ωi )
2 + M2

]
�
∑
i, j

|φi − φ j |
)
,

where the matrix model is written in terms of φ eigenvalues. Following the same logic
as in [31] we can evaluate the free energy on the saddle point and obtain the following
expression

F = − log Z = −g2
Y M N 3

96πr
�

(
1

4
(

4∑
i=1

ωi )
2 + M2

)2

. (82)

for the general squashed Y p,q space. If we consider the case of unsquahed Y p,q space
and set

∑
ωi = 3, in fact, it was shown in [26] that

∑
ωi = 3 is a necessary condition

for the Reeb vector to admit an SE metric, then we arrive to

F = − log Z = −g2
Y M N 3

96πr
�

(
9

4
+ M2

)2

. (83)

Surprisingly the result is identical to that of the theory on S5 up to a volume factor �.
Using the results presented in this paper, it is straightforward exercise to generalise

to squashed Y p,q space the treatment of matrix models for 5D SCFTs presented in [11].

8. Discussion

In this paper we considered the 5D Yang–Mills theory with matter on Y p,q manifolds.
This theory preserves two supersymmetries and this is sufficient for us to localise the
model. The partition function is localised on contact instantons, however, a general treat-
ment of the instanton sector presents some challenges due to complications in geometry
and is left for the future. We perform explicit calculation only for the zero instanton
sector and obtained the full perturbative result in terms of certain special functions and
we studied their asymptotic properties.

Let us briefly discuss some related topics:

• Isometry and enlargement of supersymmetry

We can wonder whether we can enlarge the number of susy for a given Y p,q geometry.
The answer seems to be a disappointing ‘no’, at least when one does not turn on extra
background fields.
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Let us investigate the extreme case of S5 embedded in R
6, which has an SO(6)

isometry. Choose three SO(2)-rotations along the 1–2, 3–4 and 5–6 direction as the
Cartan of so(6). The Reeb vector is the sum R = ∑

ei , let X be an isometry that does
not commute with R, and let Ls

X act on the Killing spinors. Since Ls
X preserves the Killing

spinors, then Ls
Xψ must also be a Killing spinor linearly independent of ψ , this way we

have enlarged the number of super charges (this method of analyzing the susy algebra
is used in [32,33]). Indeed for S5 with the round metric, we get eight super-charges
transforming in 4 ⊕ 4̄ of so(6). For S5 with various squashed metric, one has reduced
isometry and hence only a fraction of susy is preserved [4].

For the Y p,q manifold, the infinitesimal isometry is shown to be su(2)⊕ u(1)⊕ u(1)
[25], but unfortunately all these isometries commute with the Reeb and hence generate no
new susy. Actually this follows from a deeper reason. Bär’s cone construction [34] shows
that the Killing spinors on M correspond to parallel spinors on the metric cone C(M),
thereby converting the classification problem of Killing spinors to the classification of
holonomy on C(M). The latter problem is by now well-understood and the situation is
summarised in theorem 5.15 from [35], which shows that S5 is the only 5D manifold
with Killing spinors of type (4, 4) (this means 4 Killing spinors with μ = 1 and 4 with
μ = −1); the other SE manifolds admit only Killing spinors of type (1, 1).

• Generalisation to La,b,c spaces

The spaces La,b,c contain Y p,q as a subclass (see [36], whereas the SE metric is pre-
sented in [37]). The construction of such spaces is similar, one takes the quotient of C

4

with respect to a U (1) of charge [a, b,−c,−a − b + c], with appropriate coprimeness
conditions on the three positive integers a, b, c, to form the Kähler cone over the desired
SE space. Hence, we expect that most of our calculation can be generalised to La,b,c

spaces rather easily, and one obtains the partition function written in terms of the function
S�, but with the lattice determined by the new charge vector [a, b,−c,−a−b + c]. The
result may reveal more how the partition function depends on the non-trivial homology
of the space.
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under grant � 2011-5079.

A. Notations and Conventions

We follow the convention for spinors from [15]. The gamma matrices satisfy the Clifford
algebra

{�a, �b} = 2δab,

and the charge conjugation matrix satisfies

C−1(�a)T C = �a, CT = −C, C∗ = C.

Note that the type-writer fonts are reserved for flat indices.
The spinor bi-linears are formed using C ,

ψT Cχ
abbreviate−→ ψχ, (84)
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though throughout the paper, these bi-linears are abbreviated as (ψχ), following the
notation of [15]. Due to the symmetry property of C , one has

(ψχ) = −(χψ), (ψ�aχ) = −(χ�aψ), (ψ�abχ) = (χ�abψ),
where�a1...an = (1/n!)�[a1 . . . �an] and all spinors appearing above are bosonic (even).
The product of three or more gamma matrices can be reduced

�abceabcde = −6�de, (85)

where ea...b is the Levi-Civita symbol e12345 = 1.
On a curved manifold, one defines the gamma matrices by means of the veilbeins,

i.e. a set of mutually orthogonal (local) sections of the tangent bundle

Ea ∈ �(T M), 〈Ea, Eb〉 = δab,
where 〈−,−〉 is the pairing using the metric g. The gamma matrices are defined as

�m = Ema�a, �m = gmn�
n,

and the duality (85) turns into

1

3!g
1/2�mnpε

mnp
qr = −�qr . (86)

One may also consult the appendix of [2] for the Fierz identities.
We also use Dirac’s slash notation

/M = Mi1...i p�
i1...i p , M ∈ �p(M),

and to keep the formulae neat, we will even dispense with the slash whenever confusion
is unlikely.

The SU (2) R-symmetry index are raised and lowered from the left

ξ I = ε I J ξJ , ξI = εI J ξ
J , ε I K εK J = δ I

J , ε12 = −ε12 = 1.

• The spinor Lie derivative. This notion is quite old [38], but it is explained more
transparently in the physics context by Figueroa-O’Farrill [33]. For a Killing vector, one
defines

Ls
X = DX − 1

8
∇[m Xn]�mn = DX − 1

8
/d X ,

which satisfies ( f is a function and Y is any vector field)

[Ls
X , /Y ] = [X,Y ]·�, [Ls

X , f ] = L X f,

[Ls
X , Ls

Y ] = Ls
[X,Y ], [Ls

X , DY ] = D[X,Y ]. (87)

In this paper almost all covariant derivatives will be denoted as D, be it on the spin bundle
or the gauge bundle; but ∇ will be reserved for the Levi-Civita covariant derivative. The
vector indices are raised and lowered with the metric tacitly, e.g. the d X above means
identifying X with a 1-form using the metric.
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B. The Shift

The simple task to accomplish here is to compute Ls
Xψ where X is a Killing vector

commuting with R and ψ is a Killing spinor. We just outline the procedure here.
First it is easy to see that Ls

Xψ will remain a Killing spinor even if X does not
commute with R, by using the last property of (87). But we need to show something
stronger, i.e. that Ls

X preserves the subbundle defined in (28). The first condition of (28)
is easy, since

[Ls
X , R]ψ = (L X R)ψ = 0,

using L X R = 0. For the second condition, one needs some computation. The following
relation will also be useful

0 = L X J p
q = ∇X J p

q − Jr
q∇r X p + J p

r ∇q Xr

= −R
p Xq + X p

Rq − 1

2
(d X)p

r J r
q +

1

2
J p

r (d X)rq , (88)

which places a restraint on the (2, 0) + (0, 2) part of d X .
One then writes

[Ls
X , A(Y )] = [D̃X − iμ

2
X +

1

8
/d X , A(Y )],

we already know that [D̃X , A(Y )] restricts to zero. The two latter terms are computed
to be

− iμ

2
[X, A(Y )] = −iμA(Y ) + i(X JY ) +

μ

2

(
(X · Y )− XY R + 2X (R· Y )

−(X · R)Y + R(X · Y )),[
/d X , A(Y )

] = −8μιY (R ∧ X)− 4A(ιY d X)− 4iμY A(X) + 2μY (1 + R)X

+8i(Y J X).

Combine the two pieces, ignoring anything containing A and using R·ψ = −ψ , one
gets [Ls

X , A(Y )] = 0. So the second condition of (28) is preserved by Ls
X .

Since we know that Ls
Xψ remains a Killing spinor, furthermore the subbundle (28)

is of rank one, one then sees that Ls
Xψ is a constant multiple of ψ . To find this propor-

tionality coefficient, we look at Ls
Xψ more closely

Ls
Xψ =

(
− iμ

2
X || +

1

8
(d X⊥)pq�

pq
)
ψ,

where X || = (R · X)R and d X⊥ is the horizontal part of d X . Now consider d X⊥, it can
be decomposed into self and anti-self dual part, the latter vanishes when acting on ψ ,
as was shown in (27). As for the self-dual part, it can be either (1, 1) or (2, 0) + (0, 2)
w.r.t J , the latter again vanishes due to (88). What remains is the self-dual (1, 1) part of
d X⊥, but note that such a 2-form is necessarily proportional to J . To see this assume M
is (1, 1) self-dual and choose the volume form to be 1/2J ∧ J

M = ∗4 M = 1

2
〈M, J 〉J + J M J = 1

2
〈M, J 〉J + J M J = 1

2
〈M, J 〉J − M,

⇒ M = 1

4
〈M, J 〉J,

where 〈M, J 〉 = Mpq J pq .
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Thus Ls
X acting on ψ simplifies to a multiplicative factor

Ls
Xψ =

( iμ

2
(X · R) +

1

32
〈d X, J 〉/J )ψ = iμ

(1

2
(X · R)− 1

8
〈d X, J 〉)ψ = iμ fXψ, (89)

where we used (29).
As a check that fX is a constant, let us look at X = R and compute fR from (89)

fR = 1

2
〈R, R〉 − 1

8
(−2)〈J, J 〉 = 1

2
+

1

4
(+4) = 3

2
,

which is the correct result from our S5 computation [2]. It is nonetheless worth the effort
to figure out fX for a more general X , which then allows us to get the fully equivariant
partition function.

Now that we know fX is a constant, we can evaluate it at a convenient point, say, a
point where X = 0, and (89) simplifies to

fX = −1

4
(∂p Xq)J p

q ,

where the covariant derivative has been swapped for ordinary derivative since X = 0. For
our particular case, we know Y p,q comes from reduction data, and the complex structure
is inherited from the canonical one on C

4, we can compute the above expression in C
4.

For each ei , go to one of its fixed point, one has

(∂peq
i )J

p
q = −2,

the computation is valid passing down to the quotients, since ιT η = μT = 0. As a final
check, let us plug in the Reeb vector decomposed into U (1)’s, namely

R = (3

2
− 1

2(p + q)�

)
(e3 + e4) +

1

(p + q)�
e2,

since each ei contributes 1/2, we get once again 3/2.

C. The Explicit Metric

The metric is given by

ds2 = 1− cy

6
(dθ2 + sin2 θdφ2) +

1

w(y)q(y)
dy2 +

q(y)

9
(dψ − cos θdφ)2

+w(y)
[
dα + f (y)(dψ − cos θdφ)

]2
, (90)

w(y) = 2(a − y2)

1− cy
, q(y) = a − 3y2 + 2cy3

a − y2 , f (y) = ac − 2y + y2c

6(a − y2)
.

The parameter c will be set to be 1 when it is not zero. The angle variable α has period
2π�, where � is defined in (44). The parameter a is given by

a = 1

2
+

1

4
(−1 + 3λ−2)

√
4− 3λ−2, λ = p/q,



5D Super Yang–Mills 897

and y is restricted to the range y1 ≤ y ≤ y2, where y1,2 is the negative and the smaller
positive root of the cubic equation a − 3y2 + 2y3 = 0. In particular

y1 = 3

4
(1− λ−1)− y3

2
, y2 = 3

4
(1 + λ−1)− y3

2
, y3 = 3

2
(1− λ−2) +

1

2pλ�
.

The following is easy to check, and will be important later

f (y1) = �

2
(p + q), f (y2) = �

2
(q − p). (91)

With these choice of parameters, the manifold is homeomorphic to a U (1) bundle over
S2 × S2 with degree p and q.

Next, we will try to read off the change of coordinates from the metric, in particular,
we want to reproduce table (37). The first term is the metric of the round sphere, which
is what we call the base sphere. The second and third term describes the fibre sphere,
note that the term − cos θdφ in the combination dψ − cos θdφ is the connection for
the fibration. In this original way of presenting the metric, it may seem that dφ is ill-
defined at θ = 0, π , since at the two poles the azimuth angle is undetermined. The
reason for this is that the fibration associated to the degree−2 U (1) bundle is trivialised
everywhere except at the two poles, where each pole hosts a −1 point charge (note that
ddφ is not zero but a delta function). In this paper, we prefer to present the metric in the
traditional way, namely, we will remove the delta function charge but re-introduce the
transition function at the equator. To do so, in the patch U00 : θ < π, y > y1, redefine
ψ00 = ψ − φ and φ00 = φ, but at the patch U10 : θ < π, y < y2, ψ10 = −ψ + φ and
φ10 = φ. This way, in U10, the combination

dψ − cos θdφ = dψ00 + (1− cos θ)dφ00,

and similarly for U10:

dψ − cos θdφ = −dψ10 + (1− cos θ)dφ10.

But on the intersection U00 ∩U10, we have ψ10 = −ψ00.
One has to do the same for the U (1) fibre parameterised by α. In the patches U00 and

U10, define α00 = α + f2ψ00, and α10 = α − f1ψ10, then

dα + f (y)(dψ − cos θdφ) = dα00 − f2dψ00 + f (y)(dψ00 + (1− cos θ)dφ00)

= dα10 + f1dψ10 + f (y)(−dψ10 + (1− cos θ)dφ10),

then the singularity at y = y1,2 is removed. On the intersection U10 ∩U00,

φ10 = φ00, ψ10 = −ψ00, α10 = α00 + ( f1 − f2)ψ00.

Now we get go to the patches covering θ = π ,

U01 : {θ > 0, y > y1}, φ01 = −φ00, ψ01 = ψ + φ = ψ00 + 2φ00,

α01 = α + f2(ψ + φ) = α00 + 2 f2φ00,

U11 : {θ > 0, y < y2}, φ11 = −φ00, ψ11 = −φ − ψ = −2φ00 − ψ00,

α11 = α + f1(φ + ψ) = α00 + ( f1 − f2)ψ00 + 2 f1φ00.
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From these change of coordinates we get the table below

U10 U01 U11
∂φ00 ∂φ10 −∂φ01 + 2∂ψ01 + 2 f2∂α01 −∂φ11 − 2∂ψ11 + 2 f1∂α11

∂ψ00 −∂ψ10 + ( f1 − f2)∂α10 ∂ψ01 −∂ψ11 + ( f1 − f2)∂α11

.

Identifying ∂φ00 = ∂φ10 = [0, 0, 1, 0], ∂φ01 = ∂φ11 = [0, 0, 0, 1], ∂ψ00 = ∂ψ01 =[1, 0, 0, 0], ∂ψ10 = ∂ψ11 = [0,−1, 0, 0], and taking into account (91) and some normal-
isation, this table is identical to table (37).

Finally, the Reeb vector in the original coordinates is

R = ∂

∂ψ
− 1

6

∂

∂α
.

Rewriting this in the new coordinates gives for example in patches U00, U10

R = ∂

∂ψ00
+ ( f2 − 1

6
)
∂

∂α00

= − ∂

∂ψ10
+ ( f1 − 1

6
)
∂

∂α10
.

Close to y = y1,2, the first terms both vanish, and the second terms f2,1−1/6 = −y2,1/6
change sign. This fact plays a crucial role in method II of the index calculation.

D. Calculation of the Index Method II

This approach is less demanding on one’s knowledge of the global geometry on the
spcae in question but is certainly more long winded. The material we present here is in
lecture 8 of [28]. As was explained earlier, a transversally elliptic operator D induces
an element [σ(D)] ∈ KG(T ∗G X), and the ellipticity ensures that the symbol σ(D) is an
isomorphism except along the zero section of T ∗G X . It is convenient to pick a G-invariant
metric and identify T ∗G X with TG X , consisting of the tangent vectors orthogonal to the
group action. One can deform the symbol of the operator slightly along a vector field,
and make the symbol into an isomorphism even on the zero section of TG X , provided
one stays away from the zero of the vector field in question. It will be natural to use a
vector field generated by the group action for this job.

Now let us take G = U (1)n , and define a filtration of X

X = X0 ⊃ X1 ⊃ · · · ⊃ Xn+1 = ∅,
where Xi = {x ∈ X : dim Gx ≥ i} with Gx being the stability group at x . The key to
the localisation of the index calculation is the following exact sequence

0 → KG(TG(X − Xi ))→ KG(TG(X − Xi+1))
θi� KG(TG X

∣∣
Xi−Xi+1

)→ 0,

The sequence above is split exact, and we will describe the splitting map θi shortly.
From the split exactness, the middle term is just the direct sum of the two terms on the
end

KG(TG(X − Xi+1)) � KG(TG(X − Xi ))⊕ θi KG(TG X
∣∣

Xi−Xi+1
).
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One can continue with the same game with KG(TG(X − Xi )) and bootstrap oneself all
the way from X − X1 to X − Xn+1 = X .

One can further determine KG(TG X
∣∣

Xi−Xi+1
) by relating it to KG(TG(Xi − Xi+1))

through the Thom isomorphism, since TG X
∣∣

Xi−Xi+1
is a complex vector bundle over

TG(Xi − Xi+1). To summarise, we have that KG(TG X) is a direct sum

KG(TG X) = ⊕iφi KG(TG(Xi − Xi+1)), (92)

where φi is the composition of the Thom isomorphism and θi . Hence given any symbol
[D] for which we want to compute the index, we can decompose [D] ∈ KG(TG X) as the
sum of classes [D] = φi KG(TG(Xi − Xi+1)), in the hope that the index homomorphism
of the summands can be determined by other means. In our situation, we will only need
the cases when Xi − Xi+1 are either circles or points, and their K -group is

KG(pt) = R(G), KU (1)(TU (1)S
1) = KU (1)(S

1) = R(U (1))/(λ), λ = 1− t−1,

(93)

where we use a Laurent polynomial f (t) to denote both a function on U (1) and direct sum
of representations, for example f (t) = t−1 +2t2 means a direct sum of 3 representations
of U (1), one with charge −1 and two with charge 2. The index homomorphism is
given by assigning a representation to its character, in particular for the zero symbol
[0] ∈ KU (1)(TU (1)S1), its index is

ind[0] = δ(1− t), (94)

which is annihilated by (1− t−1), as it should from (93).
Amongst the two parts making up φ, the Thom isomorphism is well-understood,

what is tricky is θi . For clarity, we take a simpler situation, which is actually sufficient
for all our calculations later

0 → KG(TG(C− {0}))→ KG(TGC)
θ±� KG(C)→ 0,

where G = U (1) acting on C in the standard way.11 Take for example 1 ∈ KG({0}) and
the Thom isomorphism multiplies to it the class σ = [∂̄] ∈ KG(C). One would like to
‘insert’ σ into KG(TGC), in such a way that when restricted to C one gets σ back. One
can certainly extend σ to KG(TGU )where U is a small neighbourhood of {0} (using the
retraction U → {0}) for example). But this alone will not do, since in order to insert σ
into TGC, one needs σ to have support only in a compact subset of TGU so as to make
the insertion ‘local’, but σ is never an isomorphism on the zero section of TGU , then as
U is open, the support of σ is not compact. This is where one needs to use the vector
field generated by G to deform σ so that σ is an isomorphism outside a compact subset
of TGU . Depending on in which direction one deforms σ , one gets two classes [∂̄±],
and if one applies the index homomorphism to these two classes, one gets

indU (1)([∂̄±]) =
[ 1

1− s−1

]±
, (95)

where s is the coordinate of G = U (1). The superscript ± corresponds to two regulari-
sations that send the rational function 1/(1− s−1) into distributions such that

(1− s−1)
[ 1

1− s−1

]± = 1.

11 In this case X = C, X1 = {0}, and KG ({0})→ KG (C) = KG (TGC
∣∣{0}) is the Thom isomorphism.
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The explicit expression for ind([∂̄±]) is

P(s) =
[ 1

1− s−1

]+ = −s − s2 − · · · ,

N (s) =
[ 1

1− s−1

]− = 1 + s−1 + s−2 + · · · ,
δ(1− s) = N (s)− P(s),

it is easy to verify (1−s−1)N (s) = (1−s−1)P(s) = 1 and hence (1−s−1)δ(1−s) = 0
as delta function does.

As an example (and a rather pedestrian one, but it will help us establish some con-
ventions), let us compute the index of [∂̄] ∈ KG(T ∗GO(p))where O(p) is the total space
of the U (1) bundle over S2 of degree p ≥ 0, which can be presented as

[z1, z2, eiθ ]/ ∼, [z1, z2, eiθ ] ∼ [z1eiα, eiαz2, eipα+iθ ].
The group G is U (1)2 with the action

s : [sz1, z2, eiθ ], u : [z1, z2, ueiθ ]. (96)

Note the second U (1) is free. The above is valid close to the north pole z1 = 0, while at
the south pole, the action of the two U (1)’s becomes

s : [z1, s−1z2, s−peiθ ], u : [z1, z2, ueiθ ]. (97)

It is not hard to decompose [∂̄] into the direct sum (92). At z1 = 0 or z2 = 0
one of the U (1) degenerates, by applying the restriction map to, say, z1 = 0, then
KG(TGO(p)) → KG(TGO(p)|z1=0) = KG(C × S1). In this process [∂̄] restricts to
the 0 symbol on the S1 factor, so we just get the contribution [∂̄±]· δ(1 − u) from the
fixed point z1 = 0, depending on our choice of the splitting map θ±. One gets a similar
contribution θ±KG(C × S1) from z2 = 0, where the U (1)2 actions on the two factors
should be read off from (97).

How do we decide consistently which splitting map θ± to use? We will choose a
global vector field generated by a U (1)-action, e.g. the first U (1) in (96), and trivialise
the symbol [∂̄] globally except at the zeros of the vector field, then by scrutinising the
symbol [∂̄] close to the zeros, we can find out whether it should be [∂̄+] or [∂̄−].

The U (1) we have chosen is just the standard rotation of a sphere. Denote the in-
homogeneous coordinate of S2 as z = z1/z2 and the vector field of this rotation is
v = i(z∂ − z̄∂̄). Recall that the symbol σ(∂̄) sends a tangent vector X to a bundle
morphism σ(∂̄)(X) : �0,0(S2,O(p))→ �0,1(S2,O(p)), one can deform the symbol
into

σ±(∂̄)(X) = σ(∂̄)(X ± v),
which will remain a bundle isomorphism even when X = 0, thus trivialising the symbol
σ(∂̄) except at the two poles. This deformation correspond to the symbol [∂̄±] introduced
earlier. We choose the + option (choosing − makes no difference).

Now we can assemble the contributions from the two poles [using also (95)]

north pole :
[ 1

1− s−1

]+
δ(1− u) = −(s + s2 + · · · )δ(1− u),

south pole :
[ 1

1− s

]+
δ(1− us−p) = (1 + s + s2 + · · · )δ(1− us−p).
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Combining the the two terms, and we collect the coefficient proportional to un

ind([∂̄])(un) = −(s + s2 + · · · ) + (1 + s + s2 + · · · )s−pn=
{n ≥ 0 1 + · · · + s−pn

n < 0 −s − · · · − s−pn−1,

in particular, evaluating at s = 1, the coefficient of un is the index

dim H0(S2,O(pn))− dim H1(S2,O(pn)).

Notice that in general one does not have the luxury of evaluating an index at certain
value, since the indices will be a distribution not a function.

Now we are ready to take on our problem of computing the index on Y p,q . We take
G = U (1)3 generated by e1, e3 of table (37) and α which is free, and denote by s, t and
u the coordinates of the three U (1)’s.

The operator D we want to compute is the ∂̄-operator whose complex structure is
the one determined by J , which as we saw in Sect. 3.3 agrees with one on the base S2

of the fibration S2
� S2. While over the fibre S2, it is homotopic to ∂̄ close to the north

pole, but to −∂ close to the south pole. We will again choose e1 and e3 to trivialise the
symbol σ(D) everywhere except the four poles, and from the previous discussion of the
complex structure, the trivialisation procedure is identical to the previous example when
restricted to the base S2. On the fibre sphere, the situation is similar to the case in lemma
6.4 in [28], and one can trivialise D by trivialising ∂̄ with the positive regularisation
close to the north pole and −∂ with the negative regularisation close to the south pole.
This choice of regularisation will then mesh together at the equator.

To summarise, we have the following contribution (where the notation of the four
patches Ui j were defined in Sect. 3.3)

pole in U00 :
[ 1

1− s−1

]+[ 1

1− t−1

]+
δ(1− u),

pole in U01 :
[ 1

1− v−1

]+∣∣∣
v=t2s

[ 1

1− t

]+
δ(1− utq−p),

pole in U10 :
[ 1

1− s−1

]−[ 1

1− t−1

]+
δ(1− us p),

pole in U11 :
[ 1

1− v−1

]−∣∣∣
v=t2s

[ 1

1− t

]+
δ(1− us pt p+q),

where the change of variable can be read off from the table (37).
Now combine the U00 and U10 contribution, and single out the term of power um ,

then the sum over s looks like

m < 0 :
(
−

∞∑
1

sk +
pm∑
−∞

sk
)[ 1

1− t−1

]+
, m ≥ 0 :

(
−

∞∑
pm+1

sk +
0∑
−∞

sk
)[ 1

1− t−1

]+
.

The combination of U10 and U11 contribution can be obtained by replacing s → t2s,
t → t−1 as well as including an overall factor tm(q−p)

m < 0 tm(q−p)
(
−

∞∑
1

(t2s)k +
pm∑
−∞
(t2s)k

)[ 1

1− t

]+

m ≥ 0 tm(q−p)
(
−

∞∑
pm+1

(t2s)k +
0∑
−∞
(t2s)k

)[ 1

1− t

]+
.



902 J. Qiu, M. Zabzine

i

j 4

2

1

3

−pm
−pm·

Fig. 2. The two lower lines have m < 0 and the two upper m ≥ 0. And each lattice point on the lines in the
first quadrant has multiplicity 1 + 2i + m(p − q), while those in the third quadrant −2i + m(q − p)− 1

Once all four contributions are combined, one observes that one can send t = 1 safely,
this is so because D restricts to an elliptic operator on the base sphere. We will keep t and
expand out [1/(1 − t±1)]+, there will be some partial cancellations, which correspond
to the missing segments between line 1, 2 and 3, 4 in Fig. 2.

m < 0
( ∞∑

1

sk
2k+m(q−p)−1∑

j=1

t j +
pm∑
−∞

sk
0∑

2k+m(q−p)

t j
)

m ≥ 0
( ∞∑

pm+1

sk
2k+m(q−p)−1∑

j=1

t j +
0∑
−∞

sk
0∑

2k+m(q−p)

t j
)
.

To facilitate comparison with the calculation in Sect. 5.3, we rename k = −i , j = −k
and our index becomes

m < 0
( −1∑

i=−∞
s−i

−1∑
k=2i−m(q−p)+1

t−k +
∞∑

i=−pm

s−i
2i−m(q−p)∑

k=0

t−k
)

m ≥ 0
(−pm−1∑

i=−∞
s−i

−1∑
k=2i−m(q−p)+1

t−k +
∞∑

i=0

s−i
2i−m(q−p)∑

k=0

t−k
)
.

The four terms correspond each to the four lines in the Fig. 2, and the agreement
with (70) is crystal clear. As we have already remarked in (72) that the mode m in (71)
is the mode of the free U (1) denoted as α, and here by doing the calculation differently,
we are merely changing the order of summation (but in a manner that is allowed for an
infinite sum).
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