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Abstract: We establish direct connections at several levels between quantum groups
and supergroups associated to bar-consistent anisotropic super Cartan datum by con-
structing an automorphism (called twistor) in the setting of covering quantum groups.
The canonical bases of the halves of quantum groups and supergroups are shown to
match under the twistor up to powers of

√−1. We further show that the modified quan-
tum group and supergroup are isomorphic over the rational function field adjoined with√−1, by constructing a twistor on the modified covering quantum group. An equivalence
of categories of weight modules for quantum groups and supergroups follows.

Le plus court chemin entre deux vérités dans le
domaine réel passe par le domaine complexe.

—Jacques Hadamard

1. Introduction

1.1. A theory of quantum supergroups was developed systematically by Yamane [Y1,Y2]
after the classical work of Drinfeld, Jimbo and Lusztig. Recently the interest in quantum
supergroups has been revived (see [CW,CHW1,CHW2]) thanks to their categorifica-
tion [HW] by Hill and one of the authors using the spin nilHecke and quiver Hecke
superalgebras [W,EKL,KKT]. The work on quantum supergroups of anisotropic type
(meaning no isotropic odd simple roots) has also motivated, in turn, further progress on
categorification. The conjecture in [HW] that cyclotomic (spin) quiver Hecke superal-
gebras categorify the integrable modules of the supergroup has recently been proved by
Kang, Kashiwara, and Oh [KKO]. The validity of this conjecture at rank one, in which
case quiver Hecke superalgebras reduce to spin nilHecke algebras, was already noted
in [HW] as an easy upgrading of the difficult categorification result of Ellis, Khovanov,
and Lauda [EKL]. Yet another recent development is the categorification of the modified
covering quantum group in rank one (see Ellis-Lauda [EL]).
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A basic observation in [HW] is that the parity functor � categorifies a formal super
sign π subject to π2 = 1. This leads to the formulation of the so-called covering
quantum group U in [HW,CW,CHW1], which allows a second formal parameter π

such that π2 = 1 besides the usual quantum parameter v. The specialization of U at
π = 1, denoted by U|π=1, recovers the usual quantum group while the specialization of
U at π = −1, denoted by U|π=−1, recovers the quantum supergroup of anisotropic type.
In contrast to the versions of quantum supergroups over C(v) studied in literature, our
covering (or super) quantum groups have a well-developed representation theory such
as weight modules and integrable modules over Q(v), thanks to the enlarged Cartan
subalgebras [CHW1]; moreover, they admit integral forms. Under a mild bar-consistent
condition on the super Cartan datum, the half covering quantum group f (∼= U−) and
the associated integrable modules admit a novel bar involution which sends v �→ πv−1

and then admit canonical bases [CHW2].
The (covering) quantum supergroups are quantizations of Lie superalgebras associ-

ated to the anisotropic type super Cartan datum introduced in [Kac]. It has been known
that Lie superalgebras associated to the super Cartan datum have representation theory
similar to that of Kac-Moody algebras associated to the same super Cartan datum with
Z2-grading forgotten; in particular, the character formulas for the integrable modules of
these Lie algebras and superalgebras coincide. In the (only) finite type, this reduces to
the well-known fact that the finite-dimensional modules of Lie superalgebra osp(1|2n)

and Lie algebra so(2n + 1) have the same characters. Such a similarity continues to hold
at the quantum level. But a conceptual explanation for all these coincidences has been
missing (see an earlier attempt [La] in finite type).

1.2. The goal of this paper is to establish (somewhat surprising) direct links at several lev-
els between quantum groups and supergroups associated to bar-consistent super Cartan
datum, which provide a conceptual explanation of the above coincidences.

We construct automorphisms (called twistors) denoted by �, �̇ of the half covering
quantum group f and the modified covering quantum group U̇, respectively. The construc-
tion of twistors requires an extension of scalars to include a square root of −1, denoted by
t in this paper. The twistor switches π and −π , and hence specializes to an isomorphism
between the half (and resp., modified) quantum group and its super counterpart. As an
immediate consequence, we obtain an equivalence of categories of weight modules for
quantum group U|π=1 and supergroup U|π=−1. We also formulate an extended covering
quantum group with enlarged Cartan subalgebra and construct its twistor.

Symbolically, we summarize the role of the twistor in the case of modified covering
quantum group in the following commutative diagram:

Ψ̇ (π π)

U̇[t]

U̇[t]|π=1 U̇[t]|π=−1.

Alternatively, one can view the modified quantum group U̇|π=1 and the modified quan-
tum supergroup U̇|π=−1 as two different rational forms of a common algebra U̇[t]|π=1.
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The two rational forms admit their own distinct integral forms. Remarkably the distinc-
tion between super and non-super algebras becomes blurred at the quantum level, even
though a clear distinction exists between Lie algebras and Lie superalgebras (for exam-
ple, there are “more” integrable modules for Lie algebras than for the corresponding Lie
superalgebras [Kac]).

As an application, the twistor � induces a transformation on the crystal lattice of f
which behaves well with the crystal structure. By careful bookkeeping, we provide a
purely algebraic proof of [CHW2, Proposition 6.7] that the crystal lattice of f is invariant
under an anti-automorphism � which fixes the Chevalley generators. Furthermore, the
twistor � is shown to match Lusztig-Kashiwara’s canonical basis for f |π=1 [Lu1,K] with
the canonical basis for the half quantum supergroup f |π=−1 constructed in [CHW2], up
to integer powers of t. Let us add that this does not give a new proof of the existence of
the canonical basis for f or for the integrable modules of U.

1.3. Although it is not very explicitly used in this paper, the connection between (one-
parameter) quantum groups and two-parameter (v, t)-quantum groups developed by
two of the authors [FL1] plays a basic role in our evolving understanding of the links
between quantum groups and supergroups. A connection between (one-parameter) quan-
tum groups and quantum supergroups can indeed be formulated by a “twisted lift” to
two-parameter quantum groups which is followed by a “specialization” of the second
parameter t to t with t2 = −1. But we have decided to adopt the more intrinsic and
self-contained approach as currently formulated in this paper.

The isomorphism result on modified quantum (super)groups U̇[t]|π=1 and U̇[t]|π=−1
in this joint work was announced in [FL2], where the isomorphism in the rank one case
was established somewhat differently from here.

A version of our equivalence of categories of weight modules for U|π=1 and U|π=−1
also appeared in [KKO] with a very different proof. Note that the notion of weight mod-
ules in loc. cit. is nonstandard and subtle, and the multi-parameter algebras formulated
therein over C(v) or C(v)π do not seem to admit rational forms or integral forms or mod-
ified counterparts as ours. Some construction similar to the twistor ̂� for our extended
covering quantum group (see Proposition 4.12) also appeared in [KKO]. In contrast to
loc. cit., our formula for ̂� is very explicit; the twistor �̇ here preserves the integral
forms (see Theorem 4.3), and this allows us to specialize v to be a root of unity without
difficulty.

1.4. The paper is organized as follows.
In Sect. 2, after recalling some preliminaries, we formulate and establish a twistor

� of the half covering quantum group f[t], which restricts to an isomorphism between
the super and non-super half quantum groups. Here, we make crucial use of a new
multiplication on f[t] twisted by a distinguished bilinear form, and the general idea of
such twisted multiplication goes back to [FL1].

In Sect. 3, we use the twistor � to compare the crystal lattices between the π = 1
and π = −1 cases. In particular, we give an algebraic proof that the crystal lattice for f
is preserved by an anti-involution �. (This was stated in [CHW2, Proposition 6.7].) Then
we show that the twistor � matches the canonical basis elements of the half quantum
supergroup f |π=−1 and those of half quantum group f |π=1, up to integer powers of t.

In Sect. 4, we construct a twistor of the modified covering quantum group. This
restricts to an isomorphism between the super and non-super modified quantum groups.
An immediate corollary is an equivalence of categories of weight modules for the super
and non-super quantum groups. A further consequence is an equivalence of BGG cat-
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egories of modules for Kac-Moody Lie algebras and Lie superalgebras. Finally we
construct an alternative twistor relating quantum groups to quantum supergroups upon
enlarging the Cartan subalgebras.

2. The Twistor of Half Covering Quantum Group

2.1. The preliminaries. We review some basic definitions which can be found in [CHW1,
CHW2] and references therein.

Definition 2.1. A Cartan datum is a pair (I, ·) consisting of a finite set I and a Z-valued
symmetric bilinear form ν, ν′ �→ ν · ν′ on the free abelian group Z[I ] satisfying

(a) di = i ·i
2 ∈ Z>0, ∀i ∈ I ;

(b) ai j = 2 i · j
i ·i ∈ Z≤0, for i 
= j in I .

A Cartan datum is called a super Cartan datum of anisotropic type if there is a partition
I = I0

∐

I1 which satisfies the condition

(c) 2 i · j
i ·i ∈ 2Z if i ∈ I1 and j ∈ I .

A super Cartan datum of anisotropic type is called bar-consistent if it additionally sat-
isfies

(d) di ≡ p(i) mod 2, ∀i ∈ I.

We will always assume I1 
= ∅ without loss of generality. We note that (d) is almost
always satisfied for super Cartan data of finite or affine type (with one exception which
corresponds to a Dynkin diagram with two short roots of opposite parity at its both ends,
called by A(4)(0, 2n)). A super Cartan datum is always assumed to be bar-consistent in
this paper. We note that a bar-consistent super Cartan datum satisfies

i · j ∈ 2Z for all i, j ∈ I. (2.1)

The i ∈ I0 are called even, i ∈ I1 are called odd. We define a parity function
p : I → {0, 1} so that i ∈ Ip(i). We extend this function to the homomorphism
p : Z[I ] → Z2. Then p induces a parity Z2-grading on Z[I ]. We define the height
function ht on Z[I ] by letting ht(

∑

i∈I ci i) =∑i∈I ci .
A super root datum associated to a super Cartan datum (I, ·) consists of

(a) two finitely generated free abelian groups Y , X and a perfect bilinear pairing 〈·, ·〉 :
Y × X → Z;

(b) an embedding I ⊂ X (i �→ i ′) and an embedding I ⊂ Y (i �→ i) satisfying
(c)

〈

i, j ′
〉 = 2i · j

i ·i for all i, j ∈ I .

We will assume that the image of the imbedding I ⊂ X (respectively, the image of the
imbedding I ⊂ Y ) is linearly independent in X (respectively, in Y ); in the terminology
of [Lu2], this means the datum is both X -regular and Y -regular.

If V is a vector space graded by Z[I ], X , or Y , we will use the weight notation |x | = μ

if x ∈ Vμ. If V is a Z2-graded vector space, we will use the parity notation p(x) = a if
x ∈ Va .

Let v and t be formal parameters, and let π be an indeterminate such that

π2 = 1.
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For a ring R with 1, we will form a new ring Rπ = R[π ]/(π2 −1). Given an Rπ -module
(or algebra) M , the specialization of M at π = ±1 means the R-module (or algebra)

M |π=±1
def= R± ⊗Rπ M , where R± = R is viewed as a Rπ -module on which π acts as

±1.
Assume 2 is invertible in R; i.e. 1

2 ∈ R. We define

ε+ = 1 + π

2
, ε− = 1 − π

2
, (2.2)

and note that Rπ = Rε+ ⊕ Rε−. In particular, since πε± = ±ε± for an Rπ -module M ,
we see that

M |π=±1 ∼= ε±M.

Similarly, for an R-module M , we define

M[t±1] = R[t±1] ⊗R M.

Let t2 = −1 ∈ R. Let us define the specialization of t at t to be

M[t] = R[t] ⊗R[t±1] M[t±1] = R[t] ⊗R M.

(Note that the results herein may be reformulated in a context where t is replaced by an
indeterminate solution to the equation t4 = 1.)

Recall π2 = 1. For k ∈ Z≥0 and n ∈ Z, we introduce a (v, π)-variant of quantum
integers, quantum factorial and quantum binomial coefficients:

[k]v,π = (πv)k − v−k

πv − v−1 ∈ Z[v±1]π ,

[k]!v,π =
k
∏

l=1

[l]v,π ∈ Z[v±1]π ,

[

n
k

]

v,π

=
∏n

l=n−k+1

(

(πv)l − v−l
)

∏k
l=1

(

(πv)l − v−l
) ∈ Z[v±1]π .

(2.3)

We will use the notation

vi = vdi , ti = tdi , πi = πdi , for i ∈ I.

Let (I, ·) be a super Cartan datum. The half covering quantum group f [CHW1, §1]
is the Q(v)π -algebra with generators θi (i ∈ I ) and relations

bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

θ
bi j −k
i θ jθ

k
i = 0 for all i 
= j ∈ I, (2.4)

where

bi j = 1 − ai j .

As first noted in [HW], the Q-algebra f admits a bar involution such that

θi = θi (∀i ∈ I ), π = π, v = πv−1. (2.5)
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We define the divided powers

θ
(n)
i = θn

i

[n]!vi ,πi

. (2.6)

These elements generate a Z[v±1]π -subalgebra of f , denoted by Zf . (In this paper, the
notation Z[v±1] stands for the ring of Laurent polynomials in v.) Note that θ

(n)
i is bar

invariant.
By specialization at π = ±1, we obtain the usual half quantum group f |π=1 and the

half quantum supergroup f |π=−1, respectively. By leaving π as an indeterminate, we
can simultaneously address both cases.

The algebra f has a Z[I ]×Z2-grading obtained by setting |θi | = i and p(θi ) = p(i),
for i ∈ I . The algebra f is known [HW,CHW1] to be equipped with a nondegenerate
symmetric bilinear form (·, ·) such that

(1, 1) = (θi , θi ) = 1, (θi x, y) = (x, e′
i (y)),

where e′
i : f → f is the map satisfying

e′
i (1) = 0, e′

i (θ j ) = δi j , e′
i (xy) = e′

i (x)y + π p(i)p(x)v−i ·|x |xe′
i (y). (2.7)

There exists [CHW2] a (non-super) algebra anti-automorphism of f such that

�(θi ) = θi (∀i ∈ I ), �(xy) = �(y)�(x), ∀x, y ∈ f . (2.8)

2.2. A twisted multiplication. Fix once and for all a total order < on I . Recall the
notation di , ai j from Definition 2.1. Let φ : Z[I ] × Z[I ] → Z be the bilinear form
defined by: for i, j ∈ I ,

φ(i, j) =

⎧

⎪

⎨

⎪

⎩

di ai j if j < i,
di if j = i,
−2p(i)p( j) if j > i.

(2.9)

Set

δi< j =
{

0, if i 
< j,
1, if i < j.

By abuse of notation we regard Z2 = {0, 1} ⊂ Z, and so by (2.1) we have

φ(i, j) − φ( j, i) = (−1)δi< j
(

i · j + 2p(i)p( j)
) ∈ 2Z, for i 
= j.

In particular, we always have

φ(i, j) − φ( j, i) ≡ i · j + 2p(i)p( j) mod 4, for i 
= j. (2.10)

Recall that f[t±1] denotes the Q(v)[t±1]π -algebra Q(v)[t±1]π ⊗Q(v)π f . Define a
new multiplication ∗ on f[t±1] by setting

x ∗ y = tφ(|x |,|y|)xy, (2.11)
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for homogeneous x, y ∈ f[t±1] and then extending it bilinearly. Since φ is bilinear, one
verifies that (f[t±1], ∗) is a Z[I ]-graded associative algebra generated by θi . We will
use the notation x∗n = x ∗ x ∗ . . . ∗ x

︸ ︷︷ ︸

n

for powers taken with respect to this product. We

note that

�(x ∗ y) = tφ(|x |,|y|)−φ(|y|,|x |)�(y) ∗ �(x), ∀x, y homogeneous. (2.12)

Proposition 2.2. The algebra (f[t±1], ∗) has a presentation as the Q(v)[t±1]π -algebra
with generators θi (i ∈ I ) and relations

bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)tk(bi j −k)di +(bi j −k)φ(i, j)+kφ( j,i)

×
[

bi j
k

]

vi ,πi

θ
∗ bi j −k
i ∗ θ j ∗ θ∗k

i = 0, (2.13)

for all i 
= j ∈ I .

Proof. The relation (2.13) for (f[t±1], ∗) can be derived directly from the Serre relation
(2.4) for f , and vice versa. As the computation is straightforward, we skip the details.

��
Remark 2.3. The twisted ∗-product on f[t±1] is a variant of the transformation defined
in [FL1, §4] to relate one-parameter quantum group to two-parameter quantum group.
The precise formula for the bilinear form φ is new, and it plays a crucial role in this
paper.

2.3. The twistor �. Recall that we set t2 = −1 and that f[t] is the Q(v, t)π -algebra
Q(v, t)π ⊗Q(v)[t±1]π f[t±1]. By specializing t and twisting v, we obtain the following
Q(t)-algebra isomorphism which plays a fundamental role in this paper.

Theorem 2.4. There is a Q(t)-algebra isomorphism � : f[t] → (f[t], ∗) satisfying

�(θi )=θi (i ∈ I ), �(v)= t−1v, �(π)=−π, �(xy)=�(x) ∗ �(y). (2.14)

The transformation � is called the twistor on f[t].
Proof. Set

Si j :=
bi j
∑

k=0

(−1)k(−π)(
k
2)p(i)+kp(i)p( j)

[

bi j
k

]

t−1
i vi ,(−π)i

θ
∗ bi j −k
i ∗ θ j ∗ θ∗k

i .

To show such a Q(t)-linear map � exists, it suffices to show that the images of the
generators satisfy (2.4) with respect to ∗; that is,

Si j = 0 for all i 
= j ∈ I. (2.15)
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To that end, fix i 
= j ∈ I . Unraveling the definition of ∗, we have

Si j =
bi j
∑

k=0

(−1)k(−π)(
k
2)p(i)+kp(i)p( j)

[

bi j
k

]

t−1
i vi ,(−π)i

× t((
k
2)+(

bi j −k
2 )+k(bi j −k))di +(bi j −k)φ(i, j)+kφ( j,i)

θ
bi j −k
i θ jθ

k
i .

One verifies that
(k

2

)

+
(bi j −k

2

) = (bi j
2

) − k(bi j − k) and

[

bi j
k

]

t−1
i vi ,(−π)i

= tk(bi j −k)di

[

bi j
k

]

vi ,πi

. Using these identities, we rewrite the above identity for Si j as

t−(
bi j
2 )di Si j

=
bi j
∑

k=0

(−1)k(−π)(
k
2)p(i)+kp(i)p( j)

[

bi j
k

]

t−1
i vi ,(−π)i

t(bi j −k)φ(i, j)+kφ( j,i)θ
bi j −k
i θ jθ

k
i

=
bi j
∑

k=0

(−1)k(−π)(
k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

t♣θ
bi j −k
i θ jθ

k
i , (2.16)

where

♣ = k(bi j − k)di + (bi j − k)φ(i, j) + kφ( j, i). (2.17)

Now let us consider ♣. First assume that i < j . Then we find that

♣ = k(bi j − k)di − 2(bi j − k)p(i)p( j) + kdi ai j

= −2

(

k

2

)

di + 2kp(i)p( j) − 2bi j p(i)p( j).

Next assume that i > j . Then we have

♣ = k(bi j − k)di + (bi j − k)di ai j − 2kp(i)p( j)

= −2

(

k

2

)

di + ai j (bi j − 2k)di − 2kp(i)p( j).

Note that 2ai j di ≡ 0 mod 4, thanks to (2.1). In either case when i < j or i > j , we
see that

♣ = 2

(

k

2

)

di + 2kp(i)p( j) + c(i, j) mod 4,

where

c(i, j) =
{

2bi j p(i)p( j), if i < j,

−di
(ai j

2

)

, if i > j.
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Recall t2 = −1. By the bar-consistent condition we have 2di = 2p(i) mod 4, and thus

t♣ = tc(i, j)(−1)(
k
2)p(i)+kp(i)p( j). Then we can rewrite (2.16) and apply the Serre relation

(2.4) for f to conclude that

t−(
bi j
2 )di −c(i, j)Si j =

bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

θ
bi j −k
i θ jθ

k
i = 0.

Therefore, (2.15) is verified and � is well defined.
Finally, to see that � is an isomorphism, we note that a similar argument can be used

to show that a map � : (f[t], ∗) → f[t] satisfying

�(θi ) = θi , �(v) = tv, �(π) = −π, �(x ∗ y) = �(x)�(y),

is well defined as well; clearly � is the inverse of �. ��
Theorem 2.4 provides a way to compare the super and non-super half quantum groups

via �. Indeed, recall the idempotents ε± from (2.2). Then from �(π) = −π , we see
that �(ε±) = ε∓. In particular, �(ε±f[t]) = ε∓f[t], in effect swapping the super and
non-super specializations at π = −1 and π = 1.

Corollary 2.5. There is a Q(t)-linear isomorphism � : f[t]|π=1 → f[t]|π=−1.

Using the identification f[t]|π=±1 ∼= ε±f[t], we have inclusions f[t]|π=±1 ↪→ f[t].
Theorem 2.4 and Corollary 2.5 can be summarized symbolically in the following dia-
gram:

Ψ
f [t] (f [t], ∗)

f [t]|π=1 f [t]|π=−1

For i1, . . . , in ∈ I , we denote

N(i1 + . . . + in) =
∑

1≤r<s≤n

ir · is,

p(i1 + . . . + in) =
∑

1≤r<s≤n

p(ir )p(is).

By convention, N(i1) = p(i1) = 0. Note that N(·) is always an even integer by (2.1).
The following proposition on the Q(t)-linear involution � of f[t] will be used in the

next section.

Proposition 2.6. The involutions ���−1 and � on f[t] are equal up to a sign on each
weight space. More precisely, we have

���−1(x) = (−1)
N(ν)

2 +p(ν)�(x), for x ∈ fν. (2.18)
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Proof. We prove the formula (2.18) by induction on the height ht(|x |).
The formula clearly holds when ht(|x |) ≤ 1.
Now assume that the formula holds for x with ht(|x |) ≥ 1 and for y with ht(|y|) ≥ 1.

Recall t2 = −1. Then by (2.8), (2.10), (2.11), (2.12), and (2.14), we have

���−1(x ∗ y) = �
(

�(�−1(y)) �(�−1(x))
)

= ���−1(y) ∗ ���−1(x)

= (−1)
N(|y|)

2 +p(|y|)+ N(|x |)
2 +p(|x |)�(y) ∗ �(x)

= (−1)
N(|y|)

2 +p(|y|)+ N(|x |)
2 +p(|x |)tφ(|y|,|x |)−φ(|x |,|y|)�(x ∗ y)

= (−1)
N(|x∗y|)

2 +p(|x∗y|)�(x ∗ y).

Hence the formula (2.18) holds for x ∗ y. This completes the induction.
Since N and p only depend on the weight, ���−1 and � are proportional on each

weight space. The proposition is proved. ��

3. Comparison of Crystal Lattices and Canonical Bases

3.1. Comparing crystal lattices. For x ∈ fν , there is a unique decomposition of the form

x =
∑

n≥0

θ
(n)
i xn, (3.1)

such that xn = 0 for all but finitely many n, xn ∈ fν−ni , and e′
i (xn) = 0 for all n. We

will refer to this as its i-string decomposition. Then we define Kashiwara operators

ẽi x =
∑

n≥1

θ
(n−1)
i xn,

f̃i x =
∑

n≥0

θ
(n+1)
i xn .

Let A ⊂ Q(v) be the ring of rational functions with no poles at v = 0 and so
Aπ = A[π ] ⊂ Q(v)π . The crystal lattice L of f is the Aπ -lattice generated by

B =
{

f̃i1 . . . f̃in 1 | ∀i1, . . . , in ∈ I,∀n
}

.

According to [CHW2], the set B := (B ∪ π B) + vL is a Q-basis of L/vL, called the
(maximal) crystal basis for f .

We note the following useful properties of L (with the same proof as usual [K]).

Lemma 3.1. Let x =∑n≥0 θ
(n)
i xn be the i-string decomposition of x ∈ f . Then,

(1) x ∈ L if and only if xn ∈ L for all n.
(2) If x + vL ∈ B, then x = θ

(n)
i xn mod vL for some n and xn + vL ∈ B.

(3) If ẽ j x = 0 for all j ∈ I then x = 0; if ẽ j x 
= 0 then f̃ j ẽ j x = x.
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To take advantage of Theorem 2.4, we need to extend scalars to include t. We let
A[t] = Q(t) ⊗Q A, the subring of Q(v, t) of rational functions with no poles at v = 0.
Then set L[t] = A[t]π ⊗Aπ L.

The isomorphism � in Theorem 2.4, which sends v �→ t−1v and π �→ −π , clearly
preserves the Q(t)-algebra A[t]π .

Lemma 3.2. The following properties hold:

(1) �(θ
(n)
i ) = θ

(n)
i for n ≥ 1;

(2) e′
i (�(x)) = tφ(i,|x |−i)�(e′

i (x)) for all homogeneous x ∈ f[t] and i ∈ I ;
(3) Let x ∈ f[t]ν with its i-string decomposition (3.1) for a given i ∈ I . Then �(x) has

the following i-string decomposition

�(x) =
∑

n≥0

tφ(ni,ν)−n2di θ
(n)
i �(xn).

Proof. Recall the definitions (2.3) of [n]v,π and (2.14) of �. We have

�
(

[n]v,π

) = [n]t−1v,−π = tn−1 [n]v,π .

We prove (1) by induction on n. The case when n = 1 is clear. Assume �(θ
(n−1)
i ) =

θ
(n−1)
i . By definition of the divided power (2.6), we have

�(θ
(n)
i ) = �

(

[n]−1
vi ,πi

θiθ
(n−1)
i

)

= t1−n
i [n]−1

vi ,πi
�(θi ) ∗ �

(

θ
(n−1)
i

)

= t1−n
i [n]−1

vi ,πi
tn−1
i θiθ

(n−1)
i = θ

(n)
i .

Now let us verify (2). It is trivial if ht|x | ≤ 1. Otherwise, it suffices to show that if
(2) holds for x, y ∈ f[t], then it holds for xy. By (2.7) we compute

e′
i (�(xy))

= tφ(|x |,|y|)e′
i (�(x)�(y))

= tφ(|x |,|y|)(e′
i (�(x))�(y) + π p(i)p(x)v−i ·|x |�(x)e′

i (�(y))
)

= tφ(i,|y|)e′
i (�(x)) ∗ �(y) + π p(i)p(x)v−i ·|x |tφ(|x |,i)�(x) ∗ e′

i (�(y))

()= tφ(i,|y|)+φ(i,|x |−i)�(e′
i (x)y) + π p(i)p(x)v−i ·|x |tφ(|x |,i)+φ(i,|y|−i)�(xe′

i (y))

()= tφ(i,|y|)+φ(i,|x |−i)�(e′
i (x)y)+(−π)p(i)p(x)(t−1v)−i ·|x |tφ(i,|x |)+φ(i,|y|−i)�(xe′

i (y))

= tφ(i,|x |+|y|−i)�
(

e′
i (x)y + π p(i)p(x)v−i ·|x |xe′

i (y)
)

= tφ(i,|xy|−i)�(e′
i (xy)),

where the equation () follows from the inductive assumption and (2.14) and () follows
from (2.10).

Finally, we prove (3). Such an identity for �(x) follows by the definition of � and
(1), and the claim that this is an i-string decomposition follows from (2). ��
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Proposition 3.3. The isomorphism � preserves the lattice L[t], i.e., �(L[t]) = L[t].
Furthermore, � induces an isomorphism �0 on L[t]/vL[t] such that

�0(x) = t�(x)x ∀x ∈ B,

where �(x) is some integer depending on x.

Proof. We first observe that �(L[t]) ⊆ L[t], as this follows from using induction on
height along with Lemma 3.1(1) and (3), and Lemma 3.2(3). On the other hand, Lemma
3.2 can be rewritten in terms of �−1 (essentially by replacing t with t−1 in (2) and (3))
and so a similar argument shows �−1(L[t]) ⊆ L[t]. Therefore �(L[t]) = L[t].

Let x + vL[t] ∈ B. We proceed by induction on the height of x . First note that
�0(1 + vL[t]) = 1 + vL[t] and �0(π + vL[t]) = −π + vL[t], so the proposition holds
with �(1 + vL[t]) = 0 and �(π + vL[t]) = 2.

If ht|x | ≥ 1, then by Lemma 3.1(2) and (3), there is an i ∈ I such that we can write
x + vL[t] = θ

(n)
i xn + vL[t] with xn + vL[t] ∈ B and n > 0. Then by induction on the

height and Lemma 3.2(3), we have

�0(x + vL[t]) = tφ(ni,ν)−n2di +�(xn+vL[t]π )x + vL[t].
The proposition is proved. ��

It was stated in [CHW2, Proposition 6.7] that L is �-invariant. In contrast to the non-
super setting (as done by Lusztig and Kashiwara), this is not easy to verify algebraically
using the tools in loc. cit. because the bilinear form on L/vL is not positive definite.
Here we are in a position to furnish an algebraic proof of [CHW2, Proposition 6.7].

Proposition 3.4. The involution � preserves L, i.e., �(L) = L.

Proof. Since 1
2 ∈ A, we note that

L = ε+L ⊕ ε−L ∼= L|π=1 ⊕ L|π=−1.

We similarly have a decomposition � = �+ ⊕ �− where �±(x) = �(ε±x), and by
definition we see that under the isomorphism ε±f[t] ∼= f[t]|π=±1, �± corresponds to
�|π=±1.

Since it is known [K,Lu2] that �π=1(L|π=1) = L|π=1, it suffices to show that

�|π=−1(L|π=−1) = L|π=−1.

Since �(π) = −π , we have �(L[t]|π=1) = L[t]|π=−1. Let x ∈ L|π=−1. Since
x ∈ L|π=−1 ⊂ L[t]|π=−1, by Proposition 2.6 we have

�|π=−1(x) = (−1)
N(|x |)

2 +p(|x |)��|π=1�
−1(x) ∈ L[t]|π=−1.

On the other hand, by definition we have �(x) ∈ f |π=−1, and hence

�|π=−1(x) ∈ L[t]|π=−1 ∩ f |π=−1 = L|π=−1.

The proposition is proved. ��



Quantum Supergroups III. Twistors 427

3.2. Comparing canonical bases. The bar involution on f in (2.5) extends trivially to
an involution of f[t±1] and f[t] by letting t = t and t = t respectively.

Lemma 3.5. The map � commutes with the bar map on f[t], i.e., ◦ � = � ◦ .

Proof. By the definition of � given in Theorem 2.4, the only nontrivial thing to check
is the commutativity when acting on v. Indeed, recalling t4 = 1, we have

�(v) = t−1πv−1 = −π(t−1v)−1 = �(v).

The lemma is proved. ��
As proven in [CHW2] (generalizing the approach of [K]), there exists a globalization

map G : L[t]/vL[t] → L[t] ∩ L[t] such that for each b ∈ B, G(b) is the unique
bar-invariant vector in L[t] such that G(b)+vL[t] = b. The set {G(b) : b ∈ B} is called
the canonical π -basis for f .

Specializing π = 1 yields the usual canonical basis of Lusztig and Kashiwara,
while specializing π = −1 yields a (signed) canonical basis for the half quantum
supergroup. Even though we have established a connection on the level of crystal lattices
and crystal bases, it is somewhat surprising to see that � allows us to establish a direct
and precise link between the canonical bases for the two specializations. Recall �(·) from
Proposition 3.3, which is integer-valued but may not be even-integer-valued in general.

Theorem 3.6. For any b ∈ B, we have

�(G(b)) = t�(b)G(b).

In particular, �(G(b)|π=1) is proportional to G(b)|π=−1.

Proof. It follows by Lemma 3.5 that �(G(b)) is bar-invariant. It follows by the definition
of the maps and Proposition 3.3 that

�(G(b)) + vL[t] = �(b) = t�(b)b.

Therefore, t−�(b)�(G(b)) = G(b) and thus �(ε+G(b)) = ε−t�(b)G(b). ��
Example 3.7. Let (I, ·) be the super Cartan datum associated to osp(1|4) with I = {1, 2}
(where 1 is the odd simple root) and Dynkin diagram given by

• ◦<
1 2

Then

p(1) = 1, p(2) = 0;
1 · 1 = 2, 1 · 2 = 2 · 1 = −2, 2 · 2 = 4;

φ(1, 1) = 1, φ(1, 2) = 0, φ(2, 1) = −2, φ(2, 2) = 2.

It is an easy computation that

f̃1 f̃2 f̃11 = θ1(θ2θ1 − v2θ1θ2) + v2θ
(2)
1 θ2.

In particular, G( f̃1 f̃2 f̃11 + vL) = θ1θ2θ1, and �
(

G( f̃1 f̃2 f̃11 + vL)
) = t−1θ1θ2θ1.
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4. The Twistor of Modified Covering Quantum Group

4.1. The modified covering quantum group. To facilitate the definition of modified cov-
ering quantum group next, we recall the definition of the covering quantum group U.
We recall that bi j = 1 − ai j .

Definition 4.1 [CHW1]. The covering quantum group U associated to a super root
datum (Y, X, I, ·) is the Q(v)π -algebra with generators Ei , Fi , Kμ, and Jμ, for i ∈ I
and μ ∈ Y , subject to the relations:

Jμ Jν = Jμ+ν, KμKν = Kμ+ν, K0 = J0 = J 2
ν = 1, JμKν = Kν Jμ, (4.1)

JμEi = π〈μ,i ′〉Ei Jμ, JμFi = π−〈μ,i ′〉Fi Jμ, (4.2)

KμEi = v〈μ,i ′〉Ei Kμ, KμFi = v−〈μ,i ′〉Fi Kμ, (4.3)

Ei Fj − π p(i)p( j)Fj Ei = δi j
Jdi i Kdi i − K−di i

πivi − v−1
i

, (4.4)

bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

E
bi j −k
i E j Ek

i = 0 (i 
= j), (4.5)

bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

F
bi j −k
i Fj Fk

i = 0 (i 
= j), (4.6)

for i, j ∈ I and μ, ν ∈ Y .

Again by specialization at π = ±1, we obtain the usual quantum group U|π=1 (with
extra central elements) and the super quantum group U|π=−1. We extend scalars and set
U[t±1] = Q(v)[t±1]π ⊗Q(v)π U.

We endow U with a Z[I ]-grading by setting

|Ei | = i, |Fi | = −i, |Jμ| = |Kμ| = 0, (4.7)

and also endow U with a Z2-grading by setting

p(Ei ) = p(Fi ) = p(i), p(Jμ) = p(Kμ) = 0. (4.8)

The definition of the covering quantum group U is also internally coherent with the
notion of the modified covering quantum group U̇, which we now introduce.

Definition 4.2. The modified covering quantum group U̇ associated to the root datum
(Y, X, I, ·) is defined to be the associative Q(v)π -algebra without unit which is generated
by the symbols 1λ, Ei 1λ and Fi 1λ, for λ ∈ X and i ∈ I , subject to the relations:

1λ1λ′ = δλ,λ′1λ, (4.9)

(Ei 1λ)1λ′ = δλ,λ′ Ei 1λ, 1λ′(Ei 1λ) = δλ′,λ+i ′ Ei 1λ, (4.10)

(Fi 1λ)1λ′ = δλ,λ′ Fi 1λ, 1λ′(Fi 1λ) = δλ′,λ−i ′ Fi 1λ, (4.11)

(Ei Fj − π p(i)p( j)Fj Ei )1λ = δi j [〈i, λ〉]vi ,πi
1λ, (4.12)
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bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

E
bi j −k
i E j Ek

i 1λ = 0 (i 
= j), (4.13)

bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

F
bi j −k
i Fj Fk

i 1λ = 0 (i 
= j), (4.14)

where i, j ∈ I , λ, λ′ ∈ X, and we use the notation xy1λ = (x1λ+|y|)(y1λ) for x, y ∈ U.

As with the half covering quantum groups, if we set π = 1 then U̇|π=1 is the modified
quantum group of Lusztig, whereas if π = −1 then U̇|π=−1 is the modified quantum
supergroup.

The algebra U̇ has a (left) U-action given by

Ei · x1λ = (Ei 1λ+|x |)x1λ, Fi · x1λ = (Fi 1λ+|x |)x1λ,

Kν · x1λ = v〈ν,λ+|x |〉x1λ, Jν · x1λ = π 〈ν,λ+|x |〉x1λ.

There is also a similar right U-action on U̇. Then as in [Lu1], U̇ can be identified with
the Q(v)π -algebra on the symbols x1λ for x ∈ U and λ ∈ X satisfying

x1λy1μ = δλ,μ+|y|xy1μ, Kν1λ = v〈ν,λ〉1λ, Jν1λ = π 〈ν,λ〉1λ. (4.15)

Denote by ZU̇ the Z[v±1]π -subalgebra of U̇ generated by 1λ, E (n)
i 1λ and F (n)

i 1λ, for
n ≥ 1, λ ∈ X and i ∈ I (here we recall the definition of divided powers (2.6)). Then ZU̇
is a Z[v±1]π -form of U̇.

4.2. The twistor �̇. Recall the bilinear form φ(·, ·) : Z[I ] × Z[I ] → Z from (2.9),
and that we have an embedding Z[I ] ↪→ X given by i �→ i ′. Fix once and for all a
transversal C ⊂ X for the coset representatives of X/Z[I ]. Then we define the bilinear
pairing φ̇(·, ·) : Z[I ] × X → Z by

φ̇(ν, μ′ + λ) = φ(ν, μ), for all ν, μ ∈ Z[I ], λ ∈ C. (4.16)

The map �̇ in the following theorem can be viewed as a counterpart in the setting of
modified covering quantum group of the isomorphism � in Theorem 2.4. Note that we
do not need to use a twisted multiplication in this setting as for �. By base changes we
set as usual U̇[t] = Q(v, t)π ⊗Q(v)π U̇ and ZU̇[t] = Z[v±1, t]π ⊗Z[v±1]π ZU̇.

Theorem 4.3. (1) There is an automorphism �̇ of the Q(t)-algebra U̇[t] of order 4 such
that, for all i ∈ I and λ ∈ X,

�̇(1λ) = 1λ, �̇(Ei 1λ) = tdi 〈i,λ〉−φ̇(i,λ)Ei 1λ, �̇(Fi 1λ) = tφ̇(i,λ)Fi 1λ,

�̇(π) = −π, �̇(v) = t−1v.

(2) The automorphism �̇ preserves the Z[v±1, t]π -form ZU̇[t].
Proof. (1) Once we verify that the endomorphism �̇ is well defined, it is clearly an
automorphism of order four by checking the images of the generators. To verify that �̇
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is well defined, it suffices to check that the images of the generators satisfy the relations.
It is straightforward to verify (4.9)–(4.11), and we leave that as an exercise to the reader.

Let us check (4.12). We compute

(tdi〈i,λ− j ′〉−φ̇(i,λ− j ′)Ei 1λ− j ′)(t
φ̇( j,λ)Fj 1λ)

− (−π)p(i)p( j)(tφ̇( j,λ+i ′)Fj 1λ+i ′)(t
di 〈i,λ〉−φ̇(i,λ)Ei 1λ)

= tdi〈i,λ− j ′〉−φ̇(i,λ− j ′)+φ̇( j,λ)(Ei Fj − (−π)p(i)p( j)ti · j+φ( j,i)−φ(i, j)Fj Ei )1λ

= tdi〈i,λ− j ′〉−φ̇(i,λ− j ′)+φ̇( j,λ)(Ei Fj − π p(i)p( j)Fj Ei )1λ

= δi j t
〈i,λ〉−1
i [〈i, λ〉]vi ,πi

= δi j [〈i, λ〉]t−1
i vi ,−πi

.

Next, let us check the Serre relations. As the proof of (4.14) are similar, we will only
check (4.13). Let us set

Ei j (k) = �̇(E
bi j −k
i E j Ek

i 1λ).

We want to verify that

bi j
∑

k=0

(−1)k(−π)(
k
2)p(i)+kp(i)p( j)

[

bi j
k

]

t−1vi ,−πi

Ei j (k) = 0. (4.17)

First note that

�(Es
i 1λ) =

s
∏

t=1

tdi〈i,λ+(t−1)i ′〉−φ̇(i,λ+(t−1)i ′)Ei 1λ+(t−1)i ′ = t(
s
2)di +s(di 〈i,λ〉−φ̇(i,λ))Es

i 1λ.

By using the factorization E
bi j −k
i E j Ek

i 1λ = E
bi j −k
i 1λ+ j ′+ki ′ E j 1λ+ki ′ Ek

i 1λ and the iden-

tity
(k

2

)

+
(bi j −k

2

)

+ k(bi j − k) = (bi j
2

)

, we compute that

Ei j (k) = t♠i j (k)+♥i j E
bi j −k
i E j Ek

i 1λ,

where

♥i j = bi j (i · j + di 〈i, λ〉 − φ̇(i, λ)) + d j 〈 j, λ〉 − φ̇( j, λ) +

(

bi j

2

)

,

♠i j (k) = −kφ( j, i) − (bi j − k)φ(i, j).

Then
[

bi j
k

]

t−1vi ,−πi

Ei j (k) = t♥i j +♠i j (k)+k(bi j −k)di

[

bi j
k

]

vi ,πi

E
bi j −k
i E j Ek

i 1λ.

Recall ♣ from (2.17). Since φ(i1, i2) ∈ 2Z for i1 
= i2 ∈ I , we see that

♠i j (k) + k(bi j − k)di ≡ ♣ ≡ 2

(

k

2

)

+ 2kp(i)p( j) + c(i, j) mod 4.
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Then we see that

bi j
∑

k=0

(−1)k(−π)(
k
2)p(i)+kp(i)p( j)

[

bi j
k

]

t−1vi ,−πi

Ei j (k)

= t♥i j +c(i, j)
bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

E
bi j −k
i E j Ek

i 1λ = 0.

This finishes the verification of the Serre relations, whence (1).
Part (2) follows immediately from (1) by noting that �̇ preserves the divided powers

up to some integer power of t. ��
Since �̇(π) = −π , we obtain the following variant of Theorem 4.3.

Theorem 4.4. The automorphism �̇ of U̇[t] induces an isomorphism of Q(t)-algebras
U̇[t]|π=1 ∼= U̇[t]|π=−1 and an isomorphism of Z[t]-algebras ZU̇[t]|π=1 ∼= ZU̇[t]|π=−1.
In particular, we have embeddings U̇|π=±1 ↪→ U̇[t]|π=∓1 and ZU̇|π=±1 ↪→
ZU̇[t]|π=∓1.

Hence, one may view the algebras U̇|π=1 and U̇|π=−1 as two different rational forms
of the algebra U̇[t]|π=1 (or equivalently, of U̇[t]|π=−1). We shall refer to the automor-
phism �̇ in Theorem 4.3 as a twistor on U̇[t].
Remark 4.5. (1) The definition of the covering quantum group U and the modified cover-

ing quantum group U̇ makes sense for super Cartan datum without the bar-consistent
condition (d) in Definition 2.1. But the above theorems require the bar-consistent
condition.

(2) The integer φ̇(i, λ) admits a geometric interpretation (compare the integers eμ,nαi

and fμ,nαi in [Li, 5.1]).

4.3. Category equivalences. Recall that a U̇-module M over Q(v) is called unital if each
m ∈ M is a finite sum of the form m = ∑

λ∈X 1λm. When specializing π to ±1, we
obtain the definition of a unital U̇|π=±1-module over Q(v). We denote the categories of
unital modules over Q(v) of U̇ (resp., U̇|π=1, U̇|π=−1) by Ċ (and resp., Ċπ=1, Ċπ=−1).
We have Ċ = Ċπ=1 ⊕ Ċπ=−1. We denote the category of unital modules over the field
Q(v, t) of U̇ (and resp., U̇|π=1, U̇|π=−1) by Ċt (and resp., Ċt

π=1, Ċt
π=−1).

The following is an immediate consequence of Theorem 4.4.

Proposition 4.6. The twistor �̇ induces a category equivalence between Ċt
π=1 and

Ċt
π=−1.

The main novelty in the definition of the covering quantum group U is the additional
generators Jμ in the Cartan subalgebra, which lead to a natural formulation of the
integral form of U and weight modules of U (see [CHW1]). A U-module over Q(v) (and
resp., U[t]-module over Q(v, t)) M is called a weight module of U (and resp., U[t]) if
M = ⊕λ∈X Mλ with

Mλ =
{

m ∈ M | Kνm = v〈ν,λ〉m, Jνm = π 〈ν,λ〉m, ∀ ν ∈ Y
}

.
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We denote the category of weight modules of U (and resp., U[t]) over the respective
fields as above by C (and resp., Ct). Similarly, we have categories of weight modules of
U[t]|π=±1 over Q(v, t) denoted by Ct

π=±1.
One can suitably formulate the BGG category Ot, Ot

π=1, Ot
π=−1 as subcategories of

Ct, Ct
π=1 and Ct

π=−1, respectively.
Recall the definition of the highest weight U-modules V (λ) over Q(v), for λ ∈ X ; see

[CHW1, Proposition 2.6.5]. Then V (λ)π=±1 is a simple U|π=±1-module. Let X+ = {λ ∈
X | 〈i, λ〉 ∈ Z≥0,∀i ∈ I } be the set of dominant weights. Then {V (λ)π=1|λ ∈ X+} and
{V (λ)π=−1|λ ∈ X+} form a complete list of pairwise non-isomorphic simple integrable
modules of U|π=1 and of U|π=−1, respectively.

Proposition 4.7. (1) The categories Ct
π=1 and Ct

π=−1 are equivalent.
(2) The characters of the integrable U|π=−1-module V (λ)π=−1 and the integrable

U|π=1-module V (λ)π=1 coincide, for each λ ∈ X+.

Proof. The equivalence in (1) follows by a sequence of category equivalences:

Ct
π=1

∼= Ċt
π=1

∼= Ċt
π=−1

∼= Ct
π=−1,

where the second equivalence follows by Proposition 4.6, the first equivalence is easy
[Lu2, §23.1.4], and the third equivalence is completely analogous.

The category equivalences above always send each object M to M (where the weight
structure remains unchanged), and moreover, the equivalence from Ct

π=1 to Ct
π=−1 sends

V (λ)π=1 to V (λ)π=−1 while preserving weight space decompositions. The proposition
is proved. ��
Corollary 4.8. The BGG categories Ot

π=1 of modules over the quantum group U[t]|π=1

and Ot
π=−1 over the quantum supergroup U[t]|π=−1 are equivalent via �̇.

Remark 4.9. Thanks to the isomorphism of the integral forms ZU̇|π=1 and ZU̇|π=−1 in
Theorem 4.4, a version of category equivalence similar to Propositions 4.7 holds when
specializing v to be a root of unity.

Remark 4.10. Proposition 4.7(2) was stated in [CHW1] without proof, and there has
been another proof given in [KKO]. A version of Proposition 4.7(1) on the equivalence
of the weight modules of somewhat different algebras over C(v)π also appeared in
[KKO] with a very different proof. Note that the notion of weight modules in loc. cit. is
nonstandard and subtle, and the algebras formulated therein over C(v) (or C(v)π ) do not
seem to admit rational forms or integral forms or modified forms as ours; in particular,
their formulation does not make sense when v is a root of unity.

Remark 4.11. Let X ev = {λ ∈ X | 〈i, λ〉 ∈ 2Z,∀i ∈ I1}. Denote byOt
π=1,v=1 (and resp.,

Ot
π=−1,v=1) the BGG category of X ev-weighted modules over the Lie algebra (and resp.,

Lie superalgebra) associated to the super root datum (Y, X, I, ·). Using the technique
of quantization of Lie bialgebras, Etingof–Kazhdan [EK] established an equivalence of
categories between Ot

π=1,v=1 and Ot
π=1. As a super analogue, Geer [G] similarly estab-

lished a quantization of Lie bisuperalgebras (Geer’s super analogue was formulated for
the finite type basic Lie superalgebras, but it makes sense for Kac-Moody as done by
Etingof–Kazhdan.) This leads to an equivalence of categories between Ot

π=−1,v=1 and
Ot

π=−1 (where the restriction to the weights in X ev is necessary; see the classification of
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integrable modules in [K]). When combining with our category equivalence in Corol-
lary 4.8, we obtain an equivalence of highest weight categories between BGG categories
for Lie algebras and superalgebras. This equivalence provides an irreducible charac-
ter formula in Ot

π=−1,v=1 whenever the corresponding irreducible module of Ot
π=1,v=1

admits a solution of the Kazhdan-Lusztig conjecture (by Beilinson-Bernstein, Brylinski-
Kashiwara, Kashiwara-Tanisaki).

Ψ̇t
π=1

t
π=−1

t
π=1,v=1

t
π=−1,v=1

GEK

4.4. Extended covering quantum groups. We first work over a formal parameter t . Let
T be the group algebra (in multiplicative form) of the group Z[I ] × Y , that is, the
Q(v)[t±1]π -algebra with generators Tμ,ϒν , for μ ∈ Y and ν ∈ Z[I ], and relations

TμTμ′ = Tμ+μ′ , ϒνϒν′ = ϒν+ν′ , Tμϒν = ϒνTμ, T0 = ϒ0 = 1. (4.18)

We define an action of T on U[t±1] by

Tμ · x = t〈μ,η′〉x, ϒν · x = tφ(ν,η)x for all x ∈ U[t±1]η. (4.19)

Then we form the semi-direct Q(v)[t±1]π -algebra ̂U[t±1] = T � U[t±1] with respect
to the above action of T; that is, T xT −1 = T · x for all T ∈ T and x ∈ U[t±1]. By
specialization, we obtain a Q(v, t)π -algebrâU[t], which is called the extended covering
quantum group.

Proposition 4.12. There is a Q(t)-algebra automorphism ̂� on ̂U[t] such that

̂�(Ei ) = t−1
i ϒ−1

i Tdi i Ei , ̂�(Fi ) = Fiϒi , ̂�(Kν) = T−ν Kν, ̂�(Jν) = T 2
ν Jν,

̂�(Tν) = Tν, ̂�(ϒν) = ϒν, ̂�(v) = t−1v, ̂�(π) = −π.

The automorphism ̂� will be called the twistor on ̂U[t].
Proof. We first show that such a map is well defined by showing that relations (4.1)–
(4.6) and (4.18) are satisfied by the images of the generators. The relations (4.1)–(4.3)
and (4.18) are straightforward to verify, and we leave this to the reader.

Let us verify (4.4). On one hand, we have

̂�(Ei )̂�(Fj ) − ̂�(π)p(i)p( j)
̂�(Fj )̂�(Ei )

= t−1
i ϒ−1

i Tdi i Ei Fjϒ j − (−π)p(i)p( j)Fjϒ j t
−1
i ϒ−1

i Tdi i Ei

= t−di +d j −φ( j,i)ϒ−1
i ϒ j Tdi i

(

Ei Fj − ti · j+φ( j,i)−φ(i, j)(−π)p(i)p( j)Fj Ei

)

= t−di +d j −φ( j,i)ϒiϒ
−1
j Tdi i (Ei Fj − π p(i)p( j)Fj Ei ), (4.20)
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where the last equality follows from (2.10) and t2 = −1. On the other hand,

δi j

̂�(Jdi i )
̂�(Kdi i ) − ̂�(K−di i )

̂�(πi )̂�(vi ) − ̂�(vi )−1
= δi j

Tdi i Jdi i Kdi i − Tdi i K−di i

(−t)−di πivi − tiv
−1
i

= δi j t
−1
i Tdi i

Jdi i Kdi i − K−di i

πivi − v−1
i

. (4.21)

Then comparing (4.20) and (4.21), we see that they are equal for all i, j ∈ I , whence
(4.4).

It remains to check the Serre relations (4.5) and (4.6). As these computations are
entirely similar, let us prove (4.6). Then recalling (2.17), we see that

(Fiϒi )
bi j −k(Fjϒ j )(Fiϒi )

k = t(
bi j
2 )−k(bi j −k)di +♣F

bi j −k
i Fj Fk

i ϒbi j i+ j .

Hence as in the proof of Theorem 2.4, we have

bi j
∑

k=0

(−1)k(−π)(
k
2)p(i)+kp(i)p( j)

[

bi j
k

]

t−1vi ,−πi

(Fiϒi )
bi j −k(Fjϒ j )(Fiϒi )

k

=
⎛

⎝

bi j
∑

k=0

(−1)kπ(k
2)p(i)+kp(i)p( j)

[

bi j
k

]

vi ,πi

F
bi j −k
i Fj Fk

i

⎞

⎠ t(
bi j
2 )+c(i, j)

ϒbi j i+ j = 0.

The proposition is proved. ��
Remark 4.13. Here is a heuristic way of thinking about the extended covering quantum
group and its twistor. The algebra U acts on U̇ via

1 �→
∑

λ∈X

1λ, Ei �→
∑

λ∈X

Ei 1λ, Fi �→
∑

λ∈X

Fi 1λ, Kν �→
∑

λ∈X

v〈ν,λ〉1λ, Jν �→
∑

λ∈X

π 〈ν,λ〉1λ.

Then �̇ induces an alternate U-module structure on U̇ via

1 �→
∑

1λ, Ei �→
∑

λ∈X

tdi 〈i,λ〉−φ̇(i,λ)Ei 1λ, Fi �→
∑

λ∈X

tφ̇(i,λ)Fi 1λ,

Kν �→
∑

λ∈X

(t−1v)〈ν,λ〉1λ, Jν �→
∑

λ∈X

(−π)〈ν,λ〉1λ.

Merging these two actions leads to the introduction of new semisimple elements Tν and
ϒμ such that Tν �→∑

λ∈X t 〈ν,λ〉1λ and ϒμ �→∑

λ∈X t φ̇(μ,λ)1λ.

Remark 4.14. Some construction similar to the twistor̂� as in Proposition 4.12 appeared
in [KKO]. In contrast to loc. cit., our formula for ̂� is very explicit.

By specialization, the twistor on̂U[t] leads to an isomorphism between the extended
super and non-super quantum groups.

Corollary 4.15. The Q(t)-algebras ̂U[t]|π=1 and ̂U[t]π=−1 are isomorphic under ̂�.

The twistor � : f[t] → (f[t], ∗) in Theorem 2.4 is intimately related to the twistor
̂� : ̂U[t] → ̂U[t] in Proposition 4.12, as we shall describe.
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There is an injective Q(v)[t±1]π -algebra homomorphism (see [CHW1, §2.1])

(·)− : f[t±1] −→ U[t±1], (4.22)

such that θ−
i = Fi for all i ∈ I.

Lemma 4.16. There is an injective Q(v)[t±1]π -algebra homomorphism

χ : (f[t±1], ∗) −→ ̂U[t±1]
such that

χ(x) = x−ϒν, ∀x ∈ f[t±1]ν .
Proof. One checks by definition that, for x, y ∈ f[t±1] homogeneous,

(x ∗ y)−ϒ|x |+|y| = x−ϒ|x |y−ϒ|y|.

The lemma is proved. ��
Now specializing t to t for χ and (·)− above, we obtain an injective Q(v, t)π -algebra

homomorphism χ : (f[t], ∗) −→ ̂U[t], and an injective Q(v, t)π -algebra homomor-
phism (·)− : f[t] −→ U[t]. The following proposition can be verified by definitions,
which we leave to the reader.

Proposition 4.17. We have a commutative diagram of Q(t)-algebra homomorphisms:

f [t]

(f [t], ∗)

U[t]

U[t]

(·)−

χ

Ψ Ψ

Acknowledgements. Y.L. is supported in part by the NSF grant DMS-1160351, while S.C. and W.W. are
partially supported by the NSF grant DMS-1101268. S.C. was also supported by a semester fellowship at the
University of Virginia. S.C. and W.W. thank Institute of Mathematics, Academia Sinica, Taipei for providing an
excellent working environment and support, where part of this project was carried out. W.W. thanks Shun-Jen
Cheng and Maria Gorelik for helpful discussions regarding the work of Lanzman.

References

[CHW1] Clark, S., Hill, D., Wang, W.: Quantum supergroups I. foundations. Transform. Groups 18(4), 1019–
1053 (2013)

[CHW2] Clark, S., Hill, D., Wang, W.: Quantum supergroups II. Canonical basis. arXiv:1304.7837v2
[CW] Clark, S., Wang, W.: Canonical basis for quantum osp(1|2). Lett. Math. Phys. 103, 207–231 (2013)
[EKL] Ellis, A., Khovanov, M., Lauda, A.: The odd nilHecke algebra and its diagrammatics. Int. Math.

Res. Not. 2014(4), 991–1062 (2014)
[EL] Ellis, A., Lauda, A.: An odd categorification of Uq (sl2). arXiv:1307.7816
[EK] Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras. VI. quantization of generalized Kac-

Moody algebras. Transform. Groups 13, 527–539 (2008)
[FL1] Fan, Z., Li, Y.: Two-parameter quantum algebras, canonical bases and categorifications (2012).

arXiv:1303.2429

http://arXiv.org/abs/1304.7837v2
http://arXiv.org/abs/1307.7816
http://arXiv.org/abs/1303.2429


436 S. Clark, Z. Fan, Y. Li, W. Wang

[FL2] Fan, Z., Li, Y.: A geometric setting for quantum osp(1|2), Trans. Amer. Math. Soc. (2014, to appear).
arXiv:1305.0710

[G] Geer, N.: Etingof–Kazhdan quantization of Lie superbialgebras. Adv. Math. 207, 1–38 (2006)
[HW] Hill, D., Wang, W.: Categorification of quantum Kac-Moody superalgebras. Trans. Amer. Math.

Soc. (2014, to appear). arXiv:1202.2769v2
[Kac] Kac, V.: Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the

very strange formula. Adv. Math. 30, 85–136 (1978)
[K] Kashiwara, K.M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math.

J. 63, 456–516 (1991)
[KKT] Kang, S.-J., Kashiwara, M., Tsuchioka, S.: Quiver Hecke superalgebras. J. Reine. Angew. Math.

(2014, to appear). doi:10.1515/cralle-2013-0089; arXiv:1107.1039
[KKO] Kang, S.-J., Kashiwara, M., Oh, S.-J.: Supercategorification of quantum Kac-Moody algebras II.

arXiv:1303.1916
[La] Lanzman, E.: The Zhang transformation and uq (osp(1, 2l))-Verma modules annihilators. Algebra

Represent. Theory 5, 235–258 (2002)
[Li] Li, Y.: A geometric realization of modified quantum algebras. arXiv:1007.5384
[Lu1] Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3,

447–498 (1990)
[Lu2] Lusztig, G.: Introduction to quantum groups. In: Progress in Mathematics, vol. 110. Birkhäuser,

Basel (1993)
[W] Wang, W.: Double affine Hecke algebras for the spin symmetric group. Math. Res. Lett. 16, 1071–

1085 (2009)
[Y1] Yamane, H.: Quantized enveloping algebras associated with simple Lie superalgebras and their

universal R-matrices. Publ. Res. Inst. Math. Sci. 30, 15–87 (1994)
[Y2] Yamane, H.: On defining relations of affine Lie superalgebras and affine quantized universal

enveloping superalgebras. Pub. Res. Inst. Math. Sci. 35, 321–390 (1999)

Communicated by Y. Kawahigashi

http://arXiv.org/abs/1305.0710
http://arXiv.org/abs/1202.2769v2
http://dx.doi.org/10.1515/cralle-2013-0089
http://arXiv.org/abs/1107.1039
http://arXiv.org/abs/1303.1916
http://arXiv.org/abs/1007.5384

	Quantum Supergroups III. Twistors
	Abstract:
	1 Introduction
	2 The Twistor of Half Covering Quantum Group
	2.1 The preliminaries
	2.2 A twisted multiplication
	2.3 The twistor Ψ

	3 Comparison of Crystal Lattices and Canonical Bases
	3.1 Comparing crystal lattices
	3.2 Comparing canonical bases

	4 The Twistor of Modified Covering Quantum Group
	4.1 The modified covering quantum group
	4.2 The twistor 
	4.3 Category equivalences
	4.4 Extended covering quantum groups

	Acknowledgements.
	References


