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Abstract: In a wide range of quantum theoretical settings—from quantum mechanics
to quantum field theory, from gauge theory to string theory—singularities in the complex
Borel plane, usually associated to instantons or renormalons, render perturbation theory
ill-defined as they give rise to nonperturbative ambiguities. These ambiguities are associ-
ated to choices of an integration contour in the resummation of perturbation theory, along
(singular) Stokes directions in the complex Borel plane (rendering perturbative expan-
sions non-Borel summable along any Stokes line). More recently, it has been shown that
the proper framework to address these issues is that of resurgent analysis and transseries.
In this context, the cancelation of all nonperturbative ambiguities is shown to be a con-
sequence of choosing the transseries median resummation as the appropriate family of
unambiguous real solutions along the coupling-constant real axis. While the median
resummation is easily implemented for one-parameter transseries, once one considers
more general multi-parameter transseries the procedure becomes highly dependent upon
properly understanding Stokes transitions in the complex Borel plane. In particular, all
Stokes coefficients must now be known in order to explicitly implement multi-parameter
median resummations. In the cases where quantum-theoretical physical observables are
described by resurgent functions and transseries, the methods described herein show
how one may cancel nonperturbative ambiguities, and define these observables non-
perturbatively starting out from perturbation theory. Along the way, structural results
concerning resurgent transseries are also obtained.
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1. Introduction

Perturbation theory is a fundamental tool of analysis when addressing non-trivial prob-
lems in quantum theories. One may find its very successful applications almost every-
where, e.g., from the computation of ground-state energies of anharmonic oscillators in
quantum mechanics, to the computation of beta functions in quantum field theory; from
the genus expansion of the bosonic string in flat spacetime, to the large N expansion
of nonabelian gauge theories. Unfortunately, except for particular cases, these perturba-
tive series expansions are often asymptotic: they have zero radius of convergence. As is
rather well known, this occurs due to the existence of singularities in the complex Borel
plane, usually associated to instantons [1] and renormalons [2].

In this context, how does one make sense out of perturbation theory? Let us denote
by F the quantity we wish to compute and by z the perturbative parameter. Without loss
of generality we consider that the perturbative expansion in z takes place around z ∼ ∞
and will denote the perturbative coefficients of F by Fg . It does not matter if this is a
ground-state energy, a beta function, the string free energy, or some large N correlation
function: our discussion is completely general within perturbation theory and we shall
not have in mind any specific example. That an asymptotic series has zero radius of
convergence simply means that its coefficients grow as Fg ∼ g!. One may then use the
Borel transform B[F] to “remove” this factorial growth and, upon analytic continuation
of the Borel transform to the full complex plane, define the resummation SF of a pertur-
bative expansion by its inverse Borel transform. Here is where a more serious problem
arises: the inverse Borel transform is essentially a Laplace transform, which requires an
integration contour in order to be properly defined. Now, if the required contour of inte-
gration meets a singularity in the complex Borel plane, this whole construction seems
to break down. Indeed, such singularity will create an ambiguity, the nonperturbative
ambiguity, as one needs to decide how the integration contour will avoid it. Singularities
in the complex Borel plane occur along Stokes lines, and perturbative expansions are
thus said to be non-Borel summable along these lines. Let us assume that the singularity
occurs on the positive real axis and that the physical set-up one is addressing concerns
small positive real coupling-constant. Avoiding the singularity either from above or from
below will thus necessarily induce an imaginary contribution, which is different depend-
ing on how we chose to avoid it. This is the nature of the ambiguity. The reason why it
is nonperturbative is simply due to the functional form of the inverse Borel transform;
the ambiguity goes as ∼ e−z (as the expansion is around z ∼ ∞ this contribution is
non-analytic). Of course the same situation will take place along any other Stokes line.
As such, the lack of Borel summability seems to be a fatal problem as it renders per-
turbative expansions meaningless. In this way, if some nonperturbative definition is to
be obtained starting out with perturbation theory, one must find a way to go beyond the
usual perturbative expansion.
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In this larger context one asks again, how does one make sense out of perturbation
theory? As it turns out, instantons (or renormalons) are not only an apparent disease but
they also carry along their own cure. One of the first examples which helped clarify the
solution to the problem raised in the paragraph above was that of the quartic anharmonic
oscillator in quantum mechanics, in particular the study of the large-order growth of
the perturbative expansion associated to its ground-state energy [3,4]. One finds that
the coefficients of this ground-state energy grow as Fg ∼ g! A−g , where A is the (real)
instanton action locating the instanton singularity in the complex Borel plane, i.e., there is
a Borel singularity on the positive real axis. As mentioned above, resumming perturbation
theory along the real axis, and avoiding the singularity either through the left or through
the right, leads to a nonperturbative ambiguity. The solution arises once one realizes that
it is not only the perturbative sector which has an ambiguity. In fact, if one considers
some fixed multi-instanton sector, say the n-instantons sector, then it is also the case
that the perturbative expansion around this sector, with coefficients F (n)

g , will also be

asymptotic with non-trivial large-order growth F (n)
g ∼ g! n A−g . In other words, also

any multi-instanton series will suffer from nonperturbative ambiguities. While this could
seem to make the problem with perturbation theory even worse, especially recalling that
in most cases there is an infinite number of instanton sectors, it was shown in [5–7]
that, instead, these ambiguities in the instanton sectors are in fact the solution to our
problem.1 These references showed that, in the calculation of the ground-state energy of
the double-well potential, the ambiguity in the two-instantons sector precisely cancels
the ambiguity in the perturbative expansion; the ambiguity in the three-instantons sector
cancels the ambiguity in the one-instanton sector; and so on. In light of this result, if one
considers that the expansion of the ground-state energy is not only given by the usual
perturbative expansion, but rather it is to be considered as a sum over all multi-instanton
sectors—including all asymptotic expansions around these nonperturbative sectors—,
then it is possible that the final answer is in fact real2 and free of any nonperturbative
ambiguity, as long as nonperturbative ambiguities arising in different sectors all conspire
to cancel each other out. This cancelation of ambiguities in anharmonic oscillators has
been checked to a very high numerical precision in a large number of references; see,
e.g., [9–12] and references therein.

The cancelation of nonperturbative ambiguities we just reviewed is actually just
scratching the surface of a larger structure behind perturbation theory: that of resurgent
analysis and transseries (we refer the reader to, e.g., the reviews [13–15] on resur-
gent analysis and [16] on transseries, and to [17–19] for introductions to resurgence

1 In order to be fully rigorous, a small clarification is needed. In the context of quantum mechanics or
quantum field theories with degenerate potentials, one needs to include both instantons and anti-instantons.
In these cases, a topological charge will specify different topological sectors: with instanton number +1
(−1) for each (anti-)instanton, these sectors are then characterized by their total instanton number. Assuming
independent expansions for each of these topological sectors, the perturbative series (a vanishing number of
instantons or anti-instantons) will appear as the “level zero” of the topological sector with topological charge
0. Other contributions to this sector are the n-instanton/anti-instanton levels, denoted by

[In Īn] in [8]. Of
course other topological sectors will also have a corresponding “level zero” in their expansions, but one which
will already have the appropriate number of instantons (and anti-instantons) corresponding to the required
topological charge. The results presented in this paper are directly applicable to this class of problems, one
just needs to be aware that by “perturbative series” we mean the level-zero of each topological sector, while
the n-instanton sectors are the higher levels with the same topological charge (but see also the “resurgence
triangle” in [8]).

2 Of course in some problems, depending on the physics, one is actually looking for (unambiguous!)
imaginary results, in order to describe instabilities, decay and so on. But this is not what we are discussing
here.
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and transseries within physical contexts). In fact, within the aforementioned set-up of
anharmonic potentials in quantum mechanics, it was further noted that computing (real,
unambiguous, well-defined) ground-state energies does not simply amount to a specific
summation over all multi-instanton sectors, but there are also contributions involving log-
arithms of the (anharmonic) coupling-constant. Essentially, this means that the ground-
state energy, as a function over the complex plane of the anharmonic coupling-constant,
will generically have a complicated multi-sheeted analytical structure, with singulari-
ties, poles and branch-cuts, and cannot possibly be described by a simple power series.
Instead, this power series needs to be augmented with different non-analytical terms in
order to fully describe the complete solution to the considered problem, and this is what
the transseries accomplishes. Furthermore, the transseries will precisely encode Stokes
phenomena in order to properly construct our final solution. But there is still more to
this structure: the many components giving rise to the transseries are not arbitrary; the
transseries are also resurgent. This means that once we fix a particular perturbative or
multi-instanton sector, and study the large-order behavior of perturbation theory around
this sector, it will be the case that this large-order behavior will be precisely dictated by
information from all other sectors. Reversely, encoded deep in the large-order data of
some fixed semiclassical sector, lie all others (hence the name resurgence). Within the
quantum mechanical context, WKB and Bohr–Sommerfeld methods were used in order
to derive exact quantization conditions, directly for the energy eigenvalues, which may
then be solved with the use of resurgent transseries ansatze, see, e.g., [10,11,20–26] and
references therein. These works have laid solid ground to the use of resurgent transseries
within quantum mechanical settings.

While the solution to the nonperturbative ambiguity problem, described above, works
nicely within quantum mechanics by making use of the transseries multi-instantons
expansion, the question remains if it may be generalized to quantum field theory. In this
context, instantons are not the worse singularities in the complex Borel plane. Renor-
malons pose much more problematic singularities as they are not only dominant as
compared to instantons, but they also seem to lack a general description in terms of
semiclassical data [27]. In fact, the quantum mechanical solution will work generically,
from quantum field theory through string theory, as long as all singularities in the com-
plex Borel plane have a semiclassical description and, as such, may be incorporated
into a resurgent transseries where all nonperturbative ambiguities may be canceled.
Recently, in [8,28–30], it was shown that akin to instantons renormalons also may be
described in terms of semiclassical data and that they may be used in order to cancel
ambiguities of the perturbative expansion within gauge theories. This opens the door to
defining quantum field theory and asymptotically free gauge theories nonperturbatively,
starting out with their perturbative data and augmenting them into transseries involving
both multi-instanton and multi-renormalon nonperturbative sectors. Note that the use
of resurgent methods within quantum field theory had already been pointed out in [31],
but it was not until the work in the aforementioned references that it became clear that
also in quantum field theory one may generically cancel nonperturbative ambiguities in
a fashion completely identical to the quantum mechanical one.

These ideas have also been extended into string theoretic settings, and towards the
nonperturbative study of the large N expansion. This was first pointed out within the study
of large-order behavior in string theory and large N random matrix models, see, e.g.,
[32–36], where it also became clear that the framework of resurgence and transseries is
in fact the appropriate framework to address nonperturbative issues within these models
[17,18,37,38]. In this set-up, [17] considered a specific example addressing superstrings
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in two dimensions, as described by the Painlevé II equation. In this case, the computation
of the string free energy displays a nonperturbative ambiguity which again may be
canceled by higher-order multi-instanton effects, in a fashion completely identical to the
one which already worked in both quantum mechanics and quantum field theory. It was
in fact already suggested in [17] that this procedure is nothing but the implementation of
the transseries median resummation and that this is the correct procedure which cancels
nonperturbative ambiguities and allows for a construction of real solutions to the string
theoretic free energy, along the string-coupling real axis.

All things considered, quite a few results seem to be transversal and applicable
over a wide range of quantum theoretical settings. Most perturbative expansions have
nonperturbative ambiguities which may be canceled by higher multi-instanton effects
(or multi-renormalon effects, generalized multi-instantons effects [18,37–39], or more
exotic saddles [40]). This further indicates that physical observables are not only given
by a resummation of their perturbative expansions, but by adequate resummations of
transseries, encoding the full (nonperturbative) semiclassical data concerning the prob-
lem at hand. That the same procedure works in so many different contexts is simply
saying that what one is considering is a rather general solution within the resurgent
transseries framework. In fact, as we shall make clear in this paper, cancelation of all
nonperturbative ambiguities is achieved by considering the transseries median resumma-
tion as the correct resummation prescription. Intuitively, one may think of the median
resummation as follows. Let us suppose there was a single pole along the real axis.
Integrating either above or below the pole yields either a +i or −i contribution, and
the median of these integrations precisely cancels the ambiguous imaginary part. Of
course in more complicated settings the singularity structure is much more involved,
with an infinite tower of multi-instanton contributions, but the main idea behind the
median resummation is precisely to ensure that the ambiguous imaginary contributions
cancel among all multi-instanton sectors. As we shall see, while this procedure is sim-
ple when considering a one-parameter transseries, it becomes much more intricate for
multi-parameter transseries.3 In spite of this, we shall show how solutions can always be
constructed, and how they are highly dependent upon the Stokes data of the problem (in
fact, median resummations may be defined along any Stokes line—and we shall address
them all).

Given that Borel resummation alone cannot properly define perturbation theory
because of the nonperturbative ambiguities it faces along Stokes lines, the overall picture
which we try to convey is that it is the median resummation of the resurgent transseries
which is always the general, unambiguous nonperturbative answer one should consider.
Of course, while this prescription is mathematically rather universal, extra work still has
to be done to implement it in different physical settings. In fact, the transseries can only
be made fully explicit once we have managed to identify the complete nonperturbative
content of the theory in terms of semiclassical configurations.4 This is the physical prob-
lem which remains to be worked out in each concrete case. Nonetheless, it seems natural
to assume that whatever quantity one aims at computing within quantum theoretical
settings, it will always be described by resurgent functions and transseries. In this case,

3 In [8] it was also noticed that the cancelation mechanism becomes highly non-trivial when different type
of ambiguities need to cancel, and this was denoted as a set of “confluence equations” in that reference. We
believe that all these cancelations are particular cases of general (multi-parameter) median resummations.

4 Note that by the use of resurgence and large-order analysis it might still be possible to identify the full
nonperturbative content of some given theory, explicitly written in terms of semiclassical configurations, even
though these semiclassical configurations may still lack a proper physical interpretation [18,37,38].
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as described, perturbation theory may always be made meaningful and used to yield
nonperturbative solutions to whatever initial question we had in mind.

2. Nonperturbative Ambiguities and Real Transseries

This paper is somewhat self-contained in the sense that we only require the reader to
be familiar with sections 2 and 4 of [18]; most of our results will follow from there.
Still, we shall begin by recalling precisely a few of the contents in those sections of [18]
in order to set the stage, as the definition of median resummation may be immediately
explained with just a few formulae.

Consider a perturbative series around z ∼ ∞,

F(z) �
+∞∑

g=0

Fg

zg+1 . (2.1)

This series is asymptotic with zero radius of convergence when its coefficients grow as
Fg ∼ g!. In order to extract information out of such asymptotic series, it is common to
use Borel analysis. The Borel transform

B
[

1

zα+1

]
(s) = sα

�(α + 1)
(2.2)

constructs the Borel transformed series, B[F](s), with non-vanishing convergence radius
and which may be analytically continued throughout s ∈ C. In order to associate a value
to the divergent sum (2.1), and given a direction θ in the complex s-plane where B[F](s)
has no singularities, one may invert the Borel transform into the Borel resummation
Sθ F(z) as

Sθ F(z) =
∫ eiθ∞

0
ds B[F](s) e−zs . (2.3)

In principle, this would be the nonperturbative answer arising from the perturbative
expansion. But if B[F](s) has singularities5 along the direction θ , this singular direction
becomes known as a Stokes line and the resummation is no longer possible as its integra-
tion contour just became ambiguous. We then need to define lateral Borel resummations,
Sθ± F(z), avoiding the singularities via the left or via the right, and leading to distinct
(sectorial) resummations of our original asymptotic series (see Fig. 1). In this language,
the nonperturbative ambiguity is associated to having Sθ+ −Sθ− �= 0. However, the key
point to stress is that these lateral Borel resummations are still related via the Stokes
automorphism Sθ as follows:

Sθ+ = Sθ− ◦ Sθ . (2.4)

In order to determine the Stokes automorphism one uses alien calculus, and we refer
the reader to [18] for more details. In short, Sθ may be computed in terms of the alien
derivative, �ω, a differential operator which essentially encodes the singular behavior
of the Borel transform (i.e., it vanishes if evaluated at a regular point of B[F](s)). If the
singular points along the θ -direction are denoted by {ωθ }, one finds

Sθ = exp

⎧
⎨

⎩

∑

ω∈{ωθ }
e−ωz�ω

⎫
⎬

⎭
. (2.5)

5 As discussed in [18], we are only considering poles or logarithmic branch-cuts as singularities.
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The proper use of alien calculus is made within the setting of transseries and resurgent
functions. As we have explained in the introduction, transseries augment power series
by the incorporation of non-analytic terms. For example, a one-parameter transseries is
of the form

F(z, σ ) =
+∞∑

n=0

σ n F (n)(z), (2.6)

where F (0)(z) is the (asymptotic) perturbative expansion one started out with, (2.1),
F (n)(z) are (again asymptotic) multi-instanton sectors, and where σ is a formal parameter
counting the instanton number and selecting distinct nonperturbative completions to
whatever problem one is addressing. Transseries may depend on multiple parameters;
e.g., in the solution to the Painlevé I equation and the quartic matrix model in [18,37], or
the solution to the Painlevé II equation in [38], a two-parameters transseries was needed.
With parameters σ1 and σ2, this was given by

F(z, σ1, σ2) =
+∞∑

n=0

+∞∑

m=0

σ n
1 σm

2 F (n|m)(z), (2.7)

where again F (0|0)(z) is the formal asymptotic power series (2.1), and where the
F (n|m)(z) are now generalized instanton contributions with generalized instanton actions
±A ∈ R, of the form

F (n|m)(z) = e−(n−m)Az �(n|m)(z), (2.8)

with �(n|m)(z) perturbative expansions around each instanton sector,

�(n|m)(z) � z−βnm

+∞∑

g=0

F (n|m)
g

zg
. (2.9)

To be fully precise, the two-parameter transseries used in the aforementioned refer-
ences also include logarithmic sectors due to resonance, in the sense that the asymptotic
expansion (2.9) also includes a (finite) sum over powers of logarithms. In order not to
clutter the discussion with unnecessary technicalities, and because these sectors are only
relevant when the explicit asymptotic expansion (2.9) needs to be taken into account,
we will not consider these sectors in the main text. Nevertheless, we do discuss them
in Appendix A. Note that a one-parameter transseries is recovered from (2.7) by setting
σ2 = 0. In this case we also define F (n)(z) ≡ F (n|0)(z) and the same for �n(z). In our
cases of study we shall consider βnm = (n + m) β where β is a rational number. For a
general βnm one would have to address the problem case by case.

More general multi-parameter transseries may be considered, e.g., with k parameters
and k distinct instanton actions (real or not). In this case, (generalized) multi-instanton
sectors are labeled by a set of integers n = (n1, . . . , nk) ∈ N

k as F (n) and the whole
structure is more involved. For our purposes, however, the aforementioned one and two
parameter cases will suffice as they already illustrate the median resummation construc-
tion in great generality, both including multi-parameter transseries and the inclusion of
generalized instanton sectors.

One reason why transseries are introduced is that their alien derivatives may be
related to their common derivatives by a set of equations known as the bridge equations
(implementing a “bridge” between alien and usual calculus; see, e.g., [18] for further
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details). This allows us to explicitly evaluate the Stokes automorphism (2.5) in terms
of a set of constants which encode the nonperturbative information of the system one
is trying to solve—these are the Stokes constants. For our example of a two-parameter
transseries (2.7), and as we are dealing with instanton actions ±A ∈ R, θ = 0, π are
singular directions of the Borel transform, i.e., they are Stokes lines. In fact, the Borel
transform has poles at s = �A, for � ∈ Z \ {0} (in the one-parameter case, with σ2 = 0,
we find � ≤ 1). In this case, the bridge equations then take the form6

�̇�A F(z, σ1, σ2) = S� (σ1, σ2)
∂ F

∂σ1
+ S̃� (σ1, σ2)

∂ F

∂σ2
, (2.10)

where �̇�A := e−�A ��A is denoted as the pointed alien derivative. As to S� (σ1, σ2)

and S̃� (σ1, σ2), they have natural power series expansions and one mostly works with
the respective coefficients instead; in this case with S(k)

� and S̃(k)
� (but see [18] for these

explicit expansions). It should be clear that, when inserting the transseries expansion
(2.7) into the above bridge equations (2.10), one will find that the alien derivative of any
given sector ��A�(n|m) only depends on other sectors �(n′|m′), and this is in essence
why the transseries are “resurgent”.

A simple and probably familiar example occurs when restricting to the one-parameter
case. Applying the Stokes automorphism (2.5) for the θ = 0 direction, and making use
of the bridge equations, one finds

S0+ F (z, σ ) = S0− F (z, σ + S1) , (2.11)

where S1 is a Stokes constant. This expression precisely describes Stokes phenomena
of classical asymptotics within the resurgence framework—crossing the Stokes line at
θ = 0 corresponds to a “jump” in the parameter σ , as governed by the Stokes constant S1.
In later sections we will discuss the role that each Stokes constant plays when crossing
different Stokes lines.

Nonperturbative ambiguities in the resummation of asymptotic series (and transseries)
precisely arise along singular directions, i.e., directions along which the Stokes auto-
morphism is non-trivial and where Stokes phenomena takes place. Their cancelation via
the transseries median resummation must thus relate to the Stokes automorphism. For
the moment, let us point out that there is a very simple argument to understand how
this occurs. In most cases, when one writes the perturbative expansion (2.1) it has real
coefficients and addresses positive real coupling. But positive real coupling also corre-
sponds to the θ = 0 Stokes line, where Stokes phenomena takes place as in (2.11). At
the same time, in this set-up the ambiguities are purely imaginary. So, the cancelation
of all ambiguities naturally translates to the construction of a real transseries along the
θ = 0 Stokes line. In the one-parameter transseries this is just setting Im F(z, σ ) = 0.
As first discussed in [17], this condition is satisfied if and only if Im σ = i

2 S1 (where
S1 ∈ iR), with real instanton action, and where the real solution is then

FR(z, σ ) = S0+ F

(
z, σ − 1

2
S1

)
= S0− F

(
z, σ +

1

2
S1

)
. (2.12)

In this expression σ ∈ R and one uses (2.11) in the second equality. But this real solution
is precisely the median resummation. More generally, the median resummation of some
given transseries along θ = 0 is defined as (see, e.g, [14])

Smed
0 := S0+ ◦ S

−1/2
0 = S0− ◦ S

+1/2
0 , (2.13)

6 For the one-parameter case, one would obtain the same equation with S̃� = 0.
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where the last equality comes directly from (2.4). The reverse statement is also true: the
median resummation of a transseries along the θ = 0 Stokes line yields a real transseries
at positive real coupling. In this way, FR(z, σ ) ≡ Smed

0 F(z, σ ).
This result may be understood as follows. Assume for the moment that all we had

was the original perturbative expansion F (0). Because θ = 0 is a singular direction,
S0+ −S0− �= 0 gives rise to a nonperturbative ambiguity and we may use these (distinct)
lateral Borel resummations to naturally define the imaginary ambiguity as

Im F (0) ≡ 1

2i
(S0+ − S0−) F (0). (2.14)

Further defining the associated real contribution as

Re F (0) ≡ 1

2
(S0+ + S0−) F (0), (2.15)

we may rewrite the resummation of our original series as7

S0− F (0) = Re F (0) − i Im F (0). (2.16)

In order to construct an (unambiguous) real solution, we need to cancel the (ambiguous)
imaginary part. In order to do that, let us better understand which exact contributions
give rise to this second term. As shown in Appendix B, the imaginary contribution to
any F (n) may be determined by simply using the fact that

(S0+ − S0−) F (n)(z) = −S0− ◦ (1 − S0

)
F (n)(z). (2.17)

This expression also makes it clear that the full content of the ambiguity is encoded in
the Stokes automorphism. Then, using formulae from Appendix B, Im F (0) is given by

2i Im F (0) =
+∞∑

�=1

S�
1 S0− F (�)

=
+∞∑

�=1

S�
1

(
Re F (�) − i Im F (�)

)

= S1 Re F (1) − 1

2
S3

1 Re F (3) + S5
1 Re F (5) + · · · . (2.18)

Here we have rewritten the Im F (�) terms as real contributions, via (B.26), to recursively
write the ambiguity in F (0) as a multi-instanton expansion of real contributions. Now
plugging this expansion back into (2.16), one immediately finds that in order to cancel
the above ambiguous imaginary term we need to add to the perturbative expansion at
least contributions arising from the one-instanton sector,

1

2
S1 S0− F (1) = 1

2
S1 Re F (1) − i

2
S1 Im F (1). (2.19)

7 Here we made a choice of lateral resummation S0− . Analogous results would be achieved with S0+

instead.
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This, in turn, will still contribute to an imaginary ambiguity but only at the next order
in instanton number. In this case, an “improved” version of (2.16) becomes

S0−
(

F (0) +
1

2
S1 F (1)

)

= Re F (0) +
1

2

(
1

2
S3

1 Re F (3) − S5
1 Re F (5) + · · ·

)
− i

2
S1 Im F (1)

= Re F (0) − 1

2
S2

1 Re F (2) +
1

4
S3

1 Re F (3) +
1

2
S4

1 Re F (4) + · · · . (2.20)

To obtain the third line above, we have again used (B.26) to expand Im F (1). Continuing
the iteration of this process, we quickly find that what one is constructing is a real
transseries solution starting out from the perturbative expansion, and this is precisely the
aforementioned median resummation of the transseries when σ = 0, i.e., this process
constructs

FR(z, 0) = S0−

(
+∞∑

n=0

Sn
1

2n
F (n)

)

= S0− F

(
z,

1

2
S1

)
. (2.21)

What this simple exercise has done is to mathematically formalize the procedure to
cancel the nonperturbative ambiguities to all orders, in both quantum mechanics and
quantum field theory, which we have outlined in the introduction.

If one expands the median resummation FR(z, σ ) in powers of σ , and further rewrites
all terms as explicitly real contributions (e.g., following the guidelines we describe at
the end of Appendix B), it is simple to find

FR(z, σ ) = Re F (0)(z) + σ Re F (1)(z) +

(
σ 2 − 1

4
S2

1

)
Re F (2)(z) + · · · . (2.22)

This expansion shows that real solutions, where all ambiguities have been canceled, will
always display multi-instanton corrections even if one sets σ = 0. A similar construction
can also be carried through for the two-parameter transseries, and we shall discuss it in
detail in Sect. 6. For the moment, we just want to make clear that the explicit determi-
nation of the transseries median resummation gives us a very direct way to determine
real solutions, without having to follow the more intricate recursive construction we out-
lined above. In particular, this is the simplest approach to canceling all nonperturbative
ambiguities, in all multi-instanton sectors.

This procedure will work along any Stokes line. Given some arbitrary singular direc-
tion θ it is natural to ask if it is always possible to find a median resummation prescription
such that nonperturbative ambiguities cancel. Intuitively it is quite simple to realize this
is true. Trivially writing

Sθ± = 1

2
(Sθ+ + Sθ−) ± 1

2
(Sθ+ − Sθ−) , (2.23)

then if θ is a singular direction where Sθ �= 1, one finds a nonperturbative ambiguity as
Sθ+ �= Sθ− . Canceling the ambiguity entails setting Sθ+ − Sθ− ∼ 0 at the level of the
transseries (to stress this point we have used ∼ instead of an equal sign in the previous
formula). This means that one also needs to define projections parallel and orthogonal
to the direction θ for the transseries parameters σi , implemented as the operations Reθ
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Fig. 1. Schematic representation of the median resummation as an “average” of lateral resummations. This
“average” acts on full transseries and thus necessarily constraints the choice of transseries parameters

and Imθ . But this is simple to do, in which case the median resummation follows as (see
Fig. 1)

Smed
θ ∼ 1

2
(Sθ+ + Sθ−) . (2.24)

More precisely, note that along θ the Stokes automorphism is non-trivial and, making
use of its definition in (2.4), one may always write

Smed
θ := Sθ+ ◦ S−ν

θ = Sθ− ◦ S1−ν
θ (2.25)

for some yet undefined value of ν; but where an appropriate value for ν will be equivalent
to requiring that the transseries lateral Borel resummations coincide, i.e., Sθ+ − Sθ− ∼
0. Now, as discussed in Appendix A, one may always rotate the singular direction
θ in the complex Borel plane to the positive real axis, where, in the new variable, the
median resummation and cancelation of nonperturbative ambiguities translate to a reality
requirement: HFR(z, σ ) = FR (z, σ ), with HF ≡ F the complex conjugation operator
and FR(z, σ ) = Smed

0 F(z, σ ). As we shall see, this will constrain σ and naturally set
ν = 1

2 ; in which case translating back to the original Stokes direction one has

Smed
θ = Sθ+ ◦ S

−1/2
θ = Sθ− ◦ S

1/2
θ . (2.26)

In the next two sections we shall analyze in detail both Stokes phenomena—at the
origin of the ambiguity—and the implementation of the median resummation in the one-
parameter transseries framework, on what concerns its two possible singular directions
θ = 0, π . In particular, we shall discuss what are the consequences of requiring reality
conditions and cancelation of nonperturbative ambiguities along these Stokes lines. Once
this is understood, we then move to the two-parameters case (with generalized instanton
sectors) where things get much more involved. Nonetheless, it is still possible to present
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all details and a final solution to the ambiguity problem: we again explain in detail
the intricacies of Stokes phenomena, and how it is used to cancel ambiguities. Before
concluding, we also have a section discussing how Stokes and anti-Stokes lines interplay
with reality conditions and the monodromy of the transseries solution. Because there are
many technical details, in order to keep a consistent and light line of thought throughout
the paper we have packaged most technicalities into three (somewhat long) appendices.
In the first of these appendices we have obtained many structural results concerning
real resurgent transseries and their Stokes data, including cases with resonance and
logarithms.

3. Stokes Phenomena in One-Parameter Transseries

Stokes lines create nonperturbative ambiguities for the resummation of perturbation
theory, which means the first step in order to understand how to cancel these ambiguities
is to understand exactly what occurs at those Stokes lines. We shall first focus upon
one-parameter transseries, as in (2.6) or by setting σ2 = 0 in (2.7) and just keeping
F (n|0)(z) ≡ F (n)(z). As shown in [18], there are two singular directions in the Borel
plane, θ = 0 and θ = π , with distinct features. In the singular direction θ = 0 the
Stokes automorphism, acting on the perturbative series �n(z) defined in (2.9), is given
by

Sν
0�n =

+∞∑

�=0

(
n + �

n

)
(νS1)

� e−�Az �n+�. (3.1)

The derivation of this result (along with a few others in the following) may be found in
Appendix B. This expression defines an arbitrary power, ν, of the Stokes automorphism
S0, with the usual Stokes automorphism obtained when setting ν = 1. On what concerns
the transseries itself, this automorphism translates to a Stokes transition as

Sν
0 F (z, σ ) = F (z, σ + νS1) . (3.2)

For ν = 1 it is easy to see that this leads to the Stokes phenomenon (2.11), by using the
original definition of the Stokes automorphism (2.4). This Stokes phenomenon associ-
ated to the θ = 0 Stokes line, S0+ F (z, σ ) = S0− F (z, σ + S1), is essentially realized
by a “jump” of the transseries parameter, σ → σ + S1, which is governed by the Stokes
constant S1.

As we choose the other Stokes line, θ = π , things will get a bit more intricate. The
Stokes automorphism (or a general power ν thereof), acting on the perturbative series
�n(z), is now given by

Sν
π�n =

n∑

�=0

�ν (n, �) e�Az �n−�, (3.3)

where �ν(n, �) is defined in Appendix B, equation (B.13). These coefficients now have
a dependence on all the Stokes coefficients S−�, for � ≥ 1, thus becoming much more
involved than the case of θ = 0, where only the one Stokes parameter S1 came into play.
On what concerns the transseries, the automorphism translates to a Stokes transition as

Sν
π F (z, σ ) = F

(
z, S

(ν)
π (σ )

)
. (3.4)
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As before, we may say that Stokes phenomenon is realized by having the transseries
parameter “jump”, only now this is no longer a simple shift; instead one finds

S
(ν)
π (σ ) =

+∞∑

n=0

σ n+1�ν(n + 1, n)

= σ + σ 2νS−1 + σ 3
(
νS−2 + ν2S2−1

)

+ σ 4
(

νS−3 +
5

2
ν2S−1S−2 + ν3S3−1

)
+ · · · . (3.5)

As just mentioned, supporting evidence and derivation of these results may be found in
Appendix B. Consequently, Stokes phenomena associated to the θ = π singular Stokes
line is naturally given by8

Sπ+ F (z, σ ) = Sπ− F (z, Sπ (σ )) . (3.6)

As we compare (3.2) and (3.4), it would seem that Stokes phenomenon across the
Stokes lines at θ = 0 and θ = π is completely different; one leads to a simple shift of σ ,
the other to a very intricate change in σ . This difference is essentially associated to the
number of Stokes constants along each singular line—were we to compare the effect of
single Stokes constants, then the jump would always become apparent. To understand
the effect of each Stokes constant in the jump, set to zero all Stokes constants except S1
and one S−�, for some fixed � ≥ 1. As we shall show, in this case the Stokes constant S−�

is responsible for a jump very similar to the jump σ → σ + S1 in the θ = 0 transition,
but in this case it will be σ−� which jumps.

Going back to the bridge equations; for one-parameter transseries they may be simply
obtained from (2.10) by setting S̃� = 0, as

�̇k A F(z, σ ) = Sk(σ )
∂ F

∂σ
. (3.7)

The coefficients in the power series expansion of Sk(σ ), i.e., the Stokes constants, may
be found for instance in section 2 of [18]; they are:

Sk(σ ) = Sk σ 1−k, ∀ k ≤ 1, k �= 0. (3.8)

In this case, the Stokes automorphism (2.5) along the θ = π direction follows as

Sν
π F(z, σ ) = exp

⎧
⎨

⎩
ν
∑

k≥1

�̇−k A

⎫
⎬

⎭
F(z, σ ) = exp

⎧
⎨

⎩
ν
∑

k≥1

S−k σ 1+k ∂

∂σ

⎫
⎬

⎭
F(z, σ ).

(3.9)
If we restrict ourselves to a scenario where all Stokes constants vanish, S−k = 0 for
k �= �, except for S1 and S−�, and further defining a new variable τ(�) := −σ−�/�, it
immediately follows

Sν
π F

(
z, τ(�)

) = exp

{
ν S−�

∂

∂τ(�)

}
F
(
z, τ(�)

) = F
(
z, τ(�) + ν S−�

)
. (3.10)

8 We set ν = 1 and defined S
(1)
π (σ ) ≡ Sπ (σ ). To recover the full dependence in ν one simply multiplies

each and every Stokes constant by ν, in the series expansion.
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One finds that, in this particular case, the Stokes transition along θ = π may also be
described by a simple “jump” of an adequate transseries parameter9 and governed by
the associated Stokes constant, as in

σ−� → σ−� − � S−�. (3.11)

This has exactly the same form as the case for θ = 0 which we described above, and for
which one would have � = −1. The role of each Stokes constant, S�, by itself, is very
similar; it is just associated to a “jump” of the corresponding power of the transseries
parameter, σ�, into σ� + � S�. The full set of Stokes constants will naturally lead to more
intricate transitions, as described by the function Sπ (σ ), but the building blocks of these
transitions are simple to understand.

4. Nonperturbative Ambiguities and One-Parameter Transseries

Having understood Stokes phenomena/transitions, one may now proceed to address the
nonperturbative ambiguity along either the θ = 0 or θ = π Stokes lines. Along the
θ = 0 singular direction the nonperturbative ambiguity may be canceled by selecting
transseries solutions obeying particular reality conditions. This ambiguity is

(S0+ − S0−) F(z, σ ) �= 0. (4.1)

A real transseries solution will automatically have the ambiguity canceled. But there
are physical examples, and even examples within the realm of ordinary differential
equations, where one is interested in finding real solutions across the full real line in z,
both positive and negative. In this case there is also an ambiguity at θ = π which needs
to be canceled, i.e., one further needs

(Sπ+ − Sπ−) F(z, σ ) = 0. (4.2)

In this section we shall study the restrictions which arise from each of these conditions
separately, θ = 0 and θ = π , as well as from their eventual combination.

There is a crucial observation to be made at this point. The perturbative expansions
of the type (2.1) or (2.9), with instanton factor as in (2.8), are in some sense “spe-
cial”: they have the most adequate form to simplify the calculations we address in this
paper. However, experience from examples tells us that the variable z appearing in the
aforementioned expressions is usually not the variable one starts off with. Rather, given
either a quantum theoretical problem with perturbative coupling κ , or some differential
equation in the variable κ , one commonly has to do some (mild) rescaling z = κα in
order to write a transseries with the precise structure as in (2.7). In this case, one has
to be careful with what it means to require reality of the transseries solution in the full
real line—physically this would be the full real line in the original coupling κ , but it
may differ from the reality requirements with respect to our “working” variable z. We
will discuss this issue in detail later on, but let us point out for the moment that for
real positive coupling, cancelation of ambiguities along the θ = 0 singular direction is
somewhat insensitive to this issue. For negative real κ things are slightly trickier as this
may be a Stokes line, an anti-Stokes line, or none at all. In the following we shall assume
that the relation z = κ holds, where reality across the whole real line forces cancelation
of ambiguities in both θ = 0, π directions. How to disentangle these results in the case
z = κα will then be addressed in Sect. 7.

9 In terms of the original variable, σ , this transition is given by Sπ F(z, σ ) = F

(
z,
(
σ−� − � S−�

)−1/�
)

.
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Cancelation of the nonperturbative ambiguity along θ = 0. In Appendix A we showed
that the one Stokes constant associated to the θ = 0 Stokes line, in the one-parameter
transseries setting, is purely imaginary, S1 ∈ iR. Using this information, let us next try to
explicitly determine the median resummation along this Stokes line, as defined in (2.25).
Further using properties we gave in Appendix A concerning complex conjugation and
Stokes transitions, one first finds

HFR(z, σ ) = H ◦ S0+ ◦ S−ν
0 F(z, σ ) = S0− ◦ H ◦ S−ν

0 F(z, σ ). (4.3)

But if the imaginary ambiguity canceled and we are left with a real solution, one must
demand the transseries satisfies HFR(z, σ ) = FR(z, σ ). In this case via (2.25) one must
have

S0− ◦ H ◦ S−ν
0 F(z, σ ) = S0− ◦ S1−ν

0 F(z, σ ), (4.4)

implying that

H ◦ S−ν
0 F(z, σ ) = S1−ν

0 F(z, σ ). (4.5)

Using the Stokes transition in (3.2), we can rewrite this last equation as

F
(
z, σ − ν S1

) = F (z, σ + (1 − ν) S1) . (4.6)

Finally recalling S1 = −S1, the reality condition requires

−2i Im σ = (1 − 2ν) S1. (4.7)

Note that ν is not fixed by reality. What this result shows is that one can, in principle,
choose different prescriptions for the median resummation while still canceling the
imaginary nonperturbative ambiguity and obtaining a real transseries solution along the
θ = 0 direction. As shown above, different prescriptions simply translate to different
imaginary parts of the transseries parameter σ . This will not change the final result and
one is free to choose the “natural” prescription where σ ∈ R, corresponding to ν = 1/2.
In fact, this particular prescription is the most common one in resurgent analysis, see,
e.g., [14], and is the one which was already mentioned in Sect. 2. Furthermore, this is
the only prescription which verifies

H ◦ Smed
θ = Smed

θ ◦ H. (4.8)

To summarize, using the median resummation as defined in (2.13) for the direction
θ = 0, the real transseries is given by

FR (z, σ ) = S0+ F

(
z, σ − 1

2
S1

)
= S0− F

(
z, σ +

1

2
S1

)
. (4.9)

This transseries obeys HFR(z, σ ) = FR(z, σ ) if and only if

σ ∈ R, S1 ∈ iR. (4.10)

In Sect. 2 we motivated the median resummation with an exercise of canceling ambi-
guities order by order in instanton number. Now that it should be clear this is the correct
prescription, we may use its complete final expression to understand, iteratively to all
orders, how the cancelation of the ambiguities occurs within the transseries (see [17]
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Table 1. Cancelations of the first few terms contributing to the ambiguity of a one-parameter transseries

Im F

Im F(0) σI Re F(1) σR Im F(1) 2σRσI Re F(2)
(
σ 2

R − σ 2
I

) (
3σ 2

RσI − σ 3
I

) (
σ 3

R − 3σRσ 2
I

)

× Im F(2) × Re F(3) × Im F(3)

Re F(1) C1
0 σI 0 – 0 – 0

Re F(2) 0 – C2
1 2σRσI 0 – 0

Re F(3) C3
0 – 0 – C3

2

(
3σ 2

RσI − σ 3
I

)
0

Re F(4) 0 – C4
1 – 0 – C4

3
Re F(5) C5

0 – 0 – C5
2 – 0

Re F(6) 0 – C6
1 – – – C6

3
Each column corresponds to each term contributing to the full Im F (z, σ ) in (4.11). The ambiguities associated
to each perturbative or multi-instanton sector are evaluated via (B.26) where we show these first contributions
to the expansion Im F(�) ∼ ∑

a Ca
�

Re F(a) up to a = 6. In this rewriting, Im F (z, σ ) is expanded in real
contributions from multi-instanton sectors. To cancel the ambiguity at the transseries level, the coefficients
proportional to each Re F(a) need to cancel separately, i.e., each row in the table needs to add up to zero
independently. The coefficients Ca

�
can be found in the text

as well). In Appendix B we have discussed how to compute Im F (z, σ ), (B.21), whose
first few terms are given by (here we set σ = σR + iσI)

Im F (z, σ ) = Im F (0) + σI Re F (1) + σR Im F (1) + 2σRσI Re F (2)+
(
σ 2

R − σ 2
I

)
Im F (2)

+
(

3σ 2
RσI − σ 3

I

)
Re F (3) +

(
σ 3

R − 3σRσ 2
I

)
Im F (3) + · · · . (4.11)

This expression explicitly shows ambiguities arising in different perturbative and multi-
instanton sectors, but because it includes both real and imaginary contributions it is
still not very useful. Now recall that the ambiguities may be evaluated by the Stokes
automorphism and, in particular, one may rewrite all these imaginary terms as expansions
of real, higher-order nonperturbative sectors as in (B.26). Once this is done, one may
explicitly relate the real and imaginary terms in (4.11) above. This is done in Table 1,
where we have separately displayed the terms which contribute to each of the real and
imaginary contributions appearing in Im F (z, σ ) above, and explain how they all cancel
each other. The coefficients that appear in this table are the contributions associated to
the expansion of the corresponding term as Im F (�) ∼ ∑

a Ca
� Re F (a). Using (B.26),

the first few are given by

C1
0 = 1

2i
S1, C3

0 = − 1

4i
(S1)

3 , C5
0 = 1

2i
(S1)

5 ,

(4.12)

C2
1 = 1

i
S1 σR, C4

1 = −1

i
(S1)

3 σR, C6
1 = 3

i
(S1)

5 σR,

(4.13)

C3
2 = 3

2i
S1

(
σ 2

R − σ 2
I

)
, C5

2 = − 5

2i
(S1)

3
(
σ 2

R − σ 2
I

)
, · · · , (4.14)

C4
3 = 2

i
S1

(
σ 3

R − 3σRσ 2
I

)
, C6

3 = −5

i
(S1)

3
(
σ 3

R − 3σRσ 2
I

)
, · · · . (4.15)

As we are rewriting Im F (z, σ ) solely in terms of real multi-instanton contributions,
then in order to cancel the ambiguity each of the rows in Table 1 needs to add up to zero
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(a complete closed-form expression may be found in (B.28)—cancelation of the rows in
Table 1 translates to cancelation of all coefficients in (B.28)). Noting that for each fixed
� the first non-zero coefficient in the Im F (�) column is C�+1

� , it follows that a fixed a row
Re F (a) only receives contributions from terms Im F (�) with � < a (alongside with the
natural term proportional to Re F (a)). This truncation allows us to obtain a constraint for
σI. For example, look at the first data-row of the table: adding the terms in Im F (z, σ )

proportional to Re F (1) yields

C1
0 + σI = 0 ⇔ σI = i

2
S1. (4.16)

Without surprise this is the expected constraint in σ for finding a real transseries solution
(4.9), along the direction θ = 0. Also as discussed in Appendix B, but interesting to
observe explicitly, is that given this sole constraint all other rows in our table automati-
cally add up to zero; e.g., the rows corresponding to Re F (2) and Re F (3) can be easily
seen to vanish, while the following rows would cancel with other terms which were not
included in the table, and so on.

Real transseries in the real line? Moving on, one might be interested in constructing
real solutions not only along θ = 0 but along the full real line. In order to achieve
this, the first step is to verify the reality constraints specifically associated to θ = π .
As always, we are considering a transseries with real asymptotic coefficients and real
instanton action, and we have H ◦Sπ+ = Sπ− ◦H. Using the median resummation with
the Stokes transition across θ = π (3.4), one determines a real transseries as10

FR,π (z, σ ) = Sπ+ F
(

z, S
(−1/2)
π (σ )

)
= Sπ− F

(
z, S

(1/2)
π (σ )

)
, (4.17)

as long as

σ ∈ R. (4.18)

Indeed, it is simple to check that the reality condition HFR,π (z, σ ) = FR,π (z, σ ) is

satisfied in this case, given the definition of S
(ν)
π (σ ) in (3.5), the coefficients �ν(n, m)

defined in (B.13), and that we showed in Appendix A that considering a transseries with
real asymptotic coefficients, and taking β = 0, the Stokes coefficients along θ = π are
all purely imaginary,

S−� ∈ iR, ∀ � ≥ 1. (4.19)

We can now ask what are the conditions to be met—if any—in order to have a real
transseries solution for z ∈ R, i.e., along both θ = 0, π singular directions (this question
often arises in contexts dealing with differential equations). In principle the answer is
simple, one just needs to satisfy simultaneously the reality constraints we have already
discussed, and connect them both together. Starting at θ = 0+, the transseries parameter
is fixed to have the structure in (4.9) with real σ . Rotating counterclockwise, between
θ = 0+ and θ = π− there are no Stokes lines where σ could have jumped. On the other

10 Note that, unlike the θ = 0 case, setting σ = 0 now yields S
(±1/2)
π (0) = 0 and there would thus be

no instanton corrections in (4.17). This is of course perfectly consistent as the perturbative expansion is not
ambiguous along θ = π : in fact, it is only the asymptotic series around fixed multi-instanton sectors, starting
at n = 2 instantons, which will have singularities along θ = π (see also [18]).
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hand, at θ = π−, the transseries parameter is fixed to have the structure (4.17) which
must thus match (4.9). In this way, both reality constraints hold if one finds

σR − 1

2
S1 =

+∞∑

n=0

σ n+1
R �1/2(n + 1, n). (4.20)

However, this expression gives us a highly non-trivial relation between σR, S1, and all
the S−k . Verifying if it allows for solutions is probably only possible within specific
examples; as it might be verified with a finite number of Stokes constants, an infinite
number of Stokes constants, or not verified at all. We tried to solve this constraint
generically with a small finite number of (arbitrary) non-vanishing Stokes constants,
and thus obtain general conditions for real solutions. Unfortunately we were not able to
find any positive result along this line.

Inclusion of the β exponent. Finally, one may be interested in dealing with more general
asymptotic expansions within the transseries, namely with a non-trivial characteristic
exponent β. In this case, let us consider a one-parameter transseries of the form

F(z, σ ) =
+∞∑

n=0

σ n e−n Az �n(z), �n(z) � z−nβ
+∞∑

g=0

F (n)
g

zg
, (4.21)

where β is a rational number. As in our previous analysis, we should be able to find a
non-ambiguous result for the transseries out of median resummation. First notice that
even with the extra factor of β, the same Stokes automorphisms and Stokes transitions
hold. As expected, the expression for the median resummation is thus unchanged, and
should be valid at both θ = 0, π . Now, for θ = 0, z is real positive and the factor z−β

induces no changes on our previous arguments. For θ = π , on the other hand, we now
have z = |z| e−iπ and the requirement of reality requires some more thought. If the
asymptotic expansions in the transseries have real coefficients, as usual, it is not difficult
to obtain

H◦Sπ+◦S−1/2
π F (z, σ ) = H◦Sπ+ F

(
z, S

(−1/2)
π (σ )

)
= Sπ− F

(
z, e−2π iβ

S
(−1/2)
π (σ )

)
.

(4.22)
Thus, enforcing reality H ◦ Smed

π F = Smed
π F requires

S
(1/2)
π (σ ) = e−2π iβ

S
(−1/2)
π (σ ). (4.23)

Making use of the constraints for the Stokes constants found in Appendix A,

S(1+�)
−� = −S(1+�)

−� e−2π i�β, (4.24)

and using the explicit form of S
(ν)
π (σ ) computed in Appendix B, we find the following

constraint for the transseries parameter σ ,

σ = σ e−2π iβ. (4.25)

This is just a generalization of the reality condition found for σ when β = 0. This
argument is generalizable for resonant transseries including logarithmic sectors, as in
Appendix A.
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5. Stokes Phenomena in Two-Parameter Transseries

As we said before, Stokes lines create nonperturbative ambiguities for the resumma-
tion of perturbation theory, which means the first step to understand how to cancel
these ambiguities is to understand exactly what occurs along those directions. We shall
now address the two-parameters case, in the form (2.7) and (2.8). Recall that the two-
parameters transseries is a two-fold generalization of the one-parameter case discussed
in the previous sections, in the sense that it involves more transseries parameters and, at
the same time, it involves a generalized instanton sector. Due to the structure of instanton
actions as ±A, in this case the Stokes automorphism along the singular directions θ = 0
and θ = π is very symmetric; this can be seen in the formulae found in Appendix C.
From Eqs. (C.23) and (C.33), we have

Sν
0 F (z, σ1, σ2) = F

(
z, S

(ν)
0,1(σ1, σ2), S

(ν)
0,2(σ1, σ2)

)
, (5.1)

Sν
π F (z, σ1, σ2) = F

(
z, S

(ν)
π,1(σ1, σ2), S

(ν)
π,2(σ1, σ2)

)
, (5.2)

with S
(ν)
θ,i defined in Appendix C. These expressions are much more intricate than in the

one-parameter case. In order to better understand the nature of the Stokes transitions and
what is the role of the two types of Stokes constants at play in this situation, S� and S̃�,
we shall now specify particular cases where we set all Stokes constants to zero, except
for a small set.

We shall use the definition of the Stokes automorphism (2.5) via alien derivatives,

Sν
0 F (z, σ1, σ2) = exp

⎧
⎨

⎩
ν
∑

�≥1

�̇�A

⎫
⎬

⎭
F (z, σ1, σ2) , (5.3)

Sν
π F (z, σ1, σ2) = exp

⎧
⎨

⎩
ν
∑

�≥1

�̇−�A

⎫
⎬

⎭
F (z, σ1, σ2) , (5.4)

and further use the expressions for the pointed alien derivatives (acting on the full
transseries) given by the bridge equations (2.10), to obtain differential operators directly
acting on the transseries parameters, σ1, σ2, which may be easier to handle—at least
in special cases. All we need are the expansions of the Stokes factors appearing in the
bridge equations (2.10), S� and S̃�, written in terms of Stokes constants. They are [18]

S� (σ1, σ2) =
+∞∑

k=max(0,�−1)

S(k+1−�)
� σ k+1−�

1 σ k
2 , (5.5)

S̃� (σ1, σ2) =
+∞∑

k=max(0,−�−1)

S̃(k+1+�)
� σ k

1 σ k+1+�
2 . (5.6)

We now have all the required information to analyze Stokes phenomena for the following
cases:
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Case S̃(k)
� = 0, ∀�, k. This case is expected to be very similar to the one-parameter case

studied in a previous section. In this situation, the Stokes automorphisms become

Sν
0 F (z, σ1, σ2) = exp

⎧
⎨

⎩
ν
∑

�≥1

+∞∑

k=0

S(k)
� σ k

1 σ k+�−1
2

∂

∂σ1

⎫
⎬

⎭
F (z, σ1, σ2) , (5.7)

Sν
π F (z, σ1, σ2) = exp

⎧
⎨

⎩
ν
∑

�≥1

+∞∑

k=�+1

S(k)
−�σ

k
1 σ k−�−1

2
∂

∂σ1

⎫
⎬

⎭
F (z, σ1, σ2) . (5.8)

We shall further restrict ourselves to a specific case where all Stokes constants are zero,
S(n)
� = 0, except for two, S(a)

−m and S(k)
� for some fixed �, m > 0 (k ≥ 0, a ≥ m + 1). To

follow the strategy used in the one-parameter case, we want to find appropriate changes
of variables, τ(k)(σ1), τ(a)(σ1), such that

σ r
1

∂τ(r)

∂σ1
= 1. (5.9)

In terms of these new variables we find

Sν
0 F

(
z, τ(k), σ2

) = F
(

z, τ(k) + ν S(k)
� σ k+�−1

2 , σ2

)
, (5.10)

Sν
π F

(
z, τ(a), σ2

) = F
(

z, τ(a) + ν S(a)
−mσ a−m−1

2 , σ2

)
. (5.11)

It immediately follows that the action of the Stokes constants S(a)
−m and S(k)

� translates
to shifts of the variables τ(r), and that the Stokes transitions only affect the transseries
parameter σ1; the sector governed by the parameter σ2 remains untouched. It is possible
to be even more explicit in various different cases (setting ν = 1):

• k = 0
One has τ(0) = σ1, and the “jumps” in the original transseries variables σ1, σ2, are
trivially given by

σ1 → σ1 + S(0)
� σ �−1

2 , σ2 → σ2. (5.12)

Specifically for � = 1 we find that the two sectors, σ1 and σ2, are completely
decoupled.

• k = 1
One finds τ(1) = log σ1, and the transitions in the variables σ1, σ2 become

σ1 → σ1 eS(1)
� σ �

2 , σ2 → σ2. (5.13)

• k > 1, a ≥ m + 1
Choosing r = k or r = a, we have τ(r) = σ 1−r

1 /(1 − r). The corresponding
transitions are, for θ = 0,

σ 1−k
1 → σ 1−k

1 + (1 − k) S(k)
� σ k+�−1

2 , σ2 → σ2, (5.14)

and, for θ = π ,

σ 1−a
1 → σ 1−a

1 + (1 − a) S(a)
−mσ a−m−1

2 , σ2 → σ2. (5.15)

Note that for a = m + 1, we again find a decoupling of the two sectors, σ1, σ2.
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Case S(k)
� = 0, ∀�, k. We are now interested in analyzing the role of the “symmetric”

Stokes constants S̃(k)
� within the Stokes transitions. In this case, the Stokes automor-

phisms become

Sν
0 F (z, σ1, σ2) = exp

⎧
⎨

⎩
ν
∑

�≥1

+∞∑

k=�+1

S̃(k)
� σ k−�−1

1 σ k
2

∂

∂σ2

⎫
⎬

⎭
F (z, σ1, σ2) , (5.16)

Sν
π F (z, σ1, σ2) = exp

⎧
⎨

⎩
ν
∑

�≥1

+∞∑

k=0

S̃(k)
−�σ

k+�−1
1 σ k

2
∂

∂σ2

⎫
⎬

⎭
F (z, σ1, σ2) . (5.17)

Similarly to the previous case, we will address the situation where all Stokes constants
are zero, S̃(n)

� = 0, except for two, S̃(a)
−m and S̃(k)

� for some fixed �, m > 0 (k ≥ � + 1,
a ≥ 0). As before, we want to find appropriate changes of variables γ(k)(σ2), γ(a)(σ2),
such that

σ r
2

∂γ(r)

∂σ2
= 1. (5.18)

In terms of these new variables we find

Sν
0 F

(
z, σ1, γ(k)

) = F
(

z, σ1, γ(k) + ν S̃(k)
� σ k−�−1

1

)
, (5.19)

Sν
π F

(
z, σ1, γ(a)

) = F
(

z, σ1, γ(a) + ν S̃(a)
−mσ a+m−1

1

)
. (5.20)

Again, the action of the Stokes constants S̃(a)
−m , S̃(k)

� translates to shifts of the variables γ(r),
and the Stokes transitions only affect the transseries parameter σ2; the sector governed
by the parameter σ1 remains untouched. The explicit changes of variables γ(r) have the
exact same form as the previous case.

Case S(k)
� and S̃(k′)

�′ non-zero. Let us finally consider the case of having two non-

vanishing Stokes constants of different “type”, S(k)
� and S̃(k′)

�′ . The only non-trivial case
is when either � and �′ are both positive, or both negative. If one is positive and the other
negative, then the results are given by the expressions already found in the previous
cases: for the transition at θ = 0 and θ = π , respectively,

1. If S(k)
� , S̃(a)

−m �= 0 (�, m > 0) we have

Sν
0 F

(
z, τ(k), σ2

) = F
(

z, τ(k) + ν S(k)
� σ k+�−1

2 , σ2

)
, (5.21)

Sν
π F

(
z, σ1, γ(a)

) = F
(

z, σ1, γ(a) + ν S̃(a)
−mσ a+m−1

1

)
. (5.22)

2. If S(a)
−m, S̃(k)

� �= 0 (�, m > 0) we have

Sν
0 F

(
z, σ1, γ(k)

) = F
(

z, σ1, γ(k) + ν S̃(k)
� σ k−�−1

1

)
, (5.23)

Sν
π F

(
z, τ(a), σ2

) = F
(

z, τ(a) + ν S(a)
−mσ a−m−1

2 , σ2

)
. (5.24)
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The first non-trivial case is then if S(k)
� , S̃(k′)

�′ �= 0 (�, �′ > 0, k ≥ 0, k′ ≥ �′+1). In this
case, the transition at θ = π will be trivial, Sν

π F (z, σ1, σ2) = F (z, σ1, σ2). At θ = 0,
on the other hand, the Stokes transition is non-trivial. Here, the Stokes automorphism
will be given by

Sν
0 F (z, σ1, σ2) = exp

{
ν S(k)

� σ k+�−1
2 σ k

1
∂

∂σ1
+ ν S̃(k′)

�′ σ k′−�′−1
1 σ k′

2
∂

∂σ2

}
F (z, σ1, σ2) .

(5.25)
The general strategy to solve this problem has the same flavor as in the previous cases.
We want to find two new independent variables, x(σ1, σ2) and y(σ1, σ2), that are two
independent solutions of the following differential equation for f (σ1, σ2),

ν S(k)
� σ k+�−1

2 σ k
1

∂ f

∂σ1
+ ν S̃(k′)

�′ σ k′−�′−1
1 σ k′

2
∂ f

∂σ2
= constant. (5.26)

If this can be done, then the Stokes automorphism becomes again a simple shift of the
appropriate variables,

Sν
0 F (z, x, y) = exp

{
∂

∂x
+

∂

∂y

}
F (z, x, y) = F (z, x + 1, y + 1) . (5.27)

Let us be more explicit in various different cases:

• k = 0, � = 1, k′ = �′ + 1 ≥ 2, S(0)
1 , S̃(�′+1)

�′ �= 0
In this case the sectors corresponding to the two transseries parameters σ1 and σ2
decouple, and the Stokes automorphism simply becomes

Sν
0 F (z, σ1, σ2) = exp

{
ν S(0)

1
∂

∂σ1

}
exp

{
ν S̃(�′+1)

�′ σ�′+1
2

∂

∂σ2

}
F (z, σ1, σ2) .

(5.28)

If one implements the change of variables σ̃2 = σ−�′
2 , it follows

Sν
0 F (z, σ1, σ̃2) = F

(
z, σ1 + ν S(0)

1 , σ̃2 − ν �′ S̃(�′+1)

�′
)

. (5.29)

In the original variables, crossing the θ = 0 Stokes line thus corresponds to yet
another shift of their adequate combination. One has

σ1 → σ1 + ν S(0)
1 , σ−�′

2 → σ−�′
2 − ν �′ S̃(�′+1)

�′ . (5.30)

• k = 0, � = 1, k′ = �′ + α, α ≥ 2, S(0)
1 , S̃(�′+α)

�′ �= 0
In this case the decoupling of the two sectors, σ1 and σ2, will no longer occur.
Following the strategy outlined above, let us find the new variables, x and y, which
obey the differential equation (5.26). They are

x = σ1

νS(0)
1

, (5.31)

y = σ1

νS(0)
1

− σ
−(�′+α−1)
2

�′ + α − 1
− S̃(�′+α)

�′
σα

1

αS(0)
1

. (5.32)
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In these variables the Stokes automorphism has the simple form (5.27). In the original
variables we find

σ1 → σ1 + ν S(0)
1 ,

σ
−(�′+α−1)
2 → σ

−(�′+α−1)
2 − (

�′ + α − 1
) S̃(�′+α)

α S(0)
1

((
σ1 + ν S(0)

1

)α − σα
1

)
. (5.33)

• General
In the general case we want to solve

Sν
0 F (z, σ1, σ2) = exp

{
C σ

a1
1 σ

a2
2

∂

∂σ1
+ C̃ σ

b1
1 σ

b2
2

∂

∂σ2

}
F (z, σ1, σ2) , (5.34)

where we defined C = ν S(k)
� , a1 = k, a2 = k+�−1, and C̃ = ν S̃(k′)

�′ , b1 = k′−�′−1,
b2 = k′. Let us first find a change of variables to ρ1 and ρ2 such that

∂ρ1

∂σ1
= σ

−a1
1 ,

∂ρ2

∂σ2
= σ

−b2
2 . (5.35)

The solution to these equations is simply

σ1 = ((1 − a1) ρ1)
1

1−a1 , a1 �= 1, σ1 = eρ1 , a1 = 1, (5.36)

σ2 = ((1 − b2) ρ2)
1

1−b2 , b2 �= 1, σ2 = eρ2 , b2 = 1. (5.37)

We shall continue this example under the assumption that a1, b2 �= 1. The other
possibilities may be solved in the same way, with similar results. Thus, if a1, b2 �= 1,
we now try to find yet another set of independent variables, x(ρ1, ρ2) and y(ρ1, ρ2),
such that they solve

C ((1 − b2) ρ2)
a2

1−b2
∂ f

∂ρ1
+ C̃ ((1 − a1) ρ1)

b1
1−a1

∂ f

∂ρ2
= 1, (5.38)

for f = x and f = y. Using the definitions

C1 = C (1 − b2)
k1 , k1 = a2

1 − b2
, (5.39)

C2 = C̃ (1 − a1)
k2 , k2 = b1

1 − a1
, (5.40)

the solution to this equation is finally given by

x (ρ1, ρ2) = y (ρ1, ρ2) − C2 (1 + k1) ρ
1+k2
1 + C1 (1 + k2) ρ

1+k1
2 , (5.41)

y (ρ1, ρ2) = (1 + k2) ρ1ρ2

C1 (1 + k2) ρ
k1+1
2 − C2 (1 + k1) ρ

k2+1
1

× 2 F1

[
1,

1

1 + k1
+

1

1 + k2
, 1 +

1

1 + k2

∣∣∣∣
C2 (1 + k1) ρ

1+k2
1

C2 (1 + k1) ρ
1+k2
1 − C1 (1 + k2) ρ

1+k1
2

]

.

(5.42)

Here, 2 F1 [a, b, c| z] is the hypergeometric function. These expressions define our
original variables σ1 and σ2, implicitly as functions of x and y. As mentioned above,
in terms of these new variables the Stokes automorphism has again the very simple
action (5.27).
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If we had considered � and �′ both negative instead, completely analogue results would
follow.

As compared to the one-parameter case, the structure of Stokes transitions is now
much more involved. Even finding “good” variables where the Stokes transition can be
seen as a “jump” of an appropriate transseries parameter is not an easy task. Altogether,
the full set of Stokes constants lead to highly non-trivial Stokes phenomena, as described
by the functions S

(ν)
θ,i (σ1, σ2).

6. Nonperturbative Ambiguities and Two-Parameter Transseries

We are finally ready to understand how nonperturbative ambiguities cancel in a two-
parameters transseries, also with generalized instantons. This should set the ground-
work to understand, within specific examples, how nonperturbative ambiguities will
always cancel when dealing with multi-parameter transseries, with or without gener-
alized instantons, as long as one considers the appropriate resummation prescription
along the associated Stokes lines. Having understood Stokes phenomena/transitions, we
may turn to the cancelation of the ambiguities. The overall strategy parallels what we
worked out in the one-parameter case, although now formulae (as well as the cancelation
mechanism itself) are much more involved.

The median resummation at θ = 0 obeys the same properties as in the one-parameter
case. Once again we have

FR = Smed
0 F = S0+ ◦ S−ν

0 F = S0− ◦ S1−ν
0 F. (6.1)

As usual, canceling the ambiguity along this Stokes line translates to setting up a real
function, FR, which has to obey HFR = FR. This means the allowed values for ν must
be such that

H ◦ S−ν
0 F = S1−ν

0 F. (6.2)

Recalling the expression for this Stokes transition, given in (5.1), one immediately sees
that one needs to determine the complex conjugate of S

(ν)
0,i (σ1, σ2). But as a consequence

of the constraints found for the Stokes constants in Appendix A, i.e., S(k)
� , S̃(�+k)

� ∈ iR

for any �, k ≥ 0, and the definition of S
(ν)
0,i in Appendix C, it is straightforward to write

H S
(ν)
0,i (σ1, σ2) = S

(−ν)
0,i (σ 1, σ 2). (6.3)

The reality condition given above thus becomes

F
(

z, S
(ν)
0,1(σ 1, σ 2), S

(ν)
0,2(σ 1, σ 2)

)
= F

(
z, S

(1−ν)
0,1 (σ1, σ2), S

(1−ν)
0,2 (σ1, σ2)

)
. (6.4)

This is obeyed for every sector (n|m) if ν = 1/2 and

σ1, σ2 ∈ R, (6.5)

as in the one-parameter case. In this way, we can finally write the unambiguous real
solution given by the median resummation as

FR (z, σ1, σ2) =
+∞∑

n,m=0

σ n
1 σm

2 P
(n|m)
0,−1/2(σ1, σ2)S0+ F (n|m)(z) (6.6)
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=
+∞∑

n,m=0

σ n
1 σm

2 P
(n|m)
0,+1/2(σ1, σ2)S0− F (n|m)(z), (6.7)

with P
(n|m)
0,ν defined in (C.17). Given the constraints on the Stokes constants S(k+�)

−� , S̃(k)
−� ,

with � ≥ 1, k ≥ 0, found in Appendix A, one can write the very same equations for the
direction θ = π , and in this way obtain the median resummation along this other Stokes
line.

The main question we want to explicitly address in this section is whether the median
resummation prescription just presented is canceling all possible nonperturbative ambi-
guities which appear in this larger, two-parameter transseries setting; and how exactly
is it doing so. An expansion for the ambiguity was implicitly given in Appendix C,
Eq. (C.34), which we write here at first few orders,

Im F (z, σ1, σ2) = Im F (0|0) + Im σ1 Re F (1|0) + Re σ1 Im F (1|0) + Im σ 2
1 Re F (2|0)

+Re σ 2
1 Im F (2|0) + Im σ2 Re F (0|1) + Re σ2 Im F (0|1)

+Im (σ1σ2) Re F (1|1) + Re (σ1σ2) Im F (1|1) + · · · . (6.8)

As usual, each sector has a (perturbative) ambiguity, and we will now analyze how
the cancelation of these terms occurs so that the final transseries is ambiguity-free. In
Eq. (C.38) we see how to write the imaginary contributions Im F (n|m), or ambiguities,
of a given sector in terms of higher sectors. In particular for F (0|0) we have

2i Im F (0|0) = S(0)
1 Re F (1|0) +

(
S(0)

1

)2
Re F (2|0)

− iS(0)
1 Im F (1|0) − i

(
S(0)

1

)2
Im F (2|0) + · · ·

= S(0)
1 Re F (1|0) − 1

2

(
S(0)

1

)3
Re F (3|0) + O(5-inst), (6.9)

where we used that

2i Im F (1|0) = 2S(0)
1 Re F (2|0) − 2iS(0)

1 Im F (2|0) + · · · , (6.10)

2i Im F (2|0) = 3 Re F (3|0) + · · · . (6.11)

This expansion should be familiar to us. Indeed, the contributions to the above imaginary
ambiguity, arising from the multi-instanton series F (n|0), are completely equivalent to
what we have already seen in the one-parameter case. In particular, if we had no other
terms dependent upon σ2, the very same11 solution we had before, i Im σ1 = ± 1

2 S(0)
1 ,

would cancel the ambiguity. However, as we take the full two-parameters transseries
into consideration this is no longer true: for example, one finds that in order to cancel the
term S(0)

1 Re F (1|0) appearing in Im F (0|0) above, we need not only contributions from
Im F (n|0) (equivalently to the one-parameter case) but also several other terms need to
contribute from mixed sectors in the transseries.

A schematic view of the cancelations occurring in the two-parameters situation,
needed in order to remove the nonperturbative ambiguity and give rise to a median
resummed real transseries, can be found in Table 2 (as one compares this to Table 1
do note that for reasons of space we have organized Table 2 as the “transpose” of

11 The choice of signs ± depends on the choice of lateral Borel resummation one is looking at; either S±.
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Table 1; other than that it is in fact useful to compare them both). The results in this
table were obtained from the properties and expressions found in Appendix C. The rows
correspond to the terms appearing in the expansion of Im F (z, σ1, σ2) given in (6.8)
above. For these, each separate ambiguity contributing to this expansion, of the form
Im F (n|m), is then expanded in higher (real) multi-instanton contributions as ImF (n|m) ∼
∑

a,b C (a|b)

(n|m) Re F (a|b), and we present the first contributions along the row. In particular,

the listed coefficients C (a|b)

(�|m), associated to each real term shown on the top row, are
functions of the Stokes constants and can be found in expressions (C.45–C.93).

To cancel the nonperturbative ambiguity of the two-parameters transseries, we need
that all coefficients associated to each real term Re F (a|b) add up to zero. In other words,
each column in the table needs to be canceled separately. Unfortunately, unlike in the
one-parameter case, the contributions to each column no longer truncate. This implies
that we cannot in general solve the constraints for σ1 and σ2 in terms of closed-form
expressions (except in simple cases, e.g., setting σ2 = 0 gives back the one-parameter
case previously studied).

Nonetheless, these constraints should be compatible with finding a real transseries,
as given by the median resummation (6.6) or (6.7). How may we explicitly check this?
Recall that in this case the median resummation is given by

FR (z, σ1, σ2) = S0+ F
(

z, S
(−1/2)
0,1 (σ1, σ2), S

(−1/2)
0,2 (σ1, σ2)

)
, (6.12)

where, along θ = 0+, we find the new transseries parameters σ̃1 and σ̃2, defined in terms
of the two “old” real parameters σ1, σ2 ∈ R by the Stokes transitions

σ̃i = S
(−1/2)
0,i (σ1, σ2) , i = 1, 2. (6.13)

The main point now is that the constraints given by the cancelation of the ambiguity
should be automatically satisfied by the parameters σ̃i just introduced, i.e., if we were to
take each column of Table 2, with its infinite set of contributions, and evaluate it at the
values σ̃i , we would find that all the contribution would add up to zero as expected. Con-
sider a very concrete example and look at the cancelations that must occur in the column
corresponding to Re F (1|0). In this case, the constraint from ambiguity cancelation will
read

Im σ̃1 + C (1|0)

(0|0) + C (1|0)

(0|1) + C (1|0)

(1|1) + C (1|0)

(0|2) + C (1|0)

(1|2) + C (1|0)

(2|2) + · · · = 0, (6.14)

with the coefficients12 C (0|1)

(a|b) evaluated at the values σ̃1, σ̃2. Now using our results in
Appendix C, we can explicitly expand these “new” parameters as power series in the
“old” real parameters σ1, σ2 ∈ R. In terms of their real and imaginary parts, σ̃i =
σ̃i,R + i σ̃i,I, we find13

12 In the constraint we have also included the contribution C(1|0)
(2|2)

coming from Re
(
σ 2

1 σ 2
2

)
Im F(2|2) =

∑
a,b C(a|b)

(2|2)
Re F(a|b), whose first non-zero coefficients C(a|b)

(2|2)
may be found in (C.87–C.93), with a ≤ 4,

b ≤ 2.
13 Note that in these expansions we have presented all orders of σ1 for each order of σ2. Also, to determine

the real and imaginary parts of the parameters, recall that σ1, σ2 ∈ R and S(b)
a , S̃(b)

a ∈ iR.
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σ̃1,R = 1

8
σ2 S(0)

1 S(1)
1 +

1

48
σ 2

2

(
6 S(0)

2

(
S(1)

1 + S̃(2)
1

)
+ 6 S(0)

1 S(1)
2

)

+σ1

(
1 +

1

8
σ 2

2

(
S(0)

1 S(2)
1 + S(1)

1

(
S(1)

1 + S̃(2)
1

)))
+ O(σ 3

2 ), (6.15)

i σ̃1,I = −1

2
S(0)

1 − 1

2
σ2 S(0)

2 − 1

2
σ1σ2

(
S(1)

1 + σ2 S(1)
2

)
− 1

2
σ 2

1 σ 2
2 S(2)

1

− 1

48
σ2

(
2
(

S(0)
1

)2
S(2)

1 + 24 S(0)
3 + S(0)

1 S(1)
1

(
S(1)

1 + 2 S̃(2)
1

))
+ O(σ 3

2 ),

(6.16)

σ̃2,R = σ2 +
1

8
σ 3

2

(
2
(

S̃(2)
1

)2
+ S(0)

1 S̃(3)
1

)
+ O(σ 4

2 ), (6.17)

i σ̃2,I = −1

2
σ 2

2 S̃(2)
1 − 1

2
σ1σ

3
2 S̃(3)

1 − 1

2
σ 3

2 S̃(3)
2 + O(σ 4

2 ). (6.18)

Plugging these expansions back into the constraint in (6.14), we find that it is indeed sat-
isfied up to order σ 2

1 σ 2
2 , precisely as expected. To explicitly see the cancelation working

at higher orders, one would have to include the next contributions to Re F (1|0). Note that
expanding the ambiguity of each distinct sector as Im F (n|m) ∼ ∑

a,b C (a|b)

(n|m) Re F (a|b),

it is not difficult to see that the coefficients C (a|b)

(n|m) are non-zero only if b ≤ m and

a ≥ � + 1 + b − m (and a, b ≥ 0). Consequently, we find that all terms Im F (n|m) with
n ≤ m will contribute to Re F (1|0).

As far as the other columns in Table 2 are concerned, the coefficients written in
the table are enough to see the precise same type of cancelations occur for Re F (0|1),
Re F (1|1), Re F (2|1), Re F (0|2), and Re F (1|2). The other cases only cancel as one consid-
ers extra contributions which were not explicitly written down in this table. In conclusion,
we see that the nonperturbative ambiguity is canceled also in the present two-parameters
setting, albeit in a much more intricate way than what happened in the one-parameter
case we addressed earlier.

Having explicitly shown the cancelation of nonperturbative ambiguities within the
context of a two-parameters transseries, the one thing left to do is to give an idea of
the resulting expansion of the answer (of the median resummation). All one has to do
is to use the result in (6.6) or (6.7), expand it in powers of the transseries parameters
σ1, σ2 ∈ R, and write the result in terms of real higher-instanton contributions. By using
the expansions presented in Table 2, this expansion will now have contributions arising
from all sectors, in the form

FR (z, σ1, σ2) = Re F (0|0) +
(
σ1 − σ2

8
S(0)

1 S1
1 + · · ·

)
Re F (1|0) + (σ2 + · · · ) Re F (0|1)

+

(

σ1σ2 − σ 2
2

8
S(0)

1

(
S(1)

1 + 2 S̃(2)
1

)
+ · · ·

)

Re F (1|1)

+

(
σ 2

1 − 1

4

(
S(0)

1

)2 − σ2

4
S(0)

1

(
2 S(0)

2 + 3σ1 S(1)
1

)
+ · · ·

)
Re F (2|0)

+
(
σ 2

2 + · · ·
)

Re F (0|2) +

(
σ2

4

(
4σ 2

1 −
(

S(0)
1

)2
)

+ · · ·
)

Re F (2|1)
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+
(
σ1σ

2
2 + · · ·

)
Re F (1|2) + σ 2

2

(
σ 2

1 − 1

4

(
S(0)

1

)2
+ · · ·

)
Re F (2|2)

+ · · · . (6.19)

Let us make a few remarks. First, using a symbolic computation program it is auto-
matic to include further terms in this expansion, with a whole lot more Stokes constants
appearing. We have just included a few terms in order to give a general idea of the final
expression; including more terms would make the expression too cumbersome. Second,
this discussion shows how generalized instanton sectors are not only crucial in order to
cancel the ambiguities of our two-parameters transseries, but they also play a definite role
in the final (real) solution. However, it is already clear from the terms displayed above
that if we take σ2 = 0 we recover the one-parameter case. This is also to be expected
when constructing a real solution along θ = 0 as we expect to have a natural mechanism
to remove any exponential enhanced contributions along this direction. Where these
terms should always be non-trivial is when addressing the median resummation along
θ = π . In this case, the analogue of (6.19) is obtained from this equation by changing
m ↔ n in F (n|m), σ1 ↔ σ2, and S�, S̃� with S̃−�, S−�. Now, by setting σ1 = 0 one
constructs a real solution along θ = π without exponential large contributions along this
direction. Note that this discussion followed without including logarithmic sectors due
to resonance in the asymptotic expansions of the (mixed) nonperturbative sectors (but
see Appendix A). While along θ = 0 not much will change, it would be very interesting
to analyze these expressions along θ = π when one further includes these sectors; but
we leave this for future work.

7. Monodromy of the Solution and Reality Conditions

Earlier we mentioned that if ambiguities arise along different directions in the complex
plane one might be interested in canceling all such ambiguities; for instance if looking
for globally well-defined solutions in the complex plane. Canceling ambiguities along
both θ = 0 and θ = π entails finding real transseries solutions along the real line.
However, we also mentioned that in many specific cases there is a difference between
the “physical” perturbative coupling, κ , and the “working” variable we use, z, in the form
of a rescaling z = κα . This means that what one means by the “real line” is different in
κ and z coordinates. We have previously discussed what this means for z; in this section
we want to understand what it means to find real solutions for real coupling κ . For real
positive coupling, canceling the nonperturbative imaginary ambiguity along the θ = 0
singular direction is enough, but reality along negative real κ will in general differ from
canceling the ambiguity along the singular θ = π direction in the z-plane.

To be fully precise, the singular directions θ = 0, π arise not in the z-plane, but in
the Borel s-plane; these are the directions where the Borel transform has singularities.
As discussed in Sect. 2, the return from the Borel to the z-plane is implemented by a
Laplace transform

Sθ F(z) =
∫ eiθ∞

0
ds B[F](s) e−zs . (7.1)

In the z-plane we find Stokes and anti-Stokes lines, but in this coordinate the structure
one finds is essentially equivalent to the one in the complex Borel plane: the Stokes lines
at θ = 0, π remain in the same place; the anti-Stokes lines will be along some ray in the
z-plane such that (previously) exponentially suppressed contributions to the transseries
become of order one.
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But what happens in the “physical” variable κ = z1/α? When α is a rational number
the Stokes lines θ = 0, π will spread in the complex plane: the positive real line will
still be at θ = 0, but θ = π will be at an angle, dictated by α. This will also dictate
whether the negative real line is a Stokes line, an anti-Stokes line, or neither. If it is a
Stokes line it is an open problem to construct a real solution in the full real axis: two
conditions must be met simultaneously and one needs to check if this is possible or not.
If the negative real axis is an anti-Stokes line then real solutions are possible; one such
example is the Airy function which we will address below.

Let us understand better where the Stokes transitions occur in the “physical” variable
κ . For that define

z = κα, α = n

m
∈ Q, (7.2)

where we assumed that α is written in irreducible form. Moreover, define the two vari-
ables as

z = |z| eiθz , κ = |κ| eiθκ . (7.3)

As one rotates the argument of z in the complex plane 0 ≤ θz ≤ 2π one crosses two
Stokes lines, at θz = 0, π , which correspond to the exact same singular directions in
the complex Borel plane. Then, in the “physical” variable κ one finds the following
unfolding,

Stokes line at θz = 0 ⇒ Stokes lines at θκ = m

n
(0 + 2πp) , p = 0, . . . , n − 1,

(7.4)

Stokes line at θz = π ⇒ Stokes lines at θκ = m

n
(π + 2πp) , p = 0, . . . , n − 1.

(7.5)

In general we find 2n Stokes lines in the κ-plane, with the “type” of transition alternating
between S0 and Sπ . The denominator m of α defines the number of full rotations the
argument of κ has to undergo when θz gives one full rotation in the complex plane.
When m is even, the Stokes lines corresponding to different transition “types” will
fall on top of each other, and we will have 2n Stokes transitions but only n different
directions.

We can also see where the anti-Stokes lines lie. These lines are defined as the lines
in the complex z or κ plane where the contributions of both positive and negative expo-
nentials in the transseries (2.7) contribute at the same order,

e−Az ∼ eAz . (7.6)

As A is real this will happen if and only if Re (z) = 0, which implies θz = π
2 , 3π

2 ;
exactly in-between each two Stokes lines. In the κ-plane, one has Re (κα) = 0, which
corresponds to having cos (α θκ) = 0. These lines then fall on

θκ = m

n

(π

2
+ πp

)
, p = 0, . . . , 2n − 1. (7.7)

Again, there are 2n anti-Stokes lines, which fall exactly in-between each two Stokes
lines.

In Fig. 2 we illustrate this unfolding in the κ-plane, for three different values of
α representative of the properties described above (see also Fig. 3). The anti-Stokes
lines are not represented simply to make the figure easier to read, but they will always
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Fig. 2. Stokes transitions for different relations between the “working” variable z and the “physical” coupling
κ: from left to right we have z = κ5, z = κ5/3 and z = κ5/2, respectively. For each case, we show the different
successive transitions taking place as we rotate the argument θκ of the “physical” coupling κ = |κ| eiθκ . The
colored spiral represents all the transitions: the color changes whenever a transition occurs. The light blue
lines correspond to transitions of the “type” S0 while the dark blue lines correspond to Sπ . In the last image
they are on top of each other

Fig. 3. Different successive transitions for the Airy function transseries, as one rotates the argument of the
original “physical” variable κ . The Stokes lines are represented in thick blue, while in dashed blue is the
negative real axis corresponding to an anti-Stokes line. Different colors are shown when there is a crossing of
a Stokes line

fall exactly in-between the Stokes lines. Concerning the cases illustrated in the fig-
ure, the two first cases have Stokes lines in the whole real axis, and only in the case
z = κ5/2 will we find the negative real axis being an anti-Stokes line. In general, the
positive real axis will always be a Stokes line, while the negative real axis can be a
Stokes or an anti-Stokes line, or neither. If m is odd, the negative real axis will be a
Stokes line, while if m is even two cases may happen: if m = 4� + 2, � ∈ N the
negative real axis is an anti-Stokes line, while if m = 4�, � ∈ N the directions of
anti-Stokes lines fall on top of the Stokes lines (but as one rotates around the complex
κ-plane they alternate), and the negative real axis is neither a Stokes nor anti-Stokes
line.
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Computing the monodromy. In the usual “working” variable z we can ask how many
Stokes lines we cross, at θ = 0 and θ = π , until we reach back our starting point. This
is essentially a statement concerning the evaluation of the monodromy, defined by

M := Sπ ◦ S0, (7.8)

where we want to compute the value of n such that

Mn F (z, σ1, σ2) = F (z, σ1, σ2) , (7.9)

i.e., find the order of the (finite) cyclic group describing the monodromy group in each
case. Note that because Borel resummation occurs sectorially, along angular regions in
the complex plane glued together by the Stokes automorphism, it is important to know
the monodromy group if one is to fully construct the Riemann surface corresponding to
the solution to the problem at hand. One might think that this problem is also intimately
related to the fact that one has two variables at play, the “physical” variable κ and the
“working” variable z, and this certainly plays a role as we disentangle one coordinate
into the other. Nonetheless, it is the Stokes constants which play a prominent role in the
evaluation of the monodromy operator.

For the one-parameter transseries, and using expressions from Appendix B, the mon-
odromy operator is given by

M F (z, σ ) = Sπ F (z, σ + S1) = F (z, Sπ (σ + S1)) ≡ F (z, Sπ ◦ S0 (σ )) , (7.10)

where we used

S0(σ ) = σ + S1, Sπ (σ ) =
+∞∑

n=0

σ n+1�(n + 1, n), (7.11)

and where �(n + 1, n) is defined in Appendix B.
For the two-parameters transseries, the explicit monodromy operator because more

cumbersome. Using the Stokes transitions listed in Appendix C, in particular expressions
(C.23) and (C.33), we can write

M F (z, σ1, σ2) = Sπ F
(
z, S0,1(σ1, σ2), S0,2(σ1, σ2)

)

= F
(
z, Sπ,1

(
S0,1(σ1, σ2), S0,2(σ1, σ2)

)
, Sπ,2

(
S0,1(σ1, σ2), S0,2(σ1, σ2)

))
,

(7.12)

where Sθ,i ≡ S
(ν=1)
θ,i and

Sθ,1(σ1, σ2) = σ1 P
(1|0)
θ,1 (σ1, σ2), (7.13)

Sθ,2(σ1, σ2) = σ2 P
(0|1)
θ,1 (σ1, σ2), (7.14)

and the functions P
(n|m)
θ,1 (σ1, σ2) are also given in Appendix C.
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Example: the Airy function. In order to understand exactly how to build a real solution
along the “physical” κ real line, and what exactly is the role that the monodromy plays,
let us illustrate the above set-up within a specific example; that of the well-known Airy
function. Let us begin by quickly recalling the resurgent analysis of the Airy function,
which has been thoroughly studied in the literature, see, e.g., [19,41]. The solutions to
the Airy differential equation

Z′′(κ) − κ Z(κ) = 0 (7.15)

are given in integral form by

Zγ (κ) = 1

2π i

∫

γ

du eV (u), V (u) = κ u − u3

3
, (7.16)

where the contour γ is chosen such that the integral converges. There are two homo-
logically independent choices of γ , giving the two independent solutions to the above
differential equation usually denoted by ZAi and ZBi. The transseries solution to the
Airy equation can then be written with two parameters as

Z (κ, σ1, σ2) = σ1 ZAi(κ) + σ2 ZBi(κ), (7.17)

with the two solutions defined asymptotically for κ � 1 as

ZAi(κ) = 1

2
√

πκ1/4
e− 1

2 A κ3/2
�−1/2(κ), (7.18)

ZBi(κ) = 1

2
√

πκ1/4
e+ 1

2 A κ3/2
�+1/2(κ). (7.19)

In the above expressions the instanton action is A = 4/3 and the asymptotic perturbative
series are given by

�±1/2(κ) �
+∞∑

n=0

(∓1)n an κ− 3
2 n . (7.20)

The coefficients an can be easily found via the original differential equation, and are
such that the Borel transforms of the perturbative expansions are precisely given by the
hypergeometric functions

B [
�±1/2

]
(s) = ± 5

48
2 F1

(
7

6
,

11

6
, 2
∣∣∣ ± s

A

)
. (7.21)

This means one will find singularities at s = ±A in the Borel plane, for �±1/2, respec-
tively. Consequently, there are two singular directions θ = 0, π . We can determine
the Stokes automorphisms along these singular directions by first noting that the alien
derivatives are

�±A�±1/2 = +S±1 �∓1/2, �±A�∓1/2 = 0, (7.22)

where the Stokes constants14 are given by S±1 = −i. The Stokes automorphisms in the
relevant directions will follow by first performing a simple change of variables, z = κ3/2.
In this new “working” variable, one has a one-to-one correspondence between singular

14 In the notation used in Appendix C, these Stokes constants correspond to S1 ≡ S(0)
1 and S−1 ≡ S̃(0)

−1.
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directions in the Borel s-plane and Stokes lines in the z-plane. Then we can easily find
the Stokes automorphisms straight from definition (2.5). In the θ = 0 direction one has

S0ZAi (z) = ZAi (z) , S0ZBi (z) = ZBi (z) + S1 ZAi (z) , (7.23)

while in the θ = π direction one finds

SπZBi (z) = ZBi (z) , SπZAi (z) = ZAi (z) + S−1 ZBi (z) . (7.24)

The Stokes transitions at the level of the transseries Z (z, σ1, σ2), occurring in the direc-
tions θ = 0, π , are finally

Sν
0Z(z, σ1, σ2) = Z (z, σ1 + ν S1 σ2, σ2) , (7.25)

Sν
πZ(z, σ1, σ2) = Z (z, σ1, σ2 + ν S−1 σ1) . (7.26)

This very simple example now illustrates many features we discussed earlier. In the
z-plane there are the usual two singular directions where Stokes phenomena takes place.
But in the original variable these Stokes lines will unfold into extra Stokes lines. As
discussed at the beginning of this section, in the original variable κ = z2/3 one has the
following unfolding,

Stokes line at arg z = 0 ⇒ Stokes lines at arg κ = 0,
4π

3
,

2π

3
, (7.27)

Stokes line at arg z = π ⇒ Stokes lines at arg κ = 2π

3
, 0,

4π

3
. (7.28)

There are three Stokes directions in the κ-plane, occurring at arg κ ≡ θκ = 0, 2π
3 , 4π

3 ;
but in fact we will need to cross each of these lines at least twice in order to account for
all possible Stokes phenomena in this problem, and the “type” of transition will alternate
from S0 to Sπ . In Fig. 3 we have displayed the succession of different Stokes transitions
taking place in the original variable κ , as we change the argument arg κ ∈ (0, 4π).

Next, we would like to construct a real solution to the Airy equation, across the whole
real line and in the original variable κ . At θκ = 0 there is a Stokes line, and an associ-
ated nonperturbative ambiguity which needs to be canceled to obtain a real transseries
solution. As stated before, this cancelation is given by the median resummation, as

ZR (z, σ1, σ2) = Smed
0 Z (z, σ1, σ2) = S0+ ◦ S

−1/2
0 Z (z, σ1, σ2)

= S0+Z
(

z, σ1 − 1

2
S1σ2, σ2

)
, (7.29)

where σ1, σ2 ∈ R. The particular case of σ2 = 0 and σ1 = 1 will then correspond to a
real solution for θκ = 0, in particular to a very well-known real solution given by (where
z = κ3/2)

ZR (z, 1, 0) = S0+Z (z, 1, 0) = S0+ZAi (z) . (7.30)

Let us start with this (real) solution along the positive real line and ask if one can also
find a real solution along the negative real line arg κ = π . Note that the negative real
line in the original variable κ does not correspond to a Stokes line and, thus, there will
be no ambiguity along this direction. In Fig. 3 we show how rotating θκ from 0 to π ,
the Stokes line at θκ = 2π/3 is crossed with the “type” of Stokes transition Sπ (which
takes place at arg z = π ). The transition in this singular direction is given by
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Sθκ=(2π/3)+Z (z, 1, 0)

∣∣∣
z=κ3/2

= Sθκ=(2π/3)−SπZ (z, 1, 0)

∣∣∣
z=κ3/2

= Sθκ=(2π/3)−Z
(

z = κ3/2, 1, S−1

)

= Sθκ=(2π/3)−ZAi (κ) − i Sθκ=(2π/3)−ZBi (κ) . (7.31)

Having crossed the Stokes line, the solution for θκ = π is

Sθκ=πZ
(
|κ| eiπ , 1, S−1

)
= Sθκ=πZAi

(
|κ| eiπ

)
− i Sθκ=πZBi

(
|κ| eiπ

)
. (7.32)

The reality of the solution along arg κ = π now follows. We analyze it in the asymp-
totic regime using the perturbative expansions (7.18) and (7.19), with κ = |κ| eiπ and
choosing a particular branch for the square roots15 we have

Z
(
|κ| eiπ , 1,−i

)
�

+∞∑

n=0

an Cn (−1)[3n/2] cos
(
� + (−1)n π

4

)
, (7.33)

where [•] is the integer part, the an are the coefficients from the asymptotics, and

Cn = |κ|−3n/2

√
π |κ|1/4 , � = −1

2
A |κ|3/2 . (7.34)

As expected in this familiar and very simple example, one indeed finds a real solution
also along the negative real axis and, consequently, the transseries for the Airy function,
(7.17), with σ1 = 1 and σ2 = 0 defines a real transseries along the whole real line in the
κ-plane.

Finally, we can compute the monodromy of the full Airy transseries. Given all the
results above (and noting that S1S−1 = −1) it is very straightforward to check that the
monodromy action translates to

MZ (z, σ1, σ2) = Z (z, σ1 + S1 σ2, S−1 σ1) . (7.35)

Applying the monodromy repeatedly we find that M3 Z (z, σ1, σ2) = Z (z,−σ1,−σ2),
and that

M6 = 1. (7.36)

It is important to note that this result is dictated by the structure of Stokes constants in
the problem. Indeed, if one were just to think about the relation between z and κ , Fig. 3
would show how rotating twice in κ seems to bring us back to the starting point. But this
would incorrectly imply that M3 = 1. The Stokes constants computing the monodromy
tell us that one rather has to rotate four times in the “physical” variable κ to return to the
starting point.

15 The possible choices are
(

eiπ
)3/2 = ±i and

(
eiπ

)1/4 = 1√
2

(1 ∓ i). One choice will yield a real solution

while the other will yield a purely imaginary one (and proportional to each other).
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8. Outlook

We have seen that while perturbation theory may lead to the appearance of nonper-
turbative ambiguities, it also contains, in itself, the proper prescription to cancel these
ambiguities and become well-defined in a wide range of (quantum theoretical) problems.
The greater the number of semiclassical saddles, instantons, renormalons or other more
exotic saddles, the more complicated it is to write down the cancelation, but in principle
it always occurs in precisely the same way: via the median resummation. It would be
interesting to apply this general prescription across many different settings where pertur-
bation theory plays prominent roles, from quantum mechanics to quantum field theory,
from string theory to large N gauge theories. Physical observables in these theories will
generically be described by resurgent functions and transseries and, according to what
we have explained in this work, these observables may be defined nonperturbatively
starting out with perturbation theory and applying median resummation. The difficulty
of explicitly implementing the actual calculation will naturally differ from problem to
problem, in the form of properly identifying all relevant saddles and interpreting them
physically, thus the obvious interest in seeing these methods applied over a wide range
of concrete examples.

In this work we have addressed both one and two-parameter transseries, where the
two-parameters transseries also included generalized instanton sectors. In particular, the
transseries with two parameters involved instanton actions ±A, which is a familiar setting
we have addressed in other, related, cases [18,38]. However, this selection was solely
due to practical purposes (it makes the discussion proceed along familiar ground, where
many formulae are already available). We have not completely discussed the logarithmic
sectors and resonance which also appear in this set-up, and it would be interesting to fully
address these sectors in future work. In spite of this, we believe the general lesson should
be clear and, in more complicated problems, one should follow along the same lines
now applied to transseries with many parameters and many distinct instanton actions (or
renormalons, generalized instantons, maybe even generalized renormalons and more).
More specifically, when considering general actions, the Stokes automorphism Sθ will
be non-trivial across other directions than 0 or π , and this will entail iterating our analysis
along these new directions. In fact, ambiguities should be canceled along all possible
Stokes lines if the function we are looking for is to be well-defined everywhere in the
complex plane (see Fig. 4).

It is interesting to note that some “part” of the transseries parameters was used in the
cancelation of nonperturbative ambiguities (as they took specified values under median
resummation; e.g., in the one-parameter example the imaginary part of σ was fixed).
Whatever freedom is left can be seen to play the role of a theta-like QCD angle, or, in the
differential equation context, of a parameterization of possible boundary conditions. In
this case, globally defined solutions to the differential equation at stake will be obtained
by canceling all possible ambiguities in the complex plane. It is not to exclude that
transseries parameters may be further constrained in this way: requirements of global
definition may fix the remaining freedom by imposing extra constraints (much like in
our discussions of constructing real transseries along the full real line).

As we briefly commented in the introduction, in quantum mechanical problems with
degenerate vacua [5–7], and also in gauge field theories [8], one needs to consider topo-
logical charge and introduce a theta-angle �. The effect of this theta-angle will be that
exponential suppressed terms will acquire a phase: schematically, one will now find
exponential corrections of the type e−n Az ei(n−2k)�, where k = 0, . . . , n. Each topolog-
ical sector, defined by a specific phase, will have contributions from mI instantons and
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Fig. 4. The general global picture in the complex Borel plane, with many different Stokes lines characterized
by distinct singularity structures. All these singularities will contribute to large-order resurgent asymptotics,
and global definitions will require canceling all associated nonperturbative ambiguities

mĪ anti-instantons, such that mI −mĪ = n −2k and the total number of instantons and
anti-instantons will give the instanton level n = mI + mĪ .

Perturbative expansions are independent of �, so that sectors with different phases
will not mix. As such, for each of these sectors we shall assume to have an independent
transseries. Let us first analyze the topological sector with no theta-angle dependence.
This topological sector occurs when n − 2k ≡ mI − mĪ = 0. As k needs to be an
integer, only multi-instantons with n = 2� even will contribute. These contributions will
thus arise from levels with the same number of instantons and anti-instantons

[I�Ī�
]
.

The lowest level (the least suppressed contribution) of this topological sector occurs
at n = 0 where we find the usual perturbative series; the next level contributing to the
transseries will be the instanton/anti-instanton sector

[IĪ], which will have n = 2; other
exponentially suppressed contributions will appear at n = 4, 6, . . .. This is in contrast
with other topological sectors, having explicit � dependence, where now the lowest level
will already be exponentially suppressed. For example, for n − 2k = 1, the lowest value
of n which contributes is n = 1, which corresponds to having only one instanton. This
is the least suppressed contribution, and will play the analogous part of our perturbative
series for this sector. The next contributions will occur at n = 3, 5, · · · = 2� + 1, and
correspond to instanton sectors of the type

[I1+�Ī�
]
. This discussion can be generalized

for every topological sector, and is nicely summarized in the “graded resurgence triangle”
found in [8].

The natural question one now needs to address is how to write the full transseries
ansatz for a problem with graded theta-angle. Assuming full independence between the
different phases, and considering for simplicity of the argument that each sector will be
described by an one-parameter transseries, this can be achieved by considering:

F (z, {σi }) =
∑

m∈Z

eim� Fm (z, σm) , (8.1)
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where Fm (z, σm) is the transseries for the topological m-sector. The lowest level of each
transseries (equivalent to the “usual” perturbative series) will be proportional to e−|m|Az ,
and the poles in the Borel plane for each sector are separated by the instanton/anti-
instanton action SIĪ = 2A (which corresponds to inserting an instanton/anti-instanton
pair). Then

Fm (z, σm) = e−|m|Az
+∞∑

n=0

σ n
m e−nSIĪ z �

{m}
2n (z) , (8.2)

where �
{m}
2n (z) has the familiar perturbative series expansion in the coupling z. The alien

derivatives ��SIĪ , with SIĪ = 2A, will be non-zero when acting on Fm (z, σm), and
the bridge equations over topological sectors may be written as

�̇�SIĪ F =
∑

m∈Z

S{m}
� ({σi }) ∂ F

∂σm
. (8.3)

Is is easy to see that the proportionality coefficients S{m}
� ({σi }) must now be of the form

S{m}
� (σm) =

∑

k≥0

S{m}(k)
� σ k

m, (8.4)

i.e., for each topological sector {m} the coefficients can only depend on σm , with Stokes
constants given by S{m}(k)

� . Furthermore, the only surviving Stokes constant will be

S{m}(1−�)
� , for each sector {m}. We thus obtain, for each topological sector, the usual

form of the bridge equations

��SIĪ �
{m}
2n (z) = S{m}(1−�)

� �
{m}
2(n+�)(z). (8.5)

With the bridge equations in hand, one may proceed to develop resurgent asymptotics
and median resummations, even for multi-parameter transseries, following the lines in
[18] and in the present paper. It would be very interesting to put all these arguments on
firmer ground, and develop the required technology as it applies to quantum theoretical
problems with topological sectors.

Finally, let us mention that recently there has been some interest in applying strong–
weak coupling duality to improve the resummation of perturbation theory within string
theoretic contexts [42–44]. In this set-up, it would be very interesting to further investi-
gate the existence of explicitly S-dual invariant median resummations.
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A. Structural Aspects of Resurgent Transseries

This appendix addresses several structural aspects which may be deduced concerning
arbitrary transseries, in particular many constraints on the associated set of Stokes con-
stants. Let us begin by recalling the definition of lateral Borel resummation along some
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(singular) direction θ , which may be found either in the main body of the text or in [18].
Given an asymptotic expansion of the form (2.1) or (2.9),

�(z) � z−βnm

+∞∑

g=0

Fg

zg
, (A.1)

one has

Sθ±�(z) =
∫ eiθ (∞±iε)

0
ds B[�](s) e−zs . (A.2)

With a simple change of variables one obtains

Sθ±�(z) = eiθ
∫ +∞±iε

0
ds B[�](s eiθ ) e−zs eiθ ≡ S0±�(θ)(x), (A.3)

where x = zeiθ , and where we introduced the “rotated” asymptotic series �(θ)(x) which
is obtained from the original expansion (A.1) by changing coefficients as

F (θ)
g = e2iθ(g+βnm )Fg. (A.4)

The above relations interchange asymptotic series with singularities along θ to “rotated”
asymptotic series with singularities along the positive real axis. In particular they show
how generic cases may be reduced to our analysis, mostly along θ = 0, π . As such, we
shall focus upon these directions in the following, setting θ ≡ 0, π , and drop “rotated”
superscripts.

Along the Borel real axis the usual complex conjugation operator, HF(z) ≡ F(z),
relates very naturally with the lateral Borel resummations. One finds, for real z,

H ◦ S0±�(z) =
∫ +∞∓iε

0
ds B[�](s) e−zs, (A.5)

and, as long as z is real, it is also the case that B[�] = B[�]. In this case,

H ◦ S0± = S0∓ ◦ H. (A.6)

Further assuming that βnm is an integer (we will soon lift this restriction), the same
arguments allow one to find16

H ◦ Sθ± = Sθ∓ ◦ H, with θ = 0, π. (A.7)

Having understood how complex conjugation interplays with the lateral Borel resum-
mations, one may now try to do the same on what concerns the Stokes automorphism
(2.4). Using H2 = 1, it is straightforward to check that for θ = 0, π the commutation
relation of complex conjugation and the Stokes automorphism is given by

H ◦ Sθ = S−1
θ ◦ H, (A.8)

16 Going back to our discussion in the first paragraph one may wonder if this relation can be generalized
to any singular direction θ . In order to do so one needs to find a conjugation operator along the direction θ ,
Hθ , essentially reflecting the complex plane along that line which would naturally satisfy H2

θ = 1 and which
would further have to satisfy Hθ ◦ Sθ± = Sθ∓ ◦ Hθ . Then, a similar line of arguments goes through.
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and obeys
(H ◦ Sθ

)2 = 1 =
(
S−1

θ ◦ H
)2

. (A.9)

Next, as the Stokes automorphism relates to the alien derivative following (2.5), we are
still interested in exploring (A.8) within the alien calculus setting. Generically, and as
follows from (2.5), one may write powers of the Stokes automorphism along a singular
direction θ of the Borel plane as

Sν
θ = exp

⎧
⎨

⎩
ν

∑

ω∈{ωθ }
e−ωz �ω

⎫
⎬

⎭
≡ exp

{
ν �̇θ

}
, (A.10)

where we used the pointed alien derivative �̇θ . If we plug this expansion back in (A.8),
this condition may be written as

+∞∑

n=1

1

n! H ◦ (�̇θ

)n =
+∞∑

n=1

(−1)n

n!
(
�̇θ

)n ◦ H, (A.11)

which is obeyed if
�̇θ ◦ H = −H ◦ �̇θ . (A.12)

In this case, condition (A.8) may be generalized to

H ◦ Sν
θ = S−ν

θ ◦ H. (A.13)

It is noteworthy to mention that one may lift the integer requirement on βnm , or further
consider asymptotic expansions with logarithmic sectors (as will be studied shortly).
In these cases, one has to isolate the “pure” asymptotic series part, which induces the
singularities in the complex Borel plane, from the extra factors which remain as they
were. Then, the Stokes automorphism only acts on the asymptotic part. The conjugation
operator, on the other hand, will act on all factors. Acting with these operators in the
full transseries can become even more convoluted, as the transseries parameters σi are
in general complex. In any case, the procedure to analyze these properties at the level of
the transseries is exemplified in the cases studied below.

We shall now make use of these relations to obtain structural properties of two-
parameter transseries, starting off with their bridge equations (2.10). Let us determine
the implications of (A.12) for the two-parameters transseries (2.7–2.9), further assuming
that the coefficients in all asymptotic expansions in F(z, σ1, σ2) are real—which we do
throughout this appendix. For the direction θ = 0 (� > 0) it follows

H ◦ �̇�A F(z, σ1, σ2) = S� (σ 1, σ 2)
∂ F

∂σ 1
+ S̃� (σ 1, σ 2)

∂ F

∂σ 2
, (A.14)

and

�̇�A ◦ HF(z, σ1, σ2) = S� (σ 1, σ 2)
∂ F

∂σ 1
+ S̃� (σ 1, σ 2)

∂ F

∂σ 2
. (A.15)

In this direction, using (A.12) and the two above expressions, we find

(
S� (σ 1, σ 2) + S� (σ 1, σ 2)

) ∂ F

∂σ 1
= −

(
S̃� (σ 1, σ 2) + S̃� (σ 1, σ 2)

) ∂ F

∂σ 2
. (A.16)
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Using the expansions of S� and S̃� in terms of Stokes constants, as given by (5.5) and
(5.6), this implies

Re S(k)
� = Re S̃(k+�)

� = Re S(0)
� = 0, ∀ k, � ≥ 1. (A.17)

In words, all Stokes constants associated with the θ = 0 direction are purely imaginary.
As we turn to the θ = π direction, one sets17 z = e−iπ |z| and we thus find that

H�(n|m)(z) �= �(n|m)(z). As such, in this direction only (A.14) remains valid. To be
able to use (A.12) notice that

HF (z, σ1, σ2) =
+∞∑

n,m=0

σ n
1σm

2 e−(n−m)Az e−2π iβnm �(n|m)(z). (A.18)

Assuming as usual that βnm = (n + m) β, then

HF (z, σ1, σ2) = F
(

z, σ 1e−2π iβ, σ 2e−2π iβ
)

. (A.19)

It follows

H
[

∂ F

∂σ1
(z, σ1, σ2)

]
= e−2π iβ ∂ F

∂σ̃1
(z, σ̃1, σ̃2)

∣
∣∣∣
σ̃i =σ i e−2π iβ

, (A.20)

and one may thus rewrite (A.14) as

H ◦ �̇�A F(z, σ1, σ2)

= e−2π iβ
[

S�(σ 1, σ 2)
∂ F(z, σ̃1, σ̃2)

∂σ̃1
+ S̃�(σ 1, σ 2)

∂ F(z, σ̃1, σ̃2)

∂σ̃1

]∣∣∣∣
σ̃i =σ i e−2π iβ

,

(A.21)

and the equivalent of (A.15) as

�̇�A ◦ HF(z, σ1, σ2)

=
[

S�(̃σ1, σ̃2)
∂ F(z, σ̃1, σ̃2)

∂σ̃1
+ S̃�(̃σ1, σ̃2)

∂ F(z, σ̃1, σ̃2)

∂σ̃1

]∣∣∣∣
σ̃i =σ i e−2π iβ

. (A.22)

Using once again the expansions for the Stokes coefficients (5.5) and (5.6) into the
commutation relation (A.12), one now finds that, for any � > 0 and k ≥ 0,

S̃(k)
−� + S̃(k)

−� e2π i(2k−2+�)β = 0, (A.23)

S(k+�)
−� + S(k+�)

−� e2π i(2k−2+�)β = 0. (A.24)

In summary, we found the constraints that (A.12) imposes at the level of the bridge
equations for a two-parameter transseries and, in particular, the constraints on the Stokes
constants encoded in these bridge equations. In this process, we made a set of (very
reasonable) assumptions:

• Assumed (A.12) as the only solution of (A.8);
• Started from a two-parameters transseries ansatz, of the type (2.7–2.9);

17 This allows us to consistently choose the usual branches of square-roots and logarithms, in direct com-
parison with results in [18,38]. If we chose z = eiπ |z|, we would have to use different branches to reach the
same results.
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• Both the asymptotic coefficients in the transseries and the instanton action are real;
• The exponent β takes the (usual) form βnm = (n + m) β, with β a rational number.

The constraints we thus found for the Stokes constants, for ∀ k ≥ 0, � ≥ 1 and where
we defined S̃(�)

� = S(�)
−� = 0, are:

Re S(k)
� = Re S̃(k+�)

� = 0, (A.25)

S̃(k)
−� + S̃(k)

−� e2π i(2k−2+�)β = 0, (A.26)

S(k+�)
−� + S(k+�)

−� e2π i(2k−2+�)β = 0. (A.27)

The one-parameter transseries example. The previous analysis was done within the
context of the two-parameters solutions, but the one-parameter transseries is just a par-
ticular case of these solutions, obtained by setting S̃ = 0 and σ2 = 0. In particular, the
expansion (5.5) for the Stokes coefficients becomes

S−� (σ1) = S(1+�)
−� σ 1+�

1 , ∀ � ≥ −1, (A.28)

and the final constraints in the Stokes constants simply read, for � ≥ 1,

Re S(0)
1 = 0, (A.29)

S(1+�)
−� + S(1+�)

−� e2π i�β = 0. (A.30)

In the case where β = 0, this becomes

Re S(0)
1 = Re S(1+�)

−� = 0. (A.31)

Generalization with logarithmic sectors. The structure of the two-parameters transseries
we are addressing, (2.7–2.9), has instanton actions ±A. Of course more general struc-
tures are possible; in here we are illustrating our ideas with a setting inspired by the
results in [18,38]. One aspect of this setting, which is in fact generic for many other
problems arising when considering non-linear differential equations, is resonance, i.e.,
the possibility that some instanton sectors will in fact not have the usual exponential
pre-factor because the combination of instanton actions canceled (see, e.g., [18,37] for
more detailed accounts of this phenomenon). To solve resonant problems, one needs to
further introduce logarithmic sectors in the transseries structure, as was done for instance
in the cases of the Painlevé I equation in [18,37] and the Painlevé II equation in [38].
For such cases we need a transseries ansatz of the type (2.7) and (2.8), but where now

�(n|m)(z) =
kmax(n,m)∑

k=0

logk (z) · z−β
[k]
nm �

[k]
(n|m)(z), �

[k]
(n|m)(z) �

+∞∑

g=0

F (n|m)[k]
g

zg
, (A.32)

where the asymptotic coefficients F (n|m)[k]
g are taken to be real, and kmax(n, m) =

min(n, m) − m δnm . To obtain more concrete results we shall still need a couple of
assumptions which, in particular, are valid within the contexts of the Painlevé I and II
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equations. In general, the analysis will be model dependent but it will follow the very
same strategy as below. We shall then further assume that

β[k]
nm = β

[0]
n−k,m−k, β[0]

nm = (n + m) β, (A.33)

�
[k]
(n|m) = (α)k (m − n)k

k! �
[0]
(n−k|m−k). (A.34)

The case of Painlevé I has −2αPI = 4/
√

3 [18] and that of Painlevé II has18 −2αPII = 8
[38]. Both cases have the same value of β, which we will be assuming from now on to
be fixed as

β = 1

2
. (A.35)

Using the fact that �
[0]
(a|b) = 0 if either a or b are negative, we can rewrite �(n|m)(z) as

�(n|m)(z) =
+∞∑

k=0

αk (m − n)k

k! z−β
[0]
n−k,m−k logk (z) · �

[0]
(n−k|m−k)(z). (A.36)

Plugging these back into the transseries solution (2.7), it may be rewritten as19

F(z, σ1, σ2) =
+∞∑

n=0

+∞∑

m=0

σ n
1 σm

2 z−β
[0]
nm e−(n−m)Az eα(m−n)σ1σ2 log z �

[0]
(n|m)(z). (A.37)

With these results in hand, we may now proceed and address constraints on Stokes
coefficients when in the presence of resonance. Along the positive real axis complex
conjugation may be addressed very similarly to before, in which case (A.12) simply
translates to the constraints

Re S(k)
� = Re S̃(k+�)

� = 0, ∀ k ≥ 0, � ≥ 1. (A.38)

As we turn to the analysis of constraints arising from the negative real axis, things
get a bit more intricate. Let us first determine the complex conjugate for F(z, σ1, σ2),
as depicted above, when z = e−iπ |z| (recall that β

[0]
nm = (n + m) β). One finds

HF (̃z = e−iπ |z| , σ1, σ2) =
+∞∑

n=0

+∞∑

m=0

(
σ 1 e−2π i α σ 1σ 2 e−α σ 1σ 2 log z̃ e−2π iβ

)n

×
(
σ 2 e2π i α σ 1σ 2 eα σ 1σ 2 log z̃ e−2π iβ

)m
z̃−β

[0]
nm e−(n−m) Ãz �

[0]
(n|m)(̃z)

= F (̃z, σ̃1, σ̃2), (A.39)

where

σ̃1 = σ 1 e−2π i α σ 1σ 2 e−2π iβ, (A.40)

18 Comparing with [38] there would be a (−2)−k factor missing in (A.32), which is compensated with the

removal of a similar (−2)k from �
[k]
(n|m)

above. The results herein can then be directly compared to the ones
of that paper.

19 The resonant transseries written in this form can also be used to write the Stokes transitions for resonant
problems such as Painlevé I and II. Along the singular direction θ = 0 we can apply the Stokes automorphism
to this transseries, and make use of (C.12) to easily find a generalization of (C.14), thus determining the Stokes
transition for the resonant cases. The same can be done for the direction θ = π .
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σ̃2 = σ 2 e2π i α σ 1σ 2 e−2π iβ. (A.41)

The above identification between σ̃i and σ i was possible due to the fact that with β = 1/2
the following property holds

σ̃1σ̃2 = σ 1σ 2 e−4π iβ = σ 1σ 2. (A.42)

The inverse transformation is then given by

σ 1 = σ̃1 e2π i α σ̃1σ̃2 e2π iβ, (A.43)

σ 2 = σ̃2 e−2π i α σ̃1σ̃2 e2π iβ. (A.44)

The constraints on the Stokes constants in the negative real axis are again obtained from
enforcing the commutation relation (A.12). To do so, we need to determine �̇−�A ◦
HF (̃z, σ1, σ2) as well as H ◦ �̇−�A F (̃z, σ1, σ2). The former is now easily obtained.
Using the complex conjugate for F(z, σ1, σ2), together with the bridge equations (2.10),
we may write

�̇−�A ◦ HF (̃z, σ1, σ2) = S−� (̃σ1, σ̃2)
∂ F

∂σ̃1
(̃z, σ̃1, σ̃2) + S̃−� (̃σ1, σ̃2)

∂ F

∂σ̃2
(̃z, σ̃1, σ̃2) .

(A.45)
The other term contributing to the commutation relation (A.12), H ◦ �̇−�A F (̃z, σ1, σ2),
is also easily determined. In fact, we can write it as

H ◦ �̇−�A F (̃z, σ1, σ2) = S−� (σ 1, σ 2)H
[

∂ F

∂σ1

]
+ S̃−� (σ 1, σ 2)H

[
∂ F

∂σ2

]
. (A.46)

In order to compare this to the previous term in the commutation relation, we need to
use the following property

∂ F (̃z, σ̃1, σ̃2)

∂σ̃1
= e2π iβ e2π i α σ̃1σ̃2 H

[
∂ F

∂σ1
(̃z, σ1, σ2)

]

−2π i α σ̃2

+∞∑

n=0

+∞∑

m=0

(m − n)̃σ n
1 σ̃m

2 eα(m−n)̃σ1σ̃2 log z̃ e−(n−m)Az z̃−β
[0]
n,m �

[0]
(n|m)(̃z), (A.47)

alongside with the equivalent expression where one takes the derivative with respect to
σ2 instead. Finally, using the expansions for the Stokes coefficients (5.5) and (5.6), the
commutation relation (A.12) applied to our transseries ansatz yields

A + B = C, (A.48)

where

A =
+∞∑

n,m=0

σ n+�−1
1 σm−1

2 (n + α σ1σ2 (m − n) log z̃) eα(m−n)σ1σ2 log z̃ F (n|m)

×
+∞∑

k=1

(σ1σ2)
k R(k−1)

−� (σ1σ2) , (A.49)
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B =
+∞∑

n,m=0

σ n+�−1
1 σm−1

2 (m + α σ1σ2 (m − n) log z̃) eα(m−n)σ1σ2 log z̃ F (n|m)

×
+∞∑

k=0

(σ1σ2)
k R̃(k+�−1)

−� (σ1σ2) , (A.50)

C = −2π i α
+∞∑

n,m=0

σ n+�−1
1 σm−1

2 (m − n) eα(m−n)σ1σ2 log z̃ e−2π i�(β−α σ1σ2) F (n|m)

×
+∞∑

k=1

(σ1σ2)
k
(

σ1σ2 S(k+�)
−� + S̃(k−1)

−�

)
. (A.51)

Above, we have used the notation

R(k)
−�(x) = S(k+1+�)

−� + S(k+1+�)
−� e2π i�(β+αx), (A.52)

R̃(k)
−�(x) = S̃(k+1+�)

−� + S̃(k+1+�)
−� e−2π i�(β−αx). (A.53)

One may now apply the usual reasoning, i.e., compare equal powers of log z̃, of
x = σ1σ2, and take into account the many different sectors (n|m). The constraints one
finally obtains on the Stokes constants are:

S(�+1)
−� + e−2π i�β S(�+1)

−� = 2π i α e2π i�β S̃(0)
−� , (A.54)

S(k+�)
−� + e−2π i�β

k−1∑

r=0

(2π i�α)r

r ! S(k−r+�)
−� = 2π i α e2π i�β

{
(2π i�α)k−1

(k − 1)! S̃(0)
−�

+
k−2∑

r=0

(2π i�α)r

r !
(

S(k−r+�−1)
−� + S̃(k−r−1)

−�

)}

, (A.55)

S̃(0)
−� + e2π i�β S̃(0)

−� = 0, (A.56)

S̃(1)
−� + e2π i�β S̃(1)

−� = −2π i (� + 1) α e2π i�β S̃(0)
−� , (A.57)

S̃(k)
−� + e2π i�β

k∑

r=0

(2π i�α)r

r ! S̃(k−r)
−� = −2π i α e2π i�β

{
k−2∑

r=0

(2π i�α)r

r ! S(k−r+�−1)
−�

+
k−1∑

r=0

(2π i�α)r

r ! S̃(k−r−1)
−�

}

, (A.58)

where � ≥ 1, k ≥ 2 and β = 1/2.
One interesting aspect of all these structural constraints is that, much like all the

previous ones, they may be tested in examples. Given how intricate the above relations
are, these tests are actually rather non-trivial, in particular supporting the generality of
(A.12). In the cases of the Painlevé I and II equations addressed in [18,38] many relations
between Stokes constants were written down; some arising from the study of the string
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genus expansion, others found “experimentally” via numerical work. In particular, the
following relations were obtained in the aforementioned references:

S(0)
1 + (−1)−1/2 S̃(0)

−1 = 0, (A.59)

S(0)
2 − S̃(0)

2 = 0, (A.60)

S(1)
1 + (−1)1/2 S̃(1)

−1 − 2π i α S(0)
1 = 0, (A.61)

S̃(2)
1 + (−1)1/2 S(2)

−1 + iπ α S(0)
1 = 0. (A.62)

One can derive one further relation, arising within the �(2|2) sector, by the requirement
that this sector has a genus expansion in the string coupling, similarly to what was done
in [18]. This extra relation is

i S(2)
1 + S̃(2)

−1 − iπ α

{
i S̃(2)

1 + 2i S(1)
1 +

3π

2
α S(0)

1

}
= 0. (A.63)

Recalling that S(k)
� , S̃(k+�)

� ∈ iR, one can easily check that the above relations obey
(A.54) with � = 1, (A.56) and (A.57) with � = 1, and (A.58) with k = 2, � = 1. In this
way, it is very interesting to finally realize that all the somewhat empirical relations in
[18,38] are in fact part of rather general structural constraints on resurgent transseries.

B. Formulae for One-Parameter Transseries

In this appendix we focus on the case of a one-parameter transseries

F (z, σ ) =
+∞∑

n=0

σ n e−n Az �n (z) , (B.1)

where there are two Stokes lines, at θ = 0 and θ = π [18]. We will study the Stokes
automorphism and Stokes transitions in this setting, alongside with a discussion of
how these results interplay with the cancelation of the nonperturbative ambiguity. In
particular, we shall present rather general formulae and address the technicalities/results
used in the main body of the text. To find the Stokes transitions one needs information on
how each asymptotic series �n crosses the Stokes line, i.e., how the Stokes automorphism
acts on each �n . Some results along these lines were already obtained in [18]; in here we
recall some of these relevant results as well as their respective generalizations, needed
in the main text.

Stokes automorphism at θ = 0. The Stokes automorphism acting on each sector �n
may be completely determined up to the Stokes constants. A general one-parameter
transseries has an infinite number of non-vanishing Stokes constants, S1, S−k with k ≥ 1.
At the Stokes line θ = 0 the Stokes automorphism acts as [18]

S0�n =
+∞∑

�=0

(
n + �

n

)
S�

1 e−�Az �n+�, (B.2)

We shall be interested in determining a general power of the Stokes automorphism,
Sν

0�n . To do so, recall the definition of the Stokes automorphism in terms of alien
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derivatives (2.5). Now, in the θ = 0 direction of the complex Borel plane we have
only one singularity, ω = A, with A being the instanton action. In this case, the Stokes
automorphism becomes

Sν
0 = exp

{
ν e−Az�A

}
, (B.3)

and the bridge equations are

�A�n = S1 (n + 1) �n+1. (B.4)

Multiple derivatives are immediate to obtain,

�k
A�n = Sk

1

k∏

j=1

(n + j)�n+k, (B.5)

from where we can easily find Sν
0�n as

Sν
0�n =

+∞∑

�=0

ν�

�! e−�Az ��
A�n =

+∞∑

�=0

(
n + �

n

)
(νS1)

� e−�Az �n+�. (B.6)

Taking a general power ν of the Stokes automorphism exactly corresponds to multiplying
the Stokes constant by this same number. This result is used in the main text.

Stokes transition at θ = 0. The Stokes transition of the one-parameter transseries (B.1),
at θ = 0, is now very simple to compute

Sν
0 F (z, σ ) =

+∞∑

n=0

σ n e−n Az Sν
0�n =

+∞∑

n=0

+∞∑

�=0

(
n + �

n

)
σ n (νS1)

� e−(n+�)Az �n+�

=
+∞∑

�=0

(σ + νS1)
� e−�Az �� = F (z, σ + νS1) . (B.7)

This transition describes Stokes phenomenon across the singular line θ = 0, via a jump
in the transseries parameter precisely given by the Stokes constant S1. In the result above,
we have already considered a general power of the Stokes automorphism; in the usual
case one sets ν = 1.

Stokes automorphism at θ = π . As we turn to θ = π , the procedure will not be as
straightforward. First, along θ = π , the bridge equations take the form

�−�A�n = S−� (n − �) �n−�, � ≥ 1. (B.8)

Recall that we always define �m = 0 for m < 0. These equations lead to the following
expression for the Stokes automorphism

Sπ�n =
n∑

�=0

� (n, �) e�Az �n−�, (B.9)
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where

� (n, �) =
�∑

k=1

1

k!
∑

γ∈�(k,�)

⎛

⎝
k∏

j=1

(
n − γ j

)
S−dγ j

⎞

⎠ + δ�,0. (B.10)

A proof of this result may be found in [18]. In the expression above, the sum over
γ ∈ �(k, �) is a sum over partitions 0 = γ0 ≤ γ1 ≤ · · · ≤ γk = �, and we have further
defined dγ j = γ j − γ j−1. In order to have a correct expression, one further needs to set
S0 = 0.

Once again, we are interested in generalizing the above result to a general power of
the Stokes automorphism. Along this Stokes line one finds singularities at ω = −�A,
for � ≥ 1, and so the expression to consider is

Sν
π = exp

{

ν

+∞∑

�=1

e�Az�−�A

}

. (B.11)

Expanding the exponential and making use of the bridge equations, is is easy to see that
also in this case the power ν translates into a multiplicative factor of ν for each and every
Stokes constant.20 One finally obtains

Sν
π�n =

n∑

�=0

�ν (n, �) e�Az �n−�, (B.12)

where

�ν (n, �) =
�∑

k=1

νk

k!
∑

γ∈�(k,�)

⎛

⎝
k∏

j=1

(
n − γ j

)
S−dγ j

⎞

⎠ + δ�,0. (B.13)

Stokes transition at θ = π . As compared to the case of θ = 0, it is already much harder
to find an expression for the Stokes transition at θ = π . Following the same reasoning
as before, we find

Sπ F(z, σ ) =
+∞∑

n=0

σ n e−n Az Sπ�n =
+∞∑

n=0

σ n
n∑

�=0

� (n, n − �) e−�Az ��

=
+∞∑

�=0

(
+∞∑

n=0

σ n+� � (n + �, n)

)

e−�Az ��. (B.14)

In parallel with what we did for the case of θ = 0, we would now like to find a function
Sπ (σ ) such that

(Sπ (σ ))� =
+∞∑

n=0

σ n+� � (n + �, n) . (B.15)

20 In order to see this, it is enough to realize that in the expansion of Sν
π we will find a factor of ν for each

alien derivative. On the other hand, from the bridge equations (B.8), each alien derivative essentially yields
some Stokes constant. Thus, each Stokes constant appearing in the expansion of Sν

π has a factor of ν.
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A candidate for this function is

Sπ (σ ) =
+∞∑

n=0

σ n+1 � (n + 1, n) . (B.16)

We have checked this thoroughly from expanding (B.14) as follows:

Sπ F = �0 +

(
1 + σ S−1 + σ 2

(
S−2 + S2−1

)
+ σ 3

(
S−3 +

5

2
S−1S−2 + S3−1

)
+ · · ·

)
σ e−Az �1

+

(
1 + 2σ S−1 + 2σ 2

(
S−2 +

3

2
S2−1

)
+ 2σ 3

(
S−3 +

7

2
S−1S−2 + 2S3−1

)
+ · · ·

)
σ 2 e−2Az �2

+

(
1 + 3σ S−1 + 3σ 2

(
S−2 + 2S2−1

)
+ 3σ 3

(
S−3 +

7

2
S−1S−2 +

10

3
S3−1

)
+ · · ·

)
σ 3 e−3Az �3

+ · · · . (B.17)

It is very simple to see that identifying the function Sπ (σ ) with the appropriate terms on
the first line above, then the second line follows by determining (Sπ (σ ))2, the third line
by determining (Sπ (σ ))3, and so on. We have verified this structure computationally
to higher orders; however a more exhaustive proof of this result is still under way.
Nonetheless, based on strong symbolic computation evidence, the Stokes transition at
θ = π can be written as

Sπ F (z, σ ) = F (z, Sπ (σ )) . (B.18)

One can also generalize this result for an arbitrary power of the Stokes automorphism,

Sν
π F(z, σ ) =

+∞∑

�=0

(
+∞∑

n=0

σ n+� �ν (n + �, n)

)

e−�Az �� = F
(

z, S
(ν)
π (σ )

)
, (B.19)

where now

S
(ν)
π (σ ) =

+∞∑

n=0

σ n+1 �ν (n + 1, n) . (B.20)

For ν = 1, this describes the Stokes transition at θ = π as a “jump” in the transseries
parameter σ → Sπ (σ ). All of the Stokes constants S−k , k ≥ 1 contribute to this
transition.

Cancelation of the nonperturbative ambiguity. Having understood the structure of tran-
sitions at the Stokes lines, θ = 0 and θ = π , at the root of the ambiguity, we may now
try to understand how is the ambiguity canceled. We discuss this point in the main text,
but in here we still need to present the complete expressions associated to the nonper-
turbative ambiguity of the one-parameter transseries (B.1). In particular, along θ = 0,
it is convenient to first write all formulae in terms of the real and imaginary parts of the
multi-instanton sectors F (n)(z). In fact, along θ = 0 what we want to cancel is simply

Im F ≡ 1

2i
(S0+ − S0−) F =

+∞∑

n=0

(
Im σ n

Re F (n) + Re σ n
Im F (n)

)
, (B.21)

where we used

Im F (n) := 1

2i
(S0+ − S0−) F (n), Re F (n) := 1

2
(S0+ + S0−) F (n). (B.22)
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Now one may very naturally relate Im F (n) with Re F (n′) by making use of the Stokes
automorphism in its most fundamental form (2.4). One simply has21

(S0+ − S0−) F (n)(z) = −S0− ◦ (1 − S0

)
F (n)(z), (B.23)

where S0 F (n)(z) = e−n Az S0�n(z) was already computed in (B.6). Explicitly, then,

(S0+ − S0−) F (n)(z) =
+∞∑

k=1

(
n + k

n

)
Sk

1 S0− F (n+k)(z). (B.24)

Using the relation

S0− = Re − 1

2
(S0+ − S0−) (B.25)

in a recursive fashion, inside the previous expression, we can finally write the ambiguity
of F (n) as an expansion of higher multi-instanton (real) contributions:

Im F (n)(z) = 1

2i

+∞∑

k=1

(
n + k

n

)
�(k) Sk

1 Re F (n+k), (B.26)

with

�(k) =
k∑

r=1

r∑

s=1

(
r

s

)
(−1)s+1 sk

2r−1 . (B.27)

In particular note that �(2k) = 0, giving rise to an odd/even pattern in the structure
above. Having this result in hand one may finally find a general expression for the
imaginary part of any one-parameter transseries F(z, σ ) as

Im F(z, σ ) =
(

1

2i
S1 + σI

)
Re F (1)

+
1

2i

+∞∑

n=2

⎛

⎝�(n) Sn
1 + 2i

[(n−1)/2]∑

r=0

(
n

2r + 1

)
(−1)rσ

n−(2r+1)
R σ 2r+1

I

+
n−1∑

k=1

(
n

k

)
�(n − k) Sn−k

1

[k/2]∑

r=0

(
k

2r

)
(−1)rσ k−2r

R σ 2r
I

⎞

⎠Re F (n).

(B.28)

In this expression we use the following definitions: σ = σR + i σI with σR, σI ∈ R, and
the usual notation of [•] for the integer part. The cancelation of the ambiguity, which in
this case is the cancelation of this imaginary part, follows by solving Im F(z, σ ) = 0. It
can be checked that the condition already arising at first order, 1

2i S1 + σI = 0, actually
solves this equation to all orders, and we have done this using symbolic computation to
very high order.

21 Notice that this expression makes clear how ambiguities are associated to a non-trivial Stokes automor-
phism.
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Similarly, one may obtain the real part of any one-parameter transseries F(z, σ ).
Using the definition

Re F ≡ 1

2
(S0+ + S0−) F =

+∞∑

n=0

(
Re σ n

Re F (n) − Im σ n
Im F (n)

)
, (B.29)

it follows the general result

Re F(z, σ ) = Re F (0) + σR Re F (1) +
+∞∑

n=2

⎛

⎝
[n/2]∑

r=0

(
n

2r

)
(−1)rσ n−2r

R σ 2r
I

− 1

2i

n−1∑

k=1

(
n

k

)
�(n − k) Sn−k

1

[(k−1)/2]∑

r=0

(
k

2r + 1

)
(−1)rσ k−2r−1

R σ 2r+1
I

⎞

⎠Re F (n).

(B.30)

In particular, one may now impose the constraint arising from the cancelation of the
ambiguity, namely σI = i

2 S1. In this case, one may show that even further setting
σR = 0 one will always find multi-instanton contributions to all even orders in the final
answer:

Re F(z, σ ) = Re F (0) +
+∞∑

n=1

(
1

22n
−

n−1∑

k=0

(
2n

2k + 1

)
1

22(k+1)
� (2(n − k) − 1)

)

×S2n
1 Re F (2n). (B.31)

This is exactly the multi-instanton expansion for the median resummation. The discus-
sion of these expressions is done in the main body of the paper.

C. Formulae for Two-Parameter Transseries

This appendix generalizes results in the previous one to the case of a two-parameters
transseries, of the form

F(z, σ1, σ2) =
+∞∑

n,m=0

σ n
1 σm

2 e−(n−m)Az �(n|m)(z), (C.1)

including one “physical” and one “generalized” instanton sector. Note that from the
point-of-view of the Stokes automorphism the actual asymptotic expansion of �(n|m)(z)
is not important; with or without logarithmic sectors the results that follow are
unchanged. We have two Stokes lines, at θ = 0 and θ = π , which will be rather sim-
ilar due to the nature of the instanton actions being ±A. On what concerns the Stokes
automorphism, some preliminary results can already be found in [18] for the simplest
cases. However, in order to determine the Stokes transitions for the full two-parameters
transseries, one needs to know how the Stokes automorphism acts on a general sector
�(n|m). Happily, it turns out this can be done in much the same way as for the cases
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m = 0, 1 worked out in [18]. Before presenting the results, recall that the bridge equa-
tions for this case are given by

��A�(n|m) =
min(m,n+�−1)∑

k=max(0,�−1)

(n − k + �) S(k−�+1)
� �(n−k+�|m−k)

+
min(m−�,n)∑

k=max(−�−1,0)

(m − k − �) S̃(k+�+1)
� �(n−k|m−k−�), (C.2)

valid for all � �= 0 (both singular directions θ = 0 and θ = π are contemplated). We
now have two sets of Stokes constants, S and S̃.

Stokes automorphism at θ = 0. As compared to the previous appendix addressing
one-parameter transseries, one now needs to consider all singularities ω = �A with
� ≥ 1 already for the Stokes automorphism associated to the θ = 0 Stokes line. Directly
computing an arbitrary power of this automorphism one has

Sν
0�(n|m) = exp

{

ν

+∞∑

�=1

e−�Az��A

}

�(m|n) =
+∞∑

k=0

νk

k!

(
+∞∑

�=1

e−�Az��A

)k

�(n|m)

=
⎧
⎨

⎩
1 +

+∞∑

r=1

e−r Az
r∑

k=1

νk

k!
∑

�1+···+�k=r

(
k∏

i=1

��i A

)⎫⎬

⎭
�(n|m), (C.3)

where the last sum is over �i , i = 1, ..., k, positive integers. The difficulty, as
always, rests in computing multiple alien derivatives; in particular we need to com-
pute

∏N
i=1 ��i A�(n|m). For N = 1 this is just given by the bridge equations which may

now be conveniently rewritten as

��1 A�(n|m) =
n+1∑

k=0

(
k S(n−k+1)

�1
+ (m − n − �1 + k) S̃(n−k+�1+1)

�1

)
�(k|m−n+k−�1).

(C.4)
Comparing both expressions above, one quickly realizes that once again the power ν of
the Stokes automorphism gets simply translated into a multiplicative factor associated
to each and every Stokes constant. The next step is to write a general expression for∏N

i=1 ��i A�(n|m) and prove it by induction. The general expression will be

N∏

i=1

��(N+1−i) A�(n|m) =
N+n∑

�=0

∑

δs∈�(N ,N+n+1−�)

N∏

s=1

�
(n|m)
0 (s)�

(�|m−n+�−∑N
i=1 �i )

, (C.5)

with

�
(n|m)
0 (s) =

[(

m −
s∑

i=1

�i + s + 1 − δs

)

S̃(dδs +�s )
�s

+ (s + n + 1 − δs) S(dδs )
�s

]

�(s + n + 1 − δs) . (C.6)
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The notation used above is the same as in [18] and as follows: the sum δs ∈ �(a, b)

is over the partitions 1 = δ0 ≤ δ1 ≤ · · · ≤ δa = b; as in the one-parameter case
dδs = δs − δs−1; and one sets S(�)

0 = S̃(�)
0 = S(�)

−� = S̃(�)
� = 0 for any � > 0. Finally,

the function �(x) is the familiar Heaviside function, �(x) = 1 for x ≥ 0 and zero
otherwise. It is straightforward to check that taking N = 1 in our general expression
(C.5) gives us the expected result (C.4). Let us next consider (C.5) for general N , and
check what follows once we act with one more alien derivative. One has:

��N+1 A

N∏

i=1

��(N+1−i) A�(n|m)

=
N+n∑

�=0

∑

δs∈�(N ,N+n+1−�)

N∏

s=1

�
(n|m)
0 (s)��N+1 A�

(�|m−n+�−∑N
i=1 �i )

=
N+n∑

�=0

∑

δs∈�(N ,N+n+1−�)

�+1∑

k=0

N∏

s=1

�
(n|m)
0 (s)

×
{

k S(�−k+1)
�N+1

+

(

m − n −
N+1∑

i=1

�i + k

)

S̃(�−k+�N+1+1)
�N+1

}

�
(k|m−n−∑N+1

i=1 �i +k)
.

(C.7)

Now make a change of variables �̃ = �+1, and notice that taking �̃ = 0 gives a vanishing
contribution (then we would also have k = 0, and S̃(�)

� = 0). Making use of the identity

N+n+1∑

�̃=0

�̃∑

k=0

=
N+1+n∑

k=0

N+1+n∑

�̃=k

, (C.8)

one obtains
N+1∏

i=1

��(N+2−i) A�(n|m) =
N+n+1∑

k=0

N+n+1∑

�̃=k

∑

δs∈�
(

N ,N+n+2−�̃
)

N∏

s=1

�
(n|m)
0 (s)

×
{

k S(�̃−k)
�N+1

+

(

m − n −
N+1∑

i=1

�i + k

)

S̃(�̃−k+�N+1)
�N+1

}

�
(k|m−n−∑N+1

i=1 �i +k)
. (C.9)

Finally we define δN+1 ≡ N + n + 2 − k, and perform the change of variables � =
N + n + 2 − �̃ which takes values as � = 1, ..., N + n + 2 − k = δN+1. It is then simple
to get

N+1∏

i=1

��(N+2−i) A�(n|m)

=
N+n+1∑

k=0

δN+1∑

�=1

δδN+1,N+n+2−k

∑

δs∈�(N ,�)

N∏

s=1

�
(n|m)
0 (s) ×

{
(N + n + 2 − δN+1) S(δN+1−�)

�N+1

+

(

m + N + 2 − δN+1 −
N+1∑

i=1

�i

)

S̃(δN+1−�+�N+1)
�N+1

}
�

(k|m−n−∑N+1
i=1 �i +k)

. (C.10)
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Now if we evaluate (C.6) for s = N + 1, and noticing that �(N + n + 2 − δN+1) =
�(k) = 1, and that δN = �, we finally obtain

N+1∏

i=1

��(N+2−i) A�(n|m)

=
N+n+1∑

k=0

δN+1∑

�=1

δδN+1,N+n+2−k

∑

δs∈�(N ,�)

N+1∏

s=1

�
(n|m)
0 (s)�

(k|m−n−∑N+1
i=1 �i +k)

=
N+n+1∑

k=0

∑

δs∈�(N+1,N+n+2−k)

N+1∏

s=1

�
(n|m)
0 (s)�

(k|m−n−∑N+1
i=1 �i +k)

. (C.11)

This ends our proof of Eq. (C.5).
Having this result in hand, one can finally write the Stokes automorphism as

Sν
0�(n|m) = �(n|m)

+
+∞∑

r=1

r∑

k=1

e−r Az

k!
k+n∑

�=0

∑

γi ∈�(k,r)

∑

δs∈�(k,k+n+1−�)

k∏

s=1

�
(n|m)
0,ν (s)�(�|m−n+�−r),

(C.12)

where we redefined the sum over the �i into a sum over partitions γi = �1 + · · · + �i ∈
�(k, r), such that γ0 = 0 and γi > 0. The coefficients (C.6) can also be now rewritten
as (with ν = 1 being the usual case)

�
(n|m)
0,ν (s) = ν

[
(m − γs + s + 1 − δs) S̃(dδs +dγs )

dγs
+ (s + n + 1 − δs) S(dδs )

dγs

]

�(s + n + 1 − δs) . (C.13)

Clearly, the result is now more complicated than in the one-parameter case.

Stokes transition at θ = 0. We now have the complete required information in order to
construct the Stokes transition at θ = 0. Acting with the Stokes automorphism on the
transseries itself, and using the results we just computed, one obtains

Sν
0 F(z, σ1, σ2) =

+∞∑

n,m=0

σ n
1 σm

2 e−(n−m)Az �(n|m)

+
+∞∑

n,m=0

σ n
1 σm

2

+∞∑

r=1

e−(n+r−m)Az
r∑

k=1

k+n∑

�=0

1

k!
∑

γi ∈�(k,r)

∑

δs∈�(k,k+n+1−�)

k∏

s=1

�
(n|m)
0,ν (s) �(�|m−n−r+�).

(C.14)

The first line of this expression may be included in the second one by simply introducing
a factor δk0δr0δ�n . Further making two changes of variables, m̃ = m + � − n − r and
ñ = n + k, recalling that �(a|b) = 0 if either a or b is negative, and reshuffling the sums,
it follows
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Sν
0 F =

+∞∑

�,m̃=0

σ�
1 σ m̃

2 e−(�−m̃)Az �(�|m̃)

+∞∑

ñ=�

ñ∑

k=0

+∞∑

r=k

σ ñ−�−k
1 σ ñ−�−k+r

2

×
⎧
⎨

⎩
δk0 δrk δñ,�+k +

1

k!
∑

γi ∈�(k,r)

∑

δs∈�(k ,̃n+1−�)

k∏

s=1

�
(̃n−k|m̃+ñ−k−�+r)
0,ν (s)

⎫
⎬

⎭
.

(C.15)

To get to our final expression, we still need to perform another change of variables, as
n̂ = ñ − � and r̃ = r − k. Dropping all tildes and hats (for ease of notation) we finally
find

Sν
0 F =

+∞∑

m,�=0

σ�
1 σm

2 P
(�|m)
0,ν (σ1, σ2) e−(�−m)Az �(�|m), (C.16)

where the function implementing the transition on the parameters of the transseries is
given by

P
(�|m)
0,ν (σ1, σ2) =

+∞∑

n,r=0

n+�∑

k=0

(σ1σ2)
n σ−k

1 σ r
2

×
⎧
⎨

⎩
δk0 δr0 δnk +

1

k!
∑

γi ∈�(k,r+k)

∑

δs∈�(k,n+1)

k∏

s=1

�
(n+�−k|m+n+r)
0,ν (s)

⎫
⎬

⎭
.

(C.17)

Now, the Stokes transition (C.16) yields back a two-parameters transseries (as in (C.1)),
in such a way that one may write

F
(
z, σ̃1,ν , σ̃2,ν

) = Sν
0 F (z, σ1, σ2) =

+∞∑

n,m=0

σ n
1 σm

2 P
(n|m)
0,ν (σ1, σ2) e−(n−m)Az �(n|m).

(C.18)
This means that the {̃σi } have to satisfy

σ̃ n
1,ν σ̃m

2,ν = σ n
1 σm

2 P
(n|m)
0,ν (σ1, σ2) (C.19)

for every sector nonperturbative (n|m). In particular, for the sectors (1|0) and (0|1) one
has

σ̃1,ν ≡ S
(ν)
0,1(σ1, σ2) = σ1 P

(1|0)
0,ν (σ1, σ2), (C.20)

σ̃2,ν ≡ S
(ν)
0,2(σ1, σ2) = σ2 P

(0|1)
0,ν (σ1, σ2). (C.21)

Although we do not present an analytical proof, we have confirmed the validity of
these relations with detailed symbolic computation evidence, further supporting that the
following relation holds:

P
(n|m)
0,ν (σ1, σ2) =

(
P

(1|0)
0,ν (σ1, σ2)

)n (
P

(0|1)
0,ν (σ1, σ2)

)m
. (C.22)

Then the Stokes transition in the direction θ = 0 can be finally written as

Sν
0 F (z, σ1, σ2) = F

(
z, S

(ν)
0,1(σ1, σ2), S

(ν)
0,2(σ1, σ2)

)
. (C.23)
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Notice that the structure is essentially the same as in the one-parameter case, it is only the
functions implementing the transition which are now much harder to evaluate explicitly.

Stokes automorphism at θ = π . Unlike the one-parameter case, where the directions
θ = 0 and θ = π had distinct features, in this case, and due to the nature of the instanton
actions as ±A, the two directions are actually very similar. In particular, determining
the Stokes automorphism in the θ = π singular direction follows an identical path to
the θ = 0 case described above. One can notice a symmetry in every such expression,
by changing m ↔ n, S ↔ S̃ (and where S�, S̃� now become S−�, S̃−�), the exponential
of negative powers to positive ones, and finally changing �(a|b) ↔ �(b|a). As such, we
will refrain from showing every step of the proof, and just state the end result.
The Stokes automorphism in the θ = π direction will be given by

Sν
π�(n|m) = �(n|m) +

+∞∑

r=1

r∑

k=1

er Az

k!
k+m∑

�=0

∑

γi ∈�(k,r)

∑

δs∈�(k,k+m+1−�)

×
k∏

s=1

�(n|m)
π,ν (s)�(n−m+�−r |�), (C.24)

with

�(n|m)
π,ν (s) = ν

[
(n − γs + s + 1 − δs) S(dδs +dγs )

−dγs
+ (s + m + 1 − δs) S̃(dδs )

−dγs

]

�(s + m + 1 − δs) . (C.25)

Stokes transition at θ = π . As for the automorphism, also the Stokes transition along
θ = π now follows in complete parallel with what was done for the direction θ = 0—
one just has to use the results in the paragraphs above. Start with the action of the Stokes
automorphism upon the transseries,

Sν
π F(z, σ1, σ2) =

+∞∑

n,m=0

σ n
1 σm

2 e−(n−m)Az �(n|m)(z)

+
+∞∑

n,m=0

σ n
1 σm

2

+∞∑

r=1

e−(n−r−m)Az
r∑

k=1

k+m∑

�=0

1

k!

×
∑

γi ∈�(k,r)

∑

δs∈�(k,k+m+1−�)

k∏

s=1

�(n|m)
π,ν (s)�(n−m+�−r |�). (C.26)

Now, akin to before, we perform consecutive changes of variables (̃n = n − m − r + �,
m̃ = m + k, m̂ = m̃ − � and r̃ = r − k) and reshuffle the sums. Then dropping tildes
and hats for simplicity, we find the final result as

Sν
π F =

+∞∑

n,�=0

σ n
1 σ�

2 P
(n|�)
π,ν (σ1, σ2) e−(n−�)Az �(n|�), (C.27)
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where the function implementing transition is now

P
(n|�)
π,ν (σ1, σ2) =

+∞∑

m,r=0

m+�∑

k=0

(σ1σ2)
m σ r

1 σ−k
2

×
⎧
⎨

⎩
δk0 δr0 δmk +

1

k!
∑

γi ∈�(k,r+k)

∑

δs∈�(k,m+1)

k∏

s=1

�(n+m+r |m+�−k)
π,ν (s)

⎫
⎬

⎭
.

(C.28)

As for θ = 0, one may introduce more compact notation for this result. Defining

F
(
z, σ̃1,ν , σ̃2ν

) = Sν
π F (z, σ1, σ2) , (C.29)

we may write

σ̃ n
1,ν σ̃

m
2,ν = σ n

1 σm
2 P

(n|m)
π,ν (σ1, σ2) (C.30)

for every nonperturbative sector (n|m). In particular, for the sectors (1|0) and (0|1) one
has

σ̃1,ν ≡ S
(ν)
π,1(σ1, σ2) = σ1 P

(1|0)
π,ν (σ1, σ2), (C.31)

σ̃2,ν ≡ S
(ν)
π,2(σ1, σ2) = σ2 P

(0|1)
π,ν (σ1, σ2). (C.32)

Again, we have found strong computational evidence supporting this structure. The
Stokes transition in the direction θ = π is then given by

Sν
π F (z, σ1, σ2) = F

(
z, S

(ν)
π,1(σ1, σ2), S

(ν)
π,2(σ1, σ2)

)
. (C.33)

Cancelation of the nonperturbative ambiguity. Having understood the structure of
Stokes transitions at both Stokes lines, θ = 0 and θ = π , also in the present two-
parameters setting, we may now understand how is the ambiguity canceled. Again,
this point is discussed at length in the main text; in here we wish to present the many
exact/explicit formulae. Furthermore, the line of analysis will be similar to the one in the
previous appendix, now having in mind the two-parameters transseries (2.7) or (C.1).
The ambiguity is essentially encoded in

Im F ≡ 1

2i
(S0+ − S0−) F =

+∞∑

n,m=0

(
Im

(
σ n

1 σm
2

)
Re F (n|m) + Re

(
σ n

1 σm
2

)
Im F (n|m)

)
,

(C.34)

with the usual

Im F (n|m) := 1

2i
(S0+ − S0−) F (n|m), Re F (n|m) := 1

2
(S0+ + S0−) F (n|m). (C.35)

One may similarly write the real contribution to the transseries as

Re F ≡ 1

2
(S0+ + S0−) F =

+∞∑

n,m=0

(
Re

(
σ n

1 σm
2

)
Re F (n|m) − Im

(
σ n

1 σm
2

)
Im F (n|m)

)
.

(C.36)
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The first thing to do is to use the Stokes automorphism to explicitly write the ambiguity
of each sector, Im F (n|m), in terms of the real contributions which will later appear in
the median resummation, Re F (n′|m′). Very similarly to what we did in the previous
appendix,

(S0+ − S0−) F (n|m)(z) = −S0− ◦ (1 − S0

)
F (n|m)(z), (C.37)

where S0 F (n|m)(z) = e−(n−m)Az S0�(n|m)(z) was already computed. Explicitly,

(S0+ − S0−) F (n|m)(z) =
+∞∑

r=1

n+r∑

s=0

�(n|m)(r, s)S0− F(s|m−n+s−r)(z), (C.38)

where we introduced

�(n|m)(r, s) =
r∑

k=max(s−n,1)

1

k!
∑

γi ∈�(k,r)

∑

δp∈�(k,k+n+1−s)

k∏

p=1

�
(n|m)
0 (p). (C.39)

Using the relation

S0− = Re − 1

2
(S0+ − S0−) , (C.40)

we can in principle solve for the expression above recursively, much like it was done in
the one-parameter case. However, we shall be more interested in specific examples as
in here they are more illuminating than a closed form expression. Let us determine the
contributions to the nonperturbative ambiguity for the perturbative series F (0|0). Starting
from (C.38), we find

2i Im F (0|0) =
+∞∑

r=1

(S(0)
1 )r

(
Re F (r |0) − 1

2
(S0+ − S0−) F (r |0)

)
, (C.41)

where we made use of the fact that �(0|0)(r, r) = (S(0)
1 )r . It is clear that Im F (0|0) will

have contributions arising from the imaginary part of the instanton series, Im F (n|0),
which may then be determined in much the same way

2i Im F (n|0) =
+∞∑

r=1

(S(0)
1 )r

(
n + r

r

)(
Re F (n+r |0) − 1

2
(S0+ − S0−) F (n+r |0)

)
. (C.42)

It is very easy to see that this is completely analogous to what happened in the one-
parameter case studied before: the contributions to Im F (0|0) are only of the type
Re F (n|0). Proceeding with the analogy, the tendency at this point would be to assume
that the same cancelation would then occur within these terms. However, the mecha-
nism canceling the nonperturbative ambiguity of the two-parameters transseries is not as
straightforward as within the one-parameter case. Write the expansion of the transseries
ambiguity Im F in real terms, Re F (n|m), and focus on all the contributions to one such
term, as these will need to cancel between each other. For example, let us determine all
factors contributing to Re F (α|0). From (C.38) we see that such terms will arise from
Im F (n|m) whenever

2i Im F (n|m) ≈ �(α|0)(m − n + α, α)S0− F (α|0), m ≥ 1 + n − α. (C.43)
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But it is not only the original contributions in (C.34) which will contribute at this level.
Analyzing (C.38) and noting that

S0− F (a|b) = Re F (a|b) − i Im F (a|b), (C.44)

there will be terms within each S0− F (a|b), coming from the Im F (a|b), which will again
contribute to the original term Re F (α|0). A detailed analysis of these results is presented
in the main text.

Contributions to the ambiguity in Table 2. Finally, we list the non-zero coefficients in the
expansions Im F (n|m) ∼ ∑

a,b C (a|b)

(n|m) Re F (a|b), which appear in Table 2, up to a = 4,

b = 2. The non-zero coefficients from the term Im F (0|0) are:

C (1|0)

(0|0) = 1

2i
S(0)

1 , (C.45)

C (3|0)

(0|0) = − 1

4i

(
S(0)

1

)3
. (C.46)

From the term Re σ1 Im F (1|0) we find:

C (2|0)

(1|0) = 1

i
S(0)

1 Re σ1, (C.47)

C (4|0)

(1|0) = −1

i

(
S(0)

1

)3
Re σ1. (C.48)

The next term appearing in the table is Re σ2 Im F (0|1), whose non-zero coefficients are:

C (1|0)

(0|1) = 1

2i
S(0)

2 Re σ2, (C.49)

C (2|0)

(0|1) = − 1

4i

(
S(0)

1

)2
S(1)

1 Re σ2, (C.50)

C (3|0)

(0|1) = − 3

4i

(
S(0)

1

)2
S(0)

2 Re σ2, (C.51)

C (4|0)

(0|1) = 1

i

(
S(0)

1

)4
S(1)

1 Re σ2, (C.52)

C (1|1)

(0|1) = 1

2i
S(0)

1 Re σ2, (C.53)

C (3|1)

(0|1) = − 1

4i

(
S(0)

1

)3
Re σ2. (C.54)

From Re σ 2
1 Im F (2|0) we have the following non-zero coefficient:

C (3|0)

(2|0) = 3

2i
S(0)

1 Re σ 2
1 . (C.55)

The term Re (σ1σ2) Im F (1|1) contributes with:

C (1|0)

(1|1) = 1

2i
S(1)

1 Re (σ1σ2) , (C.56)



242 I. Aniceto, R. Schiappa

C (2|0)

(1|1) = 1

i
S(0)

2 Re (σ1σ2) , (C.57)

C (3|0)

(1|1) = − 3

2i

(
S(0)

1

)2
S(1)

1 Re (σ1σ2) , (C.58)

C (4|0)

(1|1) = −3

i

(
S(0)

1

)2
S(0)

2 Re (σ1σ2) , (C.59)

C (2|1)

(1|1) = 1

i
S(0)

1 Re (σ1σ2) , (C.60)

C (4|1)

(1|1) = −1

i

(
S(0)

1

)3
Re (σ1σ2) . (C.61)

For Re σ 2
2 Im F (0|2) we find:

C (1|0)

(0|2) = − 1

24i

(
2
(

S(0)
1

)2
S(2)

1 + S(0)
1 S(1)

1

(
2S̃(2)

1 + S(1)
1

)
− 12S(0)

3

)
Re σ 2

2 ,

(C.62)

C (2|0)

(0|2) = − 1

4i
S(0)

1

(
2S(1)

1 S(0)
2 + S(0)

1 S(1)
2 + S(0)

2 S̃(2)
1

)
Re σ 2

2 , (C.63)

C (3|0)

(0|2) = 1

8i
S(0)

1

(
4
(

S(0)
1

)3
S(2)

1 − 6
(

S(0)
2

)2 − 6S(0)
1 S(0)

3

+
(

S(0)
1

)2
S(1)

1

(
4S̃(2)

1 + 5S(1)
1

))
Re σ 2

2 , (C.64)

C (4|0)

(0|2) = 1

i

(
S(0)

1

)3 (
4S(1)

1 S(0)
2 + S(0)

1 S(1)
2 + S(0)

2 S̃(2)
1

)
Re σ 2

2 , (C.65)

C (0|1)

(0|2) = 1

2i
S̃(2)

1 Re σ 2
2 , (C.66)

C (1|1)

(0|2) = 1

2i
S(0)

2 Re σ 2
2 , (C.67)

C (2|1)

(0|2) = − 1

4i

(
S(0)

1

)2 (
S(1)

1 + S̃(2)
1

)
Re σ 2

2 , (C.68)

C (3|1)

(0|2) = − 3

4i

(
S(0)

1

)2
S(0)

2 Re σ 2
2 , (C.69)

C (4|1)

(0|2) = 1

2i

(
S(0)

1

)4 (
2S(1)

1 + S̃(2)
1

)
Re σ 2

2 , (C.70)

C (1|2)

(0|2) = 1

2i
S(0)

1 Re σ 2
2 , (C.71)

C (3|2)

(0|2) = − 1

4i

(
S(0)

1

)3
Re σ 2

2 . (C.72)

The next term of interest is Re
(
σ 2

1 σ2
)
Im F (2|1), which contributes with the non-zero

coefficients:

C (2|0)

(2|1) = 1

i
S(1)

1 Re
(
σ 2

1 σ2

)
, (C.73)

C (3|0)

(2|1) = 3

2i
S(0)

2 Re
(
σ 2

1 σ2

)
, (C.74)

C (4|0)

(2|1) = − 9

2i

(
S(0)

1

)2
S(1)

1 Re
(
σ 2

1 σ2

)
, (C.75)
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C (3|1)

(2|1) = 3

2i
S(0)

1 Re
(
σ 2

1 σ2

)
. (C.76)

The last term appearing in Table 2 is Re
(
σ1σ

2
2

)
Im F (1|2), for which we have:

C (1|0)

(1|2) = 1

2i
S(1)

2 Re
(
σ1σ

2
2

)
, (C.77)

C (2|0)

(1|2) = 1

12i

(
−8

(
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1

)2
S(2)

1 + 12S(0)
3 − S(0)
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(
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1
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(
σ1σ

2
2

)
,
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C (3|0)

(1|2) = − 3

4i
S(0)

1

(
4S(1)

1 S(0)
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1 S(1)
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)
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(
σ1σ

2
2

)
, (C.79)

C (4|0)

(1|2) = 1

2i
S(0)

1

(
8
(

S(0)
1
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S(2)
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(

S(0)
2
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1
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1

(
6S̃(2)
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(
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2
2

)
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C (1|1)

(1|2) = 1
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1 + S̃(2)
1
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(
σ1σ

2
2

)
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C (2|1)
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S(0)
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(
σ1σ

2
2

)
, (C.82)

C (3|1)

(1|2) = − 3
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S(0)

1

)2 (
2S(1)
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Re

(
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2
2

)
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C (4|1)

(1|2) = −3
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1

)2
S(0)
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(
σ1σ

2
2

)
, (C.84)
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C (4|2)
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1
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(
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2

)
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Finally, the last term we analyzed was Re
(
σ 2

1 σ 2
2

)
Im F (2|2), for which we have:
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