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Abstract: We consider the spectral statistics of large random band matrices on meso-
scopic energy scales. We show that the correlation function of the local eigenvalue
density exhibits a universal power law behaviour that differs from the Wigner–Dyson–
Mehta statistics. This law had been predicted in the physics literature by Altshuler and
Shklovskii in (Zh Eksp Teor Fiz (Sov Phys JETP) 91(64):220(127), 1986); it describes
the correlations of the eigenvalue density in general metallic samples with weak disorder.
Our result rigorously establishes the Altshuler–Shklovskii formulas for band matrices.
In two dimensions, where the leading term vanishes owing to an algebraic cancellation,
we identify the first non-vanishing term and show that it differs substantially from the
prediction of Kravtsov and Lerner in (Phys Rev Lett 74:2563–2566, 1995). The proof
is given in the current paper and its companion (Ann. H. Poincaré. arXiv:1309.5107,
2014).

1. Introduction

The eigenvalue statistics of large random Hermitian matrices with independent entries
are known to exhibit universal behaviour. Wigner proved [50] that the eigenvalue density
converges (on the macroscopic scale) to the semicircle law as the dimension of the matrix
tends to infinity. He also observed that the local statistics of individual eigenvalues (e.g.,
the gap statistics) are universal, in the sense that they depend only on the symmetry class
of the matrix but are otherwise independent of the distribution of the matrix entries. In
the Gaussian case, the local spectral statistics were identified by Gaudin, Mehta, and
Dyson [36], who proved that they are governed by the celebrated sine kernel.

In this paper and its companion [11], we focus the universality of the eigenvalue
density statistics on intermediate, so-called mesoscopic, scales, which lie between the
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macroscopic and the local scales. We study random band matrices, commonly used to
model quantum transport in disordered media. Unlike the mean-field Wigner matrices,
band matrices possess a nontrivial spatial structure. Apart from the obvious mathematical
interest, an important motivation for this question arises from physics, namely from the
theory of conductance fluctuations developed by Thouless [49]. In the next sections we
explain the physical background of the problem. Thus, readers mainly interested in the
mathematical aspects of our results may skip much of the introduction.

1.1. Metal-insulator transition. According to the Anderson metal-insulator transition
[6], general disordered quantum systems are believed to fall into one of two very dis-
tinctive regimes. In the localized regime (also called the insulator regime), physical
quantities depending on the position, such as eigenvectors and resolvent entries, decay
on a length scale � (called the localization length) that is independent of the system
size. The unitary time evolution generated by the Hamiltonian remains localized for all
times and the local spectral statistics are Poisson. In contrast, in the delocalized regime
(also called the metallic regime), the localization length is comparable with the linear
system size. The overlap of the eigenvectors induces strong correlations in the local
eigenvalue statistics, which are believed to be universal and to coincide with those of
a Gaussian matrix ensemble of the appropriate symmetry class. Moreover, the unitary
time evolution generated by the Hamiltonian is diffusive for large times. Strongly disor-
dered systems are in the localized regime. In the weak disorder regime, the localization
properties depend on the dimension and on the energy.

Despite compelling theoretical arguments and numerical evidence, the Anderson
metal-insulator transition has been rigorously proved only in a few very special cases.
The basic model is the random Schrödinger operator, −�+V , typically defined on R

d or
on a graph (e.g., on a subset of Z

d ). Here V is a random potential with short-range spatial
correlations; for instance, in the case of a graph, V is a family of independent random
variables indexed by the vertices. The localized regime is relatively well understood
since the pioneering work of Fröhlich and Spencer [28,29], followed by an alternative
approach by Aizenman and Molchanov [1]. The Poissonian nature of the local spectral
statistics was proved by Minami [37]. On the other hand, the delocalized regime has seen
far less progress. With the exception of the Bethe lattice [2,26,32], only partial results
are available. They indicate delocalization and quantum diffusion in certain limiting
regimes [16–18,21], or in a somewhat different model where the static random potential
is replaced with a dynamic phonon field in a thermal state at positive temperature [27,38].

Another much studied family of models describing disordered quantum systems is
random matrices. Delocalization is well understood for random Wigner matrices [19,23],
but, owing to their mean-field character, they are always in the delocalized regime,
and hence no phase transition takes place. The local eigenvalue statistics are universal.
This fundamental fact about random matrices, also known as the Wigner–Dyson–Mehta
conjecture, has been recently proved [20,22,24] (see also [48] for a partially alternative
argument in the Hermitian case).

1.2. Mesoscopic statistics. In a seminal paper [4], Altshuler and Shklovskii computed
a new physical quantity: the variance of the number Nη of eigenvalues on a mesoscopic
energy scale η in d-dimensional metallic samples with disorder for d � 3; here meso-
scopic refers to scales η that are much larger than the typical eigenvalue spacing δ but
much smaller than the total (macroscopic) energy scale of the system. Their motivation
was to study fluctuations of the conductance in mesoscopic metallic samples; see also
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[3,34]. The relationship between Nη and the conductance is given by a fundamental
result of Thouless [49], asserting that the conductance of a sample of linear size L is
determined by the (one-particle) energy levels in an energy band of a specific width η
around the Fermi energy. In particular, the variance of Nη directly contributes to the
conductance fluctuations. This specific value of η is given by η = max{ηc, T }, where T
is the temperature and ηc is the Thouless energy [49]. In diffusive models the Thouless
energy is defined as ηc

..= D/L2, where D is the diffusion coefficient. (In a conductor
the dynamics of the particles, i.e., the itinerant electrons, is typically diffusive.) The
Thouless energy may also be interpreted as the inverse diffusion time, i.e., the time
needed for the particle to diffuse through the sample.

As it turns out, the mesoscopic linear statistics Nη undergo a sharp transition precisely
at1 η � ηc. For small energy scales, η � ηc, Altshuler and Shklovskii found that the
variance of Nη behaves according to2

Var Nη � log Nη � log L , (1.1)

as predicted by the Dyson–Mehta statistics [10]. The unusually small variance is due to
the strong correlations among eigenvalues (arising from level repulsion). In the opposite
regime, η � ηc, the variance is typically much larger, and behaves according to

Var Nη � (η/ηc)
d/2 = Ld(η/D)d/2 (d = 1, 2, 3). (1.2)

The threshold ηc may be understood by introducing the concept of (an energy-
dependent) diffusion length �η, which is the typical spatial scale on which the off-diagonal
matrix entries of those observables decay that live on an energy scale η (e.g. resolvents
whose spectral parameters have imaginary part η). Alternatively, �η is the linear scale
of an initially localized state evolved up to time η−1. The diffusion length is related to
the localization length � through � = limη→0 �η. Assuming that the dynamics of the
quantum particle can be described by a classical diffusion process, one can show that
�η � √

D/η and the relation η � ηc = D/L2 may be written as L � �η. The physical
interpretation is that the sample is so small that the system is essentially mean-field from
the point of view of observables on the energy scale η, so that the spatial structure and
dimensionality of the system are immaterial. The opposite regime η � ηc corresponds
to large samples, L � �η, where the behaviour of the system can be approximated by
a diffusion that has not reached the boundary of the sample. These two regimes are
commonly referred to as mean-field and diffusive regimes, respectively.

A similar transition occurs if one considers the correlation of the number of eigen-
values Nη(E1) and Nη(E2) around two distinct energies E1 < E2 whose separation is
much larger than the energy window η (i.e., E2 − E1 � η). For small samples, η � ηc,
the correlation decays according to

〈
Nη(E1) ;Nη(E2)

〉 � (E2 − E1)
−2. (1.3)

This decay holds for systems both with and without time reversal symmetry. The decay
(1.3) is in agreement with the Dyson–Mehta statistics, which in the complex Hermitian
case (corresponding to a system without time reversal symmetry) predict a correlation

(
sin

(
(E2 − E1)/δ

)

(E2 − E1)/δ

)2

1 We use the notation a � b to indicate that a and b have comparable size. See the conventions at the end
of Sect. 1.

2 We use the notation 〈· ; ·〉 to denote the covariance and abbreviate Var X ..= 〈X ; X〉. See (2.10) below.
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for highly localized observables on the scale η � δ. For mesoscopic scales, η � δ, the
oscillations in the numerator are averaged out and may be replaced with a positive con-
stant to yield (1.3). A similar formula with the same decay holds for the real symmetric
case (corresponding to a system with time reversal symmetry). On the other hand, for
large samples, η � ηc, we have

〈
Nη(E1) ;Nη(E2)

〉 � (E2 − E1)
−2+d/2 (d = 1, 3) ; (1.4)

for d = 2 the correlation vanishes to leading order. The power laws in the energies η
and E2 − E1 given in (1.2) and (1.4) respectively are called the Altshuler–Shklovskii
formulas. They express the variance and the correlation of the density of states in the
regime where the diffusion approximation is valid and the spatial extent of the diffusion,
�η, is much less than the system size L . In contrast, the mean-field formulas (1.1) and
(1.3) describe the situation where the diffusion has reached equilibrium. Note that the
behaviours (1.2) and (1.4) as well as (1.1) and (1.3) are very different from the ones
obtained if the distribution of the eigenvalues were governed by Poisson statistics; in
that case, for instance, (1.3) and (1.4) would be zero.

From a mathematical point of view, the significance of these mesoscopic quantities is
that their statistics are amenable to rigorous analysis even in the delocalized regime. In
this paper we demonstrate this by proving the Altshuler–Shklovskii formulas for random
band matrices.

1.3. Random band matrices. We consider d-dimensional random band matrices, which
interpolate between random Schrödinger operators and mean-field Wigner matrices by
varying the band width W ; see [47] for an overview of this idea. These matrices represent
quantum systems in a d-dimensional discrete box of side length L , where the quantum
transition probabilities are random and their range is of order W � L . We scale the
matrix so that its spectrum is bounded, i.e., the macroscopic energy scale is of order 1,
and hence the eigenvalue spacing is of order δ � L−d . Band matrices exhibit diffusion in
all dimensions d, with a diffusion coefficient D � W 2; see [30] for a physical argument
in the general case and [12,13] for a proof up to certain large time scales. In [14] it was
shown that the resolvent entries with spectral parameter z = E + iη decay exponentially
on a scale �η � W/

√
η, as long as this scale is smaller than the system size, W/

√
η � L .

(For technical reasons the proof is valid only if L is not too large, L � W 1+d/4.) The
resolvent entries do not decay if W/

√
η � L , in which case the system is in the mean-

field regime for observables living on energy scales of order η � ηc. Notice that the
crossover at W/

√
η � L corresponds exactly to the crossover at η � ηc mentioned

above.

1.4. Outline of results. Our main result is the proof of the formulas (1.2) (with D = W 2)
and (1.4) for d-dimensional band matrices for d � 3; we also obtain similar results for
d = 4, where the powers of η and E2 − E1 are replaced with a logarithm. This rigorously
justifies the asymptotics of Silvestrov [42, Equation (40)], which in turn reproduced the
earlier result of [4]. For technical reasons, we have to restrict ourselves to the regime
η � W −d/3. For convenience, we also assume that L � W 1+d/6, which guarantees that
L � �η (or, equivalently, η � ηc). Hence we work in the diffusive regime. However,
our method may be easily extended to the case L � �η as well (see Remark 2.8 and
Sect. 2.3 below). We also show that for d � 5 the universality of the formulas (1.2)
and (1.4) breaks down, and the variance and the correlation functions of Nη depend
on the detailed structure of the band matrix. We also compute the leading correction to
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the density–density correlation. In summary, we find that for d = 1, 2 the leading and
subleading terms are universal, for d = 3, 4 only the leading terms are universal, and
for d � 5 the density–density correlation is not universal.

The case d = 2 is special, since the coefficient of the leading term in (1.4) vanishes
owing to an algebraic cancellation. The first non-vanishing term was predicted in [33].
We rigorously identify this term in the regime E2 − E1 � η � W −2/3, and find a
substantial discrepancy between it and the prediction of [33].

For an outline of our proof, and the relation between this paper and its companion
[11], see Sect. 2.4.

1.5. Summary of previous related results. Our analysis is valid in the mesoscopic regime,
i.e. when δ � η � 1, and concerns only density fluctuations. For completeness, we
mention what was previously known in this and other regimes.

Macroscopic statistics. In the macroscopic regime, η � 1, the quantity Nη should
fluctuate on the scale (L/W )d/2 according to (1.2). For the Wigner case, L = W ,
it has been proved that a smoothed version of Nη, the linear statistics of eigenvalues∑

i φ(λi ) = Tr φ(H), is asymptotically Gaussian. The first result in this direction for
analytic φ was given in [43], and this was later extended by several authors to more
general test functions; see [46] for the latest result. The first central limit theorem for
matrices with a nontrivial spatial structure and for polynomial test functions was proved
in [5]. Very recently, it was proved in [35] for one-dimensional band matrices that,
provided thatφ ∈ C1(R), the quantity Tr φ(H) is asymptotically Gaussian with variance
of order (L/W )d/2. For a complete list of references in this direction, see [35].

Mesoscopic statistics. The asymptotics (1.3) in the completely mean-field case, corre-
sponding to Wigner matrices (i.e. W = L so that ηc � 1), was proved in [8,9]; see the
remarks following Theorem 2.9 for more details about this work. We note that the for-
mula (1.4) for random band matrices with d = 1 was derived in [7], using an unphysical
double limit procedure, in which the limit L → ∞ was first computed for a fixed η,
and subsequently the limit of small η was taken. Note that the mesoscopic correlations
cannot be recovered after the limit L → ∞. Hence the result of [7] describes only the
macroscopic, and not the mesoscopic, correlations.

Local spectral statistics. Much less is known about the local spectral statistics of random
band matrices, even for d = 1. The Tracy–Widom law at the spectral edge was proved
in [44]. Based on a computation of the localization length, the metal-insulator transition
is predicted to occur at W 2 � L; see [30] for a non-rigorous argument and [12–14,39]
for the best currently known lower and upper bounds. Hence, the local spectral statistics
are expected to be governed by the sine kernel from random matrix theory in the regime
W 2 � L . Very recently, the sine kernel was proved [41] for a special Hermitian Gaussian
random band matrix with band width W comparable with L . Universality for a more
general class of band matrices but with an additional tiny mean-field component was
proved in [15]. We also mention that the local correlations of determinants of a special
Hermitian Gaussian random band matrix have been shown to follow the sine kernel [40],
up to the expected threshold L � W 2.

1.6. Transition to Poisson statistics. The diagrammatic calculation of [4] uses the diffu-
sion approximation, and formulas (1.1)–(1.4) are supposed to be valid in the delocalized
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regime. Nevertheless, our results also hold in the localized regime, in particular even
d = 1 and for L � W 8, in which case the eigenvectors are known to be localized
[39]. In this regime, and for η � W −1/3, we also prove (1.2) and (1.4). Both formulas
show that Poisson statistics do not hold on large mesoscopic scales, despite the system
being in the localized regime. Indeed, if Nη were Poisson-distributed, then we would
have Var Nη � Nη � Lη. On the other hand, (1.2) gives Var Nη � L

√
η/W . We

conclude that the prediction of (1.2) for the magnitude of Var Nη is much smaller than
that predicted by Poisson statistics provided that η � W −2.

The fact that the Poisson statistics breaks down on mesoscopic scales is not sur-
prising. Indeed, the basic intuition behind the emergence of Poisson statistics is that
eigenvectors belonging to different eigenvalues are exponentially localized on a scale
� � W 2, typically at different spatial locations. Hence the associated eigenvalues are
independent. For larger η, however, the observables depend on many eigenvalues, which
exhibit nontrivial correlations since the supports of their eigenvectors overlap. A simple
counting argument shows that such overlaps become significant if η � 1/�, at which
point correlations are expected to develop. In other words, we expect a transition to/from
Poisson statistics at η � 1/�. In the previous paragraph, we noted that (1.2) predicts
a transition in the behaviour of Nη to/from Poisson statistics at η � W −2. Combin-
ing these observations, we therefore expect a transition to/from Poisson statistics for
� � W 2. This argument predicts the correct localization length � � W 2 without resort-
ing to Grassmann integration. It remains on a heuristic level, however, since our results
do not cover the full range η � W −2. We note that this argument may also be applied
to d � 2, in which case it predicts the absence of a transition provided that W � 1.

The main conclusion of our results is that the local eigenvalue statistics, characterized
by either Poisson or sine kernel statistics, do not in general extend to mesoscopic scales.
On mesoscopic scales, a different kind of universality emerges, which is expressed by
the Altshuler–Shklovskii formulas.

Conventions. We use C to denote a generic large positive constant, which may depend
on some fixed parameters and whose value may change from one expression to the next.
Similarly, we use c to denote a generic small positive constant. We use a � b to mean
ca � b � Ca for some constants c,C > 0. Also, for any finite set A we use |A| to
denote the cardinality of A. If the implicit constants in the usual notation O(·) depend
on some parameters α, we sometimes indicate this explicitly by writing Oα(·).

2. Setup and Results

2.1. Definitions and assumptions. Fix d ∈ N, the physical dimension of the configura-
tion space. For L ∈ N we define the discrete torus of size L

T ≡ T
d
L

..= ([−L/2, L/2) ∩ Z
)d
,

and abbreviate

N ..= |TL | = Ld . (2.1)

Let 1 � W � L denote the band width, and define the deterministic matrix S = (Sxy)

through

Sxy
..= 1(1 � |x − y| � W )

M − 1
, M ..=

∑

x∈T

1(1 � |x | � W ), (2.2)
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where |·| denotes the periodic Euclidean norm on T, i.e. |x | ..= minν∈Zd |x + Lν|Zd . Note
that

M � W d . (2.3)

The fundamental parameters of our model are the linear dimension of the torus, L , and
the band width, W . The quantities N and M are introduced for notational convenience,
since most of our estimates depend naturally on N and M rather than L and W . We
regard L as the independent parameter, and W ≡ WL as a function of L .

Next, let A = A∗ = (Axy) be a Hermitian random matrix whose upper-triangular3

entries (Axy
.. x � y) are independent random variables with zero expectation. We

consider two cases.

• The real symmetric case (β = 1), where Axy satisfies P(Axy = 1) = P(Axy = −1) =
1/2.

• The complex Hermitian case (β = 2), where Axy is uniformly distributed on the unit
circle S

1 ⊂ C.

Here the index β = 1, 2 is the customary symmetry index of random matrix theory.
We define the random band matrix H = (Hxy) through

Hxy
..= √

Sxy Axy . (2.4)

Note that H is Hermitian and |Hxy |2 = Sxy , i.e. |Hxy | is deterministic. Moreover, we
have for all x

∑

y

Sxy = M

M − 1
. (2.5)

With this normalization, as N ,W → ∞ the bulk of the spectrum of H/2 lies in [−1, 1]
and the eigenvalue density is given by the Wigner semicircle law with density

ν(E) ..= 2

π

√
1 − E2 for E ∈ [−1, 1]. (2.6)

Let φ be a smooth, integrable, real-valued function on R satisfying
∫
φ(E) dE �= 0.

We call such functions φ test functions. We also require that our test functions φ satisfy
one of the two following conditions.

(C1) φ is the Cauchy kernel

φ(E) = Im
2

E − i
= 2

E2 + 1
. (2.7)

(C2) For every q > 0 there exists a constant Cq such that

|φ(E)| � Cq

1 + |E |q . (2.8)

3 We introduce an arbitrary and immaterial total ordering � on the torus T.
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A typical example of a test function φ satisfying (C2) is the Gaussian φ(E) =√
2π e−E2/2. We introduce the rescaled test function φη(E) ..= η−1φ(η−1 E). We shall

be interested in correlations of observables depending on E ∈ (−1, 1) of the form

Y ηφ (E)
..= 1

N

∑

i

φη(λi − E) = 1

N
Tr φη(H/2 − E),

where λ1, . . . , λN denote the eigenvalues of H/2. (The factor 1/2 is a mere convenience,
chosen because, as noted above, the asymptotic spectrum of H/2 is the interval [−1, 1].)
The quantity Y ηφ (E) is the smoothed local density of states around the energy E on the
scale η. We always choose

η = M−ρ

for some fixed ρ ∈ (0, 1/3), and we frequently drop the index η from our notation. The
strongest results are for large ρ, so that one should think of ρ being slightly less than
1/3.

We are interested in the correlation function of the local densities of states, Y ηφ1
(E1)

and Y ηφ2
(E2), around two energies E1 � E2. We shall investigate two regimes: η �

E2 − E1 and E1 = E2. In the former regime, we prove that the correlation decay in
the energy difference E2 − E1 is universal (in particular, independent of η, φ1, and φ2),
and we compute the correlation function explicitly. In the latter regime, we prove that
the variance has a universal dependence on η, and depends on φ1 and φ2 via their inner
product in a homogeneous Sobolev space.

The case (C2) for our test functions is the more important one, since we are typically
interested in the statistics of eigenvalues contained in an interval of size η. The Cauchy
kernel from the case (C1) has a heavy tail, which introduces unwanted correlations
arising from the overlap of the test functions and not from the long-distance correlations
that we are interested in. Nevertheless, we give our results also for the special case (C1).
We do this for two reasons. First, the case (C1) is pedagogically useful, since it results
in a considerably simpler computation of the main term (see [11, Section 3] for more
details). Second, the case (C1) is often the only one considered in the physics literature
(essentially because it corresponds to the imaginary part of the resolvent of H ). Hence,
our results in particular decouple the correlation effects arising from the heavy tails of
the test functions from those arising from genuine mesoscopic correlations. As proved
in Theorem 2.4 below, the effect of the heavy tail is only visible in the leading nonzero
corrections for d = 2.

For simplicity, throughout the following we assume that both of our test functions
satisfy (C1) or both satisfy (C2). Since the covariance is bilinear, one may also consider
more general test functions that are linear combinations of the cases (C1) and (C2).

Definition 2.1. Throughout the following we use the quantities E1, E2 ∈ (−1, 1) and

E ..= E1 + E2

2
, ω ..= E2 − E1

interchangeably. Without loss of generality we always assume that ω � 0.

For the following we choose and fix a positive constant κ . We always assume that

E1, E2 ∈ [−1 + κ, 1 − κ], ω � c∗ (2.9)
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for some small enough positive constant c∗ depending on κ . These restrictions are re-
quired since the nature of the correlations changes near the spectral edges ±1. Through-
out the following we regard the constants κ and c∗ as fixed and do not track the depen-
dence of our estimates on them.

We now state our results on the density–density correlation for band matrices in the
diffusive regime (Sect. 2.2). The proofs are given in the current paper and its companion
[11]. As a reference, we also state similar results for Wigner matrices, corresponding to
the mean-field regime (Sect. 2.3).

2.2. Band matrices. Our first theorem gives the leading behaviour of the density–density
correlation function in terms of a function �ηφ1,φ2

(E1, E2), which is explicit but has a
complicated form. In the two subsequent theorems we determine the asymptotics of this
function in two physically relevant regimes, where its form simplifies substantially. We
use the abbreviations

〈X〉 ..= EX, 〈X ; Y 〉 ..= E(XY )− EX EY. (2.10)

Theorem 2.2 (Density–density correlations). Fix ρ ∈ (0, 1/3) and d ∈ N, and set
η ..= M−ρ . Suppose that the test functions φ1 and φ2 satisfy either both (C1) or both
(C2). Suppose moreover that

W 1+d/6 � L � W C (2.11)

for some constant C.
Then there exist a constant c0 > 0 and a function �ηφ1,φ2

(E1, E2)—which is given
explicitly in (4.90) and (4.37) below, and whose asymptotic behaviour is derived in
Theorems 2.3 and 2.4 below—such that, for any E1, E2 satisfying (2.9) for small enough
c∗ > 0, the local density–density correlation satisfies

〈Y ηφ1
(E1) ; Y ηφ2

(E2)〉
〈Y ηφ1

(E1)〉〈Y ηφ2
(E2)〉 = 1

(LW )d

(
�
η
φ1,φ2

(E1, E2) + O
(
M−c0 R2(ω + η)

))
, (2.12)

where we defined

R2(s) ..= 1 + 1(d = 1)s−1/2 + 1(d = 2)|log s|. (2.13)

Moreover, if φ1 and φ2 are analytic in a strip containing the real axis (e.g. as in the
case (C1)), we may replace the upper bound L � W C in (2.11) L � exp(W c) for some
small constant c > 0.

We shall prove that the error term in (2.12) is smaller than the main term � for all
d � 1. The main term � has a simple, and universal, explicit form only for d � 4.
Why d = 4 is the critical dimension for the universality of the correlation decay is
explained in Sect. 3.2 below. The two following theorems give the leading behaviour of
the function � for d � 4 in the two regimes ω = 0 and ω � η. In fact, one may also
compute the subleading corrections to �. These corrections turn out to be universal for
d � 2 but not for d � 3; see Theorem 2.4 and the remarks following it.

In order to describe the leading behaviour of the variance, i.e. the case ω = 0, we
introduce the Fourier transform

φ(E) =
∫

R

dt e−iEt φ̂(t), φ̂(t) = 1

2π

∫

R

dE eiEt φ(E).
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For d � 4 we define the quadratic form Vd through

Vd(φ1, φ2)
..=

∫

R

dt |t |1−d/2 φ̂1(t) φ̂2(t) (d � 3), V4(φ1, φ2)
..= 2φ̂1(0) φ̂2(0).

(2.14)

Note that Vd(φ1, φ2) is real since both φ1 and φ2 are. In the case (C1) we have the
explicit values

V0(φ1, φ2) = 1

2
, V1(φ1, φ2) =

√
π

2
√

2
, V2(φ1, φ2) = 1,

V3(φ1, φ2) = √
2π, V4(φ1, φ2) = 2.

For the following statements of results, we recall the density ν(E) of the semicircle law
from (2.6), and remind the reader of the index β = 1, 2 describing the symmetry class
of H .

Theorem 2.3 (The leading term� for ω = 0). Suppose that the assumptions in the first
paragraph of Theorem 2.2 hold, and let�ηφ1,φ2

(E1, E2)be the function from Theorem 2.2.
Suppose in addition that ω = 0. Then there exists a constant c1 > 0 such that the
following holds for E = E1 = E2 satisfying (2.9).

(i) For d = 1, 2, 3 we have

�
η
φ1,φ2

(E, E) = (d + 2)d/2

2βπ2+dν(E)4

(
η

ν(E)

)d/2−2(
Vd(φ1, φ2) + O(M−c1)

)
.

(2.15)

(ii) For d = 4 we have

�
η
φ1,φ2

(E, E) = 36

βπ6ν(E)4
(
V4(φ1, φ2)|log η| + O(1)

)
. (2.16)

In order to describe the behaviour of � in the regime ω � η, for d = 1, 2, 3 we
introduce the constants

Kd
..= 2 Re

∫

Rd

dx

(i + |x |2)2 ; (2.17)

explicitly,

K1 = − π√
2
, K2 = 0, K3 = √

2π2.

Theorem 2.4 (The leading term� in the regime ω � η). Suppose that the assumptions
in the first paragraph of Theorem 2.2 hold, and let�ηφ1,φ2

(E1, E2) be the function from
Theorem 2.2. Suppose in addition that

η � M−τω (2.18)

for some arbitrary but fixed τ > 0. Then there exists a constant c1 > 0 such that the
following holds for E1, E2 satisfying (2.9) for small enough c∗ > 0.



The Altshuler–Shklovskii Formulas for Random Band Matrices I 1375

(i) For d = 1, 2, 3 we have

�
η
φ1,φ2

(E1, E2) = (d + 2)d/2

2βπ2+3d/2ν(E)4

(
ω

ν(E)

)d/2−2(
Kd + O

(√
ω + M−c1

))
.

(2.19)

(ii) For d = 2 (2.19) does not identify the leading term since K2 = 0. The leading
nonzero correction to the vanishing leading term is

�
η
φ1,φ2

(E1, E2) = 8

βπ5ν(E)4

(
πν(E)

η

ω2 + 4η2 − |logω|
3

+ O(1)

)
(2.20)

in the case (C1) and

�
η
φ1,φ2

(E1, E2) = 8

βπ5ν(E)4

(
−|logω|

3
+ O(1)

)
(2.21)

in the case (C2).
(iii) For d = 4 we have

�
η
φ1,φ2

(E1, E2) = 36

βπ6ν(E)4
(|logω| + O(1)

)
. (2.22)

Note that the leading non-zero terms in the expressions (2.15), (2.16), (2.19)–(2.22)
are much larger than the additive error term in (2.12). Hence, Theorems 2.2 and 2.3 give
a proof of the first Altshuler–Shklovskii formula, (1.2). Similarly, Theorems 2.2 and 2.4
give a proof of the second Altshuler–Shklovskii formula, (1.4).

The additional term in (2.20) as compared to (2.21) originates from the heavy Cauchy
tail in the test functions φ1, φ2 at large distances. In Theorem 2.4 (ii), we give the leading
correction, of order |logω|, to the vanishing main term for d = 2. Similarly, for d = 1
one can also derive the leading correction to the nonzero main term (which is of order
ω−3/2). This correction turns out to be of order ω−1/2; we omit the details.

Remark 2.5. The leading term in (2.12) originates from the so-called one-loop diagrams
in the terminology of physics. The next-order term after the vanishing leading term for
d = 2 (recall that to K2 = 0) was first computed by Kravtsov and Lerner [33, Equation
(13)]. They found that for β = 1 it is of order (LW )−2W −2ω−1 and for β = 2 even
smaller, of order (LW )−2W −4ω−1. Part (ii) of Theorem 2.4 shows that, at least in the
regime ω � η � M−1/3 = W −2/3, the true behaviour is much larger. The origin of this
term is a more precise computation of the one-loop diagrams, in contrast to [33] where
the authors attribute the next-order term to the two-loop diagrams. (See [11, Section 3]
for more details.)

Remark 2.6. If the distribution of the eigenvalues λi of H/2 were governed by Poisson
statistics, the behaviour of the covariance (2.12) would be very different. Indeed, suppose
that {λi } is a stationary Poisson point process with intensity N . Then, setting Y ηφ (E)

..=
1
N

∑
α φ

η(λi − E) and supposing that
∫
φ1 = ∫

φ2 = 1, we find

〈Y ηφ1
(E1) ; Y ηφ2

(E2)〉
〈Y ηφ1

(E1)〉〈Y ηφ2
(E2)〉 = 1

Nη

(
φ1 ∗ φ̃2

)( E2 − E1

η

)
= 1

N

(
φ
η
1 ∗ φ̃η2 )(ω),
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where φ̃2(x) ..= φ2(−x). This is in stark contrast to (2.15), (2.16), (2.19), and (2.22). In
particular, in the case ω � η the behaviour of the covariance on ω depends on the tails
of φ1 and φ2, unlike in (2.19) and (2.22). Hence, if φ1 and φ2 are compactly supported
then the covariance for the Poisson process is zero, while for the eigenvalue process of
a band matrix it has a power law decay in ω.

Remark 2.7. We emphasize that Theorem 2.2 is true under the sole restrictions (2.9) on
ω and E1, E2. However, the leading term � only has a simple and universal form in
the two (physically relevant) regimes ω = 0 and η � ω � 1 of Theorems 2.3 and
2.4. If neither of these conditions holds, the expression for � is still explicit but much
more cumbersome and opaque. It is given by the sum of the values of eight (sixteen for
β = 1) skeleton graphs, after a ladder resummation; these skeleton graphs are referred
to as the “dumbbell skeletons” D1, . . . , D8 in Sect. 4 below, and are depicted in Fig. 6
below. (They are the analogues of the diffusion and cooperon Feynman diagrams in the
physics literature.)

Remark 2.8. The upper bound in the assumption (2.11) is technical and can be relaxed.
The lower bound in (2.11), however, is a natural restriction, and is related to the quantum
diffusion generated by the band matrix H . In [13], it was proved that the propagator
|(e−it H/2)x0| behaves diffusively for 1 � t � M1/3 � W d/3, whereby the spatial
extent of the diffusion is x � √

tW � W 1+d/6. Similarly, in [14], it was proved that
the resolvent

∣∣(H/2 − E − iη)−1
x0

∣∣2 has a nontrivial profile on the scale x � η−1/2W .
(Note that η is the conjugate variable to t , i.e. the time evolution up to time t describes
the same regime as the resolvent with a spectral parameter z whose imaginary part is
η � 1/t .) Since in Theorem 2.2 we assume that η � M−1/3 � W −d/3, the condition
(2.11) simply states that the diffusion profile associated with the spectral resolution η
does not reach the edge of the torus T. Thus, the lower bound in (2.11) imposes a regime
in which boundary effects are irrelevant. Hence we are in the diffusive regime—a basic
assumption of the Altshuler–Shklovskii formulas (1.2) and (1.4).

2.3. A remark on Wigner matrices. Our method can easily be applied to the case where
the lower bound in (2.11) is not satisfied. In this case, however, the leading behaviour
�η(E1, E2) is modified by boundary effects. To illustrate this phenomenon, we state the
analogue of Theorems 2.2–2.4 for the case of W = L . In this case, the physical dimension
d in Sect. 2.1 is irrelevant. The off-diagonal entries of H are all identically distributed,
i.e. H is a standard Wigner matrix (neglecting the irrelevant diagonal entries), and we
have M = N − 1, and S = N (N − 2)−1(ee∗ − N−1) where e ..= N−1/2(1, 1, . . . , 1)∗.
In particular, H is a mean-field model in which the geometry of T plays no role; the
effective dimension is d = 0. In this case (2.12) remains valid, and we get the following
result.

Theorem 2.9 (Theorems 2.2–2.4 for Wigner matrices). Suppose that W = L = N.
Fix ρ ∈ (0, 1/3) and set η ..= N−ρ . Suppose that the test functions φ1 and φ2 satisfy
either both (C1) or both (C2). Then there exists a constant c0 > 0 and a function
�̃
η
φ1,φ2

(E1, E2) such that for any E1, E2 satisfying (2.9) for small enough c∗ > 0 the
following holds.

(i) The local density–density correlations satisfy

〈Y ηφ1
(E1) ; Y ηφ2

(E2)〉
〈Y ηφ1

(E1)〉〈Y ηφ2
(E2)〉 = 1

N 2

(
�̃
η
φ1,φ2

(E1, E2) + O
(
N−c0(ω + η)−1)

)
. (2.23)
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(ii) If (2.18) holds then

�̃
η
φ1,φ2

(E1, E2) = 4

βπ4ν(E)4
1

ω2

(
−1 + O

(√
ω + N−τ/2)).

(iii) If ω = 0 then

�̃
η
φ1,φ2

(E, E) = 2

βπ4ν(E)4
1

η2

(
V0(φ1, φ2) + O(N−c0)

)
,

where V0 was defined in (2.14).

The proof of Theorem 2.9 proceeds along the same lines as that of Theorems 2.2–
2.4. In fact, the simple form of S results in a much easier proof; we omit the details.
We remark that a result analogous to parts (i) and (ii) of Theorem 2.9, in the case
where φ1 = φ2 are given by (2.7), was derived in [8,9]. More precisely, in [8], the
authors assume that H is a GOE matrix and derive (i) and (ii) of Theorem 2.9 for any
0 < ρ < 1; in [9], they extend these results to arbitrary Wigner matrices under the
additional constraint that 0 < ρ < 1/8. Moreover, results analogous to (iii) for the
Gaussian Circular Ensembles were proved in [45]. More precisely, in [45] it is proved
that in Gaussian Circular Ensembles the appropriately scaled mesoscopic linear statistics
Y ηφ (E) with 1/N � η � 1 are asymptotically Gaussian with variance proportional to
V0(φ, φ). We remark that for random band matrices the mesoscopic linear statistics also
satisfy a Central Limit Theorem; see [11, Corollary 2.6].

2.4. Structure of the proof. The starting point of the proof is to use the Fourier transform
to rewrite Tr φη(H/2 − E), the spectral density on scale η, in terms of eit H up to times
|t | � η−1. The large-t behaviour of this unitary group has been extensively analysed in
[12,13] by developing a graphical expansion method which we also use in this paper.
The main difficulty is to control highly oscillating sums. Without any resummation,
the sum of the absolute values of the summands diverges exponentially in L , although
their actual sum remains bounded. The leading divergence in this expansion is removed
using a resummation that is implemented by expanding eit H in terms of Chebyshev
polynomials of H instead of powers of H . This step, motivated by [25], is algebraic
and requires the deterministic condition |Hxy | = 1. (The removal of this condition is
possible, but requires substantial technical efforts that mask the essence of the argument;
see Sect. 2.5). In the jargon of diagrammatic perturbation theory, this resummation step
corresponds to the self-energy renormalization.

The goal of [12,13] was to show that the unitary propagator eit H can be described
by a diffusive equation on large space and time scales. This analysis identified only
the leading behaviour of eit H , which was sufficient to prove quantum diffusion emerg-
ing from the unitary time evolution. The quantity studied in the current paper—the
local density–density correlation—is considerably more difficult to analyse because it
arises from higher-order terms of eit H than the quantum diffusion. Hence, not only does
the leading term have to be computed more precisely, but the error estimates also re-
quire a much more delicate analysis. In fact, we have to perform a second algebraic
resummation procedure, where oscillatory sums corresponding to families of specific
subgraphs, the so-called ladder subdiagrams, are bundled together and computed with
high precision. Estimating individual ladder graphs in absolute value is not affordable: a
term-by-term estimate is possible only after this second renormalization step. Although
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the expansion in nonbacktracking powers of H is the same as in [12,13], our proof in
fact has little in common with that of [12,13]; the only similarity is the basic graphical
language. In contrast to [12,13], almost all of the work in this paper involves control-
ling oscillatory sums, both in the error estimates and in the computation of the main
term.

The complete proof is given in the current paper and its companion [11]. In order to
highlight the key ideas, the current paper contains the proof assuming three important
simplifications, given precisely in (S1)–(S3) in Sect. 4.1 below. They concern certain
specific terms in the multiple summations arising from our diagrammatic expansion.
Roughly, these simplifications amount to only dealing with typical summation label
configurations (hence ignoring exceptional label coincidences) and restricting the sum-
mation over all partitions to a summation over pairings. As explained in [11], dealing
with exceptional label configurations and non-pairings requires significant additional
efforts, which are, however, largely unrelated to the essence of the argument presented
in the current paper. How to remove these simplifications, and hence complete the proofs,
is explained in [11]. In addition, the precise calculation of the leading term is also given
in [11]; in the current paper we give a sketch of the calculation (see Sect. 3.2 below).

We close this subsection by noting that the restriction ρ < 1/3 for the exponent of
η = M−ρ is technical and stems from a fundamental combinatorial fact that underlies
our proof—the so-called 2/3-rule. The 2/3-rule was introduced in [12,13] and is stated
in the current context in Lemma 4.11 below. In [13, Section 11], it was shown that the
2/3-rule is sharp, and is in fact saturated for a large family of graphs. For more details on
the 2/3-rule and how it leads the the restriction on ρ, we refer to the end Sect. 4.4 below.

2.5. Outlook and generalizations. We conclude this section by summarizing some ex-
tensions of our results from the companion paper [11]. First, our results easily extend
from the two-point correlation functions of (2.12) to arbitrary k-point correlation func-
tions of the form

E

k∏

i=1

(Y ηφi
(Ei )− EY ηφi

(Ei )

EY ηφi
(Ei )

)
.

In [11, Theorem 2.5], we prove that the joint law of the smoothed densities Y ηφi
(Ei )

is asymptotically Gaussian with covariance matrix (�ηφi ,φ j
(Ei , E j ))i, j , given by the

Altshuler–Shklovskii formulas. This result may be regarded as a Wick theorem for the
mesoscopic densities, i.e. a central limit theorem for the mesoscopic linear statistics of
eigenvalues. In particular, if E1 = · · · = Ek , the finite-dimensional marginals of the
process (Y ηφ (E))φ converge (after an appropriate affine transformation) to those of a
Gaussian process with covariance Vd(·, ·).

Second, in [11, Section 2.4] we introduce a general family of band matrices, where we
allow the second moments Sxy = E|Hxy |2 and Txy = EH2

xy to be arbitrary translation-
invariant matrices living on the scale W . In particular, we generalize the sharp step
profile from (2.2) and relax the deterministic condition |Axy | = 1. Note that we allow
Txy to be arbitrary up to the trivial constraint |Txy | � Sxy , thus embedding the real
symmetric matrices and the complex Hermitian matrices into a single large family of
band matrices. In particular, this generalization allows us to probe the transition from
β = 1 to β = 2 by rotating the entries of H or by scaling Txy . Note that S = T cor-
responds to the real symmetric case, while T = 0 corresponds to a complex Hermitian
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case where the real and imaginary parts of the matrix elements are uncorrelated and
have the same variance. We can combine this rotation and scaling into a two-parameter
family of models; roughly, we consider Txy ≈ (1 − ϕ)eiλSxy where ϕ, λ ∈ [0, 1] are
real parameters. We show that the mesoscopic statistics described by Theorems 2.3 and
2.4 take on a more complicated form in the case of the general band matrix model; they
depend on the additional parameter σ = λ2 + ϕ, which also characterizes the transition
from β = 1 (small σ ) to β = 2 (large σ ). We refer to [11, Section 2.4] for the details.

3. The Renormalized Path Expansion

Since the left-hand side of (2.12) is invariant under the scaling φ �→ λφ for λ �= 0, we
assume without loss of generality that

∫
dE φi (E) = 2π for i = 1, 2. We shall make

this assumption throughout the proof without further mention.

3.1. Expansion in nonbacktracking powers. We expand φη(H/2− E) in nonbacktrack-
ing powers H (n) of H , defined through

H (n)
x0xn

..=
∑

x1,...,xn−1

Hx0x1 · · · Hxn−1xn

n−2∏

i=0

1(xi �= xi+2). (3.1)

From [13], Section 5, we find that

H (n) = Un(H/2)− 1

M − 1
Un−2(H/2), (3.2)

where Un is the n-th Chebyshev polynomial of the second kind, defined through

Un(cos θ) = sin(n + 1)θ

sin θ
. (3.3)

The identity (3.2) first appeared in [25]. Note that it requires the deterministic condition
|Axy | = 1 on the entries of H . However, our basic approach still works even if this
condition is not satisfied; in that case the proof is more complicated due to the presence
of a variety of error terms in (3.2). See [11, Section 5.3] for more details.

From [13], Lemmas 5.3 and 7.9, we recall the expansion in nonbacktracking powers
of H .

Lemma 3.1. For t � 0 we have

e−it H/2 =
∑

n�0

an(t)H
(n), (3.4)

where

an(t) ..=
∑

k�0

αn+2k(t)

(M − 1)k
, αk(t) ..= 2(−i)k

k + 1

t
Jk+1(t) (3.5)

and Jν denotes the ν-th Bessel function of the first kind.
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Throughout the following we denote by arcsin the analytic branch of arcsin extended
to the real axis by continuity from the upper half-plane. The following coefficients will
play a key role in the expansion. For n ∈ N and E ∈ R define

γn(E) ..=
∫ ∞

0
dt eiEt an(t).

Lemma 3.2. We have

γn(E) = 2(−i)nei(n+1) arcsin E

1 − (M − 1)−1e2i arcsin E
. (3.6)

Proof. Using (3.5) we find

γn(E) =
∞∑

k=0

∫ ∞
0 dt eiEt αn+2k(t)

(M − 1)k
=

∞∑

k=0

2(−i)nei(n+2k+1) arcsin E

(M − 1)k
, (3.7)

where in the second step we used the identity
∫ ∞

0
dt t−1eiEt Jν(t) = 1

ν
eiν arcsin E , (3.8)

which is an easy consequence of [31, Formulas 6.693.1–6.693.2] and analytic continu-
ation. This concludes the proof. ��

Define

Fηφ1,φ2
(E1, E2) ≡ Fη(E1, E2)

..= 〈
Tr φη1 (H/2 − E1) ; Tr φη2 (H/2 − E2)

〉
, (3.9)

where we used the notation (2.10). Note that the left-hand side of (2.12) may be written as

〈Y ηφ1
(E1) ; Y ηφ2

(E2)〉
〈Y ηφ1

(E1)〉〈Y ηφ2
(E2)〉 = 1

N 2

Fη(E1, E2)

EY ηφ1
(E1)EY ηφ2

(E2)
. (3.10)

The expectations in the denominator are easy to compute using the local semicircle law
for band matrices; see Lemma 4.24 below. Our main goal is to compute Fη(E1, E2).

Throughout the following we use the abbreviation

ψ(E) ..= φ(−E), (3.11)

and define ψη, ψi , and ψηi similarly similarly in terms of φη, φi , and φηi . We also use
the notation

(ϕ ∗ χ)(E) ..= 1

2π

∫
dE ′ ϕ(E − E ′) χ(E ′) (3.12)

to denote convolution. The normalizing factor (2π)−1 is chosen so that ϕ̂ ∗ χ = ϕ̂ χ̂ .
Observe that

(ψη ∗ γn)(E) =
∫ ∞

0
dt eiEt φ̂(ηt) an(t). (3.13)
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We note that in the case whereφ(E) = 2
E2+1

, we have φ̂(t) = e−|t |. Hence (3.13) implies

(ψη ∗ γn)(E) =
∫ ∞

0
dt ei(E+iη)t an(t) = γn(E + iη). (3.14)

This may also be interpreted using the identity

1

π

∫
dE ′ ein arcsin E ′ η

(E − E ′)2 + η2 = ein arcsin(E+iη).

We now return to the case of a general real φ. Since φ is real, we have φ̂(t) = φ̂(−t).
We may therefore use Lemma 3.1 and Fourier transformation to get

φη(H/2 − E) =
∫ ∞

−∞
dt φ̂(ηt) e−it (H/2−E) = 2 Re

∫ ∞

0
dt φ̂(ηt) eit E e−it H/2

= 2 Re
∞∑

n=0

H (n)
∫ ∞

0
dt φ̂(ηt) eit E an(t) =

∞∑

n=0

H (n) 2 Re(ψη ∗ γn)(E),

(3.15)

where Re denotes the Hermitian part of a matrix, i.e. Re A ..= (A + A∗)/2, and in the
last step we used (3.13) and the fact that H (n) is Hermitian. We conclude that

Fη(E1, E2)=
∑

n1,n2�0

2 Re
(
(ψ

η
1 ∗ γn1)(E1)

)
2 Re

(
(ψ

η
2 ∗ γn2)(E2)

)〈
Tr H (n1); Tr H (n2)

〉
.

(3.16)

Because the combinatorial estimates of Sect. 4 deteriorate rapidly for n � η−1, it is
essential to cut off the terms n > Mμ in the expansion (3.16), where ρ < μ < 1/3. Thus,
we choose a cutoff exponentμ satisfying ρ < μ < 1/3. All of the estimates in this paper
depend on ρ,μ, and φ; we do not track this dependence. The following result gives the
truncated version of (3.16), whereby the truncation is done in ni and in the support of φ̂i .

Proposition 3.3 (Path expansion with truncation). Chooseμ < 1/3 and δ > 0 satisfying
2δ < μ− ρ < 3δ. Define

γ̃n(E, φ) ..=
∫ Mρ+δ

0
dt eiEt φ̂(ηt) an(t) (3.17)

and

F̃η(E1, E2)
..=

∑

n1+n2�Mμ

2 Re
(
γ̃n1(E1, φ1)

)
2 Re

(
γ̃n2(E2, φ2)

) 〈
Tr H (n1) ; Tr H (n2)

〉
.

(3.18)

Let q > 0 be arbitrary. Then for any n ∈ N and recalling (3.11) we have the estimates

|(ψηi ∗ γn)(Ei )− γ̃n(Ei , φi )| � Cq M−q (i = 1, 2) (3.19)

and
∣∣Fη(E1, E2)− F̃η(E1, E2)

∣∣ � Cq N 2 M−q . (3.20)
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Moreover, for all q > 0 we have
∣∣γ̃n(Ei , φi )

∣∣ +
∣∣(ψηi ∗ γn)(Ei )

∣∣ � min
{
C,Cq(ηn)−q}

. (3.21)

If φ1 and φ2 are analytic in a strip containing the real axis, the factors Cq M−q on the
right-hand sides of (3.19) and (3.20) may be replaced with exp(−Mc) for some c > 0,
and the factor Cq(ηn)−q on the right-hand side of (3.21) by exp(−(ηn)c).

The proof of Proposition 3.3 is given in [11, Appendix A].

3.2. Heuristic calculation of the leading term. At this point we make a short digression
to outline how we compute the leading term of Fη(E1, E2). The precise calculation is
given in the companion paper [11]. In Sect. 4 below, we express the right-hand side of
(3.16) as a sum of terms indexed by graphs, reminiscent of Feynman graphs in perturba-
tion theory. We prove that the leading contribution is given by a certain set of relatively
simple graphs, which we call the dumbbell skeletons. Their value Vmain may be explicitly
computed and is essentially given by

Vmain ≈
∞∑

b1,b2,b3,b4=0

2 Re
(
γ2b1+b3+b4 ∗ ψη1

)
(E1) 2 Re

(
γ2b2+b3+b4 ∗ ψη2

)
(E2)Tr Sb3+b4

(3.22)

(see (4.37) below for the precise statement). The summations represent “ladder subdi-
agram resummations” in the terminology of graphs. Proving that the contribution of all
other graphs is negligible, and hence that (3.22) gives the leading behaviour of (3.16),
represents the main work, and is done in Sect. 4. Assuming that this approximation is
valid, we compute (3.22) as follows. We use

(2 Re x1)(2 Re x2) = 2 Re(x1x2 + x1x2) (3.23)

on the right-hand side of (3.22), and only consider the first resulting term; the second
one will turn out to be subleading in the regimeω, η � κ , owing to a phase cancellation.
Recalling the definition of γn from (3.7), we find that the summations over b1, . . . , b4
are simply geometric series, so that

Fη(E1, E2) ≈ 2 Re

(
4

eiA1

1 + e2iA1

e−iA2

1 + e−2iA2
Tr

ei(A1−A2)S
(
1 − ei(A1−A2)S

)2

)

∗ψη1 (E1) ∗ ψη2 (E2), (3.24)

where we abbreviated Ai
..= arcsin Ei , and wrote, by a slight abuse of notation, (ϕ ∗

χ)(E) ≡ ϕ(E) ∗ χ(E).
In order to understand the behaviour of this expression, we make some basic obser-

vations about the spectrum of S. Since S is translation invariant, i.e. Sxy = Sx−y 0, it
may be diagonalized by Fourier transformation,

ŜW (q) ..=
∑

x∈T

e−iq·x/W Sx0 ≈
∫

e−iq·x f (x) dx,

where f is the normalized indicator function of the unit ball in R
d ; in the last step we

used the definition of S and a Riemann sum approximation. (Note that, since S lives on
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the scale W , it is natural to rescale the argument q of the Fourier transform by W −1.)
From this representation it is not hard to see that S � −1 + c for some constant c > 0.
Moreover, for small q we may expand ŜW (q) to get ŜW (q) ≈ 1 − q · Dq, where we
defined the covariance matrix4 DW ≡ D = (Di j ) of S through

Di j
..= 1

2

∑

x∈T

xi x j

W 2 Sx0. (3.25)

We deduce that S has a simple eigenvalue at 1, with associated eigenvector (1, 1, . . . , 1),
and all remaining eigenvalues lie in the interval [−1 + c, 1 − c(W/L)2] for some small
constant c > 0. Therefore the resolvent on the right-hand side of (3.24) is near-singular
(hence yielding a large contribution) for ei(A1−A2) ≈ 1. This implies that the leading
behaviour of (3.24) is governed by small values of q in Fourier space.

We now outline the computation of (3.24) in more detail. Let us first focus on the
regime ω � η, i.e. the regime from Theorem 2.4. Thus, the functionψηi may be approx-
imated by 2π times a delta function, so that the convolutions may be dropped. What
therefore remains is the calculation of the trace. We write

α ..= ei(A1−A2) ≈ 1 − iω(1 − E2)−1/2 = 1 − i
2ω

πν
, ν ≡ ν(E),

in the regime ω � 1. We use the Fourier representation of S and only consider the
contribution of small values of q. After some elementary computations we get, for d � 3,

Tr
S

(1 − αS)2
≈ Ld

W d

∫

Rd
dq

ŜW (q)

(1 − α ŜW (q))2
≈ Ld

W d

∫

Rd

dq

(1 − α + q · Dq)2

≈ Ld

W d

1√
det D

(
2ω

πν

)d/2−2 ∫

Rd

dq

(i + q2)2
.

A similar calculation may be performed for d = 4, which results in a logarithmic
behaviour in ω. This yields the right-hand sides of (2.19) and (2.22). For d � 4 the main
contribution arises from the regime q ≈ 0 and is therefore universal. If d � 5 the leading
contribution to (3.22) arises from all values of q. While (3.22) may still be computed
for d � 5, it loses its universal character and depends on the whole function ŜW (q).

In the regime ω = 0, i.e. the regime from Theorem 2.3, we introduce e ..= ψ1 ∗ φ2
(recall (3.11)) and write (for simplicity setting E1 = E2 = 0 and d � 3)

Tr
ei(A1−A2)S

(
1 − ei(A1−A2)S

)2 ∗ ψη1 (E1) ∗ ψη2 (E2) ≈
∫

R

dv eη(v)Tr
S

(
1 − (1 − iv)S

)2

≈ Ld

W d

∫

R

dv eη(v)
∫

Rd
dq

1
(
iv + q · Dq

)2

= C Ld

W d

∫

Rd
dq

∫ ∞

0
dt e−tq·Dq t ê(ηt)

= C Ld

W d
√

det D

∫ ∞

0
dt t1−d/2 ê(ηt),

4 To avoid confusion, we remark that this D differs from the D used in the introduction by a factor of order
W−2.
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where in the third step we used an elementary identity of Fourier transforms. From this
expression it will be easy to conclude (2.15), and an analogous calculation for d = 4
yields (2.16).

4. Proof of Theorems 2.2–2.4 for β = 2

In this section we prove Theorems 2.2–2.4 by computing the limiting behaviour of
F̃η(E1, E2). For simplicity, throughout this section we assume that we are in the com-
plex Hermitian case, β = 2. The real symmetric case, β = 1, can be handled by a simple
extension of the arguments of this section, and is presented in Sect. 5.

Due to the independence of the matrix entries (up to the Hermitian symmetry), the
expectation of a product of matrix entries in (3.18) can be computed simply by counting
how many times a matrix entry (or its conjugate) appears. We therefore group these fac-
tors according to the equivalence relation Hxy ∼ Huv if {x, y} = {u, v} as (unordered)
sets. Since EHxy = 0, every block of the associated partition must contain at least two
elements; otherwise the corresponding term is zero. If H were Gaussian, then by Wick’s
theorem only partitions with blocks of size exactly two (i.e. pairings) would contribute.
Since H is not Gaussian, we have to do deal with blocks of arbitrary size; nevertheless,
the pairings yield the main contribution.

In order to streamline the presentation and focus on the main ideas of the proof, in
the current paper we do not deal with certain errors resulting from partitions that contain
a block of size greater than two (i.e. that are not pairings), and from some exceptional
coincidences among summation indices. Ignoring these issues results in three simplifi-
cations, denoted by (S1)–(S3) below, to the argument. Throughout the proof we use the
letter E to denote any error term arising from these simplifications. In the companion
paper [11], we show that the error terms E are indeed negligible; see Proposition 4.23
below. The proof of Proposition 4.23 is presented in a separate paper, as it requires a
different argument from the one in the current paper.

In order clarify our main argument, it is actually helpful to generalize the assumptions
on the matrix of variances S. This more general setup is also used in the generalized
band matrix model analysed in [11] and outlined in Sect. 2.5. Instead of (2.2), we set

Sxy
..= 1

M − 1
f

( [x − y]L

W

)
, M ..=

∑

x∈T

f

(
x

W

)
, (4.1)

where [x]L denotes the representative of x ∈ Z
d in T, and f .. R

d → R is an even,
bounded, nonnegative, piecewise5 C1 function, such that f and |∇ f | are integrable. We
also assume that

∫
dx f (x) |x |4+c < ∞ (4.2)

for some c > 0.
Note that M and W satisfy (2.3). We introduce the covariance matrices of S (see also

(3.25)) and f , defined through

Di j
..= 1

2

∑

x∈T

xi x j

W 2 Sx0, (D0)i j
..= 1

2

∫

Rd
xi x j f (x) dx . (4.3)

5 We say that f is piecewise C1 if there exists a finite collection of disjoint open sets U1, . . . ,Un with
piecewise C1 boundaries, whose closures cover R

d , such that f is C1 on each Ui .
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It is easy to see that D = D0 + O(W −1). We always assume that

c � D0 � C (4.4)

in the sense of quadratic forms, for some positive constants c and C . Note that, since
(4.4) holds for D0, it also holds for D for large enough W . In the case (2.2) we have the
explicit diagonal form

D0 = 1

2(d + 2)
Id . (4.5)

In addition, for d = 2 we introduce the quantities

Q ..= 1

32

∑

x∈T

Sx0

∣∣∣∣D−1/2 x

W

∣∣∣∣

4

, Q0
..= 1

32

∫

R2

∣∣D−1/2
0 x

∣∣4
f (x) dx, (4.6)

which also depend on the fourth moments of S and f respectively. (Here |·| denotes the
Euclidean norm on R

2.) As above, it is easy to see that Q = Q0 + O(W −1). In the case
(2.2) we have the explicit form

Q0 = 2

3
. (4.7)

The main result of this section is summarized in the following Proposition 4.1,
which establishes the leading asymptotics of F̃η(E1, E2), defined in (3.18), for small
ω = E2 − E1. Once Proposition 4.1 is proved, our main results, Theorems 2.2–2.4 will
follow easily (see Sect. 4.7). Recall the definition of R2 from (2.13).

Proposition 4.1. Suppose that the assumptions of the first paragraph of Theorem 2.2 as
well as the assumptions on H made in (4.1)–(4.4) hold. Then there is a constant c0 > 0
such that, for any E1, E2 satisfying (2.9) for small enough c∗ > 0, we have

F̃η(E1, E2) = Vmain +
N

M
O

(
M−c0 R2(ω + η)

)
,

where the leading contribution Vmain ≡ (Vmain)
η
φ1,φ2

(E1, E2) satisfies the following
estimates.

(i) Suppose that (2.18) holds. Then for d = 1, 2, 3 we have

Vmain = (2/π)d/2

ν(E)2
√

det D

(
L

2πW

)d(
ω

ν(E)

)d/2−2(
Kd + O

(
ω1/2 + M−τ/2))

(4.8)

where Kd was defined in (2.17). Moreover, for d = 4 we have

Vmain = 8

ν(E)2
√

det D

(
L

2πW

)d(|logω| + O(1)
)
. (4.9)
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(ii) Suppose that (2.18) holds and that d = 2. If φ1 and φ2 satisfy (C1) then

Vmain = 8

πν(E)2
√

det D

(
L

2πW

)2(
πην(E)

ω2 + 4η2 + (Q − 1)|logω| + O(1)

)
,

(4.10)

and if φ1 and φ2 satisfy (C2) then

Vmain = 8

πν(E)2
√

det D

(
L

2πW

)2(
(Q − 1)|logω| + O(1)

)
. (4.11)

(iii) Suppose that ω = 0. Then the exponent μ from Proposition 3.3 may be chosen so
that there exists an exponent c1 > 0 such that for d = 1, 2, 3 we have

Vmain = 2d/2

ν(E)2
√

det D

(
L

2πW

)d(
η

ν(E)

)d/2−2(
Vd(φ1, φ2) + O(M−c1)

)

(4.12)

and for d = 4 we have

Vmain = 4

ν(E)2
√

det D

(
L

2πW

)4 (
V4(φ1, φ2)|log η| + O(1)

)
. (4.13)

The rest of this section is devoted to the proof of Proposition 4.1.

4.1. Introduction of graphs. In order to express the nonbacktracking powers of H in
terms of the entries of H , it is convenient to index the two multiple summations arising
from (3.1) when plugged into (3.18) using a graph. We note that a similar graphical
language was developed in [13], and many of basic definitions from Sects. 4.1 and 4.2
(such as bridges, ladders, and skeletons) are similar to those from [13]. We introduce a
directed graph C(n1, n2)

..= C1(n1) � C2(n2) defined as the disjoint union of a directed
chain C1(n1) with n1 edges and a directed chain C2(n2) with n2 edges. Throughout the
following, to simplify notation we often omit the arguments n1 and n2 from the graphs
C, C1, and C2. For an edge e ∈ E(C), we denote by a(e) and b(e) the initial and final
vertices of e. Similarly, we denote by a(Ci ) and b(Ci ) the initial and final vertices of
the chain Ci . We call vertices of degree two black and vertices of degree one white. See
Fig. 1 for an illustration of C and for the convention of the orientation.

We assign a label xi ∈ T to each vertex i ∈ V (C), and write x = (xi )i∈V (C). For an
edge e ∈ E(C) define the associated pairs of ordered and unordered labels

xe
..= (xa(e), xb(e)), [xe] ..= {xa(e), xb(e)}.

Using the graph C = C(n1, n2) we may now write the covariance

〈
Tr H (n1); Tr H (n2)

〉 = E
[(

Tr H (n1)
) (

Tr H (n2)
)] − E

(
Tr H (n1)

)
E

(
Tr H (n2)

)

=
∑

x∈TV (C)
I (x)A(x), (4.14)
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a(C1) b(C1)

b(C2) a(C2)

C1

C2

Fig. 1. The graph C = C1 � C2. Here we chose n1 = 6 and n2 = 5. We indicate the orientation of the chains
C1 and C2 using arrows. In subsequent pictures, we systematically drop the arrows to avoid clutter, but we
consistently use this orientation when drawing graphs

where we introduced

A(x) ..= E

( ∏

e∈E(C)
Hxe

)
− E

( ∏

e∈E(C1)

Hxe

)
E

( ∏

e∈E(C2)

Hxe

)
(4.15)

and the indicator function

I (x) ..= I0(x)
∏

i, j∈V (C)..
dist(i, j)=2

1(xi �= x j ), I0(x) ..= 1(xa(C1) = xb(C1))1(xa(C2) = xb(C2)).

(4.16)

The indicator function I0(x) implements the fact that the final and initial vertices of
each chain have the same label, while I (x) in addition implements the nonbacktracking
condition. When drawing C as in Fig. 1, we draw vertices of C with degree two using
black dots, and vertices of C with degree one using white dots. The use of two different
colours also reminds us that each black vertex i gives rise to a nonbacktracking condition
in I (x), constraining the labels of the two neighbours of i to be distinct.

In order to compute the expectation in (4.15), we decompose the label configurations
x according to partitions of E(C).

Definition 4.2. We denote by P(U ) for the set of partitions of a set U and by M(U ) ⊂
P(U ) the set of pairings (or matchings) of U . (In the applications below the set U will
be either E(C) or V (C).) We call blocks of a pairing bridges. Moreover, for a label
configuration x ∈ T

V (C) we define the partition P(x) ∈ P(E(C)) as the partition of
E(C) generated by the equivalence relation e ∼ e′ if and only if [xe] = [xe′ ].

Hence we may write
∑

x

I (x)A(x) =
∑

�∈P(E(C))

∑

x

1(P(x) = �)I (x)A(x). (4.17)

At this stage we introduce our first simplification.

(S1) We only keep the pairings � ∈ M(E(C)) in the summation (4.17).

Using Simplification (S1), we write
∑

x

I (x)A(x) =
∑

�∈M(E(C))

∑

x

1(P(x) = �)I (x)A(x) + E . (4.18)
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Here, as explained at the beginning of this section, we use the symbol E to denote an
error term that arises from any simplification that we make. All such error terms are
in fact negligible, as recorded in Proposition 4.23 below, and proved in the companion
paper [11]. We use the symbol E without further comment throughout the following to
denote such error terms arising from any of our simplifications (S1)–(S3).

Fix� ∈ M(E(C)). In order to analyse the term resulting from the first term of (4.15),
we write

1(P(x) = �)E

( ∏

e∈E(C)
Hxe

)
= 1(P(x) = �)

( ∏

{e,e′}∈�
1(xe �= xe′)Sxe

)
, (4.19)

where we used that Hxe and Hxe′ are independent if [xe] �= [xe′ ] as well as EH2
xy = 0

and EHxy Hyx = Sxy . Note that the indicator function 1(P(x) = �) imposes precisely
two things: first, if e and e′ belong to the same bridge of� then [xe] = [xe′ ] and, second,
if e and e′ belong to different bridges of � then [xe] �= [xe′ ]. The second simplification
that we make neglects the second restriction, hence eliminating interactions between the
labels associated with different bridges.

(S2) After taking the expectation, we replace the indicator function 1(P(x) = �)with
the larger indicator function

∏
{e,e′}∈� 1([xe] = [xe′ ]).

Thus we have

1(P(x) = �)E

( ∏

e∈E(C)
Hxe

)
=

( ∏

{e,e′}∈�
1([xe] = [xe′ ])1(xe �= xe′)Sxe

)
+ E .

(4.20)

A similar analysis may be used for the term resulting from the second term of (4.15) to get

1(P(x) = �)E

( ∏

e∈E(C1)

Hxe

)
E

( ∏

e∈E(C2)

Hxe

)( ∏

π∈�
1
(|π ∩ E(C1)| �= 1

))

=
( ∏

{e,e′}∈�
1([xe] = [xe′ ])1(xe �= xe′)Sxe

)
+ E, (4.21)

where we used that if any bridge π ∈ � intersects both E(C1) and E(C2) then the
left-hand side vanishes since EHxy = 0.

Next, we note that

1([xe] = [xe′ ])1(xe �= xe′) = 1(xa(e) = xb(e′))1(xa(e′) = xb(e)) =.. J{e,e′}(x).
(4.22)

Plugging (4.20) and (4.21) back into (4.18) therefore yields

〈
Tr H (n1) ; Tr H (n2)

〉 =
∑

�∈Mc(E(C))

∑

x

I (x)
( ∏

{e,e′}∈�
J{e,e′}(x) Sxe

)
+ E, (4.23)

where we introduced the subset of connected pairings of E(C)
Mc(E(C)) ..= {� ∈ M(E(C)) .. there is a π ∈ �

such that π ∩ E(C1) �= ∅ and π ∩ E(C2) �= ∅}. (4.24)

The formula (4.23) provides the desired expansion in terms of pairings.
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Fig. 2. A pairing of edges

A pairing � may be conveniently represented graphically by drawing a line (or
bridge) joining the edges e and e′ whenever {e, e′} ∈ �. See Fig. 2 for an example.

The following notations will prove helpful. We introduce the set of all connected
pairings,

Mc
..=

⊔

n1,n2�0..
n1+n2 even

Mc
(
E(C(n1, n2))

)
.

Definition 4.3. With each pairing� ∈ Mc we associate its underlying graph C(�), and
regard n1 and n2 as functions on Mc in self-explanatory notation. We also frequently
abbreviate V (�) ≡ V (C(�)), and refer to V (�) as the vertices of �.

Next, we observe that the indicator function

1(xa(C1) = xb(C1))1(xa(C2) = xb(C2))
∏

π∈�
Jπ (x) (4.25)

in (4.23) constrains some labels of x to coincide. We introduce a corresponding partition
Q(�) ∈ P(V (�)) of the vertices of�, whereby i and j are in the same block of Q(�)
if and only if xi and x j are constrained to be equal by (4.25). Equivalently, we define
Q(�) as the finest partition of V (�) with the following properties.

(i) a(e) and b(e′) belong to the same block of Q(�)whenever {e, e′} ∈ �. (Note that,
by symmetry, a(e′) and b(e) also belong to the same block.)

(ii) a(C1) and b(C1) belong to the same block of Q(�).
(iii) a(C2) and b(C2) belong to the same block of Q(�).

Graphically, the first condition means that the two vertices on either side of a bridge are
constrained to have the same label. See Fig. 3 for an illustration of Q(�). We emphasize
that we constantly have to deal with two different partitions. Taking the expectation
originally introduced a partition on the edges, which, after Simplification (S1), is in
fact a pairing. This pairing, in turn, induces constraints on the labels that are assigned
to vertices; more precisely, it forces the labels of certain vertices to coincide. Together
with the coincidence of the first and last labels on C1 and C2, imposed by taking the
trace, this defines a partition on the vertices. Depending on x it may happen that more
labels coincide than required by Q(�); the partition Q(�) encodes the minimal set of
constraints. We therefore call Q(�) the minimal vertex partition induced by �. Notice
that, by construction, Q(�) does not depend on x.

Next, suppose that there is a block q ∈ Q(�) that contains two vertices i, j ∈ q
such that dist(i, j) = 2. We conclude that the contribution of � to the right-hand side
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a b c d e f g

h

e d a

b bc d d aee f g h

Fig. 3. The pairing � from Fig. 2, where we in addition indicate the eight blocks of Q(�) by assigning a
letter to each block

of (4.23) vanishes, since the indicator function I (x) vanishes by the nonbacktracking
condition 1(xi �= x j ). Hence we may restrict the summation over � in (4.23) to the
subset of pairings

R ..= {
� ∈ Mc

.. if dist(i, j) = 2 then i and j belong to different blocks of Q(�)
}
.

(4.26)

Lemma 4.4. For any � ∈ R, all blocks of Q(�) have size at least two.

Proof. If {i} ∈ Q(�) then, by definition of Q(�), the degree of i is two and both edges
incident to i belong to the same bridge. This implies that the two vertices adjacent to i
belong to the same block of Q(�), which is impossible by definition of R. ��

At this point we introduce our final simplification.

(S3) After restriction the summation over � to the set R in (4.23), we neglect the
indicator function I (x).

Note that the main purpose of I (x) was to restrict the summation over pairings � to
the set R, which is still taken into account if one assumes (S3). The presence of I (x) in
(4.23) simply results in some additional error terms E that are ultimately negligible. Note
that I (x) also restricts the summation to labels satisfying xa(Ci ) = xb(Ci ); this condition
is still imposed in the definition of R.

Hence we get

〈
Tr H (n1) ; Tr H (n2)

〉 =
∑

�∈R

1(n1(�) = n1)1(n2(�) = n2)

×
∑

y∈TQ(�)

∑

x∈TV (�)

( ∏

q∈Q(�)

∏

i∈q

1(xi = yq)

)( ∏

{e,e′}∈�
Sxe

)
+ E,

(4.27)

where we introduced a set of independent summation labels y, indexed by the blocks of
Q(�).
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Fig. 4. The skeleton � of the pairing � from Fig. 2. Next to each skeleton bridge σ ∈ � we indicate the
multiplicity bσ describing how many bridges of � were collapsed into σ

4.2. Skeletons. The summation in (3.18) is highly oscillatory, which requires a careful
resummation of graphs of different order. We perform a local resummation procedure
of the so-called ladder subdiagrams, which are subdiagrams with a pairing structure
that consists only of parallel bridges. This is the second resummation procedure men-
tioned in Sect. 2.4. Concretely, we regroup pairings � into families that have a similar
structure, differing only in the number of parallel bridges per ladder subdiagram. Their
common structure is represented by the simplest element of the family, the skeleton,
whose ladders consist of a single bridge.

We now introduce these concepts precisely. The skeleton of a pairing � ∈ Mc
is generated from � by collapsing parallel bridges. By definition, the bridges {e1, e′

1}
and {e2, e′

2} are parallel if b(e1) = a(e2) and b(e′
2) = a(e′

1). With each � ∈ Mc
we associate a couple S(�) = (�,b), where � ∈ Mc has no parallel bridges, and
b = (bσ )σ∈� ∈ N

� . The pairing � is obtained from � by successively collapsing
parallel bridges until no parallel bridges remain. The integer bσ denotes the number of
parallel bridges of� that were collapsed into the bridgeσ . Conversely, for any given cou-
ple (�,b), where� ∈ Mc has no parallel bridges and b ∈ N

� , we define� = G(�,b)
as the pairing obtained from � by replacing, for each σ ∈ �, the bridge σ with bσ
parallel bridges. Thus we have a one-to-one correspondence between pairings � and
couples (�,b). The map S corresponds to the collapsing of parallel bridges of �, and
the map G to the “expanding” of bridges of � according to the multiplicities b. Instead
of burdening the reader with formal definitions of the operations S and G, we refer to
Figs. 2 and 4 for an illustration. When no confusion is possible, in order to streamline
notation we shall omit S and G and identify � with (�,b). In particular, the minimal
vertex partition Q(�) induced by� = G(�,b) is denoted by Q(�,b), and is not to be
confused with Q(�), the minimal vertex partition on the skeleton �.

Definition 4.5. Fix � ∈ Mc and b ∈ N
� . As above, abbreviate � ..= G(�,b).

(i) For σ ∈ � we introduce the ladder encoded by σ , denoted by Lσ (�,b) ⊂ � and
defined as the set of bridges π ∈ � that are collapsed into the skeleton bridge σ by
the operation S. Note that Lσ (�,b) consists of |Lσ (�,b)| = bσ parallel bridges.

(ii) We say that a vertex i ∈ V (�) touches the bridge {e, e′} ∈ � if i is incident to e or e′.
We call a vertex i a ladder vertex of Lσ (�,b) if it touches two bridges of Lσ (�,b).
Note that a ladder consisting of b parallel bridges gives rise to 2(b−1) ladder vertices.

(iii) We say that i ∈ V (�) is a ladder vertex of� if it is a ladder vertex of Lσ (�,b) for
some σ ∈ �. We decompose the vertices V (�) = Vs(�) � Vl(�), where Vl(�)

denotes the set of ladder vertices of �.

See Fig. 5 for an illustration. Due to the nonbacktracking condition and the require-
ment that parallel bridges are collapsed, not every pairing can be a skeleton, and not every
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Fig. 5. The ladder vertices Vl (�), drawn in grey , of the pairing� from Fig. 2. The vertices Vs (�) are drawn
in black or white. In this example, there are |�| = 6 ladders

family of multiplicities is admissible; however, the few exceptions are easy to describe.
The following lemma characterizes the explicit set S of allowed skeletons � and the
set of allowed multiplicities, B(�), which may arise from some graph � ∈ R ⊂ Mc.

Lemma 4.6. For any � ∈ R with (�,b) ..= S(�) we have � ∈ S, where

S ..= {
� ∈ Mc

.. � has no parallel bridges and no block of Q(�) has size one
}
.

Moreover, defining

B(�) ..= {
b ∈ N

� .. G(�,b) ∈ R
}
, (4.28)

for any � ∈ S, we have that N
�\B(�) is finite.

Roughly, this lemma states two things. First, if a skeleton bridge σ ∈ � touches two
adjacent vertices of� that belong to the same block of Q(�), then we have bσ �= 2. Sec-
ond, if Q(�) yields the label structure aba for three consecutive vertices of�, then bσ +
bσ ′ � 3 where σ and σ ′ are the two bridges touching the innermost of these three vertices
(in such a situation σ = σ ′ is impossible by nonbacktracking condition implemented by
R). See Fig. 7 below for an illustration of this latter restriction. Both of these restrictions
are consequences of the nonbacktracking condition implemented in the definition of R.

For example, the skeleton D4, defined in Fig. 6 below, may arise as a skeleton of
some �, so that D4 ∈ S. Using b1, b2, and b3 to denote the multiplicities of the
top, bottom, and middle bridges respectively, we have B(D4) = {b = (b1, b2, b3)

..
b1, b2, b3 � 1, b3 �= 2}. Indeed, it is easy to check that the condition on the right-hand
side of (4.26) is satisfied if and only if b2 �= 2.

Proof of Lemma 4.6. Let � ∈ R and (�,b) ..= S(�). Clearly, � has no parallel
bridges. Moreover, if Q(�) has a block of size one then � must have a bridge that
connects two adjacent edges. Hence � also has a bridge that connects two adjacent
edges. By definition of R, this is impossible. This proves the first claim.

In order to prove the second claim, we simply observe that if � ∈ S and bσ � 2 for
all σ ∈ �, then G(�,b) ∈ R. This follows easily from the definition of R and the fact
that the two vertices located between two parallel bridges of � always form a block of
size two in Q(�). ��

Lemma 4.6 proves that there is a one-to-one correspondence, given by the maps S and
G, between pairings� ∈ R and couples (�,b)with� ∈ S and b ∈ B(�). Throughout
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the following, we often make use of this correspondence and tacitly identify � with
(�,b). We now use skeletons to rewrite F̃η(E1, E2): from (4.27) we get

F̃η(E1, E2) =
∑

�∈R

1(2|�| � Mμ)2 Re
(
γ̃n1(�)(E1, φ1)

)
2 Re

(
γ̃n2(�)(E2, φ2)

)

×
∑

y∈TQ(�)

∑

x∈TV (�)

( ∏

q∈Q(�)

∏

i∈q

1(xi = yq)

)( ∏

{e,e′}∈�
Sxe

)
+ E,

=
∑

�∈S

∑

b∈B(�)

1
(

2
∑

σ∈�
bσ � Mμ

)
2 Re

(
γ̃n1(�,b)(E1, φ1)

)
2 Re

(
γ̃n2(�,b)(E2, φ2)

)

×
∑

y∈TQ(�,b)

∑

x∈TV (�,b)

( ∏

q∈Q(�,b)

∏

i∈q

1(xi = yq)

)( ∏

{e,e′}∈G(�,b)
Sxe

)
+ E . (4.29)

Next, we observe that we have a splitting

Q(�) = Q(�)|Vs (�) � Q(�)|Vl (�),

so that the indicator function in (4.29) factors into an indicator function involving only
labels yq and xi with q ∈ Q(�)|Vs (�) and i ∈ Vs(�), and another indicator function
involving only labels yq and xi with q ∈ Q(�)|Vl (�) and i ∈ Vl(�). Summing over the
latter (“ladder”) labels yields

F̃η(E1, E2) =
∑

�∈S

V(�) + E, (4.30)

where we defined the value of the skeleton � ∈ S as

V(�) ..=
∑

b∈B(�)

1
(

2
∑

σ∈�
bσ � Mμ

)
2 Re

(
γ̃n1(�,b)(E1, φ1)

)
2 Re

(
γ̃n2(�,b)(E2, φ2)

)

×
∑

y∈TQ(�)

∑

x∈TV (�)

( ∏

q∈Q(�)

∏

i∈q

1(xi = yq)

)( ∏

{e,e′}∈�
(Sb{e,e′})xe

)
. (4.31)

Here we recall Definition 4.3 for the meaning of the vertex set V (�). The entry (Sb{e,e′})xe

arises from summing out the b{e,e′} − 1 independent labels associated with the ladder
vertices of L{e,e′}(�,b), according to

∑

x1,...,xb−1

Sx0x1 Sx1x2 · · · Sxb−1xb = (Sb)x0xb . (4.32)

The labels x ∈ T
V (�) in (4.31) are not free; we use them for notational convenience.

They are a function x = x(y) of the independent labels y ∈ T
Q(�). The function x(y) is

defined by the indicator function in the second parentheses on the second line of (4.31),
i.e. xi (y) ..= yq where q � i .

In summary, we have proved that F̃η(E1, E2) can be written as a sum of contributions
of skeleton graphs (up to errors E that will prove to be negligible). The value of each
skeleton is computed by assigning a positive power be of S to each bridge of �, and
summing up all powers be and all labels that are compatible with� (in the sense that the
vertices touching a bridge, on the same side of the bridge, must have identical labels).
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D1 D2 D3 D4

D5 D6 D7 D8

Fig. 6. The eight dumbbell skeletons D1, . . . , D8

4.3. The leading term. We now compute the leading contribution to (4.30). As it turns
out, it arises from a family of eight skeleton pairings, which we call dumbbell skele-
tons. They are defined in Fig. 6. We denote by Di the i-th dumbbell skeleton, where i =
1, . . . , 8. At this point in the argument, it is not apparent why precisely these eight skele-
tons yield the leading contribution. In fact, our analysis will reveal the graph-theoretic
properties that single them out as the leading skeletons; see Sect. 4.5 below for the details.

We now define Vmain as the contribution of the dumbbell skeletons:

Vmain
..=

8∑

i=1

V(Di ). (4.33)

Proposition 4.7 (Dumbbell skeletons). Under the assumptions of Proposition 4.1, the
contribution of the dumbbell skeletons defined in (4.33) satisfies (i), and (ii), and (iii) of
Proposition 4.1.

Proof. See [11, Propositions 3.4 and 3.7]. ��
While the proof of Proposition 4.7 is given in the companion paper [11], here we

explain how to obtain the (approximate) expression (3.22) from the definition (4.33).
The main work, performed in [11, Sections 3.3 and 3.4], is the asymptotic analysis of
the right-hand side of (3.22), which was outlined in Sect. 3.2.

We first focus on the most important skeleton, D8. See Fig. 7 for our choice of
labelling the vertex labels and the multiplicities of the bridges of D8.

In particular, Q(D8) consists of four blocks, which are assigned the independent
summation vertices x1, . . . , x4. From (4.31) we get

V(D8) =
∑

b1,b2,b3,b4�1

1(b3 + b4 � 3)1
(
b1 + b2 + b3 + b4 � Mμ/2

)

×2 Re
(
γ̃2b1+b3+b4(E1, φ1)

)
2 Re

(
γ̃2b2+b3+b4(E2, φ2)

)

×
∑

y1,y2,y3,y4∈T

(Sb1)y1 y3(S
b2)y2 y4(S

b3)y3 y4(S
b4)y3 y4 .

Here we used that B(D8) = {(b1, b2, b3, b4)
.. b1, b2, b3, b4 � 1, b3 + b4 � 3}, as

may be easily checked from the definition of R. Similarly, we may compute V(Di ) for
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b1

b2

b3 b4

y1

y2

y3 y4 y3 y1

y4 y3 y4 y2

Fig. 7. The skeleton D8. We indicate the independent labels y1, . . . , y4 next to their associated vertices, and
the multiplicities b1, . . . , b4 next to their associated bridges of D8

i = 1, . . . , 7; it is not hard to see that all of them arise from the expression for V(D8) by
setting b1, b2, or b4 to be zero; setting a multiplicity bi to be zero amounts to removing the
corresponding bridge from the skeleton. Since the skeleton has to be connected, b3 and
b4 cannot both be zero and we choose to assign b3 to the bridge with nonzero multiplicity.
The eight combinations generated by b1 = 0 or b1 �= 0, b2 = 0 or b2 �= 0, b4 = 0
or b4 �= 0 correspond precisely to the eight graphs D1, . . . , D8 (the case b3 � 1,
b4 = 0 corresponds to the first four graphs, D1, . . . , D4, while b3, b4 � 1 corresponds
to D5, . . . , D8). Moreover, recalling (4.1), we can perform the sum over y1, . . . , y4:

∑

y1,y2,y3,y4∈T

(Sb1)y1 y3(S
b2)y2 y4(S

b3)y3 y4(S
b4)y3 y4 = Ib1+b2 Tr Sb3+b4 ,

where we defined

I ≡ IM
..= M

M − 1
. (4.34)

The choice of the symbol I suggests that for most purposes I should be thought of as
1. Putting everything together, we find

Vmain =
∞∑

b1,b2=0

∑

(b3,b4)∈A
1
(
b1 + b2 + b3 + b4 � Mμ/2

)

×2 Re
(
γ̃2b1+b3+b4(E1, φ1)

)
2 Re

(
γ̃2b2+b3+b4(E2, φ2)

)
Ib1+b2 Tr Sb3+b4 , (4.35)

where

A ..= ({1, 2, . . .} × {0, 1, . . .})\{(2, 0), (1, 1)
}
. (4.36)

Note that here we exclude the two cases where b3 +b4 = 2, since in those cases it may be
easily checked that Q(G(�,b)) violates the defining condition of R. In all other cases,
this condition is satisfied.

Next, we use (3.21) to decouple the upper bound in the summations over b1, b2, b3,
and b4. Using (3.21) we easily find

Vmain =
∞∑

b1,b2=0

∑

(b3,b4)∈A
2 Re

(
γ̃2b1+b3+b4(E1, φ1)

)
2 Re

(
γ̃2b2+b3+b4(E2, φ2)

)

×Ib1+b2 Tr Sb3+b4 + Oq(N M−q).
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Similarly, using (3.19) to replace γ̃ by γ , we get

Vmain =
∞∑

b1,b2=0

∑

(b3,b4)∈A
2 Re

(
γ2b1+b3+b4 ∗ ψη1

)
(E1) 2 Re

(
γ2b2+b3+b4 ∗ ψη2

)

×(E2) Ib1+b2 Tr Sb3+b4 + Oq(N M−q). (4.37)

This is the precise version of (3.22). For the asymptotic analysis of the right-hand side
of (4.37), see [11, Sections 3.3 and 3.4].

4.4. The error terms: large skeletons. We now focus on the essence of the proof of
Proposition 4.1: the estimate of the non-dumbbell skeletons. We have to estimate the
contribution to the right-hand side of (4.30) of all skeletons � in the set

S∗ ..= S\{D1, . . . , D8}. (4.38)

It turns out that when estimating V(�) we are faced with two independent difficulties.
First, strong oscillations in the b-summations in the definition of V(�) (4.31) give rise to
cancellations which have to be exploited carefully. Second, due to the combinatorial com-
plexity of the skeletons, the size of S∗ grows exponentially with M , which means that
we have to deal with combinatorial estimates. It turns out that these two difficulties may
be effectively decoupled: if |�| is small then only the first difficulty matters, and if |�| is
large then only the second one matters. The sets of small and large skeletons are defined as

S� ≡ S
�
K

..= {
� ∈ S∗ .. |�| � K

}
, S> ≡ S>

K
..= {

� ∈ S∗ .. |�| > K
}
,

(4.39)

where K ∈ N is a cutoff, independent of N , to be fixed later.
In this subsection, we deal with large |�|, i.e. we estimate

∑
�∈S> V(�). The only

input on γ̃n(Ei , φi ) that the argument of this subsection requires is the estimate (3.21).
In particular, in this subsection we deal with both cases (C1) and (C2) simultaneously.

Proposition 4.8. For large enough K , depending on μ, we have

∑

�∈S>
K

|V(�)| � CK N M−2. (4.40)

Recall that, according to Proposition 4.1, the value of the main terms (the dumbbell
skeletons) is larger than N M−1. The rest of this subsection is devoted to the proof of
Proposition 4.8. We begin by introducing the following construction, which we shall
make use of throughout the remainder of the paper. See Fig. 8 for an illustration.

Definition 4.9. Let � ∈ S be a skeleton pairing. We define a graph Y(�) on the vertex
set V (Y(�)) ..= Q(�) as follows. Each bridge {e, e′} ∈ � gives rise to the edge {q, q ′}
of Y(�), where q and q ′ are defined as the blocks of Q(�) that contain a(e) and b(e)
respectively. (Note that, by definition of Q, we also have a(e′) ∈ q and b(e′) ∈ q ′). We
call Y(�) the graph associated with �.
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a b c d a

a bb

c

cc

d

dd

a

b

c d

Σ Y(Σ)

Fig. 8. A skeleton pairing� together with its associated graph Y(�). In� we use the letters a, b, c, d next to
the vertices to indicate the four blocks of Q(�). (We emphasize that the vertices of Y(�), unlike those of �,
are not classified using colours; our use of black dots in the right-hand picture has no mathematical relevance)

Recall Definition 4.3 for the meaning of C(�). Then Y(�) is simply obtained as a
minor of C(�) after contracting (identifying) vertices that belong to the same blocks of
Q(�) and replacing every pair of edges of C(�) forming a bridge with a single edge.
In particular, the skeleton bridges of� become the edges of Y(�), i.e.� and E(Y(�))
may be canonically identified. Similarly, Q(�) is canonically identified with V (Y(�)),
the vertex set of the associated graph.

Lemma 4.10. For any � ∈ S the associated graph Y(�) is connected.

Proof. This follows immediately from the definition of Y(�) and the fact that �∈Mc.
��

Next, let � ∈ S be fixed. Starting from the definition (4.31), we use (3.21) to get

|V(�)| � C
∑

b∈N�

1
(

2
∑

σ∈�
bσ � Mμ

) ∑

y∈TQ(�)

∑

x∈TV (�)

( ∏

q∈Q(�)

∏

i∈q

1(xi = yq)

)

×
( ∏

{e,e′}∈�
(Sb{e,e′})xe

)
. (4.41)

For future reference we note that the right-hand side of (4.41) may also be written
without the partition Q(�) as

C
∑

b∈N�

1
(

2
∑

σ∈�
bσ � Mμ

) ∑

x∈TV (�)

I0(x)
∏

{e,e′}∈�
J{e,e′}(x)

(
Sb{e,e′}

)
xe
, (4.42)

where I0 was defined in (4.16) and J{e,e′} in (4.22). Recall that the free variables in (4.41)
are y. Using Y(�), we may rewrite (4.41) in the form

|V(�)| � C
∑

b∈NE(Y(�))
1
(

2
∑

e∈E(Y(�))
be � Mμ

) ∑

y∈TV (Y(�))

( ∏

e∈E(Y(�))
(Sbe )ye

)
,

(4.43)

where we recall the convention y{q,q ′} = (yq , yq ′).
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Let

Qb(�)
..= {

q ∈ Q(�) .. q contains a black vertex of V (�)
}
. (4.44)

It is easy to see that |Q(�)\Qb(�)| � 2. Next, we state the fundamental counting rule
behind our estimates; its analogue in [13] was called the 2/3-rule. It says that each block
of Q(�) contains at least three vertices, with the possible exception of blocks consisting
exclusively of white vertices.

Lemma 4.11 (2/3-rule). Let � ∈ S. For all q ∈ Qb(�) we have |q| � 3. Moreover,

|Qb(�)| � 2

3
|�| +

2

3
. (4.45)

Proof. By definition of S, we have that |q| � 2. Now suppose that |q| = 2. Let i ∈ q be
a black vertex of V (�). Since |q| = 2, we conclude that the two bridges of � touching
i (see Definition 4.5 (ii)) are parallel. This is in contradiction with the definition of S.
Finally, (4.45) follows directly from |q| � 3, since

3|Qb(�)| �
∑

q∈Qb(�)

|q| � |V (�)| = 2|�| + 2. (4.46)

��
Since |Q(�)| � |Qb(�)| + 2, we get from (4.45) that

|Q(�)| � 2|�|
3

+
8

3
. (4.47)

Next, using Lemma 4.10 we choose some (immaterial) spanning tree T of Y(�). Clearly,
|E(T )| = |Q(�)| − 1 and |E(Y(�))| = |�|, so that (4.47) yields

∣∣E(Y(�))\E(T )
∣∣ � |�|

3
− 5

3
. (4.48)

We now sum over y in (4.43), using the estimates, valid for any b � Mμ,

∑

z

(Sb)yz � C, (Sb)yz � C

M
, (4.49)

which are easy consequences of Syz � C M−1 and
∑

z Syz = I. In the product on the
right-hand side of (4.43), we estimate each factor associated with {q, q ′} /∈ E(T ) by
C M−1, using the second estimate of (4.49). We then sum out all of the y-labels, starting
from the leaves of T (after some immaterial choice of root), at each summation using
the first estimate of (4.49). This yields

∑

y∈TV (Y(�))

( ∏

e∈E(Y(�))
(Sbe )ye

)
� N

(
C

M

)|E(Y(�))\E(T )|
� N

(
C

M

)|�|/3−5/3

,
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where in the last step we used (4.48). The factor N results from the summation over the
label associated with the root of T . Thus we find from (4.43)

|V(�)| � N

(
C

M

)|�|/3−5/3 ∑

b∈N E(Y(�))
1
(

2
∑

e∈E(Y(�))
be � Mμ

)

= N

(
C

M

)|�|/3−5/3([Mμ/2] − 1

|�| − 1

)
� N

(
C

M

)|�|/3−5/3 Mμ|�|

(|�| − 1)! .

Next, for any m ∈ N, a simple combinatorial argument shows that the number of
skeleton pairings � ∈ S satisfying |�| = m is bounded by

(2m + 1)
(2m)!
m!2m

� Cm m! ; (4.50)

here the factor (2m)!
m!2m is the number of pairings of 2m edges, and the factor 2m + 1 is the

number of graphs C with 2m edges. We therefore conclude that

∑

�∈S>

|V(�)| � N
∞∑

m=K

Cmm!
(

C

M

)m/3−5/3 Mμm

(m − 1)! � N M5/3
∞∑

m=K

(C Mμ−1/3)m

� CK N M5/3+K (μ−1/3).

Choosing K large enough completes the proof of Proposition 4.8.
We conclude this subsection by summarizing the origin of the restriction μ < 1/3

(and hence ρ < 1/3), as it appears in the preceding proof of Proposition 4.8. The
total contribution of a skeleton is determined by a competition between its size (given
by the number of bridges) and its entropy factor (given by the number of independent
summation labels y). Each bridge yields, after resummation, a factor (Mη)−1, so that the
size of the graph is (Mη)−s where s = |�| is the number of ladders. The entropy factor is
M� where � = |Q(�)| is the number independent summation labels. The 2/3-rule from
Lemma 4.11 states roughly that � � 2b/3. The sum of the contributions of all skeletons is
convergent if (Mη)−s M� � 1, which, by the 2/3-rule, holds provided that η � M−1/3.

4.5. The error terms: small skeletons. We now focus on the estimate of the small skele-
tons, i.e. we estimate V(�) for � ∈ S� (recall the splitting (4.39)). The details of the
following estimates will be somewhat different for the two cases (C1) and (C2); for def-
initeness, we focus on the (harder) case (C2), i.e. we assume that φ1 and φ2 both satisfy
(2.8). The analogue of the following result in the case (C1) is given in Proposition 4.21
at the end of this subsection.

Proposition 4.12. Suppose that φ1 and φ2 satisfy (2.8). Suppose moreover that (2.9)
holds for some small enough c∗ > 0. Then for any fixed K ∈ N and small enough δ > 0
in Proposition 3.3 there exists a constant c0 > 0 such that

∑

�∈S�
K

|V(�)| � CK N

M
R2(ω + η)M−c0 , (4.51)

where we recall the definition of R2 from (2.13).
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Note that, by Proposition 4.7, the size of the dumbbell skeletons is

|Vmain| � N

M

(
1 + 1(d � 3)(ω + η)d/2−2 + 1(d = 4)

∣∣log(ω + η)
∣∣
)
, (4.52)

unless d = 2 and ω � η, in which case we have

|Vmain| � N

M
(1 + |logω|). (4.53)

We conclude that the right-hand side of (4.51) is much smaller than the contribution of
the dumbbell skeletons. In particular, the proof of Proposition 4.12 reveals why precisely
the dumbbell skeletons provide the leading contributions.

In this section we give a sketch of the proof of Proposition 4.12, followed by the actual
proof in the next section. As explained at the beginning of Sect. 4.4, the combinatorics of
the summation over� are now trivial, since the cardinality of the set S� ≡ S

�
K depends

only on K , which is fixed. However, the brutal estimate of (4.41), which neglects the
oscillations present in the coefficients γ , is not good enough. For small skeletons, it is
essential to exploit these oscillations.

First we undo the truncation in the definition of γ̃ni and use (3.19) to replace γ̃ni with
ψ
η
i ∗ γni in the definition (4.31) of V(�). Then we rewrite the real parts in (4.31) using

(3.23) this gives rise to two terms, and we focus on the first one, which we call V ′(�).
(The other one may be estimate in exactly the same way and is in fact smaller.) The
summation over b in (4.31) can now be performed explicitly using geometric series. The
result is that each skeleton bridge σ ∈ � encodes an entry of the quantity Z(σ ), which
is roughly a resolvent of S multiplied by a phase α, i.e. (1−αS)−1. It turns out that these
phases α depend strongly on the type of bridge they belong to. We split the set of skeleton
bridges � = �d � �c into the “domestic bridges” which join edges within the same
component of C and “connecting bridges” which join edges in different components
of C; see Definition 4.13 below for more details. The critical regime is when α ≈ 1,
which yields a singular resolvent (1 − αS)−1 (see the discussion on the spectrum of S
in Sect. 3.2). The phase α associated with a domestic bridge is separated away from 1,
which yields a regular resolvent. (This may also be interpreted as strong oscillations in the
geometric series of the resolvent expansion.) The phase α associated with a connecting
bridge is close to 1 and the associated resolvent is therefore much more singular. More
precisely (see Lemma 4.15 below), we find that these resolvents Z(σ ) satisfy the bounds

∣∣Z(σ )yz
∣∣ � M−1,

∑

z

∣∣Z(σ )yz
∣∣ � 1 (4.54)

for domestic bridges σ ∈ �d and
∣∣Z(σ )yz

∣∣ � M−1 R2(ω + η),
∑

z

∣∣Z(σ )yz
∣∣ � Mμ, (4.55)

for connecting bridges σ ∈ �c. (Recall the definition of R2 from (2.13).)
Using the bounds (4.54) and (4.55) we get a simple bound on V ′(�). The rest of the

argument is purely combinatorics and power counting: we have to make sure that for any
� ∈ S� this bound is small enough, i.e. o(N/M). Without loss of generality we may
assume that � does not contain a bridge that touches (see Definition 4.5) the two white
vertices of the same component of C. Indeed, if� contains such a bridge, we can sum up
the (coinciding) labels of the two white vertices using the second bound of (4.54), which
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effectively removes such a bridge, as depicted in Fig. 10 below. In particular, we have
Qb(�) = Q(�). (Recall the definitions of Q(�) after (4.25) and of Qb(�) from (4.44)).

We perform the summation over the labels x as in Sect. 4.4: by choosing a spanning
tree on the graph Y(�). Recall that there is a canonical bijection between the edges of
Y(�) and the bridges of �. Denote by �t the bridges associated with the spanning tree
of Y(�). The combinatorics rely on the following quantities:

� ..= |Q(�)| = |V (Y(�))| = number of independent labels,

sd
..= |�d | = number of domestic bridges,

st
..= |�c ∩�t | = number of connecting tree bridges,

sl
..= |�c\�t | = number of connecting loop (i.e. non-tree) bridges.

Note that the total number of bridges is s ..= |�| = sd + st + sl . Moreover, s � � − 1
since Y(�) is connected and st � � − 1 since st is part of a spanning tree. From the
2/3-rule in (4.45) we conclude that |q| � 3 for all q ∈ Q(�) and

� � 2(1 + s)

3
. (4.56)

Using the bounds (4.54) and (4.55), we sum over the labels x associated with the vertices
of �, and find the estimate

|V ′(�)| � N M�−s−1 Rsl
2 Mμst . (4.57)

Indeed, the root of the spanning tree gives rise to a factor N ; each one of the s − � + 1
bridges not associated with the spanning tree gives rise to a factor M−1; each one of the
sl connecting loop bridges gives rise to an additional factor R2; and each one of the st
connecting tree bridges gives rise to a factor Mμ.

It is instructive to compare the upper bound (4.57) for � being a dumbbell to the
true size of the dumbbell skeletons from (4.52). Since we exclude pairings with bridges
touching the two white vertices of the same component of C, we may take � to be D1
or D5 (see Fig. 6). Of these two, D5 saturates the 2/3-rule and is of leading order. For
� = D5 we have � = 2, s = 2, sl = 1, st = 1. Hence the bound (4.57) reads

|V ′(D5)| � N

M
R2(ω + η)Mμ. (4.58)

This is in general much larger than the true size (4.52); they become comparable for
ω+η � M−μ (i.e. on very small scales), which is ruled out by our assumptions onω andη.

Now we explain how the estimate on V ′(�) can be improved if � is not a dumbbell
skeleton. We rely on two simple but fundamental observations. First, if � does not sat-
urate the 2/3-rule then the right-hand side of (4.57) contains an extra power of M−1/3

as compared to the leading term (4.58). Second, if � saturates the 2/3-rule and is not
a dumbbell skeleton then � must contain a domestic bridge (joining edges within the
same component of C). Having a domestic bridge implies that sl + st � s − 1 instead
of the trivial bound sl + st � s. This implies that the power of one of the large factors
R2 or Mμ on the right-hand side of (4.57) will be reduced by one; as it turns out, this
is sufficient to make the right-hand side of (4.57) subleading. Note that the absence of
such domestic bridges in � is the key feature that singles out the dumbbells among all
skeletons that saturate the 2/3-rule. This explains why the leading contribution in (4.30)
comes from the dumbbell skeletons.
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We now explain these two scenarios more precisely. For the rest of this subsection
we suppose that � is not a dumbbell skeleton. Hence

s � 3, � � 2, s − � � 1 ; (4.59)

the first two estimates are immediate, and the last one follows from the first combined
with (4.56) and the fact that s − � ∈ N.

Suppose first that� saturates the 2/3-rule (4.56). Then |q| = 3 for all q ∈ Q(�), and
it is not too hard to see that� must contain a domestic bridge, i.e. sd � 1. Roughly, this
follows from the observation that in order to get a block of size three, the bridges touching
the vertices of this block must be as in Fig. 11 below. Plugging (4.56) into (4.57) yields

|V ′(�)| � N

M
M2/3−s/3 Rsl

2 Mμst � N

M
M2/3−s/3 Rsl +st −�+1

2 Mμ(�−1)

� N

M
M2/3−s/3 Rs−�

2 Mμ(�−1),

where the second step follows from R2 � Mμ and the third step from sl + st � s − 1
(since sd � 1). We conclude that

|V ′(�)| � N

M
M1/3(M−1/3 R2)

s−�(M−1/3 Mμ)�−1 � N

M
R2,

where we used (4.59) and R2 + Mμ � M1/3.
Next, consider the case where � does not saturate the 2/3-rule (4.56). In this case

it may well be that sd = 0. However, if (4.56) is not saturated, then there must exist a
q ∈ Q(�) satisfying |q| � 4. Thus (4.56) improves to

� � 1

3
+

2s

3
.

Thus we find that

|V ′(�)| � N

M
M1/3−s/3 Rsl

2 Mμst .

Note that we have st + sl � s and st � �− 1. Using R2 � Mμ we therefore get

|V ′(�)| � N

M
M1/3−s/3 Rsl

2 Mμst � N

M
M1/3−s/3 Rs−�+1

2 Mμ(�−1)

= N

M
M1/3(M−1/3 R2)

s−�+1(M−1/3 Mμ)�−1.

From (4.59) we therefore get |V ′(�)| � N
M R2. This concludes the sketch of the proof

of Proposition 4.12.
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4.6. Proof of Proposition 4.12. We begin the proof by rewriting (4.31) in a form where
the oscillations in the summation over b may be effectively exploited. This consists of
three steps, each of which results in negligible errors of order Cq N M−q for any q > 0.
In the first step, we decouple the b-summations by replacing the indicator function
1
(
2

∑
σ∈� bσ � Mμ

)
with the product

∏
σ∈� 1(bσ � Mμ), using the estimate (3.21).

In the second step, we replace the factors γ̃ni (�,b)(E1, φi )with (γni (�,b)∗ψηi )(Ei ), using
the estimate (3.19). These two steps are analogous to the steps from (4.35) to (4.37).

In the third step, we truncate in the tails of the functions ψi on the scale Mδ/2, where
δ > 0 is the constant from Proposition 3.3. To that end, we choose a smooth, nonnega-
tive, symmetric function χ satisfying χ(E) = 1 for |E | � 1 and χ(E) = 0 for |E | � 2.
We split ψi = ψ

�
i + ψ>i , where

ψ
�
i (E)

..= ψi (E)χ(M
−δ/2 E), ψ>i (E)

..= ψi (E)
(
1 − χ(M−δ/2 E)

)
(4.60)

This yields the splitting ψηi = ψ
�,η
i + ψ>,ηi of the rescaled test function ψη(E) =

η−1ψ(η−1 E). This splitting is done on the scale ηMδ/2, and we have

suppψ�,η
i ⊂ [−2ηMδ/2, 2ηMδ/2]. (4.61)

Moreover, recalling (2.8) and using the trivial bound |γn(E)| � C we find
∣∣(ψ>,ηi ∗ γn)(Ei )

∣∣ � Cq M−q (4.62)

for any q > 0. The truncation of the third step is the replacement of (γni (�,b) ∗ψηi )(Ei )

with (γni (�,b) ∗ ψ�,η
i )(Ei ), using (4.62).

Applying these three steps to the definition (4.31) yields

V(�) =
∑

b∈B(�)

(∏

σ∈�
1(bσ � Mμ)

)
2 Re

(
γn1(�,b) ∗ ψ�,η

1

)
(E1) 2 Re

(
γn2(�,b) ∗ ψ�,η

2

)
(E2)

×
∑

y∈TQ(�)

∑

x∈TV (�)

( ∏

q∈Q(�)

∏

i∈q

1(xi = yq)

)( ∏

{e,e′}∈�
(Sb{e,e′})xe

)
+ Oq,�(N M−q). (4.63)

The errors arising from each of the three steps are estimated using (3.21), (3.19), and
(4.62) respectively. The summations over b and y in the error terms are performed bru-
tally, exactly as in the proof of Proposition 4.8 (in fact here we only need that Y(�) be
connected); we omit the details.

Next, we use (3.23) to write V(�) = 2 Re(V ′(�) + V ′′(�)) + Oq,�(N M−q), where

V ′(�) ..=
∑

b∈B(�)

(∏

σ∈�
1(bσ � Mμ)

) (
γn1(�,b) ∗ ψ�,η

1

)
(E1)

(
γn2(�,b) ∗ ψ�,η

2

)
(E2)

×
∑

y∈TQ(�)

∑

x∈TV (�)

( ∏

q∈Q(�)

∏

i∈q

1(xi = yq)

)( ∏

{e,e′}∈�
(Sb{e,e′})xe

)
, (4.64)

and V ′′(�) is defined similarly but without the complex conjugation on γn2(�,b). We shall
gives the details of the estimate for the larger error term, V ′(�). The term V ′′(�)may be
estimated using an almost identical argument; we sketch the minor differences below.

In order to estimate the right-hand side of (4.63), we shall have to classify the bridges
of � into three classes according to the following definition.
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Definition 4.13. For i = 1, 2 we define

�i
..= {

σ ∈ � .. σ ⊂ E(Ci )
}
,

the set of bridges consisting only of edges of Ci . We abbreviate �d
..= �1 ∪ �2 (the

set of “domestic bridges”). We also define �c
..= � \�d , the set of bridges connecting

the two components of C. Moreover, for # = 1, 2, c, d we introduce the set E#(Y(�))
defined as the subset of E(Y(�)) encoded by �# under the canonical identification
� � E(Y(�)), according to Definition 4.9.

Since each σ ∈ �c contains one edge of C1 and one edge of C2, and each σ ∈ �i
contains two edges of Ci , we find that the number of edges in the i-th chain Ci (ni ) of
the graph C(n1, n2) with pairing � = (�,b) is

ni (�,b) =
∑

σ∈�c

bσ + 2
∑

σ∈�i

bσ .

Here we identify � with (�,b), as remarked after Lemma 4.6.
We may now plug into (4.64) the explicit expression for γn from (3.6), at which point

it is convenient to introduce the abbreviations

T (E) ..= 2

1 − (M − 1)−1e2i arcsin E
, Ai

..= arcsin Ei . (4.65)

Thus we get from (4.64)

V ′(�) =
∑

b∈B(�)

(∏

σ∈�
1(bσ � Mμ)

)

×
(

T (E1)T (E2) ei(A1−A2)
∏

σ∈�1

(−e2iA1)bσ
∏

σ∈�2

(−e−2iA2)bσ
∏

σ∈�c

ei(A1−A2)bσ

)

∗ψ�,η
1 (E1) ∗ ψ�,η

2 (E2)
∑

y∈TQ(�)

∑

x∈TV (�)

( ∏

q∈Q(�)

∏

i∈q

1(xi = yq)

)( ∏

{e,e′}∈�
(Sb{e,e′})xe

)
.

Here, by a slight abuse of notation, we write (ϕ ∗ χ)(E) ≡ ϕ(E) ∗ χ(E). Using the
associated graph Y(�) from Definition 4.9, we may rewrite this as

V ′(�) =
∑

b∈{1,...,[Mμ]}E(Y(�))
1(b ∈ B(�))

×
(

T (E1)T (E2) ei(A1−A2)
∏

e∈E1(Y(�))
(−e2iA1 )be

∏

e∈E2(Y(�))
(−e−2iA2 )be

∏

e∈Ec(Y(�))
ei(A1−A2)be

)

∗ψ�,η
1 (E1) ∗ ψ�,η

2 (E2)
∑

y∈TV (Y(�))

( ∏

e∈E(Y(�))
(Sbe )ye

)
, (4.66)

where we used the canonical identification between � and E(Y(�)) to rewrite the set
B(�) ⊂ N

� from Lemma 4.6 as a subset B(�) ⊂ N
E(Y(�)) (by a slight abuse of no-

tation). Also, to avoid confusion, we emphasize that the expressions Ei and Ei (Y(�))
have nothing to do with each other.
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Next, we split V ′(�) = V ′
0(�)−V ′

1(�) using the splitting 1(b ∈ B(�)) = 1−1(b /∈
B(�)) in (4.66). We first focus on main term, V ′

0(�). In the definition of V ′
0(�), we

may sum the geometric series associated with each summation variable be to get

V ′
0(�) =

∑

y∈TV (Y(�))

(
T (E1)T (E2) ei(A1−A2)

∏

e∈E1(Y(�))
Z(−e2iA1 S)ye

×
∏

e∈E2(Y(�))
Z(−e−2iA2 S)ye

∏

e∈Ec(Y(�))
Z(ei(A1−A2)S)ye

)
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2),

(4.67)

where we abbreviated

Z(x) ..=
[Mμ]∑

b=1

xb = x(1 − x [Mμ])
1 − x

(4.68)

for any quantity x , which may be a number or a matrix. The explicit summation over b
exploits the cancellations associated with the highly oscillating summands. From now on,
we shall freely estimate the summation over y by taking the absolute value inside the sum.

On the right-hand side of (4.67), each edge e ∈ E(Y(�)) encodes a symmetric ma-
trix of the form Z(αS), where |α| = 1. In order to estimate the right-hand side of (4.67),
we therefore need appropriate resolvent bounds on the entries of Z(αS). To that end,
we improve the second bound of (4.49) using the following local decay bound. Recall
the definition of I from (4.34).

Lemma 4.14. For all b ∈ N we have

(I−1Sb)yz � C

Mbd/2 +
C

N

for some constant C depending only on f .

Proof. This follows from a standard local central limit theorem; see for instance the
proof in [44, Section 3]. ��
In particular, for 1 � b � (L/W )2 we have

(Sb)yz � C

Mbd/2 . (4.69)

Recalling (2.11) and (2.13), we find from (4.69) that for |α| � 1 we have

|Z(αS)yz | � C

M
R2(M

−μ). (4.70)

The bound (4.70) is sharp if α = 1, i.e. if the sum in (4.68) is not oscillating. If
oscillations are present, we get better bounds which we record in the following lemma.
It is a special case of [11, Proposition 3.5].
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Lemma 4.15. Let S be as in (4.1) and α ∈ C satisfy |α| � 1 and |1 − α| � 4/M +
(W/L)2. There exists a constant C > 0, depending only on d and the profile function
f , such that

∥∥∥∥
1

1 − αS

∥∥∥∥
�∞→�∞

� C log N

2 − |1 + α| . (4.71)

Under the same assumptions we have

sup
x,y

∣∣∣∣

(
S

1 − αS

)

xy

∣∣∣∣ � C

M
R2(|1 − α|), (4.72)

where the constant C depends only on d and f .

From (4.49), (4.70), and Lemma 4.15 we get

|Z(αS)yz | � C

M
min

{
R2(|1 − α|), R2(M

−μ)
}
,

∑

z

|Z(αS)yz |

� C min

{
log N

2 − |1 + α| , Mμ

}
, (4.73)

We apply (4.73) to estimating (4.67) via the following key estimate.

Lemma 4.16. Let v = (v1, v2) and denote by Ai,v
..= arcsin(Ei − vi ) the value of Ai

in the convolution integral (4.67). For small enough δ > 0 and |v1|, |v2| � 2ηMδ/2 (i.e.
v1 and v2 in the support of the convolution integral (4.67)) we have

∣∣Z(−e±2iAi,v S)yz
∣∣ � C

M
,

∑

z

∣∣Z(−e±2iAi,v S)yz
∣∣ � C log N (4.74)

and
∣∣Z(ei(A1,v−A2,v)S)yz

∣∣ � C

M
M2δR2(ω + η),

∑

z

∣∣Z(ei(A1,v−A2,v)S)yz
∣∣ � C Mμ.

(4.75)

Proof. To prove (4.74), we set αi = −e±2iAi,v , in which case an elementary estimate
yields 2 −|1 +αi | � c. Similarly, we have |1 −αi | � c, which yields R2(|1 −αi |) � C .
Now (4.74) follows from (4.73) and (2.9).

To prove (4.75), we setα = ei(A1,v−A2,v). In order to estimate Z(αS)yz , we distinguish
two cases according to whether η � M−δω. Suppose first that η � M−δω. Then we have
|1 − α| � ω(1 + O(ω)) � cω. We therefore find from the first inequality of (4.73) that

|Z(αS)yz | � C

M
R2(ω) � C

M
R2(ω + η),

where in the second step we used that ω + η � 2ω and that R2 is monotone decreasing
for small enough arguments (see its definition in (2.13)). On the other hand, if ω < Mδη

then we get from (4.73) that

|Z(αS)yz | � C

M
R2(M

−μ) � C

M

(
(ω + η)Mμ

)1/2
R2(ω + η)

� C

M
M (δ+μ−ρ)/2 R2(ω + η) � C

M
M2δR2(ω + η),
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where in the second step we used that (ω+η)Mμ � 1, and in the last step thatμ−ρ < 3δ.
Putting both cases together we get (4.75). ��

Next, we plug the estimates (4.74) and (4.75) into (4.67) and sum over y; we use
(4.74) for e ∈ Ei (Y(�)) with i = 1, 2, and (4.75) for e ∈ Ec(Y(�)). We perform the
summation over y as in Sect. 4.4: by choosing an arbitrary spanning tree T of Y(�)
along with an arbitrary root of T . In the summation over y on the right-hand side of
(4.67), each edge e ∈ E(Y(�)) encodes a matrix entry that we estimate as follows. For
e ∈ Ed(Y(�))\E(T ) we use the first estimate of (4.74), for e ∈ Ed(Y(�))∩ E(T ) the
second estimate of (4.74), for e ∈ Ec(Y(�))\E(T ) the first estimate of (4.75), and for
e ∈ Ec(Y(�)) ∩ E(T ) the second estimate of (4.75). The result is

|V ′
0(�)| � C |�|N M−|Ed (Y(�))\E(T )|(log N )|Ed (Y(�))∩E(T )|

×
(

M2δR2(ω + η)

M

)|Ec(Y(�))\E(T )|
Mμ|Ec(Y(�))∩E(T )|

� N

M

(log N )|�|

M |�|−|Q(�)|
(
M2δR2(ω + η)

)|Ec(Y(�))\E(T )|
Mμ|Ec(Y(�))∩E(T )|,

where we used that |E(Y(�))| = |�| and |E(T )| = |Q(�)| − 1. As before, the factor
N arises from the summation over the label of y associated with the root of T .

Next, we remark that the above proof may be repeated verbatim for the other er-
ror term, V ′

1(�). This case is in fact easier: since N
E(Y(�))\B(�) is a finite set (see

Lemma 4.6), we do not have to exploit the cancellations from the summation over b. Re-
peating the above argument for V ′

1(�), with the right-hand sides of the corresponding es-
timates from (4.74) and (4.75) replaced with C/M , C , C/M , and C respectively, we find

|V ′(�)| � R(�) ..= N

M

M3δ|�|

M |�|−|Q(�)| R2(ω + η)|Ec(Y(�))\E(T )| Mμ|Ec(Y(�))∩E(T )|.

(4.76)

In order to show that R(�) is small enough, we shall use a graph-theoretic argument to
derive appropriate bounds on the exponents. It relies on the following further partition
of the set �d according to whether a bridge touches both endpoints (white vertices) of
a chain.

Definition 4.17. We partition �d = �0
d ��1

d , where

�1
d

..= {
σ ∈ �d

.. σ touches a(Ci ) and b(Ci ) for some i = 1, 2
}
.

We also use E0
d(Y(�)) and E1

d(Y(�)) to denote the corresponding disjoint subsets of
Ed(Y(�)).

Note that �1
d may contain at most two bridges: one only touching the white vertices

of C1 and one only touching the white vertices of C2. See Fig. 9 for an illustration of
these three types of bridges.

For the following counting arguments, for definiteness it will be convenient to assume
that �1

d = ∅. Hence, we first show that skeleton pairings with �1
d �= ∅ can be easily

estimated by those with�1
d = ∅, at the expense of an unimportant factor. The following

lemma states this fact precisely. Let

S� ..= {
� ∈ S� .. �1

d = ∅}
.
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Fig. 9. A bridge in �0
d (left), �1

d (centre), and �c (right)

Σ Σ

Fig. 10. The operation � �→ �

Lemma 4.18. For each � ∈ S� there exists a � ∈ S� such that and R(�) �
(log N )2R(�).
Proof. The operation� �→ � amounts to simply removing all bridges of�1

d from�. In-
stead of a formal definition, we refer to Fig. 10 for a graphical depiction of this operation.

By definition of Q(·), we find that the operation � �→ � amounts to removing any
of the two vertices {a(C1), b(C1)} and {a(C2), b(C2)} that belongs to Q(�). This results
in a removal of the corresponding number of leaves from the spanning tree T . (The
removed bridges always correspond to leaves in T . In particular, |Ec(Y(�))\E(T )| and
|Ec(Y(�)) ∩ E(T )| are remain unchanged by this removal.) Note that if � ∈ S� then
� ∈ S�, since by construction if� /∈ {D1, . . . , D8} then� /∈ {D1, . . . , D8}. The claim
now follows easily from the bound (4.76) with argument �, as well as the observations
that |�| − |Q(�)| = |�| − |Q(�)|, that |�d | � |�d | + 2, that |�| � |�| + 2, and that
the two last exponents on the right-hand side of (4.76) are the same for � and �. ��

By Lemma 4.18, it suffices to estimate R(�) for � ∈ S�. For � ∈ S� we have
�0

d = �d . Moreover, if there is a bridge touching a(C1) and a(C2) as well as a bridge
touching b(C1) and b(C2), we find that all four white vertices constitute a single block of
Q(�). Otherwise, since �1

d = ∅, every block of Q(�) contains a black vertex, so that
Qb(�) = Q(�), where Qb(�)was defined in (4.44). Either way, recalling Lemma 4.11,
we conclude for � ∈ S� and q ∈ Q(�) that

|q| � 3. (4.77)

In order to complete the estimate of (4.76), and hence the proof of Proposition 4.12,
we shall have to distinguish between the case where |q| = 3 for all q ∈ Q(�) and the
case where there exists a q ∈ Q(�) with |q| > 3.

Lemma 4.19. Suppose that � ∈ S� and |q| = 3 for all q ∈ Q(�). Then

R(�) � N

M
R2(ω + η)M3μ−1 MCδ. (4.78)
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i

j k

Fig. 11. A block q = {i, j, k} ∈ Q(�) along with the three bridges of�(q). We do not draw the other vertices
or bridges

Lemma 4.20. Suppose that � ∈ S� and there exists a q ∈ Q(�) with |q| > 3. Then

R(�) � N

M
R2(ω + η)Mμ−1/3 MCδ. (4.79)

Proof of Lemma 4.19. We first claim that there is at least one domestic bridge, i.e. that
�d �= ∅.

Clearly, |V (�)| is even. Recall that
⋃

q∈Q(�) q = V (�). Since each block of Q(�)
has size 3, we conclude that |V (�)| is multiple of 3, and hence of 6. A simple exhaustion
of all possible pairings � ∈ S� that saturate the first inequality in (4.46) shows that
there is no such � satisfying

∣∣⋃
q∈Q(�) q

∣∣ = 6. (In fact, any connected pairing with at
most six vertices is a dumbbell pairing, which are excluded by the definition (4.38) of
S∗.) Hence we find that

∣∣⋃
q∈Q(�) q

∣∣ � 12, so that |Q(�)| � 4.
Next, note that Q(�) contains at most two blocks q that contain white vertices of�,

since� contains four white vertices, and, for each i ∈ {1, 2}, those of Ci are in the same
block of Q(�). (Recall items (ii) and (iii) after (4.25)). Since |Q(�)| � 4, we find that
there is a block q ∈ Q(�) that contains only black vertices. Let�(q) be the set of bridges
of � touching a vertex of q; see Fig. 11. By definition of Q(�), we have |�(q)| = 3.
Now if all vertices of q belong to the same connected component of C, then�(q) ⊂ �d .
Otherwise, let q = {i, j, k} with j and k belonging to the same connected component
of C. Then both bridges touching i are in �c; the remaining bridge of �(q) must touch
both j and k, and is therefore in�d . Either way, we find that�d �= ∅, as claimed above.

For the following, abbreviate sl
..= |Ec(Y(�))\E(T )| and st

..= |Ec(Y(�))∩E(T )|.
From the saturated inequality (4.46) we find

|Q(�)| = 2|�|
3

+
2

3
. (4.80)

Plugging this into (4.76) yields

R(�) = N

M
M3δ|�|M2/3−|�|/3 R2(ω + η)sl Mμst . (4.81)

Recall that |�d | � 1 and |�d | + sl + st = |�|. Moreover, st � |E(Y(�))∩ E(T )| =
|Q(�)| − 1. Since R2(ω + η) � Mμ, we conclude

R2(ω + η)sl Mμst � R2(ω + η)sl +st −|Q(�)|+1 Mμ(|Q(�)|−1)

= R2(ω + η)|�|−|�d |−|Q(�)|+1 Mμ(|Q(�)|−1) � R2(ω + η)|�|−|Q(�)|Mμ(|Q(�)|−1).
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Thus we get

R(�) � N

M
M3δ|�|M2/3−|�|/3 R2(ω + η)|�|−|Q(�)| Mμ(|Q(�)|−1)

= N M3δM1/3

M

(
M−1/3+3δR2(ω + η)

)|�|−|Q(�)|
(Mμ−1/3+3δ)|Q(�)|−1

� N

M
R2(ω + η)M3μ−1 M15δ,

where in the last step we used (4.80) to get |�| − |Q(�)| = |�|/3 − 2/3 � 1, as well
as |Q(�)| � 4 and μ < 1/3. Here we chose δ > 0 in Proposition 3.3 small enough that
μ < 1/3−3δ. We also used that M−1/3+3δR2(ω+η) � 1. This concludes the proof. ��
Proof of Lemma 4.20. Since |q| � 4 and all other blocks of Q(�) have size at least 3
by (4.77), we find that

|Q(�)| � 1 +
2|�| + 2 − |q|

3
� 2|�|

3
+

1

3
, (4.82)

where 2|�| + 2 − |q| is the number of vertices of � not in q . Note the improvement of
(4.82) over (4.80). Using the notation of the proof of Lemma 4.19, we get from (4.76),
in analogy to (4.81),

R(�) � N

M
M3δ|�|M1/3−|�|/3 R2(ω + η)sl Mμst .

Now we proceed as in the proof of Lemma 4.19, using |�d | � 0, |�d | + sl + st = |�|,
and st � |Q(�)| − 1. We get

R(�) � N M1/3

M

(
M−1/3+3δR2(ω + η)

)|�|−|Q(�)|+1
(Mμ−1/3+3δ)|Q(�)|−1

� N

M
R2(ω + η)Mμ−1/3 M6δ.

In the last step we used that |�| − |Q(�)| � 0, which follows from (4.82) and from
|�| � 3 for � ∈ S�, and that |Q(�)| � 2. (In fact, since � /∈ {D1, . . . , D8} one may
easily check that |Q(�)| � 3.) This concludes the proof. ��

From Lemmas 4.19, 4.20, and 4.18, we conclude that for all � ∈ S� we have

|V ′(�)| � R(�) � N

M
R2(ω + η)M3μ−1 M4δK . (4.83)

In order to conclude the proof of Proposition 4.12, we need an analogous estimate of
V ′′(�). This may be obtained by repeating the above argument almost verbatim; the only
nontrivial difference is that, on the right-hand side of (4.67), the factor Z(ei(A1−A2)S)ye

associated with the edge e ∈ Ec(Y(�)) is replaced with Z(ei(A1+A2)S)ye . Since
|1 − ei(A1+A2)| � c on the support of the convolution integral, we replace (4.75) with

∣∣Z(−ei(A1+A2)S)yz
∣∣ � C

M
� C

M
R2(ω + η),

∑

z

∣∣Z(ei(A1−A2)S)yz
∣∣ � C Mμ.
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Thus we find, for any � ∈ S�, that

|V ′′(�)| � R(�). (4.84)

Hence Proposition 4.12 follows from (4.83), (4.84), and the observation that S� is a
finite set that is independent of N . This concludes the proof of Proposition 4.12.

We conclude this subsection with an analogue of Proposition 4.12 in the case (C1).
Its proof follows along the same lines as that of Proposition 4.12, and is omitted.

Proposition 4.21. Suppose that φ1 and φ2 satisfy (2.7). Suppose moreover that (2.9)
holds for some small enough c∗ > 0. Then for any fixed K ∈ N we have (4.51).

For future reference we emphasize that the only information about the matrix entries
of Z(·) that is required for the estimate (4.51) to hold is (4.74) and (4.75). Thus, the
conclusion of the above argument may be formulated in the following more general form.

Lemma 4.22. Let � /∈ {D1, . . . D8}, and suppose that we have a family of matrices
Z(σ, E1, E2, L) ≡ Z(σ ) parametrized by σ ∈ � satisfying

|Zxy(σ )| � C

M
,

∑

y

|Zxy(σ )| � C log N (4.85)

for σ ∈ �1 ∪�2 and

|Zxy(σ )| � C

M
M2δR2(ω + η),

∑

y

|Zxy(σ )| � C Mμ (4.86)

for σ ∈ �c.
Then for small enough δ there exists a c0 > 0 such that

∑

y∈TQ(�)

∑

x∈TV (�)

( ∏

q∈Q(�)

∏

i∈q

1(xi = yq)

)( ∏

{e,e′}∈�
Zxe({e, e′})

)

=
∑

x∈TV (�)

I0(x)
( ∏

{e,e′}∈�
J{e,e′}Zxe ({e, e′})

)
� C�N

M
R2(ω + η)M−c0 .

4.7. Conclusion of the proof of Proposition 4.1 and Theorems 2.2–2.4. We may now
conclude the proof of Proposition 4.1. As indicated before, the error terms E result-
ing from the simplifications (S1)–(S3) are small; the precise statement is the following
proposition that is proved in [11].

Proposition 4.23. The error term E in (4.30) arising from the simplifications (S1)–(S3)
satisfies

|E | � C N

M
M−c0 R2(ω + η), (4.87)

for some constant c0 > 0.

Proof. This is an immediate consequence of Propositions 4.5, 4.6, and 4.15 in [11]. ��
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Combining Propositions 4.8, 4.12, 4.21, and 4.23 yields

F̃η(E1, E2) = Vmain +
N

M

(
O

(
M−1 + M−c0 R2(ω + η)

)
+ Oq(N M−q)

)
.

Together with Proposition 4.7, this concludes the proof of Proposition 4.1.
Using (3.20), (2.11), and Proposition 4.1 we therefore get, for H as in Sect. 2,

Fη(E1, E2) = Vmain +
N

M

(
O

(
M−1 + M−c0 R2(ω + η)

)
+ Oq(N M−q)

)
. (4.88)

In order to compute the left-hand side of (2.12), and hence conclude the proof of The-
orems 2.2–2.4, we need to control the denominator of (2.12) using the following result.

Lemma 4.24. For E ∈ [−1 + κ, 1 − κ] we have

E Y ηφ (E) = 4
√

1 − E2 + O(η) = 2πν(E) + O(η). (4.89)

Proof. In the case (C1) we have

E Y ηφ (E) = E
1

N
Tr φη(H/2 − E) = E

1

N
Im Tr

4

H − 2(E + iη)

= 4 Im m(2E + 2iη) + O(M−2/3+c)

for any c > 0. Here in the last step we introduced the Stieltjes transform of the semicircle
law, m(z), and invoked [15, Theorem 2.3 and Equation (7.6)]. The claim then follows
from the estimate 4 Im m(2E + 2iη) = 4

√
1 − E2 + O(η), which itself follows from

[14, Equations (3.3) and (3.5)].
In the case (C2), we first split φη = φ�,η + φ>,η as in (4.60). The contribution of

φ>,η is small by the strong decay of φ. The error in the main term,

E
1

N
Im Tr φ�,η(H/2 − E)− 1

2π

∫ 2

−2
dx

√
4 − x2 φ�,η(x/2 − E),

may be estimated using [15, Theorem 2.3] and Helffer–Sjöstrand functional calcu-
lus, as in e.g. [15, Section 7.1]; we omit the details. Then the claim follows from

1
2π

∫ 2
−2 dx

√
4 − x2 φ�,η(x/2 − E) = 4

√
1 − E2 + O(η). ��

Now we define

�
η
φ1,φ2

(E1, E2)
..= (LW )d

N 2

Vmain

EY ηφ1
(E1)EY ηφ2

(E2)
. (4.90)

Then Theorems 2.3 and 2.4 follow from Lemma 4.24 and (4.88), recalling (4.5) and
(4.7). Moreover, Theorem 2.2 follows from (3.10) and Lemma 4.24. This concludes the
proof of Theorems 2.2–2.4 under the simplifications (S1)–(S3).
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5. The Real Symmetric Case (β = 1)

In this section we explain the changes needed to the arguments of Sect. 4 to prove
Theorems 2.2, 2.3, and 2.4 for β = 1 instead of β = 2. The difference is that for
β = 1 we have EH2

xy = Sxy , while for β = 2 we have EH2
xy = 0 (in addition to

EHxy Hyx = E|Hxy |2 = Sxy , which is valid in both cases). This leads to additional terms
for β = 1, which may be conveniently tracked in our graphical notation by introducing
twisted bridges, in analogy to Section 9 of [13]. As it turns out, allowing twisted bridges
results in eight new dumbbell skeletons, called D̃1, . . . , D̃8 below, each of which has
the same value V(·) as its counterpart without a tilde. Hence, for β = 1 the leading term
is simply twice the leading term of β = 2, which accounts for the trivial prefactor 2/β
in the final formulas. Any other skeleton may be estimated by a trivial modification of
the argument from Sects. 4.4–4.6. As in Sect. 4, we make the simplifications (S1)–(S3),
and do not deal with the errors terms E resulting from them. They are handled in [11].

We now give a more precise account of the proof for β = 1. We start from (4.18),
which remains unchanged. Since EHxy Hxy = EHxy Hyx = Sxy , (4.19) holds for β = 1
without the indicator function 1(xe �= xe′) that was present for β = 2. Hence (4.20) also
holds without the indicator function 1(xe �= xe′). We now write

1([xe] = [xe′ ]) = 1([xe] = [xe′ ])1(xe �= xe′) + 1(xe = xe′) =.. J{e,e′}(x) + J̃{e,e′}(x),

in self-explanatory notation (recall that J{e,e′}(x) was already defined in (4.22)). Thus
(4.23) becomes

〈
Tr H (n1) ; Tr H (n2)

〉 =
∑

�∈Mc(E(C))

∑

x

I (x)
( ∏

{e,e′}∈�

(
J{e,e′}(x) + J̃{e,e′}(x)

)
Sxe

)
+ E .

(5.1)

Multiplying out the parentheses in (5.1) yields 2|�| terms, each of which is characterized
by the set of bridges of � associated with a factor J ; the other bridges are associated
with a factor J̃ . We call the former straight bridges and the latter twisted bridges. This
terminology originates from the fact that a twisted bridge forces the labels of the adjacent
vertices to coincide on opposite sides of the bridge; see Fig. 12 for an illustration.

More formally, we assign to each bridge of � a binary tag, straight or twisted. We
represent straight bridges (as before) by solid lines and twisted bridges by dashed lines.

Next, we extend the definition of skeletons from Sect. 4.2 to pairings containing
twisted bridges. Recall that the key observation behind the definition of a skeleton was
that parallel straight bridges yield a large contribution but a small combinatorial complex-
ity. Now antiparallel twisted bridges behave analogously, whereby two bridges {e1, e′

1}

a b

a b

a b

ab

Fig. 12. Left picture a straight bridge (left) and a twisted bridge (right); labels with the same name are forced
to coincide by the bridge. Right picture two antiparallel twisted bridges, which form an antiladder of size two
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Fig. 13. A tagged pairing (left) and its tagged skeleton (right)

and {e2, e′
2} are antiparallel if b(e1) = a(e2) and b(e′

1) = a(e′
2). (Recall that they are par-

allel if b(e1) = a(e2) and b(e′
2) = a(e′

1).) See Fig. 12 for an illustration. An antiladder is
a sequence of bridges such that two consecutive bridges are antiparallel. All of Sect. 4.1,
in particular the partition Q(�), may now be taken over with trivial modifications.

As in Sect. 4.2, to each tagged pairing � we assign a tagged skeleton � with asso-
ciated multiplicities b. The skeleton � is obtained from � by successively collapsing
parallel straight bridges and antiparallel twisted bridges until none remains. Parallel
twisted bridges and antiparallel straight bridges remain unaltered. The skeleton� inher-
its the tagging of its bridges in the natural way: two parallel straight bridges are collapsed
into a single straight bridge, and two antiparallel twisted bridges are collapsed into a
single twisted bridge. See Fig. 13 for an illustration.

We take over all notions from Sect. 4.2, such as V(·), with the appropriate straight-
forward modifications for tagged skeletons.

Allowing twisted bridges leads to a further eight skeleton graphs, which we de-
note by D̃1, . . . , D̃8, whose contribution is of leading order. They are the same graphs as
D1, . . . , D8 from Fig. 6, except that the (one or two) vertical antiparallel straight bridges
(depicted by solid lines) are replaced with the same number of vertical parallel twisted
bridges (depicted by dashed lines). We use the notations

Vmain
..=

8∑

i=1

V(Di ), Ṽmain
..=

8∑

i=1

V(D̃i ).

We record the following simple result, whose proof is immediate.

Lemma 5.1. If β = 1 then for i = 1, . . . , 8 we have V(Di ) = V(D̃i ).

For β = 1 we may therefore write Vmain + Ṽmain = 2Vmain. Thus, the main term for
β = 1 is simply twice the main term for β = 2.

What remains is the estimate of V(�) for � /∈ {D1, . . . , D8, D̃1, . . . , D̃8}. We
proceed exactly as in Sects. 4.4–4.6. The key observation is that the 2/3-rule from
Lemma 4.11 remains true thanks to the definition of skeletons. When estimating the large
skeletons (without making use of oscillations) in Sect. 4.4, we get an extra factor 2m to the
left-hand side of (4.50) arising from the sum over all possible taggings of a skeleton; this
factor is clearly immaterial. Finally, the argument of Sects. 4.5 and 4.6 may be taken over
with merely cosmetic changes. The set�1

d from Definition 4.17 remains unchanged, and
in particular only contains straight bridges. Note that the basic graph-theoretic argument
from Lemmas 4.19 and 4.20 remains unchanged. In particular, exactly as in the proof
of Lemma 4.19, if all blocks of Q(�) have size three and � is not a dumbbell skeleton,
then � contains a domestic bridge (which may be straight or twisted). This concludes
the proof of Theorems 2.2–2.4 for the case β = 1 under the simplifications (S1)–(S3).
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12. Erdős, L., Knowles, A.: Quantum diffusion and delocalization for band matrices with general

distribution. Ann. H. Poincaré 12, 1227–1319 (2011)
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