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Abstract: We treat secret key extraction when the eavesdropper has correlated quantum
states. We propose quantum privacy amplification theorems different from Renner’s,
which are based on quantum conditional Rényi entropy of order 1 + s. Using those
theorems, we derive an exponential rate of decrease for leaked information and the
asymptotic equivocation rate, which have not been derived hitherto in the quantum
setting.

1. Introduction

Extracting secret random numbers in the presence of a quantum attacker is one of
the important topics in quantum information theory. The classical version of this topic
was discussed by [1–5]. The quantum version is mainly treated by Renner [6] and his
collaborators by using a universal2 hash function. Indeed, a universal2 hash function can
be implemented efficiently, i.e., with a small amount of calculation. When the classical
random variable is correlated with the eavesdropper’s quantum state, the existence of a
deterministic secure hash function is guaranteed by the privacy amplification theorem
shown by Renner [6].

When the size of the generated final random variable is sufficiently small, the final
bits are almost independent of the eavesdropper’s quantum state. Then, one needs to
evaluate the leaked information of the protocol using a universal2 hash function. In
order to evaluate the secrecy, Renner [6] showed the privacy amplification theorem
under the trace norm distance with the conditional Rényi entropy of order 2. Combining
this theorem with the smoothing method, he provided the evaluation for the secrecy of
the final random variable. Then, he proved the strong security in the asymptotic setting
when the extracted key rate is less than the conditional entropy. However, it is difficult
to calculate the exact value of the smoothed conditional Rényi entropy of order 2 with a
large system size. Furthermore, he did not provide the speed of the convergence of the
security parameter, e.g., the trace norm distance, explicitly. In order to prove the strong
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security in the asymptotic setting, he also employed the several properties of symmetric
states. In this paper, we derive another type of privacy amplification theorem by using the
conditional Rényi entropy of order 1 + s. Then, we can directly show the strong security
without use of smoothing nor several properties of symmetric states when the final key
size is smaller than the conditional entropy. That is, our method is more direct and gives
the speed of convergence of the security measure, whose detail will be explained as
follows.

In this paper, we employ the difference of the conditional entropy from the entropy
of the uniform random number, which can be regarded as a modification of the quan-
tum mutual information (See (9)). Indeed, the conditional entropy is more suitable for
describing the conditional uncertainty of the given system from the physical viewpoint
although the trace norm distance is more appropriate from the cryptography viewpoint.
Both quantities can describe the conditional uncertainty of the system when the condi-
tional entropy is close to the uniform case. However, when the conditional entropy is
far from the uniform case, this quantity can describe the conditional uncertainty of the
system properly while the trace norm distance cannot. In order to address both cases
uniformly, we use this quantity as our security measure for leaked information.

Using the conditional Rényi entropy of order 1 + s, we propose other types of privacy
amplification theorems under the above security measure. For this purpose, a fundamen-
tal theorem is derived by extending classical privacy amplification theorems obtained
by [5,7]. Using the theorem, we derive an exponential rate of decrease of the secu-
rity measure. That is, when the extracted key rate is less than the conditional entropy,
the security measure goes to zero exponentially. Then, we derive an exponential rate
of decrease for leaked information, whose commutative case is the same as that by
[5]. Our derivation deviates from [8] in the point that our method does not employ
smoothing method. Our exponent is better than that given in [8] under our security
measure. Indeed, as is numerically discussed with the classical case in [9], the exponen-
tial approach sometimes has an advantage over the second order asymptotics [10,11]
when the allowable leaked information is too small. Hence, we focus on the exponent.
Furthermore, using the Pinsker inequality, we apply our result to the trace norm dis-
tance.

When the extracted key rate is larger than the conditional entropy, the leaked informa-
tion does not go to zero. In this case, we focus on the maximum conditional entropy rate,
which was proposed by Wyner [12] and is called the equivocation rate. After Wyner’s pro-
posal [12], the concept has been actively studied and accepted by so many researchers
in classical information and communication theory from a more applied view point
[13–23]. However, the quantum version has not been treated until now; hence, it was
desirable to derive the quantum version. We derive the equivocation rate by treating
the minimum leaked information rate. The smoothing method cannot evaluate the
leaked information rate in this case while the smoothing method can derive lower
bounds for exponential rate decrease [8]. Since our method directly evaluates the infor-
mation amount leaked to the eavesdropper, it enables us to derive the equivocation
rate.

This paper is organized as follows. In Sect. 2, we prepare quantum versions of infor-
mation quantities. In Sect. 3, we formulate our setting and derive the exponents of leaked
information when the key generation rate is less than the conditional entropy rate. In
Sect. 4, we compare our exponents with the exponents given by the smoothing method
in [8]. In Sect. 5, we derive the equivocation rate as the minimum conditional entropy for
a given key generation rate. The proofs for Theorems 1 and 2 are given in the appendix.
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2. Information Quantities

In order to treat leaked information after an application of a hash function in the quantum
setting, we prepare several information quantities in a composite system HA ⊗ HE , in
which, HA is a classical system spanned by the basis {|a〉}. In this paper, we denote
the state on HE by ρa

E when the classical information of HA is a. When the classical
information a is generated with probability P(a), the state of the composite system
HA ⊗ HE is ρAE = ∑

a P(a)|a〉〈a| ⊗ ρa
E . In the following, when the density matrix

concerns the composite system HA ⊗ HE , we abbreviate the subscript because there is
no possibility for confusion. Then, the von Neumann entropies and Rényi entropies are
given as1

H(A, E |ρ) := −Tr ρ log ρ

H(E |ρ) := −Tr ρE log ρE

H1+s(A, E |ρ) := −1

s
log Tr ρ1+s

H1+s(E |ρ) := −1

s
log Tr (ρE )1+s

with s ∈ R and ρE = Tr Aρ. When we focus on the total system of a given density ρ,
H(A, E |ρ) and H1+s(A, E |ρ) are simplified to H(ρ) and H1+s(ρ).

We consider two kinds of quantum versions of the conditional entropy for s ∈ R:

H(A|E |ρ) := H(A, E |ρ) − H(E |ρ)

H(A|E |ρ) := −Tr ρ log(ρ
−1/2
E ρρ

−1/2
E ),

and two kinds of quantum versions of the conditional Rényi entropy for s ∈ R [34,35]:

H̃1+s(A|E |ρ) := −1

s
log Tr (ρ

− s
2(1+s)

E ρρ
− s

2(1+s)
E )1+s

and

H
∗
1+s(A|E |ρ) := −1

s
log Tr ρ(ρ

−1/2
E ρρ

−1/2
E )s,

where IA ⊗ ρE is abbreviated to ρE . This abbreviation will be applied in the following
discussion. The quantity H̃1+s(A|E |ρ) is used for the exponential rate of decrease for
the security measure in Sect. 3 while H

∗
1+s(A|E |ρ) is used for our derivation of the

equivocation rate in Sect. 4. Indeed, while the quantity H
∗
2(A|E |ρ) = H̃2(A|E |ρ) is the

same as the quantity H2(A|E |ρ) given in [6] and the quantity H 2(A|E |ρ) given in [8], the
quantity H

∗
1+s(A|E |ρ) and H̃1+s(A|E |ρ) are different from the quantity H1+s(A|E |ρ)

given in [8] with 0 < s < 1.
Indeed, our result holds by replacing H̃1+s(A|E |ρ) by

H1+s(A|E |ρ) := −1

s
log Tr ρ1+sρ−s

E . (1)

1 With the relation to the conditional entropies, we describe the information quantity by identifying the
quantum system. Hence, we introduce these notations. Indeed, when we fix a state ρ, it is be easily under-
standable to treat information quantities by identifying the quantum systems.
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However, we only discuss H̃1+s(A|E |ρ). This is because H̃1+s(A|E |ρ) gives a better
evaluation due to the relation H1+s(A|E |ρ) ≤ H̃1+s(A|E |ρ) [34, Proposition 4] [35,
(13)].

Since the second derivatives of the function s �→ s H
∗
1+s(A|E |ρ) is positive, it

is concave. Hence, as 0H1(A|E |ρ) = 0, H
∗
1+s(A|E |ρ) is monotone decreasing for

s ∈ R. Since lims→∞ H
∗
1+s(A|E |ρ) coincides with the min entropy Hmin(A|E |ρ) :=

− log ‖ρ−1/2
E ρρ

−1/2
E ‖, H

∗
1+s(A|E |ρ) ≥ Hmin(A|E |ρ). Furthermore, since the deriva-

tive at s = 0 of the function s �→ s H
∗
1+s(A|E |ρ) is H(A|E |ρ), we have the relation

lims→0 H
∗
1+s(A|E |ρ) = H(A|E |ρ). Hence, this relation and the monotone decreasing

property of H
∗
1+s(A|E |ρ) yield

H(A|E |ρ) ≥ H
∗
1+s(A|E |ρ) (2)

for s ∈ (0, 1].
Similar properties hold for H̃1+s(A|E |ρ). Calculating the derivative at s = 0, we

have lims→0 H̃1+s(A|E |ρ) = H(A|E |ρ). As is shown in Appendix C, H̃1+s(A|E |ρ) is
monotone decreasing for s. Then, we have

H(A|E |ρ) ≥ H̃1+s(A|E |ρ) ≥ lim
s→∞ H̃1+s(A|E |ρ)

= − log ‖ρ−1/2
E ρρ

−1/2
E ‖ = Hmin(A|E |ρ) (3)

for s > 0.
Then, the correlation between A and HE can be evaluated by two kinds of quantum

versions of the mutual information

I (A : E |ρ) := D(ρ‖ρA ⊗ ρE ) (4)

I (A : E |ρ) := D(ρ‖ρA ⊗ ρE ) (5)

D(ρ‖σ) := Tr ρ(log ρ − log σ) (6)

D(ρ‖σ) := Tr ρ log(σ−1/2ρσ−1/2). (7)

Note that ρ1/2 log(σ−1/2ρσ−1/2)ρ1/2 is called Fujii–Kamei operator relative entropy
[24]. As is shown in [8, Lemma 7], we have

D(ρ‖σ) ≥ D(ρ‖σ). (8)

Furthermore, D(ρ‖σ) is different from Belavkin Staszewski relative entropy Tr ρ log
(ρ1/2σ−1ρ1/2)[25], which is not less than D(ρ‖σ) [26, Corollary 2.6.]. Indeed, an
opposite inequality of (8) will be also shown as (23) latter. Thanks to both inequalities,
the trace version D(ρ‖σ) of Fujii–Kamei operator relative entropy is close to the usual
quantum relative entropy D(ρ‖σ) in a special case even in the non-commutative case.
The quantity D(ρ‖σ) plays an important role for resolving the non-commutative diffi-
culty in the following way. A modification of mutual information is defined in (10) by
using D(ρ‖σ), and a variant of privacy amplification theorem is shown with this modi-
fication as Theorem 2. Combining Theorem 2 and (23), we derive the minimum leaked
information rate based on the usual quantum relative entropy as well as the equivocation
rate, e.g., the maximum conditional entropy rate of the extracted keys, which is one of
the main results.
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By using the completely mixed state ρmix,A on A, two kinds of quantum versions of
the mutual information can be modified to

I ′(A : E |ρ) := D(ρ‖ρmix,A ⊗ ρE ) = I (A : E |ρ) + D(ρA‖ρmix,A)

= I (A : E |ρ)+ H(A|ρmix,A)−H(A|ρA)= H(A|ρmix,A)−H(A|E |ρA),

(9)

I ′(A : E |ρ) := D(ρ‖ρmix,A ⊗ ρE ), (10)

which satisfy

I (A : E |ρ) ≤ I ′(A : E |ρ)

I (A : E |ρ) ≤ I ′(A : E |ρ)

and

H(A|E |ρ) = −I ′(A : E |ρ) + log |A| (11)

H(A|E |ρ) = −I ′(A : E |ρ) + log |A|. (12)

Indeed, the quantity I (A : E |ρ) represents the amount of information leaked to
E , and the remaining quantity D(ρA‖ρmix,A) describes the difference of the random
number A from the uniform random number. So, if the quantity I ′(A : E |ρ) is small,
we can conclude that the random number A has less correlation with E and is close to
the uniform random number. In particular, if the quantity I ′(A : E |ρ) goes to zero, the
mutual information I (A : E |ρ) goes to zero, and the state ρA goes to the completely
mixed state ρmix,A. Hence, we can adopt the quantity I ′(A : E |ρ) as a measure for
qualifying the secret random number.

Using the trace norm, we can evaluate the secrecy for the state ρ as follows:

d1(A : E |ρ) := ‖ρ − ρA ⊗ ρE‖1. (13)

Taking into account the randomness, Renner [6] defined the following criteria for security
of a secret random number:

d ′
1(A : E |ρ) := ‖ρ − ρmix,A ⊗ ρE‖1. (14)

Using the quantum version of Pinsker inequality, we obtain

d1(A : E |ρ)2 ≤ I (A : E |ρ) (15)

d ′
1(A : E |ρ)2 ≤ I ′(A : E |ρ). (16)

When we apply the function f to the classical random number a ∈ A,
H( f (A), E |ρ) ≤ H(A, E |ρ), i.e.,

H( f (A)|E |ρ) ≤ H(A|E |ρ). (17)

As is shown in [33, Theirem 1], when we apply a quantum operation E on HE , since
it does not act on the classical system A,

H(A|E |E(ρ)) ≥ H(A|E |ρ) (18)

H̃1+s(A|E |E(ρ)) ≥ H̃1+s(A|E |ρ). (19)
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When the state σ has the spectral decomposition σ = ∑
i si Ei , the pinching map Eσ

is defined as

Eσ (ρ) :=
∑

i

EiρEi . (20)

When v is the number of the distinct eigenvalues of σ , the inequality

ρ ≤ vEσ (ρ) (21)

holds [27, Lemma 3.8], [28]. As x �→ log x is matrix monotone,

log ρ ≤ log v + log Eσ (ρ). (22)

Thus,

D(ρ‖σ) = Tr ρ log ρ − Tr ρ log σ ≤ log v + Tr ρ log Eσ (ρ) − Tr ρ log σ

= log v + Tr Eσ (ρ) log Eσ (ρ) − Tr Eσ (ρ) log σ

= log v + D(Eσ (ρ)‖σ) = D(Eσ (ρ)‖σ) + log v. (23)

Therefore, when v is the number of distinct eigenvalues of ρE := ∑
a p(a)ρa

E , an
inequality

I (A : E |ρ) ≤ I (A : E |EρE (ρ)) + log v

= I (A : E |EρE (ρ)) + log v (24)

holds.
Using these relations, we can show the following lemma.

Lemma 1.

H
∗
1+s(A|E |ρ) ≥ H̃1+s(A|E |ρ). (25)

Proof. Applying (21) to the case of σ = ρE , we obtain

ρ ≤ vEρE (ρ).

Hence,

ρ
−1/2
E ρρ

−1/2
E ≤ vρ

−1/2
E EρE (ρ)ρ

−1/2
E .

Since x → xs is matrix monotone, we obtain

[ρ−1/2
E ρρ

−1/2
E ]s ≤ vs[ρ−1/2

E EρE (ρ)ρ
−1/2
E ]s .

Hence,

e−s H
∗
1+s (A|E |ρ) = Tr ρ[ρ−1/2

E ρρ
−1/2
E ]s ≤ vsTr ρ[ρ−1/2

E EρE (ρ)ρ
−1/2
E ]s

= vsTr EρE (ρ)[ρ−1/2
E EρE (ρ)ρ

−1/2
E ]s = vse−s H

∗
1+s (A|E |EρE (ρ))

= vse−s H̃1+s (A|E |EρE (ρ)) ≤ vse−s H̃1+s (A|E |ρ), (26)

where (19) is used in the final inequality. By letting vn be the number of distinct eigen-
values of ρ⊗n

E , the logarithm of (26) yields

nH
∗
1+s(A|E |ρ) +

log vs
n

s
= H

∗
1+s(A|E |ρ⊗n) + log vn

≥ H̃1+s(A|E |ρ⊗n) = nH̃1+s(A|E |ρ),

Taking the limit n → ∞, we obtain (25).
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Fig. 1. Application of hash function

3. Formulation and Exponential Rate of Decrease

We consider the secure key extraction problem from a common classical random number
a ∈ A which has been partially eavesdropped as quantum states by Eve. For this problem,
it is assumed that Alice and Bob share a common classical random number a ∈ A, and
Eve has a quantum state ρa

E in the quantum system HE , which is correlated to the
random number a. The task is to extract a common random number f (a) from the
random number a ∈ A, which is almost independent of Eve’s quantum state. Here,
Alice and Bob are only allowed to apply the same function f to the common random
number a ∈ A as Fig. 1. Now, we focus on an ensemble of the functions fX from A to
{1, . . . , M}, where X denotes a random variable describing the stochastic behavior of
the function f . An ensemble of the functions fX is called universal2 when it satisfies
the following condition [29]:

Condition 1. ∀(a1, a2) ∈ A2 with a1 �= a2, the probability that fX(a1) = fX(a2) is at
most 1

M .

Indeed, when the cardinality |A| is a power of a prime power q and M is another power
of the same prime power q, an ensemble { fX} satisfying both conditions is given by the
the concatenation of Toeplitz matrix and the identity (X, I ) [30] only with logq |A| −
1 random variables taking values in the finite filed Fq . That is, the matrix (X, I ) be
efficiently constructed.

Theorem 1. When the ensemble of the functions { fX} is universal2, it satisfies

I ( fX(A) : E, X|ρ, PX) ≤ I ′( fX(A) : E, X|ρ, PX) = EX I ′( fX(A) : E |ρ)

≤ vs Ms

s
e−s H̃1+s (A|E |ρ) = vs es(log M−H̃1+s (A|E |ρ))

s
, (27)

where v is the number of distinct eigenvalues of ρE .

That is, there exists a function f : A → {1, . . . , M} such that

I ′( f (A) : E |ρ) ≤ vs es(log M−H̃1+s (A|E |ρ))

s
. (28)
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Next, we consider the case when our state is given by the n-fold independent and
identical state ρ, i.e., ρ⊗n . We define the optimal generation rate

G(ρ) := sup
{( fn ,Mn)}

⎧
⎪⎨

⎪⎩
lim

n→∞
log Mn

n

∣
∣
∣
∣
∣
∣
∣

lim
n→∞

1

n
I ( fn(A) : E |ρ⊗n) = 0

lim
n→∞

H( fn(A)|ρ⊗n)

log Mn
= 1

⎫
⎪⎬

⎪⎭

= sup
{( fn ,Mn)}

{

lim
n→∞

log Mn

n

∣
∣
∣
∣ lim
n→∞

I ′( fn(A) : E |ρ⊗n)

n
= 0

}

,

whose classical version is treated by [1]. The second equation holds as follows. the

condition limn→∞ H( fn(A)|ρ⊗n)
log Mn

= 1 is equivalent with limn→∞
D(ρ fn (A)‖ρmix, fn (A))

n =
0. Hence, limn→∞ I ( fn(A):E |ρ⊗n)

n = 0 and limn→∞ H( fn(A)|ρ⊗n)
log Mn

= 1 if and only if

limn→∞ I ′( fn(A):E |ρ⊗n)
n = 0.

When the generation rate R = limn→∞ log Mn
n is smaller than H(A|E), there exists

a sequence of functions fn : An → {1, . . . , en R} such that

I ′( fn(A) : E |ρ⊗n) ≤ vs
n

es(R−H̃1+s (A|E |ρ⊗n))

s
, (29)

where vn is the number of distinct eigenvalues of ρ⊗n
E , which is polynomially increasing

for n. Since lims→0 H̃1+s(A|E |ρ) = H(A|E |ρ), there exists a number s ∈ (0, 1] such
that s(R − H̃1+s(A|E |ρ)) > 0. Thus, the right hand side of (29) goes to zero expo-
nentially. Conversely, due to (17), any sequence of functions fn : An �→ {1, . . . , en R}
satisfies that

lim
n→∞

H( fn(A)|E |ρ⊗n)

n
≤ H(A|E |ρ⊗n)

n
= H(A|E |ρ). (30)

When limn→∞ H( fn(A)|ρ⊗n)
n R = 1,

lim
n→∞

I ( fn(A) : E |ρ⊗n)

n
= R − lim

n→∞
H( fn(A)|E |ρ⊗n)

n
≥ R − H(A|E |ρ). (31)

That is, when R > H(A|E |ρ), I ( fn(A):E |ρ⊗n)
n does not go to zero. Hence, we reproduce

the known result [6,31]:

G(ρ) = H(A|E |ρ). (32)

In order to treat the speed of this convergence, we focus on the supremum of the
exponential rate (exponent) of decrease of I ′( fn(A) : E |ρ⊗n) for a given R

eI (ρ|R) := sup
{( fn ,Mn)}

{

lim
n→∞

− log I ′( fn(A) : E |ρ⊗n)

n

∣
∣
∣
∣ lim
n→∞

− log Mn

n
≤ R

}

.
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Since the relation s H̃1+s(A|E |ρ⊗n) = ns H̃1+s(A|E |ρ) holds, the inequality (29) implies
that

eI (ρ|R) ≥ eH (ρ|R) := max
0≤s≤1

s H̃1+s(A|E |ρ) − s R

= max
0≤s≤1

s(H̃1+s(A|E |ρ) − R), (33)

whose commutative version coincides with the bound given in [5].
Next, we apply our evaluation to the measure d ′

1(A : E |ρ). When { fX} satisfies
Condition 1, combining (16) and (27), we obtain

EXd ′
1( fX(A) : E |ρ) ≤

√
EXd ′

1( fX(A) : E |ρ)2

≤ vs/2 Ms/2

√
s

e− s
2 H̃1+s (A|E |ρ). (34)

That is, in the n-fold asymptotic setting, when the generation key rate is R, we focus on
the supremum of the exponential rate (exponent) of decrease of I ( fn(A) : E |ρ⊗n) for
a given R

ed(ρ|R) := sup
{( fn ,Mn)}

{

lim
n→∞

− log d ′
1( fn(A) : E |ρ⊗n)

n

∣
∣
∣
∣ lim
n→∞

− log Mn

n
≤ R

}

.

Then, the inequality (34) implies that ed(ρ|R) ≥ eH (ρ|R)
2 . However, when ρ is com-

mutative, the paper [32] gave another lower bound of ed(ρ|R), which is tighter than
eH (ρ|R)

2 .

4. Comparison with Smoothing Method

The paper [8] derived lower bounds for eI (ρ|R) and ed(ρ|R). In order to describe them,
we introduce an information quantity φ(s|A|E |ρ):

φ(s|A|E |ρ) := log Tr E (Tr Aρ1/(1−s))1−s

= log Tr E (
∑

a

P A(a)1/(1−s)(ρa
E )1/(1−s))1−s .

This quantity satisfies the following lemma.

Lemma 2. [8, Lemma 11] The inequalities

s H1+s(A|E |ρ) ≥ − φ(s|A|E |ρ) (35)

s H1+s(A|E |ρ) ≤ − (1 + s)φ(
s

1 + s
|A|E |ρ) (36)

hold for 0 ≤ s ≤ 1.

Then, the paper [8] showed that

ed(ρ|R) ≥ eφ,q(ρ|R) (37)

eI (ρ|R) ≥ eH,q(ρ|R) (38)

eI (ρ|R) ≥ eφ,q(ρ|R), (39)
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where

eφ,q(ρ|R) := max
0≤s≤1

−1 + s

2
φ(

s

1 + s
|A|E |ρ) − s

2
R

= max
0≤t≤ 1

2

− 1

2(1 − t)
φ(t |A|E |ρ) − t

2(1 − t)
R

eH,q(ρ|R) := max
0≤s≤1

s

2 − s
(H1+s(A|E |ρ) − R).

As a relation, we obtain the following lemma.

Lemma 3. The quantity eH (ρ|R) defined in (33) satisfies that

eH (ρ|R) ≥ eH,q(ρ|R) (40)

eH (ρ|R) ≥ eφ,q(ρ|R). (41)

In fact, when the maximum in (33) is not realized by s = 1, Inequality (40) is strict.
When the maximum in (33) is not realized by s ∈ [0, 1

2 ], Inequality (41) is strict.

Hence, when the maximum in (33) is realized only by s ∈ ( 1
2 , 1), our lower bound

eH (ρ|R) for eI (ρ|R) is strictly better than those given in [8]. This fact implies that
our method is better than the smoothing method used in [8] under the modified mutual
information measure.

Proof. We have

eH (ρ|R) = max
0≤s≤1

s(H̃1+s(A|E |ρ) − R)

≥ max
0≤s≤1

s(H1+s(A|E |ρ) − R)

≥ max
0≤s≤1

s

2 − s
(H1+s(A|E |ρ) − R) = eH,q(ρ|R),

which implies (40). From the above derivation, we can find that Inequality (40) is strict
when the maximum in (33) is not realized by s = 1.

Furthermore, (35) yields that

eφ,q(ρ|R) = max
0≤t≤ 1

2

− 1

2(1 − t)
φ(t |A|E |ρ) − t

2(1 − t)
R

≤ max
0≤t≤ 1

2

t

2(1 − t)
H1+t (A|E |ρ) − t

2(1 − t)
R

= max
0≤t≤ 1

2

t

2(1 − t)
(H1+t (A|E |ρ) − R)

= max
0≤t≤ 1

2

t (H1+t (A|E |ρ) − R)

≤ max
0≤t≤1

t (H1+t (A|E |ρ) − R) ≤ eH (ρ|R),

which implies (41). From the above derivation, we can find that Inequality (41) is strict
when the maximum in (33) is not realized by s ∈ [0, 1

2 ].
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5. Equivocation Rate

Next, we consider the case when log M is larger than H(A|E |ρ).

Theorem 2. When the ensemble of the functions { fX} is universal2, it satisfies

EXes I ′( fX(A):E |ρ) ≤ 1 + Mse−s H
∗
1+s (A|E |ρ)

= 1 + es(log M−H
∗
1+s (A|E |ρ)). (42)

Using (42) and the concavity of x �→ log x , we obtain

sEX I ′( fX(A) : E |ρ) ≤ log EXes I ′( fX(A):E |ρ)

≤ log(1 + es(log M−H
∗
1+s (A|E |ρ))) ≤ es(log M−H

∗
1+s (A|E |ρ)),

which can be regarded as another version of (27).
Hence, (24), (42), and (19) guarantee that

EXes I ′( fX(A):E |ρ) ≤ vsEXes I ′( fX(A):E |EρE (ρ))

≤ vs(1 + Mse−s H
∗
1+s (A|E |EρE (ρ)))

= vs(1 + Mse−s H̃1+s (A|E |EρE (ρ)))

≤ vs(1 + Mse−s H̃1+s (A|E |ρ)) = vs(1 + es(log M−H̃1+s (A|E |ρ))),

where v is the number of distinct eigenvalues of ρE . Since

log vs(1 + es(log M−H̃1+s (A|E |ρ)))

= s log v + log(1 + es(log M−H̃1+s (A|E |ρ)))

≤ s log v + log 2 + log max{1, es(log M−H̃1+s (A|E |ρ))}
= s log v + log 2 + max{0, s(log M − H̃1+s(A|E |ρ))},

using (11), we obtain the following theorem:

Theorem 3. There exists a function f : A �→ {1, . . . , M} such that

log M − H( f (A)|E |ρ) = I ′( f (A) : E |ρ)

≤ log v +
log 2

s
+ max{0, log M − H̃1+s(A|E |ρ)}.

for s ∈ (0, 1].
Next, we consider the case when our state is given by the n-fold independent and

identical state ρ, i.e., ρ⊗n . Then, we define the equivocation rate as the maximum Eve’s
ambiguity rate for the given key generation rate R:

R(R|ρ) := sup
{ fn}

{ lim
n→∞

H( fn(A)|E |ρ⊗n)

n
| lim

n→∞
H( fn(A)|ρ⊗n)

n R
= 1},

where the supremum takes the map fn that maps from An to {1, . . . , en R}. Then, we
obtain the following theorem.
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Theorem 4. When the key generation rate R is greater than H(A|E |ρ),

R(R|ρ) = H(A|E |ρ). (43)

Indeed, using the above theorem, we can calculate the minimum information rate for
the given key generation rate R as follows.

inf{ fn}{ lim
n→∞

I (E : fn(A)|ρ⊗n)

n
| lim

n→∞
H( fn(A)|ρ⊗n)

n R
= 1}

= max{R − H(A|E |ρ), 0}.

Proof. When the key generation rate R, i.e., Mn = en R , there exists a sequence of
functions fn : An �→ {1, . . . , Mn} such that

R − lim
n→∞

H(E | fn(A)|ρ⊗n)

n
≤ max{0, R − H̃1+s(A|E |ρ)}

for s ∈ (0, 1]. Then, taking the limit s → 0, we obtain

R − lim
n→∞

H(E | fn(A)|ρ⊗n)

n
≤ max{0, R − H(A|E |ρ)},

which implies the part ≤ of (43). Converse inequality ≥ of (43) follows from (30).

6. Conclusion

We have derived an upper bound of information leaked to a quantum attacker in the mod-
ified quantum mutual information measure when we apply universal2 hash functions.
In the commutative case, our lower bound coincides with the bound given in [5]. In the
non-commutative case, our bound is different from Renner’s [6] two universal hashing
lemma even in s = 1 because Renner’s [6] result is based on H̃2(A|E |ρ) = H

∗
2(A|E |ρ)

but ours is based on H̃1+s(A|E |ρ).
Applying our bound to the i.i.d. case, we have obtained a lower bound for the expo-

nential rate of decrease for information leaked to a quantum attacker under the modified
mutual information measure. Our lower bound is better than lower bounds derived by
the smoothing method in [8].

Furthermore, we have derived the asymptotic equivocation rate. In order to show it, we
have derived a quantum version of privacy amplification theorems, whose classical ver-
sion is given in [5,7]. In this quantum version, we have employed H

∗
1+s(A|E |ρ) instead

of H1+s(A|E |ρ). In the second step for the derivation, we have employed H̃1+s(A|E |ρ).
Then, the asymptotic equivocation rate can be characterized by H̃(A|E |ρ), which is
given by the limit lims→0 H̃1+s(A|E |ρ).
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A. Proof of Theorem 1

In order to show Theorem 1, we prepare the following two lemmas.

Lemma 4. The matrix inequality (I + X)s ≤ I + Xs holds with a non-negative matrix
X and s ∈ (0, 1].
Proof. Since I is commutative with X , it is sufficient to show that (1 + x)s ≤ 1 + xs for
x ≥ 0. This inequality is trivial.

Lemma 5. The matrix inequality log(I + X) ≤ 1
s Xs holds with a non-negative matrix

X and s ∈ (0, 1].
Proof. Since I is commutative with X , it is sufficient to show that log(1 + x) ≤ xs

s for
x ≥ 0. Since the inequalities (1 + x)s ≤ 1 + xs and log(1 + x) ≤ x hold for x ≥ 0 and
0 < s ≤ 1, the inequalities

log(1 + x) = log(1 + x)s

s
≤ log(1 + xs)

s
≤ xs

s
(44)

hold.

Now, we prove Theorem 1.

EX I ′( fX(A) : E |ρ)

= EX D(

M∑

i=1

|i〉〈i | ⊗
∑

a: fX(a)=i

P(a)ρa
E‖ 1

M
I ⊗ ρE )

= EX

∑

a

Tr P(a)ρa
E (log(

∑

a′: fX(a′)= fX(a)

P(a′)ρE
a′ ) − log

1

M
ρE )

≤
∑

a

P(a)Tr ρa
E (log(EX

∑

a′: fX(a′)= fX(a)

P(a′)ρE
a′ ) − log

1

M
ρE ) (45)

=
∑

a

P(a)Tr ρa
E (log(P(a)ρa

E + EX

∑

a′: fX(a′)= fX(a),a′ �=a

P(a′)ρE
a′ ) − log

1

M
ρE )

≤
∑

a

P(a)Tr ρa
E (log(P(a)ρa

E +
1

M

∑

a′:a′ �=a

P(a′)ρE
a′ ) − log

1

M
ρE ) (46)

≤
∑

a

P(a)Tr ρa
E (log(P(a)ρa

E +
1

M
ρE ) − log

1

M
ρE )

≤
∑

a

P(a)Tr ρa
E (log(vP(a)EρE (ρa

E ) +
1

M
ρE ) − log

1

M
ρE ) (47)

=
∑

a

P(a)Tr ρa
E log(vM P(a)EρE (ρa

E )ρ−1
E + I ), (48)

where (45) follows from the matrix convexity of x �→ log x , (46) follows from Condition
1 and the matrix monotonicity of x �→ log x , (47) follows from (21) and the matrix
monotonicity of x �→ log x , and (48) follows from the commutativity of EρE (ρa

E ) and
ρE .
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Using Lemma 5, we obtain
∑

a

P(a)Tr ρa
E log(vM P(a)EρE (ρa

E )ρ−1
E + I )

≤ 1

s

∑

a

P(a)Tr ρa
E (vM P(a)EρE (ρa

E )ρ−1
E )s

= vs Ms

s

∑

a

P(a)1+sTr EρE (ρa
E )1+s(ρE )−s

= vs Ms

s
e−s H̃1+s (A|E |EρE (ρ)) ≤ vs Ms

s
e−s H̃1+s (A|E |ρ), (49)

where (49) follows from (19).

B. Proof of Theorem 2

The relations (2) and (12) imply

s I ′(B : E |ρ) ≤ log
∑

b

P(b)Tr ρb
E (|B|P(b)ρ

−1/2
E ρb

Eρ
−1/2
E )s .

Substituting f (A) into B, we have

EXes I ′( fX(A):E |ρ)

≤ EX

∑

a

P(a)Tr ρa
E (Mρ

−1/2
E (

∑

a′: fX(a′)= fX(a)

P(a′)ρE
a′ )ρ

−1/2
E )s

≤
∑

a

P(a)Tr ρa
E (Mρ

−1/2
E EX(

∑

a′: fX(a′)= fX(a)

P(a′)ρE
a′ )ρ

−1/2
E )s (50)

=
∑

a

P(a)Tr ρa
E (Mρ

−1/2
E (P(a)ρa

E + EX(
∑

a′: fX(a′)= fX(a),a �=a′
P(a′)ρE

a′ ))ρ
−1/2
E )s

≤
∑

a

P(a)Tr ρa
E (Mρ

−1/2
E (P(a)ρa

E +
1

M
(

∑

a′:a �=a′
P(a′)ρE

a′ ))ρ
−1/2
E )s (51)

≤
∑

a

P(a)Tr ρa
E (Mρ

−1/2
E (P(a)ρa

E +
1

M
ρE )ρ

−1/2
E )s

=
∑

a

P(a)Tr ρa
E (I + M P(a)ρ

−1/2
E ρa

Eρ
−1/2
E )s

≤
∑

a

P(a)Tr ρa
E (I + Ms P(a)s(ρ

−1/2
E ρa

Eρ
−1/2
E )s) (52)

= 1 + Ms
∑

a

P(a)1+sTr ρa
E (ρ

−1/2
E ρa

Eρ
−1/2
E )s

= 1 + Mse−s H
∗
1+s (A|E |ρ)

where (50) follows from the matrix convexity of x �→ xs , and (51) follows from Con-
dition 1 and the matrix monotonicity of x �→ xs , and (52) follows from Lemma 4.
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C. Monotone Decreasing Property of H̃1+s(A|E|ρ)

First, as shown in [36, Corollary III.8], we notice that

H̃1+s(A|E |ρ) = lim
n→∞

1

n
H̃1+s(A|E |Eρ⊗n

E
(ρ⊗n)). (53)

Since H̃1+s(A|E |Eρ⊗n
E

(ρ⊗n)) = H
∗
1+s(A|E |Eρ⊗n

E
(ρ⊗n)), H̃1+s(A|E |Eρ⊗n

E
(ρ⊗n)) is

monotone decreasing for s. Thus, H̃1+s(A|E |ρ) is also monotone decreasing for s.
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