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Abstract: In this paper we identify the problem of equivariant vortex counting in a
(2, 2) supersymmetric two dimensional quiver gauged linear sigma model with that of
computing the equivariant Gromov–Witten invariants of the GIT quotient target space
determined by the quiver. We provide new contour integral formulae for the I and J -
functions encoding the equivariant quantum cohomology of the target space. Its chamber
structure is shown to be encoded in the analytical properties of the integrand. This is
explained both via general arguments and by checking several key cases. We show
how several results in equivariant Gromov–Witten theory follow just by deforming the
integration contour. In particular, we apply our formalism to compute Gromov–Witten
invariants of the C

3/Zn orbifold, of the Uhlembeck (partial) compactification of the
moduli space of instantons on C

2, and of An and Dn singularities both in the orbifold
and resolved phases. Moreover, we analyse dualities of quantum cohomology rings of
holomorphic vector bundles over Grassmannians, which are relevant to BPS Wilson loop
algebrae.

1. Introduction

One of the most exciting aspects of supersymmetric quantum field theories is the possi-
bility to get exact non perturbative solutions via a variety of techniques. In this paper we
will focus on two dimensional gauge theories with four supersymmetries. In these cases
the non perturbative aspects are captured by vortex counting. This was initially developed
in [1], which applied the equivariant localization of [2] to two dimensional gauge theo-
ries giving explicit vortex partition function formulas, which recently attracted attention
in the context of AGT correspondence [3] and knot theory [4]. Vortex partition functions
have been related to CFT degenerate conformal blocks and to topological strings in
[4–9]. General contour integral formulae for vortex counting have been obtained in [10]
[11] in the study of supersymmetric partition functions on S2. These partition functions
have been conjectured to compute the quantum Kähler potential of the target space of
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the corresponding infrared NLSM in [12]. Evidence of this conjecture was provided
in [13]. Further studies along these lines have been presented in [14–18]. In this paper
we will elaborate on these issues from a different viewpoint by using supersymmetric
localization on S2 to provide new contour integral formulae for the I and J -functions
describing the equivariant quantum cohomology of GIT quotients in terms of Givental’s
formalism [19] and its extension to non abelian quotients in terms of quasi-maps [20].

One of the implications of our results is thus that the equivariant vortex partition
functions contain not only information about the Gromov–Witten invariants of the IR
target space, but also their gravitational descendants. As will be explained more in detail
in Sec.2, this is a consequence of the equivariant localization procedure with respect
to a supersymmetric charge that closes on U (1)R rotations of the sphere. From the
geometrical viewpoint, one thus considers S1-equivariant maps from a sphere marked
with North and South poles, where the gravitational descendants are inserted, to the
target space.

We provide general rules for the calculation of supersymmetric spherical partition
functions of quiver gauge theories and the corresponding I-functions. Our formalism
applies to both compact and non compact Kähler manifolds with c1 ≥ 0. One key
result that we will obtain is the possibility of analyzing the chamber structure and wall-
crossings of the GIT quotient moduli space in terms of integration contour choices. In
particular, we will obtain an explicit description of the equivariant quantum cohomology
and chamber structure for the resolutions of C

3/Zn orbifolds and for the Uhlembeck
partial compactification of the instanton moduli space.

We remark that, as observed in [21], the OPE algebra of circular BPS Wilson loops
in three dimensional supersymmetric gauge theories can be reduced in some cases to the
equivariant quantum K-ring of certain quasi projective varieties. In particular this led to
conjecture an equivalence of the quantum cohomology rings of suitable vector bundles
over complex Grassmannians using 3d dualities and circle compactification. We will use
our methods to prove this conjecture in Sect. 4.

The paper is organized as follows. In Sect. 2 we provide a general discussion about
the relation between the spherical partition function of a given GLSM and the quantum
cohomology of the space it flows to in the IR in terms of I and J -functions. In Sect.
3 and 4 we provide several examples of calculations of the quantum cohomology of
abelian and non-abelian GIT quotients. We study in particular the chamber structure of
the crepant resolution of the orbifold C

3/Zn in Sect. 3.4.2 and of the ADHM moduli
space in Sect. 4.4. The duality between Grassmannians is discussed in Sect. 4.1 (with
details in the Appendix) and quiver gauge theories are discussed in Sect. 4.2 and 4.3.
Finally, in Sect. 5 we draw our conclusions and discuss further directions.

2. Gauge Linear Sigma Models, Stability Conditions and Wall Crossing

In this section we discuss how the exact equivariant partition functions of general N =
(2, 2) gauged linear sigma models on the two-sphere with a U (1) vector R-symmetry
[10,11] encode the quantum cohomology of the target IR geometry in various stability
chambers and the wall crossing among them.

The partition function for a given gauge group1 G and matter in the representation
R depends on the twisted masses which can be coupled to the system breaking its

1 The localization applies to any classical Lie group ABCDEFG. In this paper we will focus on the U (N )

case.
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continuous flavor symmetry group G F to its maximal abelian subgroup TF . The theory
in general allows a gauge invariant holomorphic non singular superpotential W .

The resulting object, in the Coulomb branch localization scheme, is given as an
integral over the Cartan algebra tG of the gauge symmetry group

Z S2 = 1

|W (G)|
∑

�m∈ZrG

∫

tG
d �τe−Scl μGμR (2.1)

where |W (G)| is the order of the Weyl group of G, rG = dimtG is the rank of the gauge
group. Scl = −4π �ξ · �τ + i �θ · �m is the classical action of the GLSM depending on the
FI parameters vector �ξ (one for each U (1) factor in G), the magnetic fluxes �m and the
theta-angles �θ . More specific rules for quiver gauge theories will be presented in Sect. 4.

In (2.1) μG is the one loop determinant of the gauge multiplet

rG∏

r<s

(
m2

rs

4
− τ 2

rs

)
, (2.2)

where mrs = mr − ms and τrs = τr − τs , and μR is the one-loop determinant of the
matter multiplets

∏

ρ∈R

�
(

q/2 + rρ(τ)− ρ(m)
2

)

�
(

1− q/2− rρ(τ)− ρ(m)
2

) (2.3)

where q is the vector R-charge, r is the radius of S2 and ρ is the weight of the represen-
tation the matter multiplet belongs to.

Thanks to (2.1), the computation of the partition function is reduced to residues
evaluation as

∮ rG∏

r=1

d(rλr )

2π i
(zz̄)−rλr Z1l Zv Zav (2.4)

where z = e−2π �ξ+i �θ labels the different vortex sectors, (zz̄)−rλr is a contribution from
the classical action, Zv is the equivariant vortex partition function on the north pole
patch, Zav is the equivariant vortex partition function on the south pole patch and Z1l is
the remnant one-loop measure. The contour of integration in (2.4) crucially depends on
the choice of the FI-parameters and this, as we will specify better in a moment, encodes
the geometric interpretation of the partition function.

One can actually read the GLSM data from a geometric perspective as in the following
Table 1 [22].

Let us remark that the GLSM counterpart of the GIT stability condition is in the
D-term equation which crucially depends on the FI parameters. The different stability
chambers are in one-to-one correspondence with the phases of the GLSM as defined by
the domains of the FI parameters. As far as the models that we study in this paper are
concerned, for Abelian quotients, when the FIs are large and positive one describes a
geometric phase, namely a NLSM on a Kähler target manifold [12], while for negative
FIs the GLSM is in a Landau-Ginsburg phase describing an orbifold target space. In the



720 G. Bonelli, A. Sciarappa, A. Tanzini, P. Vasko

Table 1. GLSM vs. GIT quotient

GLSM GW
Matter fields Quasi-affine variety A
Gauge group G GC action on A
F/D-terms Stable GIT quotient A//GC

non-Abelian case, the possibility of having a reflection symmetry on the FI opens up
leaving the orbifold phases at the fixed point of the reflection.

From the perspective of Eq. (2.4), different FI phases imply that the integral con-
verges at different asymptotic regions of the τ -plane imposing different choices of the
contour integral. As we will largely exemplify in the following, this allows us to describe
the quantum cohomology of the corresponding GIT quotients in the different stability
chambers. In particular, we will study the crepant resolution conjecture for both abelian
and non-abelian quotients, focusing on C

3/Zn and on the Uhlembeck (partial) compact-
ification of the ADHM moduli space respectively. This provides conjectural formulas
for the I and J -functions which are shown to reduce in the relevant particular cases to
those of [23] for the Z3 and Z4 orbifolds and of [24] for the symmetric product of points
in C

2 (see later sections).
Let us now provide more details on how the quantum cohomology of the target GIT

quotients is computed from the spherical partition function. It has been argued in [12]
that the spherical partition function computes the vacuum amplitude of the NLSM in
the infrared

〈0̄|0〉 = e−K, (2.5)

where K is the quantum Kähler potential of the target space X . A general argument
for the validity of this conjecture has been provided in [13], the main idea of which
goes as follows. One considers the spherical partition function on the squashed two-
sphere discovering that it is independent on the squashing parameter. Then the limit of
extreme squashing is identified with the topological-antitopological fusion 〈0̄|0〉. We
remark that although [13] focused on Calabi–Yau target manifolds, its arguments apply
also to Fano manifolds, for which both the A and B-twist are well defined, the latter
being a Landau-Ginzburg model with cylinder as its target space. Indeed we will discuss
several examples of this type including (weighted) projective spaces and (partial) flag
manifolds.

Let us now draw some further steps in the analysis of the spherical partition function
from a general viewpoint. Let us rewrite the above vacuum amplitude in a way which is
more suitable for our purposes. Following [25,26], let us introduce the flat sections Va
of the Gauss-Manin connection spanning the vacuum bundle of the theory and satisfying

(
�Daδc

b + Cc
ab

)
Vc = 0, (2.6)

where Da is the covariant derivative on the vacuum line bundle and Cc
ab are the coef-

ficients of the OPE in the chiral ring of observables φaφb = Cc
abφc. The observables

{φa} provide a basis for the vector space of chiral ring operators H0(X)⊕ H2(X) with
a = 0, 1, . . . , b2(X), φ0 being the identity operator. The parameter � is the spectral pa-
rameter of the Gauss-Manin connection. Specifying the case b = 0 in (2.6), we find that
Va = −�Da V0 which means that the flat sections are all generated by the fundamental
solution J := V0 of the equation

(
�Da Db + Cc

ab Dc
)J = 0. (2.7)
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In order to uniquely fix the solution to (2.7) one needs to supplement some further
information about the dependence on the spectral parameter. This is usually done by
combining the dimensional analysis of the theory with the the � dependence by fixing

(�∂� + E) J = 0, (2.8)

where the covariantly constant Euler vector field E = δa Da , δa being the vector of
scaling dimensions of the coupling constants, scales with weight one the chiral ring
structure constants as ECc

ab = Cc
ab to ensure compatibility between (2.7) and (2.8).

The metric on the vacuum bundle is given by a symplectic pairing of the flat sections
gāb = 〈ā|b〉 = V t

ā EVb and in particular the vacuum-vacuum amplitude, that is the
spherical partition function, can be written as the symplectic pairing

〈0̄|0〉 = J t EJ (2.9)

for a suitable symplectic form E [25] that will be specified later.
Let us remark that in the case of non compact target, the Quantum Field Theory has to

be studied in the equivariant sense to regulate its volume divergences already visible in
the constant map contribution. This is accomplished by turning on the relevant twisted
masses for matter fields. From the mathematical viewpoint, this amounts to work in
the context of equivariant cohomology of the target space H•T (X), where T is the torus
acting on X . The values of the twisted masses assign the weights of the torus action.

We point out that there is a natural correspondence of the results of supersymmet-
ric localization on the two-sphere with the formalism developed by Givental for the
computation of the flat section J . Indeed the computation of the spherical partition
function makes use of a supersymmetric charge which closes on a U (1) isometry of the
sphere, whose fixed points are the north and south pole. From the string viewpoint it
therefore describes the embedding in the target space of a spherical world-sheet with
two marked points where the gravitational descendants are inserted. This is precisely
the setting of S1-equivariant Gromov–Witten invariants considered by Givental [19] by
studying equivariant holomorphic maps with respect to the maximal torus of the sphere
automorphisms S1 ⊂ P SL(2, C). This is identified with the U (1) isometry to which the
supersymmetry algebra squares. As an important consequence, the equivariant parame-
ter � of Givental’s S1 action gets identified with the one of the vortex partition functions
arising in the localization of the spherical partition function. An excellent review of
Givental’s formalism can be found in [27]; here we will highlight the aspects that are
strictly relevant for the subsequent discussions. The J -function can be computed from a
set of oscillatory integrals, the so called “I-functions” which are generating functions of
hypergeometric type in the variables � and Qi , where Qi = e−t i

, t i being the complex-
ified Kähler parameters and i = 1, . . . , b2(X). We observe that Givental’s formalism
has been developed originally for abelian quotients, more precisely for complete inter-
sections in quasi-projective toric varieties. In this case, the I function is the generating
function of solutions of the Picard–Fuchs equations for the mirror manifold X̌ of X , and
as such can be expressed in terms of periods on X̌ . From the viewpoint of the spherical
partition function this has also a very nice direct interpretation by an alternative rewrit-
ing of the vacuum amplitude (2.9). Indeed, by mirror symmetry one can rewrite, in the
Calabi–Yau case

〈0̄|0〉 = i
∫

X̌
� ∧� = t S, (2.10)
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where  = ∫
�i � is the period vector and S is the symplectic pairing. The components

of the I-function can be identified with the components of the period vector . More
generally, one can consider an elaboration of the integral form of the spherical partition
function worked out in [13], where the integrand is rewritten in a mirror symmetric
manifest form, by expressing the ratios of �-functions appearing in the Coulomb branch
representation as

�(�)

�(1− �̄)
=

∫

I m(Y )∼I m(Y )+2π

d2Y

2π i
e
[
e−Y−�Y−c.c.

]
, (2.11)

to obtain the right-hand-side (2.10) and then by applying the Riemann bilinear identity,
one gets the left-hand side. The resulting integrals, after the integration over the Coulomb
parameters and independently on the fact that the mirror representation is geometric or
not, are then of the oscillatory type

i =
∮

�i

d �Y e
rWe f f

( �Y
)

, (2.12)

where the effective variables �Y and potential We f f are the remnants parametrizing the
constraints imposed by the integration over the Coulomb parameters before getting to
(2.12). Equation (2.12) is also the integral representation of Givental’s I-function for
general Fano manifolds [27]. Non-abelian quotients have been studied in [20] in terms
of quasi-maps theory which is the mathematical counterpart of the GLSM.

Let us now state the dictionary between Givental’s formalism and the spherical par-
tition function

Z S2 =
∮

dλZ1l

(
z−r |λ|Zv

) (
z̄−r |λ|Zav

)
(2.13)

with dλ = ∏rank
α=1 dλα and |λ| = ∑

α λα . Our claim [28] is that Zv is the I-function
of the target space X upon identifying the vortex counting parameter z with Q, λα

with the generators of the equivariant cohomology and r = 1/�. More precisely, the
chamber structure of the GIT quotient is encoded in the choice of the FI parameters
and the subsequent choice of integration contours. In particular, in the geometric phase
with all the FIs large and positive, the vortex counting parameters are identified with the
exponentiated complex Kähler parameters, while, in the orbifold phase they label the
twisted sectors of the orbifold itself or, in other words, the basis of orbifold cohomology.

The J -function – needed to compute the equivariant Gromov–Witten invariants of
X – is then obtained from the I-function after a suitable normalisation procedure which
has been described in [28]. Actually, in some cases one can show that the I and the
J -functions coincide and that this normalisation procedure is not required. This is the
case of Fano manifolds and ADHM moduli space for rank higher than one.

A further normalization is then required for the one-loop term in order to reproduce
the classical intersection cohomology on the target manifold. In this normalization, the
spherical partition function coincides with the symplectic pairing (2.9) and in particular
the one-loop part reproduces in the r → 0 limit the (equivariant) volume of the target
space.

The above conjecture will be checked for several abelian and non abelian GIT quo-
tients in the subsequent sections.
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3. Abelian GLSMs

3.1. Projective spaces. Let us start with the basic example, that is P
n−1. Its sigma model

matter content consists of n chiral fields of charge 1 with respect to the U (1) gauge group.
In general, the Fayet-Iliopoulos parameter runs [11]; in our case

ξren = ξ − n

2π
log(r M) (3.1)

with M a SUSY-invariant ultraviolet cut-off. Notice that in the Calabi–Yau case the sum
of the charges is zero, therefore2 ξren = ξ .

By defining3 τ = −irσ the P
n−1 partition function reads

ZPn−1 =
∑

m∈Z

∫
dτ

2π i
e4πξrenτ−iθrenm

(
�
(
τ − m

2

)

�
(
1− τ − m

2

)
)n

(3.2)

With the change of variables

τ = −k +
m

2
+ r Mλ (3.3)

we are resumming over all the poles, which are at λ = 0. Equation (3.2) then becomes

ZPn−1 =
∮

d(r Mλ)

2π i
ZP

n−1

1l ZP
n−1

v ZP
n−1

av (3.4)

where z = e−2πξ+iθ and

ZP
n−1

1l = (r M)−2nr Mλ

(
�(r Mλ)

�(1− r Mλ)

)n

ZP
n−1

v = z−r Mλ
∑

l≥0

[(r M)nz]l
(1− r Mλ)n

l
(3.5)

ZP
n−1

av = z̄−r Mλ
∑

k≥0

[(−r M)n z̄]k
(1− r Mλ)n

k

The Pochhammer symbol (a)k is defined as

(a)k =

⎧
⎪⎨

⎪⎩

∏k−1
i=0 (a + i) for k > 0

1 for k = 0
∏−k

i=1
1

a−i for k < 0

(3.6)

2 We will also assume that θren = θ + (s − 1)π , with s rank of the gauge group; this implies θren = θ for
abelian gauge groups. This is necessary in order to reproduce the known results in the mathematical literature
for Grassmannians, flag manifolds, and the Hilbert scheme of points; this shift should come from integrating
out the W bosons, but we do not have a detailed explanation for it.

3 We are following the notation of [10], but we work with dimensionless partition functions: this means
that in our integrals it appears d(rσ) instead of dσ .
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The I-function is given by ZP
n−1

v , and coincides with the one given in the mathematical
literature,4

IPn−1(H, �; t) = e
t H
�

∑

d≥0

[(�)−net ]d
(1 + H/�)n

d
(3.7)

if we identify � = 1
r M , H = −λ, t = ln z. The antivortex contribution is the conjugate

I-function, with � = − 1
r M , H = λ and t̄ = ln z̄. The hyperplane class H satisfies

Hn = 0; in some sense the integration variable λ satisfies the same relation, because the
process of integration will take into account only terms up to λn−1 in Zv and Zav.

Complete intersections in P
n−1 of type (q0, . . . , qm), q j > 0 can be obtained by

adding chiral fields of charge (−q0, . . . ,−qm). This means that the integrand in (3.2)
gets multiplied by

m∏

j=0

�
(

R j
2 − q jτ + q j

m
2

)

�
(

1− R j
2 + q jτ + q j

m
2

) (3.8)

The poles are still as in (3.3), but now

ZP
n−1

1l = (r M)−2r M(n−|q|)λ
(

�(r Mλ)

�(1− r Mλ)

)n m∏

j=0

�
(

R j
2 − q jr Mλ

)

�
(

1− R j
2 + q jr Mλ

)

ZP
n−1

v = z−r Mλ
∑

l≥0

(−1)|q|l [(r M)n−|q|z]l
∏m

j=0(
R j
2 − q jr Mλ)q j l

(1− r Mλ)n
l

(3.9)

ZP
n−1

av = z̄−r Mλ
∑

k≥0

(−1)|q|k[(−r M)n−|q| z̄]k
∏m

j=0(
R j
2 − q jr Mλ)q j k

(1− r Mλ)n
k

where |q| = ∑n
j=0 q j and R j is the R-charge of the j-th field. Notice that, if we

want to describe a bundle over a space, we should set R j = 0 and add twisted masses
in the contributions coming from the fibers, since we want to separate the different
cohomology generators (i.e. the different integration variables); we will do this explicitly
when needed. On the other hand, complete intersections do not require and do not allow
twisted masses, because the insertion of the superpotential breaks all flavour symmetry;
moreover, since the superpotential must have R-charge 2, we will need some R j �= 0
(see the example of the quintic below).

3.1.1. Equivariant projective spaces. The same computation can be repeated in the
more general equivariant case, with twisted masses turned on. In this case, the partition
function reads (rescaling the twisted masses as ai → Mai in order to have dimensionless
parameters)

Z eq
Pn−1 =

∑

m∈Z

∫
dτ

2π i
e4πξrenτ−iθrenm

n∏

i=1

�
(
τ − m

2 + ir Mai
)

�
(
1− τ − m

2 − ir Mai
) (3.10)

4 This was already observed in this particular case in [4].
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Choosing poles at

τ = −k +
m

2
− ir Ma j + r Mλ (3.11)

we arrive at

Z eq
Pn−1 =

n∑

j=1

∮
d(r Mλ)

2π i
ZP

n−1

1l, eq ZP
n−1

v, eq ZP
n−1

av, eq (3.12)

where

ZP
n−1

1l, eq = (zz̄)ir Ma j (r M)−2nr Mλ
n∏

i=1

�(r Mλ + ir Mai j )

�(1− r Mλ− ir Mai j )

ZP
n−1

v, eq = z−r Mλ
∑

l≥0

[(r M)nz]l∏n
i=1(1− r Mλ− ir Mai j )l

(3.13)

ZP
n−1

av, eq = z̄−r Mλ
∑

k≥0

[(−r M)n z̄]k∏n
i=1(1− r Mλ− ir Mai j )k

and ai j = ai − a j . Since there are just simple poles, the integration can be easily
performed:

Z eq
Pn−1 =

n∑

j=1

(zz̄)ir Ma j

n∏

i �= j=1

1

ir Mai j

�(1 + ir Mai j )

�(1− ir Mai j )

∑

l≥0

[(r M)nz]l∏n
i=1(1− ir Mai j )l

∑

k≥0

[(−r M)n z̄]k∏n
i=1(1− ir Mai j )k

(3.14)

In the limit r M → 0 the one-loop contribution [see the first line of (3.14)] provides the
equivariant volume of the target space:

Vol(Pn−1
eq ) =

n∑

j=1

(zz̄)ir Ma j

n∏

i �= j=1

1

ir Mai j
=

n∑

j=1

e−4π iξr Ma j

n∏

i �= j=1

1

ir Mai j
(3.15)

Using the fact that

lim
r→0

n∑

j=1

e−4π iξr Ma j

(4ξ)n−1

n∏

i �= j=1

1

ir Mai j
= πn−1

(n − 1)! (3.16)

we find the non-equivariant volume

Vol(Pn−1) = (4πξ)n−1

(n − 1)! (3.17)
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3.1.2. Weighted projective spaces. Another generalization consists in studying the
weighted projective space P

w = P(w0, . . . , wn), which has been studied from the math-
ematical point of view in [23]. This can be obtained by considering an U (1) gauge theory
with n + 1 fundamentals of (positive) integer charges w0, . . . , wn . The partition function
reads

Z =
∑

m

∫
dτ

2π i
e4πξrenτ−iθrenm

n∏

i=0

�(wiτ − wi
m
2 )

�(1− wiτ − wi
m
2 )

(3.18)

so one would expect n + 1 towers of poles at

τ = m

2
− k

wi
+ r Mλ, i = 0 . . . n (3.19)

with integration around r Mλ = 0. Actually, in this way we might be overcounting some
poles if the wi are not relatively prime, and in any case the pole τ = 0 is always counted
n + 1 times. In order to solve these problems, we will set

τ = m

2
− k + r Mλ− F (3.20)

where F is a set of rational numbers defined as

F = { d

wi
/ 0 ≤ d < wi , d ∈ N, 0 ≤ i ≤ n

}
(3.21)

and every number has to be counted only once. Let us explain this better with an example:
if we consider just w0 = 2 and w1 = 3, we find the numbers (0, 1/2) and (0, 1/3, 2/3),
which means F = (0, 1/3, 1/2, 2/3); the multiplicity of these numbers reflects the
order of the pole in the integrand, so we will have a double pole (counted by the double
multiplicity of d = 0) and three simple poles.

The partition function then becomes

Z =
∑

F

∮
d(r Mλ)

2π i
Z1l Zv Zav (3.22)

with integration around r Mλ = 0 and

Z1l = (r M)−2|w|r Mλ−2
∑n

i=0(ω[wi F]−〈wi F〉)
n∏

i=0

�(ω[wi F] + wi r Mλ− 〈wi F〉)
�(1− ω[wi F] − wi r Mλ + 〈wi F〉)

Zv = z−r Mλ
∑

l≥0

(r M)|w|l+
∑n

i=0(ω[wi F]+[wi F])zl+F
∏n

i=0(1− ω[wi F] − wi r Mλ + 〈wi F〉)wi l+[wi F]+ω[wi F]
(3.23)

Zav = z̄−r Mλ
∑

k≥0

(−r M)|w|k+
∑n

i=0(ω[wi F]+[wi F]) z̄k+F
∏n

i=0(1− ω[wi F] − wi r Mλ + 〈wi F〉)wi k+[wi F]+ω[wi F]

In the formulae we defined 〈wi F〉 and [wi F] as the fractional and integer part of the
number wi F , so that wi F = [wi F] + 〈wi F〉, while |w| =∑n

i=0 wi . Moreover,

ω[wi F] =
{

0 for 〈wi F〉 = 0
1 for 〈wi F〉 �= 0 (3.24)

This is needed in order for the J function to start with one in the r M expansion.
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The twisted sectors in (3.21) label the base of the orbifold cohomology space.
Once more, we can also consider complete intersections in P

w of type (q0, . . . , qm).
The integrand in (3.18) has to be multiplied by

m∏

j=0

�
(

R j
2 − q jτ + q j

m
2

)

�
(

1− R j
2 + q jτ + q j

m
2

) (3.25)

The poles do not change, and

Z1l = (r M)
−2(|w|−|q|)r Mλ−2

∑n
i=0(ω[wi F]−〈wi F〉)−2

∑m
j=0〈q j F〉

n∏

i=0

�(ω[wi F] + wi r Mλ− 〈wi F〉)
�(1− ω[wi F] − wi r Mλ + 〈wi F〉)

m∏

j=0

�(
R j
2 − q jr Mλ + 〈q j F〉)

�(1− R j
2 + q jr Mλ− 〈q j F〉)

Zv = z−r Mλ
∑

l≥0

(−1)
|q|l+∑m

j=0[q j F]
(r M)

(|w|−|q|)l+∑n
i=0(ω[wi F]+[wi F])−∑m

j=0[q j F]zl+F

∏m
j=0(

R j
2 − q jr Mλ + 〈q j F〉)q j l+[q j F]∏n

i=0(1− ω[wi F] − wi r Mλ + 〈wi F〉)wi l+[wi F]+ω[wi F]
Zav = z̄−r Mλ

∑

k≥0

(−1)
|q|k+

∑m
j=0[q j F]

(−r M)
(|w|−|q|)k+

∑n
i=0(ω[wi F]+[wi F])−∑m

j=0[q j F] z̄k+F

∏m
j=0(

R j
2 − q jr Mλ + 〈q j F〉)q j k+[q j F]∏n

i=0(1− ω[wi F] − wi r Mλ + 〈wi F〉)wi k+[wi F]+ω[wi F]
(3.26)

Notice that the non linear sigma model to which the GLSM flows in the IR is well
defined only for |w| ≥ |q|, which means for manifolds with c1 ≥ 0.

3.2. Quintic. We will now consider the most famous compact Calabi–Yau threefold,
i.e. the quintic. The corresponding GLSM is a U (1) gauge theory with five chiral fields
�a of charge +1, one chiral field P of charge −5 and a superpotential of the form
W = PG(�1, . . . , �5), where G is a homogeneous polynomial of degree five. We
choose the vector R-charges to be 2q for the � fields and (2−5 ·2q) for P such that the
superpotential has R-charge 2. The quintic threefold is realized in the geometric phase
corresponding to ξ > 0. For details of the construction see [22] and for the relation to
the two-sphere partition function [12]. Here we want to investigate the connection to the
Givental formalism. For a Calabi–Yau manifold the sum of gauge charges is zero, which
implies ξren = ξ , and θren = θ holds because the gauge group is abelian. The spherical
partition function is

Z =
∑

m∈Z

∫

iR

dτ

2π i
z−τ−m

2 z̄−τ+ m
2

(
�
(
q + τ − m

2

)

�
(
1− q − τ − m

2

)
)5

�
(
1− 5q − 5τ + 5 m

2

)

�
(
5q + 5τ + 5 m

2

) .

(3.27)

Since we want to describe the phase ξ > 0, we have to close the contour in the left half
plane. We use the freedom in q to separate the towers of poles coming from �’s and
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from P . In the range 0 < q < 1
5 the former lie in the left half plane while the latter in

the right half plane. So we pick only the poles corresponding to �’s given by

τk = −q − k +
m

2
, k ≥ max(0, m) (3.28)

Then the partition function turns into a sum of residues and we express each residue by
the Cauchy contour integral. Finally we arrive at

Z = (zz̄)q
∮

C(δ)

d(r Mλ)

2π i
Z1l(λ, r M)Zv(λ, r M; z)Zav(λ, r M; z̄), (3.29)

where the contour C(δ) goes around λ = 0 and

Z1l(λ, r M) = �(1− 5r Mλ)

�(5r Mλ)

(
�(r Mλ)

�(1− r Mλ)

)5

Zv(λ, r M; z) = z−r Mλ
∑

l�0

(−z)l (1− 5r Mλ)5l

[(1− r Mλ)l ]5 (3.30)

Zav(λ, r M; z̄) = z̄−r Mλ
∑

k�0

(−z̄)k (1− 5r Mλ)5k

[(1− r Mλ)k]5

The vortex function Zv(λ, r M; z) reproduces the known Givental I-function

I(H, �; t) =
∑

d�0

e(H/�+d)t (1 + 5H/�)5d

[(1 + H/�)d ]5 (3.31)

after identifying

H = −λ, � = 1

r M
, t = ln(−z). (3.32)

The I-function is valued in cohomology, where H ∈ H2(P4) is the hyperplane class in
the cohomology ring of the embedding space. Because of dimensional reasons we have
H5 = 0 and hence the I-function is a polynomial of order four in H

I = I0 +
H

�
I1 +

(
H

�

)2

I2 +

(
H

�

)3

I3 +

(
H

�

)4

I4. (3.33)

This is naturally encoded in the explicit residue evaluation of (3.29), see Eq. (3.36).
Now consider the Picard–Fuchs operator L . It can be easily shown that {I0, I1, I2, I3} ∈
Ker(L) while I4 /∈ Ker(L). L is an order four operator and so I = (I0, I1, I2, I3)

T form
a basis of solutions. There exists another basis formed by the periods of the holomorphic
(3, 0) form of the mirror manifold. In homogeneous coordinates they are given as  =
(X0, X1, ∂ F

∂ X0 , ∂ F
∂ X1 )T with F the prepotential. Thus there exists a transition matrix M

relating these two bases

I =M · (3.34)

There are now two possible ways to proceed. One would be fixing the transition matrix
using mirror construction (i.e. knowing explicitly the periods) and then showing that the
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pairing given by the contour integral in (3.29) after being transformed to the period basis
gives the standard formula for the Kähler potential in terms of a symplectic pairing

e−K = i† ·� · (3.35)

with � =
(

0 1
−1 0

)
being the symplectic form. The other possibility would be to use the

fact that the two sphere partition function computes the Kähler potential [12] and then
impose equality between (3.29) and (3.35) to fix the transition matrix. We follow this
route in the following. The contour integral in (3.29) expresses the Kähler potential as
a pairing in the I basis. It is governed by Z1l which has an expansion

Z1l = 5

(r Mλ)4 +
400 ζ(3)

r Mλ
+ o(1) (3.36)

and so we get after integration (remember that H/� = −r Mλ)

Z = −2χζ(3)I0 Ī0 − 5(I0 Ī3 + I1 Ī2 + I2 Ī1 + I3 Ī0)

= I† · A · I, (3.37)

where

A =
⎛

⎜⎝

−2χζ(3) 0 0 −5
0 0 −5 0
0 −5 0 0
−5 0 0 0

⎞

⎟⎠ (3.38)

gives the pairing in the I basis and χ = −200 is the Euler characteristic of the quintic
threefold. From the two expressions for the Kähler potential we easily find the transition
matrix as

M =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 − i

5−χ
5 ζ(3) 0 − i

5 0

⎞

⎟⎟⎠ . (3.39)

Finally, we know that the mirror map is given by

t = I1

2π i I0
, t̄ = − Ī1

2π i Ī0
(3.40)

so after dividing Z by (2π i)2 I0 Ī0 for the change of coordinates and by a further 2π for
the normalization of the ζ(3) term, we obtain the Kähler potential in terms of t , t̄ , in a
form in which the symplectic product is evident.

3.3. Local Calabi–Yau: O(p)⊕O(−2−p)→ P
1. Let us now study the family of spaces

X p = O(p)⊕O(−2− p)→ P
1 with diagonal equivariant action on the fiber. We will

find exact agreement with the I functions computed in [29], and we will show how the
quantum corrected Kähler potential for the Kähler moduli space can be computed when
equivariant parameters are turned on.

Here we will restrict only to the phase ξ > 0, which is the one related to X p. The case
ξ < 0 describes the orbifold phase of the model; this will be studied in the following
sections.
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3.3.1. Case p = −1. First of all, we have to write down the partition function; this is
given by

Z−1 =
∑

m∈Z
e−imθ

∫
dτ

2π i
e4πξτ

(
�
(
τ − m

2

)

�
(
1− τ − m

2

)
)2 (

�
(−τ − ir Ma + m

2

)

�
(
1 + τ + ir Ma + m

2

)
)2

(3.41)

The poles are located at

τ = −k +
m

2
+ r Mλ (3.42)

so we can rewrite (3.41) as

Z−1 =
∮

d(r Mλ)

2π i
Z1l Zv Zav (3.43)

where

Z1l =
(

�(r Mλ)

�(1− r Mλ)

�(−r Mλ− ir Ma)

�(1 + r Mλ + ir Ma)

)2

Zv = z−r Mλ
∑

l�0

zl (−r Mλ− ir Ma)2
l

(1− r Mλ)2
l

(3.44)

Zav = z̄−r Mλ
∑

k�0

z̄k (−r Mλ− ir Ma)2
k

(1− r Mλ)2
k

Notice that our vortex partition function coincides with the Givental function given in
[29]

IT−1(q) = e
H
�

ln q
∑

d�0

(1− H/� + λ̃/�− d)2
d

(1 + H/�)2
d

qd (3.45)

after the usual identifications

H = −λ, � = 1

r M
, λ̃ = ia, q = z (3.46)

Now, expanding IT−1 in r M = 1/� we find

IT−1 = 1− r Mλ log z + o((r M)2) (3.47)

which means the mirror map is trivial and the equivariant mirror map absent, i.e. IT−1 =
J T−1. What remains to be specified is the normalization of the 1-loop factor. As explained
in [28], this normalization is fixed by requiring the cancellation of the Euler–Mascheroni
constants appearing in the Weierstrass form of the �-function, reproduces the classical
intersection numbers and starts from 1 in the r M expansion; in our case, the factor

(zz̄)−ir Ma/2
(

�(1 + ir Ma)

�(1− ir Ma)

)2

(3.48)
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does the job. We can now integrate in r Mλ and expand in r M , obtaining (for r Ma = iq)

Z−1 = 2

q3 −
1

4q
ln2(zz̄) +

[
− 1

12
ln3(zz̄)− ln(zz̄)(Li2(z) + Li2(z̄))

+2(Li3(z) + Li3(z̄)) + 4ζ(3)
]

+ o(r M) (3.49)

The terms inside the square brackets reproduce the Kähler potential we are interested
in, once we multiply everything by 1

2π(2π i)2 and define

t = 1

2π i
ln z, t̄ = − 1

2π i
ln z̄. (3.50)

3.3.2. Case p = 0. In this case case, the spherical partition function is

Z0 =
∑

m∈Z
e−imθ

∫
dτ

2π i
e4πξτ

×
(

�
(
τ − m

2

)

�
(
1− τ − m

2

)
)2

� (−ir Ma)

� (1 + ir Ma)

�
(−2τ − ir Ma + 2 m

2

)

�
(
1 + 2τ + ir Ma + 2 m

2

) (3.51)

The poles are as in (3.42), and usual manipulations result in

Z1l =
(

�(r Mλ)

�(1− r Mλ)

)2
� (−ir Ma)

� (1 + ir Ma)

�(−2r Mλ− ir Ma)

�(1 + 2r Mλ + ir Ma)

Zv = z−r Mλ
∑

l�0

zl (−2r Mλ− ir Ma)2l

(1− r Mλ)2
l

(3.52)

Zav = z̄−r Mλ
∑

k�0

z̄k (−2r Mλ− ir Ma)2k

(1− r Mλ)2
k

Again, we recover the Givental function

IT
0 (q) = e

H
�

ln q
∑

d�0

(1− 2H/� + λ̃/�− 2d)2d

(1 + H/�)2
d

qd (3.53)

of [29] under the map (3.46); its expansion in r M

IT
0 = 1− r Mλ

[
log z + 2

∞∑

k=1

zk �(2k)

(k!)2

]
− ir Ma

∞∑

k=1

zk �(2k)

(k!)2 + o((r M)2)

(3.54)

implies that the mirror map is (modulo (2π i)−1)

t = log z + 2
∞∑

k=1

zk �(2k)

(k!)2 (3.55)
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and the equivariant mirror map is

t̃ = 1

2
(t − log z) =

∞∑

k=1

zk �(2k)

(k!)2 (3.56)

The J function can be recovered by inverting the equivariant mirror map and changing
coordinates accordingly, that is

J T
0 (t) = eir Mat̃(z)IT

0 (z) = eir Mat̃(z)Zv(z) (3.57)

A similar job has to be done for Zav. The normalization for the 1-loop factor is the same
as (3.48) but in t coordinates, which means

(t t̄)−ir Ma/2
(

�(1 + ir Ma)

�(1− ir Ma)

)2

; (3.58)

Finally, integrating in r Mλ and expanding in r M we find

Z0 = 2

q3 −
1

4q
(t + t̄)2 +

[
− 1

12
(t + t̄)3 − (t + t̄)(Li2(e

t ) + Li2(e
t̄ ))

+2(Li3(e
t ) + Li3(e

t̄ )) + 4ζ(3)
]

+ o(r M) (3.59)

As it was shown in [29], this proves that the two Givental functions J T−1 and J T
0 are the

same, as well as the Kähler potentials; the I functions look different simply because of
the choice of coordinates on the moduli space.

3.3.3. Case p ≥ 1. In the general p ≥ 1 case, we have

Z p =
∑

m∈Z
e−imθ

∫
dτ

2π i
e4πξτ

(
�
(
τ − m

2

)

�
(
1− τ − m

2

)
)2

�
(−(p + 2)τ − ir Ma + (p + 2)m

2

)

�
(
1 + (p + 2)τ + ir Ma + (p + 2)m

2

)
�
(

pτ − ir Ma − p m
2

)

�
(
1− pτ + ir Ma − p m

2

) (3.60)

There are two classes of poles, given by

τ = −k +
m

2
+ r Mλ (3.61)

τ = −k +
m

2
+ r Mλ− F + ir M

a

p
(3.62)

where F = {0, 1
p , . . . ,

p−1
p } and the integration is around r Mλ = 0. This can be

understood from the fact that actually the GLSM (3.60) describes the canonical bundle
over the weighted projective space P(1,1,p), which has two chambers. The regular one,
associated to the poles (3.61), corresponds to the local O(p) ⊕ O(−2 − p) → P

1

geometry:

Z (0)
p =

∮
d(r Mλ)

2π i
Z (0)

1l Z (0)
v Z (0)

av (3.63)
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with

Z (0)
1l =

(
�(r Mλ)

�(1− r Mλ)

)2
�(−(p + 2)r Mλ− ir Ma)

�(1 + (p + 2)r Mλ + ir Ma)

�(p r Mλ− ir Ma)

�(1− p r Mλ + ir Ma)

Z (0)
v = z−r Mλ

∑

l�0

(−1)(p+2)l zl (−(p + 2)r Mλ− ir Ma)(p+2)l

(1− r Mλ)2
l (1− p r Mλ + ir Ma)pl

(3.64)

Z (0)
av = z̄−r Mλ

∑

k�0

(−1)(p+2)k z̄k (−(p + 2)r Mλ− ir Ma)(p+2)k

(1− r Mλ)2
k(1− p r Mλ + ir Ma)pk

The second chamber, associated to (3.62), is an orbifold one:

Z (F)
p =

p−1∑

δ=0

∮
d(r Mλ)

2π i
Z (F)

1l,δ Z (F)
v,δ Z (F)

av,δ (3.65)

where F = δ
p . The explicit expression for Z (F) in the above formula can be recovered

from (3.26), adding the twisted masses in the appropriate places. Notice that (3.65) can
be easily integrated, since there are just simple poles.

3.4. Orbifold Gromov–Witten invariants. In this section we want to show how the an-
alytic structure of the partition function encodes all the classical phases of the abelian
GLSM. These are given by the secondary fan, which in our conventions is generated by
the columns of the charge matrix Q. In terms of the partition function these phases are
governed by the choice of integration contours, namely by the structure of poles we are
picking up. The contour can be closed either in the left half plane (for ξ > 0) or in the
right half plane (ξ < 0).5 The transition between different phases occurs when some of
the integration contours are flipped and the corresponding variable is integrated. To sum-
marize, a single partition function contains the I-functions of geometries corresponding
to all the different phases of the GLSM. These geometries are related by minimally
resolving the singularities by blow-up until the complete smoothing of the space takes
place (when this is possible). Our procedure consists in considering the GLSM corre-
sponding to the complete resolution and its partition function. Then by flipping contours
and doing partial integrations one discovers all other, more singular geometries. In the
following we illustrate these ideas on a couple of examples.

3.4.1. KPn−1 vs. C
n/Zn. Let us consider a U (1) gauge theory with n chiral fields of

charge +1 and one chiral field of charge −n. The secondary fan is generated by two
vectors {1,−n} and so has two chambers corresponding to two different phases. For
ξ > 0 it describes a smooth geometry KPn−1 , that is the total space of the canonical
bundle over the complex projective space P

n−1, while for ξ < 0 the orbifold C
n/Zn .

The case n = 3 will reproduce the results of [30–32]. The partition function reads

Z =
∑

m

∫

iR

dτ

2π i
e4πξτ−iθm

(
�(τ − m

2 )

�(1− τ − m
2 )

)n
�(−nτ + n m

2 + ir Ma)

�(1 + nτ + n m
2 − ir Ma)

(3.66)

5 This is only true for Calabi–Yau manifolds; for c1 > 0, i.e.
∑

i Qi > 0, the contour is fixed.
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Closing the contour in the left half plane (i.e. for ξ > 0) we take poles at

τ = −k +
m

2
+ r Mλ (3.67)

and obtain

Z =
∮

d(r Mλ)

2π i

(
�(r Mλ)

�(1− r Mλ)

)n
�(−nr Mλ + ir Ma)

�(1 + nr Mλ− ir Ma)
∑

l≥0

z−r Mλ(−1)nl znl (−nr Mλ + ir Ma)nl

(1− r Mλ)n
l

∑

k≥0

z̄−r Mλ(−1)nk z̄nk (−nr Mλ + ir Ma)nk

(1− r Mλ)n
k

(3.68)

We thus find exactly the Givental function for KPn−1 . To switch to the singular geometry
we flip the contour and do the integration. Closing in the right half plane (ξ < 0) we
consider

τ = k +
δ

n
+

m

2
+

1

n
ir Ma (3.69)

with δ = 0, 1, 2, . . . , n − 1. After integrating over τ , we obtain

Z = 1

n

n−1∑

δ=0

(
�( δ

n + 1
n ir Ma)

�(1− δ
n − 1

n ir Ma)

)n
1

(r M)2δ

∑

k≥0

(−1)nk(z̄−1/n)nk+δ+ir Ma(r M)δ
( δ

n + 1
n ir Ma)n

k

(nk + δ)!
∑

l≥0

(−1)nl(z−1/n)nl+δ+ir Ma(−r M)δ
( δ

n + 1
n ir Ma)n

l

(nl + δ)! (3.70)

as expected from (3.26). Notice that when the contour is closed in the right half plane,
vortex and antivortex contributions are exchanged. We can compare the n = 3 case
corresponding to C

3/Z3 with [32], given by

I = x−λ/z
∑

d∈N
d≥0

xd

d!zd

∏

0≤b< d
3

〈b〉=〈 d
3 〉

(
λ

3
− bz

)3

1〈 d
3 〉 (3.71)

which in a more familiar notation becomes

I = x−λ/z
∑

d∈N
d≥0

xd

d!
1

z3〈 d
3 〉

(−1)3[ d3 ]
(
〈d

3
〉 − λ

3z

)3

[ d3 ]
1〈 d

3 〉 (3.72)

The necessary identifications are straightforward.
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3.4.2. The quantum cohomology of C
3/Zp+2 and its crepant resolution. We now con-

sider the orbifold space C
3/Zp+2 with weights (1, 1, p) and p > 1. Its full crepant reso-

lution is provided by a resolved transversal Ap+1 singularity (namely a local Calabi–Yau
threefold obtained by fibering the resolved Ap+1 singularity over a P

1 base space). The
corresponding GLSM contains p + 2 abelian gauge groups and p + 5 chiral multiplets,
with the following charge assignment:

⎛

⎜⎝
0 1 1 −1 −1 0 . . . 0 0 0 . . . 0

− j − 1 j 0 0 0 0 . . . 0
(5+ j)th

1 0 . . . 0
−p − 2 p + 1 1 0 0 0 . . . 0 0 0 . . . 0

⎞

⎟⎠ (3.73)

where 1 ≤ j ≤ p. In the following we focus on the particular chambers corresponding
to the partial resolutions KFp and KP2(1,1,p). Let us start by discussing the local Fp
chamber: this can be seen by replacing the last row in (3.73) with the linear combination

(last row) −→ (last row)− p (second row)− (first row) (3.74)

which corresponds to
(−p − 2 p + 1 1 0 0 0 . . .

) −→ (
p − 2 0 0 1 1 −p . . .

)
(3.75)

The charge matrix (3.73) now reads (2 ≤ n ≤ p)
⎛

⎜⎜⎝

0 1 1 −1 −1 0 . . . 0 0 0 . . . 0
−2 1 0 0 0 1 . . . 0 0 0 . . . 0

−n − 1 n 0 0 0 0 . . . 0
(5+n)th

1 0 . . . 0
p − 2 0 0 1 1 −p . . . 0 0 0 . . . 0

⎞

⎟⎟⎠ (3.76)

and, in a particular sector (i.e. for a particular choice of poles), after turning to infinity
p Fayet-Iliopoulos parameters, we remain with the second and the last row:

Q =
( −2 1 0 0 1

p − 2 0 1 1 −p

)
(3.77)

which is the charge matrix of KFp .
Let us see how this happens in detail; since it is easier for our purposes, we will

consider the charge matrix (3.76). For generic p, the partition function with the addition
of a twisted mass for the field corresponding to the first column of (3.76) is given by

Z =
∑

m0,...,m p+1

∮ ⎡

⎣
p+1∏

i=0

dτi

2π i
z
−τi−mi

2
i z̄

−τi +
mi
2

i

⎤

⎦

⎡

⎣
p∏

j=0

�(τ j − m j
2 )

�(1− τ j − m j
2 )

⎤

⎦

�(τ1 − pτp+1 − m1
2 + p

m p+1
2 )

�(1− τ1 + pτp+1 − m1
2 + p

m p+1
2 )

(
�(−τ0 + τp+1 + m0

2 − m p+1
2 )

�(1 + τ0 − τp+1 + m0
2 − m p+1

2 )

)2

�(τ0 +
∑p

j=1 jτ j − m0
2 −

∑p
j=1 j

m j
2 )

�(1− τ0 −∑p
j=1 jτ j − m0

2 −
∑p

j=1 j
m j
2 )

�(−∑p
j=1( j +1)τ j +(p − 2)τp+1+

∑p
j=1( j +1)

m j
2 −(p − 2)

m p+1
2 +ir Ma)

�(1+
∑p

j=1( j + 1)τ j−(p − 2)τp+1+
∑p

j=1( j +1)
m j
2 −(p − 2)

m p+1
2 − ir Ma)

(3.78)
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Now, choosing the sector

τ0 = −k0 +
m0

2

τn = −kn +
mn

2
, 2 ≤ n ≤ p

(3.79)

and integrating over these variables we arrive at

Z =
∑

k0,kn≥0

∑

l0,ln≥0

zl0
0

l0!
(−1)k0 z̄k0

i

k0!
p∏

n=2

zli
i

li !
(−1)ki z̄ki

i

ki !
∑

m1,m p+1∮
dτ1

2π i

dτp+1

2π i
e4πξ1τ1−iθ1m1 e4πξp+1τp+1−iθp+1m p+1

�(τ1 − pτp+1 − m1
2 + p

m p+1
2 )

�(1− τ1 − m1
2 + pτp+1 + p

m p+1
2 )

(
�(k0 + τp+1 − m p+1

2 )

�(1− l0 − τp+1 − m p+1
2 )

)2
�(−k0 + τ1 −∑p

n=2 nkn − m1
2 )

�(1 + l0 − τ1 +
∑p

n=2 nln − m1
2 )

�(−2τ1 +
∑p

n=2(n + 1)kn + (p − 2)τp+1 + 2 m1
2 − (p − 2)

m p+1
2 + ir Ma)

�(1 + 2τ2 −∑p
n=2(n + 1)ln − (p − 2)τp+1 + 2 m2

2 − (p − 2)
m p+1

2 − ir Ma)

(3.80)

which defines a linear sigma model with charges (3.77) for k0 = kn = 0, l0 = ln = 0
(i.e. when ξ0 = ξn = ∞).

The secondary fan of this model has four chambers, but here we concentrate only
on three of them, describing KFp , KP2(1,1,p) and C

3/Zp+2 respectively. Its partition
function is given by

Z =
∑

m1,m p+1

∫
dτ1

2π i

dτp+1

2π i
e4πξ1τ1−iθ1m1 e4πξp+1τp+1−iθp+1m p+1

(
�(τp+1 − m p+1

2 )

�(1− τp+1 − m p+1
2 )

)2

�(τ1 − m1
2 )

�(1− τ1 − m1
2 )

�(−pτp+1 + τ1 + p
m p+1

2 − m1
2 )

�(1 + pτp+1 − τ1 + p
m p+1

2 − m1
2 )

�((p − 2)τp+1 − 2τ1 − (p − 2)
m p+1

2 + 2 m1
2 + ir Ma)

�(1− (p − 2)τp+1 + 2τ1 − (p − 2)
m p+1

2 + 2 m1
2 − ir Ma)

(3.81)

If we consider the set of poles

τp+1 = −kp+1 +
m p+1

2
+ r Mλp+1

τ1 = −k1 +
m1

2
+ r Mλ1

(3.82)
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we are describing the canonical bundle over Fp:

ZKFp
=

∮
d(r Mλ1)

2π i

d(r Mλp+1)

2π i

(
�(r Mλp+1)

�(1− r Mλp+1)

)2
�(r Mλ1)

�(1− r Mλ1)

�(−pr Mλp+1 + r Mλ1)

�(1 + pr Mλp+1 − r Mλ1)

�((p − 2)r Mλp+1 − 2r Mλ1 + ir Ma)

�(1− (p − 2)r Mλp+1 + 2r Mλ1 − ir Ma)
∑

l1,l p+1

(−1)(p−2)l p+1 z
l p+1−r Mλp+1
p+1 zl1−r Mλ1

1

((p − 2)r Mλp+1 − 2r Mλ1 + ir Ma)2l1−(p−2)l p+1

(1− r Mλp+1)
2
l p+1

(1− r Mλ1)l1(1 + pr Mλp+1 − r Mλ1)l1−pl p+1

∑

k1,kp+1

(−1)(p−2)kp+1 z̄
kp+1−r Mλp+1
p+1 z̄k1−r Mλ1

1

((p − 2)r Mλp+1 − 2r Mλ1 + ir Ma)2k1−(p−2)kp+1

(1− r Mλp+1)
2
kp+1

(1− r Mλ1)k1(1 + pr Mλp+1 − r Mλ1)k1−pkp+1

(3.83)

On the other hand, taking poles for

τ1 = pτp+1 − p
m p+1

2
+

m1

2
− k1 (3.84)

and integrating over τ1 we obtain the canonical bundle over P
2
(1,1,p):

ZK
P

2
(1,1,p)

=
∑

k1,l1≥0

zl1
1

l1!
(−1)k1 z̄k1

1

k1!
∑

m p+1

∫
dτp+1

2π i
e4π(ξp+1+pξ1)τp+1−i(θp+1+pθ1)m p+1

(
�(τp+1 − m p+1

2 )

�(1− τp+1 − m p+1
2 )

)2

�(pτp+1 − p
m p+1

2 − k1)

�(1− pτp+1 − p
m p+1

2 + l1)

�(−(p + 2)τp+1 + (p + 2)
m p+1

2 + ir Ma + 2k1)

�(1 + (p + 2)τp+1 + (p + 2)
m p+1

2 − ir Ma − 2l1)

(3.85)

with l1 = k1 − m1 + pm p+1 and z1 = e−2πξ1+iθ1 . In fact, in the limit ξ1 → ∞ with
ξp+1 + pξ1 finite, only the k1 = l1 = 0 sector contributes, leaving the linear sigma model
of K

CP
2
(1,1,p)

for ξp+1 + pξ1 > 0.

From the point of view of the charge matrix, the choice (3.84) corresponds to take
linear combinations of the rows, in particular

(
p − 2 0 1 1 −p

) −→ (
p − 2 0 1 1 −p

)
+ p

(−2 1 0 0 1
)

(3.86)

which implies ξp+1 → ξp+1 + pξ1, θp+1 → θp+1 + pθ1 and

( −2 1 0 0 1
p − 2 0 1 1 −p

)
−→

( −2 1 0 0 1
−p − 2 p 1 1 0

)
(3.87)
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while the process of integrating in τ1 is equivalent to eliminate the second row (notice
that we have a simple pole, in this case, i.e. the column (1 0)T appears with multiplicity
1).

The case p = 2 appears in [32,33] and corresponds to a full crepant resolution. So,
by one blow down we arrived at KP2(1,1,p) whose charge matrix is given by

Q = (
1 1 p −p − 2

)
(3.88)

The associated two sphere partition function is correspondingly

Z =
∑

m∈Z

∫
dτ

2π i
e4πξτ−iθm

(
�(τ − m

2 )

�(1− τ − m
2 )

)2
�(pτ − p m

2 )

�(1− pτ − p m
2 )

�(−(p + 2)τ + (p + 2)m
2 + ir Ma)

�(1 + (p + 2)τ + (p + 2)m
2 − ir Ma)

(3.89)

It has two phases, KP2(1,1,p) and a more singular C
3/Zp+2. The first phase corresponds to

close the integration contour in the left half plane of this effective model; since the result
is rather ugly, we will simply state that it can be obtained from (3.26), with the necessary
modifications (i.e. twisted masses). For p = 2 it matches the formula presented in [32].

The second phase describing C
3/Zp+2 can be obtained by flipping the contour to the

right half plane and doing the integration in the single variable. Finally, we arrive at

Z = 1

p + 2

p+1∑

δ=0

(
�( δ

p+2 + 1
p+2 ir Ma)

�(1− δ
p+2 − 1

p+2 ir Ma)

)2

�(〈 pδ
p+2 〉 + p

p+2 ir Ma)

�(1− 〈 pδ
p+2 〉 − p

p+2 ir Ma)

1

(r M)
2
(
δ−

[
pδ

p+2

])

∑

k≥0

(−1)(p+2)k(z̄−
1

p+2 )(p+2)k+δ+ir Ma(r M)
δ−

[
pδ

p+2

]

( δ
p+2 + 1

p+2 ir Ma)2
k(〈 pδ

p+2 〉 + p
p+2 ir Ma)

pk+
[

pδ
p+2

]

((p + 2)k + δ)!
∑

l≥0

(−1)(p+2)l(z−
1

p+2 )(p+2)l+δ+ir Ma(−r M)
δ−

[
pδ

p+2

]

( δ
p+2 + 1

p+2 ir Ma)2
l (〈 pδ

p+2 〉 + p
p+2 ir Ma)

pl+
[

pδ
p+2

]

((p + 2)l + δ)! (3.90)

The I-function of the orbifold case in the δ-sector of the orbifold cohomology is then
obtained from the second line of the above formula and for p = 2 it matches with [32].

4. Non-abelian GLSM

In this section we apply our methods to non-abelian gauged linear sigma models and give
new results for some non-abelian GIT quotients. These are also tested against results in
the mathematical literature when available.
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The first case that we analyse are complex Grassmannians. On the way we also give
an alternative proof for the conjecture of Hori and Vafa which can be rephrased stating
that the I-function of the Grassmannian can be obtained from that corresponding to a
product of projective spaces after acting with an appropriate differential operator.

One can also study a more general theory corresponding to holomorphic vector
bundles over Grassmannians. These spaces arise in the context of the study of BPS
Wilson loop algebra in three dimensional supersymmetric gauge theories. In particular
we will discuss the mathematical counterpart of a duality proposed in [21] which extends
the standard Grassmannian duality to holomorphic vector bundles over them.

We also study flag manifolds and more general non-abelian quiver gauge theories
for which we provide the rules to compute the spherical partition function and the
I-function.

4.1. Grassmannians. The sigma model for the complex Grassmannian Gr(s, n) con-
tains n chirals in the fundamental representation of the U (s) gauge group. Its partition
function is given by

ZGr(s,n) = 1

s!
∑

m1,...,ms

∫ s∏

i=1

dτi

2π i
e4πξrenτi−iθrenmi

s∏

i< j

×
(

m2
i j

4
− τ 2

i j

)
s∏

i=1

(
�
(
τi − mi

2

)

�
(
1− τi − mi

2

)
)n

(4.1)

As usual, we can write it as

1

s!
∮ s∏

i=1

d(r Mλi )

2π i
Z1l Zv Zav (4.2)

where

Z1l =
s∏

i=1

(r M)−2nr Mλi

(
�(r Mλi )

�(1− r Mλi )

)n s∏

i< j

(r Mλi − r Mλ j )(−r Mλi + r Mλ j )

Zv = z−r M|λ| ∑

l1,...,ls

[(r M)n(−1)s−1z]l1+···+ls

(1− r Mλ1)
n
l1

. . . (1− r Mλs)
n
ls

s∏

i< j

li − l j − r Mλi + r Mλ j

−r Mλi + r Mλ j

Zav = z̄−r M|λ| ∑

k1,...,ks

[(−r M)n(−1)s−1 z̄]k1+···+ks

(1− r Mλ1)
n
k1

. . . (1− r Mλs)
n
ks

s∏

i< j

ki − k j − r Mλi + r Mλ j

−r Mλi + r Mλ j
.

(4.3)

We normalized the vortex and antivortex terms in order to have them starting from one
in the r M series expansion and we defined |λ| = λ1 + · · ·+ λs . The resulting I-function
Zv coincides with the one given in [34]

IGr(s,n) = e
tσ1
�

∑

(d1,...,ds )

�
−n(d1+···+ds )[(−1)s−1et ]d1+···+ds

∏s
i=1(1 + xi/�)n

di

s∏

i< j

di − d j + xi/�− x j/�

xi/�− x j/�

(4.4)

if we match the parameters as we did in the previous cases. Here the λ’s are interpreted
as Chern roots of the tautological bundle.
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4.1.1. The Hori–Vafa conjecture. Hori and Vafa conjectured [35] that IGr(s,n) can be
obtained by IP, where P = ∏s

i=1 P
n−1
(i) , by acting with a differential operator. This has

been proved in [34]; here we remark that in our formalism this is a simple consequence
of the fact that the partition function of non-abelian vortices can be obtained from copies
of the abelian ones upon acting with a suitable differential operator [5]. In fact we note
that ZGr(s,n) can be obtained from ZP simply by dividing by s! and identifying

Z Gr
1l =

s∏

i< j

(r Mλi − r Mλ j )(−r Mλi + r Mλ j )ZP

1l

Z Gr
v (z) =

s∏

i< j

∂zi − ∂z j

−r Mλi + r Mλ j
ZP

v (z1, . . . , zs)

∣∣∣
zi=(−1)s−1z

(4.5)

Z Gr
av (z̄) =

s∏

i< j

∂z̄i − ∂z̄ j

−r Mλi + r Mλ j
ZP

av(z̄1, . . . , z̄s)

∣∣∣
z̄i=(−1)s−1 z̄

.

4.2. Holomorphic vector bundles over Grassmannians. The U (N ) gauge theory with
N f fundamentals and Na antifundamentals flows in the infra-red to a non-linear sigma
model with target space given by a holomorphic vector bundle of rank Na over the
Grassmannian Gr

(
N , N f

)
. We adopt the notation Gr

(
N , N f |Na

)
for this space.

One can prove the equality of the partition functions for Gr
(
N , N f |Na

)
and

Gr
(
N f − N , N f |Na

)
after a precise duality map in a certain range of parameters. All

this will be specified in the Appendix. At the level of I-functions this proves the isomor-
phism among the relevant quantum cohomology rings conjectured in [21]. In analysing
this duality we follow the approach of [10], where also the main steps of the proof were
outlined. However we will detail their calculations and note some differences in the
explicit duality map, which we refine in order to get a precise equality of the partition
functions.

The partition function of the Gr
(
N , N f |Na

)
GLSM is

Z = 1

N !
∑

{ms∈Z}Ns=1

∫

(iR)N

N∏

s=1

dτs

2π i
z
−τs−ms

2
ren z̄

−τs + ms
2

ren

N∏

s<t

(
m2

st

4
− τ 2

st

)

N∏

s=1

N f∏

i=1

�
(
τs − i ai

�
− ms

2

)

�
(
1− τs + i ai

�
− ms

2

)
N∏

s=1

Na∏

j=1

�
(
−τs + i

ã j
�

+ ms
2

)

�
(

1 + τs − i
ã j
�

+ ms
2

) , (4.6)

while the one of Gr
(
N f − N , N f |Na

)
reads

Z = 1

N D!
∑

{ms∈Z}N D
s=1

∫

(iR)N D

N D∏

s=1

dτs

2π i
(zD

ren)−τs−ms
2 (z̄D

ren)−τs + ms
2

N D∏

s<t

(
m2

st

4
− τ 2

st

)



Vortex Partition Functions, Wall Crossing 741

N D∏

s=1

N f∏

i=1

�

(
τs + i

aD
i
�
− ms

2

)

�

(
1− τs − i

aD
i
�
− ms

2

)
N D∏

s=1

Na∏

j=1

�

(
−τs − i

ãD
j
�

+ ms
2

)

�

(
1 + τs + i

ãD
j
�

+ ms
2

)

N f∏

i=1

Na∏

j=1

�
(
−i

ai−ã j
�

)

�
(

1 + i
ai−ã j

�

) , (4.7)

The proof of the equality of the two is shown in detail in the Appendix to hold under the
duality map

zD = (−1)Na z (4.8)

aD
j

�
= −a j

�
+ C (4.9)

ãD
j

�
= − ã j

�
− (C + i) (4.10)

where

C = 1

N f − N

N f∑

i=1

ai

�
. (4.11)

4.3. Flag manifolds. Let us consider now a linear sigma model with gauge group
U (s1) × · · · × U (sl) and with matter in the (s1, s̄2) ⊕ · · · ⊕ (sl−1, s̄l) ⊕ (sl , n) rep-
resentations, where s1 < · · · < sl < n. This flows in the infrared to a non-linear sigma
model whose target space is the flag manifold Fl(s1, . . . , sl , n). The partition function
is given by

Z Fl = 1

s1! . . . sl !
∑

�m(a)

a=1...l

∫ l∏

a=1

sa∏

i=1

dτ
(a)
i

2π i
e4πξ

(a)
ren τ

(a)
i −iθ(a)

ren m(a)
i Zvector Zbifund Zfund

Zvector =
l∏

a=1

sa∏

i< j

(
(m(a)

i j )2

4
− (τ

(a)
i j )2

)

Zbifund =
l−1∏

a=1

sa∏

i=1

sa+1∏

j=1

�

(
τ

(a)
i − τ

(a+1)
j − m(a)

i

2
+

m(a+1)
j

2

)

�

(
1− τ

(a)
i + τ

(a+1)
j − m(a)

i

2
+

m(a+1)
j

2

)

Zfund =
sl∏

i=1

⎛

⎜⎜⎜⎜⎝

�

(
τ

(l)
i −

m(l)
i

2

)

�

(
1− τ

(l)
i −

m(l)
i

2

)

⎞

⎟⎟⎟⎟⎠

n

(4.12)
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This is computed by taking poles at

τ
(a)
i = m(a)

i

2
− k(a)

i + r Mλ
(a)
i (4.13)

which gives

Z Fl = 1

s1! . . . sl !
∮ l∏

a=1

sa∏

i=1

d(r Mλ
(a)
i )

2π i
Z1-loop Zv Zav (4.14)

where

Z1-loop = (r M)
−2r M

[∑l−1
a=1(|λ(a)|sa+1−|λ(a+1)|sa)+n|λ(l)|

]

l∏

a=1

sa∏

i< j

(r Mλ
(a)
i − r Mλ

(a)
j )(r Mλ

(a)
j − r Mλ

(a)
i )

l−1∏

a=1

sa∏

i=1

sa+1∏

j=1

�
(

r Mλ
(a)
i − r Mλ

(a+1)
j

)

�
(

1− r Mλ
(a)
i + r Mλ

(a+1)
j

)
sl∏

i=1

⎛

⎝
�
(

r Mλ
(l)
i

)

�
(

1− r Mλ
(l)
i

)

⎞

⎠
n

Zv =
∑

�l(a)

(r M)
∑l−1

a=1(|l(a)|sa+1−|l(a+1)|sa)+n|l(l)|
l∏

a=1

(−1)(sa−1)|l(a)|z|l(a)|−r M|λ(a)|
a

l∏

a=1

sa∏

i< j

l(a)
i − l(a)

j − r Mλ
(a)
i + r Mλ

(a)
j

−r Mλ
(a)
i + r Mλ

(a)
j

l−1∏

a=1

sa∏

i=1

sa+1∏

j=1

1

(1− r Mλ
(a)
i + r Mλ

(a+1)
j )

l(a)
i −l(a+1)

j

sl∏

i=1

1
[
(1− r Mλ

(l)
i )

l(l)i

]n

Zav =
∑

�k(a)

(−r M)
∑l−1

a=1(|k(a)|sa+1−|k(a+1)|sa)+n|k(l)|
l∏

a=1

(−1)(sa−1)|k(a)| z̄|k(a)|−r M|λ(a)|
a

l∏

a=1

sa∏

i< j

k(a)
i − k(a)

j − r Mλ
(a)
i + r Mλ

(a)
j

−r Mλ
(a)
i + r Mλ

(a)
j

l−1∏

a=1

sa∏

i=1

sa+1∏

j=1

1

(1− r Mλ
(a)
i + r Mλ

(a+1)
j )

k(a)
i −k(a+1)

j

sl∏

i=1

1
[
(1− r Mλ

(l)
i )

k(l)
i

]n

(4.15)

k’s and l’s are non-negative integers.
This result can be compared with the one in [36]. Indeed our fractions with Pochham-

mers at the denominator are equivalent to the products appearing there and we find per-
fect agreement with the Givental I-functions under the by now familiar identification
� = 1

r M , λ = −H in Zv and � = − 1
r M , λ = H in Zav.
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4.4. Quivers. The techniques we used in the flag manifold case can be easily generalized
to more general quivers; let us write down the rules to compute their partition functions.
Every node of the quiver, i.e. every gauge group U (sa), contributes with:

• Integral:

1

sa !
∮ sa∏

i=1

d(r Mλ
(a)
i )

2π i
(4.16)

• One-loop factor:

(r M)−2r M|λ(a)|∑i Q(a)
i

sa∏

i< j

(r Mλ
(a)
i − r Mλ

(a)
j )(r Mλ

(a)
j − r Mλ

(a)
i ) (4.17)

• Vortex factor:
∑

�l(a)

(r M)|l(a)|∑i Q(a)
i (−1)(sa−1)|l(a)|z|l(a)|−r M|λ(a)|

a

×
sa∏

i< j

l(a)
i − l(a)

j − r Mλ
(a)
i + r Mλ

(a)
j

−r Mλ
(a)
i + r Mλ

(a)
j

(4.18)

• Anti-vortex factor:
∑

�k(a)

(−r M)|k(a)|∑i Q(a)
i (−1)(sa−1)|k(a)| z̄|k(a)|−r M|λ(a)|

a

×
sa∏

i< j

k(a)
i − k(a)

j − r Mλ
(a)
i + r Mλ

(a)
j

−r Mλ
(a)
i + r Mλ

(a)
j

(4.19)

Here Q(a)
i is the charge of the i-th chiral matter field with respect to the abelian subgroup

U (1)a ⊂ U (sa) corresponding to ξ (a) and θ(a).
Every matter field in a representation of U (sa)×U (sb) and R-charge R contributes with:

• One-loop factor:

sa∏

i=1

sb∏

j=1

�
(

R
2 + qar Mλ

(a)
i + qbr Mλ

(b)
j

)

�
(

1− R
2 − qar Mλ

(a)
i − qbr Mλ

(b)
j

) (4.20)

• Vortex factor:
sa∏

i=1

sb∏

j=1

1

(1− R
2 − qar Mλ

(a)
i − qbr Mλ

(b)
j )

qal(a)
i +qbl(b)

j

(4.21)

• Anti-vortex factor:

(−1)qasb|k(a)|+qbsa |k(b)|
sa∏

i=1

sb∏

j=1

1

(1− R
2 − qar Mλ

(a)
i − qbr Mλ

(b)
j )

qak(a)
i +qbk(b)

j

(4.22)
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In particular, the bifundamental (sa, s̄b) is given by qa = 1, qb = −1. A field in the
fundamental can be recovered by setting qa = 1, qb = 0; for an antifundamental, qa =
−1 and qb = 0. We can recover the usual formulae if we use (3.6). Multifundamental
representations can be obtained by a straightforward generalization: for example, a
trifundamental representation gives

sa∏

i=1

sb∏

j=1

sc∏

k=1

1

(1− R
2 − qar Mλ

(a)
i − qbr Mλ

(b)
j − qcr Mλ

(c)
k )

qal(a)
i +qbl(b)

j +qcl(c)k

(4.23)

for the vortex factor.
In principle, these formulae are also valid for adjoint fields, if we set sa = sb, qa = 1,

qb = −1; in practice, the diagonal contribution will give a �(0)sa divergence, so the
only way we can make sense of adjoint fields is by giving them a twisted mass.

4.5. Orbifold cohomology of the ADHM moduli space. The formalism described so far
has been applied in [28] to the study of the equivariant quantum cohomology of the
ADHM moduli space. This is encoded in the following I-function

Ik,N =
∑

d1,...,dk ≥ 0

((−1)N z)d1+···+dk

k∏

r=1

N∏

j=1

(−rλr − ira j + irε)dr

(1− rλr − ira j )dr

×
k∏

r<s

ds−dr−rλs +rλr

−rλs +rλr

(1+rλr−rλs−irε)ds−dr

(rλr−rλs +irε)ds−dr

(rλr−rλs +irε1)ds−dr

(1+rλr−rλs−irε1)ds−dr

× (rλr − rλs + irε2)ds−dr

(1 + rλr − rλs − irε2)ds−dr

(4.24)

The purpose of this section is to use the wallcrossing approach developed here to analyze
the equivariant quantum cohomology of the Uhlembeck (partial) compactification of the
moduli space of instantons by tuning the FI parameter ξ of the GLSM to zero. Indeed,
as we will shortly discuss, in this case there is a reflection symmetry ξ →−ξ showing
that the sign of the FI is not relevant to fix the phase of the GLSM. Actually, fixing ξ = 0
allows pointlike instantons. This produces a conjectural formula for the I-function of
the ADHM space in the orbifold chamber. In particular for rank one instantons, namely
Hilbert schemes of points, our results are in agreement with those in [24].

Let us recall some elementary aspects on the moduli space Mk,N of k SU (N ) instan-
tons on C

2. This space is non compact both because the manifold C
2 is non compact and

because of point-like instantons. The first source of non compactness is cured by the in-
troduction of the so-called �-background which, mathematically speaking, corresponds
to work in the equivariant cohomology with respect to the maximal torus of rotations on
C

2. The second one can be approached in different ways. A compactification scheme is
provided by the Uhlembeck one

MU
k,N =

k⊔

l=0

Mk−l,N × Sl
(
C

2
)

(4.25)
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Due to the presence of the symmetric product factors this space contains orbifold sin-
gularities. A desingularization is provided by the moduli space of torsion free sheaves
on P

2 with a framing on the line at infinity. This is described in terms of the ADHM
complex linear maps (B1, B2) : Ck → C

k and (I, J †) : Ck → C
N which satisfy the

F-term equation

[B1, B2] + I J = 0

and the D-term equation

[B1, B†
1 ] + [B2, B†

2 ] + I I † − J † J = ξI

where ξ is a parameter that gets identified with the FI parameter of the GLSM and that
ensures the stability condition of the sheaf.

Notice that the ADHM equations are symmetric under the reflection ξ →−ξ and

(Bi , I, J )→ (B†
i ,−J †, I †)

The Uhlembeck compactification is recovered in the ξ → 0 limit. This amounts to set
the vortex expansion parameter as

(−1)N z = eiθ (4.26)

giving therefore the orbifold I-function

IU
k,N =

∑

d1,...,dk ≥ 0

(eiθ )d1+···+dk

k∏

r=1

N∏

j=1

(−rλr − ira j + irε)dr

(1− rλr − ira j )dr

×
k∏

r<s

ds − dr − rλs + rλr

−rλs + rλr

(1 + rλr − rλs − irε)ds−dr

(rλr − rλs + irε)ds−dr

× (rλr − rλs + irε1)ds−dr

(1 + rλr − rλs − irε1)ds−dr

(rλr − rλs + irε2)ds−dr

(1 + rλr − rλs − irε2)ds−dr

(4.27)

In the abelian case, namely for N = 1, the above I-function reproduces the results of
[24] for the equivariant quantum cohomology of the symmetric product of k points in
C

2. Indeed, by using the map to the Fock space formalism for the equivariant quantum
cohomology developed in [28], it is easy to see that both approaches produce the same
small equivariant quantum cohomology. Notice that the map (4.26) reproduces in the
N = 1 case the one of [24].

5. A p and D p Singularities

The k-instanton moduli space for U (N ) gauge theories on ALE spaces C
2/� has been

described by [37] in terms of quiver representation theory. We can therefore apply the
same procedure we used in the previous section and in [28] and compute the partition
function on S2 for the relevant quiver. This will give us information about the quantum
cohomology of these ALE spaces. Similar results were discussed in [38]. We will focus
on Ap and Dp singularities and consider the Hilbert scheme of points on their resolutions
as well as the orbifold phase given by the symmetric product of points.
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. . .
kk k k

k

N

Fig. 1. The A(1)
p−1 quiver

Let us start by considering the Ap case. Define �k = (k, . . . , k) vector of p compo-
nents; the instanton number is given by k. The Nakajima quiver (Fig. 1) describing instan-
tons on C

2/Zp consists of a gauge group U (k)p with matter I, J in fundamental, antifun-
damental representation of the first U (k) and matter Bb,b±1 in bifundamental represen-
tations of all the U (k) groups, together with adjoint fields χb and a superpotential W =
Tr1[χ1(B1,2 B2,1 − B1,p Bp,1 + I J )] + ∑p

b=2 Trb[χb(Bb,b+1 Bb+1,b − Bb,b−1 Bb−1,b)].6
The spherical partition function for this model is given by7

Z �k,N =
1

(k!)p

∮ p∏

b=1

k∏

s=1

d(rλ
(b)
s )

2π i
Z1l Zv Zav (5.1)

Z1l =
(

�(1− irε)

�(irε)

)pk p∏

b=1

k∏

s=1

(zbz̄b)
−rλ

(b)
s

p∏

b=1

k∏

s=1

k∏

t �=s

(rλ(b)
s − rλ

(b)
t )

×�(1 + rλ
(b)
s − rλ

(b)
t − irε)

�(−rλ
(b)
s + rλ

(b)
t + irε)

p∏

b=1

k∏

s=1

k∏

t=1

�(rλ
(b)
s − rλ

(b−1)
t + irε1)

�(1− rλ
(b)
s + rλ

(b−1)
t − irε1)

�(−rλ
(b)
s + rλ

(b−1)
t + irε2)

�(1 + rλ
(b)
s − rλ

(b−1)
t − irε2)

k∏

s=1

N∏

j=1

�(rλ
(1)
s + ira j )

�(1− rλ
(1)
s − ira j )

�(−rλ
(1)
s − ira j + irε)

�(1 + rλ
(1)
s + ira j − irε)

(5.2)

Zv =
∑

{�l}

k∏

s=1

(−1)Nl(1)
s

p∏

b=1

zl(b)
s

b

p∏

b=1

k∏

s<t

l(b)
t − l(b)

s − rλ
(b)
t + rλ

(b)
s

−rλ
(b)
t + rλ

(b)
s

(1 + rλ
(b)
s − rλ

(b)
t − irε)

l(b)
t −l(b)

s

(rλ
(b)
s − rλ

(b)
t + irε)

l(b)
t −l(b)

s

6 In order to keep a light notation, here b = p + 1 has to be intended as b = 1.
7 Similarly, here b = 0 has to be intended as b = p.
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p∏

b=1

k∏

s=1

k∏

t=1

1

(1− rλ
(b)
s + rλ

(b−1)
t − irε1)l(b)

s −l(b−1)
t

1

(1 + rλ
(b)
s − rλ

(b−1)
t − irε2)l(b−1)

t −l(b)
s

k∏

s=1

N∏

j=1

(−rλ
(1)
s − ira j + irε)

l(1)
s

(1− rλ
(1)
s − ira j )l(1)

s

(5.3)

Zav =
∑

{�k}

k∏

s=1

(−1)Nk(1)
s

p∏

b=1

z̄k(b)
s

b

p∏

b=1

k∏

s<t

k(b)
t − k(b)

s − rλ
(b)
t + rλ

(b)
s

−rλ
(b)
t + rλ

(b)
s

(1 + rλ
(b)
s − rλ

(b)
t − irε)

k(b)
t −k(b)

s

(rλ
(b)
s − rλ

(b)
t + irε)

k(b)
t −k(b)

s

p∏

b=1

k∏

s=1

k∏

t=1

1

(1− rλ
(b)
s + rλ

(b−1)
t − irε1)k(b)

s −k(b−1)
t

1

(1 + rλ
(b)
s − rλ

(b−1)
t − irε2)k(b−1)

t −k(b)
s

k∏

s=1

N∏

j=1

(−rλ
(1)
s − ira j + irε)

k(1)
s

(1− rλ
(1)
s − ira j )k(1)

s

(5.4)

From Z1l we can recover in the limit r → 0 an integral formula for the Ap−1 ALE
Nekrasov partition function:

ZALE = 1

r2N pk

(iε)pk

(k!)p

∮ p∏

b=1

k∏

s=1

dλ
(b)
s

2π i

p∏

b=1

k∏

s=1

k∏

t �=s

(λ(b)
s − λ

(b)
t )(−λ(b)

s + λ
(b)
t + iε)

p∏

b=1

k∏

s=1

k∏

t=1

1

(λ
(b)
s − λ

(b−1)
t + iε1)(−λ

(b)
s + λ

(b−1)
t + iε2)

k∏

s=1

N∏

j=1

1

(λ
(1)
s + ia j )(−λ

(1)
s − ia j + iε)

(5.5)

We can now study a few examples. In particular, we will be interested in the computation
of the equivariant mirror map: this will be non-trivial only in the case N = 1, by the same
argument proposed in [28]. Even if we are not able to provide a general combinatorial
proof, a few examples can convince us that the equivariant mirror map is given by
(1 +

∏p
b=1 zb)

ikrε , as known from the mathematical literature on the subject [39]: this
has been checked in the cases k = 1, 2 for p = 2 and in the case k = 1 for p = 3, 4.

We now consider the quiver associated to a Dp+1 singularity (Fig. 2). In this case, the
gauge group will be U (k)4×U (2k)p−2, with matter I, J in the fundamental, antifunda-
mental representation of the first U (k), matter Bb,b±1 in bifundamental representations,
and matter χb in the adjoint representation, with superpotential
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. . .

N

2k 2k 2k

k

k

k

k

2k

Fig. 2. The D(1)
p+1 quiver

W = Tr1[χ1(B1,3 B3,1 + I J )] + Tr2[χ2(B2,3 B3,2)]
+Tr3[χ3(B3,4 B4,3 − B3,1 B1,3 − B3,2 B2,3)]
+Trp[χp(−Bp,p−1 Bp−1,p + Bp,p+1 Bp+1,p + Bp,p+2 Bp+2,p)]

+
p−1∑

b=4

Trb[χb(Bb,b+1 Bb+1,b − Bb,b−1 Bb−1,b)]

+Trp+1[χp+1(−Bp+1,p Bp,p+1)] + Trp+2[χp+2(−Bp+2,p Bp,p+2)]. (5.6)

Defining the (p + 2)-components vector �k = (k, k, 2k, . . . , 2k, k, k), the spherical
partition function for this model will be

Z �k,N =
1

(k!)4(2k!)p−2

∮ p+2∏

b=1

kb∏

s=1

d(rλ
(b)
s )

2π i
Z1l Zv Zav (5.7)

Z1l =
(

�(1− irε)

�(irε)

)2pk p+2∏

b=1

kb∏

s=1

(zbz̄b)
−rλ

(b)
s

p+2∏

b=1

kb∏

s=1

kb∏

t �=s

(rλ(b)
s − rλ

(b)
t )

×�(1 + rλ
(b)
s − rλ

(b)
t − irε)

�(−rλ
(b)
s + rλ

(b)
t + irε)

p∏

b=3

2k∏

s=1

2k∏

t=1

�(rλ
(b+1)
s − rλ

(b)
t + irε1)

�(1− rλ
(b+1)
s + rλ

(b)
t − irε1)

�(−rλ
(b+1)
s + rλ

(b)
t + irε2)

�(1 + rλ
(b+1)
s − rλ

(b)
t − irε2)

2∏

b=1

2k∏

s=1

k∏

t=1

�(rλ
(3)
s − rλ

(b)
t + irε1)

�(1− rλ
(3)
s + rλ

(b)
t − irε1)

�(−rλ
(3)
s + rλ

(b)
t + irε2)

�(1 + rλ
(3)
s − rλ

(b)
t − irε2)

p+2∏

b=p+1

k∏

s=1

2k∏

t=1

�(rλ
(b)
s − rλ

(p)
t + irε1)

�(1− rλ
(b)
s + rλ

(p)
t − irε1)

�(−rλ
(b)
s + rλ

(p)
t + irε2)

�(1 + rλ
(b)
s − rλ

(p)
t − irε2)

k∏

s=1

N∏

j=1

�(rλ
(1)
s + ira j )

�(1− rλ
(1)
s − ira j )

�(−rλ
(1)
s − ira j + irε)

�(1 + rλ
(1)
s + ira j − irε)

(5.8)

Zv =
∑

{�l}

k∏

s=1

(−1)Nl(1)
s

p+2∏

b=1

zl(b)
s

b

p+2∏

b=1

kb∏

s<t

l(b)
t − l(b)

s − rλ
(b)
t + rλ

(b)
s

−rλ
(b)
t + rλ

(b)
s
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×
(1 + rλ

(b)
s − rλ

(b)
t − irε)

l(b)
t −l(b)

s

(rλ
(b)
s − rλ

(b)
t + irε)

l(b)
t −l(b)

s

p∏

b=3

2k∏

s=1

2k∏

t=1

1

(1− rλ
(b+1)
s + rλ

(b)
t − irε1)l(b+1)

s −l(b)
t

× 1

(1 + rλ
(b+1)
s − rλ

(b)
t − irε2)l(b)

t −l(b+1)
s

2∏

b=1

2k∏

s=1

k∏

t=1

1

(1− rλ
(3)
s + rλ

(b)
t − irε1)l(3)

s −l(b)
t

1

(1 + rλ
(3)
s − rλ

(b)
t − irε2)l(b)

t −l(3)
s

p+2∏

b=p+1

k∏

s=1

2k∏

t=1

1

(1− rλ
(b)
s + rλ

(p)
t − irε1)l(b)

s −l(p)
t

1

(1 + rλ
(b)
s − rλ

(p)
t − irε2)l(p)

t −l(b)
s

k∏

s=1

N∏

j=1

(−rλ
(1)
s − ira j + irε)

l(1)
s

(1− rλ
(1)
s − ira j )l(1)

s

(5.9)

Zav =
∑

{�k}

k∏

s=1

(−1)Nk(1)
s

p+2∏

b=1

z̄k(b)
s

b

p+2∏

b=1

kb∏

s<t

k(b)
t − k(b)

s − rλ
(b)
t + rλ

(b)
s

−rλ
(b)
t + rλ

(b)
s

×
(1 + rλ

(b)
s − rλ

(b)
t − irε)

k(b)
t −k(b)

s

(rλ
(b)
s − rλ

(b)
t + irε)

k(b)
t −k(b)

s

p∏

b=3

2k∏

s=1

2k∏

t=1

1

(1− rλ
(b+1)
s + rλ

(b)
t − irε1)k(b+1)

s −k(b)
t

× 1

(1 + rλ
(b+1)
s − rλ

(b)
t − irε2)k(b)

t −k(b+1)
s

2∏

b=1

2k∏

s=1

k∏

t=1

1

(1− rλ
(3)
s + rλ

(b)
t − irε1)k(3)

s −k(b)
t

1

(1 + rλ
(3)
s − rλ

(b)
t − irε2)k(b)

t −k(3)
s

p+2∏

b=p+1

k∏

s=1

2k∏

t=1

1

(1− rλ
(b)
s + rλ

(p)
t − irε1)k(b)

s −k(p)
t

1

(1 + rλ
(b)
s − rλ

(p)
t − irε2)k(p)

t −k(b)
s

k∏

s=1

N∏

j=1

(−rλ
(1)
s − ira j + irε)

k(1)
s

(1− rλ
(1)
s − ira j )k(1)

s

(5.10)

From Z1l we can recover an integral expression for the Dp+1 ALE Nekrasov partition
function by taking the limit r → 0, as we did for the previous case. The structure of the
poles for this model is quite involved, and we leave its study to future work. Nevertheless,
an analysis of the simplest cases gives (1+ z1z2

∏p
b=3 z2

bz p+1z p+2)
irkε as the equivariant

mirror map, again in agreement with [39]. In line with these computation, we expect
also the equivariant mirror map for the E-type ALE spaces to depend only on the dual
Dynkin label of the affine Dynkin diagram for the corresponding algebra.
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As far as the orbifold phase is concerned, the discussion goes along the same lines
as in previous Sect. 4: by reversing the sign of all Fayet-Iliopoulos parameters one
obtains the same phase due to the symmetry of ADHM constraints. The orbifold phase
is then reached by analytic continuation on the product of circles |zb| = 1. This provides
conjectural formulae for the equivariant I and J functions of the symmetric product of
points of Ap and Dp singularities that it would be interesting to check against rigorous
mathematical results.

6. Conclusions

In this paper we exploited some properties of the spherical partition function for su-
persymmetric (2, 2) GLSMs to provide contour integral formulae for the I and the
J -functions encoding the equivariant quantum cohomology of general GIT quotients.
We have given a toolbox to compute the S2 partition function for gauge theory quivers.

We have developed two particular applications of our formulas. The first concerns
the analysis of the contour integral applied to the wall crossing phenomenon among the
various chambers of a given GIT quotient. We used this method to provide conjectural
formulae for the quantum cohomology of the C

3/Zn orbifold and of the Uhlembeck
(partial) compactification of the instanton moduli space on C

2. The second has to do with
the use of the Cauchy theorem to prove gauge theory/quantum cohomology dualities.
This allowed us to prove a conjectural equivalence of quantum cohomology of vector
bundles over Grassmannians proposed in the context of the study of Wilson loop algebrae
in three dimensional supersymmetric gauge theories [21].

There are several directions worth further investigation. Concerning orbifold quantum
cohomology, we underline that our approach can be applied to any classical gauge group
and thus could be exploited for example to compute the Gromov–Witten invariants of
D and E type finite groups quotients.

Another interesting issue is the extension of the approach developed in this paper to
the computation of open Gromov–Witten invariants by implementing suitable boundary
conditions via Brini’s remodelling technique [40].

Vortex partition functions have been shown to satisfy differential equations of Hy-
pergeometric type and this has a clear counterpart in the context of AGT correspondence
being the null state equations for degenerate conformal blocks [4–7]. Differential equa-
tions of similar type are obeyed by I and J -functions associated to general GIT quotients
whose explicit form would be useful to spell out in detail in order to study the mirror
geometries and the link to classical integrable systems.

These equations are naturally promoted to finite difference equations in K-theoretic
vortex counting [6,7,41]. The AGT-like dual of these have been recently studied in [42]
where their interpretation in terms of the q-deformed Virasoro algebra null state equation
is proposed. We plan to study the relation between K-theoretic vortex counting, refined
topological strings, quantum K-theory and quantum integrable systems in a forthcoming
work.
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A. Duality Gr
(

N, N f |Na
) � Gr

(
N f − N, N f |Na

)

The Grassmannian Gr
(
N , N f |Na

)
is defined as a U (N ) gauge theory with N f funda-

mentals and Na antifundamentals, so we can write the partition function in the form

Z = 1

N !
∑

{ms∈Z}Ns=1

∫

(iR)N

N∏

s=1

dτs

2π i
z
−τs−ms

2
ren z̄

−τs + ms
2

ren

N∏

s<t

(
m2

st

4
− τ 2

st

)

N∏

s=1

N f∏

i=1

�
(
τs − i ai

�
− ms

2

)

�
(
1− τs + i ai

�
− ms

2

)
N∏

s=1

Na∏

j=1

�
(
−τs + i

ã j
�

+ ms
2

)

�
(

1 + τs − i
ã j
�

+ ms
2

) , (A.1)

where � relates to the radius of the sphere and the renormalization scale M as � = 1
r M and

a j , ã j are the dimensionless (rescaled by M−1) equivariant weights for fundamentals
and antifundamentals respectively. The renormalized Kahler coordinate zren is defined
as

zren = e−2πξren+iθren = �
Na−N f (−1)N−1z. (A.2)

since we have

ξren = ξ − 1

2π
(N f − Na) log(r M), θren = θ + (N − 1)π (A.3)

From now on we are setting M = 1. We close the contours in the left half planes, so
that we pick only poles coming from the fundamentals. We need to build an N -pole to
saturate the integration measure. Hence the partition function becomes a sum over all
possible choices of N -poles, i.e. over all combinations how to pick N objects out of N f .
Now the proposal is that duality holds separately for a fixed choice of an N -pole and its
corresponding dual. For simplicity of notation let us prove the duality for a particular
choice of an N -pole and its (N f − N )-dual

(�, . . . ,�︸ ︷︷ ︸
N

, •, . . . , •︸ ︷︷ ︸
N f−N

)
dual←→ (•, . . . , •︸ ︷︷ ︸

N

,�, . . . ,�︸ ︷︷ ︸
N f−N

), (A.4)

where boxes denote the choice of poles forming the N -pole.

A.1. Gr
(
N , N f |Na

)
. The poles are at positions

τs = −ks +
ms

2
+

λs

�
(A.5)

and it still remains to be integrated over λ’s around λs = ias , where s runs from 1 to N .
This fully specifies from which fundamental we took the pole. Plugging this into (A.1),
the integral reduces to the following form

Z =
∮

M

{ N∏

s=1

dλs

2π i�

}
Z1l

(
λs

�
,

ai

�
,

ã j

�

)
z−

∑N
s=1

λs
� Ĩ

(
(−1)Na κz,

λs

�
,

ai

�
,

ã j

�

)

× z̄−
∑N

s=1
λs
� Ĩ

(
(−1)Na κ̄ z̄,

λs

�
,

ai

�
,

ã j

�

)
, (A.6)
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where we defined κ = �
Na−N f (−1)N−1, κ̄ = (−�)Na−N f (−1)N−1. Here we are inte-

grating over a product of circles M =⊗k
r=1 S1(iar , δ) with δ small enough such that

only the pole at the center of the circle is included. From this form we can read of the I
function for Gr

(
N , N f |Na

)
as

I = z−
∑N

s=1
λs
�

∑

{ls≥0}Ns=1

(
(−1)Na κz

)∑N
s=1 ls

N∏

s<t

λst − �lst

λst

N∏

s=1

∏Na
j=1

(−λs +i ã j
�

)

ls
∏N f

i=1

(
1 + −λs +iai

�

)

ls

,

(A.7)

where xst := xs− xt . Now we integrate over λ’s in (A.6), which is straightforward since
Z1l contains only simple poles and the rest is holomorphic in λ’s. Finally, we get

Z (�,...,�,•,...,•) = Zclass Z1l Zv Zav, (A.8)

where the individual pieces are given as follows

Zclass =
N∏

s=1

(
�

2(Na−N f )zz̄
)− ias

�

(A.9)

Z1l =
N∏

s=1

N f∏

i=N+1

�
(

iasi
�

)

�
(

1− iasi
�

)
N∏

s=1

Na∏

j=1

�
(
− i(as−ã j )

�

)

�
(

1 +
i(as−ã j )

�

) (A.10)

Zv =
∑

{ls≥0}Ns=1

(
(−1)Na κz

)∑N
s=1 ls

N∏

s<t

(
1− �lst

iast

) N∏

s=1

∏Na
j=1

(
−i

as−ã j
�

)

ls
∏N f

i=1

(
1− i asi

�

)
ls

(A.11)

Zav = Zv [κz→ κ̄ z̄] (A.12)

To prove the duality it is actually better to manipulate Zv to a more convenient form
(combining the contributions of the vectors and fundamentals by using identities between
the Pochhammers)

Zv =
∞∑

l=0

[
(−1)Na+N−N f κz

]l
Zl (A.13)

with Zl given by

Zl =
∑

{ls≥0|∑N
s=1 ls=l}

N∏

s=1

∏Na
j=1

(
−i

as−ã j
�

)

ls

ls !∏N
i �=s

(
i asi

�
− ls

)
li

∏N f
i=N+1

(
i asi

�
− ls

)
ls

. (A.14)
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A.2. The dual theory Gr
(
N f − N , N f |Na

)
. Going to the dual theory not only the rank

of the gauge group changes to N f − N , but there is a new feature arising. New matter
fields Mi

j̄
appear, they are singlets under the gauge group and couple to the fundamentals

and antifundamentals via a superpotential W D = φ̃μ j̄ Mi
j̄
φμi . So the partition function

gets a new contribution from the mesons M (we set N D = N f − N )

Z = 1

N D!
∑

{ms∈Z}N D
s=1

∫

(iR)N D

N D∏

s=1

dτs

2π i
(zD

ren)
−τs−ms

2 (z̄D
ren)
−τs + ms

2

N D∏

s<t

(
m2

st

4
− τ 2

st

)

N D∏

s=1

N f∏

i=1

�

(
τs + i

aD
i
�
− ms

2

)

�

(
1− τs − i

aD
i
�
− ms

2

)
N D∏

s=1

Na∏

j=1

�

(
−τs − i

ãD
j
�

+ ms
2

)

�

(
1 + τs + i

ãD
j
�

+ ms
2

)

×
N f∏

i=1

Na∏

j=1

�
(
−i

ai−ã j
�

)

�
(

1 + i
ai−ã j

�

) , (A.15)

where the last factor is the new contribution of the mesons (note that it depends on the
original equivariant weights, not on the dual ones). All the computations are analogue
to the previous case, so we give the result right after integration

Z (•,...,•,�,...,�) = Z D
class Z D

1l Z D
v Z D

av, (A.16)

where the building blocks are

Z D
class =

N f∏

s=N+1

(
�

2(Na−N f )zDz̄D
)− iaD

s
�

(A.17)

Z D
1l =

N f∏

s=N+1

N f∏

i=N+1

�

(
iaD

si
�

)

�

(
1− iaD

si
�

)
Na∏

j=1

�

(
− i(aD

s −ãD
j )

�

)

�

(
1 +

i(aD
s −ãD

j )

�

)
N f∏

i=1

Na∏

j=1

�
(
−i

ai−ã j
�

)

�
(

1 + i
ai−ã j

�

)

(A.18)

Z D
v =

∞∑

l=0

[
(−1)Na−N (κz)D

]l
Z D

l (A.19)

Z D
av =

∞∑

k=0

[
(−1)Na−N (κ̄ z̄)D

]k
Z D

k (A.20)

with Z D
l given by

Z D
l =

∑

{ls≥0|∑N f
s=N+1 ls=l}

N f∏

s=N+1

∏Na
j=1

(
−i

aD
s −ãD

j
�

)

ls

ls !∏N f
i=N+1

i �=s

(
i

aD
si
�
− ls

)

li

∏N
i=1

(
i

aD
si
�
− ls

)

ls

.

(A.21)
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A.3. Duality map. We are now ready to discuss the duality between the two theories. The
statement is the following. For N f ≥ Na + 2, there exists a duality map zD = zD(z) and
aD

j = aD
j (a j ), ãD

j = ãD
j (̃a j ) under which the partition functions for Gr

(
N , N f |Na

)

and Gr
(
N f − N , N f |Na

)
are equal.8 In the first step we will construct the duality map

and then we will show that (A.9–A.14) indeed match with (A.17–A.21). The partition
function is a double power series in z and z̄ multiplied by Zclass. In order to achieve
equality of the partition functions, Zclass have to be equal after duality map and then the
power series have to match term by term. Moreover we can look only at the holomorphic
piece Zv, for the antiholomorphic everything goes in a similar way. The constant term
is Z1l, which is a product of gamma functions with arguments linear in the equivariant
weights. This implies that the duality map for the equivariant weights is linear. But then
the map between the Kahler coordinates can be only a rescaling since a constant term
would destroy the matching of Z1l. So we arrive at the most general ansatz for the duality
map

zD = sz (A.22)

aD
i

�
= −E

ai

�
+ C (A.23)

ãD
j

�
= −F

ã j

�
+ D (A.24)

Matching the constant terms Z1l gives the constraints

E = F = 1, D = −(C + i). (A.25)

Imposing further the equivalence of Zclass fixes C to be

C = 1

N f − N

N f∑

i=1

ai

�
. (A.26)

We are now at a position where Zclass and Z1l match, while the only remaining free
parameter in the duality map is s. We fix it by looking at the linear terms in Zv and Z D

v .
Of course this does not assure that all higher order terms do match, but we will show
that this is the case for N f ≥ Na + 2.9 So taking only k = 1 contributions in Zv and Z D

v
we get for s

s = (−1)N−1 N
D , (A.27)

where

N =
N∑

s=1

∏Na
j=1

(
−i

as−ã j
�

)

∏N
i �=s

(−i asi
�

)∏N f
i=N+1

(
1− i asi

�

) (A.28)

8 We will see the reason for this range later.
9 A direct computation for a handful of examples suggests that higher order terms do not match for s

obtained as just outlined if N f < Na + 2.
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D =
N f∑

s=N+1

∏Na
j=1

(
1 + i

as−ã j
�

)

∏N
i=1

(
1 + i asi

�

)∏N f
i=N+1

j �=s

(−i asi
�

) . (A.29)

The proposal is that for N f ≥ Na + 2

s = (−1)Na . (A.30)

Out of this range s is a complicated rational function in the equivariant parameters. This
completes the duality map for N f ≥ Na + 2 and suggests that there is no duality map
for N f < Na + 2.

A.4. Proof of equivalence of the partition functions. By construction of the mirror map
we know that Zclass, Z1l and moreover also the linear terms in Zv match. Now we will
prove (d.m. is the shortcut for duality map)

Zv = Z D
v |d.m. (A.31)

for N f ≥ Na + 2. Looking at (A.13) and (A.19) we see that this boils down to

Zl = (−1)Nal Z D
l |d.m.. (A.32)

The key to prove the above relation is to write Zl as a contour integral

Zl =
∫

Cu

l∏

α=1

dφα

2π i
f

(
φ, ε,

a

�
,

ã

�

) ∣∣∣
ε=1

, (A.33)

where Cu is a product of contours having the real axes as base and then are closed in the
upper half plane by a semicircle. The integrand has the form

f = 1

εl l!
l∏

α<β

(
φα − φβ

)2

(
φα − φβ

)2 − ε2

l∏

α=1

∏Na
j=1

(
i

ã j
�

+ φα

)

∏N
i=1

(
φα + i ai

�

)∏N f
i=N+1

(−i ai
�
− ε − φα

) .

(A.34)

It is necessary to add small imaginary parts to ε and ai , ε → ε + iδ, −iai →−iai + i�δ′
with δ > δ′. The proof of (A.33) goes by direct evaluation. First we have to classify the
poles. Due to the imaginary parts assignments, they are at 10

φα = −i
ai

�
, α = 1, . . . , l, i = 1, . . . , N (A.35)

φβ = φα + ε, β ≥ α (A.36)

We have to build an l-pole, which means that the poles are classified by partitions of l
into N parts, l = ∑N

I=1 lI . The I -th Young tableau Y T (lI ) with lI boxes can be only

10 One has to assume ai to be imaginary at this point. The general result is obtained by analytic continuation
after integration.
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1-dimensional (we choose a row) since we have only one ε to play with. To illustrate
what we have in mind, we show an example of a possible partition

(︸ ︷︷ ︸
l1

, •, , , . . . , , •︸︷︷︸
lN

). (A.37)

Residue theorem then turns the integral into a sum over all such partitions and the poles
corresponding to a given partition are given as

φ I
nI
= −i

aI

�
+ (nI − 1)ε + λI

nI
, (A.38)

where I = 1, . . . , N labels the position of the Young tableau in the N -vector and
nI = 1, . . . , lI labels the boxes in Y T (lI ). Substituting this in (A.33) we get (the l! gets
cancelled by the permutation symmetry of the boxes)

Zl = 1

εl

∑

{lI≥0|∑N
I=1 lI=l}

∮

M

N∏

I=1
lI �=0

lI∏

nI=1

dλI
nI

2π i

N∏

I �=J
lI �=0,l J �=0

lI∏

nI=1

l J∏

n J=1

×
(
−i aI J

�
+ nI J ε + λ

I,J
nI ,n J

)

(
−i aI J

�
+ (nI J − 1)ε + λ

I,J
nI ,n J

)
N∏

I=1
lI �=0

lI∏

nI �=n J

(
nI J ε + λ

I,I
nI ,n J

)

(
(nI J − 1)ε + λ

I,I
nI ,n J

)

×
N∏

I=1
lI �=0

lI∏

nI=1

∏Na
j=1

(
i

ã j
�
− i aI

�
+ (nI − 1)ε + λI

nI

)

∏N
r=1

(−i aIr
�

+ (nI − 1)ε + λI
nI

)∏N f
r=N+1

(−i aIr
�
− nI ε − λI

nI

) ,

(A.39)

where we integrate over M = ⊗l
r=1 S1(0, δ). The computation continues as follows.

We separate the poles in λ’s (there are only simple poles), the rest is a holomorphic
function, so we can effectively set the λ’s to zero there. Eventually, we obtain

Zl = 1

εl

∑

{lI≥0|∑N
I=1 lI=l}

⎡

⎢⎢⎣

∮

M

N∏

I=1
lI �=0

{⎛

⎝
lI∏

nI=1

dλI
nI

2π i

⎞

⎠

⎛

⎝ 1

λI
1

lI−1∏

nI=1

1

λ
I,I
nI +1,nI

⎞

⎠
}
⎤

⎥⎥⎦

×
N∏

I �=J

(
1 + i aI J

�ε
− lI

)
l J(

1 + i aI J
�ε

)
l J

N∏

I=1
lI �=0

εlI−1

lI

×
∏N

I=1
∏Na

j=1 εlI

(
i

ã j
�

+aI

ε

)

∏N
I=1

∏N
r �=I εlI

(−i aIr
�ε

)∏N
I=1
lI �=0

εlI−1 (lI − 1)!∏N
I=1

∏N f
r=N+1 εlI

(−i ar I
�ε

) ,

(A.40)

where the integration gives [. . .] = 1. We are left with products of ratios including
the equivariant parameters, which we express as Pochhammer symbols and after heavy
Pochhammer algebra we finally arrive at (A.14), which proves (A.33).
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Now, if the integrand f does not have poles at infinity, which happens exactly for
N f ≥ Na + 2, we can write

∫

Cu

l∏

α=1

dφα

2π i
f

(
φ, ε,

a

�
,

ã

�

)
= (−1)l

∫

Cd

l∏

α=1

dφα

2π i
f

(
φ, ε,

a

�
,

ã

�

)
(A.41)

with Cd having the same base as Cu but is closed in the lower half plane by a semicircle.
Both contours are oriented counterclockwise. The lovely fact is that the r.h.s. of the
above equation gives the desired result

(−1)l
∫

Cd

l∏

α=1

dφα

2π i
f

(
φ, ε,

a

�
,

ã

�

) ∣∣∣
ε=1
= (−1)Nal Z D

l |d.m. (A.42)

after direct evaluation of the integral, completely analogue to that of (A.33).

A.5. Example: the Gr(1, 3) � Gr(2, 3) case. Let us show this isomorphism explicitly
in a simple case: we will consider Gr(1, 3) and Gr(2, 3) in a completely equivariant
setting.
Let us first compute the equivariant partition function for Gr(1, 3):

ZGr(1,3) =
∑

m

∫
dτ

2π i
e4πξrenτ−iθrenm

3∏

j=1

�(τ + ir Ma j − m
2 )

�(1− τ − ir Ma j − m
2 )

=
3∑

i=1

((r M)6zz̄)ir Mai

3∏

j=1
j �=i

�(−ir Mai j )

�(1 + ir Mai j )

∑

l≥0

[(r M)3z]l
∏3

j=1(1 + ir Mai j )l

×
∑

k≥0

[(−r M)3 z̄]k
∏3

j=1(1 + ir Mai j )k
(A.43)

Here we defined ai j = ai − a j , and the twisted masses have been rescaled according to
ai → Mai , so they are now dimensionless. For Gr(2, 3) we have (with θ̃ren = θ̃ + π =
θ̃ + 3π , being θ̃ −→ θ̃ + 2π a symmetry of the theory)

ZGr(2,3) = 1

2

∑

m1,m2

∫
dτ1

2π i

dτ2

2π i
e4πξ̃ren(τ1+τ2)−i θ̃ren(m1+m2)

(
−τ 2

12 +
m2

12

4

)
2∏

r=1

3∏

j=1

�(τr + ir Mã j − mr
2 )

�(1− τr − ir Mã j − mr
2 )

=
3∑

i< j

((r M)6 z̃ ˜̄z)ir M(ãi +ã j )
3∏

k=1
k �=i, j

�(−ir Mãik)

�(1 + ir Mãik)

�(−ir Mã jk)

�(1 + ir Mã jk)

∑

l1,l2≥0

[(−r M)3 z̃]l1+l2

∏3
k=1(1 + ir Mãik)l1

∏3
k=1(1 + ir Mã jk)l2

l1 − l2 + ir Mãi − ir Mã j

ir Mãi − ir Mã j
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∑

k1,k2≥0

[(r M)3 ˜̄z]k1+k2

∏3
k=1(1 + ir Mãik)k1

∏3
k=1(1 + ir Mã jk)k2

k1 − k2 + ir Mãi − ir Mã j

ir Mãi − ir Mã j

(A.44)

In both situations, we are assuming a1 + a2 + a3 = 0 and ã1 + ã2 + ã3 = 0. Consider
now the partition (•, •,�) for Gr(1, 3) and the dual partition (�,�, •) for Gr(2, 3);
we have respectively

Z (•,•,�)
Gr(1,3) = ((r M)6zz̄)ir Ma3

�(−ir Ma31)

�(1 + ir Ma31)

�(−ir Ma32)

�(1 + ir Ma32)

∑

l≥0

[(r M)3z]l
l!(1 + ir Ma31)l(1 + ir Ma32)l

∑

k≥0

[(−r M)3 z̄]k
k!(1 + ir Ma31)k(1 + ir Ma32)k

Z (�,�,•)
Gr(2,3) = ((r M)6 z̃ ˜̄z)ir M(ã1+ã2)

�(−ir Mã13)

�(1 + ir Mã13)

�(−ir Mã23)

�(1 + ir Mã23)

∑

l1,l2≥0

[(−r M)3 z̃]l1+l2

∏2
i=1 li !∏3

j �=i (1 + ir Mãi j )li

l1 − l2 + ir Mã1 − ir Mã2

ir Mã1 − ir Mã2

∑

k1,k2≥0

[(r M)3 ˜̄z]k1+k2

∏2
i=1 ki !∏3

j �=i (1 + ir Mãi j )ki

k1 − k2 + ir Mã1 − ir Mã2

ir Mã1 − ir Mã2

(A.45)

Since

∑

l1,l2≥0

[(−r M)3 z̃]l1+l2

∏2
i=1 li !∏3

j �=i (1 + ir Mãi j )li

l1 − l2 + ir Mã1 − ir Mã2

ir Mã1 − ir Mã2

=
∑

l≥0

[(−r M)3 z̃]l
l!(1 + ir Mã13)l(1 + ir Mã23)l

cl (A.46)

and

cl =
l∑

l1=0

l!
l1!(l − l1)!

(1 + ir Mã23 + l − l1)l1(1 + ir Mã13 + l1)l−l1

(ir Mã12 − l + l1)l1(−ir Mã12 − l1)l−l1
= (−1)l = (−1)3l

we can conclude that Z (•,•,�)
Gr(1,3) = Z (�,�,•)

Gr(2,3) if we identify ai = −ãi and ξ = ξ̃ , θ = θ̃

(i.e., z = z̃). It is then easy to prove that ZGr(1,3) = ZGr(2,3).
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