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Abstract: Classes of renormalizable models in the Tensorial Group Field Theory frame-
work are investigated. The rank d tensor fields are defined over d copies of a group
manifold G D = U (1)D or G D = SU (2)D with no symmetry and no gauge invari-
ance assumed on the fields. In particular, we explore the space of renormalizable mod-
els endowed with a kinetic term corresponding to a sum of momenta of the form
p2a, a ∈ (0, 1]. This study is tailored for models equipped with Laplacian dynam-
ics on G D (case a = 1) but also for more exotic nonlocal models in quantum topology
(case 0 < a < 1). A generic model can be written (dim G D�

k
d , a), where k is the max-

imal valence of its interactions. Using a multi-scale analysis for the generic situation,
we identify several classes of renormalizable actions, including matrix model actions.
In this specific instance, we find a tower of renormalizable matrix models parametrized
by k ≥ 4. In a second part of this work, we study the UV behavior of the models
up to maximal valence of interaction k = 6. All rank d ≥ 3 tensor models proved
renormalizable are asymptotically free in the UV. All matrix models with k = 4 have
a vanishing β-function at one-loop and, very likely, reproduce the same feature of the
Grosse–Wulkenhaar model (Commun Math Phys 256:305, 2005).
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1. Introduction

In attempts to generalize in higher dimensions matrix model results on 2D quantum
gravity (QG) [1], tensor models have been examined since the early 90s [2–4]. These
models stem from the idea that the classical geometry of some manifold could emerge
from the statistical sum of random triangulations of manifolds of the same dimension.
They might also pertain to a broader proposal that gravity originates from more fun-
damental (quantum) objects and laws [5]. The special case of matrices provides one of
the most compelling results in that direction. Indeed, the Feynman integral of matrix
models generates ribbon graphs organized in a 1/N (or genus) expansion [6] so that
this statistical sum is well controlled through only analytical tools. The real beauty of
these models reveals itself after a phase transition [7,8]: the resulting model maps to a
2D theory of gravity coupled with a Liouville conformal field [9–12]. From the study of
matrix models, important developments on integrable systems and statistical mechanics
followed [1]. The framework of random matrices still attracts a lot of attention in both
physicist and mathematician communities [13–18].

For higher rank tensor models, the story turns out to be a far greater challenge [2,3].
The crucial 1/N expansion leading to the understanding and control of the partition
function in the case of matrix models has been missing for a long time. The attempt
to understand analytically the partition function of tensor models was abandoned and,
until recently, computations in theories implementing a discrete version of QG in higher
dimension rested on numerics. With somehow a different perspective and still in the same
period, Boulatov showed that the amplitudes of a simplicial theory of 3D complexes made
of tensors equipped with a particular invariance reproduce several features of amplitudes
of a lattice gauge theory [19,20]. The type of invariance of the Boulatov model turned
out to be interesting on its own and lead to several connections with other QG approaches
[21,22].

Concerning analytical calculations, the interest in tensor models could have been
certainly and significantly improved if these were provided with an appropriate notion
of 1/N -expansion. This was indeed what happened after the spotless discovery by Gurau
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of a genuine notion of large N -expansion for a particular class of random tensor models
[23–25]. This particular class, the colored tensor models, proves to be associated with
triangulations of simplicial pseudo-manifolds in any dimension [26–29]. The critical
behavior for this class of tensor models has been investigated. They are found to undergo
a phase transition towards the so-called branched polymer phase [30–32]. More results
provide answers to longstanding questions on statistical mechanics on random lattices
[33,34] and mathematical physics [35–37]. Another profound result is that there exists
an extension of the universality and Wigner-Dyson law valid for tensors [38] (for more
results in a short review, see either [39] or [40]).

It is reasonable to expect that more will be unraveled from such developments. Indeed,
the 1/N -expansion revealed a basis of unitary trace invariants for (unsymmetrized) ten-
sors [36,37,41]. In simple words, these extend the unitary trace invariants tr[(M† M)p],
for p ≥ 0, built from matrices M themselves generalizing the unique unitary invariant
built from vectors | �φ |2. Unitary tensor invariants had been studied long ago by math-
ematicians [42,43]. The interest of the aforementioned works comes from the fact that
all these unitary tensor invariants are captured by a path integral field theory formalism
defined on colored tensor models. Unitary tensor invariants are simply encoded in a
colored graph.

Considered as basic observables and interactions, the same trace invariants were at
the basis of the uncovering of the first renormalizable tensor models of rank greater than
or equal to 3 [44,45]. These models were investigated quite recently (see the reviews
[46–48]) as extensions of the so-called Grosse–Wulkenhaar (GW) model [49], a renor-
malizable matrix model derived from noncommutative geometry [50]. The fact that
a renormalization procedure could be applied to some tensor models is certainly an
important step towards better understanding them through known methods in ordinary
quantum field theory. We will refer to these models as Tensorial Group Field Theory
(TGFT).1 Why is renormalizability important for tensor models? Renormalizability for
any quantum field theory is a very desirable feature because it mainly ensures that the
theory will survive after several energy scales. All known interactions of the standard
model are renormalizable. This feature gives a sense to a system dealing with several
types of infinities (infinitely many degrees of freedom, divergence occurring in their
physical constants). Quantum field theory predictions rely on the fact that, from the
Wilsonian or Renormalization Group (RG) point of view, these infinities should be not
hidden or ignored but should locally (from one scale to the other) reflect a change in
the form of the theory [51]. In particular, if tensor models are to describe at low energy
any physical reality like our spacetime, and since generically they possess divergent
correlation functions, one must explain these divergences. The renormalization program
is built for that purpose and the RG offers a natural mechanism to flow from a certain
model at some scale to another at another scale while dealing consistently with these
infinities.

Before reviewing the main results obtained in TGFTs, let us give now some precisions
and basic terminology about tensor models. Consider a model defined via a tensor field
of rank d. This field represents a (d −1) simplex. The interaction consists in a d simplex
obtained by gluing these fields or (d − 1) basic simplexes along their boundary. The
path integral of such a model generates d dimensional simplicial complexes from the
gluing of the interaction terms along their boundary. Hence, the rank d of the tensor
field and the dimension d of the simplicial complexes generated are exactly the same.

1 The appearance of the name “Group” comes from the fact that the tensors considered in these models are
nothing but the Fourier components of some class of functions or fields defined on an abstract group G.
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Table 1. List of renormalizable models and their features (√ ≡ asymptotic freedom proved; kmax is the
maximal valence of the vertex)

TGFT (type) Group �kmax d Renormalizability Asymptotic freedom

U (1) �6 4 [44] Just- √ [58]
U (1) �4 3 [56] Just- √ [56]

gi- U (1) �2k 4 [59] Super- –
gi- U (1) �4 6 [60] Just- √ [62]
gi- U (1) �6 5 [60] Just- √ [62]
gi- U (1) �4 5 [60] Super- –
gi- SU (2)3 �6 3 [61] Just- ?

The renormalization program for TGFT has achieved many results in the last four years
[44,45,52–62]. So far, one identifies two types of renormalizable TGFTs. One of them
implements the gauge invariance by Boulatov [21]. Referring to this particular type
of TGFT, we shall use the terminology gi-TGFT. Discussing models without gauge
invariance we will sometimes use “simple” TGFTs, but most of the time we will simply
say TGFTs when the context does not lead to any confusion.

Table 1 collects the different features of both super-renormalizable and just-
renormalizable models. It surprisingly happens that most of the just-renormalizable
models discovered so far (gauge invariant or not) turn out to be asymptotically free.2 We
are led to the important question: is asymptotic freedom a generic feature in TGFTs ?
In general, a model is called UV asymptotically free if it makes sense at arbitrary high
energy scales and possesses a trivial UV fixed point defined by the free theory. QCD or
the theory of strong interactions is a typical example of this kind. From the UV going
in the IR direction, the renormalized coupling constant grows up to some critical value
for which one reaches a new phase described in terms of new degrees of freedom (quark
confinement in QCD). If tensor models are generically asymptotically free, this could
be a nice feature because it would mean that, (1) in the case that these models actually
describe a theory of gravity, this theory would be sensible at arbitrary small distances
and, (2) in the IR, the models likely experience a phase transition after which, hopefully,
the final degrees of freedom may encode more geometrical data than the initial ones
(which are totally topological) and may lead to a notion of invariance under coordinate
change in the new action.

For the discussion below, it is instructive to provide details on these renormalizable
tensor models. The interactions which lead to renormalizable models are of the form
of the unitary tensor invariants. Concerning the dynamics, it was an unexpected fact
that, starting with a rank 3 gi-TGFT with trivial dynamics in the form of a mass term
and expanding the two-point function, one was able to generate diverging corrections
of a Laplacian form [55]. Thus, this suggested that one needs to introduce a Laplacian
dynamics in order to make sense of a renormalization program in gi-TGFTs. After this
stage, introducing a group Laplacian in the kinetic term played a major role in the proof
that several models were indeed just-renormalizable [44,60,61]. However, this type of
kinetic term is not the only one which might lead to just-renormalizable theories. For
instance, the rank d = 3 model in [56] has a kinetic term written in momentum space
as (

∑3
s=1 |ps | + μ), ps ∈ Z representing the momentum associated with the direct

space coordinate θ parametrizing the circle S1 ∼ U (1). There is, at this point, no

2 The model by Carrozza et al. [61] is presently under analysis.



Renormalizable Models in Rank d ≥ 2 Tensorial Group Field Theory 121

direct space formulation of this model. A way to think about such a formulation would
be to introduce anti-commuting fields ψ3 and deal with a Dirac field formalism. This
leads to another question about the statistics of the tensors and the representation of
the Lorentz group associated with it. Nonetheless, at this QG energy scale, there is no
reason to enforce that Lorentz invariance should hold and that our fields should be some
Dirac spinors. More just-renormalizable classes of tensor models of this kind have been
found and several of them are related with classes of matrix models [57]. This urges
us to think about some physical selection criteria for tensor models. Since QG is very
“special”, we should adopt an inclusive attitude and will certainly gain by scrutinizing
the space of all possible models with at least some particular features among which is
just-renormalizability. According to some minimal physical axioms, the present work
establishes that the space of just-renormalizable tensor models is not as huge as one
might think and, in fact, several rank d ≥ 3 models in this space are asymptotically free
in the UV.

In this paper, we consider complex and arbitrary rank d TGFT models (without gauge
invariance, this is the simplest class of tensor model) written in the momentum space
of G D = U (1)D or G D = SU (2)D , and by introducing a free parameter a ∈ (0, 1] as
the power of momenta p2a in the kinetic term, we explore the space of models in order
to find renormalizable theories characterized by the maximal valence of the interaction
term kmax. Any of these models can be written as

(dim G D�
kmax
d , a), a ∈ (0, 1], D ∈ N \ {0}, kmax ∈ 2N \ {0, 2} and d ∈ N \ {0, 1}.

(1)
Note that our study includes the case of matrix models recovered for d = 2.

This work reports the following new results:

• A multi-scale analysis and power-counting theorem (Theorem 1) for any theory of
rank d with kinetic term with at most quadratic momenta and with field background
space SU (2)D and U (1)D . Note that in all previous works discussing renormalization
of tensor models except two [56,57], the authors perform their analysis by restricting
to a unique group SU (2) and U (1) with exactly Laplacian dynamics. The present
analysis allows us to address several other possible renormalizable tensor models in
a row.

• The tensor models (1�6
3, a = 2

3 ) over G = U (1), (2�4
3, a = 1) over G =

U (1)2, (1�4
4, a = 3

4 ) over G = U (1), (1�4
5, a = 1) over G = U (1), are all

just-renormalizable (Theorem 2). These models, in addition to (1�6
4, a = 1) over

U (1) [44] and (1�4
3, a = 1

2 ) over U (1) [56], are all asymptotically free in the UV
(Sect. 7.2).

• There is a family parametrized by k ∈ N\{0, 1} of rank 3 tensor models (1�2k
3 , a =

1− 1
k ) over G = U (1), which are all potentially just-renormalizable. In the following,

we refer to such a family of models parametrized by the maximal valence of the
interactions as a tower of models. The family described above is clearly missed if
one restricts the analysis to models endowed with Laplacian dynamics.

• There are two towers of matrix models (1�2k
2 , a = 1

2 (1 − 1
k )) over G = U (1)

and (2�2k
2 , a = 1 − 1

k ) over G = U (1)2, supplemented by the models (3�6
2, a =

1) over G = U (1)3 or G = SU (2), (3�4
2, a = 3

4 ) over G = U (1)3 or G =
SU (2), (4�4

2, a = 1) over G = U (1)4 which are just-renormalizable (Theorem 3).

3 Note that the first color model [26] was defined with anti-commuting Grassmann variables.
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Fig. 1. The propagator or line in a rank d tensor model decomposes in d labeled strands

• The matrix models (1�4
2, a) over their corresponding group all have a vanishing

β-function at one-loop (Sect. 7.3). Very likely, they will all be asymptotically safe at
all orders like the GW model [49,63]. The models (1�6

2, a) over their corresponding
group all have a Landau ghost [51].

• For k ≥ 2, the towers of matrix models, (1�2k
2 , a = 1

2 ) over G = U (1), and
(2�

2k
2 , a = 1) over G = U (1)2, and the tower of rank 3 tensor models (1�2k

3 , a = 1)
over G = U (1), define all super-renormalizable models (Theorem 4).

The plan of this paper is as follows. Section 2 defines the combinatorial ingredients
and the topological content of the category of graphs which will support the perturbative
expansion of the models discussed in this work. Section 3 is devoted to the construction
of models and the ensuing multi-scale analysis leading to the general power counting
theorem for a large class of models. We determine specific criteria for seeking super- and
just-renormalizable tensor models. Section 4 achieves the proof of the renormalizability
of some rank d ≥ 3 tensor models up to maximal valence of the interaction 6. Section 5
provides a similar analysis and the proof of the renormalizability of several matrix models
up to a finite but arbitrary maximal valence of the interaction. Super-renormalizable
models are discussed in Sect. 6 whereas Sect. 7 undertakes the computation of the first
order of β-functions of all just-renormalizable models found in this work up to maximal
valence of the interaction of order 6. Section 8 summarizes our results and discusses
some consequences of these. An appendix provides the proof of some claims in the main
text together with interesting illustrations and peculiar features of the real matrix model
case.

2. Colored and Uncolored Tensor Graphs

Colored tensor models [26,29] expand in perturbation theory as colored Feynman graphs
which have a rich stranded structure. From these colored tensor graphs, one builds
another type of graph called uncolored [36,41] which will be the useful category of
graphs we will be dealing with. In this section, for the sake of this work being self-
contained, we quickly review the basic definitions of these combinatorial objects and
concepts in the above references.

2.1. Combinatorial and topological structures on colored tensor graphs.

Colored tensor graphs. In a rank d colored tensor model, a graph is a collection of edges
or lines and vertices glued together according to quantum field theory rules dictated by
the field measure. In such theory, a graph (or tensor graph) has a stranded structure
because its main ingredients obey the following properties [64]:

– each edge corresponds to a propagator and is represented by a line with d strands,
see Fig. 1 (fields ϕ are half-lines with the same structure);

– there exists a (d + 1) edge (or line) coloring;
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Fig. 2. Two vertices in rank d = 3 (left) and d = 4 (right) colored models: they connect like the Kd+1-graph.
Each leg of the vertex points towards a different colored line providing a bi-coloring on strands

Fig. 3. A rank 3 colored tensor graph (left) and its compact colored bi-partite representation (right)

– each vertex has coordination or valence d + 1 with the complete graph Kd+1-type
connection between its legs, namely each leg connects all half-lines hooked to the
vertex. Due to the stranded structure at the vertex and the existence of an edge
coloring, one defines a strand bi-coloring which associates to each strand leaving a
leg of color a and joining a leg of color b, a �= b, in the vertex the couple of colors
(ab);

– there are two-types of vertices, black and white and one enforces that the graph is
bipartite. This also provides an orientation to all the lines, say each line is oriented
from a black vertex to a white vertex.

Illustrations of rank d = 3, 4 white vertices are provided in Fig. 2. Black vertices
have a very similar structure but with labels denoted counterclockwise. The labels of
the black vertices possess a bar. An example of a rank 3 colored tensor graph is given in
Fig. 3 (left). We will also use simplified diagrams and collapse all the stranded structure
into a simple colored graph capturing all the information of the former (see Fig. 3). The
result of a collapse procedure is called simplified, compact or collapsed colored graph.

In [28], Gurau proves that rank d colored tensor graphs are dual to simplicial pseudo-
manifolds in dimension d. This property might be important if one expects that the type
of topological spaces generated by the effective action of the model includes manifolds
with a nice topology and smooth geometry like the one of our spacetime. The color
prescription drastically reduces the type of simplicial complexes possibly spanned by
the partition function.

Open and closed graphs. A graph is said to be open if it contains half-lines incident
to a unique vertex otherwise it is called closed. One refers to such half-lines as external
legs representing, from the field theory point of view external fields. Examples of open
graphs are given in Fig. 4.
p-bubbles and faces. Colored tensor graphs in any rank d have a cellular structure [26].
In rank d ≥ 3, apart from vertices and edges, there exist several other components in the
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Fig. 4. Rank 3 (G3d ) and 4 (G4d ) colored open tensor graphs and their compact representation

Fig. 5. Shading colors 0 and 3 in the graph of Fig. 3, one gets a bi-colored face f12 (left). Shading the color
0, one obtains a 3-bubble b123 (right)

graphs. Call p-bubble a maximally connected component subgraph4 of the collapsed
colored graph associated with a rank d colored tensor graph, where p is the number
of colors of edges used to define that subgraph. Maximally connected because, given
a colored graph, the set of p-bubbles can be found by removing (d + 1 − p) colors in
the graphs and simply observing the remaining connected components. Thus, 0-bubbles
are vertices, 1-bubbles are lines themselves. In a rank d ≥ 3, there exist other important
components called faces which are 2-bubbles. A face is a connected component in
the graph made with 2 colors. Faces can be viewed in the simplified colored graph as
cycles of edges with alternating colors. Next, 3-bubbles can be illustrated as connected
subgraphs made with 3 colors, etc. Examples are given in Fig. 5.

Some remarks and terminology can be introduced at this level:

– Within this simplified colored picture, a line l may be contained in a p ≥ 1-bubble
b and we write l ∈ b. We say that “b passes through the line l.”

– Coming back to the full expansion of the colored graph using strands, a face is nothing
but a connected component made with one strand. The color of this strand alternates
when passing through the edges which define the face.

– A p-bubble is open if it contains an external half-line otherwise it is closed. For
instance, there exists three open 3-bubbles (b012,b013 and b023) and one closed
bubble (b123) in the graph G3d of Fig. 4.

Jackets. Jackets are a ribbon graphs lying within a colored tensor graph. They are proved
to be associated with Heegaard splitting surfaces for the triangulation (simplicial com-
plex) dual to the colored tensor graph [65]. Combinatorially [25], a jacket in a rank d col-
ored tensor graph is defined by a permutation of {1, . . . , d} namely (0, a1, . . . , ad), ai ∈
[[1, d]], up to orientation. In practice, one splits the (d + 1)-valent vertex into cycles of
colors using only the strands with color pairs (0a1), (a1a2), . . . , (ad−1ad). See Fig. 6, for
an illustration. The same applies for the edges. Hence, in a jacket, the above collection
of pairs defines the face bi-coloring.

4 A subgraph of a graph G is defined by a subset of edges of G together with their incident vertices.
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Fig. 6. In the rank 3 colored model, the vertex decomposes in cycles (0123), (0132) and (0213) (top). Two
open jackets of the rank 3 colored graph G3d of Fig. 4 and its jackets J0123 and J0132 associated with the
color permutation (0123) and (0132), respectively

A jacket of a colored tensor graph G is nonlocal in the sense that, given a permutation,
it only depends on the overall structure of G. For instance the number of jacket in a rank
d colored graph is given by d!/2 or simply the number of permutations of [[1, d]] up to
orientation, the number of vertices and the number of edges of a jacket equal the number
of vertices and the number of edges of its spanning graph, respectively. Meanwhile p-
bubbles of G are local in the sense that they depend on the local structure at each vertex
of G.

An open jacket keeps the above sense that it is a jacket touching an external leg (see
example in rank 3 in Fig. 6).

Boundary graph. We aim at studying tensor graphs with external legs. From the quan-
tum field theory perspective, external legs or fields probe events which might happen at
much higher scale. In the present context, tensor graphs with external legs are viewed
as simplicial complexes with boundaries. The latter play the role of the probes that we
mentioned before. There is a way to understand this boundary as a simplicial complex
itself in the colored case [27]. We can re-translate the boundary complex of a rank d
colored graph as a tensor graph with two peculiarities (1) its rank gets lowered to d − 1
and (2) it possesses an vertex-edge coloring which we will define in a moment [64]. The
procedure for achieving this mapping (from boundary to rank d − 1 colored graphs) is
known as “pinching” or closing open tensor graphs [27]. This can be simply illustrated
by the insertion of a d-valent vertex at each external leg of a rank d tensor graph. As an
effect of this d-valent vertex insertion, we define the boundary ∂G of a rank d colored
tensor graph G to be the graph

– the vertex set of which is one-to-one with the set of external legs of G;
– the edge set of which is one-to-one with open faces of G.

The boundary graph has a vertex coloring inherited from the edge coloring and has
an edge bi-coloring coming from the bi-coloring of the (external) faces of the initial
graph. See in Fig. 7 illustrations of some boundary graphs. The boundary ∂G of a closed
rank d colored tensor graph G is empty. The boundary graph is always closed.
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Fig. 7. The boundary graph ∂G3d (and its ribbon structure) of G3d of Fig. 4 is obtained by inserting a 3-valent
vertex at each external leg and shading the closed internal faces. Similarly, ∂G4d (and its internal rank 3
structure) is the boundary of G4d of Fig. 4

Note that reducing to rank d = 3, the boundary of a rank 3 colored tensor graph is a
rank 2 tensor graph. Hence, it forms a ribbon graph coinciding with its unique jacket. For
rank d ≥ 4, the boundary graph has a higher rank internal structure itself. For instance,
it has p-bubbles and jackets that we will denote by J∂ .

Degree of a colored tensor graph. By organizing the divergences occurring in the
perturbation series of rank d colored tensor graphs, the success of finding a 1/N expansion
for amplitudes (here N is some large size of the tensor labels) relies on the introduction
of the quantity [25]

ω(G) =
∑

J

gJ , (2)

where gJ is the genus of the jacket J and the sum is performed over all jackets in the
colored tensor graph G. The quantity ω(G) is called degree of G and is useful to re-sum
the perturbation series for the present class of models. Such a degree of a colored tensor
graph replaces the genus of a ribbon graph in terms of which one organizes the partition
function series in matrix models case. After rescaling of the coupling constant by a
suitable power of N the typical size of the tensor (cut-off), one finds that the amplitude

A(G) of some graph G scales as A(G) ∼ N d− 2
(d−1)!ω(G) (for a short survey see [39,40]).

Gurau proves that the dominant amplitudes in the partition function of colored tensor
models of any rank d are of the sphere topology in dimension d. It is direct to see that
graphs associated with the most divergent amplitudes are such that ω(G) = 0. We will
call these melons or melonic graphs [30].

2.2. Uncolored tensor graphs. Consider the partition function Z of some rank d colored
tensor model defined by complex tensor fields denoted by ϕa

I , where a = 0, . . . , d is
called color of the tensor and the index I collects the tensor indices. We have

Z =
∫

dνC ({ϕa})e−Scolor[{ϕa}] , (3)

where dνC ({ϕa}) is the iid Gaussian measure associated with the colored fields and
related to a trivial kinetic term of the form

Skin ,color =
d∑

a=0

∑

I

ϕ̄a
I ϕ

a
I , (4)

and where

Scolor =
∑

I

d∏

a=0

ϕa
Ia

+
∑

I

d∏

a=0

ϕ̄a
Ia

(5)
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Fig. 8. Some rank 3 colored 3-bubbles and their corresponding tensor invariant

is the colored interaction consisting only in identifications following the pattern of the
colored vertex of rank d as discussed in Sect. 2.1.

One could partially integrate Z on all but one field, say ϕ0, and gets an effective
action in that remaining color:

Z =
∫

dνC̃0({ϕ0}) e−Suncolor[{ϕ0}], (6)

where Suncolor expresses in terms of the colored field ϕ0 and ϕ̄0. The particular form of
this action called “uncolored” [37,41] can be found elsewhere,5 but one can think about
it as an action with an infinity of couplings

Suncolor[{ϕ0}] =
∑

b∈Bd

λb trb[ϕ̄0;ϕ0] , (7)

where the sum over b is performed on the set of (vacuum) d-bubbles Bd in the remaining
colors different from 0 with fixed number of vertices, λb is some effective coupling
constant associated with the tensor operator trb[ϕ̄0;ϕ0] which mainly implements the
construction of the d-bubble b from contractions of a set of fields ϕ̄0 and ϕ0. The
quantity trb[ϕ̄0;ϕ0] is called connected tensor invariant. In practice, the way that one
understands this object is in fact simple. Consider a bubble b, by increasing the valence
of its vertices by one, there is a way to compose trb[ϕ̄;ϕ] by adding a color to b. Thus,
a connected tensor invariant is labeled by the bubble which defines it. Some connected
tensor invariants in rank 3 have been illustrated in Fig. 8.

In the following, we shall consider several tensor models of fixed rank d with action
defined with a tensor field associated with the last non integrated color ϕ = ϕ0. This
last color would be the one dynamical in the sense that there will be a nontrivial kinetic
term associated with ϕ so that the measure dν({ϕ}) will no longer be associated with
an iid model. The interaction will include all possible tensor invariants in that rank d.
An uncolored tensor graph in this setting is made with lines only of the last color and
vertices consisting in tensor invariants. The other colored lines are integrated and should
be regarded as fictitious. For instance, see Fig. 9. Thus, an uncolored tensor graph G
admits a rank d + 1 color representation Gcolor obtained uniquely by restoring the colors.

5 The interested reader is referred to one of the above references, see for instance Equation (49) in [37].
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Fig. 9. A rank 3 uncolored graph G and its associated colored extension Gcolor

Fig. 10. A ribbon edge and ribbon vertex with arbitrary valence

This procedure called “color extension” of a graph allows the passage from the uncolored
to the colored theories. By the renormalization prescription, we aim at truncating the
infinite series (7) of interactions and keeping only marginal and relevant coupling in
the renormalization group (RG) sense and checking that the model does not generate
any other significant coupling. We mention also that a capital point in the proof of the
renormalizability is the reintroduction of colors in order to get useful bounds and a clear
understanding on the divergence degree of the graph.

2.3. Rank 2, matrix or ribbon graphs. In order to discuss the case of rank 2 graphs,
we do not need the above colored graph technology. A ribbon, matrix or rank 2 tensor
graph is a graph made with lines which are ribbons and vertices which are cyclic objects
with arbitrary valence, see Fig. 10. Note that, so formulated, one may not recognize the
vertex as the same ingredient of the so-called ribbon (cyclic) graphs defined by standard
combinatorics [66]. In such a context, the vertex is a simple disc. We simply adopt here
the quantum field theoretical perspective and put half-lines on this disc.

Regarded as Feynman graphs of some matrix model, ribbon graphs are the gluing of
lines corresponding to propagators and vertices corresponding to the model interaction.
From the the point of view of topology, ribbon graphs represent triangulations of 2D
surfaces or simplicial complexes in 2D. We will consider matrix models defined by
complex matrix fields ϕAB . The action of such models has the generic form

Smat =
∑

AB,A′ B′
ϕ̄AB K AB,A′ B′ϕA′ B′ +

∑

p

λptr[(ϕ̄ϕ)p] , (8)

where the kernel K AB,A′ B′ should have suitable properties so that Smat makes sense,
and tr is an ordinary matrix trace. Thus the interaction is defined as a sum of connected
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Fig. 11. A open ribbon graph G with f1 a closed face and f2 an open face. The boundary ∂G of G after
pinching and shading all closed faces of G

unitary matrix invariants represented as in Fig. 10. We will not consider K AB,A′ B′ as the
identity operator and, doing so gives a non trivial dynamics for the fields and will lead
us to non iid models. Such models are related to the class of Kontsevich models [67].

The notion of face of a ribbon graph follows from the above description of face
(forgetting the colors) or, equivalently, can be defined as the boundary of the ribbon
graph when regarded as a geometric ribbon [66]. Ribbon graphs can be closed or open
if, in this last case, they have external legs (see Fig. 11). A face can be also open or closed
if it passes through an external leg. We can define a pinching procedure for ribbon graphs
as well by inserting a 2-valent vertex at each external legs of the graph. The notion of
boundary graph ∂G as the result of the pinching of some ribbon graph naturally restricts
to the present situation as well (see Fig. 11).

3. Seeking Renormalizable Models: Generic Multi-Scale Analysis

The goal of this section is to provide a list of potentially just- and super-renormalizable
TGFTs models under some specific assumptions. Our main tool for addressing this
problem in full generality is the multi-scale analysis [51]. We intend to give a general
power-counting theorem and locality principle for a general class of models. The thor-
ough renormalization analysis of some models detected as potentially renormalizable
will be deferred to next sections.

Constructing an action for the subsequent analysis, we do have some motivated
restrictions:

(i) The fields are defined on a background which is a compact group manifold G.
This is assumed for simplicity and any integral on the background position space
generates an O(1) factor. After Fourier transform, the fields become tensors with
labels in a discrete momentum space and the amplitudes can still entail divergences
at large momenta. Typically, we will restrict the study to G = U (1) or SU (2)
or several copies of these groups. The case U (1)×p × SU (2)×q , for p, q strictly
positive integers, could be deduced from this point.

(ii) The propagator is stranded and should involve a sum momenta of the form p2a

with 0 < a ≤ 1 associated to each field strand.6 The upper bound 2a = 2 might
be essential in order to fulfill Osterwalder–Schrader positivity axiom [48,51]. At
a = 1, one recovers, in direct space, an ordinary Laplacian acting on each field
argument.

6 One may think about a “duality” between the models which will be investigated here and other types of
models by performing a symmetry a → a−1. This will deserve a complete understanding.
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(iii) The interactions involved are unitary tensor invariant objects as discussed in Sect.
2.2 or unitary matrix invariants (we will generally refer to these as “trace invari-
ants”). These objects belong to the sole class of interactions found so far to generate
renormalizable rank d ≥ 2 tensor theories. They provide a genuinely new notion
of locality in TGFTs. Dually, the most dominant ones represent triangulations of
simplicial complexes with spherical topology. This property could be of major
importance in order to achieve the continuum limit of these models as a spacetime
with a large and regular topology and geometry [31,32].

Apart from these restrictions, we shall not exclude any possible model. We must
emphasize that, because we are allowing an arbitrary power of the momentum p2a in the
kinetic term, a direct space formulation of several models that we shall discuss is still
under investigation. For the interaction however, the direct and momentum spaces have
the same simple interpretation. In all models discussed below, they are both regarded as
a basic simplex. All models are nonlocal: the interactions occur in a region rather than a
definite point of the background space and introducing an arbitrary power in momenta in
the kinetic terms in these models leads to even more nonlocality. We finally stress that,
renormalization is not a goal per se [68]. This property will be only useful if associated
with the study of phase transition and critical phenomena which hopefully might be
associated with Physics. The existence of a class renormalizable tensor models will be
useful if we can extract more information on their universal behavior. But at the least,
identifying a wide class of models with a controlled (renormalizable) behavior is a step
towards the search of “universal” properties and, perhaps from this point, we might have
a better comprehension of what is a quantum theory generating topologies and gravity.

3.1. Models. We consider a rank d ≥ 2 complex tensor field over a compact Lie group
G, ϕ : Gd → C. This field can be decomposed in Fourier modes as

ϕ(h1, h2, . . . , hd) =
∑

PIl

ϕ̃PI1 ,PI2 ,...,PId
DPI1 (h1)D

PI2 (h2) . . . DPId (hd), (9)

where the group elements hs ∈ G and the sum is performed on all momenta PIs

labeled by multi-indices Is, s = 1, 2, . . . , d; Is defines the representation indices of
the group element hs in the momentum space such that DPIs (hs) plays the role of the
plane wave in that representation. For the tensor ϕ̃, we will simply use the notation
ϕ[I ] := ϕ̃PI1 ,PI2 ,...,PId

, where the super index [I ] collects all momentum labels involved
in the sum, i.e. [I ] = {I1, I2, . . . , Id}. It is important to note that no symmetry under
permutation of the arguments is assumed for the tensor ϕ[I ]. We rewrite (9) in these
shorthand notations as

ϕ(h1, h2, . . . , hd) =
∑

P[I ]
ϕ[I ]DI1(h1)D

I2(h2) . . . DId (hd). (10)

For d = 2, we shall refer to ϕI1,I2 as a matrix.
For any D ∈ N\{0}, consider the group G = G D, hk ∈ G D , we are interested in two

cases:
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(a) G D = U (1)D: The representation and momentum indices are obtained as

hs = (hs,1, . . . , hs,D) ∈ G D , hs,l = eiθs,l ∈ U (1) ,

DIs (hs) = DPIs (hs) =
D∏

l=1

Ds,l(θs,l) , Ds,l(θ) = eips,lθ ,

PIs = {ps,1, . . . , ps,D} , Is = {(s, 1), . . . , (s, D)} ,
[I ] = {(1, 1), . . . , (1, D); . . . ; (d, 1), . . . , (d, D)}. (11)

where ps,l ∈ Z.
(b) G D = SU (2)D: In this case, the momentum space is obtained by the transform

hs = (hs,1, . . . , hs,D) ∈ G D , hs,l ∈ SU (2) ,

DIs (hs) = DPIs (hs) =
D∏

l=1

[Ds,l ] j
mn(hs,l) , [Ds,l ] j

mn(h) := D
j(s,l)
m(s,l)n(s,l) (h),

D j
mn(h) := 〈 j,m|h| j, n〉, (12)

where, given j ∈ 1
2 N, {| j,m〉}m,n denotes the familiar basis of the spin j represen-

tation space of SU (2), |m| ≤ j, |n| ≤ j , and D j
mn(h) the Wigner matrix element of

h in that space, so that

PIs = {( js,1,ms,1, ns,1), . . . , ( js,D,ms,D, ns,D)} , (13)

whereas Is and [I ] keep their meaning as in (11).

Remark 1. One notices that, although for d = 2 we refer to ϕI1,I2 as a matrix, it can be
equally regarded as a tensor itself due to the multi-indices carried by the representation of
G D = U (1)D, D > 1 or of G D = SU (2)D, D ≥ 1. However, we shall not distinguish
these cases from the matrix case because, mainly, the combinatorics and the analysis as
performed below follow the ones for matrices in both cases.

Kinetic term. The initial task is to build a general action satisfying the above mentioned
restrictions (i)–(iii). Consider the kinetic term given in momentum space as

Skin =
∑

P[I ]
ϕ̄P[I ]

( d∑

s=1

|PIs |a + μ2
)
ϕP[I ] , (14)

where μ is a mass term, a ∈ (0, 1], and

– for case (a): |PIs |a := ∑D
l=1 |ps,l |2a and the sum (14) is performed over all the values

of the momenta ps,l ∈ Z;
– for case (b): |PIs |a := ∑D

l=1[ js,l( js,l + 1)]a and the sum (14) performed over all
triples of momenta ( js,l ,ms,l , ns,l) ∈ 1

2 N × {− j, . . . , j}2.

We will need also the following companion sums over momenta:

case (a) : |P∗Is |a = |PIs |a ; case (b) : |P∗Is |a =
D∑

l=1

( js,l)
2a . (15)
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Clearly, at a = 1, (14) implies a Laplacian dynamics on G D and on each strand
labeled by s. The corresponding Gaussian measure on tensors reads dνC (ϕ, ϕ̄) and has
a covariance given by

C[{PIs }, {P̃Is }] =
[ d∏

s=1

δPIs ,P̃Is

]
(

d∑

s=1

|PIs |a + μ2

)−1

, (16)

such that, for (a), δPIs ,P̃Is′
:= ∏D

l=1 δps,l , p̃s,I and, when restricted to (b), δPIs ,P̃Is′
:=

∏D
l=1[δ js,l , j̃s,I

δms,l ,m̃s,I δns,l ,ñs,I ]. Using the Schwinger parametric integral, it is immediate
to get

C[{PIs }, {P̃Is }] =
[ d∏

s=1

δPIs ,P̃Is

] ∫ ∞

0
dα e−α(∑d

s=1 |PIs |a+μ2). (17)

Interactions. The interactions of the model are effective interaction terms obtained after
integrating d colors in the rank d + 1 colored model as detailed in Sect. 2.2. The above
kinetic term is defined over the remaining field ϕ0 = ϕ. The interaction is defined from
unsymmetrized tensors as trace invariant objects as discussed in Sect. 2.2 and built from
the particular contraction (or convolution) of arguments of some set of tensors ϕ[I ] and
ϕ̄[I ′]. This contraction is made in such a way that only the sth label of some ϕ[I ], i.e.
some PIs , is allowed to be summed with the sth component of some ϕ̄[I ′]. Thus the
position of each index is capital in such a theory. We have introduced the trace invariants
as connected d colored graphs. In rank d ≥ 3, a general interaction reads:

Sint (ϕ, ϕ̄) =
∑

b∈B
λb Ib(ϕ, ϕ̄) , (18)

where the sum is performed over a finite set B of rank d colored tensor bubble graphs
and λb is a coupling constant. For any Ib(ϕ, ϕ̄), we associate a vertex operator of the
form of the product of delta functions identifying incoming and outgoing momenta.

In the case of rank d = 2 or matrix models, the type of interaction considered is
given by

Sint (ϕ, ϕ̄) =
pmax∑

p=2

λp Sint
p (ϕ, ϕ̄) , Sint

p (ϕ, ϕ̄) = tr[(ϕ̄ϕ)p], (19)

where λp is a coupling constant. Graphically, they are represented by cyclic graphs, see
Fig. 10.

Amplitudes. The partition function of a generic model described by (14) and (18) or
(19) is of the form

Z =
∫

dνC (ϕ, ϕ̄) e−Sint (ϕ,ϕ̄). (20)

To any connected graph G made with set L of lines and set V of vertices, we associate
the amplitude

AG = κ(λ)
∑

P[I ](v)

∏

�∈L
C�[{PIs (�); v(�)}, {P̃Is (�); v′(�)}]

∏

v∈V;s
δPIs ; v;P ′

Is ; v , (21)
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where the sum is performed over all the momenta P[I ](v) associated with vertices v on
which the lines are hooked, and the propagators C� possess a line label � ∈ L. The
function κ(λ) includes all the coupling constants and the symmetry factors. The specific
form of the vertex operator and propagators implies that the amplitude (21) factorizes
in terms of connected strand components which are the faces of the graph (in the sense
given in Sect. 2.1). There exist two types of faces: open faces the set of which will be
denoted Fext and closed faces the set of which will be denoted Fint . Using (17), we
have from (21):

AG = κ(λ)
∑

PI f

∫ [ ∏

�∈L
dα�

]{ ∏

f ∈Fext

[
e
−(∑�∈ f α�)|Pext

I f
|a ] ∏

f ∈Fint

[
e−(∑�∈ f α�)|PI f |a ]}

,

(22)

where Pext
I f

are external momenta and are not summed. One notices that the momenta

PI f depend now only on closed faces. In the specific case of G D = SU (2)D , since the
summand is independent of the momenta (m f,l , n f,l), for a closed face f , the sum over
PI f generates a factor d2

Pl f
where

dPl f
:=

D∏

l=1

d j f,l , d j := 2 j + 1. (23)

Introducing, in the model G D = U (1)D,dPI f
= 1 for all I f , we get in full generality

AG =κ(λ)
∑

PI f

∫ [ ∏

�∈L
dα�

]{ ∏

f ∈Fext

[
e
−(∑�∈ f α�)|Pext

I f
|a ] ∏

f ∈Fint

[
d2

PI f
e−(∑�∈ f α�)|PI f |a ]}

,

(24)
where, though we still keep the notation

∑
PI f

, this sum is now restricted only to spins

j f,l in the case of a model over G D = SU (2)D .
The amplitude (22) is generally divergent because of the first sum on arbitrarily

large momenta. Finding a well defined regularization scheme is the purpose of the
renormalization program consisting in three steps [51]: a multi-scale analysis from which
results a power counting theorem and the main locality principle of the model. This last
point deals with the identification of the main features of the primitively diverging
contributions and the reason why they can be recast in term of initial terms in the
Lagrangian. Then, one proceeds to the proper subtractions of these divergences yielding
a renormalized theory.

3.2. Multi-scale analysis and power counting theorem. We consider the model defined
by the partition function (20) introducing arbitrary trace invariant (rank d ≥ 3) or planar
cyclic (rank d = 2) polynomial interaction. The multi-scale analysis will be performed
at this general level. Only at the end, we will truncate the interaction series to relevant
and marginal terms supplemented, if necessary, by anomalous terms (not necessarily
included in (18) or (19)), depending on the parameters of our theory, namely the rank
d, the group dimension dim G D , the kinetic term parameter a and the maximal valence
of the interaction kmax.
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The multi-scale analysis starts by a slice decomposition of the theory’s propagator.
The kernel (17) expresses in the following way:

C =
∞∑

i=0

Ĉi , Ĉi [{PIs }, {P̃Is }] =
[ d∏

s=1

δPIs ,P̃Is

]
Ci [{PIs }],

Ci [{PIs }] =
∫ M−2(i−1)

M−2i
dα e−α(∑d

s=1 |PIs |a+μ2) , ∀i ≥ 0 ,

Ĉ0[{PIs }, {P̃Is }] =
[ d∏

s=1

δPIs ,P̃Is

]
C0[{PIs }], C0[{PIs }] =

∫ ∞

1
dα e−α(∑d

s=1 |PIs |a+μ2) ,

(25)

for some constant M > 1. The regularization scheme requires to introduce a ultraviolet
(UV) cut-off � on the sum over i . The cut-offed propagator reads as C� = ∑�

i=0 Ci .
The following bounds hold

∀i ≥1,Ci [{PIs }]≤ K1 M−2i e−M−2i (
∑d

s=1 |PIs |a+μ2)≤ K M−2i e−δM−2i (
∑d

s=1 |P∗Is |a+μ2)

≤ K M−2i e−δM−i (
∑d

s=1 |P∗Is | a
2 +μ2), (26)

C0[{PIs }]≤ K e−(∑d
s=1 |P∗Is | a

2 +μ2) ≤ K ,

for some constant K1, K , δ. Hence, for all a ∈ (0, 1], high i probes high momenta ps,l

or js,l of order M
i
a (or short distance on the group manifold) and therefore, the slice 0

refers to the infrared (IR) and the slice � to the UV.
The next stage is to find an optimal bound on the amplitude AG for any graph G.

From (21), the following amplitude is found

AG =
∑

μ

κμ(λ)AG;μ,

AG;μ =
∑

P[I ](v)

∏

�∈L
Ci� [{PIs (�); v(�)}, {P̃Is (�); v′(�)}]

∏

v∈V;s
δPIs ; v;PIs ; v ,

(27)

where μ = (i�)�∈L is a multi-index called momentum assignment which collects
the momentum scales i� ∈ [0,�] from each propagator. From the point of view
of the effective expansion, the constant κμ collects effective couplings correspond-
ing to μ. The important quantity which needs to be analyzed is AG;μ. The sum over
assignments μ will be only performed after renormalization according to a standard
procedure [51].

Optimal bounds on amplitudes very similar to (27) have been analyzed recently,
in several contexts and using different bases (direct or momentum space) of TGFTs
[44,56,59–61]. The first optimal bounds have been sorted out in the simpler TGFT
framework [44] and [56] were restricted to dim G D = 1 and d = 3, 4 and a = 1, 1

2 ,
respectively. Then, these amplitudes have been studied in Abelian [59,60] and non
Abelian [61] gi-TGFTs. Today, the state of the art is given in [61], the analysis has been
carried out in direct space for any dim G D and any rank d ≥ 3. All of these works except
[56,57], consider only Laplacian dynamics and so are defined at the point a = 1. The
purpose of the following is to gather all these results and to establish in the momentum
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space and for general dim G D, d and a, a power counting theorem for the present class
of simple TGFTs. At the end, one must obtain a degree of divergence for graphs which
overlaps with the result of [61] but also which includes the new parameter a. Thus, a
will allow us to explore the theory space without restricting to models with Laplacian
dynamics.

Consider a graph G, with set of lines L with cardinal L = |L|, set of internal faces Fint
with cardinality |Fint | = Fint and set of external faces Fext with cardinality |Fext | =
Fext . Let AG;μ be the associated amplitude as given in (27). The divergence degree
of this amplitude will be expressed in terms of specific subgraphs of G which make
transparent the notion of locality. These subgraphs are called quasi-local (or dangerous)
and are defined by a subset of lines of G with internal scale much higher than any
external scale. Let i be a fixed slice index and consider Gi the subgraph of G defined by
the set of lines such that ∀� ∈ L(Gi ) ∩ L(G), i� ≥ i . Gi may have several connected
components, we denote each component by Gi

k . The set {Gi
k}i,k defines the quasi-local

subgraphs. Seeking if a subgraph g is quasi-local there is the following specific criterion:
define L(g) and Le(g) the set of internal and set external lines of g, respectively, given
a momentum assignment μ in G, ig(μ) = inf�∈L(g) i� and eg(μ) = sup�∈Le(g), then g
is quasi-local if and only if ig(μ) > eg(μ).

The set {Gi
k}i,k is partially ordered by inclusion and forms a tree if G is connected.

In this situation, the tree has a root, namely the graph itself G = G0. This tree is called
the Gallavotti-Nicolò tree [69]. Figure 12 gives an example of such a tree for a graph.
The optimal bound on the amplitude of a connected graph will be found by integrating
internal momenta along a tree T (in the graph) in a specific way to be compatible with
the abstract Gallavotti-Nicolò tree.

Using the bounds (26), (27) can be evaluated in a similar way to (24) as

|AG;μ| ≤ K L K Fext
1

[ ∏

�∈L
M−2i�

] ∑

PI f

{ ∏

f ∈Fint

[
d2

PI f
e−δ(∑�∈ f M−i� )|P∗I f | a

2
]}
. (28)

Each sum over an internal PI f used in an exponential yields (see Appendix A for details
pertaining to the following identities):

Fig. 12. A rank 3 graph G with lines L1, L2, L3 and L4 at a given momentum attribution (8, 5, 3, 9), respec-
tively, and a face composed by lines L2 and L3. The corresponding Gallavotti-Nicolò (GN) tree and the face
optimization procedure
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– for case (a) U (1)D:

∑

PI f

e−δ′ M−i |P∗I f | a
2 =

∑

p f,1,...,p f,D

e−δ′ M−i (
∑D

l=1 |p f,l |a)

=
[ ∑

p∈Z

e−δ′ M−i |p|a
]D

= cM
D
a i (1 + O(M− i

a )) , (29)

for some constants c, δ′ and some scale i ;
– for case (b) SU (2)D:

∑

PI f

d2
PI f

e−δ′ M−i |P∗I f | a
2 =

∑

j f,1,..., j f,D

[ D∏

l=1

(2 j f,l + 1)2e−δ′ M−i | j f,l |a
]

=
[ ∑

p∈ 1
2 N

(2p + 1)2e−δ′ M−i |p|a
]D

= cM
3D
a i (1 + O(M− i

a )), (30)

for some constants c, δ′ and scale i .

Finding an optimal bound on AG;μ requires to sum over PI f such that each integral of
an exponential will bring a minimal divergence. In order to satisfy this, we must choose
in the face evaluation (29) and (30) the scale i such that it corresponds to i f = min�∈ f i�.
Call � f the line such that i� f = i f . We must show that the end result after all optimal
integrations of this kind is compatible with the Gallavotti-Nicolò tree in the sense that
result formulates in terms of the set {Gi

k}.
Let us remark that a face f becomes closed in some Gi

k only if all its lines belong
to that quasi-local subgraph. This means that f is closed in some Gi

k if i ≤ il f which

further implies that the set of lines contributing to f close exactly in the G
i� f
k and for

all i�, 0 ≤ i ≤ i� f , f ∈ Fint (Gi
k) (this is illustrated in Fig. 12). Using this remark,

introducing ρD,a = dim G D/a and integrating (28) in a optimal way using i f , we
expand the result using the set of quasi-local graphs (in the way of [51]) as

|AG;μ| ≤ K L K Fext
1 K Fint

2

[ ∏

�∈L
M−2i�

] ∏

f ∈Fint

[
MρD,ai f

]

≤ K L K Fext
1 K Fint

2

[ ∏

�∈L

∏

(i,k)/�∈L(Gi
k )

M−2
] ∏

f ∈Fint

∏

(i,k)/� f ∈L(Gi
k )

[
MρD,a

]

≤ K L K Fext
1 K Fint

2

[ ∏

(i,k)

∏

�∈L(Gi
k )

M−2
] ∏

(i,k)

∏

f ∈Fint (Gi
k )

[
MρD,a

]

≤ K L K Fext
1 K Fint

2

[ ∏

(i,k)

M−2L(Gi
k )+ρD,a Fint (Gi

k )
]
. (31)

Changing M for Ma in (31) leads to following statement.
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Theorem 1 (Power counting theorem). Let G be a connected graph of the model (20),
there exist some large constants K , K1 and K2, such that

|AG,μ|≤ K L K Fext
1 K Fint

2

∏

(i,k)∈N2

Mωd(Gi
k ) , ωd(G

i
k)=−2aL(Gi

k)+dim G D Fint (G
i
k).

(32)

The quantity ωd(G) is called the divergence degree of the graph G. Setting a = 1, we
get from (32), as expected, the degree of divergence as established in the gi-TGFT [61]
after putting to zero an additional term associated with the so-called gauge invariance
constraint on tensors (the interested reader will find details in this reference). Setting
dim G D = 1, a = 1, we obtain the power counting of [44], and a = 1/2 yields the
power counting of [56]. We also understand that, introducing a dynamics depending on
a has the same effect as dilating the group dimension dim G D by the factor a−1. If we
introduced a > 1, then the effect would be naturally to decrease the group dimension
or enhancing the damping effect that the propagator has on the amplitude. Note also
that the above power counting is valid for matrix models. We must then emphasize that
the introduction of a non integer power a in propagator momenta might lead to a non
integer divergence degree. We will see however that, seeking renormalizable models,
the possible values of a are limited to rational numbers.

A remark on G D = U (1)p × SU (2)q , dim G D = p + 3q. Considering G D now as
a product of U (1)p and SU (2)q is straightforward: the kinetic term builds as sums of
kinetic terms of the form (14) in each sector. The slice decomposition can be performed
as in (26) and, after the multi-scale analysis, the final degree of divergence (32) splits as

ωd(G
i
k) = −2aL(Gi

k) + p F1
int (G

i
k) + 3q F2

int (G
i
k) , (33)

where two types of faces have to be introduced according to the fact that these can be
generated in the U (1) sector (F1

int ) or in the SU (2) sector (F2
int ). This study will be

postponed to a subsequent work.

3.3. Divergence degree and list of potentially renormalizable models.

Divergence degree. In form (32), the divergence degree ωd is not very insightful for
the determination of all primitively divergent graphs. To fully understand this quantity,
we must introduce further details on the graph which are related to the underlying color
structure corresponding to the trace invariants.

Consider a connected graph G and its colored extension Gcolor as introduced in Sect.
2.2. The following result has been established for a reduced case d = 4 [44] and then
extended to any rank in [60].

Proposition 1 (Number of internal faces in a rank d ≥ 3 model). Let G be a rank d
connected graph, Gcolor its colored extension, ∂G its boundary with number C∂G of
connected components, Vk its number of vertices of coordination k, V = ∑

k Vk its total
number of vertices, n · V = ∑

k kVk its number of half lines exiting from vertices, Next
its number of external legs.

The number of internal faces of G is given by

Fint (G) = − 2

(d − 1)! (ω(Gcolor)− ω(∂G))− (C∂G −1)

− d − 1

2
Next + d − 1 − d − 1

4
(4 − 2n) · V, (34)
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whereω(Gcolor) = ∑
J gJ̃ is the degree of Gcolor, J̃ is the pinched jacket associated with

J a jacket of Gcolor, ω(∂G) = ∑
J∂ gJ∂ is the degree of ∂G.

Proof. See Proposition 3.7 in [60]. ��
Note that the number of internal faces does not depend on the dimension of the group

or the gauge invariance of the theory but only on the combinatorics of the graph itself.
From this proposition, we are in position to reformulate the divergence degree of a graph.

Proposition 2 (Divergence degree). The divergence degree of a graph G is given by

ωd(G) = −2 dim G D

(d − 1)! (ω(Gcolor)− ω(∂G))− dim G D(C∂G − 1)

−1

2

[
(dim G D(d − 1)− 2a)Next − 2 dim G D(d − 1)

]

−1

2

[
2 dim G D(d − 1) + (2a − dim G D(d − 1))n

]
· V . (35)

Proof. This formula ωd(G) can be easily obtained after substituting the combinatorial
relation (we omit the dependence in the graph G)

−2L = −(n · V − Next ) (36)

and (34) in the divergence degree (32). ��
Since we will be also interested in matrix models, it is relevant to understand the

above power counting in the rank 2 case. In that situation, the following proposition
holds (in the same notations).

Proposition 3 (Divergence degree of matrix models). The divergence degree of a graph
G is given by

ωd(G) = −2 dim G DgG̃ − dim G D(C∂G − 1) − 1

2

[
(dim G D − 2a)Next − 2 dim G D

]

−1

2

[
2 dim G D + (2a − dim G D)n

]
· V, (37)

where G̃ is the closed (pinched) graph associated with G.

Proof. Introducing the closed graph G̃ (closing all external faces by inserting a two-leg
vertex at each external half-line, see Fig. 11), one gets from the Euler characteristic of G̃

Fint = 2 − 2gG̃ − (V − L + C∂G). (38)

Substituting the last result and (36) in (32) yields the desired relation. ��
Criteria for potentially renormalizable models. There is a proof that, for any graph
in this category of models ([44] and its addendum [45])

ω(Gcolor)− ω(∂G) ≥ 0. (39)
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Also, for any graph with external legs (as those of interest in the renormalization proce-
dure are), C∂G ≥ 1. Therefore, for any connected graph with Next ≥ 2, the following is
valid (introducing d− = d − 1)

ωd(G) ≤ 1

2

[
2 dim G Dd− + (2a − dim G Dd−)Next

]

−1

2

[
2 dim G Dd− + (2a − dim G Dd−)n

]
· V . (40)

Furthermore, in any theory rank d ≥ 3, melonic graphs (recalling that these are defined
such that ω(Gcolor) = 0) with melonic boundary (such that ω(∂G) = 0) with a unique
connected component on the boundary saturate this bound. Thus (40) is optimal. The
particular rank d = 2 situation is similar. The class of dominant graphs in power counting
are planar graphs gG̃ = 0 with C∂G = 1 for which (40) is saturated as well. Given the
above bound, we can now investigate which parameters (dim G D, a, d) will lead to
potentially super- and just-renormalizable models.

Consider D ≥ 1, d ≥ 2, a ∈ (0, 1], and kmax ≥ 4 the maximal coordination among
all interactions of a graph G (kmax = 2 leads to a quadratic trivial interactions; kmax odd
is possible for matrix models but not when using complex matrices; kmax = 3 is also
impossible in the tensor case because there is no trace invariant built from contractions
of an odd number of tensors [37]).

From (40), we shall call a model

(i) nonrenormalizable if ∃k, such that 2 dim G Dd− + (2a − dim G Dd−)k < 0;
(ii) renormalizable if ∀k, 2 dim G Dd− + (2a − dim G Dd−)k ≥ 0.

Referring to the first condition, one can show that, in such a model, there exists an
infinite number of graphs with arbitrary large degree of divergence depending on their
number of vertices.7 Meanwhile, the second condition will be further specified in order
to establish which models will be super- and just-renormalizable. Note that the class of
super-renormalizable models includes models with all convergent amplitudes. In the rest
of this section, we shall not exclude from the discussion convergent models (however,
from the next section onwards, such convergent models will not be discussed because
our main interest lies in the renormalization of divergent models).

Now, we seek a finer criterion in order to distinguish super- from just-renormalizable
models. Two cases might occur:

(A) Assume 2a − dim G Dd− ≥ 0, then for all k ≥ 0, we have 2 dim G Dd− + (2a −
dim G Dd−)k > 0. Hence, one agrees that

ωd(G) ≤ − dim G Dd−(V − 1)− 1

2
(2a − dim G Dd−)(n · V − Next ). (41)

For any graph, we know that V ≥ 1 and n · V ≥ Next . Then the above bound of
the divergence degree leads to either convergent amplitudes or to logarithmically
divergent (log-divergent) graphs characterized byωd(G) = 0. The case n ·V = Next
corresponds to a graph without propagator which is not of interest. Thus we can

7 First, one must recall that the divergence degree is optimal, i.e. there are always some graphs which
saturate the bound (40). Consider some vertex valence k0 satisfying 2 dim G Dd− + (2a −dim G Dd−)k0 < 0.
Remark that one must have (2a − dim G Dd−) < 0, otherwise the previous condition can never be satisfied.
Consider then the class of graphs made specifically with Vk0 vertices and no other type of vertices. We can
certainly focus on the graphs such that Next < k0, for which ωd admits an upper bound which depends on
Vk0 and thus ωd for these graphs can be arbitrarily large.
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assume n · V > Next . If 2a − dim G Dd− > 0, all amplitudes are convergent: the
model is super-renormalizable. Thus the only possible situation leading to diver-
gences is given by

V = 1 and 2a − dim G Dd− = 0. (42)

Note that the condition 2a−dim G Dd− = 0 depends only on the model parameters
and can be implemented from the beginning. We write

ωd(G) ≤ dim G Dd−1(1 − V ). (43)

Then, in these theories, only graphs G such thatω(Gcolor) = 0 = ω(∂G) (or gG̃ = 0
for d = 2, resp.) and C∂G = 1 made with 1 vertex with an arbitrary number of
external legs are diverging. In other words, only melonic (planar, resp.) tadpoles
with arbitrary number of legs are possibly logarithmically divergent (log–divergent)
in this theory. If one performs a truncation in the interaction (18), choosing all trace
invariants from valence 2 up to order kmax, then contracting any of these interactions
(of coordination larger than 4) in order to form melonic (planar, resp.) tadpoles,
might give another graph the boundary of which is again a trace invariant of lower
order or a disjoint union of such trace invariants. The latter case has been called
anomalous terms in anterior studies [44,60,61]. Thus, at a maximal order kmax,
including all lower order trace invariants (the set of which should be finite) and
their possible anomalous terms by successive contractions (the set of which should
be finite too), yields a possible class of stable (does not generate any other vertex
than the one included) and super-renormalizable theories. At the end, the number
of diverging tadpole graphs in such a theory is always determined by the number of
vertices which is finite. Hence, 2a −dim G Dd−1 ≥ 0 defines super-renormalizable
models (similarly to the so-called P(φ2) model).
Inspecting when 2a − dim G Dd−1 = 0 vanishes, we get the following solutions:

0 < dim G D(d − 1) ≤ 2 ,

dim G D(d − 1) = 1, dim G D = 1 , G D = U (1) , d = 2, a = 1

2
;

dim G D(d − 1) = 2, dim G D = 2 , G D = U (1)2 , d = 2, a = 1,

dim G D = 1 , G D = U (1) , d = 3, a = 1.

(44)

(B) Let us assume now that 2a − dim G Dd−1 < 0. Interested in the case when, ∀k,
2 dim G Dd− + (2a − dim G Dd−)k ≥ 0, this leads to

kmax ≤ 2 dim G Dd−

dim G Dd− − 2a
. (45)

Then, if kmax is exactly the upper bound, the model is just-renormalizable. If kmax
is strictly smaller than the upper bound then, the model is super-renormalizable. In
general, the number of external legs improves as well the power counting (recalling
that (2a − dim G Dd−1)Next < 0). We comment that, by specifying kmax for a just-
renormalizable model, we can immediately infer a tower of super-renormalizable
models labelled by all k′

max ∈ [[4, kmax), where k′
max is the new maximal valence

of the vertices in these models. We will address such models implicitly encoded in
the class of just-renormalizable models only in Sect. 6.
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Potentially just-renormalizable models. Just-renormalizable models require that
dim G Dd− − 2a > 0 and

kmax = 2 dim G Dd−

dim G Dd− − 2a
= 2 + γa,D, γa,D = 4a

dim G D(d − 1)− 2a
. (46)

We immediately see that this class of simple TGFT models radically differs from the class
of gauge invariant ones [61] for which a similar condition is obtained using d− = d − 2
and a = 1. Focusing on the term involving V in (40), one has

[
2 dim G Dd− + (2a − dim G Dd−)ñ

]
· Ṽ

:= −
∑

k<kmax

[
(dim G Dd− − 2a)k − 2 dim G Dd−]

Vk < 0. (47)

Thus, any graph having Next = kmax, Vkmax > 0 and Vk<kmax > 0 is converging. This
gives us the interesting property that a graph with Next = kmax is log-divergent if and
only if it is built with vertices of maximal valence kmax.

We compile this in order to have a first et of condition for obtaining just-
renormalizable models and it reads

{dim G D(d − 1) > 2a} ; {
kmax = 2 + γa,D > 2 ⇔ dim G D(d − 1) ≤ 6a

}

so that 2a < dim G D(d − 1) ≤ 6a. (48)

Assuming d = 2, the above condition translates as

dim G D > 2a,

a = 1, dim G D > 2a ≥ 2 , dim G D > 2,

1 > a ≥ 1/2, dim G D > 2a ≥ 1, dim G D ≥ 2,

a < 1/2, dim G D ≥ 1 > 2a, dim G D ≥ 1. (49)

Assume now that d ≥ 3, then we have

dim G D > a,

a = 1, dim G D > 1 = a, dim G D ≥ 2,

a < 1, dim G D ≥ 1 > a, dim G D ≥ 1. (50)

For an arbitrary Next , (40) translates now as

ωd(G) ≤ − 1

2
(dim G Dd− − 2a)(Next − kmax)

− 1

2

[
2 dim G Dd− + (2a − dim G Dd−)ñ

]
· Ṽ . (51)

Assuming then that Next > kmax gives a convergent amplitude provided the fact that
dim G Dd− > 2a. For the situation, such that Next < kmax, the amplitude may or may
not diverge.

We are now in position to determine models which are potentially just-renormalizable.
Let us focus on d = 2 (49), then one realizes from (48) that
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a = 1, 2 < dim G D ≤ 6

dim G D = 3, kmax = 6,

dim G D = 4, kmax = 4,

dim G D = 5, kmax = 10

3
/∈ N,

dim G D = 6 , kmax = 3. (52)

The last case dim G D = 6 would not be retained because kmax ≥ 4 for complex matrix
models. However, this case could still induce a potentially renormalizable real matrix
model.

Recalling that

kmax =2+γa,D, γa,D =γ = 4a

dim G D −2a
∈ N\{0}, a(4 + 2γ ) = dim G Dγ, (53)

in the second sector, the following is satisfied:

1 > a ≥ 1/2, 2 ≤ dim G D < 6,
4

dim G D − 2
> γ ≥ 2

dim G D − 1
,

dim G D = 2, ∀γ ≥ 2 and γ ∈ N , a = γ

2 + γ
, kmax = 2 + γ > 2 ;

dim G D = 3, 4 > γ ≥ 1 and γ ∈ N , a = 3γ

4 + 2γ
, kmax = 2 + γ > 2 ;

dim G D = 4, 5, γ = 1, a = dim G D

6
, kmax = 3 > 2. (54)

In the last sector, we have

0 < a < 1/2, 1 ≤ dim G D < 3, 0 < γ <
2

dim G D − 1
,

dim G D = 1, ∀γ ≥ 1 and γ ∈ N , a = γ

4 + 2γ
, kmax = 2 + γ > 2 ;

dim G D = 2, γ = 1 , a = 1

3
, kmax = 3 > 2. (55)

This exhausts potentially just-renormalizable models in the rank d = 2 case. We point
out that several of the above models in (54) and (55) defined with kmax an odd positive
integer are potentially interesting only in the case of real matrix models. Table 2 gives
a summary of the previous analysis.

Next, we study the rank d ≥ 3 situation. It is important to keep in mind the following
feature: for any d ≥ 3, kmax cannot be an odd integer as it turns out to be impossible to
built a trace invariant out off a odd number of tensors in any theory rank d ≥ 3. One has:

dim G D > a ,

a = 1, dim G D > 1 = a, dim G D ≥ 2,

a < 1, dim G D ≥ 1 > a, dim G D ≥ 1. (56)
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Table 2. List of all potentially just-renormalizable matrix models dim G D�
k
2

dim G D a = 1 a ∈ (0, 1/2) a ∈ [1/2, 1)

1 × �2k>2 ×
2 × × �2k≥4

3 �6 × �4, a = 3
4

4 �4 × ×
1 × �2k+1>2 ×
2 × �3, a = 1

3 �2k+1≥4

3 × × �k=3,5, a = 1
2 ,

9
10 (resp.)

4 × × �3, a = 2
3

5 × × �3, a = 5
6

6 �3 × ×
All interactions of the �2k+1 type may only be considered in a real model

Table 3. List of rank d ≥ 3 tensor models potentially just-renormalizable

dim G Dd− a = 1 a ∈ (0, 1)

2 × �2k>2

3 �6 �4, a = 3
4

4 �4 ×

We define

γ = 4a

dim G Dd− − 2a
∈ N\{0} , a(4 + 2γ ) = dim G Dd−γ , (57)

such that a = 1 yields

2 < dim G Dd− ≤ 6, (4 + 2γ ) = dim G Dd−γ ,

dim G Dd− = 3, γ = 4, kmax = 6,

dim G Dd− = 4, γ = 2, kmax = 4,

dim G Dd− = 5, 3γ = 4, kmax /∈ N,

dim G Dd− = 6, γ = 1, kmax = 3. (58)

The last case should be excluded because of the same above reason. Next, one focuses
on 0 < a < 1, for which the sole relevant situations are obtained as

dim G Dd− ≥ 2, 0 ≤ (dim G Dd− − 2)γ < 4,

dim G Dd− = 2, ∀γ ≥ 2 and γ ∈ 2N, a = γ

2 + γ
, kmax = 2 + γ > 2,

dim G Dd− = 3, γ = 2, a = 3

4
, kmax = 4, (59)

where in the above cases, the cases of odd γ giving an odd kmax have been precluded
(same above remark). Let us summarize at this point the data in Table 3.

Compiling Tables 2 and 3 and considering the group dimension dim G D and theory
rank d yield Table 4 (each model depends also on a) giving a summary of all potentially
renormalizable models (including real in the matrix case).
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Table 4. List of rank d ≥ 2 tensor models which are potentially just-renormalizable

dim G D ↓ d − 1 →
1 2 3 4 5 6

1 1�
k>2
2 1�

2k>2
3 1�

6,4
4 1�

4
5 × ×

2 2�
k>2
2 2�

4
3 × × × ×

3 3�
3,4,5,6
2 × × × × ×

4 4�
3,4
2 × × × × ×

5 5�
3
2 × × × × ×

6 6�
3
2 × × × × ×

Some comments are in order:

(a) First, one notices that there is no model over SU (2) which could be just-
renormalizable when d ≥ 3. G1 = SU (2) can only be the background group
manifold for the 3�

3,4,5,6
2 models and G2 = SU (2)2 for 6�

3
2.

(b) The tensor models 1�
6
4 and 1�

4
3 (in first row) have been already proved to be

renormalizable in [44] and [56], respectively.
(c) The matrix models 1�

k1>2
2 and 2�

k2≥4
2 may be in fact very similar when both k1

and k2 coincide after mapping a → 2a, if 2a ∈ (1/2, 1), that is if a ∈ (1/4, 1/2).
Otherwise these models are actually different and, in the following, we will treat
them as such unless otherwise explicitly stated.

(d) Another strong fact is that there are, a priori, three towers of potentially inter-
esting models: any �2k≥4 over G = U (1) in rank d = 3, and �k≥3,4 over
G ∈ {U (1),U (1)2} in rank d = 2.

(e) Interestingly, one notices that the �4 interaction appears several times in that list
up to the group dimension dim G D = 4. It is a kind of “privileged” interaction for
the tensor and matrix field models.

(f) The complex Grosse–Wulkenhaar (GW) model in 4 dimensions written in the
matrix basis and at its self-dual point [49] is a matrix model which can be written
in terms of rank two tensors ϕ̄ �m,�n and ϕ �m,�n, �n = (n1, n2) ∈ N

2, as

SGW = 1

2

∑

�p,�q∈N2

ϕ̄ �p,�q
[
|p| + |q| + μ

]
ϕ�q, �p +

λ

4

∑

�m,�n, �p,�q∈N2

ϕ̄ �m,�n ϕ�n, �p ϕ̄ �p,�q ϕ�q, �m,

(60)

where we introduce the notation, for any �n ∈ N
2, |n| = n1 + n2.

One should pay attention to the fact that, although the GW model can be naively
considered as defined with rank 4 tensors ϕ �p,�q = ϕp1,p2,q1,q2 then, according to the
previous developments, it is not the 1�

4
4 tensor model with a = 1

2 (according to
Table 4, only the 1�

4
4 tensor model with a = 3

4 is potentially just-renormalizable).
The reason why this is not the case comes from the particular form of the GW inter-
action. In the above analysis, we strongly use the fact that the divergence degree (40)
is saturated for melonic graphs. However, in the GW model viewed as a rank 4 tensor
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IGW I ′
GW I ′′

Fig. 13. The interaction of GW model in 4D viewed as a matrix model is IGW and, viewed as a rank 4 model,
the interaction reads I ′

GW . Both have to be distinguished with the melonic rank 4 interaction I ′′

Table 5. List of potentially just-renormalizable rank d ≥ 2 complex tensor models

dim G D ↓ d − 1 →
1 2 3 4 5 6

1 1�
2k>2
2 1�

2k>2
3 1�

6,4
4 1�

4
5 × ×

2 2�
2k>2
2 2�

4
3 × × × ×

3 3�
4,6
2 × × × × ×

4 4�
4
2 × × × × ×

model, the vertex is of the form I ′
GW of Fig. 13, and cannot generate such category of

melonic graphs (see I ′′of Fig. 13 representing a rank 4 melonic �4 interaction). Thus,
the GW model should be strictly considered as a matrix model and its power counting
theorem should follow from Proposition 3 and not from Proposition 2. The way to embed
the 4D GW in the above formalism comes from the fact that the tensor indices in that
model are one to one with representation indices of U (1)2. Hence, the GW model as a
matrix model might read 2�

4
2 for a = 1/2. This model is included in Table 4. Using

the projection mapping introduced in [57], which allows to reduce the rank of the tensor
and still to preserve the power counting, we can map ϕ�n, �m → ϕn,m, n,m ∈ N, so that
we might fully represent the GW model over U (1) as 1�

4
2 with a = 1/4 again a matrix

model included in the table.
Concentrating on rank d ≥ 2 complex tensors, Table 5 provides the list of models

that we will discuss in the following.

4. Just Renormalizable Rank d ≥ 3 Tensor Models

The previous section determines the maximal valence kmax of the vertices which may
actuate the model renormalizability. In this section, we intend to build models which are
indeed renormalizable given the above data. The models are constructed in a standard
way: we include all vertices of lower valence up to kmax and, due to some specific higher
rank structure, we also should pay attention to the appearance of peculiar anomalous
terms which should be included as well. Afterwards, given a model dim G D�

k
d , we provide

a list of all divergent amplitudes and their associated graphs which must be renormalized
in the subsequent section.

One proceeds according to the general recipe: Consider any model susceptible to
be renormalizable as given by Table 5. This will determine a, the kinetic term and
covariance, kmax and from this, use all trace invariants of lower order up to 4. In the rank
d ≥ 3 case, among the trace invariants, use only melonic ones as the interaction terms.
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4.1. Tensor models and their renormalizability.

Truncating the rank d = 3 tower. The tower (1�
kmax
3 , a = 1− 2

kmax
), kmax ∈ 2N\{0, 2},

is worth discussing in more details. At a given order kmax, the problem of finding specific
criteria for listing kmax connected unitary tensor invariants is not known to the best of
our knowledge. In fact, this problem is very subtle because we do not need to list all
3-bubbles, but only specific 3-bubbles of the melonic kind. Melonic bubbles, in general,
will govern the locality principle of tensor models. Returning to the above tower dealing
with models of rank d = 3, we did not successfully identify an algorithm for generating
all possible connected melonic 3-bubbles made with kmax vertices up to a line-coloring.
It is known [30] that melonic two-point functions made with q vertices map to rooted
colored trees with q unlabeled vertices. The number of such combinatorial species is
given by a generalized (d+1)−Catalan number. The problem addressed now is to identify
all possible melonic kmax-point function made with kmax vertices. This is more intricate
because of the equivalence of several configurations if there is not a unique root. Certainly
the number of these objects is bounded by the generalized Catalan number because a
kmax-point function can be obtained by cutting more lines (of color 0 for instance) in the
2-point function. Also, even knowing the number of different configurations does not
necessarily gives a way to list them according to some criteria. Certainly, the recently
developed counting techniques built on permutation groups might be useful to list those
invariants in an appropriate way [70]. This delicate study will require more combinatorial
tools. For this reason, we will address only the renormalizability of models such that
kmax = 4, 6 in this tower.

At a given kmax = 4, 6, we aim at studying all rank d ≥ 3 tensor models dim G D�
kmax
d .

Note that the 1�
6
4 and 1�

4
3 have been already proved renormalizable [44,56]. We provide

in the following here a unifying perspective towards the study of renormalizability of
TGFTs. Hence, in addition to the aforementioned models, we will address the renormal-
izability proof of the following models

1�
6
3, 2�

4
3, 1�

4
4, 1�

4
5. (61)

Block index notations. Dealing with an arbitrary rank d = 3, 4, 5 and a group G D =
U (1)D with D = 1, 2, we must find adequate notations for representing the different
types of interactions. We have already introduced ϕ[I ] the rank d tensor field where [I ] =
{I1, . . . , Id} collects all momentum labels. The interactions are built from particular
contractions of the indices Is between tensor fields. This is done in such a way that we
can further decompose [I ] in sub-blocks fully contracted with other sub-blocks in other
tensor fields. We write

ϕ[I ] = ϕ[1][2]...[q] , [s] = (Is,1, . . . , Is,l) , s = 1, . . . , q , (62)

where q may vary according to the contraction we are interested in. For any rank d
tensor field ϕ[I ] = ϕ12...d , there are two particular decompositions of the tensor labels
of interest in the following. The first can be called the identical decomposition and is
given by

ϕ12...d = ϕ[1][2]...[d], [s] = s , (63)

and the second is the so-called matrix type decomposition of the tensor entries which
can be written as

ϕ123...d = ϕ[a]{ǎ} , [a] = a , {ǎ} = (1, 2, . . . , ǎ, . . . d) , (64)
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where, at least, one block uses brace brackets. Note that, in this latter decomposition, one
block contains a single element and, though not explicit, the brace bracket depends on
the tensor rank. On matrix models, only the identical decomposition will be significant.
Furthermore, the matrix decomposition is “canonical” in the sense that, even though its
seems that we have changed the place of the index a in the tensor as ϕ...a.... = ϕ[a]...., the
previous position of that index is still encoded in {ǎ}. Thus, this prescription preserves
the (colored-like) gluing rule for graphs depending on the position of labels in the tensor.

For all models (·)�4
d≥3, a matrix type decomposition will be used. For the model 1�

6
3,

we will use a matrix and an identical decomposition to describe the model. Last, for the
1�

6
4 model, we introduce the non trivial decomposition characterized by

ϕ1234 = ϕ[1][2][3], [1] = 1 , [2] = (2, 3) , [3] = 4. (65)

One should pay attention to the fact that, in the above notations, discussing either 1�
6
3

or 1�
6
4, the tensor field will be denoted as ϕ[1][2][3]. However, according to the model

context, these block notations of tensor do not refer to the same quantities. The point
for introducing such notations comes from the fact that the model properties and its
renormalization analysis only depend on these decompositions of the tensor indices.

Propagators. Propagators has been already discussed. They are given by (16) and are
represented by stranded lines as in Fig. 1.

Melonic interactions. The interactions of the models must be chosen according to
the truncation of the series of all possible interactions from relevant to marginal terms.
Here, the interactions are generated by the series Sint (ϕ, ϕ̄) (18) of all connected melonic
contractions for a certain rank d theory. From the power-counting theorem, Proposition
2, and subsequent analysis of the divergence degree, for a given (·)�kmax

d model, we
have a specific criterion to truncate the series Sint (ϕ, ϕ̄). We will only consider melonic
interactions with at most kmax = Next external legs. It may happen that terms called
anomalies [44] appear because generated by the RG flow without being initially present
in (18). In such instance, one must add these terms in the initial action and check that
the resulting action does not generate any further term.

– For kmax = 6 (d = 3, 4 and dim G D = 1), two types of interactions Sint
6;1 and Sint

6;2 of

the �6-form can be constructed. These are given by

Sint
6;1 =

∑

P[I ]
ϕ[1]{1̌}ϕ̄[1′]{1̌}ϕ[1′]{1̌′}ϕ̄[1′′]{1̌′}ϕ[1′′]{1̌′′}ϕ̄[1]{1̌′′} + permutations, (66)

Sint
6;2 =

∑

P[I ]
ϕ[1][2][3]ϕ̄[1]′[2]′[3]ϕ[1]′[2]′[3]′ ϕ̄[1]′′[2][3]′ϕ[1]′′[2]′′[3]′′ ϕ̄[1][2]′′[3]′′ + permutations,

(67)

where the sum of “permutations” is performed on colors. For the 1�
6
d=3,4 model, (66)

contains exactly d terms, meanwhile (67) contains d(d − 1)/2 terms. Using the colored
extension of these vertex (as discussed in Sect. 2.2), one may check that the resulting
colored graphs satisfy the condition that their degree are vanishing. A drawing of these
interactions is given in Fig. 14 where bold lines may encapsulate several strands depend-
ing on the model. Within a model, from V6;1 to V6;2, these bold lines may not contain
the same number of strands. As one realize, the block index notation is a handy way for
writing vertices (and not always Feynman graphs, because in the gluing the propagator
may not follows the block index) and to perform the subsequent calculations.

In addition to these interactions, we must introduce a �4 interaction as
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Fig. 14. The vertices of the types V6;1 (A) and V6;2 (B)

Fig. 15. Vertices �4 of the V4 (A) and V4;a (B) types

Sint
4 =

∑

P[I ]
ϕ[1]{1̌}ϕ̄[1′]{1̌}ϕ[1′]{1̌′}ϕ̄[1]{1̌′} + permutations (68)

which contains d terms (Fig. 15 A shows a general term in this interaction). It turns out
that the 1�

6
4 model generate an anomalous term of the (�2)2 type given by

Sint
4;a =

∑

P[I ]
(ϕ[1]{1̌}ϕ̄[1]{1̌})(ϕ[1′]{1̌′}ϕ̄[1′]{1̌′}). (69)

The graphical representation of the vertex associated with this interaction is given by
Fig. 15 B.

– Turning our attention to the dim G D�
4
d models ((d, dim G D) ∈ {(3, 1), (3, 2), (4, 1),

(5, 1)}), there is a unique type of interaction of the same form given by Sint
4 (68) hence

possesses the same graphic as given by Fig. 15 A. We will use the same notation
Sint

4 for this interaction because no confusion will occur discussing one model or the
other. No anomalous can be generated here.
Introducing a UV cut-off in the propagator C becomes C�, we must consider bare
and renormalized couplings and their difference known as coupling constant counter-
terms CT . In particular, we must introduce mass and wave function counter-terms
for each model as

S2;1 =
∑

P[I ]
ϕ̄[I ]ϕ[I ] , S2;2 =

∑

P[I ]
ϕ̄[I ]

( d∑

s=1

|PIs |a
)
ϕ[I ] . (70)

The action that we will consider are given by
– For kmax = 6, d = 3, 4,

S� = λ�6;1
3

Sint
6;1 +λ�6;2Sint

6;2 +
λ�4;1

2
Sint

4 +
λ�4;2

2
δd,4 Sint

4;a + CT�2;2S2;2 + CT�2;1S2;1, (71)

where δd,4 is a Kronecker symbol.
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– For kmax = 4, (d, dim G D) ∈ {(3, 1), (3, 2), (4, 1), (5, 1)},

S� = λ�4;1
2

Sint
4 + CT�2;2S2;2 + CT�2;1S2;1. (72)

The following statement holds

Theorem 2 (Renormalizable tensor models). The models (dim G D�
kmax
d , a) such that

(1�
6
4, a = 1) over U (1), (1�

6
3, a = 2

3
) over U (1),

(1�
4
4, a = 3

4
) over U (1), (1�

4
3, a = 1

2
) over U (1),

(1�
4
5, a = 1) over U (1), (2�

4
4, a = 1) over U (1)2, (73)

with action defined by (71) or (72) are all just-renormalizable at all orders of perturba-
tion.

The proof of this theorem has been nearly achieved through the multi-scale analysis
and analysis of the divergence degree in the generic situation of Sect. 3.2 and Sect. 3.3.
Our remaining task is to introduce wave function counter-terms in the divergence degree,
list all possible divergent amplitudes for each case and perform the renormalization of
these divergences.

Introducing in a graph, a number of V2;2 wave function counter-term vertices (70)
each of which bringing a factor of |PIs |a ∼ M2i in a slice i , it is simple to find from the
previous multi-scale analysis the degree of divergence a connected graph G as

ωd(G) = −2aL(G) + dim G D Fint (G) + 2aV2;2. (74)

If one includes the anomalous term Sint
2;a then, from the point of view of the external

legs, the anomalous vertex is disconnected. We will consider only half of the anomalous
vertex when discussing connected graphs.

The formula of number of internal faces Fint (G) given by Proposition 1 remains
barely of the same form but in the definition of V = ∑

k Vk and n · V = ∑
k kVk , one

should incorporate the number V2;2 of wave function vertices, the number V2;1 of mass
vertices and number δd,4V2;a of half-anomalous vertices. It is direct to realize from (34)
that Fint (G) does not depend on 2-valent vertices, in particular on V2;2. We can finally
express the degree of divergenceωd(G) of a connected graph again as (35) with a number
of vertices V which does not include the wave function counter-term vertices but still
includes mass and anomalous vertices. Thus, as expected, the degree of divergence does
not depends on wave function counter-terms.

List of primitively divergent graphs. We consider graphs with an even number of
external legs such that ∂G �= ∅ and C∂G ≥ 1. There are some important features
satisfied the difference ω(Gcolor)− ω(∂G). In particular in [44], it has been proved that
either this quantity is vanishing or it obeys

2

(d − 1)!
(
ω(Gcolor)− ω(∂G)) ≥ d − 2 ≥ 0. (75)
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Table 6. List of primitively divergent graphs of the 1�
6
d=3

Next V2 + V ′′
2 V4 ω(∂G) C∂G − 1 ω(Gcolor) ωd(G)

6 0 0 0 0 0 0
4 0 0 0 0 0 a
4 0 1 0 0 0 0
2 0 0 0 0 0 2a
2 0 1 0 0 0 a
2 0 2 0 0 0 0
2 1 0 0 0 0 0

We can now fully address the list of divergent amplitudes for the different models by
introducing

ωd(G) = −2 dim G D

(d − 1)! (ω(Gcolor)− ω(∂G))− Pa(G) , (76)

Pa(G) = dim G D(C∂G − 1) +
1

2

[
(dim G D(d − 1)− 2a)Next − 2 dim G D(d − 1)

]

+
1

2

[
2 dim G D(d − 1) + (2a − dim G D(d − 1))n

]
· V (77)

and then by seeking conditions under which ωd(G) ≥ 0.
• For kmax = 6, dim G D = 1, (d, a) ∈ {(3, 2

3 ), (4, 1)}, respectively, then (d − 1 −
2a) ≥ 0 and, given a connected graph G with V4 number of vertices of the �4 type,
δd,4V2;a number of half anomalous vertices and V2;1 number of mass vertices, the upshot
of the analysis of divergent graphs of the model 1�

6
3 is given in the Table 6 (the list of

divergent graph for the model 1�
6
4 can be found in [44]).

Note that the list of graphs with divergent amplitudes of the 1�
6
4 contains those of

1�
6
3 plus two more lines defined by (a2) and (e1). From (e1), one notices the fact that

only the model 1�
6
4 generates sub-leading divergent non-melonic contributions.

We prove now that the data of Table 6 hold.

– if Next > 6,

((d − 1)− 2a)Next − 2(d − 1) > ((d − 1)− 2a)6 − 2(d − 1) = 0,

∀2 ≤ k ≤ 4 , 2(d − 1) + (2a − (d − 1))k = (2 − k)(d − 1) + 2ak ≥ 0 (78)

so that

Pa(G) = (C∂G − 1) +
1

2

[
((d − 1)− 2a)Next − 2(d − 1)

]

+
[
(d − 1) + 2(2a − (d − 1))

]
V4 + 2a(V2;1 + δd,4V2;a) > 0 (79)

which proves that ωd(G) < 0 and hence the graph amplitude converges;
– if Next = 6, the graph amplitude is at most log–divergent, i.e. ωd(G) ≤ 0. Focusing

on ωd(G) = 0, this can be satisfied if and only if ω(Gcolor) = 0 = ω(∂G) and
Pa(G) = 0 that is C∂G = 1, V4 = 0 = V2;1 = V2;a;

– if Next = 4, we have
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Pa(G) = (C∂G − 1) +
[
(d − 1)− 4a

]
+

[
(d − 1)

+2(2a − (d − 1))
]
V4 + 2a(V2;1 + δd,4V2;a)

= (C∂G − 1) + a
(

− 1 + V4 + 2(V2;1 + δd,4V2;a)
)
. (80)

Then the divergence degree is at most a.

(a) We can have Pa(G) = 0, and in this case the graph amplitude is at most log–
divergent. Then, ωd(G) = 0, if
(a1) V4 = 1,C∂G = 1, V2;1 = 0 = V2;a, and ω(Gcolor) = 0 = ω(∂G);
(a2) V4 = 0,C∂G = 1 + a, V2;1 = 0 = V2;a, and ω(Gcolor) = 0 = ω(∂G).

However C∂G = 1 + a must be an integer, then only the situation for which
(d, a) = (4, 1) is consistent. This case incorporates indeed the anomaly
discovered in [44].

(b) One may also have Pa(G) = −a entailed by C∂G = 1, V4 = 0 and V2;1 = 0 =
V2;a. In this case, the graph amplitude is at most a. We seek for cases such that
0 ≤ ωd(G) ≤ a,
(b1) ωd(G) = a, if ω(Gcolor) = 0 = ω(∂G).
(b2) Let us assume now that ω(∂G) > 0, then Proposition 1 in [45] ensures that

2
(d−1)! (ω(Gcolor) − dω(∂G)) ≥ d − 2 then, from (75), we have ωd(G) ≤
a − (d − 2) < 0.

(b3) Let us assume now that ω(∂G) = 0 and ω(Gcolor) > 0, then we use (75) in
order to have 2

(d−1)!ω(Gcolor) ≥ d − 2, then ωd(G) ≤ a − (d − 2)) < 0.
Thus, both (b2) and (b3) gives convergent amplitudes;

– Next = 2 necessarily leads to C∂G = 1 and ω(∂G) = 0 (there is a unique
configuration of the boundary of a graph with two external legs such that this
equality holds: for d = 4, all boundary jackets are planar; in d = 3 the boundary
graph is itself a planar graph), and

Pa(G) = a
(

− 2 + V4 + 2(V2;1 + δd,4V2;a)
)
. (81)

The divergence degree is at most 2a.
(c) We can set Pa(G) = 0, once again the graph amplitude is at most log–divergent.

Finding configurations for which ωd(G) = 0 leads to
(c1) V4 = 2, V2;1 = 0 = V2;a, and ω(Gcolor) = 0 = ω(∂G);
(c2) V4 = 0, V2;1 + δd,4V2;a = 1, and ω(Gcolor) = 0 = ω(∂G);

(d) Setting Pa(G) = −a, the graph divergence degree is ωd(G) ≤ a, and
(d1) V4 = 1, V2;1 = 0 = V2;a, and ω(Gcolor) = 0 = ω(∂G), for which ωd(G) =

a.
(d2) V4 = 1, V2;1 = 0 = V2;a, and ω(∂G) ≥ 0, then using similar arguments as

in (b2) and (b3), one proves that ωd(G) < 0.
(e) Choosing Pa(G) = −2a, the amplitude is such that ωd(G) ≤ 2a. We have

(e1) V4 = 0, V2;1 = 0 = V2;a, let us assume that ω(Gcolor) > 0, according to
(75) 2

(d−1)!ω(Gcolor) ≥ 2 so that ωd(G) ≤ −2(1 − a). Then ωd(G) < 0

if (d, a) = (3, 2
3 ). We can only have ωd(G) = 0 for (d, a) = (4, 1) if

ω(Gcolor) = (d − 1)! = 6.
(e2) V4 = 0, V2;1 = 0 = V2;a, considering ω(Gcolor) = 0, then we obtain

ωd(G) = 2a.
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Table 7. List of primitively divergent graphs of the dim G D�
4
d

Next V2;1 ω(∂G) C∂G − 1 ω(Gcolor) ωd(G)
4 0 0 0 0 0
2 0 0 0 0 2a
2 1 0 0 0 0
2 0 0 0 1

2 (d − 1)!(d − 2) 0

The last line with Next = 2 only concerns the cases (d, dim G D, a) ∈ {(3, 1, 1
2 ), (3, 2, 1), (4, 1, 1)}

• For kmax = 4, (d, dim G D, a) ∈ {(3, 1, 1
2 ), (3, 2, 1), (4, 1, 3

4 ), (4, 1, 1), (5, 1, 1)},
consider a connected graph G with V2;1 number of mass terms. Then Table 7 gives the
list of divergent graphs for any of these models.

In order to prove this, we start by noting that (76) still holds with

Pa(G) = dim G D(C∂G−1)+
1

2

[
(dim G D(d−1)−2a)Next −2 dim G D(d−1)

]
+2aV2;1.

(82)
We then consider the following cases:

– If Next > 4, noting that (dim G D(d − 1)− 2a) ≥ 0, one has

(dim G D(d − 1)− 2a)Next − 2 dim G D(d − 1)

> (dim G D(d − 1)− 2a)4 − 2 dim G D(d − 1) = 0 , (83)

so that Pa(G) > 0 and ωd(G) < 0. Thus all graphs of this kind have a convergent
amplitude;

– if Next = 4, the amplitude of G is at most log–divergent and so ωd(G) = 0, if
V2;1 = 0,C∂G = 1, and ω(Gcolor) = 0 = ω(∂G);

– Next = 2 necessarily gives C∂G = 1 and ω(∂G) = 0 as the boundary graph here
becomes the standard one. We get

Pa(G) = 2a(−1 + V2;1) , (84)

and the divergence degree is at most 2a. The following relevant cases can be read
off:

(f) Pa(G) = 0, if this case the amplitude is at best ωd(G) = 0 occurring if V2;1 = 1
and ω(Gcolor) = 0.

(g) Pa(G) = −2a, that means V2;1 = 0, and in this situation
(g1) ω(Gcolor) = 0 yields ωd(G) = 2a.
(g2) ω(Gcolor) > 0, by (75), we have 2 dim G D

(d−1)! ω(Gcolor) ≥ dim G D(d −2), so that

ωd(G) ≤ − dim G D(d − 2) + 2a (85)

and this leads to only log–divergent amplitude, namely ωd(G) = 0, if ω(Gcolor)

= 1
2 (d − 1)!(d − 2), which only occurs for (d, dim G D, a) ∈ {(3, 1, 1

2 ), (3, 2, 1),
(4, 1, 1)}. This completes Table 7.
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4.2. Renormalization in tensor models. The subsequent part of the renormalization pro-
gram consists in the proof that the divergent and local part of all amplitudes can be recast
in terms present in the Lagrangian of the models studied so far. This is the purpose of
this section where we perform the Taylor expansion of the amplitudes of graphs listed in
Tables 6 and 7. We will not study separately the renormalization of the N -point functions
for each model but rather perform the renormalization in more general notations valid
for any model.

Renormalization of marginal 4- and 6-point functions. 6-point functions are at most
marginal and encountered only in the 1�

6
d=3,4 models. Marginal 4-point functions occur

in both �6 and �4 models.
The significant 6-point functions must be characterized by the first line of Table 6

(which is identical in both models 1�
6
d=3,4). The external momenta data of such graphs

follows necessarily the pattern of vertices V6;1 or V6;2 (see Fig. 14). This is the locality
principle in such models. On the other hand, marginal 4-point functions are given by the
third line of Table 6 for 1�

6
d=3,4 models, and the first line of Table 7 for all �4 models.

The pattern of their external momenta should follow from V4 vertices (see Fig. 15).
In the following, since the analysis can be carried out for any other external momen-

tum configurations of the form given by vertices given by V6;1, V6;2, V4 and V4;a and
will yield a similar result, we will treat in a row

– a 6-point graph with external data of the same form of one vertex of the V6;1 type,
namely the one given in Fig. 14 A.

– a 4-point graph the external momenta of which is given by the particular vertex V4
given in Fig. 15 A.

To be precise, consider a 6-point graph (respectively, a 4-point graph) with 6 external
propagator lines (respectively, 4 propagators) attached to it with momenta dictated by
the pattern of the V6;1 (respectively, V4) vertex. For any rank d model, each external field
ϕ[1]{1̌} is written in the block matrix index notation as introduced in the beginning of
Sect. 4.1. The notation f = f{1̌} refers to d − 1 external faces whereas f = f[1] always

refers to a unique external face in all models. We denote {Pext
f } the set of external face

momenta associated with f ∈ Fext = { f[1], f{1̌}, f[1′], f{1̌′}, f[1′′], f{1̌′′}} (respectively,
f ∈ Fext = { f[1], f{1̌}, f[1′], f{1̌′}}).

In a compact notation, consider A6/4({Pext
f }) the amplitude of a Gi

k graph of the form
described above. There are two types of scale indices to be considered in this amplitude:
external scales jl associated to each external field corresponding to an external propagator
line denoted l and the internal scale i related to all internal propagator lines. Gi

k being
quasi-local, this means that jl � i .

The amplitude of Gi
k is given by (in simplified notations)

A6/4({Pext
f }) =

∑

Pf

∫

[
∏

�

dα�e
−α�μ2 ]

∏

f ∈Fext

[
e−(∑�∈ f α�)|Pext

f |a ] ∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
,

(86)

where α� ∈ [M−2ai� ,M−2a(i�−1)] if � is internal, and if � is external, we denote it by l,
such that αl ∈ [M−2ajl ,M−2a( jl−1)]. We have jl � i ≤ i�.
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The next stage is to perform a Taylor expansion of an external face amplitude using
the fact that

∑
�∈ f ;� �=l α� is small such that

e−(∑�∈ f α�)|Pext
f |a = e−(αl +αl′ )|Pext

f |a [1 − R f ]
R f = ( ∑

�∈ f ;� �=l

α�
)|Pext

f |a
∫ 1

0
e−t (

∑
�∈ f ;� �=l α�)|Pext

f |a dt. (87)

We substitute this external face expansion in the amplitude and get

A6/4({Pext
f }) =

∑

Pf

∫

[
∏

�

dα�e
−α�μ2 ]

[ ∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ]

×
[
1 −

∑

f ∈Fext

R f +
∑

f, f ′∈Fext

R f R f ′ + . . .
]

×
∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
, (88)

where the ellipses invoke terms involving higher order products of the Taylor remainders
R f .

The divergence of A6({Pext
f }) come from the 0th order term of this expansion which

is given by

A6/4({Pext
f }; 0) =

∑

Pf

∫

[
∏

�

dα�e
−α�μ2 ]

∏

f ∈Fext

[
e−(αl +αl′ )|Pext

f |a ] ∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]

(89)

and which factors as

A6/4({Pext
f }; 0) =

[ ∫

[
∏

l

dαl e
−αlμ

2 ]
∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ]∑

Pf

∫ [ ∏

� �=l

dα�e
−α�μ2

]

×
∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
. (90)

In this expression, the first factor of A6({Pext
f }; 0) can be fully expanded as

∫

[
∏

l

dαl e
−αlμ

2 ]
∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a

=
∫

[
∏

l

dαl e
−αlμ

2 ]e−(αl[1] +αl′[1] )|P
ext
f[1] |

a

e
−(αl{1̌} +αl′{1̌}

)|Pext
f{1̌}

|a

×e
−(αl[1′] +αl′[1′]

)|Pext
f[1′] |

a

e
−(αl{1̌′} +αl′{1̌′}

)|Pext
f{1̌′}

|a
e
−(αl[1′′] +αl′[1′′]

)|Pext
f[1′′] |

a

e
−(αl{1̌′′} +αl′{1̌′′}

)|Pext
f{1̌′′}

|a
.

(91)

Now using the pattern of the V6;1 for each external momenta, we have

αl[1] = αl{1̌} = αl1, αl[1′] = αl ′{1̌}
= αl2 , αl ′[1′]

= αl{1̌′} = αl3 ,

αl[1′′] = αl ′{1̌′}
= αl4 , αl ′[1′′]

= αl{1̌′′} = αl5, αl ′[1] = αl ′{1̌′′}
= αl6 (92)
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from which we identify that the first factor of (90) determines nothing but a product of
6 propagators glued together in the pattern of a V6;1 interaction. Using a similar kind of
expansion, such that

αl[1] = αl{1̌} = αl1 , αl[1′] = αl ′{1̌}
= αl2 , αl ′[1′]

= αl{1̌′} = αl3, αl ′[1] = αl ′{1̌′}
= αl4 ,

(93)

we can identify in the amplitude A4({Pext
f }; 0) that the first factor is a product of 4

propagators glued together as a V4 vertex. The second factor in (90) is a log–divergent
term. In all cases, this term should contribute to the renormalization of the coupling
constant associated with either a V6;1 or a V4 interaction for the corresponding situation.

Next we must prove that the remainders appearing in A6/4 (88) improve in a significant
way the power counting. We have the first order remainder:

R6/4 =
∑

Pf

∫

[
∏

�

dα�e
−α�μ2 ]

[ ∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ][ −

∑

f ∈Fext

R f

]

×
∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]

=
∑

Pf

∫

[
∏

�

dα�e
−α�μ2 ]

[ ∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ]

×
[

−
∑

f ∈Fext

( ∑

�∈ f ;� �=l

α�
)|Pext

f |a
∫ 1

0
e−t (

∑
�∈ f ;� �=l α�)|Pext

f |a dt
]

×
∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
. (94)

Using i(Gi
k) = inf�∈Gi

k
i� and e(Gi

k) = supl∈Gi
k

jl , the last quantity can be optimally
bounded as

|R6/4|≤ K M−2a(i(Gi
k)−e(Gi

k))
∑

Pf

∫

[
∏

� �=l

dα�e
−α�μ2 ]

∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
, (95)

for some constant K and where the integral in t brings simply a O(1) factor. The factor
M−2a(i(Gi

k )−e(Gi
k)) improves the power counting and will bring enough decay in such

way that the last sum on momentum scale attributions can be performed [51]. One can
prove in a similar way that higher order remainders in (88) will be even more convergent.

Renormalization of a-divergent 2- and 4-point functions. This type of 4-point and 2-
point functions appears in the 1�

6
3,4 models. We call them a-divergent for their property

ωd(G) = a. Such 4-point graphs should be characterized by the second row of Table
6 and of the external form given again by one of the V4 vertex. Concerning 2-point
functions, these are determined by the fifth row of the same table. These should appear
in both models 1�

6
3,4.

In the following, dealing with the 4-point function, we will concentrate on the situation
of Fig. 15 A again. The following developments can be easily reported accordingly for
other types of configurations. Meanwhile for the 2-point function, there is a unique
set of data encoding the external face configuration for a graph with 2-external legs:
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Fext = { f[1], f[2], f[3]}, where [1] and [3] are 1-index, and where [2] is either a block
containing two indices for 1�

6
4, or a 1-index for 1�

6
3.

In a similar way as in the previous case, we perform a Taylor expansion of the face
amplitude as given in (87) and write the amplitude expansion A4/2({Pext

f }) for a Gi
k

graph with 4 and 2 external legs the external data of which follow the pattern of a V4
and V2 vertex configuration, respectively. One should obtain the expression (88).

The 0th order term A4({Pext
f }; 0) factorizes in the same way given in (90) and, using

still (93), provides a divergent term of degree a contributing to the renormalization of
the coupling constant associated with the V4 interaction in all models. The 0th order
term A2({Pext

f }; 0) factorizes as well as (90) with its first factor recast as
∫

[
∏

l=1,2

dαl e
−αlμ

2 ]
[ ∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ]

=
∫

[
∏

l=1,2

dαl ]e−α1(
∑

s |Pext
s |a+μ2)e−α2(

∑
s |Pext

s |a+μ2)
]

(96)

corresponding to the gluing of two propagators. Thus, A2({Pext
f }; 0) is associated with

a mass renormalization term.
Concerning the remainders that we denote R4/2, noting their similarity with (94),

they are bounded as

|R4/2|≤ K M−2a(i(Gi
k)−e(Gi

k))
∑

Pf

∫

[
∏

� �=l

dα�e
−α�μ2 ]

∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
. (97)

Now since the last integral provides a divergence degree of a, it is direct to get

|R4/2| ≤ K M−2a(i(Gi
k)−e(Gi

k))Mωd(Gi
k )=a (98)

ensuring already the convergence of all of the remainders and the summability over the
attributions.

Renormalization of 2a-divergent 2-point functions. Such 2-point functions occur in
all model and they satisfy ωd(G) = 2a.

A second order Taylor expansion of the face amplitude is performed as

e−(∑�∈ f α�)|Pext
f |a = e−(αl +αl′ )|Pext

f |a [1 + R f + Q f ],
R f = −( ∑

�∈ f ;� �=l

α�
)|Pext

f |a ,

Q f = [(
∑

�∈ f ;� �=l

α�
)|Pext

f |a]2
∫ 1

0
(1 − t)e−t (

∑
�∈ f ;� �=l α�)|Pext

f |a dt , (99)

and the amplitude expansion for a Gi
k graph satisfies

A2({Pext
f }) =

∑

Pf

∫

[
∏

�

dα�e
−α�μ2 ]

[ ∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ]

×
[
1 +

∑

f ∈Fext

(R f + Q f ) +
∑

f, f ′∈Fext

(R f + Q f )(R f ′ + Q f ′) + . . .
]

×
∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
. (100)
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The 0th order term A2({Pext
f }; 0) factorizes in the way of (90) and, using (96), provides

a 2a divergent term contributing to the renormalization of the mass coupling.
The remainders are now treated. The first order remainder involving the sum

∑
f R f

factorizes as

A′
2({Pext

f }; 0) = −
[ ∫

[
∏

l

dαl e
−αlμ

2 ]
∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ]

×
∑

f ∈Fext

|Pext
f |a

∫

[
∏

� �=l

dα�e
−α�μ2 ]

[( ∑

�∈ f ;� �=l

α�
)

×
∑

Pf

∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
. (101)

One notices that the first factor is again the product of two propagators using (96).
Hence, this term should correspond to a wave function renormalization if and only if
the last integral over α�, � �= l, should give the same result for all |Pext

f[1] |a, |Pext
f[2] |a, and

|Pext
f[3] |a . It may happen that for a given graph Gi

k , the integral is not the same at fixed
f ∈ Fext . Because the model is symmetric in all colors, it is simple to define in this
case another graph G̃i

k so that the sum of contributions of Gi
k and G̃i

k appears now to
be symmetric for all Pext

f . A unique factor or wave function renormalization A′ can

be defined from that colored symmetric quantity and yields
( ∑

s |Pext
s |a

)
A′. The sum

∑
�∈ f ;� �=l α� ≤ cM−2ai(Gi

k ) and the last integrals give Mω(Gi
k )=2a so that the overall

contribution to the wave function renormalization is A′ ∼ log M .
Focusing on the sum

∑
f Q f , we can work out a bound as

|R2| ≤ K
[ ∫

[
∏

l

dαl e
−αlμ

2 ]
∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ] ∑

f, f ′∈Fext

|Pext
f |a |Pext

f ′ |a

×
∫

[
∏

� �=l

dα�e
−α�μ2 ]

[( ∑

�∈ f ;� �=l

α�
)( ∑

�∈ f ′;��=l

α�
) ∑

Pf

∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]

≤ K ′M−4a(i(Gi
k)−e(Gi

k ))Mωd(Gi
k )=2a, (102)

for some constants K and K ′. This last expression manifests the fact that the remainder
is convergent and will bring enough decay for the summability over the momentum
assignment. One can show that, in the same vein, higher order remainders are convergent
as well.

In conclusion,

– the expansion of marginal 6- and 4-point functions around their local part gives a
log–divergent term which renormalize the coupling constant associated with the 6-
and 4-valent vertices, respectively.

– the expansion of a-divergent 4- and 2-point amplitudes around their local part gives
a a-divergent term which renormalize the coupling of 4-valent and mass vertices,
respectively;

– the expansion of a 2a-divergent 2-point graph around its local part yields a 2a-
divergent term renormalizing the mass and a log–divergent term which contributes
to the wave function renormalization;
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– all remainders are convergent and will bring enough decay for ensuring the final
summability over scale attributions. From this point, the procedure for performing
this last sum over attributions is standard and will secure the renormalization at
all orders of perturbation theory according to techniques developed in [51]. Thus,
Theorem 2 holds.

5. Just Renormalizable Matrix Models

5.1. Matrix models and their renormalizability. Table 2 provides a list of matrix model
interactions and kinetic terms susceptible to generate renormalizable actions. These are
defined by

( 1�
2+γ
2 , a = γ

2(2+γ )
≤ 1

2
), ( 2�

2+γ
2 , a = γ

2+γ
≥ 1

2
) , ( 3�

4,6
2 , a = 3

4
, 1), ( 4�

4
2, a =1),

(103)
where γ is an even integer.

Propagators. The propagator keeps its form (16) and can be pictured like a ribbon line
as found in Fig. 10.

Planar (and cyclic) interactions. The interactions that we will introduce in the following
will govern the locality principle of the matrix models designed simply by a planarity
condition. These are matrix trace invariants represented by planar graphs with p legs.

For any dim G D�
kmax
2 model, consider the interactions giving by, for all k =

4, 6, . . . , kmax,

Sint
k =

∑

P[I ]
tr
[
(ϕ̄[I ]ϕ[I ])k

]
=

∑

P[I ]
ϕ̄12 ϕ1′2 ϕ̄1′2′ ϕ1′′2′ . . . ϕ̄1′′′2′′′ ϕ12′′′ . (104)

Figure 10 illustrates Sint
k as a cyclic and planar ribbon diagram with k external fields.

We introduce a cut-off � on large momenta, so that the propagator in the UV reads
C�. Counter-term couplings CT define as usually as the difference between bare and
renormalized couplings. Mass and wave function counter-terms keeps their form S2;1
and S2;2 (70), where ϕ[I ] may be simply written as a matrix ϕ12.

Given a matrix model dim G D�
kmax
2 , we introduce the action defined by

S� =
kmax/2∑

k=2

λ�k

k
Sint

k + CT�2;1S2;1 + CT�2;2S2;2 , (105)

and the following statement is valid.

Theorem 3 (Renormalizable matrix models). The models (dim G D�
kmax
2 , a) defined by

∀k ≥2, (1�
2k
2 , a = 1

2
(1 − 1

k
)) over G =U (1) , (2�

2k
2 , a =1 − 1

k
) over G =U (1)2,

(3�
6
2, a = 1) over G = U (1)3 or G = SU (2) ,

(3�
4
2, a = 3

4
) over G = U (1)3 or G = SU (2) ,

(4�
4
2, a = 1) over G = U (1)4, (106)

with actions defined by (105) are renormalizable at all orders of perturbation.
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The multi-scale analysis has been already performed and gives a power counting
theorem stated in Theorem 1. This provides in return a divergence degree as described
by Proposition 3. In the same way proved earlier, adding mass and wave function counter-
terms in the action and brings V2;1 and V2;2 vertices, respectively, but does not affect
the divergence degree (37). One pays attention that this divergence degree includes now
V2;1 mass counter-term vertices.

List of divergent graphs. We consider a connected graph G with external legs such that
we always have C∂G ≥ 1. We consider also Vk the number of vertices of coordination
k and, in particular, V2 = V2;1 the number of mass vertices. Using the same strategy
developed in the previous section, the divergence degree is recast in the form

ωd(G) = −2 dim G DgG̃ − Pa(G),

Pa(G) = dim G D(C∂G − 1) +
1

2

[
(dim G D − 2a)Next − 2 dim G D

]

+
1

2

kmax−2∑

k=2

[
2 dim G D + (2a − dim G D)k

]
Vk, (107)

where the sum
∑kmax−2

k=2 is performed over even integers. Given the fact that dim G D −
2a > 0, one keeps in mind that, for 2 ≤ k < k′ ≤ kmax,

2 dim G D + (2a − dim G D)k > 2 dim G D + (2a − dim G D)k
′ ≥ 0. (108)

In the last inequality, the upper bound is only saturated at k′ = kmax. Another useful
relation is provided by the following: if C∂G > 1, then, for all 2 ≤ k < kmax,

dim G D(C∂G −1)− 1

2

[
2 dim G D +(2a−dim G D)k

]
≥ 1

2
(dim G D −2a)k > 0. (109)

We are now in position to analyze the divergent contributions.

• If Next > kmax, then

(dim G D − 2a)Next − 2 dim G D > (dim G D − 2a)kmax − 2 dim G D = 0 (110)

so that Pa(G) > 0 and the amplitude converges;
• if Next = kmax, then the amplitude is at most log–divergent and ωd(G) = 0 holds

if gG̃ = 0 and Pa(G) = 0. This latter condition occurs if C∂G = 1, Vk = 0, for
2 ≤ k < kmax;

• if Next < kmax, we are interested in the divergent amplitudes with Next = kmax −
q, 2 ≤ q ≤ kmax − 2, q even. The quantity (107) can be recast in the following way

Pa(G)=dim G D(C∂G − 1)+
1

2

[
2 dim G D +(2a−dim G D)(kmax − q)

]
(Vkmax−q −1)

+
1

2

∑

k∈Skmax,q

[
2 dim G D + (2a−dim G D)k

]
Vk, (111)

where Skmax,q = {2, . . . , kmax − 2} \ {kmax − q} is a set of even integers. Note that
S4,2 = ∅ for all �4 models.
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(h) Let us assume that Pa(G) = 0, then the amplitude is at most log-divergent. We
have ωd(G) = 0 in the following cases:

(hq) For 2 ≤ q ≤ kmax − 2, Vkmax−q = 1, Vk = 0, k ∈ Skmax,q , and C∂G = 1;
(h̄q) For 2 ≤ q ≤ kmax − 2, the cases Vkmax−q > 1 or C∂G > 1, from (111) and

(109), yield a convergent amplitude. Hence, we must have Vkmax−q = 0 and C∂G = 1.
The second equality entails that there is no anomalous term in the above matrix models.
Then, necessarily, one has

Pa(G) = −1

2

[
2 dim G D + (2a − dim G D)(kmax − q)

]

+
1

2

∑

k∈Skmax,q

[
2 dim G D + (2a − dim G D)k

]
Vk . (112)

For 2 ≤ k ≤ kmax − q < kmax, by (108), we know that if there is some Vk > 0 with
2 ≤ k ≤ kmax − q then Pa(G) > 0 and thus leads to a convergent amplitude. We
therefore focus on Vk = 0 for 2 ≤ k ≤ kmax − q giving

Pa(G) = −1

2

[
2 dim G D + (2a − dim G D)(kmax − q)

]

+
1

2

∑

k∈S′
kmax,q

[
2 dim G D + (2a − dim G D)k

]
Vk, (113)

where S′
kmax,q

= {kmax − q + 2, . . . , kmax − 2} including only even integer elements
and is non empty only for q ≥ 4. Note that for kmax = 4, S′

4,2 = ∅ and, considering
kmax = 6, S′

6,2 = ∅ and S′
6,4 = {4}.

Whenever S′
kmax,q

= ∅, then Pa(G) < 0 should be treated in the sequel point. Thus,
looking for conditions such that Pa(G) = 0 for graphs with Next = kmax − 2 = 2
models reduces to solutions (h2) for dim G D�

4
2 models. Note also that the solutions of

Pa(G) = 0 in both models 1�
2+γ
2 or 2�

2+γ
2 should coincide since the quantities Pa(G)

in these models turn out to be proportional.
Expanding further (113) and using a change of variable k → k − (kmax − q), it can

be found

0 = 2Pa(G) = (2a − dim G D)q +
∑

k∈S′
kmax,q

[
2 dim G D + (2a − dim G D)k

]
Vk

0 = (2a − dim G D)q +
∑

k∈Sq

(2a − dim G D)(k − q)Vk+(kmax−q)

= (2a − dim G D)
(

q −
∑

k∈Sq

(q − k)Vk+(kmax−q)

)
, (114)

where Sq = {2, . . . , q −2} still includes only even integers. Since 2a−dim G D < 0, we
understand now that solving Pa(G) = 0 turns out to find non trivial partitions of q/2 ≥ 0
(i.e. excluding q/2 = q/2 + 0). Indeed, changing variables q → q ′ = q/2, k → k′ =
k/2, we then rename k′ in k and get from (114)

0=q ′ −
q ′−1∑

k=1

(q ′ − k)Vkmax−2(q ′−k) ⇔ q ′ =
q ′−1∑

k=1

kV ′
k , V ′

k := Vkmax−2k . (115)
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It is clearly difficult to work out for an arbitrary q ′ the possible set of solutions but
certainly these solutions are in finite number and order by order in q ′ can be read off. 8

(i) Let us consider the case Pa(G) = 1
2 (2a − dim G D)q1 < 0, where q1 even and

2 ≤ q1 ≤ q. (Note that we must have once again C∂G = 1 otherwise (i.e. C∂G > 1), by
(109), Pa(G) > 0.) One has

Pa(G) = 1

2
(2a − dim G D)(q − q1 + q1) +

1

2

∑

k∈Sq

(2a − dim G D)(k − q)Vk+(kmax−q)

= 1

2
(2a − dim G D)q1 +

1

2
(2a − dim G D)(q − q1 −

∑

k∈Sq

(q − k)Vk+(kmax−q)).

(119)

Hence the hypothesis Pa(G) = 1
2 (2a − dim G D)q1 < 0 would require

0 = q − q1 −
∑

k∈Sq1

(q − k)Vk+(kmax−q) −
∑

k∈S′
q1,q

(q − k)Vk+(kmax−q), (120)

where Sq1 = {2, . . . , q1 − 2} contains only even integers and S′
q1,q = {q1, q1 + 2, . . . ,

q − 2} = Sq \ Sq1 .
If for any 2 ≤ k ≤ q1 −2, Vk+(kmax−q) > 0 then q −q1 −(q −k)Vk+(kmax−q) < 0, then

Pa(G) �= 1
2 (2a − dim G D)q1. Then necessarily, for any 2 ≤ k < q1, Vk+(kmax−q) = 0.

We obtain, changing the variable such that k → k − q1,

0 = q − q1 −
∑

k∈S′
0,q−q1

((q − q1)− k)Vk+(kmax−(q−q1)), (121)

with S′
0,q−q1

= {0, 2, . . . , q − q1 − 2} including only even integers, with q − q1 ≥ 2.
Thus this case again reduces again to the search of partitions of (q − q1)/2 including
trivial ones. If q − q1 = 0, there is a unique possibility given by Vk = 0, for all k ∈ Sq .

8 For an illustration, we apply the formalism to the order kmax = 6, such that q = 2, 4 ≤ 6 − 2. We
concentrate on the possibility q = 4 ≥ 4, providing q ′ = 2. A non trivial partition of q ′ = 2 is given by
2 = 1 + 1. Then, from (115), we have

0 = 2 − (2 − 1)V6−2(2−1) = 2 − V4 ⇔ V4 = 2. (116)

V4 = 2 gives the number of times that 1 appears the above partition of 2. Requiring V2;1 = 0 and gG̃ = 0
leads to a log–divergent amplitude. We can apply also the formalism to kmax = 8, for which are relevant
q = 4, 6. For q = 6, one gets q ′ = 3, and (115) gives

0 = 3 −
2∑

k=1

(3 − k)V8−2(3−k) = 3 − 2V4 − V6 ⇔ (V4, V6) ∈ {(1, 1), (0, 3)} (117)

expressing the fact that V4 and V6 are the number of times that 2 and 1, respectively, should appear in the
partitions of 3=2+1=1+1+1. Imposing in addition V2;1 = 0 and gG̃ = 0, this configuration will be log–
divergent.

For q = 4, q ′ = 2, (115) becomes

0 = 2 − (2 − 1)V8−2(2−1) = 2 − V6 ⇔ V6 = 2. (118)

with the same interpretation in terms of the partition of 2. Now putting V4 = 0 = V2;1 will lead to a
log–divergent amplitude.
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Assuming now that Pa(G) = 1
2 (2a −dim G D)q1 < 0, where q1 is odd and 2 ≤ q1 <

q, one has

Pa(G) = 1

2
(2a−dim G D)q1+

1

2
(2a−dim G D)(q−q1−

∑

k∈Sq

(q−k)Vk+(kmax−q)) , (122)

and thus the hypothesis requires

0 = q − q1 −
∑

k∈Sq

(q − k)Vk+(kmax−q). (123)

Noting that q − q1 > 0 is odd and that the summation k runs on even indices so that
q − k is even, this contradicts the fact that the above expression vanishes. In conclusion,
writing Pa(G) = 1

2 (2a − dim G D)q1 < 0, q1 should be always even.

The divergence degree in the present situation is bounded by ωd(G) ≤ 1
2 (dim G D −

2a)q1, 2 ≤ q1 ≤ q < kmax. Consider gG̃ > 0, one infers

ωd(G) = −2 dim G DgG̃ +
1

2
(dim G D − 2a)q1 ≤ −2 dim G D +

1

2
(dim G D − 2a)q1

≤ −2 dim G D +
1

2
(dim G D − 2a)q < −2 dim G D + (dim G D − 2a)kmax = 0.

(124)

Thus whenever gG̃ > 0, the amplitude is convergent. We only have a divergent amplitude

for gG̃ = 0 such that ωd(G) = 1
2 (dim G D − 2a)q1.9

This achieves the study of divergent contributions in matrix models presented in
(103). Appendix C illustrates the formalism by discussing a nontrivial example of the
list of divergent amplitudes for the model (dim G D�

8
2, a).

5.2. Renormalization in matrix models. We address, in this section, the renormalization
analysis of the diverging N -point functions in the matrix models studied in previous
section.

Renormalization of marginal kmax-point functions. Consider a marginal kmax-point
function with kmax propagators hooked to it such that the graph Gi

k associated with that
amplitude obeys gG̃i

k
= 0,C∂Gi

k
= 1, Vk = 0 for 2 ≤ k < kmax, and with external data

following a cyclic matrix trace invariant pattern. The associated amplitude is given by

9 As an illustration, we study kmax = 8, q = 6 such that S6 = {2, 4}. If q1 = 2, S′
0,4 = {0, 2}

Pa(G) = 1

2
(2a − dim G D)2 +

1

2
(2a − dim G D)

(
4 − 4V4 − 2V6

)
. (125)

Requiring Pa(G) = 1
2 (2a − dim G D)2, leads to the solutions of 2 − 2V4 − V6 = 0, which are (V4, V6) =

{(1, 0), (0, 2)} related to the partitions of 2 = 2 + 0 = 1 + 1. It is simple to fix the rest of parameters to zero
in order to get ωd(G) = −Pa(G)/a > 0.

If q1 = 4, S′
0,2 = {0}, we have Pa(G) = 1

2 (2a − dim G D)4, if 2 − 2V6 = 0 corresponding to the partition
of 1 = 1 + 0. We have a divergence degree ωd(G) = −Pa(G) > 0 in this case too after setting the other
parameters to zero. If q1 = 6, then S′

0,2 = ∅ and ωd(G) = −Pa(G) > 0 for all parameters Vk and gG̃ set to 0.
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Akmax ({Pext
f }) =

∑

Pf

∫

[
∏

�

dα�e
−α�μ2 ]

∏

f ∈Fext

[
e−(∑�∈ f α�)|Pext

f |a ] ∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
,

(126)
Next we perform a Taylor expansion in each external face amplitude as done in (87) and
insert the result in (126). The 0th order term in the expansion factorizes in a similar way
as found in (90) as

Akmax({Pext
f }; 0) =

[ ∫

[
∏

l

dαl e
−αlμ

2 ]
∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ] ∑

Pf

∫

[
∏

� �=l

dα�e
−α�μ2 ]

×
∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
. (127)

We write Fext = { f1, . . . , fkmax} such that the first factor of Akmax({Pext
f }; 0) expands

as

∫

[
kmax∏

l=1

dαl e
−αlμ

2 ]
kmax∏

j=1

e
−(αl j +αl′j )|P

ext
f j

|a =
∫

[
kmax∏

l=1

dαl ]
kmax∏

l=1

e−αl (
∑2

s=1 |Pext
l,s |a+μ2)

,

(128)
where one identifies the pattern of the cyclic matrix interaction Vkmax for external
momenta,

j = 1, . . . , kmax, Pext
j,1 = Pext

f j
, Pext

j,2 = Pext
f j+1

and αl ′j = αl j+1 = α j . (129)

The first factor of (127) represents the gluing of kmax propagators in the pattern of the
Vkmax interaction. By the power counting theorem this term is log–divergent.

Studying the remainders, in same anterior notations, the first order can be bounded
up to some constant K as

|Rkmax | ≤ K M−2a(i(Gi
k)−e(Gi

k ))Mωd(Gi
k )=0. (130)

This shows that the remainder converges and will bring additional convergence during
the final assignment summation.

Renormalization of (kmax −q)-point functions. We treat now the case of an amplitude
associated with a graph Gi

k with N = kmax −q external propagators, 2 ≤ q ≤ kmax −2.
According to the previous dissection of the type of divergent graphs, this case splits
in several situations. The positive degree of divergence may vary as 0 ≤ ωd(Gi

k) ≤
−Pa(Gi

k) = q1
2 (dim G D − 2a), where 0 ≤ q1 ≤ q and q1 is even.

� If q1 = 0, then the amplitude is log–divergent and can be handled in the same
way as in the marginal N = kmax-point functions. The quasi local part of the amplitude
renormalizes the (kmax − q)-valent vertex if the initial external data configuration of the
graph follow the cyclic pattern of a Vkmax−q vertex. All remainders are convergent.
� Let us assume now that q1 ≥ 2. We choose a graph Gi

k such that gG̃i
k

= 0,C∂Gi
k

=
1, Vp+(kmax−q) = 0, for 2 ≤ p ≤ q1 and a partition of (q − q1)/2 as

if q − q1 > 0 , 0 = q − q1 −
q−q1−2∑

p=0;p even

(q − q1 − p)Vp+kmax−(q−q1), (131)
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and if q = q1 set Vp = 0 for all 2 ≤ p ≤ q − 2. The amplitude of such a graph Gi
k is

given by

Akmax −q ({Pext
f }) =

[ ∫

[
∏

l

dαl e
−αlμ

2 ]
∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ] ∑

Pf

∫

[
∏

� �=l

dα�e
−α�μ2 ]

×
∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
. (132)

Two main cases occur:
(A) Assuming 2 ≤ q < kmax−2, we perform a Taylor expansion of the face amplitude

at first order as given by (87). Using the same previous techniques, it is direct to show
that the 0th order term Akmax −q ({Pext

f }) factors and reproduces the gluing of kmax −q

propagator according the pattern of a vertex with kmax −q number of legs. Let us discuss
the remainder and concentrate on the first term involving

∑
f R f . This term can be

bounded as

|Rq1 | ≤ K M−2a(i(Gi
k)−e(Gi

k))
∑

Pf

∫

[
∏

�

dα�e
−α�μ2 ]

[ ∏

f ∈Fext

e−(αl +αl′ )|Pext
f |a ]

×
∏

f ∈Fint

[
d2

Pf
e−(∑�∈ f α�)|Pf |a

]
. (133)

The integration over α� �=l and summation over Pf yield the overall divergence degree
of the Gi

k . We have

|Rq1 | ≤ K M−2a(i(Gi
k)−e(Gi

k))Mωd(Gi
k ). (134)

We need the following result (in the same previous notations).

Lemma 1. ∀q1 such that 2 ≤ q1 ≤ q ≤ kmax − 2,

if q1 < kmax − 2, −2a +
q1

2
(dim G D − 2a) < 0 ,

if q1 = kmax − 2, −2a +
q1

2
(dim G D − 2a) = 0. (135)

Proof. We have

1

2

( − 4a + q1(dim G D − 2a)
)≤ 1

2

( − 4a+(kmax − 2)(dim G D − 2a)
)

≤ 1

2

( − 4a + (
2 dim G D

dim G D − 2a
− 2)(dim G D − 2a)

)=0

(136)

The inequation is saturated only if q1 = kmax − 2. ��
Using Lemma 1, one shows that the remainder Rq1 converges since −2a+ωd(Gi

k) < 0
because q1 ≤ q < kmax − 2. This means that having a (kmax − q)-point function, where
q < kmax − 2 diverging like ωd(Gi

k) = q1
2 (dim G D − 2a), for all 2 ≤ q1 ≤ q, with all

graph properties required for being renormalizable, then expanding this function gives
a unique contribution renormalizing the coupling constant of a vertex Vkmax−q and all
remainders are convergent.
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(B) Let us assume that q = kmax−2, we are dealing necessarily with a Next = 2-point
function. The graph Gi

k has a divergence degree of the formωd(Gi
k) = q1

2 (dim G D−2a),
for all 2 ≤ q1 ≤ kmax − 2.

• If q1 < kmax −2, we perform a Taylor expansion on external faces as (87) and, just as
in the above situation, it is simple to check that the 0th order of the graph amplitude
yields a vertex coupling renormalization for Vkmax−q whereas all remainders are
convergent (by Lemma 1) and obey a bound like (134).

• If q1 = kmax − 2, we use in this case a Taylor expansion of the form (99) for each
external face. The procedure is similar to tensor situation: the Taylor expansion at
0th order of the graph amplitude yields a mass renormalization for V2;1 the first order
remainder containing

∑
f R f provides the log–divergent term embodying the wave

function renormalization term. This again holds by invoking symmetry arguments
on graphs. All other remaining terms are simply convergent and will bring additional
decay useful for the summation over momentum assignments.

In conclusion of this part, we realize that all expansions of diverging graphs respecting
precise renormalizability criteria yield diverging local terms which can be recast as term
present in the matrix model action (103). The remainders give enough decay allowing
the summation over scale attributions in the last stage and proof of the finiteness of the
Schwinger functions when removing the cut-off [51]. Thus, Theorem 3 holds.

6. Super-Renormalizable Models

There are two conditions, namely dim G D(d − 1) = 2a and [dim G D(d − 1) >
2a; kmax < 2 dim G D(d − 1)/(dim G D(d − 1) − 2a)] which both lead to poten-
tially super-renormalizable models (without being convergent). We review these in this
section.

Super-renormalizable models of type I. Let us consider models such that dim G D(d −
1) = 2a. We have identified some situations for which this occurs. For d = 3, the
divergence degree of a graph G in the model (1�k

3, a = 1) assumes the form

ωd(G) = −(ω(Gcolor)− ω(∂G))− (C∂G − 1) + 2(1 − V ). (137)

On the other hand, for d = 2, the divergence degree of a graph in the models
(dim G D�

k
2, a), with (dim G D, a) ∈ {(1, 1

2 ), (2, 1)}, is given by

ωd(G) = −4gG̃ − 2(C∂G − 1) + 2(1 − V ). (138)

For any rank, (137) and (138) tell us that only graphs with V = 1 vertex may diverge.
Graphs with V = 1 are called tadpoles. This situation is typical of super-renormalizable
models.

Given a maximal valence of vertices kmax, the number of melonic or planar interac-
tions which can be built with maximal valence kmax is certainly a finite number. Consider
an action including all these vertices up to order kmax. We do not need to consider any
anomalous term here (C∂G > 1 leads to convergence).

For the (1�
kmax
3 , a = 1) model, introducing a UV cut-off �, in a similar way as in

(71), it can be inferred that

S� =
kmax∑

k=4

∑

i

λ�k;i
σk;i

Sint
k;i + CT�2;1S2;1, (139)
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where σk;i is a symmetry factor of the interaction Sint
k;i including all interactions of the

melonic form of valence k up to some color permutation. The index i is at this point
totally formal and parameterize the types of melonic interactions which differ up to a
color permutation.

Concerning matrix models (dim G D�
kmax
2 , a), we introduce an interaction

S� =
kmax∑

k=4

λ�k

σk
Sint

k + CT�2;1S2;1, (140)

where Sint
k is the familiar trace invariant of order k for matrices. Note that we did not

introduce a wave-function renormalization counter-term but only a mass counter-term
vertex in both (139) and (140).

The following statement holds.

Theorem 4 (Super-renormalizable tensor models I.) The models (dim G D�
kmax
d , a)

defined by

∀k ≥ 2 , (1�
2k
2 , a = 1

2
) over G = U (1) , (2�

2k
2 , a = 1) over G = U (1)2,

(1�
2k
3 , a = 1) over G = U (1) , (141)

with action defined by (139) and (140) are super-renormalizable.

Proof. The multi-scale analysis of a connected graph as performed in anterior sections
will lead to power counting governed by (137) or (138). We can investigate the type of
divergences which occur in the model and prove that they appear in finite number. Their
expansion and subtraction scheme can be done as in Sect. 4.2 and will lead to finiteness
after summing over scale attribution. Since this last part is completely standard, it will
be not addressed here.

We already know that all possible diverging connected graphs are generated by one
vertex.

– Considering Next ≥ kmax implies that one uses more than 1 vertex, then it is imme-
diate that the amplitude will be convergent. Having a graph such that Next = kmax
defined by a unique vertex necessarily means that the graph (which should be con-
nected) is defined to be the open vertex itself. This also leads to the convergence of
the amplitude.

– Consider now graphs such that Next < kmax. Given any vertex with valence k ≤ kmax,
we can only built a finite number of tadpoles out of it. Hence tadpole graphs are
certainly of finite number. The number of divergent graphs which should be chosen
among these tadpoles is therefore finite.
Associated with a tadpole with have a divergence degree

ωd(G) = −(ω(Gcolor)− ω(∂G))− (C∂G − 1) (142)

which leads at most to a log–divergent amplitude. Thus ωd(G) = 0 if and only if
ω(Gcolor) = 0 = ω(∂G) and C∂G = 1.
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Performing a Taylor expansion around the local part of a Next -point amplitude graph
such that ω(Gcolor) = 0 = ω(∂G) and C∂G = 1 and such that the external momentum
data of this graph follows the pattern of a vertex of the theory with valence Next can be
done in exact conformity with the previous developments. We can show that the 0th order
term is log–divergent should renormalize a vertex of valence equals Next . The remainders
are convergent and there is no need to introduce a wave function renormalization.

Using the techniques of [51], we can sum over momentum assignments using the
additional decay of the remainders appearing in the Taylor expansion of tadpoles. This
achieves the proof of Theorem 4. ��
Super-renormalizable models of type II. This class of super-renormalizable mod-
els is directly inferred from the existence of just-renormalizable models. Precisely,

each model (dim G D�
k′

max
d , a) of this second type is obtained from a just-renormalizable

(dim G D�
kmax
d , a) by simply restricting k′

max < kmax, provided kmax ≥ 6. The reason
why this restriction leads to super-renormalizable models is quite direct: the presence of
some vertices of lower valence Vk < Vkmax in a just-renormalizable model always tends
to improve the power counting hence to more convergence.

We must prove here the following theorem:

Theorem 5 (Super-renormalizable models II). The models (dim G D�
kmax
d , a) such that

(1�
4
4, a = 1) over U (1) , (1�

4
3, a = 2

3
) over U (1) , (143)

with an action defined by (72) are super-renormalizable at all orders of perturbation.
The models (dim G D�

kmax
2 , a) defined by

∀k ≥ 3 and ∀q, k − q ≥ 2 , (1�
2(k−q)
2 , a = 1

2
(1 − 1

k
)) over G = U (1) ,

(2�
2(k−q)
2 , a = 1 − 1

k
) over G = U (1)2 ,

(3�
4
2, a = 1) over G = U (1)3 or G = SU (2) , (144)

with actions defined by (105) are renormalizable at all orders of perturbation.

Proof. We only give the main arguments for completing the proof of the above statement
which is already contained in anterior proofs.

• Consider the rank d ≥ 3 tensor models given by (143). Consider now, in the proof
of Theorem 2 as given in Sect. 4.1, the list of primitively divergent graphs of the
models �6. The analysis of primitively divergent graphs for the present �4 models
follows the same logic. Now, one directly realizes that a graph with Next ≥ 6 must be
convergent. The only dangerous case ωd(G) = 0 at Next = 6 can no longer appear
in the present models because a nontrivial graph must have V4 �= 0 (note also that
the case of a graph made only with mass vertices is not considered). Following step
by step the remaining analysis, we see that diverging graphs must have V4 = 1 or 2.
The only sub-cases valid in the present models are given by (c1), (d) (note that we
must exclude (a1) because Next = 4 and V4 = 1 is a vertex graph). The number of
graphs that one can build with V4 = 1, 2 is certainly finite.
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• Rank d = 2 matrix models (144) are now considered. The main idea is again the same
as above: using the proof of Theorem 3 in Sect. 5.1, we must prove that all diverging
graphs must have a specific number of vertices with valence up to 2(k −q). This will
make this class of diverging graphs of finite cardinal (even though this cardinal can
be large). Consider a model �kmax−q

2 given above, where both kmax and q are even
and fulfill the corresponding conditions. The case of a graph with Next ≥ kmax is
simply convergent because Vk cannot vanish all at the same time. From now, consider
Next = kmax − p, p > 0 and even. Two cases occur (A) p < q or (B) p ≥ q. In the
same notation of the proof of Theorem 3, we have:

(A) p < q, then any term in
∑kmax−q

k=2 (2 dim G D +(2a−dim G D)k)Vk , such that Vk > 0,
is larger than (2 dim G D + (2a −dim G D)Next . Note that these terms cannot vanish
all at the same time (∃k0 such that Vk0 > 0). All amplitudes converge in this case.

(B) p ≥ q, then 2 ≤ kmax− p ≤ kmax−q, and the rest of the proof is now exactly similar
to that of Theorem 3. There may be some divergent configurations. For log-divergent
situations, namely case (h), either one has Vkmax−p = 1 and all the rest of numbers
of vertices cancel (but this case is immediately rule out, one cannot construct a
divergent graph with a unique vertex Vkmax−p = 1 with exactly Next = kmax − p
external legs; because of this, one must exclude p = q as well), or one has to
express the contribution of Next = kmax − p as a finite set of number of vertices Vk
indexed by a partition of p/2. For 1

2 (dim G D − 2a)p1-divergent graphs, p1 ≤ p,
we refer to case (i) with another type of partition which must be considered. All
the possible cases reduce to graphs with a fixed number of vertices determined by
these partitions. The number of these graphs is finite.
The renormalization procedure can be reproduced along the lines of Sect. 4.2 for
the rank d = 3, and Sect. 5.2 for d = 2.

– We consider the�4 models in rank d ≥ 3. All diverging amplitudes are of the form
of 2-point functions. Marginal and a-divergent amplitudes renormalize the mass
and there is no wave function counterterms. All remainders are convergent.

– Second, let us focus on the matrix models, �kmax−q , q > 0 and even. Consider
log-divergent amplitudes made with a Next = kmax − p of external legs, p >

q. We can expand such amplitudes on their local part and they renormalize the
cyclic vertex made with kmax − p external legs. Higher order divergences ωd(G) =
1
2 (dim G D − 2a)p1, 2 ≤ p1 ≤ p and even, can be also handled along the study
of just-renormalizable matrix models. The analysis turns out to exclude certain
situations only but it is straightforward. ��

7. First Order β-Functions

The renormalizability of the above models leads to another important question related to
the UV asymptotic behavior of these models. This section undertakes the computation of
theβ-functions of the dim G D�

4,6
d=2,3,4,5 models at enough number of loops so that we may

conclude about their UV behavior. The generic situation�k≥8 is intricate and will have
numerous perturbative corrections. We will not address the study of these couplings here.

7.1. Method. Consider a bare coupling constant λk associated with some interaction
Sint

k itself associated with a vertex V2k of valence 2k ≥ 4, and its renormalized coupling
constant λren

k . The first order β-functions and renormalized coupling constant equations
of the models are encoded in the ratio
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λren
k = −�2k({0})

Zk
, (145)

where �2k({bext }) is the sum of all amputated one-particle irreducible (1PI) 2k-point
functions satisfying the renormalization criteria in order to be associated with the cou-
pling λk and evaluated at first loops. In particular among these criteria, the external
momentum data {bext } of any graph contributing to this this quantity should reproduce
the pattern of the V2k vertex and should be planar or melonic. The quantity Z is the
so-called wave function renormalization which evaluates from

Z = 1 − ∂(bext )2a �
∣
∣
bext =0 , (146)

where� is the self-energy or sum of all amputated 1PI two-point functions evaluated at
the first loop orders. Note that, according to the maximal valence kmax of the interactions,
the number of loops may vary from one model to another. The function�(bext

1 , . . . , bext
d )

is symmetric in its variables bext
s where s refers again to strand momentum variables.

In order to make clear the following developments, let us consider a simple coupling
formulation of some renormalizable theory. In such case, the wave function renormal-
ization Z and �2k function generally express at first loop expansion in the simple form
as

Z = 1 − aλ + O(λ2), �2k = −λ + bλ2 + O(λ3), (147)

where a ≥ 0 and b ≥ 0 are real numbers involving the different graph contributions and
their combinatorics. Computing now the ratio (145), one finds

λren = λ + (ka − b)λ2 + O(λ3). (148)

Then the quantity ka −b determine the first order β-function related to the model and its
coupling constant λ. If ka −b > 0 the model is said asymptotically free, if ka −b < 0, it
possesses the so-called Landau ghost with a coupling constant blowing in the UV [51].
Meanwhile, in the case ka = b we call the model perturbatively safe at one-loop. It is
a striking observation that the more k is large the more likely the quantity ka − b is
positive. But the quantities a and b themselves are in fact function of k and this makes
difficult to know a priori the sign of β(k) = ka(k)− b(k) as k may vary.

The goal of this section is to show that for the previous renormalizable tensor models
�4, β = ka−b > 0. Concerning the renormalizable tensor models�6, the renormalized
coupling equations are much more involved and require further loop calculations. It
would be very interesting to investigate in general if asymptotic freedom holds for
all renormalizable tensor models and therefore this feature is generic. The tower of
potentially renormalizable model in rank d = 3 prevents us to conclude anything at this
stage if we include models with a dynamics which is not Laplacian.

The general procedure that we will use, even though lengthy, turns out to be efficient
to get a definite result for the several types of β-functions for all interactions given above.
We use the following method:

First, we enlarge the space of couplings and consider for each renormalizable action
defined by (71) and (72) as a multiple coupling theory. This means that we give to each
interaction term associated with a certain permutation of colors a different coupling.
Doing so, we have (forgetting wave function and mass vertices)

– For kmax = 6, dim G D = 1 and (d, a) ∈ {(3, 2
3 ), (4, 1)},

S =
∑

ρ

λ6;1;ρ
3

Sint
6;1;ρ+

∑

ρρ′
λ6;2;ρρ′ Sint

6;2;ρρ+
∑

ρ

λ4;1;ρ
2

Sint
4;ρ+

λ4;2
2
δd,4 Sint

4;a, (149)



170 J. Ben Geloun

where the single label ρ ∈ {1, . . . , d}, and the second double index ρρ′ has to be
chosen in all symmetric pairs of color such that ρ �= ρ′. Precisely, d = 3, ρρ′ ∈
{12, 13, 23}, whereas for d = 4, ρρ′ ∈ {12, 13, 14, 23, 24, 34};

– For kmax = 4, (d, dim G D, a) ∈ {(3, 1, 1
2 ), (3, 2, 1), (4, 1, 3

4 ), (4, 1, 1), (5, 1, 1)},

S =
∑

ρ

λ4;ρ
2

Sint
4;ρ , (150)

with ρ keeping its above meaning.
– For d = 2 or matrix models, the renormalizable actions (105) are already in the

proper “multi-coupling” form.

Then, at the end, we collapse all couplings of all terms which can be mutually identi-
fied up to a permutation of colors to a single value, that isλ6;1;ρ → λ6;1, λ6;2;ρρ′ → λ6;2,
and λ4;1;ρ → λ4;1. This will provide us with the renormalized coupling equation for the
models (71) and (72). Importantly, we will concentrate on the maximal valence interac-
tion coupling in this work. The relevant couplings of the�4 type occurring in the�kmax=6

d≥3

models can be simply inferred from this point whereas the �4 couplings occurring in
the �kmax=6

2 matrix models might be very involved and will be not addressed.

7.2. First order β-functions of tensor models.

7.2.1. One-loop β-functions of the �4 models. We simplify in the following the nota-
tions and use P for |P|, for some momentum (multi-)variable P . Furthermore, in this
notation, we recall that P a

s expands fully as
∑D

i=1 |ps,i |2a for the representation of the
group U (1)D . We also use the block matrix notation [1] = 1 and {1̌} = (2, . . . , d). The
following formal series will be useful:

S1 :=
∑

Ps

1

[Pa
1̌

+ μ2]2 , (151)

where Pa
1̌

:= ∑
s∈{1̌} Pa

s . The self-energy is expressed as

�({b}) = �(b1, . . . , bd) = �(b[1], b{1̌}) = 〈ϕ̄[1]{1̌} ϕ[1]{1̌}〉t
1P I (152)

where bs = (bs,1, . . . , bs,D), D = 1, 2, s = 1, . . . , d, are external momenta.
We start by evaluating the self-energy as

�({b}) =
∑

Gc

KGc SGc ({b}), (153)

where the sum is over all amputated 1PI 2-point graphs Gc that we truncate at one-loop,
KGc is a combinatorial factor and SGc ({b}) is the amplitude of the graph. These graphs
should be listed in Table 7 for Next = 2.

Up to color permutation, the graphs which are the most divergent and which will
contribute to (153) are tadpoles of the melonic-type Tρ coined by one particular colorρ =
1, . . . , d (T1 has been illustrated in Fig. 16; Tρ can be obtained by color permutation).
Let ATρ be the amplitude of Tρ which necessarily depends on bρ,i , i ∈ {1, . . . , D}. We
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Fig. 16. Tadpole graph T1 and 4-point graph F1

fix a particular variable bρ,1 and derivate this amplitude. Note that if D = 1, there is no
other choice than the one dictated by the color ρ.

The amplitude ATρ can be evaluated as

ATρ (bρ)= KTρ

(

−λ4;ρ
2

)

Sρ(bρ), KTρ = 2, Sρ(b) :=
∑

Ps

1

ba + Pa
1̌

+ μ2 , (154)

such that the wave function renormalization is given by

Z = 1 − ∂(bρ,1)a�

∣
∣
∣
bs,i =0

= 1 − ∂(bρ,1)a ATρ

∣
∣
∣
bs,i =0

= 1 − λ4;ρS1 + O(λ2
4) , (155)

where S1 is given in (151) and O(λ2
4) involves all quadratic power of coupling constants.

Next, we must evaluate the �4;ρ function at 0 external momenta. Formally,

�4({b}) =
∑

Gc

KGc SGc ({b}) , (156)

where the sum runs over all amputated 1PI 4-point graphs which satisfy the first line of
Table 7, and the external momentum data of which should reproduce the pattern of the
vertex having λ4;ρ as coupling constant.

At second order of perturbation, there is a unique way to build these graphs (see Fig.
16). Denote Fρ such a graph where ρ is the external color index used as well in the
propagators. The amplitude of such graph can be written as

AFρ ({bρ}) = KFρ
1

2

(−λ4;ρ
2

)2

S′
ρ(bρ, b′

ρ),

KFρ = 23 S′
ρ(b, b′) =

∑

Ps

1

(ba + Pa
1̌

+ μ2)

1

(b′a + Pa
1̌

+ μ2)
. (157)

Hence,
�4;ρ({0}) = −λ4;ρ + AFρ ({0}) = −λ4;ρ + λ2

4;ρS1 + O(λ3). (158)

We are in position to calculate the renormalized coupling equation of λ4. We first set
λ4;ρ → λ4 in all equations. Using (145), one then gets

λren
4 = −�4({0})

Z2 = λ4 + λ2
4S1 + O(λ3

4). (159)
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The β-function at one-loop for all renormalizable �4-models is always fixed and given
by

β = 1. (160)

The renormalized coupling equation (159) also exhibits the fact that λren
4 > λ4, for

strictly positive coupling λ4 > 0. This means that the models are asymptotically free
in the UV. The free theory describes non interacting topological d-spheres. Meanwhile
going in the other IR direction, the renormalized coupling becomes larger and larger.
This generally hints at a phase transition. A widely known example of this kind of theory
is certainly QCD where, in the IR, quarks and gluons experience a phase transition for
making hadrons. We hope that, for large group distances, the present models may lead
to new condensate-type of degrees of freedom (quite different from the basic simplexes
used in the initial models) which might be useful to describe interesting geometric
properties.

7.2.2. Two- and four-loop β-functions of the �6 models. The computation of the β-
functions for the �6 models is inferred from a previous work [58]. The types of graphs
relevant for the calculation of the β-function for each model 1�

6
3 or 1�

6
4 have been listed

in that work. Indeed, the relevant graph construction does not depend much on the char-
acteristics of the models (dim G D, a) but on the rank d, kmax and on the combinatorics
of constructing melonic graphs using�6 interaction. The reduction from d = 4 to d = 3
is quite immediate.

We introduce the block index notation [1] = 1, and depending on the model [2] =
(2, 3) and [3] = 4 for 1�

6
4 or [2] = 2 and [3] = 3 for 1�

6
3. The following formal sums

will be also useful (avoiding multiplication of notations we shall use again S1):

S1 :=
∑

ps ,p′
s

1

(p2a
1 + p2a

1̌
+ μ2)2

1

(p′2a
1 + p′2a

1̌
+ μ2)

,

S12 :=
∑

ps ,p′
s

1

(p2a
1 + p2a

1̌
+ μ2)2

1

(p2a
1 + p′2a

1̌
+ p′2a

1̌
+ μ2)

, (161)

where p2a
1 := |p1|2a and p2a

1̌
:= |p2|2a + · · · + |pd−1|2a .

From Lemma 1 in [58], at two loops, the self-energy� and wave function renormal-
ization Z compute to

�(b[1], b[2], b[3]) = �0(b[1], b[2], b[3]) +�′(b[2], b[3]),

�0(b[1], b[2], b[3]) = −λ6;1;1 S̃1(b[1], b[1])−
∑

ρ∈{[2],[3]}

[
λ6;2;1ρ S̃1(b[1], bρ)

]

−
[ ∑

ρ∈{[2],[3]}
λ6;2;1ρ

]
S̃12(b[1]) + O(λ2), (162)

Z = 1 − ∂(b[1])2a�0
∣
∣
∣
b[s]=0

= 1 −
[
2λ6;1;1 +

∑

ρ∈{[2],[3]}
λ6;2;1ρ

]
S1

−
[ ∑

ρ∈{[2],[3]}
λ6;2;1ρ

]
S12 + O(λ2), (163)
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Fig. 17. General form of 1PI 6-point graphs

S̃1(b, b′) :=
∑

ps ,p′
s

1

(b2a + p2a
1 + p2a

1̌
+ μ2)

1

(b′2a + p′2a
1 + p′2a

1̌
+ μ2)

, (164)

S̃12(b) :=
∑

ps ,p′
s

1

(b2a + p2a
1 + p2a

1̌
+ μ2)

1

(p2a
1 + p′2a

1 + p′2a
1̌

+ μ2)
,

where �′ = � −�0 consists in the self-energy remaining part which is independent of
the variable b[1] and O(λ2) denotes a sum of O-functions with arguments any quadratic
power of the coupling constants O(λ2

6;1;•) + O(λ2
6;2;•) + O(λ6;1;•λ6;2;•).

1PI amputated 6-point functions truncated at two loops are of the form by Fig. 17
(where we use the most simple representation of the�6-vertex as a vertex with 6 external
legs).

The computations are lengthy but we do not need to rederive these. Thus, we use
Lemma 2 in [58], in order to get, at two loops, the amputated truncated six-point functions
at zero external momenta given as, for ρ ∈ {[1], [2], [3]},

�6;1;ρ(0, . . . , 0) = −λ6;1;ρ+λ6;1;ρ
[

6 λ6;1;ρ S1 +3
[ ∑

ρ′∈{[1],[2],[3]}\{ρ}
λ6;2;ρρ′

]
[S1+S12]

]

+O(λ3),

(165)
where S1 and S12 are given by (161) and O(λ3) stands for a sum of O-functions of any
cubic power in the coupling constants. On the other hand, for ρ′ ∈ {[1], [2], [3]} \ {ρ},
the second function of interest reads

�6;2;ρρ′(0, . . . , 0) = −λ6;2;ρρ′ + λ6;2;ρρ′
[

2[λ6;1;ρ + λ6;1;ρ′ ]S1

+
[ ∑

ρ̄∈{[1],[2],[3]}\{ρ}
λ6;2;ρρ̄ +

∑

ρ̄∈{[1],[2],[3]}\{ρ′}
λ6;2;ρ′ρ̄

]
[S1 + S12]

]

+ O(λ3). (166)

The renormalized coupling equation can be evaluated at two-loops by equating all cou-
pling constants λ6;1;ρ = λ6;1 and λ6;2;ρρ′ = λ6;2. After a straightforward evaluation,
one obtains

λren
6;1 = −�6;1({0})

Z3 = λ6;1 + O(λ3). (167)

Thus both models �6 are safe at two-loops in this sector λ6;1. In order to know the UV
behavior of this sector, we need to carry out the computations of the β-function up to
four loops. This will be performed after the next paragraph.

Inspecting the second coupling, we have

λren
6;2 = −�6;2({0})

Z3 = λ6;2 + (d − 1)λ2
6;2[S1 + S12] + 2λ6;1λ6;2S1 + O(λ3). (168)
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We find that, for λ6;1 > 0 and λ6;2 > 0, the β-function in this sector splits as

β6;2(2) = (d − 1), β6;2;(21) = 2. (169)

Thus, we still have λren
6;2 > λ6;2 and, interestingly, this sector is asymptotically free

for both models 1�
6
3,4. Note also that the splitting of the β-function occurs in other

(condensed matter) contexts [73]. This simply exhibits the fact that the RG equations of
the different couplings are coupled.

The behavior of the coupling constant λ6;1 still needs to be investigated. Four-loop
calculations are required in this case. Note that it has been already established that the
coupling constant λ6;2 tends to 0 in the UV. In order, to determine the behavior of the
coupling constant λ6;1, we can assume that we are far enough in the UV such that
λ6;2 ∼ 0. Under such circumstances, we do not need to involve vertices of the form
V6;2.

We use Lemma 3 in [58] and find at four loops the wave function renormalization
and �6;1;ρ(0, . . . , 0) function as

Z = 1 − 2λ6;1;1S1 + 2λ2
6;1;1

[
2S1

(1) + 3S1
(2)

]
+ 2λ6;1;1

( ∑

ρ∈{[2],[3]}
λ6;1;ρ

)[
2S12

(1) + S12
(2)

]
+ O(λ3)

(170)

and the sum of truncated amputated six-point functions at four loops satisfies, for any
ρ ∈ {[1], [2], [3]},
�6;1;ρ(0, . . . , 0) = −λ6;1;ρ + 2 · 3 λ2

6;1;ρS1 − 2 · 3 · 5 λ3
6;1;ρ S1

(2)

−2 · 3 λ2
6;1;ρ

[ ∑

ρ′∈{[1],[2],[3]}\{ρ}
λ6;1;ρ′

]
S12
(2)

−22 · 5 λ3
6;1;ρ S1

(1)−22 · 3 λ2
6;1;ρ

[ ∑

ρ′∈{[1],[2],[3]}\{ρ}
λ6;1;ρ′

]
S12
(1)+O(λ4),

(171)

where O(λ4) stands for a function involving a quartic number of couplings and where

S1
(1) :=

∑

ps ,p′
s ,p

′′
s ,p

′′′
s

[ 1

(p2a
1 + p2a

1̌
+ μ2)3

1

(p′2a
1 + p′2a

1̌
+ μ2)

1

(p′′2a
1 + p′′2a

1̌
+ μ2)

1

(p′′′2a
1 + p′′′2a

1̌
+ μ2)

]

S1
(2) :=

∑

ps ,p′
s ,p

′′
s ,p

′′′
s

[ 1

(p2a
1 + p2a

1̌
+ μ2)2

1

(p′2a
1 + p′2a

1̌
+ μ2)2

1

(p′′2a
1 + p′′2a

1̌
+ μ2)

1

(p′′′2a
1 + p′′′2a

1̌
+ μ2)

]

S12
(1) :=

∑

ps ,p′
s ,p

′′
s ,p

′′′
s

[ 1

(p2a
1 + p2a

1̌
+ μ2)3

1

(p2a
1 + p′2a

1 + p′2a
1̌

+ μ2)

1

(p2a
1 + p′′2a

1 + p′′2a
1̌

+ μ2)

× 1

(p′′′2a
1 + p′′′2a

1̌
+ μ2)

]

S12
(2) :=

∑

ps ,p′
s ,p

′′
s ,p

′′′
s

[ 1

(p2a
1 + p2a

1̌
+ μ2)2

1

(p2a
1 + p′2a

1 + p′2a
1̌

+ μ2)

1

(p2a
1 + p′′2a

1 + p′′2a
1̌

+ μ2)

× 1

(p′′′2a
1 + p′′′2a

1̌
+ μ2)2

]
. (172)
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After identifying all couplings, the renormalized coupling equation at four loops becomes

λren
6;1 = −�6;1({0})

Z3 = λ6;1 + 8λ3
6;1S1

(1) + O(λ4), (173)

where we used (S1)2 = S1
(2). Hence, the β-function at this order of perturbation reads

β6;1 = 8. (174)

Thus the models are asymptotically free in the UV. Similar remarks as in the previous
section about the meaning of such free theory hold in the present situation as well. It
is also remarkable that, for the �6 tensor models, the maximally divergent graphs with
Next = 4 are graphs without �4 vertices (V4 = 0 = V4;a = V2) but only with �6

interaction terms. This immediately implies that at the UV limit, since both λ�6;1 and

λ�6;2 are vanishing, then the renormalized coupling equation for the λren
4;1 reads

λren
4 = λ4, (175)

which means that this sector is always safe at all loops. The last sector λ4;a is slightly
more subtle as it turns out to be disconnected and can generate divergent amplitudes
with only V4;a vertices [58]. In all situation, it means that we have for both models a UV
fixed manifold determined by

λU V
6;1 = 0 = λU V

6;2 , λU V
4 = k , λU V

4;a = 0, (176)

for some arbitrary k. Adding small perturbations around this line implies that the coupling
constants λren

6;1 and λU V
6;2 grow in the IR.

7.3. First order β-functions of matrix models �4,6
2 . We now turn our attention to the

renormalizable matrix models and their β-function at small number of loops. Consider
then the dim G D�

4,6
2 models with their list of all divergent graphs. We will focus on the

main interactions with maximal valence kmax = 4 and 6.

7.3.1. One-loop β-function of �4
2 models. We discuss here the �4 models such that

( 1�
4
2 , a = 1

4
), ( 2�

4
2, a = 1

2
) , ( 3�

4
2 , a = 3

4
), ( 4�

4
2, a = 1), (177)

with ribbon-like propagator and 4-valent vertex represented as in Fig. 10 and aim at
computing the renormalized coupling equation

λren
4 = −�4({0})

Z2 . (178)

We will establish that the β-functions at one-loop of the models (177) are all vanishing.
This is strongly related with the same property of the GW model which holds at all
orders.

Let us introduce the formal sum S1 with now a different content given by

S1 =
∑

P

d f (P)

(P a + μ2)2
, (179)
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Fig. 18. Tadpole graphs T ± and a 4-point graph G4

where according to the group nature, d f (P) is defined such that:

– if G D = U (1)D then d f (P) = 1;
– if G = SU (2) then d f (P) = 2P + 1, P ∈ 1

2 N (this can happen only for the model
( 3�

4
2 , a = 3

4 ) for the choice G D = SU (2)).

Evaluating the self-energy at one-loop, the tadpole graphs in Fig. 18, should con-
tribute. These are generally named as the tadpole up (+) and down (−). We have at
one-loop, for external momenta bε=±,

�(b+, b−)=
∑

ε=±
AT ε (bε), AT ε (bε) = −λ4

2
KT ε S̃1(bε), S̃1(b) :=

∑

P

d f (P)

ba + Pa + μ2 ,

(180)

with KT ε = 2. One therefore infers the wave function renormalization as

Z = 1 − ∂ba
+
�|bε=0 = 1 − λ4S1 + O(λ2

4), (181)

where S1 is given by (179). Next, we focus on 1PI amputated 4-point functions and
evaluate �4 at low external momenta. There is a single planar connected graph with
one connected component of the boundary, it is given by G4 in Fig. 18. Computing the
amplitude associated with this graph and inserting the result in �4 yields

�4({0}) = −λ4 +
1

2!
(−λ4

2

)2
KG4 S1 + O(λ3

4) = −λ4 + 2λ2
4S1 + O(λ3

4), (182)

where we use the fact that the combinatorial factor associated with that graph is KG4 =
24. The renormalized coupling constant equation is straightforward and given by

λren
4 = λ4. (183)

Thus, the β-function is vanishing at one-loop

β4 = 0. (184)

In fact, we can see that the matrix models (177) reproduce the same features as the
complex GW model. At small number of loops, in the derivations of the wave function
renormalization, the graph amplitude which may very well vary from one model to the
other, keeps at least its overall form. A similar fact happens in the calculation of the
4-point functions. All graphs which should be involved in calculation of β-function of
the GW model should appear in the β-function of the present class of models with the
same combinatorial factor.

We must emphasize that this vanishing β-function should be strongly correlated with
a recent breakthrough concerning the solvability of the GW model [63]. We will focus
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on one result in that work that it is useful for the present study. Consider real matrices
Mab, where a and b belong to a set I of discrete indices (though the following is valid
for continuous indices, we will only discuss the discrete case). We can define a product
on these (M N )ab = ∑

c∈I μc Mac Ncb, for a constant weight μc. We can also introduce
a trace trM = ∑

a μa Maa with a quartic interaction of the form S = V tr(M E M +
(M)4), with V a volume factor, E kinetic term which is not the identity operator but
an unbounded self-adjoint operator on an Hilbert space with compact resolvent so that
M E M is traceclass. Hence, one must restrict the set of matrices M . Theorem 3.2 of [63]
states that the model defined by S has a vanishing β-function. This result holds at the
non perturbative level.

The model (1�4
2, a = 1

4 ) fits in the above category of models for a suitable set of
matrices ϕmn . The fact that β4 = 0 at all orders for this case is a simple corollary of
Theorem 3.2 of [63]. For the other models written in (177), the group dimension is greater
than 2, and the fields ϕ are not really matrices but implicitly tensors (see Remark 1). But
we have also seen that the GW model in 4D may be written in terms of tensors, so this
might not be a great issue for applying that theorem to the rest of these models. However,
using the representation of the group SU (2), we obtain face amplitude contributions of
the form d f (P)which modifies the overall amplitude of any N -point function. One must
carefully check if these features may or not affect that theorem.

In any case, we conjecture that the models have all a vanishing β-function at all
orders or perturbation. At the non perturbative level, this could be achieved using the
same techniques developed in [71,72]. If this statement is true, all these models might
be asymptotically safe which means that they have a non trivial fixed point in the UV
and Theorem 3.2 of [63] would be valid on a larger domain from matrices to tensors.

7.3.2. Two-loop β-function of the�6
2 models. We are now interested in the UV behavior

of the models

( 1�
6
2 , a = 1

3
), ( 2�

6
2, a = 2

3
) , ( 3�

6
2 , a = 1). (185)

The vertices of these models are 6-valent and we will use instead a simplified represen-
tation for these as given in Fig. 19. One must pay attention to the fact that, although
this simplified vertex notation does not seem to be cyclic, there is no way to distinguish
pairs of external lines obtained from one another after a cyclic permutation. In fact, this
simplified notation is not canonical in the sense that it can be found (easily) a distinct
simplified graph encoding the same vertex. However, introducing this notation will be
enough for capturing the essential properties that we want to discuss.

Our goal is to compute at two loops the renormalized coupling equation

λren
6 = −�6({0})

Z3 . (186)

Fig. 19. The �6 vertex and its simplified representation
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Fig. 20. Tadpoles graphs

Fig. 21. 1PI 6-point graphs contributing to �6

We will use also the same anterior compact notation for the momentum Pa and denote
S1 and S12 now as the formal sums

S1 =
∑

P1,P2

d f (P1)d f (P2)

(P a
1 + μ2)2(P a

2 + μ2)
, S12 =

∑

P1,P2

d f (P1)d f (P2)

(P a
1 + μ2)2(Pa

1 + P a
2 + μ2)

,

(187)
where as usual d f (Ps) depends on the group manifold.

At two loops, the wave function renormalization is evaluated from the self-energy
which includes the amplitudes associated with the tadpole graphs {T ±

1 , T2, T ±
3 }; T +

1 , T2

and T +
3 appear in Fig. 20, and T −

1 and T −
3 are obtained either by flipping (top-down)

the graphs T +
1 and T +

3 , respectively, or by conserving the same graphs and switching the
orientation of the arrows.

The self-energy�(b+, b−) splits in two sums: one including the external variable b+
which is �0(b+, b−) and a remainder. We have

�0(b+, b−) = AT +
1
(b+, b−) + AT2(b+, b−) + AT +

3
(b+, b−), (188)

where AG is the graph amplitude associated with the graph G. By direct evaluation, using
the so far routine, we arrive at

Z = 1 − ∂ba
1
�0|bs=0 = 1 − λ6(3S1 + S12) + O(λ2), (189)

where S1 and S12 are given by (187).
1PI amputated 6-point functions are once again of the rough form given by Fig. 17.
The amplitudes contributing to �6 are associated to the graphs {F±,G±, I ±

1,2} of

the form are listed in Fig. 21 (note that F−,G− and I −
1,2 are obtained by reversing the

orientations of their (+)-partner). At this order of perturbation, the amplitude of any
graph G at low external momenta is

AG({0}) = 1

2!
(−λ6

3

)2

KG S̃G({0}), (190)
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where S̃G({b}) stands for a formal sum and KG is the combinatorial coefficient associated
with each of the significant graphs. It can be shown that

KF± = 33 · 22, S̃F±({0}) = S1 ; KG± = 33 · 2 , S̃G±({0}) = S1 ;
K I ±

1,2
= 33 · 2, S̃G±({0}) = S12, (191)

where S1 and S12 are still found in (187). A straightforward evaluation yields

�6({0}) = −λ6 +
∑

G∈{F±,G±,I ±
1,2}

AG({0}) + O(λ3) = −λ6 + 6λ2
6(3S1 + 2S12) + O(λ3).

(192)
We are in position to evaluate the first order renormalized coupling equation. One has

λren
6 = λ6 − 9λ2

6(S
1 + S12) + O(λ3). (193)

The two-loop β-function of this coupling constant is

β6 = −9. (194)

Clearly, from (193) and considering positive coupling constant λ6 > 0, the models
possess a Landau ghost. In other words, the coupling constant blows in the UV. This
matrix models have the same behavior as the ordinary scalar �4 theory in 4D.

8. Concluding Remarks

We have investigated the renormalization analysis of field theories defined with rank
d ≥ 2 tensors defined on representation indices of G D ∈ {U (1)D, SU (2)D}. The actions
of the models considered are defined with a general kinetic term written in momentum
space and which involves a propagator of the form 1

p2a+μ2 , where p is the eigenvalue
of the Laplacian operator acting on the group background G D, a a parameter free to
take any value in (0, 1] and μ is a mass. The limiting case a = 1 yields the ordinary
Laplacian dynamics. Our fields are simply random tensors which are not subjected to
any condition but integrability. This is in contrast with another type of TGFTs enforcing
the so-called gauge invariance on tensors [21] that we did not consider in this work.
Within the present framework, we find that there are several just-renormalizable models
in any rank. In particular, under the above conditions, we successfully prove that

(A) For the rank d ≥ 3 case:
– there are 6 just-renormalizable models with rank d ≥ 3,1�6

3,4, 2�
4
3, 1�

4
3,4,5, the

maximal valence of the vertex is 6;
– there is no just-renormalizable tensor model with rank d ≥ 6,
– there is no just-renormalizable tensor model defined with a group dimension

dim G D ≥ 3; in particular there is no just-renormalizable model defined on
G = SU (2),

– there is a tower of tensor models in rank d = 3 with group G = U (1) which
can be potentially just-renormalizable; a model in the tower is determined by the
maximal valence kmax ≥ 4 of its vertices,

– all proved just-renormalizable models are so far asymptotically free in the UV,
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Table 8. Updated list of renormalizable models and their features (AF ≡ asymptotically free; LG ≡ existence
of a Landau ghost; AS(�) asymptotically safe at �-loops)

TGFT (type) G D �kmax d a Renormalizability UV behavior

U (1) �6 4 1 Just- AF
U (1) �4 3 1

2 Just- AF
U (1) �6 3 2

3 Just- AF
U (1) �4 4 3

4 Just- AF
U (1) �4 5 1 Just- AF
U (1)2 �4 3 1 Just- AF
U (1) �2k 3 1 Super- –

gi- U (1) �4 6 1 Just- AF
gi- U (1) �6 5 1 Just- AF
gi- SU (2)3 �6 3 1 Just- ?
gi- U (1) �2k 4 1 Super- –
gi- U (1) �4 5 1 Super- –
Matrix U (1) �2k 2 1

2 (1 − 1
k ) Just- (k = 2, AS(∞)); (k = 3, LG)

Matrix U (1)2 �2k 2 1 − 1
k Just- (k = 2, AS(1)); (k = 3, LG)

Matrix U (1)3 or SU (2) �6 2 1 Just- LG
Matrix U (1)3 or SU (2) �4 2 3

4 Just- AS(1)

Matrix U (1)4 �4 2 1 Just- AS(1)

Matrix U (1) �2k 2 1
2 Super- –

Matrix U (1)2 �2k 2 1 Super- –

– the tower (1�k
3, a = 1), for all k ≥ 4, defines super-renormalizable tensor models.

More super-renormalizable models �k′
max can be found from just-renormalizable

models �kmax by taking 4 ≤ k′
max < kmax, and keeping the same remaining

parameters;
(B) For the d = 2 or matrix models case:

– there are 6 plus two towers of just-renormalizable models,
– there is no just-renormalizable model defined on a group with dimension

dim G D ≥ 7,
– all �4 models have a vanishing β-function at one-loop which is strongly rem-

iniscent of the vanishing β-function at all orders of the GW model in 4D; we
conjecture that, indeed, these models are asymptotically safe at all loops in the
UV,

– all �6 models have a Landau pole in the UV,
– the tower (dim G D�

k
2, a), with (dim G D, a) ∈ {(1, 1

2 ), (2, 1)}, for all k ≥ 4, defines
super-renormalizable matrix models. Once again, apart from this class of mod-
els, one can build several other super-renormalizable models �k′

max from just-
renormalizable models �kmax by taking 4 ≤ k′

max < kmax, and keeping the same
remaining parameters of the model.

We can update Table 1 as Table 8.
The tower of rank d = 3 models which might be just-renormalizable addresses a

new combinatoric issue which is the classification of all melonic interactions of this
rank according to some criteria. This problem can be addressed in any rank d ≥ 3,
of course, for its own combinatoric purpose. This deserves to be understood in order
to complete the list of just-renormalizable models in rank d = 3 as well as to check
whether or not asymptotic freedom is a genuine feature of tensor models in rank d ≥ 3.



Renormalizable Models in Rank d ≥ 2 Tensorial Group Field Theory 181

Finally, the present investigation pertains to the “discrete to continuum” approach for
quantum gravity. To that extent, one might scrutinize all UV asymptotically free theories
issued from this work as potentially interesting candidates for describing new degrees
of freedom after a likely phase transition in the IR.
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Appendix

Appendix A: Face Amplitude Expansion and the Euler Maclaurin Formula

We provide in this appendix further details on the face amplitude expansions (29) and
(30) for arbitrary a ∈ (0, 1] and small A ∼ M−i� , A > 0.

Let us first consider hn(x) = xne−Axa
, with x ≥ 0, n ∈ N, and the sum

∑∞
p=0 hn(p).

Using the Euler–Maclaurin formula, we have, for a finite integer q ≥ 1,

q∑

p=1

hn(p) =
∫ q

1
hn(p)dp + Rn(q),

Rn(q) = −B1(hn(1) + hn(q)) +
∞∑

k=1

B2k

(2k!) (h
(2k−1)
n (q)− h(2k−1)

n (1)) , (A.1)

where Bk are Bernoulli numbers. A rapid checking shows that

h′
n(x) = (xne−Axa

)′ = x−1+n(n − Aaxa)h0(x) , . . . ,

h(m)n (x) = x−m+n (nFn(m) + Gn,m(a, Axa))h0(x), (A.2)

where Fn(m) = ∏m−1
l=1 (n − l) and Gn,m is polynomial in the variable Axa so that the

remainder Rn is of the form

Rn(q) = −B1(e
−A + qne−Aqa

) +
∞∑

k=1

B2k

(2k!) [q
−(2k−1)+n (nFn(2k − 1)

+Gn,2k−1(a, Axa))h0(q)− (nFn(2k − 1) + Gn,2k−1(a, A))h0(1)]. (A.3)

At the limit q → ∞, h(k)n (q) is clearly exponentially suppressed by presence of h0(q) →
0, we obtain

lim
q→∞ Rn(q) = −B1(1 + O(A))−

∞∑

k=1

B2k

(2k!) (nFn(2k − 1) + Gn,2k−1(a, A))h0(1) = −B̃n + O(A),

(A.4)

with B̃n some constant (note that the sum in k over nFn(2k − 1) is necessarily finite
because at some order k Fn(k) = 0). On the other hand, for any A, the following integral
is exact:

lim
q→∞

∫ q

1
hn(p)dp = 1

a
�[1 + n

a
, A] A− 1+n

a = 1

a
A− 1+n

a �[1 + n

a
] − 1

1 + n
+ O(A),

(A.5)
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where �[·, ·] denotes the incomplete Gamma function and �[·] stands for the Euler
gamma function. Finally, one obtains

∞∑

p=1

hn(p) = lim
q→∞

q∑

p=1

hn(p) = 1

a
A− 1+n

a �[1 + n

a
] − 1

1 + n
− B̃n + O(A)

= ca,n A− 1+n
a (1 + O(A

1+n
a )), (A.6)

with some constant ca,n = �[(1 + n)/a]/a.
We are now in position to specifically address (29) and (30). Equation (A.6) implies

at n = 0 the following relation

∞∑

p=0

h0(p) = 1 +
∞∑

p=1

e−Apa = 1

a
A− 1

a �[1

a
] − B̃0 + O(A) = ca,0 A− 1

a (1 + O(A
1
a ))

(A.7)

which implies (29).
Second, consider the following sum

∑
p∈ 1

2 N (2p + 1)2e−A′ pa
in relation with (30)

and that expands as:

∑

p∈ 1
2 N

(2p + 1)2e−A′ pa =
∞∑

p=1

p2e−Apa
+ 2

∞∑

p=1

pe−Apa
+

∞∑

p=0

e−Apa
, (A.8)

where A = A′/2a . For each resulting sum, we use (A.6) at n = 2, n = 1 and n = 0,
respectively, and get

∑

p∈ 1
2 N

(2p + 1)2e−A′ pa = (
1

a
A− 3

a �[3

a
] − 1

3
− B̃2) + 2(

1

a
A− 2

a �[2

a
] − 1

2
− B̃1)

+
1

a
A− 1

a �[1

a
] − B̃0 + O(A)

= ca,3 A− 3
a (1 + O(A

1
a )) (A.9)

which implies (30).

Appendix B: On Potentially Renormalizable Real Matrix Models

We make in this section additional comments on real matrix models which were not
analyzed in Sect. 5. Due to the occurrence of an odd valence of interactions, these
models could be defined via real matrix fields. These are

( 1�
2+γ>2
2 , a = γ

2(2 + γ )
≤ 1

2
), ( 2�

2+γ>4
2 , a = γ

2 + γ
≥ 1

2
) , ( 2�

3
2, a = 1

3
),

( 3�
3,5
2 , a = 1

2
,

9

10
) , ( 4�

3
2, a = 2

3
) , ( 5�

3
2, a = 5

6
) , ( 6�

3
2, a = 1) , (B.1)

where 2 + γ should be an odd integer.
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The interaction for these models are of the form

Sint
k =

∑

P[I ]
tr
[
(ϕ[I ])k

]
=

∑

P[I ]
ϕ12 ϕ1′2 ϕ1′2′ ϕ1′′2′ . . . ϕ1′′′2′′′ ϕ12′′′ , (B.2)

where, this time, we now allow k to take odd integer values greater than 2. Given a real
matrix model dim G D�

kmax
2 , a cut-off� in momentum space, the total interaction may be

written

S� =
kmax∑

k=3

λ�k

k
Sint

k + CT�2;1 + CT�2;2S2;2. (B.3)

Note that S� includes even and odd valence interaction terms.
The next stage is to list all primitively divergent graphs. For this purpose, we adopt

the same method of Sect. 5 and write the divergence degree of a connected graph G,
with Next ≥ 1 external leg(s), C∂G ≥ 1 and V2 = V2;1 number of mass vertices as

ωd(G) = −2 dim G DgG̃ − Pa(G),

Pa(G) = dim G D(C∂G − 1) +
1

2

[
(dim G D − 2a)Next − 2 dim G D

]

+
1

2

kmax−1∑

k=2

[
2 dim G D + (2a − dim G D)k

]
Vk,

where the sum
∑kmax−1

k=2 is performed over even and odd integers. This is in contrast with
the complex case where only even integers were considered in this sum.

In the same vein, Next > kmax will give ωd(G) < 0 and Next = kmax will give
ωd(G) = 0 if and only if gG̃ = 0,C∂G = 1, Vk = 0, for all k.

– If Next = kmax − q, where 1 ≤ q ≤ kmax − 2, one gets

Pa(G) = dim G D(C∂G − 1) +
1

2

[
(dim G D − 2a)(kmax − q)− 2 dim G D

]

+
1

2

kmax−1∑

k=2

[
2 dim G D + (2a − dim G D)k

]
Vk

= dim G D(C∂G − 1)− 1

2
(dim G D − 2a)

(

q −
kmax−2∑

k=1

kVkmax−k

)

. (B.4)

Using the same arguments as in Sect. 5.1, we must have C∂G = 1 and gG̃ = 0 in
all cases. Then the analysis of divergent graphs with ωd(G) = −Pa(G) ≥ 0 can be
also recast in terms of a partition of q and q − q1 for an integer q1 ≤ q. We clearly
see that the number of primitively divergent configurations can be listed according
to these partitions.

– If Next = 1,

Pa(G) = dim G D(C∂G − 1)− 1

2
(dim G D − 2a)

(

kmax − 1 −
kmax−2∑

k=1

kVkmax−k

)

.

(B.5)
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Then, it may exist some configurations such that Vkmax−k = 0 for all k =
1, . . . , kmax − 2. Having Next = 1 such that C∂G = 1, we infer

ωd(G) = −2 dim G DgG̃ +
1

2
(dim G D − 2a)(kmax − 1). (B.6)

Therefore it may exist 1-point function configurations which are divergent. Indeed,

take the planar tadpole of the (1�3
2, a = 1

6 ) model. It diverges as �
2
3 . Thus (B.6)

could generate a new type of anomalous terms of the vector form. A non-invariant
interaction vertex which could be introduced is of the form Sint

1 = tr(ϕ) = ∑
a ϕaa .

Another way to proceed is to combine both vector and matrix fields in the initial
action. One then has to consider this situation with all the care needed by performing
the multi-scale analysis from the beginning for this new class of mixed rank models
((vector+matrix)-models).

Appendix C: Primitively Divergent Graphs for the (dim G D�8
2, a) Model

We now provide a complete application of the method of finding primitively divergent
graphs for the nontrivial order kmax = 8 in the matrix model (dim G D�

8
2, a).

It can be simply proved that Next > 8 yields a convergent amplitude. Next = 8 leads
to a log–divergent amplitude if and only if gG̃ = 0, and V6 = V4 = V2;1 = 0 and
C∂G = 1.

– For Next = 6, we can write

Pa(G) = dim G D(C∂G − 1) +
1

2

[
2 dim G D + (2a − dim G D)(8 − 2)

]
(V6 − 1)

+
1

2

[
2 dim G D + (2a − dim G D)(8 − 4)

]
V4

+
1

2

[
2 dim G D + (2a − dim G D)(8 − 6)

]
V2;1

= dim G D(C∂G − 1)− 1

2
(dim G D − 2a)

(
− 2(V6 − 1)− 4V4 − 6V2;1

)
.

(C.1)

(8j) Seeking solution of Pa(G) = 0, we have V6 = 1, V4 = 0 = V2;1 and C∂G = 1,
giving log–divergent graphs if gG̃ = 0.

(8l) Solutions of Pa(G) = (2a − dim G D) are given by C∂G = 1, V6 = 0, V4 = 0 =
V2;1. This case gives divergent graphs with ωd(G) = dim G D − 2a, if gG̃ = 0.

– For Next = 4, we have

Pa(G) = dim G D(C∂G − 1) +
1

2

[
2 dim G D + (2a − dim G D)(8 − 2)

]
V6

+
1

2

[
2 dim G D + (2a − dim G D)(8 − 4)

]
(V4 − 1)

+
1

2

[
2 dim G D + (2a − dim G D)(8 − 6)

]
V2;1

= dim G D(C∂G − 1)− 1

2
(dim G D − 2a)

(
− 2V6 − 4(V4 − 1)− 6V2;1

)
.

(C.2)
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(8m) Solving Pa(G) = 0 yields a log–divergent amplitude if gG̃ = 0 and if
(8m1) V4 = 1, V2;1 = 0, V6 = 0,C∂G = 1;
(8m2) V4 = 0, V2;1 = 0, V6 = 2,C∂G = 1 (corresponding to the partition of

4/2=2=1+1);
(8n) Solving Pa(G) = (2a − dim G D) yields a divergent amplitude with ωd(G) =

dim G D − 2a if gG̃ = 0 and if V4 = 0, V2;1 = 0,C∂G = 1, and V6 = 1
(corresponding to the trivial partition of 1=1+0);

(8o) Solving Pa(G) = 2(2a − dim G D) yields a divergent amplitude with ωd(G) =
2(dim G D − 2a) if gG̃ = 0 and if V4 = 0, V2;1 = 0,C∂G = 1, and V6 = 0.

– For Next = 2, it can be written

Pa(G)=dim G D(C∂G − 1)− 1

2
(dim G D − 2a)

(
− 2V6−4V4−6(V2;1 − 1)

)
.

(C.3)

(8p) Solving Pa(G) = 0 yields a log–divergent amplitude if gG̃ = 0 and if
(8p1) V2;1 = 1, V6 = 0, V4 = 0,C∂G = 1;
(8p2) V2;1 = 0, V6 = 3, V4 = 0,C∂G = 1 (corresponding to the partition of

3=1+1+1);
(8p3) V2;1 = 0, V6 = 1, V4 = 1,C∂G = 1 (corresponding to the partition of

3=1+2);
(8q) Solving Pa(G) = (2a − dim G D) yields a divergent amplitude with ωd(G) =

dim G D − 2a if gG̃ = 0 and if
(8q1) V2;1 = 0, V6 = 2, V4 = 0,C∂G = 1 (corresponding to the partition of

2=1+1);
(8q2) V2;1 = 0, V6 = 0, V4 = 1,C∂G = 1 (corresponding to the trivial partition

of 2=2+0);
(8r) Solving Pa(G) = (2a − dim G D)2 yields a divergent amplitude with ωd(G) =

2(dim G D − 2a) if gG̃ = 0 and if V2;1 = 0, V6 = 1, V4 = 0,C∂G = 1 (corre-
sponding to the partition of 1=1+0);

(8r) Solving Pa(G) = (2a − dim G D)3 yields a divergent amplitude with ωd(G) =
3(dim G D − 2a) if gG̃ = 0 and if V2;1 = 0, V6 = 0, V4 = 0,C∂G = 1.

Table 9 gives the list of primitively divergent graph for the dim G D�
8
2 models.

Table 9. List of primitively divergent graphs of matrix models dim G D�
8
2

Next V2;1 V4 V6 C∂G − 1 gG̃ ωd(G)
8 0 0 0 0 0 0
6 0 0 0 0 0 dim G D − 2a
6 0 0 1 0 0 0
4 0 0 0 0 0 2(dim G D − 2a)
4 0 0 1 0 0 dim G D − 2a
4 0 1 0 0 0 0
4 0 0 2 0 0 0
2 0 0 0 0 0 3(dim G D − 2a)
2 0 0 1 0 0 2(dim G D − 2a)
2 0 1 0 0 0 dim G D − 2a
2 0 0 2 0 0 dim G D − 2a
2 1 0 0 0 0 0
2 0 1 1 0 0 0
2 0 0 3 0 0 0
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