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Abstract: In this paper, we study the partial regularity of fractional Navier–Stokes
equations in R

3 × (0,∞) with 3/4 < s < 1. We show that the suitable weak solution is
regular away from a relatively closed singular set whose (5−4s)-dimentional Hausdorff
measure is zero. The result is a generalization of the partial regularity for the classical
Navier–Stokes system in Caffarelli et al. (Commun Pure Appl Math 35:771–831, 1982).

1. Introduction

The main purpose of this work is to develop a regularity theory for the incompressible
fractional Navier–Stokes equation defined as follows:{

∂t u + (−�)s u + u · ∇u = −∇ p + f, x ∈ R
3, t > 0,

div u = 0, x ∈ R
3, t > 0,

(1.1)

where u is an unkown velocity vector field, p is pressure and f is a given force with
∇ · f = 0. Throughout this article, we assume that 3/4 < s < 1 and define a = 1 − 2s.
As a convention in this work, ∇ and ∇ are the gradients on R

4
+ and R

3, respectively.
Their associated divergence operators are denoted by Div and div, respectively.

If 0 < s < 1, the fractional Navier–Stokes system (1.1) is an important mathematical
model arising from the physical world. In [9], this equation is used to describe a fluid
motion with internal friction interaction. In the viewpoint of the stochastic process,
Zhang [19] showed that (1.1) can also be deduced via the stochastic Lagrangian particle
approach.

For the classical Navier–Stokes equation (s = 1), it is well known that the global
regularity of its solution is still an open problem and there are only some partial regularity
results. In a series of work [11–13], Scheffer studied some class of weak solutions which
satisfy the so-called local energy inequality. He proved that when f = 0, such weak
solutions might have a singular set with finite 5/3-dimensional Hausdorff measure. Later
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in 1982, a prestigious improvement of Scheffer’s results was made by Caffarelli et al. [1],
where they showed that for any so-called suitable weak solution (u, p), the associated
singular set has one-dimensional Hausdorff measure zero (also see Lin [7] for a simplified
proof). As for the high-order fractional Navier–Stokes equations where s > 1, some
important results on the regularity of solutions have been given since the 1960s. Firstly,
Lions [8] showed that if s ≥ 5/4, (1.1) has a unique global smooth solution for any
prescribed smooth initial data (also see [6,16,18]). And for the case 1 < s < 5/4, Katz
and Pavlović showed in [6] that the Hausdorff dimension of the singular set at the time
of first blow-up is at most 5 − 4s. When 0 < s < 1, (1.1) is completely different from
the cases mentioned above. In our previous work [15], we firstly studied steady suitable
weak solutions to (1.1). We showed that the solutions are regular away from a compact
set whose (5 − 6s)-Hausdoff measure is zero if 1/2 < s < 5/6. They are regular if
s ≥ 5/6. For more related works, we refer readers to [3,4].

Before proceeding, we give some definitions and notions which will be used in this
article. Let Ḣs

div be the closure of the set
{
u ∈ C∞

c

(
R

3; R
3
) : div u = 0 in R

3
}

under
the norm defined by

‖u‖Ḣs =
(∫

R3

∫
R3

|u(x)− u(y)|2
|x − y|3+2s

dxdy

)1/2

.

According to [2], for any u ∈ Ḣs
div, there is an extension, denoted by u∗, of u on R

4
+,

such that ⎧⎪⎪⎨
⎪⎪⎩

Div
(
ya ∇u∗) = 0, (x, y) ∈ R

4
+

u∗(x, 0) = u(x), x ∈ R
3

−Cs limy→0+ ya∂yu∗ = (−�)su(x), x ∈ R
3,

(1.2)

where Cs is a constant depending only on s.With this extension, we define suitable weak
solutions to (1.1) in the following:

Definition 1.1. Suppose that on an arbitary interval I ⊂ (0,∞), the force f : R
3 ×

I → R
3 is divergent free spatially in the sense of distribution. Moreover f belongs to

Lq(R3 × I ) for some q > (9 + 6s)/(4s + 1). A pair (u, p) is called a suitable weak
solution of (1.1) on R

3 × I if the following conditions are satisfied:

(1) The functions u : R
3 × I → R

3 and p : R
3 × I → R satisfy

u ∈ L∞(I ; L2(R3)) ∩ L2(I ; Ḣs
div), p ∈ L3/2(R3 × I ).

(2) u, p and f satisfy the Eq. (1.1) in the distribution sense.
(3) For each nonnegative smooth function ψ(x, y, t) with compact support in R

3 × I
and t1, t ∈ I with t1 < t , it holds∫

R3×{t}
|u|2ψ + 2Cs

∫ t

t1

∫
R

4
+

ψ ya |∇u∗|2

≤ Cs

∫ t

t1

∫
R

4
+

|u∗|2 Div
(
ya∇ψ) +

∫ t

t1

∫
R3
(u · ∇ψ)

(
2p + |u|2

)

+
∫ t

t1

∫
R3

|u|2{ψt + Cs lim
y→0+

(
ya∂yψ

)} + 2
∫ t

t1

∫
R3
ψ f · u. (1.3)
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In fact, if u is regular enough (smooth), then the equality in (1.3) holds from integration
by parts.

Our main results are as follows. In Sect. 2, by an inductive argument, we prove

Theorem 1.2. Suppose that 3/4 < s < 1 and f ∈ L2 ⋂ Lq for some q > (9+6s)/(4s +
1). If (u, p) is a suitable weak solution of (1.1), then there exists a positive small constant
ε0 so that for any (x0, t0) ∈ R

3 × I with

lim sup
r→0+

r−5+4s
∫

Q∗
r (x0,t0)

ya |∇u∗|2 < ε0, (1.4)

u is regular in a neighborhood of (x0, t0), where Q∗
r (x0, t0) = Br (x0)× (0, r)× (t0 −

1
2r2s, t0 + 1

2r2s). ε0 depends on the parameter s.

We call (x0, t0) ∈ R
3 × I a regular point of u if there is a neighborhood of (x0, t0)where

u is essentially bounded. The complement set of all regular points is called the singular
set and denoted by Sing(u). In fact, for the singular set of u, using Theorem 1.2, we have

Theorem 1.3. With the assumptions in Theorem 1.2, the singular set Sing(u) is a rela-
tively closed set in R

3 × I with H5−4s (Sing(u)) = 0.

Remark. It is obvious that Theorems 1.2 and 1.3 have generalized the well-known results
for the classical Navier–Stokes system in Caffarelli–Kohn–Nirenberg [1] to the fractional
case. It is worth pointing out that the condition 3/4 < s < 1 is crucial and the method
used here does not work for the case 0 < s ≤ 3/4.

The remaining sections of this paper are organized as follows. Section 2 is devoted to
the complete proof of Theorem 1.2. In Sect. 3 we prove Theorem 1.3 using the standard
covering argument. Finally the proof of the existence of suitable weak solution is given
in Sect. 4.

The following notations are also used in this article. Given two quantities a and b, we
write a � b if there is a universal positive constant C such that a ≤ C b. a �s b means
that there is a positive constant Cs, depending only on s, such that a ≤ Cs b. For any
measurable set A ⊂ R

n and some function f ∈ L1(A), −
∫

A f = 1
|A|
∫

A f is the average

of f over A. For any x0 ∈ R
3 and t0 ≥ 0, we define

Qr (x0, t0) = Br (x0)× (t0 − 1

2
r2s, t0 +

1

2
r2s); Qr,+(x0) = Br (x0)× (0, r);

Q∗
r (x0, t0) = Br (x0)× (0, r)× (t0 − 1

2
r2s, t0 +

1

2
r2s).

For simplicity, we denote Qr (0, 0), Q∗
r (0, 0) and Qr,+(0)by Qr , Q∗

r and Qr,+, respectively.
If c > 0 is a constant, we define

cBr (x0) = Bcr (x0); cQr (x0, t0) = cBr (x0)× (t0 − 1

2
c2sr2s, t0 +

1

2
c2sr2s);

cQr,+(x0) = cBr (x0)× (0, cr);
cQ∗

r (x0, t0) = cQr,+(x0)× (t0 − 1

2
c2sr2s, t0 +

1

2
c2sr2s).

Meanwhile, for any n ∈ N, we let rn = 2−n and define Bn(x0) = Brn (x0) ⊂ R
3,

Qn(x0, t0) = Qrn (x0, t0), Bn∗(x0) = Qrn ,+(x0), Qn∗(x0, t0) = Q∗
rn
(x0, t0). We simply

denote Bn(0), Qn(0, 0), Bn∗(0) and Qn∗(0, 0) by Bn, Qn, Bn∗ and Qn∗ , respectively.



1458 L. Tang, Y. Yu

2. L∞-Estimate

In this section, our main goal is to prove Theorem 1.2. The proof consists of three parts.
In Sect. 2.1 the preliminary energy estimate is given. In Sect. 2.2 we give the proof of
Proposition 2.3, which is the key to the proof of Theorem 1.2. We conclude the proof of
Theorem 1.2 in Sect. 2.3.

2.1. Preliminary energy estimate. In this section, we show the following estimate, a
straightforward result of the energy inequality (1.3):

Lemma 2.1. For any given (x0, t0) ∈ R
3 ×R+ and k0 ∈ N, we have, for all k > k0, that

sup
−r2s

k ≤t≤0

−
∫

Bk (x0)

|u|2 + r−5
k

∫
Qk∗(x0,t0)

ya |u∗|2 + r−3
k

∫
Qk∗(x0,t0)

ya |∇u∗|2

�s r−5
k0

∫
Q

k0∗ (x0,t0)
ya |u∗|2 + −

∫
Qk0 (x0,t0)

|u|2 +
k∑

l=k0

r2s
l −
∫

Ql (x0,t0)
| f | |u|

+
k∑

l=k0

r−a
l

[
−
∫

Ql (x0,t0)
|u|3 + |u| · | p − pl |

]
,

where pl is the averge of p over the ball Bl(x0) in R
3.

Proof. Let χ1 be a cut-off function satisfying:

χ1 ≡ 1 on Qk0+1(x0, t0); χ1 ≡ 0 off 3/2 Qk0+1(x0, t0);

0 ≤ χ1 ≤ 1;
2∑

i=1

r i
k0

‖∇ i
xχ1‖L∞ + r2s

k0
‖∂tχ1‖L∞ ≤ C.

χ2 is another smooth function such that the following conditions hold:

χ2 ≡ 1 on [0, rk0+1]; χ2(y) ≡ 0, ∀ y ≥ 3rk0+1
/

2; 0 ≤ χ2 ≤ 1;
2∑

i=1

r i
k0

‖χ(i)2 ‖L∞ ≤ C.

Here χ(i)2 denotes the i th order derivative of χ2. Using χ1 and χ2, we define χ(x, y, t) =
χ1(x, t)χ2(y). For k ≥ k0, we let

φk(x, y, t) = (t0 + r2s
k − t)−3/(2s) exp

{
− 3(|x − x0|2s + y2s + r2s

k )

4s2Cs(t0 + r2s
k − t)

}
.

Now we insert ψ = ψk = χφk into (1.3). The left-hand side of (1.3) can be bounded
from below by

2 Cs

∫ ∞

−∞

∫
R

4
+

χ φk ya |∇u∗|2 ≥ Cs r−3
k

∫
Qk∗(x0,t0)

ya |∇u∗|2, ∀ k > k0. (2.1)

In order to bound the left-hand side of (2.1) from above, we need to estimate the four
terms on the right-hand side of (1.3) with ψ = ψk = χφk . For convenience we denote
these terms by A, B, C, D, respectively. Without loss of generality, in the following we
assume that (x0, t0) = (0, 0).
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(1) Estimate for the term A

Firstly we split the term A into four parts: A = A.1 + A.2 + A.3 + A.4, where

A.1 = a Cs

∫ ∞

−∞

∫
R

4
+

ya |u∗|2 y−1 χ1 (χ
′
2 φk + χ2∂yφk),

A.2 = 2 Cs

∫ ∞

−∞

∫
R

4
+

ya |u∗|2 ∇χ · ∇φk,

A.3 = Cs

∫ ∞

−∞

∫
R

4
+

ya |u∗|2 φk Div
(∇χ) , A.4 = Cs

∫ ∞

−∞

∫
R

4
+

|u∗|2 χ Div
(
ya ∇φk

)
.

The estimates for A.1–A.3 are similar. By the choices of the cut-off functions χ1 and χ2,
all the derivatives of χ1 and χ2 are supported on Qk0\Qk0+1 and [rk0+1, rk0 ], respectively.
Noticing that

A.1 = a Cs

∫
Qk0

∫ rk0

rk0+1

ya |u∗|2 y−1 χ1 (χ
′
2 φk + χ2∂yφk)

and φk �s r−3
k0
, ∂yφk �s r−4

k0
, y−1 ≤ 2r−1

k0
if y > rk0+1, therefore it holds

A.1 �s r−5
k0

∫
Qk0

∫ rk0

rk0+1

ya |u∗|2 �s r−5
k0

∫
Q

k0∗
ya |u∗|2.

Similarly, we can show that

A.2 + A.3 �s r−5
k0

∫
Q

k0∗
ya |u∗|2.

For the term A.4, the integral is on Qk0\Qk0+1×[rk0+1, rk0 ]. Hence by direct computation,
we have

A.4 �s − r−5
k

∫
Qk∗

ya |u∗|2 + r−5
k0

∫
Q

k0∗
ya |u∗|2.

Therefore we have, by applying the above estimates for A.1–A.4 to (1.3) and (2.1), that
∀ k > k0,

r−3
k

∫
Qk∗

ya |∇u∗|2 + r−5
k

∫
Qk∗

ya |u∗|2 �s r−5
k0

∫
Q

k0∗
ya |u∗|2 + (B + C + D).

(2.2)

(2) Estimate for the term B

We decompose B into two parts: B = B.1 + B.2 where

B.1 =
∫

Qk0
|u|2 + u · ∇ψk and B.2 = 2

∫
Qk0

pu · ∇ψk .

By the definition of χ1, B.1 can be estimated by

B.1 ≤
k−1∑
l=k0

∫
Ql\Ql+1

|u|3 |∇ψk | +
∫

Qk
|u|3 |∇ψk |. (2.3)
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Recalling that ψk = χ φk and |∇ψk | �s r−4
l on Ql\Ql+1, ∀ l = k0, ..., k − 1, we can

bound the right-hand side of (2.3) and show that

B.1 ≤ C∗
s

k∑
l=k0

r2s−1
l −

∫
Ql

|u|3. (2.4)

On the other hand, we define a sequence of cut-off functions χ l ( l = 1, 2, . . .) such that
χ l ≡ 1 on 7/8Ql; χ l ≡ 0 off Ql; ‖∇χ l‖L∞ ≤ C/rl . Then it holds

∫
Qk0

p u · ∇ψk =
k−1∑
l=k0

∫
Qk0

p u · ∇ ((χ l − χ l+1
)
ψk
)

+
∫

Qk0
p u · ∇ (χkψk

)
.

Obviously, χ l − χ l+1 is compactly supported on Bl and χk is compactly supported on
Bk . Utilizing the incompressibility of u, we know that

∫
Qk0

p u · ∇ψk =
k−1∑
l=k0

∫
Ql

(
p − pl

)
u · ∇ ((χ l − χ l+1

)
ψk
)

+
∫

Qk

(
p − pk

)
u · ∇ (χkψk

)
. (2.5)

Applying the facts that

‖ψk ‖L∞(Ql\7/16Ql) �s r−3
l , ‖∇ψk ‖L∞(Ql\7/16Ql) �s r−4

l ,

to the right-hand side of (2.5), we get

B.2 = 2
∫

Qk0
p u · ∇ψk �s

k∑
l=k0

r−a
l −
∫

Ql
|u| ∣∣p − pl

∣∣ ,
which, together with (2.4) yield the following estimate of the term B:

B �s

k∑
l=k0

r−a
l

[
−
∫

Ql
|u|3 + |u| · |p − p̄l |

]
, ∀ k > k0. (2.6)

(3) Estimate for the term C

From our definition, the term C is given by

C =
∫

Qk0
|u|2 lim

y→0+
[χ∂tφk + χtφk + Cs(y

a φk ∂yχ + ya χ ∂yφk)].

In light that χ2 ≡ 1 in [0, rk0+1] and χ∂tφk + Csya χ ∂yφk ≤ 0, the following estimate
holds for C:

C ≤
∫

Qk0
|u|2 lim

y→0+
{χtφk} �s −

∫
Qk0

|u|2. (2.7)

(4) Estimate for the term D
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The term D, according to our definition, is given by

D = 2
k−1∑
l=k0

∫
Ql\Ql+1

ψk f · u + 2
∫

Qk
ψk f · u.

Noticing the support of ψk , we simply bound D by

D �s

k∑
l=k0

r2s
l −
∫

Ql
| f | |u|. (2.8)

Finally, we complete the proof of Lemma 2.1 by applying (2.6)–(2.8) to the right-hand
side of (2.2). ��

Now we finish this section with an inequality, which plays a rather important role in
the following sections:

Proposition 2.2. Let u and u∗ satisfy the condition (1.2). Then for any 0 < γ ≤ 6
3−2s ,

there exists some constant depending only on s and γ such that the following holds:

(
−
∫

3/4 Bρ(x0)

| u(x)− (u)ρ |γ dx

)2/γ

≤ C∗
s ρ2s−3

∫
Qρ,+

ya |∇u∗|2dxdy, ∀ ρ > 0.

Proof. By translation and scaling, we may assume that x0 = 0 and ρ = 1. Let ξ∗
be a smooth function on R

4
+ such that 0 ≤ ξ∗ ≤ 1, ξ∗ ≡ 1 on 3/4 Q1,+, ξ

∗ ≡
0 outside Q1,+ and |∇ξ∗| ≤ 1 on R

4
+. Then ξ∗u∗ ∈ H1(R4

+; ya). Moreover, by [2], ξu ∈
Hs(R3) with ξ(·) = ξ∗(·, 0). Since (ξu)∗|y=0 = ξ∗u∗|y=0 = ξu,

∫
R

4
+

ya |∇(ξu)∗|2 ≤∫
R

4
+

ya |∇(ξ∗u∗)|2 in that (ξu)∗ minimizes the weighted Dirichlet energy in H1(R+
4; ya)

with the prescribed data ξu on y = 0. By fractional Gagliardo–Nirenberg inequality in
[10] and Hölder’s inequality, we have

‖u‖2
Lγ (3/4B1)

�s,γ ‖ξu‖2
L6/(3−2s)(R3)

�s,γ ‖ξu‖2
Ḣs (R3)

=
∫

R
4
+

ya |∇(ξu)∗|2

�s,γ

∫
R

4
+

ya |∇(ξ∗u∗)|2 �s,γ

[∫
Q1,+

ya |u∗|2 + ya |∇u∗|2
]
. (2.9)

By the weighted Poincaré inequality in [5], it holds∫
Q1,+

ya |u∗ − (u∗)Q1,+ |2 �s

∫
Q1,+

ya |∇u∗|2, (2.10)

where (u∗)Q1,+ = 1
|Q1,+|

∫
Q1,+

ya u∗(x, y)dx dy. Thus by (2.9) and (2.10), we have

‖u − (u∗)Q1,+‖Lγ (3/4B1) �s,γ

(∫
Q1,+

ya |∇u∗|2
)1/2

. (2.11)
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Since u∗(x, y) = u(x) +
∫ y

0 ∂zu∗ dz, one can show that

(u∗)Q1,+ − −
∫

B1

u = Cs

∫
Q1,+

ya
∫ y

0
∂zu∗ dz.

Using Hölder’s inequality and the fact a = 1−2s < 0, the left-hand side of the equality
above can be estimated by

∣∣∣∣ (u∗)Q1,+ − −
∫

B1

u

∣∣∣∣ �s

(∫
Q1,+

ya |∇u∗|2
)1/2

. (2.12)

Therefore, the estimates (2.11) and (2.12) indicate that

(
−
∫

3/4 B1

∣∣∣∣ u − −
∫

B1

u

∣∣∣∣
γ)1/γ

≤
(

−
∫

3/4B1

∣∣ u − (u∗)Q1,+

∣∣γ)1/γ

+

(
−
∫

3/4B1

∣∣∣∣(u∗)Q1,+ − −
∫

B1

u

∣∣∣∣
γ)1/γ

�s,γ

(∫
Q1,+

ya |∇u∗|2
)1/2

.

��
2.2. Main assumptions for the inductive arguments. In this part, we deduce the necessary
assumptions for the proof of L∞-boundedness of u which are the starting points of the
inductive arguments in next section. For any r > 0, we define :

A(r) = r4s−5 sup
t∈Ir

∫
Br ×{t}

|u|2, G(r) = r4s−6
∫

Qr

|u|3, H(r) = r4s−7
∫

Q∗
r

ya |u∗|2,

δ(r) = r4s−5
∫

Q∗
r

ya |∇u∗|2, F(r) = r4s−9/2
∫

Qr

| f |3/2,

Pω(r) = rαs, ω

∫
Ir

(∫
Br

| p |
)ω
,

where αs,ω = (4s − 5)ω − 2s. The main result in this section is

Proposition 2.3. If the assumption (1.4) holds and (x0, t0) = (0, 0), then

lim sup
r→0+

[
A(r) + G(r)2/3 + P2/ω0

ω0
(r)
]

�s,ω0 ε0.

Here ε0 is the constant in (1.4). ω0 is a constant in the interval (4s/(6s − 3), 2).

The proof of this proposition consists of several lemmas.

Lemma 2.4. If u ∈ Hs is a suitable weak solution of (1.1), then for any ρ ≥ 3r and
t ∈ Ir = [− 1

2r2s, 1
2r2s], we have that
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∫
Br

|u|3/s �s
r3

ρ3(2s−1)/s
A(ρ)3/(2s)

+ ρ
3(5−4s)(4s−3)

4s2 A(ρ)
3(4s−3)

4s2

(∫
Qρ,+

ya |∇u∗|2
) 3(3−2s)

4s2

+
ρ(−s+ 5

2 )
3
2s

r
3(3−2s)

2s

A(ρ)
3
4s

(∫
Qρ,+

ya |∇u∗|2
) 3

4s

.

Proof. Let η be a cut-off function supported on Q2r,+, which satisfies : η ≡ 1 on Qr,+,
0 ≤ η ≤ 1 on Q2r,+ and ‖∇η‖L∞ � 1/r . By the fractional Gagliardo–Nirenberg
inequality in [10] and the extension lemma of the fractional Laplacian in [2], we have

‖η0u‖L6/(3−2s)(Br )
�s ‖η0u‖Ḣs =

(∫
R

4
+

ya |∇(η0u)∗|2
)1/2

.

Here η0(·) = η(·, 0). (η0u)∗ is the extension of ηu to R
4
+. Since ηu∗ has the same

boundary condition as (η0u)∗ on y = 0, it holds

‖η0u‖L6/(3−2s)(Br )
�s

(∫
R

4
+

ya |∇(η0u)∗|2
)1/2

�
(∫

R
4
+

ya |∇(ηu∗)|2
)1/2

�s r−1

(∫
Q2r,+

ya |u∗|2
)1/2

+

(∫
Q2r,+

ya |∇u∗|2
)1/2

. (2.13)

By (2.10) and (2.12), the first term on the right-hand side of (2.13) can by estimated by∫
Q2r,+

ya |u∗|2 �s r2−2s
∫

B2r

|u|2 + r2
∫

Q2r,+

ya |∇u∗|2. (2.14)

In light of the support of η0, (2.13)–(2.14) show that

‖u‖L6/(3−2s)(Br )
�s r−s

(∫
B2r

|u|2
)1/2

+

(∫
Q2r,+

ya |∇u∗|2
)1/2

. (2.15)

By Hölder’s inequality, it is easy to show that

∫
Br

|u|3/s ≤
(∫

Br

|u|2
) 3(4s−3)

4s2
(∫

Br

|u| 6
3−2s

) (3−2s)2

4s2

.

Applying (2.15) to the right-hand side of the inequality above, we have

∫
Br

|u|3/s �s

(∫
Br

|u|2
) 3(4s−3)

4s2
(∫

Q2r,+

ya |∇u∗|2
) 3(3−2s)

4s2

+ r− 3(3−2s)
2s

(∫
B2r

|u|2
)3/(2s)

.

Therefore, for any ρ ≥ 2r , we know that

∫
Br

|u|3/s �s ρ
3(5−4s)(4s−3)

4s2 A(ρ)
3(4s−3)

4s2

(∫
Qρ,+

ya |∇u∗|2
) 3(3−2s)

4s2
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+ r− 3(3−2s)
2s

(∫
B2r

|u|2
)3/(2s)

. (2.16)

We now turn to L2-estimate of u on B2r . At almost every time, we have

∫
B2r

|u|2 =
∫

B2r

|u|2 − |uρ |2 +
∫

B2r

|uρ |2 �
∫

B2r

|u + uρ ||u − uρ | +

(
r

ρ

)3 ∫
Bρ

|u|2.

By Hölder’s and Minkowski’s inequalities, we get, for ρ ≥ 3r , that

∫
B2r

|u|2 � ρs

(∫
Bρ

|u|2
)1/2 (∫

B3ρ/4

|u − uρ |6/(3−2s)

)(3−2s)/6

+

(
r

ρ

)3 ∫
Bρ

|u|2.

Applying Proposition 2.2 to the right-hand side above, it shows

∫
B2r

|u|2 �s ρ
s

(∫
Bρ

|u|2
)1/2 (∫

Qρ,+
ya |∇u∗|2

)1/2

+

(
r

ρ

)3 ∫
Bρ

|u|2.

Therefore, for almost every t ∈ Ir , we show that

∫
B2r

|u|2 �s ρ
−s+5/2A(ρ)1/2

(∫
Qρ,+

ya |∇u∗|2
)1/2

+
r3

ρ4s−2 A(ρ).

The proof can be fnished by applying the estimate above to (2.16). ��
Lemma 2.5. If u is the same as in Lemma 2.4, then for all ρ ≥ 3r , it holds

r4s−6
∫

3/4Qr

|u|
∣∣∣|u|2 − |ur |2

∣∣∣ �s A(r)1/2
[(

r

ρ

)2s−1

A(ρ)1/2δ(r)1/2

+
(ρ

r

)5−4s
A(ρ)

4s−3
4s δ(ρ)

3
4s

+
(ρ

r

) 10−7s
2

A(ρ)1/4δ(ρ)3/4
]
.

Proof. At almost every time t , by Hölder’s inequality, we have∫
3/4Br

|u|
∣∣∣|u|2 − |ur |2

∣∣∣
≤
(∫

3/4Br

|u|3/s
)s/3 (∫

3/4Br

|u + ur |2
)1/2 (∫

3/4Br

|u − ur |6/(3−2s)
)(3−2s)/6

.

Applying Minkowski’s inequality and Proposition 2.2 to the right-hand side above, we
get

∫
3/4Br

|u|
∣∣∣|u|2 − |ur |2

∣∣∣ �s

(∫
3/4Br

|u|3/s
)s/3 (∫

Br

|u|2
)1/2

(∫
Qr,+

ya |∇u∗|2
)1/2

.
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Integrating the above inequality with respect to time t over I3r/4, it holds

∫
3/4Qr

|u|
∣∣∣|u|2 − |ur |2

∣∣∣ �s sup
t∈Ir

(∫
Br

|u|2
)1/2 ∫

Ir

(∫
Br

|u|3/s
)s/3

·
(∫

Qr,+

ya |∇u∗|2
)1/2

dt

which shows that

r4s−6
∫

3/4Qr

|u|
∣∣∣|u|2 − |ur |2

∣∣∣ �s r
4s−7

2 A(r)1/2
∫

Ir

(∫
Br

|u|3/s
)s/3

·
(∫

Qr,+

ya |∇u∗|2
)1/2

dt. (2.17)

By Lemma 2.4, we know that for ρ ≥ 3r and t ∈ Ir ,

(∫
Br

|u|3/s
)s/3

(∫
Qr,+

ya |∇u∗|2
)1/2

�s
r s

ρ2s−1 A(ρ)1/2
(∫

Qr,+

ya |∇u∗|2
)1/2

+ρ
(5−4s)(4s−3)

4s A(ρ)
(4s−3)

4s

(∫
Qρ,+

ya |∇u∗|2
) 3

4s

+
ρ(−s+ 5

2 )
1
2

r
(3−2s)

2

A(ρ)
1
4

(∫
Qρ,+

ya |∇u∗|2
) 3

4

.

Integrating the above estimate with respect to the time t over Ir , we get, by Hölder
inequality, that

∫
Ir

(∫
Br

|u|3/s
)s/3

(∫
Qr,+

ya |∇u∗|2
)1/2

dt �s
r2s

ρ2s−1 A(ρ)1/2
(∫

Q∗
r

ya |∇u∗|2
)1/2

+ r
4s−3

2 ρ
(5−4s)(4s−3)

4s A(ρ)
4s−3

4s

(∫
Q∗
ρ

ya |∇u∗|2
) 3

4s

+
ρ

5−2s
4

r
3(1−s)

2

A(ρ)1/4
(∫

Q∗
ρ

ya |∇u∗|2
)3/4

,

which, together with the estimate (2.17), concludes the proof of Lemma 2.5. ��
With Lemma 2.5, we can estimate the L3-norm of u as follows:

Lemma 2.6. For any ρ ≥ 3r , we have

G(3/4r) �s

(
r

ρ

)4s−3

G(ρ) +
(ρ

r

)6−4s
δ(ρ)1/2 [A(ρ) + δ(ρ)] .
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Proof. By Lemma 2.5 and Young’s inequality, for ρ ≥ 3r , we have

ρ4s−6
∫

3/4Qρ
|u|
∣∣∣|u|2 − |uρ |2

∣∣∣ �s δ(ρ)
1/2 [A(ρ) + δ(ρ) ]

which shows that,∫
3/4Qr

|u|3 =
∫

3/4Qr

|u|
(
|u|2 − |uρ |2

)
+
∫

3/4Qr

|u||uρ |2

�s ρ
6−4s δ(ρ)1/2 [A(ρ) + δ(ρ) ] +

∫
I3r/4

|uρ |2
(∫

B3r/4

|u|dx

)
dt. (2.18)

Using Hölder’s and Young’s inequalities, the second term on the right-hand term of
(2.18) is bounded by

∫
I3r/4

|uρ |2
(∫

B3r/4

|u|dx

)
dt �

(
r

ρ

)2 ∫
I3r/4

(∫
Bρ

|u|3
)2/3 (∫

B3r/4

|u|3
)1/3

dt

� 2/3

(
r

ρ

)3 ∫
Qρ

|u|3 + 1/3
∫

3/4Qr

|u|3.

When the estimate above is applied to (2.18), we get

G(3r/4) �s

(
r

ρ

)4s−3

G(ρ) +
(ρ

r

)6−4s
δ(ρ)1/2 [A(ρ) + δ(ρ)] .

��
The next lemma is devoted to estimating the pressure term Pω(r).

Lemma 2.7. Suppose that ω and q0 are constants satisfying

ω > s/(2s − 1) and 1 < q0 ≤ 3

3 − 2s
(2.19)

and ν1, ν2, ν∗
1 , ν∗

2 are positive constants such that

ν∗
1 + ν∗

2 = 1, ν1 + ν2 = 1, ων∗
2 ≤ 1, ων2 ≤ 1, and 3 − 3q0 + 2s q0 ν2 ≥ 0.

(2.20)

Then we have, for any ρ ≥ 4r , that

P1/ω
ω (r) �q0,ω

(
r

ρ

)(4s−2)−2s/ω

P1/ω
ω (ρ) +

(
r

ρ

)4s−2−2sν∗
2

A(ρ)ν
∗
1 δ(ρ)ν

∗
2

+
(ρ

r

)2−4s+2sν2+3/q0
A(ρ)ν1δ(ρ)ν2 .
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Proof. Let φ be a cut-off function compactly supported in B3ρ with the property: φ ≡ 1
on B2ρ , 0 ≤ φ ≤ 1, |∇φ| ≤ 1/ρ and |∇2φ| ≤ 1/ρ2. For all x ∈ Bρ , we can decompose
p as follows: p = p1 + p2 where

p1(x) = 3

4π

∫
R3

p(y)

|x − y| �φ(y) +
3

2π

∫
R3

p(y)

|x − y|3 (x − y) · ∇iφ(y),

p2(x) = 3

4π

∫
R3

∇i j

(
φ(y)

1

|x − y|
)(

ui − ui
4ρ

) (
u j − u j

4ρ

)
.

(2.21)

For the term p1, we know that | p1(x) | � −
∫

4Bρ
| p |, ∀ x ∈ Bρ. Therefore for any

r ≤ ρ, we get ∫
Br

| p1 | � r3 ‖p1‖L∞(Br ) �
(

r

ρ

)3 ∫
4Bρ

| p |

which indicates that

rαs, ω

∫
Ir

(∫
Br

| p1 |
)ω

�ω

(
r

ρ

)(4s−2)ω−2s

Pω(4ρ). (2.22)

As for the second term p2, we have

p2 = p2,1 + p2,2 = 3

4π

∫
R3

1

|x − y|∇i jφ
(

ui − ui
4ρ

)
(u j − u j

4ρ)

+ 2∇i

(
1

|x − y|
)

∇ jφ
(

ui − ui
4ρ

)
(u j − u j

4ρ)

+
3

4π

∫
R3

∇i j

(
1

|x − y|
)
φ
(

ui − ui
4ρ

)
(u j − u j

4ρ).

By the choice of cut-off function φ, p2,1 can be estimated by

| p2,1(x) | � −
∫

3Bρ
|u − u4ρ |2, ∀ x ∈ Bρ.

Then for all r ≤ ρ and x ∈ Bρ , we have, by applying Hölder’s inequality and Proposition
2.2 to the right-hand side above, that

| p2,1(x) | � ρ2 s ν∗
2 −3

(∫
B4ρ

|u|2
)ν∗

1
(∫

B3ρ

|u − u4ρ | 6
3−2s

) 3−2s
6 ·2ν∗

2

� ρ2 s ν∗
2 −3

(∫
B4ρ

|u|2
)ν∗

1
(∫

Q4ρ,+

ya |∇u∗|2
)ν∗

2

.

This shows, by integrating over Br and Ir, that

∫
Ir

(∫
Br

| p2,1 |
)ω

�ω r3ω ρ[2sν∗
2 −3+(5−4s)ν∗

1 ]ω A(4ρ)ων
∗
1

∫
Ir

(∫
Q4ρ,+

ya |∇u∗|2
)ων∗

2

�ω r3ω+2s(1−ων∗
2 ) ρ(2sν∗

2 +2−4s)ω A(4ρ)ων
∗
1 δ(4ρ)ων

∗
2 .



1468 L. Tang, Y. Yu

Multiplying both sides above by rαs, ω , it holds

rαs, ω

∫
Ir

(∫
Br

| p2,1 |
)ω

�ω

(
r

ρ

)(4s−2−2sν∗
2 )ω

A(4ρ)ων
∗
1 δ(4ρ)ων

∗
2 . (2.23)

Finally, we give the estimate on p2,2. By Hölder’s inequality and Calderon–Zygmund
estimate (see [14]), we have, for all q0 satisfying the hypothesis in the lemma, that∫

Br

| p2,2 | � r
3 (1− 1

q0
) ‖p2,2‖Lq0 �q0 r

3 (1− 1
q0
)
∥∥∥φ |u − u4ρ |2

∥∥∥
Lq0
.

By the assumptions on q0, ν1 and ν2, we know that 2q0ν1 ≤ 2 and 2q0ν2 ≤ 6/(3 − 2s).
Therefore using Hölder’s and Minkowski’s inequalities, we have

∫
Br

| p2,2 | �q0 r
3 (1− 1

q0
)

(∫
B4ρ

|u|2
)ν1

(∫
B3ρ

|u − u4ρ |6/(3−2s)

) 3−2s
6 ·2ν2

ρ2sν2−3+3/q0 .

Applying Proposition 2.2 to the right-hand side above, the following inequality holds :∫
Br

| p2,2 | �q0 r
3 (1− 1

q0
)

(∫
B4ρ

|u|2
)ν1

(∫
Q4ρ,+

ya |∇u∗|2
)ν2

ρ2sν2−3+3/q0

which leads to the estimate

rαs, ω

∫
Ir

(∫
Br

| p2,2|
)ω

�q0,ω

(ρ
r

)ω(2−4s+2sν2+3/q)
A(4ρ)ων1δ(4ρ)ων2 (2.24)

From the above estimates (2.22)–(2.24), we get that

P1/ω
ω (r) �q0,ω

(
r

ρ

)(4s−2)−2s/ω

P1/ω
ω (4ρ) +

(
r

ρ

)4s−2−2sν∗
2

A(4ρ)ν
∗
1 δ(4ρ)ν

∗
2

+
(ρ

r

)2−4s+2sν2+3/q0
A(4ρ)ν1δ(4ρ)ν2 .

��
The following lemma gives the estimate for A(r).

Lemma 2.8. Let u be the same as before and ρ0 > 0 be a constant suitably small such
that

δ(ρ) < ε0, ∀ ρ < ρ0.

Let ω > 4s/(6s − 3) be a positive constant. Then for all ρ ≥ 6r and ρ < ρ0, we have
that

A(r) �s

(
r

ρ

)τ(s,ω) (
A(ρ) + G(ρ)2/3 + P2/ω

ω (ρ)
)

+
(ρ

r

)6−6s
A(ρ) δ(ρ)1/2

+
(ρ

r

)β(s,ω)
δ(ρ) +

(ρ
r

)7−4s
F(ρ)4/3.

Here ε0 is the constant in (1.4). τ(s, ω) and β(s, ω) are some positive constants depend-
ing on s and ω.
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Proof. Firstly, we introduce the three cut-off functions ξi (i = 1, 2, 3) : (1) ξ1 ∈
C∞

0 (R
3), ξ1 ≡ 0 outside B3/2r , ξ1 ≡ 1 on Br , 0 ≤ ξ1 ≤ 1 and r ‖∇ξ1‖L∞ +

r2
∥∥∇2ξ1

∥∥
L∞ � 1; (2) ξ2 ∈ C∞(R+), ξ2(y) ≡ 0 if y ≥ 3/2r, ξ2 ≡ 1 on (0, r), 0 ≤

ξ2 ≤ 1 and r
∥∥ξ ′

2

∥∥
L∞ +r2

∥∥∥ξ ′′
2

∥∥∥
L∞ � 1; (3) ξ3 ∈ C∞

0 (R), ξ3 ≡ 0 outside I3/2r , ξ3 ≡
1 on Ir , 0 ≤ ξ3 ≤ 1 and r2s

∥∥ξ ′
3

∥∥
L∞ � 1.Lettingψ(x, y, t) in (1.3) be ξ1(x)ξ2(y)ξ3(t),

we know that∫
Br ×{t}

|u|2 �s r−2
∫

Q∗
2r

ya |u∗|2 + r−2s
∫∫

Q2r

|u|2

+ r−1
∫

Q3r/2

| p | |u| + r−1
∫

Q3r/2

|u|
∣∣∣|u|2 − |u2r |2

∣∣∣ +
∫∫

Q2r

| f ||u|.

which, by (2.14), implies that∫
Br ×{t}

|u|2 �s

∫
Q∗

2r

ya |∇u∗|2

+ r−2s
∫

Q2r

|u|2 + r−1
∫

Q3r/2

| p | |u| + r−1
∫

Q3r/2

|u|
∣∣∣|u|2 − |u2r |2

∣∣∣ +
∫

Q2r

| f ||u|.
(2.25)

We now denote by I.1 to I.4 the last four terms on the right-hand side of (2.25), respec-
tively.

1. Estimate of I.1. By Hölder’s inequality, it holds

I.1 = r−2s
∫

Q2r

|u|2 � r3−4s
∫

I2r

(∫
2Br

|u|3/s
)2s/3

.

From Lemma 2.4, we have, for all ρ ≥ 6r , that

I.1 �s
r3

ρ4s−2 A(ρ) + ρ5−4s A(ρ)
4s−3

2s δ(ρ)
3−2s

2s +
ρ5−3s

r s
A(ρ)

1
2 δ(ρ)

1
2 . (2.26)

2. Estimate of I.2. By the decomposition (2.21), we have

I.2 � r−1
∫

Q3r/2

|p1||u| + r−1
∫

Q3r/2

|p2,1||u| + r−1
∫

Q3r/2

|p2,2||u|. (2.27)

We denote the three terms on the right-hand side above by I.2.1–I.2.3, respectively.
Utilizing (2.21) and Hölder inequality, it holds:

I.2.1 � r−1
∫

I3r/2

‖p1(·, t)‖L∞(B3r/2)

∫
B3r/2

|u| � r−1ρ−3
∫

I3r/2

∫
Bρ

|p|
∫

B3r/2

|u|

�s r2−sρ−3
∫

I3r/2

∫
Bρ

|p|
(∫

B3r/2

|u|3/s
)s/3

.
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Applying Lemma 2.4 to the inequality above, we get

I.2.1 �s
r2

ρ2s+2 A1/2(ρ)

∫
I3r/2

∫
Bρ

|p|

+ r2−sρ
(5−4s)(4s−3)

4s −3 A(ρ)
4s−3

4s

∫
I3r/2

∫
Bρ

|p|
(∫

Qρ,+
ya |∇u∗|2

) 3−2s
4s

+
r1/2

ρ
2s+7

4

A(ρ)1/4
∫

I3r/2

∫
Bρ

|p|
(∫

Qρ,+
ya |∇u∗|2

)1/4

.

Sinceω > 4s/(6s−3), by Hölder’s inequality, the right-hand side above can be bounded
by

I.2.1 �s,ω
r2+2s−2s/ω

ρ6s−3−2s/ω
A(ρ)1/2 P1/ω

ω (ρ)

+r2s+1/2−2s/ωρ−6s+9/2+2s/ω A(ρ)
4s−3

4s P1/ω
ω (ρ) δ(ρ)

3−2s
4s

+
r (3s+1)/2−2s/ω

ρ11s/2−9/2−2s/ω
A(ρ)1/4 P1/ω

ω (ρ) δ(ρ)1/4. (2.28)

Now wo go to the term I.2.2. Let ν∗
1 = 0, ν∗

2 = 1 in (2.20). By Hölder’s inequality,
we know that

I.2.2 � r−1
∫

I3r/2

‖p2,1‖L∞(B3r/2)

∫
B3r/2

|u|

�s r−1ρ2s−3
∫

I3r/2

(∫
Qρ,+

ya |∇u∗|2
)∫

B3r/2

|u|

�s r1/2ρ−4s+9/2 A(ρ)1/2 δ(ρ). (2.29)

For I.2.3, by Hölder’s inequality, it holds that

I.2.3 � r−1
∫

I3r/2

(∫
B3r/2

|p2,2|2
)1/2 (∫

B3r/2

|u|2
)1/2

� r−1 ρ
5−4s

2 A(ρ)1/2
∫

I3r/2

‖p2,2‖L2 .

By Calderon–Zygmund estimate (see [14]), the L2 norm of p2,2 on B3r/2 can be estimated
for almost every t ∈ I3r/2. Therefore from the estimate above, we see that

I.2.3 �s r−1 ρ
5−4s

2 A(ρ)1/2
∫

I3r/2

(∫
B3ρ/4

|u − uρ |4
)1/2

.

Since s > 3/4, then 6/(3 − 2s) > 4. Therefore applying Proposition 2.2 to the estimate
above, we can show

I.2.3 �s

(ρ
r

)
A(ρ)1/2

∫
I3r/2

∫
Qρ,+

ya |∇u∗|2 �s
ρ6−4s

r
A(ρ)1/2 δ(ρ). (2.30)
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Using (2.28)–(2.30), I.2 can be bounded by

I.2 �s,ω
r2+2s−2s/ω

ρ6s−3−2s/ω
A(ρ)1/2 P1/ω

ω (ρ)

+ r2s+1/2−2s/ωρ−6s+9/2+2s/ω A(ρ)
4s−3

4s P1/ω
ω (ρ) δ(ρ)

3−2s
4s

+
r (3s+1)/2−2s/ω

ρ11s/2−9/2−2s/ω
A(ρ)1/4 P1/ω

ω (ρ) δ(ρ)1/4

+ r1/2ρ−4s+9/2 A(ρ)1/2 δ(ρ) +
ρ6−4s

r
A(ρ)1/2 δ(ρ). (2.31)

3. Estimate of I.3. By Lemma 2.5, it is clear that

I.3 �s r5−4s
[(ρ

r

)6−6s
A(ρ)δ(ρ)1/2 +

(ρ
r

)3(5−4s)/2
A(ρ)

6s−3
4s δ(ρ)

3
4s

+
(ρ

r

) 15−11s
2

A(ρ)
3
4 δ(ρ)

3
4

]
. (2.32)

4. Estimate of I.4. By Hölder inequality, we have

I.4 �
(∫

Qρ
| f |3/2

)2/3 (∫
Qρ

|u|3
)1/2

� ρ5−4sF(ρ)2/3G(ρ)1/3. (2.33)

Applying (2.26) and (2.31)–(2.33) to (2.25), we have

A(r) �s,ω

(
r

ρ

)4s−2

A(ρ) +
(ρ

r

)5−4s
δ(ρ)

+
(ρ

r

)5−4s
A(ρ)

4s−3
2s δ(ρ)

3−2s
2s +

(ρ
r

)5−3s
A(ρ)

1
2 δ(ρ)

1
2

+

(
r

ρ

)6s−3−2s/ω

A(ρ)1/2 P1/ω
ω (ρ)

+
(ρ

r

)−6s+9/2+2s/ω
A(ρ)

4s−3
4s P1/ω

ω (ρ) δ(ρ)
3−2s

4s

+

(
r

ρ

)(11s−9)/2−2s/ω

A(ρ)1/4 P1/ω
ω (ρ) δ(ρ)1/4 +

(
r

ρ

)4s−9/2

A(ρ)1/2 δ(ρ)

+
(ρ

r

)6−4s
A(ρ)1/2 δ(ρ) +

(ρ
r

)6−6s
A(ρ) δ(ρ)1/2

+
(ρ

r

)3(5−4s)/2
A(ρ)

6s−3
4s δ(ρ)

3
4s +

(ρ
r

) 15−11s
2

A(ρ)
3
4 δ(ρ)

3
4

+
(ρ

r

)5−4s
F(ρ)2/3 G(ρ)1/3.

Finally, the proof can be finished by Young’s inequality. ��
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In the end we go to the proof of Proposition 2.3:

Proof of Proposition 2.3. By Lemma 2.5 and Young’s inequality, for all ρ ≥ 4r , it holds
that

G2/3(r) �s

(
r

ρ

) 2(4s−3)
3

G2/3(ρ) +
(ρ

r

) 4(3−2s)
3

[
δ1/3(ρ)A2/3(ρ) + δ(ρ)

]

�s

(
r

ρ

) 2(4s−3)
3

G2/3(ρ) +

(
r

ρ

)4s−2

A(ρ) +
(ρ

r

)8
δ(ρ). (2.34)

We set the constants in Lemma 2.7 as follows:

ω = ω0, q0 = 3

3 − 2s/ω0
, ν1 = ν∗

1 = 1 − 1/ω0, ν2 = ν∗
2 = 1/ω0,

ω0 ∈ (4s/(6s − 3), 2). (2.35)

Therefore by Lemma 2.7, we have that

P2/ω0
ω0

(r) �ω0

(
r

ρ

)4(2s−1)−4s/ω0

P2/ω0
ω0

(ρ) +
(ρ

r

)2(5−4s)
A(ρ)2−2/ω0δ(ρ)2/ω0 ,

∀ ρ ≥ 4r.

Since we assume in (2.35) that ω0 < 2, it holds 2 − 2/ω0 < 1. Therefore by Young’s
inequality, for any ρ ≥ 4r , the above estimate can be reduced to

P2/ω0
ω0

(r) �ω0

(
r

ρ

)4(2s−1)−4s/ω0

P2/ω0
ω0

(ρ) +
(ρ

r

)2(5−4s)
A(ρ)2−2/ω0δ(ρ)2/ω0

�ω0

(
r

ρ

)4(2s−1)−4s/ω0

P2/ω0
ω0

(ρ) +

(
r

ρ

)4s−2

A(ρ) +
(ρ

r

)β(s,ω0)

δ(ρ),

(2.36)

where β(s, ω0) is chosen suitably large so that (2.36) and Lemma 2.8 hold for the same
β(s, ω0). Moreover we can choose a suitably small τ(s, ω0) such that the following
holds:

P2/ω0
ω0

(r) �ω0

(
r

ρ

)τ(s,ω0) (
P2/ω0
ω0

(ρ) + A(ρ)
)

+
(ρ

r

)β(s,ω0)

δ(ρ), ∀ ρ ≥ 4r.

(2.37)

We can also choose τ(s, ω0) suitably small so that (2.37) and Lemma 2.8 hold with
the same exponent τ(s, ω0). Using (2.34), (2.37) and Lemma 2.8, we have, for suitably
small τ(s, ω0) and suitably large β(s, ω0), that

M(r) ≤ C∗
s,ω0

(
r

ρ

)τ(s,ω0)

M(ρ) + C∗
s,ω0

(ρ
r

)β(s,ω0)

δ(ρ)

+ C∗
s,ω0

(ρ
r

)6−6s
A(ρ) δ(ρ)1/2 + C∗

s,ω0

(ρ
r

)7−4s
F(ρ)4/3, (2.38)
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where M(r) = A(r)+G(r)2/3 +P2/ω0
ω0 (r).We choose a γ0 < 1/6 so that C∗

s,ω0
γ
τ(s,ω0)
0 ≤

1/4, then by (2.36), it holds:

M(γ0ρ) ≤ 1

4
M(ρ) + C∗

s,ω0
γ

−β(s,ω0)
0 ε0 + C∗

s,ω0
γ 6s−6

0 ε
1/2
0 A(ρ)

+ C∗
s,ω0

γ 4s−7
0 F(ρ)4/3, ∀ ρ < ρ0,

where ρ0 and ε0 satisfy the hypothesis in Lemma 2.8. Now we fix the γ0 and choose ε0

small enough such that C∗
s,ω0

γ 6s−6
0 ε

1/2
0 ≤ 1/4, then the above estimate implies that

M(γ0ρ) ≤ 1

2
M(ρ) + C∗

s,ω0
γ

−β(s,ω0)
0 ε0 + C∗

s,ω0
γ 4s−7

0 F(ρ)4/3, ∀ ρ < ρ0. (2.39)

In light of the integrability condition of f , we have that limρ→0+ F(ρ) = 0. Therefore
we can find a constant C∗∗

s,ω0
such that

M(γ0ρ) ≤ 1

2
M(ρ) + C∗∗

s,ω0
ε0, ∀ ρ < ρ0.

Standard iteration argument shows that

lim
ρ→0

M(ρ) ≤ C∗∗
s,ω0

ε0.

��
Now we set up the assumptions for our inductive arguments in Sect. 2.3. For any

r > 0, we rescale (u, p) by defining,

ur (x) = r2s−1 u(r x, r2s t), pr (x) = r4s−2 p(r x, r2s t).

(ur , pr ) solve (1.1) with the force fr (x) = r4s−1 f (r x, r2s t). The Caffarelli-
Silvestre extension in [2] of ur is given by u∗

r (x, y, t) = r2s−1 u∗(r x,
r y, r2s t).

By the small energy condition (1.4), we get that lim supr→0+

∫
Q∗

1
ya |∇u∗

r |2 ≤ ε0.

Since q > (9 + 6s)/(4s + 1) and s > 3/4, it holds

lim
r→0

∫
Q1

| fr (x, t)|q = lim
r→0

r (4s−1)q−(3+2s)
∫

Qr

| f (x, t)|q = 0.

Therefore by Proposition 2.3, we have, for r > 0 small enough, that∫
Q∗

1

ya |∇u∗
r |2 + ‖ fr‖Lq (Q1) +

(∫
Q1

|ur (x, t)|3
)2/3

+ sup
t∈I1

∫
B1×{t}

|ur |2 +

[∫
I1

(∫
B1

|pr |dx

)ω0

dt

]2/ω0

�s ε0. (2.40)

Fixing a small r > 0 such that (2.40) holds, we study (ur , pr , fr ) in what follows.
Without ambiguity, we still use (u, p, f ) to denote (ur , pr , fr ). By (2.14) and (2.40),
we have ∫

Q∗
1

ya |u∗|2 + ‖ f ‖Lq (Q1) +

(∫
Q1

|u(x, t)|3
)2/3
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+ sup
t∈I1

∫
B1×{t}

|u|2 +

[∫
I1

(∫
B1

|p|dx

)ω0

dt

]1/ω0

�s

(
ε0 + ε

1/2
0

)
. (2.41)

Choosing ε0, depending on s, small enough, we get, by (2.41), that∫
Q∗

1

ya |u∗|2 + ‖ f ‖Lq (Q1) +

(∫
Q1

|u(x, t)|3
)2/3

+ sup
t∈I1

∫
B1×{t}

|u|2 +

[∫
I1

(∫
B1

|p|dx

)ω0

dt

]1/ω0

≤ ε
1/3
0 := ε1. (2.42)

This is the assumption for the inductive argument in Sect. 2.3.

2.3. Inductive arguments and L∞ - estimate of u. In this section, we show that

Proposition 2.9. There exists some small constant ε1 = ε1(s) such that if the condition
(2.42) holds, then

−
∫

Qk (x0,t0)
|u|3 + rα0

k |u| · | p − pk | ≤ ε
2/3
1 , ∀ k ≥ 3, (x0, t0) ∈ Q3

where pk denotes the average of p on the ball Bk(x0) = B2−k (x0) and α0 = max{ 4s
3 −

1, 2s
ω0

− 1}.
Remark. By Lebesgue differentiation Theorem (see [14]), Proposition 2.9 indicates the
desired L∞ - boundedness of u in Q3.

Proof of Proposition 2.9. Using the same decomposition of p as in Lemma 3.2 of [1]
(taking r = 1/8 and ρ = 1/2 there), we have, by (2.42), that∫

Q3(x0,t0)
|u| · |p − p3| �

(∫
Q2

|u|3
)1/3 (∫

Q1
|u|3

)2/3

+

(∫
Q2

|u|3
)1/3

(
sup
t∈I1

∫
B1

|u|2
)

+

(∫
Q2

|u|3
)1/3 (∫

Q1

|u|3
)2/3

+

(
sup
t∈I2

∫
B2

|u|2
)1/2 (∫

I1

(

∫
B1

|p|)ω0

)1/ω0

� ε
3/2
1 .

Here we used the facts that Q3(x0, t0) ⊂ Q2, Q2(x0, t0) ⊂ Q1 and Q1(x0, t0) ⊂ Q1.
Utilizing this estimate and (2.42), we know that

−
∫

Q3(x0,t0)
|u|3 + rα0

3 |u| · | p − p3 | ≤ C
(
ε1 + ε3/2

1

)
≤ ε

2/3
1 , (2.43)
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provided that ε1 is small enough.
Inductively we assume

−
∫

Ql (x0,t0)
|u|3 + rα0

l |u| · | p − pl | ≤ ε
2/3
1 , ∀ 3 ≤ l ≤ k. (2.44)

By Lemma 2.1 and (2.42), we have, for all 3 ≤ i ≤ k, that

sup
t∈Ii (t0)

−
∫

Bi (x0)

|u|2 + r−3
i

∫
Qi∗(x0,t0)

ya |∇u∗|2

≤ C∗
s ε1 + C∗

s

i∑
l=3

r2s
l −
∫

Ql (x0,t0)
| f | |u| + r−a

l

[
−
∫

Ql (x0,t0)
|u|3 + |u| · | p − pl |

]
.

(2.45)

For simplicity we define

Gi =
i∑

l=3

r2s
l −
∫

Ql (x0,t0)
| f | |u|, Hi =

i∑
l=3

r−a
l

[
−
∫

Ql (x0,t0)
|u|3 + |u| · | p − pl |

]
,

∀3 ≤ i ≤ k.

For the term Gi , we have, by Young’s inequality, that

Gi ≤
i∑

l=3

r2s
l −
∫

Ql (x0,t0)

(
r1/2

l | f |3/2 + |u|3 r−1
l

)
≤

i∑
l=3

r2s+1/2
l −

∫
Ql (x0,t0)

| f |3/2

+
i∑

l=3

r−a
l −
∫

Ql (x0,t0)
|u|3.

The last term above can be absorbed by Hi . As for the term with the force f , we apply
the integrability condition on f and show, by Hölder’s inequality, that

i∑
l=3

r2s+1/2
l −

∫
Ql (x0,t0)

| f |3/2 �q

i∑
l=3

r2s+1/2−(9+6s)/(2q)
l

( ∫
Q1

| f |q
)3/(2q)

�q,s ε
3/2
1 .

Here we used the condition that q > (9 + 6s)/(4s + 1), by which the summation in the
first inequality above is uniformly bounded by a finite number independent of k. The
last two estimates above show that Gi ≤ Cq,sε

3/2
1 + Hi , for all 3 ≤ i ≤ k. In light of

(2.44), Hi can be bounded from above by Csε
2/3
1 . Thus if ε1 is small enough, then we

have

Gi + Hi �s ε
2/3
1 , ∀3 ≤ i ≤ k.

Applying the last estimate above to (2.45), we have

sup
t∈Ii (t0)

−
∫

Bi (x0)

|u|2 + r−3
i

∫
Qi∗(x0,t0)

ya |∇u∗|2 �s ε
2/3
1 , ∀ 3 ≤ i ≤ k.

(2.46)
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In the following, we show that (2.44) for l = k + 1. By Hölder’s inequality and
Proposition 2.2, we have

∫
Bk+1(x0)

|u|3 ≤
(∫

Bk+1(x0)

|u|2
)−3a/(4s) (∫

Bk+1(x0)

|u|6/(3−2s)
) 3−2s

6 · 6
4s

�s

(∫
Bk (x0)

|u|2
)−3a/(4s)

{
r−s

k

(∫
Bk (x0)

|u|2
)1/2

+

(∫
Qk

+(x0)

ya |∇u∗|2
)1/2

}6/(4s)

which shows that

−
∫

Qk+1(x0,t0)
|u|3 �s

(
sup

t∈Ik (t0)
−
∫

Bk (x0)

|u|2
)−3a/(4s)

·
⎧⎨
⎩
(

sup
t∈Ik (t0)

−
∫

Bk (x0)

|u|2
)3/(4s)

+

(
r−3

k

∫
Qk∗(x0,t0)

ya |∇u∗|2
)3/(4s)

⎫⎬
⎭.

Applying (2.46) to the right-hand side above, we get, for sufficiently small ε1, that

−
∫

Qk+1(x0,t0)
|u|3 �s ε1 ≤ 1/2 ε2/3

1 . (2.47)

On the other hand, we decompose p by setting p = p1 + p2 + p3 + p4, same as the
decomposition used in Lemma 3.2 of [1] (taking r = rk+1 and ρ = 1 there). Then by
(2.42), (2.45)–(2.46) and similar arguments for the proof of Lemma 3.2 in [1], we have
the following estimates:

−
∫

Qk+1(x0,t0)
|u| · |p1 − (p1)Bk+1 | �

(
−
∫

Qk+1(x0,t0)
|u|3

)1/3 (
−
∫

Qk (x0,t0)
|u|3

)2/3

�s ε
7/9
1 ,

−
∫

Qk+1(x0,t0)
|u| · |p2−(p2)Bk+1 | � rk+1

(
−
∫

Qk+1(x0,t0)
|u|3

)1/3 k∑
l=0

r−1
l sup

t∈Il (t0)
−
∫

Bl (x0)

|u|2

�s ε
4/3
1 ,

−
∫

Qk+1(x0,t0)
|u| · |p3 − (p3)Bk+1 | ≤ r1−4s/3

k+1

(
−
∫

Qk+1(x0,t0)
|u|3

)1/3 (∫
Q1

|u|3
)2/3

�s r1−4s/3
k+1 ε1,

−
∫

Qk+1(x0,t0)
|u| · |p4 − (p4)Bk+1 | � r1−2s/ω0

k+1

(
sup

t∈Ik+1(t0)
−
∫

Bk+1(x0)

|u|2
)1/2
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×
(∫

I1

(

∫
B1

|p|)ω0

)1/ω0

�s r1−2s/ω0
k+1 ε

3/2
1 .

Adding the four estimates above together, we get that

rα0
k+1 −

∫
Qk+1(x0,t0)

|u| · |p − pk+1| �s

(
ε

7/9
1 + ε4/3

1 + ε1 + ε3/2
1

)
.

Therefore when ε1 small enough, it holds

rα0
k+1 −

∫
Qk+1(x0,t0)

|u| · |p − pk+1| ≤ 1/2 ε2/3
1 . (2.48)

From (2.47) and (2.48), we see that (2.44) is true for l = k + 1. ��

3. Estimate of the Singular Set

By Theorem 1.2, Sing(u) is a relatively closed set. In the following we prove

H5−4s(Sing(u)) = 0. (3.1)

Here H5−4s is the (5 − 4s)-dimensional Hausdorff measure. Fixing a δ > 0, then for
any (x, t) ∈ Sing(u), we can find a rx,t < δ such that

r4s−5
x,t

∫
Q∗

rx,t (x,t)
ya |∇u∗|2 ≥ ε0/2. (3.2)

Here Q∗
rx,t
(x, t) = Brx,t (x) × (0, rx,t ) × (t − 1

2r2s
x,t , t + 1

2r2s
x,t ). Using Qrx,t (x, t) =

Brx,t (x)×(t − 1
2r2s

x,t , t + 1
2r2s

x,t ), we define the family F = {Qrx,t (x, t) : (x, t) ∈ Sing(u)},
which forms a covering of Sing(u). By Lemma 6.1 in [1], there exists a sequence of
cylinders {Qrxi ,ti

(xi , ti )} ⊂ F so that these cylinders are mutually disjoint and satisfy
Sing(u) ⊂ ∪i Q5rxi ,ti

(xi , ti ). For simplicity we denote Qrxi ,ti
(xi , ti ),Q∗

rxi ,ti
(xi , ti ) by

Qrxi ,ti
and Q∗

rxi ,ti
, respectively. Using (3.2), we get

∑
i

(5ri )
5−4s = 55−4s

∑
i

r5−4s
i �s ε

−1
0

∑
i

∫
Q∗

ri ,xi

ya |∇u∗|2

= ε−1
0

∫
⋃

i Q∗
ri ,xi

ya |∇u∗|2. (3.3)

Still by (3.2), the following estimate holds∑
i

r4+2s
i � ε−1

0

∑
i

r6s−1
i

∫
Q∗

ri ,xi

ya |∇u∗|2 � ε−1
0 δ6s−1

∫
⋃

i Q∗
ri ,xi

ya |∇u∗|2.

This estimate shows that the Lebesgue measure of
⋃

i Q∗
rxi ,ti

can be estimated by∣∣∣∣∣
⋃

i

Q∗
rxi ,ti

∣∣∣∣∣ �
∑

i

r4+2s
xi ,ti � ε−1

0 δ6s−1
∫

∪i Q∗
rxi ,ti

ya
∣∣∇u∗∣∣2 .
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Since ya |∇u∗|2 is integrable, we can always choose δ > 0 small enough so that
⋃

i
Q∗

rxi ,ti
has small Lebesgue measure. This fact, together with the integrability of ya |∇̄u∗|2,

implies that the most right-hand side of (3.3) can be bounded from above by an arbitarily
small constant ε > 0, provided that δ is small enough. With this δ, we can show that

H5−4s(Sing(u)) ≤ H5−4s
δ (Sing(u)) �

∑
i

(5rxi ,ti )
5−4s ≤ ε.

Therefore (3.1) holds by taking ε → 0 in the above estimate.

4. Appendix: Existence of Suitable Weak Solution

In this part, we use the following function spaces:

V = {v ∈ C∞
c (R

3; R
3) : div v = 0};

H = the closure of V in L2(R3);
V = Ḣs

div, the closure of V under the norm

‖u‖2
Ḣs =

∫
R3

∫
R3

|u(x)− u(y)|2
|x − y|3+2s

dx dy.

V′ = the dual space of V.

Our main result is as follows:

Theorem 4.1. Suupose that u0 ∈ H and f ∈ L2(0, T ; V′). Then there exists a weak so-
lution (u, p) of (1.1) satisfying the following conditions: u ∈ L∞(0, T ; H)∩L2(0, T ; V)
and u(t) → u0 weakly in H and for each nonnegative smooth function ψ(x, y, t)
with compact support and t ∈ (0, T ),∫

R3×{t}
|u|2ψ + 2Cs

∫ t

0

∫
R

4
+

ψ ya |∇u∗|2

≤ Cs

∫ t

0

∫
R

4
+

|u∗|2 Div
(
ya∇ψ) +

∫ t

0

∫
R3
(u · ∇ψ)

(
2p + |u|2

)

+
∫ t

0

∫
R3

|u|2{ψt + Cs lim
y→0+

(
ya∂yψ

)} + 2
∫ t

0

∫
R3
ψ f · u. (4.1)

where u∗ is the extension of u satisfying (1.2).

We split the proof of Theorem 4.1 into several parts. We consider the following
hypervisicosity perturbation of the Navier–Stokes equations:⎧⎪⎨

⎪⎩
d
dt uε + (−�)suε − ε�uε + uε · ∇uε + ∇ pε = f, ∀ ε > 0.

uε ∈ L∞(0, T ; H) ∩ L2(0, T ; V ∩ V1),

uε(0) = u0.

(4.2)

where V1 = the closure of V under the norm ‖u‖Ḣ1 = (∫
R3 |∇u(x)|2 dx

)1/2
.

In order to study (4.2), we need the following lemma:
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Lemma 4.2. Let u0 and f satisfy the conditions in Theorem 4.1 and w ∈ C∞(R3,R3)

with ∇ ·w = 0. Then there exists (u, p) such that u ∈ L∞(0, T ; H)∩ L2(0, T ; V∩V1),
u(0) = u0 and it solves

ut + w · ∇u + (−�)su − ε�u + ∇ p = f (4.3)

in the weak sense. And also for each nonnegative smooth functionψ(x, y, t)with compact
support, the following equality holds:∫

R3×{t}
|u|2ψ + 2Cs

∫ t

0

∫
R

4
+

ψ ya |∇u∗|2 + 2ε
∫ t

0

∫
R3

|∇u|2ψ

= ε

∫ t

0

∫
R3

|u|2�ψ + Cs

∫ t

0

∫
R

4
+

|u∗|2 Div
(
ya∇ψ) +

∫ t

0

∫
R3

(
2pu + |u|2w

)
· ∇ψ

+
∫ t

0

∫
R3

|u|2{ψt + Cs lim
y→0+

(
ya∂yψ

)} + 2
∫ t

0

∫
R3
ψ f · u. (4.4)

Proof. The existence of weak solution to (4.3) may be proved by using the Faedo-
Galerkin method, and the argument is similar to the proof of Theorem 1.1 in Chapter III
of Temam [17] (also see Lemma A3 and A7 in [1]). We omit the details.

In the following, we will prove the equality (4.4). Writing F = f − w · ∇u, then

ut + (−�)su − ε�u + ∇ p = F. (4.5)

Mollifying (in R
3 × R) each term of (4.5), we get sequences of smooth functions

{um}, {pm} and {Fm} such that the following holds:

dum

dt
+ (−�)sum − ε�um + ∇ pm = Fm, div um = 0. (4.6)

and as m → ∞, we know that⎧⎪⎪⎨
⎪⎪⎩

um → u in L2+4s/3(R3 × (0, T )); u∗
m → u∗ in L2+4s/3(R4

+ × (0, T ), ya);
∇u∗

m → ∇u∗ in L2(R4
+ × (0, T ), ya);

pm → p in L1+2s/3(R3 × (0, T )); Fm → F in L2(R3 × (0, T )).

(4.7)

Multiplying both sides of (4.6) with umψ and integrating by parts, we have∫
R3×{t}

|um |2ψ + 2Cs

∫ t

0

∫
R

4
+

ψ ya |∇u∗
m |2 + 2ε

∫ t

0

∫
R3

|∇um |2ψ

= ε

∫ t

0

∫
R3

|u|2�ψ + Cs

∫ t

0

∫
R

4
+

|u∗
m |2 Div

(
ya∇ψ) +

∫ t

0

∫
R3

2pmum · ∇ψ

+
∫ t

0

∫
R3

|um |2{ψt + Cs lim
y→0+

(
ya∂yψ

)} + 2
∫ t

0

∫
R3
ψFm · um . (4.8)

which, by (4.7), shows (4.4). ��
Let {�δ}δ>0 be the retarded mollifier defined in [1]. Then by direct computation, we

have the following lemma (here the details of its proof is omitted):
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Lemma 4.3. For any u ∈ L∞(0, T ; H)∩ L2(0, T ; V), we have that ∇ ·�δ(u) = 0, and

sup
0≤t≤T

∫
R3

|�δ(u)|2dx ≤ Cs sup
0≤t≤T

∫
R3

|u|2dx,

∫ T

0
‖�δ(u)‖2

Ḣs dt ≤ Cs ‖u‖2
L2(0,T ;V)

where Cs is a positive constant depending only on s.

For the problem (4.2), we have:

Lemma 4.4. Suupose that u0 ∈ H and f ∈ L2(R3 × (0, T )). Then there is a weak solu-
tion (uε, pε) to (4.2) such the following energy inequality holds: for each nonnegative
smooth function ψ(x, y, t) with compact support and for any t ∈ (0, T ), ε > 0∫

R3×{t}
|uε |2ψ + 2Cs

∫ t

0

∫
R

4
+

ψ ya |∇u∗
ε |2 + 2ε

∫ t

0

∫
R3
ψ |∇uε |2

≤ ε

∫ t

0

∫
R3
ψ |uε |2 + Cs

∫ t

0

∫
R

4
+

|u∗
ε |2 Div

(
ya∇ψ)

+
∫ t

0

∫
R3
(uε · ∇ψ)

(
2pε + |uε |2

)

+
∫ t

0

∫
R3

|uε |2{ψt + Cs lim
y→0+

(
ya∂yψ

)} + 2
∫ t

0

∫
R3
ψ f · uε . (4.9)

Proof. For any large N , let δ = T/N and we solve the following system:⎧⎨
⎩

d
dt uN + (−�)suN − ε�uN +�δ(uN ) · ∇uN + ∇ pN = f,

uN ∈ L∞(0, T ; H) ∩ L2(0, T ; V) and uN (0) = u0.

Such uN and pN exist by applying Lemma 4.2 inductively on each time interval
(mδ, (m + 1)δ), 0 ≤ m ≤ N − 1. Obviously, for any 0 < t < T , it holds∫

R3×{t}
|uN |2 + Cs

∫ t

0
‖uN ‖2

Ḣs + ε
∫ t

0
‖uN ‖2

Ḣ1 =
∫

R3
|u0|2 + 2

∫ t

0

∫
R3

f · uN

which indicates that for any fixed ε > 0 {uN } is bounded in L∞(0, T ; H)∩L2(0, T ; V∩
V1). Let V2 be the closure of V in H2(R3) and V′

2 be its dual space. Obviously,
d
dt uN is bounded in L2(0, T ; V′

2). By Theorem 2.1 in Chapter III of Temam [17], we
have that

{uN } stays in a compact subset of L2(R3 × (0, T )). (4.10)

Since {uN } is bounded in L∞(0, T ; H)∩ L2(0, T ; V), by the interpolation inequal-
ity, we get { {uN } is bounded in L2+4s/3(R3 × (0, T )),

{pN } is bounded in L1+2s/3(R3 × (0, T )).
(4.11)
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Therefore there are subsequences of (uN , pN ), for simplicity, still denoted by {uN }
converging to (uε, pε) as N → ∞:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uN →uε weakly in L2(0, T ; V ∩ V1) and uN → uε weak-star in L∞(0, T ; H);
uN → uε strongly in Lα(R3 × (0, T )), where 2 ≤ α < 2 + 4s/3;
�δ(uN ) → uε strongly in Lα(R3 × (0, T )), where 2 ≤ α < 2 + 4s/3;
pN → pε weakly in L1+2s/3(R3 × (0, T )).

(4.12)

It is easy to check that (uε, pε) is a weak solution of (4.2). We only need to verify
the energy inequality for (uε, pε). By Lemma 4.2, we have

∫
R3×{t}

|uN |2ψ + 2Cs

∫ t

0

∫
R

4
+

ψ ya |∇u∗
N |2 + ε

∫ t

0

∫
R3
ψ |∇uN |2

= ε

∫ t

0

∫
R3
ψ |uN |2 +

∫ t

0

∫
R3

(
2pN uN + |uN |2�δ(uN )

)
· ∇ψ

+ Cs

∫ t

0

∫
R

4
+

|u∗
N |2 Div

(
ya∇ψ) +

∫ t

0

∫
R3

|uN |2{ψt + Cs lim
y→0+

(
ya∂yψ

)}
+ 2

∫ t

0

∫
R3
ψ f · uN (4.13)

For u∗
N , by potential theory, it satisfies the following properties:

⎧⎨
⎩

u∗
N → u∗

ε strongly in Lα(ya,R4
+ × (0, T )), 2 ≤ α < 2 + 4s/3;

∇u∗
N → ∇u∗

ε weakly in L2(ya,R4
+ × (0, T ))

(4.14)

Applying (4.12) and (4.14) to (4.13), we get the energy inequality (4.9). ��
Finally we go back to the proof of Theorem 4.1

Proof of Theorem 4.1. Firstly from (4.2), we have

∫
R3×{t}

|uε |2 + Cs

∫ t

0
‖uε‖2

Ḣs + ε
∫ t

0
‖uε‖2

Ḣ1 =
∫

R3
|u0|2 + 2

∫ t

0

∫
R3

f · uε

By fractional Nirenberg-Gargliardo inequality in [10] and Hölder inequality, we get

∫
R3×{t}

|uε |2 + Cs

∫ t

0

(∫
R3

|uε |6/(3−2s)
) 3−2s

3 ≤
∫

R3×{t}
|uε |2 + Cs

∫ t

0
‖uε‖2

Ḣs ≤ C

(4.15)

where C is a positive universal constant not depending on ε.
Using the similar arguments as in Lemma 4.4, we conclude the existence of subse-

quences, still denoted by (uε, pε) converging to (u, p) as ε → 0;
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε → u weakly in L2(0, T ; V) and uε → u weak-star in L∞(0, T ; H);
uε→u strongly in Lα(R3×(0, T )) and u∗

ε → u∗ strongly in Lα(ya,R4
+×(0, T )),

∀ 2 ≤ α < 2 + 4s/3;
pε→ p weakly in L1+2s/3(R3×(0, T )); ∇u∗

ε →∇u∗

weakly in L2(ya,R4
+ ×(0, T )).

(4.16)

For any test function φ with compact support in time and space, we have, by (4.16),
we have that limε→0 ε

∫ t
0

∫
R3 �uεφ = limε→0 ε

∫ t
t0

∫
R3 uε�φ = 0. Applying this and

(4.16) to (4.2), we show that (u, p) solves (1.1) in the weak sense.
Finally, we check the energy inequality for (u, p). By (4.16), we have limε→0 ε

∫ t
0

∫
R3

|uε |2ψ=0. When ε→ 0,
∫ t

0

∫
R

4
+
ψya |∇u∗

ε |2 is lower semicontinuous and
∫ t

0

∫
R3 ψ |∇uε |2

is nonnegative. Meanwhile, by (4.16), each other term in (4.9) converges to the corre-
sponding term involving u, p, u∗. This proves the energy inequality (4.1). ��
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