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Abstract: We introduce the notion of a tropical coamoeba which gives a combinatorial
description of the Fukaya category of the mirror of a toric Fano stack. We show that
the polyhedral decomposition of a real n-torus into n + 1 permutohedra gives a tropical
coamoeba for the mirror of the projective space P

n , and we prove a torus-equivariant
version of homological mirror symmetry for the projective space. As a corollary, we
obtain homological mirror symmetry for toric orbifolds of the projective space.

1. Introduction

Let n be a natural number and� be a convex lattice polytope in R
n , i.e., the convex hull

of a finite subset of Z
n . We assume that the origin is in the interior of �. One side of

homological mirror symmetry for toric Fano stacks, conjectured by Kontsevich [Kon98],
states that there is an equivalence

Db coh X ∼= Db Fuk W (1.1)

of two triangulated categories of geometric origins associated with�. For the other side
of homological mirror symmetry for toric manifolds, we refer the readers to the survey
paper [FOOO12] and references therein.

The category on the left hand side is the derived category of coherent sheaves on the
toric Fano stack X , defined as follows: Let {vi }r

i=1 be the set of vertices of� and take a
simplicial stacky fan � such that the set of generators of one-dimensional cones is given
by {vi }r

i=1. The associated toric stack is the quotient stack

X = [(Cr \ SR(�))/K ],
where the Stanley–Reisner locus SR(�) consists of points (z1, . . . , zr ) such that there
is no cone in � which contains all vi for which zi = 0, and

K = Ker(φ ⊗ C
×)
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is the kernel of the tensor product with C
× of the map φ : Z

r → Z
n sending the i-th

coordinate vector to vi for i = 1, . . . , r . Although X depends not only on� but also on
�, the derived category Db coh X is independent of this choice [Kaw05, Theorem 4.2]
and depends only on �.

On the right hand side, one takes a sufficiently general Laurent polynomial

W =
∑

ω∈�∩Zn

aωxω

whose Newton polytope coincides with� as in [Giv95]. This defines an exact Lefschetz
fibration

W : (C×)n → C

with respect to the standard cylindrical Kähler structure on (C×)n , and Fuk W is the
directed Fukaya category defined by Seidel [Sei01,Sei08] whose set of objects is a
distinguished basis of vanishing cycles and whose spaces of morphisms are Lagrangian
intersection Floer complexes.

The equivalence (1.1) is proved for P
2 and P

1 × P
1 by Seidel [Sei01], weighted

projective planes and Hirzebruch surfaces by Auroux et al. [AKO08], toric del Pezzo
surfaces by Ueda [Ued06], and toric orbifolds of toric del Pezzo surfaces by Ueda and
Yamazaki [UY13]. See also Auroux, Katzarkov and Orlov [AKO06] for homological
mirror symmetry for not necessarily toric del Pezzo surfaces, Abouzaid [Abo06,Abo09]
for an application of tropical geometry to homological mirror symmetry, Kerr [Ker08] for
the behavior of homological mirror symmetry under weighted blowup of toric surfaces.
Slightly different versions of homological mirror symmetry for toric stacks are proved
by Fang et al. [Fan08,FLTZ11,FLTZ14] and Futaki and Ueda [FU10].

In this paper, we pass to the universal cover

exp : C
n → (C×)n

of the torus and replace the Lefschetz fibration W with its pull-back

W̃ = W ◦ exp : C
n → C.

The fact that W̃ has countably many critical points does not cause any problem, and
one can formulate a torus-equivariant version of homological mirror symmetry for toric
Fano stacks:

Conjecture 1.1 For a convex lattice polytope � containing the origin in its interior,
there is an equivalence

Db cohT X ∼= Db Fuk W̃

of triangulated categories.

Here T is the n-dimensional torus acting on X and Db cohT X is the derived category
of T-equivariant coherent sheaves on X . Our first main result is the proof of Conjecture
1.1 for the projective space:
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Theorem 1.2 Conjecture 1.1 holds when X is the projective space.

The case n = 3 in Theorem 1.2 is a corollary of a result of Seidel [Sei11, Proposition
11.7] which describes the undirected Fukaya category of the fiber of W . Theorem 1.2 is
an important step in the proof of homological mirror symmetry for the quintic threefold
in [NU12]. Torus-equivariant homological mirror symmetry for X implies the ordinary
homological mirror symmetry, not only for X but also for the quotient stack [X/A] for
any finite subgroup A of the torus T acting on X .

Corollary 1.3 For a convex lattice polytope� which can be obtained from the polytope
for P

n by an integral linear transformation, one has an equivalence

Db coh X ∼= Db Fuk W

of triangulated categories.

We introduce the notion of a tropical coamoeba of W , which consists of a decompo-
sition

T =
m⋃

i=1

Pi

of a real n-torus T = R
n/Zn into the union of an ordered set of polytopes, together with

a map

deg : F1 → Z

from the set F1 of facets of Pi to Z called the degree, and a map

sgn : F2 → {1,−1}
from the set F2 of codimension two faces of Pi called the sign, satisfying conditions in
Definition 7.1. One can associate a directed A∞-category with a tropical coamoeba, and
the conditions in Definition 7.1 ensure that this A∞-category is equivalent to Fuk W̃ .
This enables us to divide Conjecture 1.1 into two steps:

Conjecture 1.4 Let � be a convex lattice polytope in R
n containing the origin in its

interior. Then the following hold:

• There is a Laurent polynomial W : (C×)n → C such that
– the Newton polytope of W coincides with �, and
– there exists a tropical coamoeba G of W .
This implies that the A∞-category AG̃ associated with G is quasi-equivalent to
Fuk W̃ ;

AG̃
∼= Fuk W̃ .

• The derived category of the A∞-category AG̃ is equivalent to the derived category
of T-equivariant coherent sheaves on the toric Fano stack X associated with �;

DbAG̃
∼= Db cohT X.

Our second main result is the proof of Conjecture 1.4 for the projective space:
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Theorem 1.5 Conjecture 1.4 holds when X is the projective space. The tropical
coamoeba in this case comes from a decomposition of a real n-torus into the union
of n + 1 permutohedra of order n + 1.

A tropical coamoeba is a generalization of a dimer model to higher dimensions. The
importance of dimer models in mirror symmetry is pointed out by Feng et al. [FHKV08]
and elaborated in [UY11,UY,UY13]. The works of Bondal and Ruan [Bon06] and Fang
et al. [Fan08,FLTZ11,FLTZ14] use constructible sheaves on a real torus and its universal
cover to study equivariant homological mirror symmetry for toric stacks, and it is an
interesting problem to explore the relationship between their approach and ours.

For any convex lattice polytope � in R
n and a vertex v of �, one can obtain an-

other polytope �′ by removing v from � ∩ Z
n and taking the convex hull of the rest.

On the complex side, this operation gives a birational map X� ��� X�′ between the
corresponding toric stacks, which in turn gives a full and faithful functor

� : Db coh X�′ ↪→ Db coh X�

by a result of Kawamata [Kaw05, Theorem 4.2]. On the symplectic side, one can choose
a one-parameter family Wt of Laurent polynomials such that the Newton polytope of
W0 is�′ and that of Wt for t 
= 0 is�, so that a result of Kerr [Ker08, Theorem 6] gives
a full and faithful functor

� : Db Fuk W�′ ↪→ Db Fuk W�.

It is clear that any lattice polytope can be embedded into a sufficiently large simplex, so
that any lattice polytope can be obtained from a sufficiently large simplex by successively
performing this operation. As a corollary, one obtains the following:

Corollary 1.6 For any lattice polytope �, there exist a Laurent polynomial W ′ and a
toric stack X ′ such that one has full and faithful functors F : Db coh X ↪→ Db Fuk W ′
and G : Db Fuk W ↪→ Db coh X ′, where X is a toric stack associated with� and W is
a general Laurent polynomial whose Newton polytope is �.

The lattice polytope associated with X ′ and the Newton polytope of W ′ in Corollary
1.6 are sufficiently large simplexes containing�. As the equivalence in Corollary 1.3 is
given explicitly, one can in principle reduce homological mirror symmetry for a general
toric stack to the problems of

• the behavior of the derived category of toric stacks under birational transformations,
and

• the behavior of critical values of Laurent polynomials under deformations,

without any further Floer-theoretic computations on vanishing cycles. This is a special
case of the relation between homological mirror symmetry and the minimal model
program discussed in [BFK,DKK].

The organization of this paper is as follows: We collect basic definitions on Fukaya
categories in Sect. 2. Symplectic Picard–Lefschetz theory and homological mirror sym-
metry for P

2 by Seidel are recalled in Sects. 3 and 4, respectively, which are used in
Sect. 5 to prove homological mirror symmetry for P

3. The Fukaya category of the mirror
of P

n for general n is computed in Sect. 6 by an induction on n. In Sect. 7, we define a
tropical coamoeba as a combinatorial object which encode the information of the Fukaya
category, and show that it allows one to summarize the result in Sect. 6 in a nice way.
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2. Fukaya Categories

For a Z-graded vector space N = ⊕ j∈ZN j and an integer i , the i-th shift of N to the
left will be denoted by N [i]; (N [i]) j = N i+ j .

Definition 2.1 An A∞-category A consists of

• the set Ob(A) of objects,
• for c1, c2 ∈ Ob(A), a Z-graded vector space homA(c1, c2) called the space of

morphisms, and
• operations

ml : homA(cl−1, cl)⊗ · · · ⊗ homA(c0, c1) −→ homA(c0, cl)

of degree 2 − l for l = 1, 2, . . . and ci ∈ Ob(A), i = 0, . . . , l, satisfying the
A∞-relations

l−1∑

i=0

l∑

j=i+1

(−1)deg a1+···+deg ai −iml+i− j+1 (al ⊗ · · · ⊗ a j+1 ⊗ m j−i (a j ⊗ · · · ⊗ ai+1)

⊗ai ⊗ · · · ⊗ a1) = 0, (2.1)

for any positive integer l, any sequence c0, . . . , cl of objects of A, and any sequence
of morphisms am ∈ homA(cm−1, cm) for m = 1, . . . , l.

The A∞-relations (2.1) for l = 1, 2, and 3 show that m1 squares to zero and m2
defines an associative operation on the cohomology of m1. The resulting non-unital
category is called the cohomological category of A. An A∞-category satisfying mk = 0
for k ≥ 3 corresponds to a differential graded category (i.e. a category whose spaces
of morphisms are complexes such that the differential d satisfies the Leibniz rule with
respect to the composition) by

d(a) = (−1)deg am1(a), a2 ◦ a1 = (−1)deg a1m2(a2, a1).

The derived category of an A∞-category is defined using twisted complexes, which
are introduced by Bondal and Kapranov [BK90] for differential graded categories and
generalized to A∞-categories by Kontsevich [Kon95]. Here we follow the exposition
of Seidel [Sei08] closely. For an A∞-category A, its additive enlargement �A is the
A∞-category whose set of object consists of formal direct sums

X =
⊕

i∈I

V i ⊗ Xi

where I is a finite set, {Xi }i∈I is a family of objects of A, and {V i }i∈I is a family of
graded vector spaces. The space of morphisms is given by

hom�A

⎛

⎝
⊕

i∈I0

V i
0 ⊗ Xi

0,
⊕

i∈I1

V i
1 ⊗ Xi

1,

⎞

⎠ =
⊕

i, j

homC(V
i
0 , V j

1 )⊗ homA(X
i
0, X j

1)
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and the A∞-operations are

m�A
d (ad , . . . , a1)

id ,i0 =
∑

i1,...,id

(−1)†φid ,id−1
d ◦ · · · ◦ φi1,i0

1 ⊗ μA
d (x

id ,id−1
d , . . . , xi1,i0

1 ),

where † = ∑
p<q degφ

i p,i p−1
p · (deg x

iq ,iq−1
q − 1) and ak = (a ji

k ) = (φ
j i
k ⊗ x ji

k ).

A twisted complex is a pair
(

X =
⊕

i∈I

V i ⊗ Xi , δX = (δ
j i
X )

)

of an object X of�A and a morphism δ ∈ hom1
�A(X, X), satisfying the Maurer–Cartan

eqnarray

∞∑

i=1

m�A
r (δX , . . . , δX ) = 0.

Twisted complexes constitute an A∞-category TwA, whose A∞-operations are given
by

mTwA
d (ad , . . . , a1) =

∑

i0,...,id

m�A
d+i0+···+id

(

id︷ ︸︸ ︷
δXd , . . . , δXd , ad ,

δXd−1 , . . . , δXd−1︸ ︷︷ ︸
id−1

, ad−1, . . . , a1, δX0 , . . . , δX0︸ ︷︷ ︸
i0

),

where the sum is over all i0, . . . , id ≥ 0. The A∞-relations in TwA comes from that
of A and the Maurer–Cartan eqnarray. The cohomological category DbA of TwA is
triangulated, and the mapping cone of a closed morphism c ∈ hom0

TwA(X0, X1) is
defined by

(
C = C[1] ⊗ X0 ⊕ C ⊗ X1, δC =

(
11,1 ⊗ δX0 0
−11,0 ⊗ c 10,0 ⊗ δX1

))

where 1i, j ∈ homC(C[i],C[ j]) is the identity morphism of degree i − j .
The Fukaya category Fuk M of a symplectic manifold (M, ω) is an A∞-category

whose objects are Lagrangian submanifolds of M (together with additional structures
such as gradings, spin structures and flat U (1) bundles on them) and whose spaces of
morphisms are Lagrangian intersection Floer complexes [Fuk93,FOOO09,Sei08]: For
two objects L1 and L2 intersecting transversely, hom(L1, L2) is a graded vector space
spanned by intersection points L1∩L2. For a positive integer k, a sequence (L0, . . . , Lk)

of objects, and morphisms pl ∈ L
−1 ∩ L
 for 
 = 1, . . . , k, the A∞-operation mk is
given by counting the virtual number of holomorphic disks with Lagrangian boundary
conditions;

mk(pk, . . . , p1) =
∑

p0∈L0∩Lk

#Mk+1(L0, . . . , Lk; p0, . . . , pk)p0.

Here, Mk+1(L0, . . . , Lk; p0, . . . , pk) is the stable compactification of the moduli space
of holomorphic maps φ : D2 → M from the unit disk D2 with k + 1 marked points
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(z0, . . . , zk) on the boundary respecting the cyclic order, with the following boundary
condition: Let ∂l D2 ∈ ∂D2 be the interval between zl and zl+1, where we set zk+1 = z0.
Then φ(∂l D2) ⊂ L
 and φ(zl) = pl for 
 = 0, . . . , k.

Let M be a symplectic manifold and p : M̃ → M be a regular covering with the
covering transformation group G, so that there is an exact sequence

1 → π1(M̃)
p∗−→ π1(M) → G → 1

of groups. Let i : L ↪→ M be a Lagrangian submanifold. If the image of i∗ : π1(L) →
π1(M) is contained in the image of p∗, then the set of connected components of L̃ =
p−1(L) forms a torsor over G, so that one has

L̃ =
∐

g∈G

L̃g

for a choice of a connected component L̃e ⊂ L̃ . Given a pair (L , L ′) of such Lagrangian
submanifolds, one has an isomorphism

homFuk M (L , L ′) ∼=
⊕

g∈G

homFuk M̃ (L̃e, L̃ ′
g),

which is compatible with the A∞-operations.

3. Symplectic Picard–Lefschetz Theory

Let π : E → C be a holomorphic function on a Kähler manifold E , whose Kähler
form is exact. We assume that E is complete as a Riemannian manifold, and ‖∇π‖ is a
proper function on E . The mirrors of toric Fano stacks satisfy these conditions [Sei10,
Example 6.1]. The map π is said to be an exact Lefschetz fibration if all the critical
points of π are non-degenerate. This means that for any critical point p ∈ E , one can
choose a holomorphic local coordinate (x1, . . . , xn) of E around p such that

π(x1, . . . , xn) = x2
1 + · · · + x2

n + w, (3.1)

wherew is the critical value of π . For the moment, we assume that all the critical values
are distinct and 0 is a regular value of π . We choose the origin as the base point and
write

E0 = π−1(0).

A vanishing path is an embedded path γ : [0, 1] → C such that

• γ (0) = 0,
• γ (1) is a critical value of π , and
• γ (t) is not a critical value of π for t ∈ (0, 1).

A distinguished set of vanishing paths is an ordered set (γi )
m
i=1 of vanishing paths

γi : [0, 1] → C such that

• {γi (1)}m
i=1 is the set of critical values of π ,

• images of γi and γ j for i 
= j intersect only at the origin,
• γ ′

i (0) 
= 0 for i = 1, . . . ,m, and
• arg γ ′

1(0) > · · · > arg γ ′
m(0) for a suitable choice of a branch of the argument map.
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Let γ be a vanishing path and y be the critical point of π above γ (1). The vanishing
cycle along γ is the cycle of E0 which collapses to the critical point y by the symplectic
parallel transport along γ ;

Vγ =
{

x ∈ E0

∣∣∣∣ lim
t→1

γ̃x (t) = y

}
.

Here, the horizontal lift γ̃x : [0, 1) → E of γ : [0, 1] → C starting from x ∈ E0
is defined by the condition that the tangent vector of the curve γ̃ is orthogonal to the
tangent space of the fiber with respect to the Kähler form.

The vanishing cycle Vγ is a Lagrangian (n − 1)-sphere E0. The trajectory

�γ =
⋃

x∈Vγ

Im γ̃x

of the vanishing cycle is called the Lefschetz thimble. It is a Lagrangian ball in E whose
boundary is the corresponding vanishing cycle;

∂�γ = Vγ .

For a distinguished set (γi )
m
i=1 of vanishing paths, the ordered set

V = (Vγ1 , . . . , Vγn )

is called the distinguished basis of vanishing cycles.
To define the Fukaya category of the Lefschetz fibration, let

β : Ẽ = {(x, y) ∈ E × C | π(x) = y2} → E

be the double cover of E branched along the fiber E0 = π−1(0) over the origin. Then
the covering transformation ι : (x, y) �→ (x,−y) defines a Z/2Z-action on Ẽ , which
induces a Z/2Z-action on the Fukaya category Fuk Ẽ of Ẽ . Roughly speaking, the
Fukaya category F(π) of the Lefschetz fibration π is defined as the ι-invariant part of
Fuk Ẽ ; objects of F(π) are ι-invariant Lagrangian submanifolds of Ẽ , and the space of
morphisms in F(π) are ι-invariant part of morphisms in Fuk Ẽ . The precise definition is
given in [Sei08, Section 18].

There are two important classes of ι-invariant Lagrangian submanifolds in Ẽ . One
of them, called of type (U), is the inverse image

L̃ = β−1(L) = L̃+

∐
L̃−

of a Lagrangian submanifold L whose image by π is contained in a simply-connected
domain inside C

× (i.e., C minus the base point). It is the disjoint union of two connected
components L̃+ and L̃−. The other, called of type (B), is the inverse image

�̃γ = β−1(�γ )

of the Lefschetz thimble �γ for a vanishing path γ . It is a Lagrangian n-sphere in Ẽ .
For type (U) Lagrangian submanifolds L̃0 and L̃1 of Ẽ , their intersections are two

disjoint copies of intersections between L0 and L1 in E . By taking ι-invariant, one can
show that there is a natural isomorphism

homF(π)(L̃0, L̃1) ∼= homFuk E (L0, L1)
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Fig. 1. A matching path

of vector spaces, which lifts to a cohomologically full and faithful A∞-functor

Fuk E → F(π).

For type (B) Lagrangian submanifolds, the situation is a little more complicated, but
the conclusion is that the full A∞-subcategory ofF(π) consisting of �̃ = (�̃γ1 , . . . , �̃γm )

for a distinguished set (γi )
m
i=1 of vanishing paths is quasi-isomorphic to the directed

subcategory Fuk→(V ) of Fuk E0, whose set of objects is the distinguished basis V =
(Vγ1 , . . . , Vγm ) of vanishing cycles, whose spaces of morphisms are given by

homFuk→(V )(Vγi , Vγ j ) =

⎧
⎪⎨

⎪⎩

C · idVγi
i = j,

homFuk E0(Vγi , Vγ j ) i < j,
0 otherwise,

and non-trivial A∞-operations coincide with those in Fuk E0. We write this A∞-category
as Fukπ . Although Fukπ depends on the choice of a distinguished set of vanishing paths,
the derived category Db Fukπ is independent of this choice and gives an invariant of
the Lefschetz fibration π .

Let μ : [−1, 1] → C be an embedded path in C such that μ−1(Critv(π)) = {−1, 1}.
One can deform μ and split it into two pieces μ±(t) = μ(±t) to obtain a pair of
vanishing paths as shown in Fig. 1. If the vanishing cycles Vμ− and Vμ+ are isotopic as
exact framed Lagrangian (n −1)-spheres in E0, then μ is called a matching path. In this
case, one can perturb �μ+ ∪ �μ− to obtain a Lagrangian n-sphere �μ in E called the
matching cycle.

Symplectic Picard–Lefschetz theory describes the action of the symplectic Dehn-
twist along a Lagrangian sphere on the derived Fukaya category. It follows that the type
(U) Lagrangian submanifold �̃μ = β−1(�μ) of Ẽ coming from a matching path μ is
isomorphic to the mapping cone over the (unique up to scalar) non-trivial morphism
from �̃μ− to �̃μ+ in the derived Fukaya category DbF(π) of the Lefschetz fibration;

�̃μ ∼= Cone(�̃μ− → �̃μ+).

This is important since it allows one to reduce Floer-theoretic computation for matching
cycles in Fuk E to that for vanishing cycles in Fuk E0. By iterating this process, one ends
up with the case of symplectic 2-manifolds, where Lagrangian submanifolds are simple
closed curves and the problem of counting holomorphic disks is purely combinatorial.

A natural source of matching paths is a Lefschetz bifibration. It is a diagram

E C
2

C
� ψ

� = ψ ◦�
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with certain genericity conditions, which implies that for any critical point of �, there
are local holomorphic coordinates of E and C

2 such that

�(x1, . . . , x2n) = (x2
1 + x2

2 + · · · + x2
2n, x1), ψ(y1, y2) = y1.

Then the map

Ew
�w−−→ Sw

from Ew = �−1(w) to Sw = ψ−1(w) for a general w ∈ C is a Lefschetz fibration, and
by chasing the trajectory of critical values of �w as w varies along a vanishing path γ ,
one obtains a matching path μ in S0 such that the matching cycle �μ is Hamiltonian
isotopic to the vanishing cycle Vγ .

4. Homological Mirror Symmetry for P
2

We recall homological mirror symmetry for P
2 proved by Seidel [Sei01] in this section.

The mirror of P
2 is given by the Laurent polynomial

W (x, y) = x + y +
1

xy
,

which has critical points (x, y) = (1, 1), (ω, ω), (ω2, ω2) with critical values 3, 3ω,
3ω2. Here ω = exp(2π

√−1/3) is a primitive cubic root of unity. Let (γi )
3
i=1 be the

distinguished set of vanishing paths obtained as the straight line segments from the origin
to the critical values of W as shown in Fig. 2. The corresponding vanishing cycles are
denoted by (Ci )

3
i=1.

Consider the Lefschetz bifibration

(C×)2 C × C
×

C
� ψ

W = ψ ◦�

(4.1)

where

�(x, y) =
(

x + y +
1

xy
, y

)

Fig. 2. A path on the W -plane



Tropical Coamoeba and Torus-Equivariant 63

Fig. 3. Matching paths on the y-plane

Fig. 4. Vanishing cycles on W−1(0)

and

ψ(u, v) = u.

The critical points of

�t : W −1(t) → ψ−1(t) ∼= Spec C[y, y−1]
are given by

2x +
1

x2 = t,

with critical values

y = 1

x2 .

The critical values are given by y = (−2)2/3 at t = 0, which moves as shown in
Fig. 3 along the vanishing paths (γi )

3
i=1. These trajectories (μi )

3
i=1 are matching paths

corresponding to (Ci )
3
i=1. The fiber W −1(0) can be compactified to an elliptic curve

by adding one point over y = 0 and two points over y = ∞. The vanishing cycles on
W −1(0) are shown in Fig. 4.
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On the mirror side, one has the full exceptional collection

(E1, E2, E3) = (�2
P2(2)[2],�P2(1)[1],OP2)

by Beilinson [Bei78]. The endomorphism algebra is given by

hom(Ei , E j ) =
{

∧ j−i V i ≤ j,
0 otherwise,

where V is a 3-dimensional vector space. This endomorphism algebra is formal as an
A∞-algebra with respect to the standard enhancement of Db coh P

2. One can easily see
that there is an isomorphism

Fuk→ W −1(0) → Db coh P
2

of A∞-categories sending Ci to Ei for i = 1, 2, 3. Indeed, one can see in Fig. 4 that Ci
and C j for i 
= j intersect at three points, and six triangles bounded by C1, C2 and C3
correspond to six non-zero compositions in

hom(E2, E3)⊗ hom(E1, E2) → hom(E1, E3).

The torus-equivariant version of homological mirror symmetry for P
2 (and more gener-

ally for toric del Pezzo surfaces) is discussed in detail in [UY13].

5. Homological Mirror Symmetry for P
3

The mirror of the projective space P
3 is given by the Laurent polynomial

W (x, y, z) = x + y + z +
1

xyz

with critical points x = y = z = ±1,±√−1 and critical values ±4,±4
√−1. Choose

a distinguished set of vanishing paths (γi )
4
i=1 as the straight line segments from the

origin to the critical values as shown in Fig. 5, and let (Ci )
4
i=1 be the corresponding

Fig. 5. A distinguished set of vanishing paths
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Fig. 6. Matching paths on the z-plane

distinguished basis of vanishing cycles. To use Picard–Lefschetz theory, consider the
Lefschetz bifibration

(C×)3 C × C
×

C
� ψ

W = ψ ◦�

(5.1)

where

�(x, y, z) =
(

x + y + z +
1

xyz
, z

)

and

ψ(u, v) = u.

The critical points of

�t : W −1(t) → ψ−1(t) ∼= Spec C[z, z−1]
are given by

x = y, 3x +
1

x3 = t,

with critical values

z = 1

x3 .

The critical values are given by z = (−3)3/4 at t = 0, which moves as shown in
Fig. 6 along the vanishing paths (ci )

4
i=1. These trajectories (μi )

4
i=1 are matching paths

corresponding to (Ci )
4
i=1. Take z = 1 as a base point and choose a distinguished set

(δi )
4
i=1 of vanishing paths for�0 as straight line segments from the base point as shown

in Fig. 7. The fiber �−1
0 (z) is a branched double cover of C

× by the y-projection

πz : �−1
0 (z) → C

×

∈ ∈

(x, y, z) �→ y.
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Fig. 7. A distinguished set of vanishing paths

Fig. 8. Matching paths on the y-plane

Figure 8 shows the behavior of these branch points along vanishing paths (δi )
4
i=1, which

can be considered as matching paths coming from the Lefschetz bifibration

W −1(0) C
× × C

×
C

×
π ϕ

�0 = ϕ ◦ π

(5.2)

where π(x, y, z) = (z, y) and ϕ(z, y) = z. Note that one has an inductive structure
here, as (5.2) is almost identical to (4.1).

One can see that the number of intersection points of Ci and C j for i < j is equal to
the dimension of ∧ j−i V , where V is a vector space of dimension four. As an example,
consider the intersection of C1 and C2. The matching paths μ1 and μ2 intersect at one
critical value of�0 and one regular value of�0. The intersection of C1 and C2 over the
critical value of �0 consists of one point, i.e., the critical point of �0. The intersection
of C1 and C2 over the regular value of �0 consist of three points, as one can see from
Fig. 8 (cf. also Figs. 3, 4). As for the intersection of C1 and C3, the corresponding
matching paths intersect at two regular points of �0, and the intersection over each of
them consists of three points.
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Fig. 9. A loop in the z-plane

Fig. 10. The behavior of branch points of πz

To use Picard–Lefschetz theory to do computations in the Fukaya category of W ,
consider the pull-back

W −1(0)∼ �̃0−−−−→ C
⏐⏐�

⏐⏐�exp

W −1(0)
�0−−−−→ C

×

of �0 by the universal cover of the algebraic torus. The existence of infinitely many
critical points for a given critical value does not cause any problem, since the corre-
sponding vanishing cycles do not intersect. The passage from W −1(0) to W −1(0)∼ can
be taken into account by noting that as one goes counterclockwise around the origin in
the z-plane as shown in Fig. 9, the branch points of πz rotates clockwise by 2π/3 as in
Fig. 10.

The universal cover of the z-plane is obtained by cutting the z-plane along the dashed
line in Fig. 7 and gluing infinitely-many copies of it. We set the point z = 1 on the
zero-th sheet as the base point ∗ and take a distinguished set of vanishing paths for �̃0
as in Fig. 11.

Let �1, �2, and �3 be the vanishing cycles of �0 along the vanishing paths δ1, δ2
and δ3 respectively. We write the vanishing cycles of �̃0 along the vanishing paths δi in
Fig. 11 as �i for i ∈ Z. Let further B be the Fukaya category of �−1

0 (1) consisting of
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Fig. 11. Vanishing paths on the universal cover

Fig. 12. Matching paths on the universal cover

{�i }3
i=1 and B̃ be the Fukaya category of �̃−1

0 (∗) consisting of {�i }i∈Z. Then one has
a quasi-equivalence

B̃ ∼−→ B

of A∞-categories sending �i to �ı , where ı is i modulo 3. We write the directed
subcategory of B̃ with respect to the order

�i < � j , i < j

as Ã. The spaces of morphisms between �i can be written as

homÃ(�i ,� j ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C · idi i = j,
C · idi, j ⊕C · id∨

i, j i < j and j ≡ i mod 3,

V i < j and j ≡ i + 1 mod 3,
∧2V i < j and j ≡ i + 2 mod 3,
0 i > j,

where idi is the unit and

V = span {e1, e2, e3}
is a vector space of dimension three. One can show, by direct counting of triangles just
as in Sect. 4, that the A∞-operation m2 on the spaces of morphisms is given by the
wedge product, where idi, j and id∨

i, j are identified with the elements 1 ∈ ∧0V and

e1 ∧ e2 ∧ e3 ∈ ∧3V respectively. Higher A∞-operations on Ã are irrelevant for the
argument below.

Let Ci for i ∈ Z be the lift to W −1(0)∼ of a vanishing cycle on W −1(0), which
corresponds to the matching path μi obtained by concatenating δi and δi+3 as in Fig. 12.
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Let further Fuk W −1(0)∼ be the Fukaya category of W −1(0)∼ consisting of {Ci }i∈Z and
Fuk→ W −1(0)∼ be its directed subcategory with respect to the order Ci < C j for i < j .
By symplectic Picard–Lefschetz theory recalled in Sect. 3, there is a cohomologically
full and faithful functor

Fuk W −1(0)∼ → DbÃ,

which maps the objects as

Ci �→ Cone

(
�i

idi,i+3−−−→ �i+3

)
.

On the mirror side, the passage to the universal cover of the z-plane corresponds to
working equivariantly with respect to the subgroup

T3 = {(α, β, γ ) ∈ T | α = β = 1}
of the torus T ∼= (C×)3 acting on P

3 by

T � (α, β, γ ) : P
3 → P

3

∈ ∈
[x0 : x1 : x2 : x3] �→ [x0 : αx1 : βx2 : γ x3].

The full exceptional collection

(E1, E2, E3, E4) = (�3
P3(3)[3],�2

P3(2)[2],�1
P3(1)[1],OP3)

admits a natural T-linearization, so that the endomorphism algebra is given by

hom(Ei , E j ) =
{

∧ j−i V i ≤ j,
0 otherwise,

with the natural T-action. Moreover, this endomorphism algebra is formal as an A∞-
algebra with respect to a standard enhancement of Db cohT

P
3. Now it is easy to see that

there is an A∞-functor

Fuk→ W −1(0)∼ → Db cohT3 P
3

sending Ci+4 j to Ei ⊗ ρ j , where ρ j : T3 → C
× for j ∈ Z is the one-dimensional

representation sending (1, 1, γ ) ∈ T3 to γ j ; for example, one has

hom(E1 ⊗ ρi , E2 ⊗ ρ j ) =

⎧
⎪⎨

⎪⎩

C · e4 j = i − 1,
V j = i,
0 otherwise,

hom(E1 ⊗ ρi , E3 ⊗ ρ j ) =

⎧
⎪⎨

⎪⎩

V ∧ e4 j = i − 1,
∧2V j = i,
0 otherwise,

hom(E1 ⊗ ρi , E4 ⊗ ρ j ) =

⎧
⎪⎨

⎪⎩

(∧2V ) ∧ e4 j = i − 1,
∧3V j = i,
0 otherwise,
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which exactly matches the computation in the Fukaya category, as we show for general
n in Sect. 6. This suffices to show the equivalence

Db Fuk→ W −1(0)∼ ∼= Db cohT3 P
3,

which induces the equivalence

Db Fuk W ∼= Db coh P
3

by passing to the non-equivariant situation.

6. Inductive Description of the Fukaya Category

The mirror of the projective space P
n is given by the Laurent polynomial

W (x1, . . . , xn) = x1 + · · · + xn +
1

x1 · · · xn
, (6.1)

with critical points

x1 = · · · = xn = ζ 1−i , ζ = exp(2π
√−1/(n + 1)), i = 1, . . . , n + 1

and critical values (n + 1)ζ 1−i . Choose a distinguished set of vanishing paths (γi )
n+1
i=1 as

the straight line segments from the origin to the critical values, so that γi (1) = ζ 1−i . The
Fukaya category of W consisting of vanishing cycles Ci along γi for i = 1, . . . , n + 1
will be denoted by Fuk W .

Theorem 6.1 The spaces of morphisms in Fuk W are given by

hom(Ci ,C j ) =

⎧
⎪⎨

⎪⎩

C · idCi i = j,
∧ j−i V i < j,
0 otherwise,

where V is an (n + 1)-dimensional vector space and an element of ∧i V has degree i .
The A∞-operations mk are given by the wedge product for k = 2, and vanish for k 
= 2.

Proof. Consider the Lefschetz bifibration

(C×)n C × C
×

C
� ψ

W = ψ ◦�

(6.2)

where

�(x1, . . . , xn) =
(

x1 + · · · + xn +
1

x1 · · · xn
, xn

)

and

ψ(u, v) = u.
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Fig. 13. The behavior of solutions of (6.3)

The critical points of

�t : W −1(t) → ψ−1(t) ∼= Spec C[xn, x−1
n ]

are given by

x1 = · · · = xn−1, nxn+1
1 − t xn

1 + 1 = 0

with critical values

xn = 1

xn
1
.

As one varies t along the vanishing path γ1 from t = 0 to t = n + 1, two points
x = exp(±π/(n + 1)

√−1)/ n+1
√

n from the set of solutions of

nxn+1 − t xn + 1 = 0 (6.3)

at t = 0 collide at x = 1 and t = n + 1, while the absolute values of other points remains
to be smaller than these two points, so that their behavior is as shown in Fig. 13. Here
and below, all figures are for n = 4, but the general case is completely parallel. The
corresponding trajectory of the critical values of �t is shown in Fig. 14.

Now consider the Lefschetz bifibration

W −1(0) C
× × C

×
C

×
π ϕ

�0 = ϕ ◦ π

(6.4)

where π(x1, . . . , xn) = (xn, xn−1) and φ(xn, xn−1) = xn . Take xn = 1 as a base point
and choose a distinguished set (δi )

n+1
i=1 of vanishing paths for �0 as the straight line

segments from the base point as shown in Fig. 15. Consider the pull-back

W −1(0)∼ �̃0−−−−→ C
⏐⏐�

⏐⏐�exp

W −1(0)
�0−−−−→ C

×
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Fig. 14. Matching paths on the xn -plane

Fig. 15. Vanishing paths for �0

of �0 by the universal cover of the xn-plane. The j-th lift of the vanishing cycle Ci ⊂
W −1(0) to W −1(0)∼ will be denoted by Ci+(n+1) j for i = 1, . . . , n + 1 and j ∈ Z. We
write the Fukaya category of W −1(0)∼ consisting of {Ci }i∈Z as Fuk W −1(0)∼.

The universal cover of the xn-plane is obtained by gluing infinitely many copy of the
xn-plane cut along the negative real axis. We take the point xn = 1 on the zeroth sheet as
the base point ∗ and take a distinguished set (δ)i∈Z of vanishing paths as in Fig. 17. The
vanishing cycle along δi will be denoted by �i . We write the directed Fukaya category
of �̃0 consisting of (�i )i∈Z as Ã. The matching path corresponding to Ci for i ∈ Z is
obtained by concatenating δi and δi+n as in Fig. 18.

Note that the fiber of �0 is isomorphic to the fiber of

W : (C×)n−1 → C

∈ ∈

(x1, . . . , xn−1) �→ x1 + · · · + xn−1 +
1

x1 · · · xn−1
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Fig. 16. Vanishing paths for W

Fig. 17. Vanishing paths on the universal cover

by

�−1
0 (xn) → W

−1
(
−x (n+1)/n

n

)

∈ ∈

(x1, . . . , xn) �→ x1/n
n (x1, . . . , xn−1) .

As xn varies along the vanishing paths in Fig. 15, its image by the map x �→ −x (n+1)/n

behaves as in Fig. 16, which are homotopic to the vanishing paths for W . The fiber of
π1 : �−1

0 (1) → C
× at xn = 1 can be identified with the fiber of W at t = −1, which in

turn can be identified with the fiber of W at the origin by symplectic parallel transport.
Under this identification, the vanishing paths δi in Fig. 16 can be identified with the
vanishing paths γ ı for W , where ı is i modulo n. It follows that the vanishing cycle �i

along δi corresponds to the vanishing cycle Cı along γı .
Assume that the assertion of Theorem 6.1 holds for W , so that one has

homFukW (Ci ,C j ) =

⎧
⎪⎨

⎪⎩

C · idi i = j
∧ j−i V i < j,
0 otherwise,
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Fig. 18. Matching paths on the universal cover

where

V = span{e1, . . . , en}
is an n-dimensional vector space, an element of ∧k V has degree k, and the A∞-operation
is given by the wedge product. Then one has

homÃ(�i ,� j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C · idi i = j
∧0V ⊕ ∧n V i < j and j ≡ i mod n,

∧j−ı V i < j and j 
≡ i mod n,
0 otherwise

as a vector space, where 0 ≤ j − ı < n is a representative of [ j − i] ∈ Z/nZ. The
gradings of �i are chosen so that an element of ∧k V has degree k. The A∞-operations
m0 and m1 vanish, and m2 is given by the wedge product as

m2(σ, τ ) = (−1)deg τ σ ∧ τ.
We write the elements of hom(�i ,�i+n) corresponding to 1 ∈ ∧0V and e1 ∧ · · · ∧ en
as idi,i+n and id∨

i,i+n respectively.
By symplectic Picard–Lefschetz theory recalled in Sect. 3, there is a cohomologically

full and faithful functor

Fuk W −1(0)∼ → DbÃ,

which maps the objects as

Ci �→
{
�i

idi,i+n−−−→ �i+n

}
.

Then one has

hom(Ci ,C j ) = hom
({
�i

idi,i+n−−−−→ �i+n

}
,
{
� j

id j, j+n−−−−→ � j+n

})

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

hom(�i+n,� j )
(−1)deg •−1m2(•, idi,i+n)−−−−−−−−−−−−−−→ hom(�i ,� j )

⏐⏐�−m2(id j, j+n, •) m2(id j, j+n , •)
⏐⏐�

hom(�i+n,� j+n)
(−1)deg •−1m2(•, idi,i+n)−−−−−−−−−−−−−−→ hom(�i ,� j+n)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,
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where the last line denotes the total complex of the double complex. If j < i − 3, then
every term in the last line of the right hand side is trivial. If i − n ≤ j ≤ i − 1, then the
right hand side is given by

⎧
⎪⎪⎨

⎪⎪⎩

0 −−−−→ 0
⏐⏐�

⏐⏐�

0 −−−−→ ∧ j−i+n V

⎫
⎪⎪⎬

⎪⎪⎭

which is spanned by
⎛

⎜⎜⎝

{�i −−−−→ �i+n}
τ

⏐⏐�

{� j −−−−→ � j+n}

⎞

⎟⎟⎠ ∈ hom1(Ci ,C j )

for τ ∈ ∧ j−i+n V . If i = j , then the complex on the right hand side is given by

⎧
⎪⎪⎨

⎪⎪⎩

0 −−−−→ C · id�i⏐⏐�
⏐⏐�

C · id�i+n −−−−→ C · idi,i+n ⊕C · id∨
i,i+n

⎫
⎪⎪⎬

⎪⎪⎭

whose cohomology group is spanned by
⎛

⎜⎜⎝

{�i −−−−→ �i+n}
id�i

⏐⏐� id�i+n

⏐⏐�

{�i −−−−→ �i+n}

⎞

⎟⎟⎠ ∈ hom0(Ci ,C j )

and
⎛

⎜⎜⎝

{�i −−−−→ �i+n}
id∨

i+n,i

⏐⏐�

{�i −−−−→ �i+n}

⎞

⎟⎟⎠ ∈ hom1(Ci ,C j ).

If i + 1 ≤ j ≤ i + n − 1, then the complex on the right hand side is given by
⎧
⎪⎪⎨

⎪⎪⎩

0 −−−−→ ∧ j−i V
⏐⏐�

⏐⏐�

∧ j−i V −−−−→ ∧ j−i V

⎫
⎪⎪⎬

⎪⎪⎭

whose cohomology group is spanned by

{�i −−−−→ �i+n}
τ

⏐⏐� (−1) j−i τ

⏐⏐�

{�i −−−−→ �i+n}
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for τ ∈ ∧ j−i V . If j = i + n, then the complex on the right hand side is given by

⎧
⎪⎪⎨

⎪⎪⎩

C · id�i+n −−−−→ C · idi+n,i+2n ⊕C · id∨
i+n,i+2n⏐⏐�

⏐⏐�

C · idi+n,i+n ⊕C · id∨
i+n,i+2n −−−−→ C · idi,i+2n ⊕C · id∨

i,i+2n

⎫
⎪⎪⎬

⎪⎪⎭
,

whose cohomology group is spanned by

{�i −−−−→ �i+n}
id∨

i,i+n

⏐⏐�
⏐⏐�(−1)n−1 id∨

i+n,i+2n

{�i+n −−−−→ �i+2n}.
If j > i + n, then the complex on the right hand side is acyclic.

If we write

Ci, j = Ci+(n+1) j , i = 1, . . . , n + 1 and j ∈ Z,

then the above calculation can be summarized as

hom(Ci, j ,Ci ′, j ′) = (∧i ′−i V ⊗ ρ j ′− j )
Tn , 1 ≤ i < i ′ ≤ n + 1,

where Tn = C
× is an algebraic torus,

ρi : Tn → C
×

∈ ∈

α �→ αi

is an irreducible representation of Tn ,

V = ρ0 ⊕ · · · ⊕ ρ0 ⊕ ρ1,

is an (n + 1)-dimensional representation of Tn , and •Tn denotes the subspace of Tn-
invariants.

By descending from W −1(0)∼ to W −1(0) and taking the directed subcategory, one
obtains

homFukW (Ci ,C j ) =

⎧
⎪⎨

⎪⎩

C · idCi i = j,
∧ j−i V i > j,
0 otherwise.

It is straightforward to see that the A∞-operation m2 on Fuk W is given by wedge product.
One can also show, either by direct calculation or for degree reasons, that A∞-operations
mk for k 
= 2 on Fuk W vanishes, and Theorem 6.1 is proved. ��

In the proof of Theorem 6.1, we have thrown away the extra information obtained
by lifting from W −1(0) to its Z-cover W −1(0)∼ at each step of the induction. One can
also keep this information, and the resulting category can be described as follows:
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Theorem 6.2 Let

W̃ = W ◦ exp : C
n → C

be the pull-back of the mirror W of P
n by the Z

n-covering given by the exponential map

exp : C
n → (C×)n .

Let Ci, j denote the j -th lift of Ci for i = 1, . . . , n + 1 and j ∈ Z
n. Then one has

hom(Ci, j ,Ci ′, j ′) =

⎧
⎪⎨

⎪⎩

C · idCi, j i = i ′ and j = j ′,
(∧i ′−i V ⊗ ρ j ′− j )

T i < i ′,
0 otherwise,

where V is an (n + 1)-dimensional vector space with an action of an algebraic torus
T = (C×)n given by

T � (α1, . . . , αn) : C
n+1 → C

n+1

∈ ∈

(x0, x1, . . . , xn) �→ (x0, α1x1, . . . , αn xn),

and

ρ j : T → C
×

∈ ∈

(α1, . . . , αn) �→ (α
j1
1 , . . . , α

jn
n )

is a one-dimensional representation of T for j = ( j1, . . . , jn).

The proof of Theorem 6.2 is completely parallel to that of Theorem 6.1.

7. Tropical Coamoeba

We introduce the notion of a tropical coamoeba and prove Theorem 1.5 in this section.s
A tropical coamoeba is a generalization of a pair of a dimer model and an internal per-
fect matching on it to higher dimensions. See [UY11,UY,UY13,FU10] and references
therein for dimer models and its application to homological mirror symmetry.

Definition 7.1 A tropical coamoeba G = ((Pi )
m
i=1, deg, sgn) of a Laurent polynomial

W : (C×)n → C consists of

• a polyhedral decomposition

T =
m⋃

i=1

Pi ,

of a real n-torus T = R
n/Zn into an ordered set (Pi )

m
i=1 of polytopes,

• a map

deg : F1 → Z

from the set F1 of facets to Z called the degree, and
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• a map

sgn : F2 → {1,−1}
from the set F2 of codimension two faces called the sign,

satisfying the following:

• There is a CW complex Y in W −1(0) and a deformation retraction

F : W −1(0)× [0, 1] → W −1(0),

F(•, 0) = idW−1(0), Im F(•, 1) = Y, F(•, 1)|Y = idY ,

such that the restriction of F(•, 1) to the union of a distinguished basis (Ci )
m
i=1 of

vanishing cycles is a surjection onto Y .
• The argument map Arg : (C×)n → T induces a homeomorphism Y

∼−→ ⋃
f ∈F1

f
into the union of facets.

• The boundary of the polytope Pi is the image of the vanishing cycle Ci ;

Arg(F(Ci , 1)) = ∂Pi , i = 1, . . . ,m.

• There is a natural one-to-one correspondence between the set of common facets of
Pi and Pj and intersection points of Ci and C j , and the degree function is given by
the Maslov index of the intersection with respect to suitable gradings of W −1(0) and
(Ci )

m
i=1.

• For each codimension two face e ∈ F2, one has an A∞-operation

mk( f1, . . . , fk) = sgn(e) f0 (7.1)

in the Fukaya category Fuk W , where ( f0, f1, . . . , fk) is the set of facets around e,
identified with intersections of vanishing cycles as above. Moreover, any non-trivial
A∞-operation in Fuk W comes from a codimension two face of Pi in this way.

• Let W̃ = W ◦ exp be the pull-back of W by the universal covering map exp : C
n →

(C×)n . Then the pull-back G̃ of G to the universal cover R
n → T gives a tessellation

of R
n , which encodes the information of Fuk W̃ in just the same way as above, so

that polytopes, facets, and codimension two faces correspond to vanishing cycles of
W̃ , their intersection points, and A∞-operations respectively.

It follows from the definition that if G is a tropical coamoeba of W , then one can
associate a directed A∞-categories AG whose set of objects, a basis of the space of
morphisms, and non-trivial A∞-operations on this basis are given by the set of polytopes,
the set of facets, and the set of codimension two faces respectively, which satisfies

Fuk W ∼= AG .

Moreover, the directed A∞-category AG̃ associated with the pull-back G̃ of G to the
universal cover is equivalent to the Fukaya category associated with W̃ ;

Fuk W̃ ∼= AG̃ .

Now we prove Theorem 1.5. We first discuss the case of P
2 along the lines of [UY13].

The mirror of P
2 is given by

W (x, y) = x + y +
1

xy
,
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Fig. 19. A distinguished set of vanishing paths

Fig. 20. The trajectories of the branch points

which has three critical values 3, 3ω and 3ω2. Choose a distinguished set (ci )
3
i=1 of

vanishing paths as the straight line segments from the origin to each critical values as in
Fig. 19. The y-projection

�t : W −1(t) → C
×

∈ ∈

(x, y) �→ y

has three branch points, which moves as shown in Fig. 20 along the vanishing paths. The
trajectories of these branch points are images of vanishing cycles by � = �0. There
are six disks in W −1(0) bounded by these vanishing cycles, which are projected onto
three triangles in Fig. 20. By contracting these six disks, one obtains a graph on W −1(0)
whose π projection is shown in Fig. 21. Figure 22 shows a schematic picture of the
image of this graph by the argument map. Here, the color scheme in Figs. 21 and 22 is
not a continuation of the scheme introduced in Figs. 19 and 20. The horizontal and the
vertical axes in Fig. 22 correspond to arg y and arg x respectively. The inverse image
of the circle on the y-plane in Fig. 21 by �0 is a non-trivial double cover of it, which
maps to a cycle in the class (2,−1) ∈ H1(T,Z) ∼= Z

2 shown in black in Fig. 22. Three
legs in Fig. 21 connect two branches of the double cover�0, which map to vertical line
segments in Fig. 22. As a result, one obtains the division of T into three hexagons as
shown in Fig. 23. It is easy to see that the set of edges in Fig. 23 corresponds to the set of
intersection points of vanishing cycles, and the set of nodes corresponds to holomorphic
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Fig. 21. Contracting W−1(0)

Fig. 22. Image of the contraction by the argument map

Fig. 23. The honeycomb tiling

disks bounded by vanishing cycles. The colors of the nodes correspond to the signs of
the A∞-operations.

Now we discuss the case of P
3. By contracting the matching paths in Fig. 6, one

obtains a circle with four legs shown in Fig. 24. The fiber of �0 over a point on this

circle is symplectomorphic to W
−1
(0), which can be contracted to the honeycomb graph

in Fig. 23 as explained above. As one goes around the circle, this honeycomb graph
undergoes a monodromy (Fig. 25)

D1 �→ D2 �→ D3 �→ D1
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Fig. 24. Contraction on the z-plane

Fig. 25. The monodromy around the origin

of order three, where Di is the face in the honeycomb graph corresponding to the i-
th vanishing cycle of �0. The image by the argument map of this honeycomb graph
bundle over the circle on the z-plane divides the 3-torus T into an obliquely-embedded
hexagonal cylinder. Four legs in Fig. 24 give four faces perpendicular to the arg z-axis,
which cut this hexagonal cylinder into four truncated octahedra (Pi )

4
i=1.

A truncated octahedron is the polytope with fourteen faces, thirty-six edges and
twenty-four vertices, which is obtained from an octahedron by truncating at its six
vertices. One of the four truncated octahedra in T is shown in Fig. 26, where we have
chosen to draw arg x and arg y horizontally, and arg z vertically. By pulling back this
division of T into four truncated octahedra to the universal cover R

3 → T , one obtains
the bitruncated cubic honeycomb, which is the Voronoi tessellation for the body-centered
cubic lattice.

It is straightforward to see that intersections of vanishing cycles and A∞-operations
in Fukaya category correspond to faces and edges of truncated octahedra respectively,
so that the decomposition of T into four truncated octahedra, together with a suitable
choice of the functions μ and sgn, gives a tropical coamoeba of W : Matching paths are
contracted as in Figs. 27 and 28 shows the intersections of the matching path μ1 for C1
with three other matching paths. These intersections correspond to faces of P1 shown
in Figs. 29, 30, and 31, which can be seen to be in natural bijection with intersection
points of C1 with C2, C3 and C4 by comparing with the discussion in Sect. 5. It is also
straightforward to see that the edges of Pi corresponds to A∞-operations in Fuk W̃ ; for
example, twelve edges corresponding to

m2 : hom1(C2,C3)⊗ hom1(C1,C2) → hom2(C1,C3)

are shown in Fig. 32.
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Fig. 26. A truncated octahedron

Fig. 27. Contractions of the matching paths

Fig. 28. Intersections of contracted matching paths

Now we discuss the general case. The permutohedron of order n + 1 is an n-
dimensional polytope lying on the hyperplane

H =
{
(x1, . . . , xn+1) ∈ R

n+1
∣∣∣∣x1 + · · · + xn+1 = n(n + 1)

2

}
,

defined as the convex hull of the orbit of (1, 2, . . . , n + 1) ∈ R
n+1 under the action of the

symmetric group Sn+1 by permutations of coordinates. Note that the permutohedron of
order three is a hexagon, and the permutohedron of order four is a truncated octahedron.
A facet of a permutohedron of order n corresponds to a division

B1 � B2 = {1, 2, . . . , n + 1}
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Fig. 29. The facets of P1 adjacent to P2

Fig. 30. The facets of P1 adjacent to P3

of the set {1, 2, . . . , n + 1} into the disjoint union of two subsets, and a codimension two
face corresponds to a division

B1 � B2 � B3 = {1, 2, . . . , n + 1}

into the disjoint union of three subsets. The facet corresponding to the division B1 � B2
is given by

∑

i∈B1

xi = 1 + 2 + · · · + #B1,
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Fig. 31. The facets of P1 adjacent to P4

Fig. 32. The edges of P1 adjacent to P2 and P3

and the codimension two face corresponding to the division B1 � B2 � B3 is given by
∑

i∈B1

xi = 1 + 2 + · · · + #B1,

∑

i∈B1�B2

xi = 1 + 2 + · · · + #(B1 � B2),

so that the inclusion of a face into a facet corresponds to a subdivision of a division of
length two into a division of length three. The translations of the permutohedron of order
n + 1 by the lattice of rank n generated by


i = (n + 1)ei − (e1 + · · · + en+1), i = 1, . . . , n + 1,

where ei is the i-th coordinate vector, tessellates the hyperplane H. The polytope adjacent
to the permutohedron through the facet corresponding to the division B1 � B2 is the
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translate of the permutohedron by

∑

i∈B2


i .

Every codimension two face of this tessellation is adjacent to three facets, corresponding
to B1 � B2, B ′

1 � B ′
2 and B ′′

1 � B ′′
2 such that B ′′

2 = B2 � B ′
2.

The set of facets of the permutohedron of order n + 1 maps bijectively to a basis of
∧•V/(∧0V ⊕ ∧n+1V ) by

B1 � B2 �→ ∧i∈B2 ei .

Under this correspondence, the translates of three facets share a codimension two face if
and only if they correspond to u, v andw in ∧•V/(∧0V ⊕∧n+1V ) such thatw = ±u∧v.

Now we inductively show that the quotient of the above tessellation by the lattice
� ∼= Z

n generated by


i + (
1 + · · · + 
n), i = 1, . . . , n

is a tropical coamoeba for the mirror of P
n . By contracting the union of the matching

paths for �0 on the xn-plane, one obtains a circle S with n + 1 legs {l1, . . . , ln+1},
numbered clockwise. The fiber over a point on S can be contracted to the union of n
permutohedra {Pi }n

i=1 of order n by induction hypothesis, which undergoes the cyclic
monodromy

Pi �→ Pi+1, i = 1, . . . , n

as one goes around the circle. Its image by the argument map gives a division of T n

into an oblique cylinder over P1, which is divided into n + 1 permutohedra {Pi }n+1
i=1 of

order n + 1 by the n + 1 facets coming from n + 1 legs: Let us call the direction of arg xn
vertical and other directions horizontal. The xn-projection of the contracted vanishing
cycle consists of two legs li , li+n and the part of the circumference between them. The
horizontal facets corresponding to li and li+n corresponds to en+1 and e1 ∧ · · · ∧ en
respectively. There are 2n − 2 vertical facets of the cylinder, and the one corresponding
to

ei1 ∧ · · · ∧ eir

is divided into two, one corresponding to

ei1 ∧ · · · ∧ eir

and the other corresponding to

ei1 ∧ · · · ∧ eir ∧ en+1.

As a whole, one obtains 2n+1 −2 facets, and P1 can be identified with the permutohedron
of order n + 1. Under this identification, Pi can be identified with the translation of P1
by 
n+1, and the union

⋃n+1
i=1 Pi is a fundamental region of the lattice �. The degree

function takes the value |B2| on the facet corresponding to the division B1 � B2, and the
value sgn(B ′

2, B2) of the sign function on the codimension two face f of Pi , where the



86 M. Futaki, K. Ueda

facet of Pi corresponding to B1 � B2 intersects Pj and the facet of Pj corresponding to
the division B ′

1 � B ′
2 intersects Pk for i < j < k, is given by

∧i∈B2�B′
2
ei = sgn(B ′

2, B2) · (−1)|B2|(∧i∈B′
2
ei ) ∧ (∧i∈B2 ei ).

The A∞-category AG associated with the tropical coamoeba

G = ((Pi )
n+1
i=1, deg, sgn)

defined above is quasi-equivalent to the full subcategory of a standard differential graded
enhancement of Db coh P

n consisting of

(E1, E2, . . . , En+1) = (�n
Pn (n)[n],�n−1

Pn (n − 1)[n − 1], . . . ,OPn ).

This implies the equivalence

DbAG ∼= Db coh P
n

of triangulated categories, since (E1, . . . , En+1) is a full exceptional collection by Beilin-
son [Bei78]. It is clear that this equivalence lifts to the equivalence

DbAG̃
∼= Db cohT

P
n

by sending the object of AG̃ corresponding to the j -th lift of Pi for j ∈ � ∼= Z
n to

Ei ⊗ ρ j , and Theorem 1.5 is proved. Theorem 1.2 is an immediate consequence of
Theorem 1.5, which in turn implies Corollary 1.3 just as in the two-dimensional case
[UY13].
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