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Abstract: Akemann, Ipsen and Kieburg recently showed that the squared singular val-
ues of products of M rectangular random matrices with independent complex Gaussian
entries are distributed according to a determinantal point process with a correlation ker-
nel that can be expressed in terms of Meijer G-functions. We show that this point process
can be interpreted as a multiple orthogonal polynomial ensemble. We give integral rep-
resentations for the relevant multiple orthogonal polynomials and a new double contour
integral for the correlation kernel, which allows us to find its scaling limits at the origin
(hard edge). The limiting kernels generalize the classical Bessel kernels. For M = 2
they coincide with the scaling limits found by Bertola, Gekhtman, and Szmigielski in
the Cauchy–Laguerre two-matrix model, which indicates that these kernels represent a
new universality class in random matrix theory.

1. Introduction

1.1. Products of Ginibre random matrices. Random matrix theory is a broad field with
many applications in mathematics, physics, and beyond, as is witnessed by the survey
volume [1] and the recent monographs [7,20,22,34]. Of particular importance for the
development of the theory is the connection with determinantal point processes. When-
ever the eigenvalues of a random matrix ensemble are a determinantal point process,
one has explicit expressions for the eigenvalue distributions in terms of the correlation
kernel. Tools from integrable systems may then be used to further analyze the correla-
tion kernel in the large n limit, in order to establish, for example, universality of local
eigenvalue correlations. It is a recent discovery that products of random matrices can
fall in the framework of determinantal point processes.

The topic of products of random matrices can be traced back to the work of Fursten-
berg and Kesten [23], where the interest lies in the asymptotic behavior as the number of
factors in the product tends to infinity. This work has been highly influential with impor-
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tant applications in Schrödinger operator theory [14] and in statistical physics relating
to disordered and chaotic dynamical systems [18].

A more recent development is the study of eigenvalue and singular value distributions
for the products of random matrices with a fixed number of factors, but allowing the size
of the matrices to tend to infinity. With tools from free probability and diagrammatic
expansions, one may find the limiting global eigenvalue distributions as in [8,15,16,33].
It turns out that, as in the theory of a single random matrix, the various limits exhibit a rich
and interesting mathematical structure, which also show a large degree of universality,
see e.g. [24,32]. Apart from physical applications, the study is also motivated by other
fields like MIMO (multiple-input and multiple-output) networks in telecommunication
[36].

Akemann and Burda [2] proved that the eigenvalues of products of complex Ginibre
matrices are determinantal in the complex plane, see [25] for an extension to quaternionic
Ginibre matrices. A similar determinantal structure holds for the eigenvalues of products
of truncated unitary matrices [3]. The determinantal structure opens up the way to a more
detailed analysis at the finite n level [3,6]. Very recently, Akemann et al. [5] found that
the squared singular values of products of complex Ginibre matrices are a determinantal
point process on the positive real line. This was further extended to the case of products of
rectangular Ginibre matrices by Akemann et al. [4]. The correlation kernels in [2–5,25]
are all expressed in terms of Meijer G-functions.

In this paper we follow [4]. We take M ≥ 1 and let X1, X2, . . . , X M be complex
random matrices whose entries are independent with a complex Gaussian distribution,
also known as Ginibre random matrices. We assume X j has size N j × N j−1 and form
the product

YM = X M X M−1 · · · X1. (1.1)

Our interest lies in the squared singular values of YM , that is, the eigenvalues of
Y ∗

M YM , where the superscript ∗ stands for conjugate transpose. We assume N0 =
min{N0, . . . , NM }, and write

ν j = N j − N0, j = 0, . . . , M, n = N0. (1.2)

Thus ν0 = 0 and Y ∗
M YM is a square matrix of size n.

The case for the products of square matrices (i.e., ν j = 0 for every j) was considered
by Akemann et al. [5], who showed that the squared singular values are distributed
according to a determinantal point process with a correlation kernel that can be expressed
in terms of Meijer G-functions. This was extended by Akemann et al. [4] to the general
rectangular case. The determinantal point process is a biorthogonal ensemble [13] with
joint probability density function (see [4, formula (18)])

P(x1, . . . , xn) = 1

Zn

∏

j<k

(xk − x j ) det
[
wk−1(x j )

]
j,k=1,...,n , (1.3)

where x j > 0, j = 1, . . . , n, are the squared singular values of YM ,

wk(x) = G M,0
0,M

( −
νM , νM−1, . . . , ν2, ν1 + k

∣∣∣x
)

, (1.4)

and normalization constant (see [4, formula (21)])

Zn = n!
n∏

i=1

M∏

j=0

�(i + ν j ).
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The function wk is a Meijer G-function (see e.g. [9,30] and the Appendix for a brief
introduction) which can be written as a Mellin–Barnes integral

wk(x) = 1

2π i

∫ c+i∞

c−i∞
�(s + ν1 + k)

M∏

j=2

�(s + ν j )x−s ds, k = 0, 1, . . . , (1.5)

with c > 0. By the inversion formula for the Mellin transform we have

∫ ∞

0
wk(x)xs−1 dx = �(s + ν1 + k)

M∏

j=2

�(s + ν j ), s > 0, (1.6)

which in particular shows that the moments of wk are given as products of Gamma
functions.

By (1.5) and the functional equation of the Gamma function �(z + 1) = z�(z), we
have

wk(x) = 1

2π i

∫ c+i∞

c−i∞
(s + ν1)k

M∏

j=1

�(s + ν j )x−s ds,

where the Pochhammer symbol

(s + ν1)k = �(s + ν1 + k)

�(s + ν1)
= (s + ν1)(s + ν1 + 1) · · · (s + ν1 + k − 1)

is a polynomial of degree k in the variable s. Then by taking linear combinations of the
weights we could alternatively take

w̃k(x) = 1

2π i

∫ c+i∞

c−i∞
sk

M∏

j=1

�(s + ν j )x−s ds, (1.7)

in the definition of (1.3). This representation shows that (1.3) is fully symmetric in all
parameters ν1, . . . , νM . Note that

w̃k(x) =
(

−x
d

dx

)k

w0(x),

which can be easily obtained from (1.5).

1.2. Biorthogonal functions and the correlation kernel. From general properties of
biorthogonal ensembles [13], it is known that (1.3) is a determinantal point process
with correlation kernel

Kn(x, y) =
n−1∑

j=0

n−1∑

k=0

x j (M−1
n )k, jwk(y), (1.8)

where Mn is the matrix of moments of size n × n,

Mn =
(∫ ∞

0
x jwk(x) dx

)

j,k=0,...,n−1
. (1.9)
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In addition we have

Kn(x, y) =
n−1∑

k=0

Pk(x)Qk(y), (1.10)

where for each k = 0, 1, . . . , Pk is a monic polynomial of degree k and Qk belongs to
the linear span of w0, . . . , wk in such a way that

∫ ∞

0
Pj (x)Qk(x) dx = δ j,k . (1.11)

Thus the Pk and Qk are biorthogonal functions that we consider for every non-negative
integer k, not just for k ≤ n − 1.

Akemann et al. [4,5] studied an extension of (1.3) to a two-matrix model and obtained
in this framework that for certain polynomials Q̃k ,

∫ ∞

0

∫ ∞

0
Pj (x)Q̃k(y)wM

ν (x, y) dx dy = hM
j δ j,k, (1.12)

with

wM
ν (x, y) = yν1−1e−y G M−1,0

0,M−1

( −
νM , νM−1, . . . , ν2

∣∣∣
x

y

)

and

hM
j =

M∏

m=0

( j + νm)!;

see [4, formulas (25), (27) and (37)]. We emphasize that Q̃k �= Qk , since indeed Qk is
not a polynomial and Q̃k is a multiple of the Laguerre polynomial L(ν1)

k ; see [4, formula
(42)]. The biorthogonality (1.12) is related to (1.11), since

Qk(x) = 1

hM
k

∫ ∞

0
Q̃k(y)wM

ν (x, y) dy,

but we will not use this fact.
The starting point of this paper is the biorthogonality (1.11) and we first show that the

polynomials Pk can be characterized as multiple orthogonal polynomials with respect to
the first M weight functions w0, . . . , wM−1. Hence, the point process (1.3) is a multiple
orthogonal polynomial (MOP) ensemble in the sense of [28,29]. This further implies a
representation of the correlation kernel Kn (1.10) in terms of the associated Riemann–
Hilbert problem, which is helpful for future asymptotic analysis.

In [4] it is shown that the biorthogonal functions Pk and Qk have integral representa-
tions as Meijer G-functions. We rederive these results in Sect. 3 using only the biorthog-
onality (1.11). The recurrence relations of the biorthogonal functions are explicitly given
in Sect. 4. We turn to the study of the function Kn in Sect. 5. We derive a double con-
tour integral representation of Kn , which allows us to find its scaling limit at the origin
(hard edge). The limiting kernels generalize the classical Bessel kernel, and if M = 2, it
coincides with the limiting kernels in the Cauchy–Laguerre two-matrix model recently
studied by Bertola, Gekhtman and Szmigielski in [12]. Universality suggests that the
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new limiting kernels should apply to more general situations for the products of inde-
pendent complex random matrices, thus, representing a new universality class. Finally,
we present the integrable form of the limiting kernels in the sense of Its et al. [27]. For
the convenience of the reader, we include a short introduction to the Meijer G-function
in the Appendix.

Remark 1.1. It is possible to consider the probability density function (1.3) for general
parameters ν1, . . . , νM > −1. The condition ν j > −1 is needed in order to guarantee
the existence of the moments in (1.9). All the constructions in this paper go through in
that more general case.

However, we do not have a proof that (1.3) is a probability density function in the
case of non-integer parameters, in particular we do not know that (1.3) is non-negative
for all x1, . . . , xn , although we strongly suspect that it will be the case.

2. Multiple Orthogonal Polynomial Ensemble

2.1. Multiple orthogonality. Our first result is that the point process (1.3) is a MOP
ensemble [28,29] with M weight functions w0, . . . , wM−1, where the wk are defined in
(1.4). This follows from the following lemma.

Lemma 2.1. The linear span of the functions w0, w1, . . . , wn−1 is equal to the linear
span of the functions

x �→ x jwk(x), k = 0, . . . , M − 1, k + j M < n. (2.1)

Proof. The linear span of w0, w1, . . . , wn−1 consists of all functions that can be written
as

x �→ 1

2π i

∫ c+i∞

c−i∞
q(s)

M∏

j=1

�(s + ν j )x−s ds, deg q(s) ≤ n − 1. (2.2)

We have by (1.5) and a change of variables s �→ s + j ,

x jwk(x) = 1

2π i

∫ c+i∞

c−i∞
(s + ν1)k

M∏

l=1

�(s + νl)x j−s ds

= 1

2π i

∫ c+i∞

c−i∞
(s + ν1 + j)k

M∏

l=1

(s + νl) j

M∏

l=1

�(s + νl)x−s ds.

This is of the form (2.2) with polynomial

q(s) = (s + ν1 + j)k

M∏

l=1

(s + νl) j

of degree k + j M . Thus the functions (2.1) belong to the linear span of w0, . . . , wn−1.
It is readily seen that these are independent since they correspond to polynomials q(s)
that have different degrees. 	


The polynomials Pk are therefore MOPs of type II with respect to the weights
w0, . . . , wM−1 and diagonal multiple indices, i.e.,

∫ ∞

0
Pn(x)x jwk(x) dx = 0, j = 0, . . . , � n−k

M � − 1, k = 0, . . . , M − 1,

where �x� denotes the smallest integer ≥ x ; see [26,37].
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2.2. Riemann–Hilbert problem. As a consequence of Lemma 2.1, the polynomial Pn is
characterized by the following Riemann–Hilbert problem. We look for a (M+1)×(M+1)

matrix-valued function Y : C\[0,∞) → C
(M+1)×(M+1) that is analytic with jump

condition

Y+(x) = Y−(x)

⎛

⎜⎜⎝

1 w0(x) · · · wM−1(x)

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞

⎟⎟⎠ , x ∈ (0,∞), (2.3)

where Y+ (Y−) denotes the limiting value from the upper (lower) half-plane. As z → ∞,
we require

Y (z) = (I + O(1/z)) diag
(
zn z−n0 · · · z−nM−1

)
, (2.4)

where nk = � n−k
M �. Combined with appropriate local conditions near the origin that

depend on the parameters ν1, ν2, . . . , νM , the Riemann–Hilbert problem (2.3)–(2.4) has
a unique solution and the (1, 1) entry of Y is Pn ; see [37]. Also, one has

Kn(x, y) = 1

2π i(x − y)

(
0 w0(y) · · · wM−1(y)

)
Y −1

+ (y)Y+(x)

⎛

⎜⎜⎝

1
0
...

0

⎞

⎟⎟⎠ , (2.5)

which is a manifestation of the Christoffel–Darboux formula for multiple orthogonal
polynomials; see [19]. The representation (2.5) is potentially useful for asymptotic analy-
sis although we will not pursue this here.

2.3. Special case M = 2. We now take a look at the case M = 2. If M = 2, then

w0(x) = 1

2π i

∫ c+i∞

c−i∞
�(s + ν1)�(s + ν2)x−s ds.

This can be expressed in terms of the modified Bessel function of second kind (a.k.a.
the Macdonald function). The formula 10.32.13 of [31] says that

2Kν(2
√

x) = xν/2

2π i

∫ c+i∞

c−i∞
�(s)�(s − ν)x−s ds, c > max(ν, 0),

which after a change of variables s �→ s + ν + α leads to

2Kν(2
√

x) = x−ν/2−α

2π i

∫ c+i∞

c−i∞
�(s + ν + α)�(s + α)x−s ds, c > max(−ν − α,−α).

We take α = ν2, ν = ν1 − ν2, to find that

w0(x) = 2x (ν1+ν2)/2 Kν1−ν2(2
√

x). (2.6)

It will be convenient to assume that ν1 ≥ ν2, which we can do without loss of generality.
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Similarly,

w1(x) = 1

2π i

∫ c+i∞

c−i∞
�(s + ν1 + 1)�(s + ν2)x−s ds

= 2x (ν1+ν2+1)/2 Kν1+1−ν2(2
√

x). (2.7)

Thus if ρν(x) = 2xν/2 Kν(2
√

x), we have

w0(x) = xαρν(x), w1(x) = xαρν+1(x).

Multiple orthogonal polynomials associated with the two weights (2.6)–(2.7) were con-
sidered by Van Assche and Yakubovich [38] for which they obtained four term recurrence
relations; see also [17,40] for asymptotic results for these polynomials. In the random
matrix context (i.e., the case where ν j = N j − N0 are integers), we have

ν = N1 − N2, α = N2 − N0.

For the special case ν = α = 0 (i.e., the products of two square matrices), this relation
was first observed in [39].

For general M , there is an M + 2 term recurrence relation (this follows from general
theory of MOP, cf. [26, Section 23.1.4]) and we will determine the recurrence coefficients
explicitly in Sect. 4.

3. Integral Representations

Integral representations for the biorthogonal polynomials Pk and their dual functions
Qk are given in [4] where they were derived from a two matrix model. We rederive these
results directly from the biorthogonality (1.11).

3.1. Integral representation for Qk. Recall the biorthogonality (1.11). The biorthogonal
function Qk has the form

Qk(x) = 1

2π i

∫ c+i∞

c−i∞
qk(s)

M∏

j=1

�(s + ν j )x−s ds,

where qk is a polynomial of degree k. The biorthogonality (1.11) then says that

1

2π i

∫ ∞

0

∫ c+i∞

c−i∞
Pl(x)qk(s)

M∏

j=1

�(s + ν j )x−s ds dx = δl,k .

It turns out that we can write down qk explicitly as stated in the following proposition.

Proposition 3.1. We have

Qk(x) = (−1)k

∏M
j=0 �(k + 1 + ν j )

(
d

dx

)k (
xkw0(x)

)
, (3.1)

and

qk(s) = (s − k)k∏M
j=0 �(k + 1 + ν j )

. (3.2)
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Proof. It is easy to see after applying an integration by parts k times that

∫ ∞

0
xl

(
d

dx

)k

(xkw0(x)) dx = 0, for l < k.

Note that integrated terms do not contribute, since

w0(x) = O(xα(log x)r−1), as x → 0+, (3.3)

with α = min(ν1, . . . , νM ) > −1 and r = #{ j | ν j = α}, which can be deduced
from properties of the Mellin transform (1.6); see e.g. [21, Theorem 4], and since for
x → +∞, we have

w0(x) = O
(

xθ e−Mx1/M
)

, θ = 1

M

⎛

⎝ 1
2 (1 − M) +

M∑

j=1

ν j

⎞

⎠ ;

see [30, Theorem 5.7.5].
Similarly,

∫ ∞

0
xk

(
d

dx

)k

(xkw0(x)) dx = (−1)kk!
∫ ∞

0
xkw0(x) dx

= (−1)k
M∏

j=0

�(k + 1 + ν j ),

where we recall (1.6) and the fact that ν0 = 0. Thus if Qk is defined by (3.1), then we
have ∫ ∞

0
xl Qk(x) dx = δl,k, for l = 0, 1, . . . , k. (3.4)

Since

xkw0(x) = 1

2π i

∫ c+i∞

c−i∞

M∏

j=1

�(s + ν j )xk−s ds,

we find by taking k derivatives that

(
d

dx

)k (
xkw0(x)

)
= 1

2π i

∫ c+i∞

c−i∞
(−1)k(s − k)k

M∏

j=1

�(s + ν j )x−s ds.

Thus

Qk(x) = 1

2π i

∫ c+i∞

c−i∞
qk(s)

M∏

j=1

�(s + ν j )x−s ds, (3.5)

with qk as in (3.2). This proves that Qk belongs to the linear span of w0, . . . , wk−1 and
(3.4) shows that it is indeed the biorthogonal function. 	
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Note that (3.1) is a Rodrigues-type formula for Qk . Note also that (3.5) is an integral
representation, which because of (3.2) we may also write as

Qk(x) = 1

2π i
∏M

j=0 �(k + ν j + 1)

∫ c+i∞

c−i∞

∏M
j=0 �(s + ν j )

�(s − k)
x−s ds. (3.6)

By (A.1), we can identify (3.6) as a Meijer G-function:

Qk(x) = 1
∏M

j=0 �(k + ν j + 1)
G M+1,0

1,M+1

( −k

ν0, ν1, . . . , νM

∣∣∣x
)

. (3.7)

Up to a multiplicative constant and an easy transformation of the Meijer G-function,
(3.7) is the same as [4, formula (49)].

3.2. Integral representation for Pn. There is a similar integral representation for Pn .

Proposition 3.2. We have for x > 0,

Pn(x) =
∏M

j=0 �(n + ν j + 1)

2π i

∮

	

�(t − n)
∏M

j=0 �(t + ν j + 1)
xt dt, (3.8)

where 	 is a closed contour that encircles 0, 1, . . . , n once in the positive direction.

Proof. In the proof we assume that Pn is given by (3.8) and we show that Pn is a monic
polynomial of degree n satisfying

∫ ∞

0
Pn(x)w̃k(x) dx = 0, k = 0, . . . , n − 1, (3.9)

where w̃k is defined in (1.7).
The integrand in the right-hand side of (3.8) is meromorphic on C with simple poles

at 0, 1, . . . , n (the poles of the numerator at the negative integers are cancelled by the
poles of the factor �(t + 1) in the denominator). Thus by the residue theorem

Pn(x) =
M∏

j=0

�(n + ν j + 1)

n∑

l=0

Res
t=l

(
�(t − n)

∏M
j=0 �(t + ν j + 1)

)
xl .

We can evaluate the residues to obtain

Pn(x) =
n∑

l=0

(−1)n−l

(n − l)!
∏M

j=0 �(n + ν j + 1)
∏M

j=0 �(l + ν j + 1)
xl , (3.10)

which shows that Pn is a monic polynomial of degree n.
To verify (3.9) we use

∫ ∞

0
xt w̃k(x) dx = (t + 1)k

M∏

j=1

�(t + ν j + 1),
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which follows from (1.7) and the inversion formula for Mellin transforms. Then we can
compute by (3.8) and an interchange of integrals,

∫ ∞

0
Pn(x)w̃k(x) dx

=
∏M

j=0 �(n + ν j + 1)

2π i

∮

	

�(t − n)
∏M

j=0 �(t + ν j + 1)
(t + 1)k

M∏

j=1

�(t + ν j + 1) dt

=
∏M

j=0 �(n + ν j + 1)

2π i

∮

	

�(t − n)(t + 1)k

�(t + 1)
dt

=
∏M

j=0 �(n + ν j + 1)

2π i

∮

	

(t + 1)k

t (t − 1) · · · (t − n)
dt.

The remaining integrand is a rational function that behaves like O(tk−n−1) as t → ∞.
The contour 	 encircles all the poles once in the positive direction. Thus by moving the
contour to infinity, we find that the integral vanishes for k ≤ n −1, which is the required
biorthogonality (3.9). 	


The formula (3.10) shows that Pn is a hypergeometric polynomial

Pn(x) = (−1)n
M∏

j=1

�(n + ν j + 1)

�(ν j + 1)
1 FM

( −n

1 + ν1, . . . , 1 + νM

∣∣∣x
)

,

as in [4, formula (44)]. We can also identify Pn in (3.8) as a Meijer G-function:

Pn(x) = −
M∏

j=0

�(n + ν j + 1) G0,1
1,M+1

(
n + 1

−ν0,−ν1, . . . ,−νM−1,−νM

∣∣∣x
)

, (3.11)

which is equivalent to [4, formula (45)].

4. Recurrence Relations

By Lemma 2.1 and general theory of MOPs (cf. [26, Chapter 23]), it follows that the
polynomials Pn satisfy an M + 2 term recurrence relation

x Pn(x) = Pn+1(x) +
M∑

k=0

ak,n Pn−k(x). (4.1)

There is a dual recurrence relation

x Qn(x) = Qn−1(x) +
M∑

k=0

bk,n Qn+k(x), (4.2)

where because of the biorthogonality (1.11),

ak,n =
∫ ∞

0
x Pn(x) Qn−k(x) dx, bk,n =

∫ ∞

0
Pn+k(x) x Qn(x) dx .

Therefore
ak,n = bk,n−k . (4.3)

It is the aim of this section to calculate these recurrence coefficients explicitly.
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4.1. Coefficients bk,n.

Proposition 4.1. We have for k = 0, . . . , M,

bk,n =
⎛

⎝
M∏

j=0

(n + ν j + 1)k

⎞

⎠
k+1∑

j=0

(−1)k+1− j

j !(k + 1 − j)!
M∏

i=0

(n + j + νi ). (4.4)

Proof. We have from (3.5), after a change of variable s �→ s + 1,

x Qn(x) = 1

2π i

∫ c+i∞

c−i∞
qn(s)

M∏

j=1

�(s + ν j )x−s+1 ds

= 1

2π i

∫ c+i∞

c−i∞
qn(s + 1)

M∏

j=1

�(s + ν j + 1)x−s ds

= 1

2π i

∫ c+i∞

c−i∞
qn(s + 1)

M∏

j=1

(s + ν j )

M∏

j=1

�(s + ν j )x−s ds.

Then qn(s + 1)
∏M

j=1(s + ν j ) is a polynomial in s of degree n + M and it is our task
to show that

qn(s + 1)

M∏

j=1

(s + ν j ) = qn−1(s) +
M∑

k=0

bk,nqn+k(s) (4.5)

with bk,n given by (4.4).
By (3.2) we have that all terms in (4.5) are zero for s = 1, . . . , n − 1, i.e., all terms

are divisible by qn−1(s). If we do this division and use (3.2) then we find that we have
to prove

M∏

j=0

s + ν j

n + ν j
= 1 +

M∑

k=0

bk,n∏M
j=0(n + ν j )k+1

(s − n − k)k+1.

Write s = t + n. Then we have to prove

f (t) =
M∏

j=0

(n + ν j ) +
M∑

k=0

bk,n∏M
j=0(n + ν j + 1)k

(t − k)k+1, (4.6)

as an identity for polynomials in t , where

f (t) =
M∏

j=0

(t + n + ν j ). (4.7)

Both sides of (4.6) have degree M + 1 and for t = 0 the identity (4.6) is valid. The
polynomials t �→ (t − k)k+1 for k = 0, . . . , m are a basis for the vector space of
polynomials of degree ≤ M + 1 that vanish at t = 0. Then it is clear that there exists
coefficients bk,n such that (4.6) holds.
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By contour integration we obtain from (4.6)

bk,n∏M
j=0(n + ν j + 1)k

= 1

2π i

∮

	

f (t)

(t − k − 1)k+2
dt, k = 0, . . . , M, (4.8)

where 	 is a closed contour that encircles the points 0, . . . , k once in the positive
direction. This leads by the residue theorem to

bk,n =
⎛

⎝
M∏

j=0

(n + ν j + 1)k

⎞

⎠
k+1∑

j=0

(−1)k+1− j f ( j)

j !(k + 1 − j)! ,

which gives (4.4) in view of the definition (4.7) of f (t). 	


4.2. Coefficients ak,n. Because of (4.3) we immediately find an expression for the recur-
rence coefficients ak,n .

Corollary 4.2. We have for k = 0, . . . , M,

ak,n =
⎛

⎝
M∏

j=0

(n − k + ν j + 1)k

⎞

⎠
k+1∑

j=0

(−1)k+1− j

∏M
i=0(n − k + j + νi )

j !(k + 1 − j)! . (4.9)

Reversing the order of summation we also have

ak,n =
⎛

⎝
M∏

j=0

(n − k + ν j + 1)k

⎞

⎠
k+1∑

j=0

(−1) j

∏M
i=0(n + 1 − j + νi )

j !(k + 1 − j)! .

Proof. Use (4.3), (4.4) and reverse the order of summation. 	

From (4.9) we see that ak,n is a polynomial expression in n, which seems to be of

degree k(M +1)+ M +1 = (k +1)(M +1). However there is a cancellation in the leading
order terms and ak,n is actually a polynomial in n of degree (k + 1)M .

Lemma 4.3. For every k we have

ak,n =
(

M + 1

k + 1

)
n(k+1)M + O

(
n(k+1)M−1

)
.

Proof. From (4.3) and the contour integral representation (4.8) for bk,n we find

ak,n =
⎛

⎝
M∏

j=0

(n − k + ν j + 1)k

⎞

⎠ 1

2π i

∮

	

gn(t)

(t − k − 1)k+2
dt, (4.10)

where

gn(t) =
M∏

j=0

(t + n − k + ν j ) =
M+1∑

l=0

pl(t)n
l
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is a polynomial of degree M + 1 in n. The coefficient pl(t) is a polynomial in t of degree
deg pl(t) = M + 1 − l. Thus

1

2π i

∮

	

gn(t)

(t − k − 1)k+2
dt =

M+1∑

l=0

(
1

2π i

∮

	

pl(t)

(t − k − 1)k+2
dt

)
nl .

The integral vanishes if pl is a polynomial of degree ≤ k since in that case the integrand
is O(t−2), and we can move the contour to infinity. This happens for l ≥ M − k + 1.
For l = M − k, we have

pM−k(t) =
(

M + 1

k + 1

)
tk+1 + O(tk), as t → ∞,

and by a residue calculation at infinity we obtain

1

2π i

∮

	

pM−k(t)

(t − k − 1)k+2
dt =

(
M + 1

k + 1

)
.

Thus the second factor in the right-hand side of (4.10) is a polynomial of degree M − k
in n with leading coefficient

(M+1
k+1

)
.

The other factor is a monic polynomial in n of degree k(M + 1). Thus ak,n has degree
k(M +1)+ M −k = (k+1)M with leading coefficient

(M+1
k+1

)
, as claimed in the lemma. 	


Let’s finally write down (4.10) for small values of M .

Case M = 1. For M = 1 we have a three term recurrence

x Pn(x) = Pn+1(x) + a0,n Pn(x) + a1,n Pn−1(x)

with

a0,n = 2n + ν1 + 1, a1,n = n(n + ν1).

This is the recurrence relation for monic Laguerre polynomials with parameter ν1.

Case M = 2. For M = 2 we have a four term recurrence

x Pn(x) = Pn+1(x) + a0,n Pn(x) + a1,n Pn−1(x) + a2,n Pn−2(x)

with

a0,n = 3n2 + (3 + 2ν1 + 2ν2)n + (1 + ν1 + ν2 + ν1ν2),

a1,n = n(n + ν1)(n + ν2)(3n + ν1 + ν2),

a2,n = n(n − 1)(n + ν1)(n + ν1 − 1)(n + ν2)(n + ν2 − 1).

This agrees with the recurrence coefficients given in [38, Theorem 4] if we use
α = ν2, ν = ν1 − ν2.

5. Double Integral Representation and Large n Limit of Kn

In this section, we are concerned with the correlation kernel Kn(x, y) defined in (1.10).
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5.1. Double integral formula for Kn. The correlation kernel admits a double contour
integral representation.

Proposition 5.1. We have

Kn(x, y) = 1

(2π i)2

∫ −1/2+i∞

−1/2−i∞
ds

∮

	

dt
M∏

j=0

�(s + ν j + 1)

�(t + ν j + 1)

�(t − n + 1)

�(s − n + 1)

xt y−s−1

s − t
,

(5.1)
where 	 is a closed contour going around 0, 1, . . . , n in the positive direction and
Re t > −1/2 for t ∈ 	.

Proof. The correlation kernel (1.10) can be written as a double integral

Kn(x, y) = 1

(2π i)2

∫ c+i∞

c−i∞
ds

∮

	

dt
M∏

j=0

�(s + ν j )

�(t + ν j + 1)

n−1∑

k=0

�(t − k)

�(s − k)
xt y−s, (5.2)

where we used the integral representation (3.8) for Pk and (3.6) for Qk . From the
functional equation �(z + 1) = z�(z), one can easily check that

(s − t − 1)
�(t − k)

�(s − k)
= �(t − k)

�(s − k − 1)
− �(t − k + 1)

�(s − k)
,

which means that there is a telescoping sum

(s − t − 1)

n−1∑

k=0

�(t − k)

�(s − k)
= �(t − n + 1)

�(s − n)
− �(t + 1)

�(s)
. (5.3)

We are going to make sure that s − t − 1 �= 0 when s ∈ c + iR and t ∈ 	. We do
this by taking c = 1/2 and let 	 go around 0, 1, . . . , n but with Re t > −1/2 for t ∈ 	.
Then we insert (5.3) into (5.2) and get

Kn(x, y) = 1

(2π i)2

∫ 1/2+i∞

1/2−i∞
ds

∮

	

dt
M∏

j=0

�(s + ν j )

�(t + ν j + 1)

�(t − n + 1)

�(s − n)

xt y−s

s − t − 1

− 1

(2π i)2

∫ 1/2+i∞

1/2−i∞
ds

∮

	

dt
M∏

j=1

�(s + ν j )

�(t + ν j + 1)

xt y−s

s − t − 1
.

The t-integral in the second double integral vanishes by Cauchy’s theorem, since the
integrand does not have any singularities inside 	. We change s �→ s + 1 in the first
double integral and we obtain (5.1). 	


We can rewrite the kernel in terms of Meijer G-functions

Corollary 5.2. We have

Kn(x, y) =
∫ 1

0
G0,1

1,M+1

(
n

−ν0, . . . ,−νM

∣∣∣ux

)
G M,1

M+1,0

( −n
ν0, . . . , νM

∣∣∣uy

)
du

= −
M∏

j=1

(n + ν j )

∫ 1

0
Pn−1(ux)Qn(uy) du. (5.4)
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Proof. Note that
xt y−s−1

s − t
= −

∫ 1

0
(ux)t (uy)−s−1 du. (5.5)

The kernel (5.1) then is

Kn(x, y) = −
∫ 1

0

(
1

2π i

∮

	

�(t − n + 1)
∏M

j=0 �(t + ν j + 1)
(ux)t dt

)

×
(

1

2π i

∫ −1/2+i∞

−1/2−i∞

∏M
j=0 �(s + ν j + 1)

�(s − n + 1)
(uy)−s−1 ds

)
du. (5.6)

By the definition (A.1) and change of variables t �→ −t, s �→ s + 1, both factors
in the u integral can be identified as Meijer G-functions and the first identity in (5.4)
follows.

The second identity in (5.4) follows from (3.7) and (3.11). 	


5.2. Microscopic limit of Kn at the hard edge. With the help of the contour integral
representation (5.1) for Kn , we derive its scaling limit near the origin (hard edge). The
limiting kernels are denoted by K M

ν , where ν stands for the collection of parameters
ν1, . . . , νM .

Theorem 5.3. With ν1, . . . , νM being fixed, we have

lim
n→∞

1

n
Kn

( x

n
,

y

n

)
= K M

ν (x, y),

uniformly for x, y in compact subsets of the positive real axis, where

K M
ν (x, y) = 1

(2π i)2

∫ −1/2+i∞

−1/2−i∞
ds

∫

	

dt
M∏

j=0

�(s + ν j + 1)

�(t + ν j + 1)

sin πs

sin π t

x t y−s−1

s − t

=
∫ 1

0
G1,0

0,M+1

( −
−ν0,−ν1, . . . ,−νM

∣∣∣ux

)

×G M,0
0,M+1

( −
ν1, . . . , νM , ν0

∣∣∣uy

)
du, (5.7)

and where 	 is a contour starting from +∞ in the upper half plane and returning to
+∞ in the lower half plane which encircles the positive real axis and Re t > −1/2 for
t ∈ 	; see Fig. 1 for an illustration.

Proof. The reflection formula of the Gamma function says that

�(t)�(1 − t) = π

sin π t
, (5.8)

which means that
�(t − n + 1)

�(s − n + 1)
= �(n − s)

�(n − t)

sin πs

sin π t
. (5.9)
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Fig. 1. The two contours of the double integral in (5.7)

As n → ∞, we have the following ratio asymptotics of Gamma functions (cf. [31,
formula 5.11.13])

�(n − s)

�(n − t)
= nt−s

(
1 + O(n−1)

)
, (5.10)

which can be easily verified using Stirling’s formula. By modifying the contour 	 in
(5.1) from a closed contour around 0, 1, . . . , n to a two sided unbounded contour as in
Fig. 1 and applying (5.9) and (5.10), we readily obtain the first identity in (5.7), provided
that we can take the limit inside of the integral.

The t-integral in (5.7) converges since �(t + ν j + 1) increases if we go to infinity
along 	 and

| sin π t | ≥ | sinh π Im t |.
Also the s integral converges since

| �(x + iy) | ∼ √
2π |y|x−(1/2)e−π |y|/2,

as y → ±∞ for bounded real value of x ; see [31, formula 5.11.9]. Therefore, �(s+ν j +1)

tends to 0 at an exponential rate if |s| → ∞ with Re s = −1/2. We can then indeed
justify the interchange of limit and integrals for every M by the dominated convergence
theorem.

By (5.8), we see

sin πs

sin π t
= �(1 + t)�(−t)

�(1 + s)�(−s)
,

and using the trick (5.5) as in the proof of Proposition 5.1, we obtain

K M
ν (x, y) = −

∫ 1

0

(
1

2π i

∫

	

�(−t)
∏M

j=1 �(t + ν j + 1)
(ux)t dt

)

×
(

1

2π i

∫ −1/2+i∞

−1/2−i∞

∏M
j=1 �(s + ν j + 1)

�(−s)
(uy)−s−1 ds

)
du.

The change of variables t �→ −t and s �→ s + 1 takes both integrals into the form
(A.1) of a Meijer G-function, and the second identity in (5.7) follows. 	
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It is known that the limiting mean distribution of the squared singular values for
the products of M Ginibre matrices blows up with a rate x−M/(M+1) near the origin
(see [16,33]). Extending the notion of universality at the hard edge, we are led to the
expectation that the kernels described in Theorem 5.3 should appear in more general
situations of the products of independent complex random matrices, and possibly in
other models of random matrix theory.

5.3. Special case M = 1. Let’s now take a closer look at the limiting kernels K M
ν (x, y)

for special values of M . If M = 1 and ν1 = ν, one has since ν0 = 0 (we drop the
superscript M = 1)

Kν(x, y) =
∫ 1

0
G1,0

0,2

( −
0,−ν

∣∣∣ux

)
G1,0

0,2

( −
ν, 0

∣∣∣uy

)
du.

Since

G1,0
0,2

( −
0,−ν

∣∣∣ux

)
= (ux)−ν/2 Jν(2

√
ux),

G1,0
0,2

( −
ν, 0

∣∣∣uy

)
= (uy)ν/2 Jν(2

√
uy),

where Jν denotes the Bessel function of the first kind of order ν (see [31, formula
10.9.23]), it then follows that

Kν(x, y) =
( y

x

)ν/2
∫ 1

0
Jν(2

√
ux)Jν(2

√
uy) du

= 4
( y

x

)ν/2
K Bes,ν(4x, 4y),

where

K Bes,ν(x, y) = Jν(
√

x)
√

y J ′
ν(

√
y) − √

x J ′
ν(

√
x)Jν(

√
y)

2(x − y)
, ν > −1,

is the Bessel kernel of order ν that appears as the scaling limit of the Laguerre or Jacobi
unitary ensembles at the hard edge [35], as expected.

5.4. Special case M = 2. If M = 2, one has from (5.7) that (we drop the superscript
M = 2)

Kν1,ν2(x, y) =
∫ 1

0
G1,0

0,3

( −
0,−ν1,−ν2

∣∣∣ux

)
G2,0

0,3

( −
ν1, ν2, 0

∣∣∣uy

)
du. (5.11)

It is interesting that these kernels appeared earlier in another random matrix model,
namely in the Cauchy two-matrix model with linear potentials, see [10,12].

The Cauchy two matrix model is defined by the probability measure

1

Zn

det(M1)
a det(M2)

be−Tr(V1(M1)+V2(M2))

det(M1 + M2)n
dM1 dM2, a, b > −1, a + b > −1,
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defined on the space of two n × n positive semidefinite Hermitian matrices M1 and M2,
with two scalar potentials V1, V2 defined on the positive real axis that grow sufficiently
fast as x → +∞.

The eigenvalues of M1 and M2 form a determinantal point process with a correlation
kernel which is defined in terms of the Cauchy biorthogonal polynomials [11] pl(x) and
qm(y) satisfying

∫ ∞

0

∫ ∞

0

xa ybe−V1(x)−V2(y)

x + y
pl(x)qm(y) dx dy = δl,m .

For the linear case V1(x) = x and V2(y) = y, it was established in [12, Theorem
2.2] that the correlation kernel for the eigenvalues of M1 has a scaling limit at the origin
given by

∫ 1

0
G1,0

0,3

( −
a, 0,−b

∣∣∣ux

)
G2,0

0,3

( −
b, 0,−a

∣∣∣uy

)
du. (5.12)

This is slightly different from (5.11), since we cannot freely permute the parameters
ν1, ν2, 0 in (5.11).

However, from (A.2) we see that

G1,0
0,3

( −
a, 0,−b

∣∣∣ux

)
= (ux)aG1,0

0,3

( −
0,−a,−b − a

∣∣∣ux

)
,

G2,0
0,3

( −
b, 0,−a

∣∣∣uy

)
= (uy)−aG2,0

0,3

( −
b + a, a, 0

∣∣∣uy

)
.

Hence,
∫ 1

0
G1,0

0,3

( −
a, 0,−b

∣∣∣ux

)
G2,0

0,3

( −
b, 0,−a

∣∣∣uy

)
du =

(
x

y

)a

Ka+b,a(x, y).

The prefactor
(

x
y

)a
is irrelevant in a kernel for a determinantal point process as it

does not change the determinants that give the point correlations. Therefore we see that
the limiting kernels (5.12) in the Cauchy two matrix models are the same kernels as
the limiting kernels for squared singular values of products of two complex Ginibre
matrices. This supports our conjecture that the kernels (5.7) have a universal character
and appear in a wider context.

5.5. Integrable form of the limiting kernels. An integral operator with kernel K (x, y)

is called integrable if

K (x, y) =
∑n

i=1 fi (x)gi (y)

x − y
, with

n∑

i=1

fi (x)gi (x) = 0,

for some n ∈ {2, 3, . . .}, and certain functions fi and gi . Integral operators of this form
benefit from the fact that there is a Riemann–Hilbert setting for the study of the associ-
ated resolvent kernels, determinants, etc.; see [27]. The kernels of standard universality
classes (sine, Airy, Bessel) encountered in random matrix theory all belong to the class
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of integrable operators. The representation (2.5) of Kn in terms of the solution of a
Riemann–Hilbert problem is also of the integrable form.

We conclude this paper by giving the integrable form of the limiting kernels derived
in Theorem 5.3. Our argument follows [12, Section 5], where this was shown for the
case M = 2.

Proposition 5.4. With K M
ν (x, y) defined in (5.7), we have

K M
ν (x, y) =

B
(

G1,0
0,M+1

( −
−ν0,−ν1, . . . ,−νM

∣∣∣x
)

, G M,0
0,M+1

( −
ν1, . . . , νM , ν0

∣∣∣y
))

x − y
,

(5.13)
where B(·, ·) is a bilinear operator defined by

B ( f (x), g(y)) = (−1)M+1
M∑

j=0

(−1) j (
x )
j f (x)

⎛

⎝
M− j∑

i=0

ai+ j
(

y

)i
g(y)

⎞

⎠ , (5.14)

with 
x = x d
dx and 
y = y d

dy . The constants ai in (5.14) are determined by

M∏

i=1

(x − νi ) =
M∑

i=0

ai xi , (5.15)

that is,
ai = (−1)i eM−i (ν1, . . . , νM ) (5.16)

with ei (ν1, . . . , νM ) being the elementary symmetric polynomial.

The bilinear operator B is called a point-split bilinear concomitant in [12].

Proof. We set

f (x) = G1,0
0,M+1

( −
−ν0,−ν1, . . . ,−νM

∣∣∣x
)

, (5.17)

g(y) = G M,0
0,M+1

( −
ν1, . . . , νM , ν0

∣∣∣y
)

. (5.18)

By (5.7), our aim is then to evaluate the integral

K M
ν (x, y) =

∫ 1

0
f (t x)g(t y) dt. (5.19)

Note that the Meijer-G function satisfies the differential equation (A.3). For f and g
given by (5.17) and (5.18), this implies that for every t ,

g(t y)

M∏

j=0

(
x + ν j ) f (t x) = −t x f (t x)g(t y), (5.20)

f (t x)

M∏

j=0

(
y − ν j )g(t y) = (−1)M ty f (t x)g(t y). (5.21)
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If M is odd we subtract these two identities, while if M is even we add them together.
Since the arguments in both cases are similar, we restrict to the case where M is odd.

Subtracting (5.20) from (5.21) we obtain

(x − y) f (t x)g(t y)

= 1

t

⎛

⎝ f (t x)

M∏

j=0

(
y − ν j )g(t y) − g(t y)

M∏

j=0

(
x + ν j ) f (t x)

⎞

⎠

= 1

t

M∑

i=0

ai

(
f (t x)(
y)

i+1g(t y) + (−1)i g(t y)(
x )
i+1 f (t x)

)
, (5.22)

where the constants ai are defined in (5.15) and (5.16). We next observe that

∂

∂t

⎛

⎝
i∑

j=0

(−1) j (
x )
j f (t x)

(

y

)i− j
g(t y)

⎞

⎠

= 1

t

(
f (t x)(
y)

i+1g(t y) + (−1)i g(t y)(
x )
i+1 f (t x)

)
,

which by (5.14) and (5.22) implies that

(x − y) f (t x)g(t y) = ∂

∂t
B( f (t x), g(t y)). (5.23)

Using (5.23) in (5.19) we find

(x − y)K M
ν (x, y) = B( f (x), g(y)) − lim

t→0+
B( f (t x), g(t y)).

It thus remains to show that

lim
t→0+

B( f (t x), g(t y)) = 0, (5.24)

and to do this we need to understand the behavior of f and g at the origin.
First of all, we have by [31, formula 16.18.1]) and (5.17) that f is a hypergeometric

function

f (x) = 1
∏M

j=1 �(1 − ν j )
0 FM

( −
1 − ν1, . . . , 1 − νM

∣∣∣ − x

)
, (5.25)

so that f is analytic at the origin. Next by (5.18), the definition of (A.1), and the properties
of the Mellin transform (see e.g. [21]), we find

∫ ∞

0
(
y)

i g(y)ys−1 dy = (−s)i

∏M
j=1 �(s + ν j )

�(1 − s)
.

Then it follows in the same way as we obtained (3.3) that

(
y)i g(y) = O(yα(log y)r−1) as y → 0+, (5.26)

with α = min(ν1, . . . , νM ) > −1 and r = #{ j | ν j = α}.
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Now we look at the j = 0 term in (5.14) which is

f (x)

M∑

i=0

ai (
y)
i g(y) = f (x)

M∏

i=0

(
y − νi )g(y) = − f (x)yg(y),

where in the last step we used (5.21) with t = 1. Replacing x �→ t x, y �→ t y, we find
by (5.25) and (5.26) that the limit is 0 as t → 0+. For j ≥ 1 we have

(
x )
j f (x) = O(x) as x → 0,

and then it follows from (5.26) that the terms in (5.14) with j ≥ 1 are all
O(x)O(yα(log y)r−1) as x, y → 0+. Replacing x �→ t x, y �→ t y, we then find that
these terms tend to 0 as well as t → 0+. This proves (5.24) and it completes the proof
of Proposition 5.4. 	
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A. The Meijer G-function

We give a brief introduction to the Meijer G-function in this appendix. By definition,
the Meijer G-function is given by the following contour integral in the complex plane:

Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣z
)

= Gm,n
p,q

(
ap

bq

∣∣∣z
)

= 1

2π i

∫

γ

∏m
j=1 �(b j + u)

∏n
j=1 �(1 − a j − u)

∏q
j=m+1 �(1 − b j − u)

∏p
j=n+1 �(a j + u)

z−u du, (A.1)

where � denotes the usual gamma function and the branch cut of z−u is taken along the
negative real axis. It is also assumed that

• 0 ≤ m ≤ q and 0 ≤ n ≤ p, where m, n, p and q are integer numbers;
• The real or complex parameters a1, . . . , ap and b1, . . . , bq satisfy the conditions

ak − b j �= 1, 2, 3, . . . , for k = 1, 2, . . . , n and j = 1, 2, . . . , m,

i.e., none of the poles of �(b j + u), j = 1, 2, . . . , m coincides with any poles of
�(1 − ak − u), k = 1, 2, . . . , n.

The contour γ is chosen in such a way that all the poles of �(b j + u), j = 1, . . . , m are
on the left of the path, while all the poles of �(1−ak −u), k = 1, . . . , n are on the right,
which is usually taken to go from −i∞ to i∞. In particular, it can be a loop starting
and ending at +∞ if p > q, or a loop beginning and ending at −∞ if p < q. Most of
the known special functions can be viewed as special cases of the Meijer G-functions,
we refer to [30,31] for more details. We end this appendix with several formulas used
in this paper.
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• From the definition (A.1), it is easily seen that

zρGm,n
p,q

(
ap

bq

∣∣∣z
)

= Gm,n
p,q

(
ap + ρ

bq + ρ

∣∣∣z
)

. (A.2)

• The Meijer G-function Gm,n
p,q

(
ap
bq

∣∣∣z
)

satisfies the following linear differential equa-

tion of order max(p, q):

[
(−1)p−m−nz

p∏

j=1

(
z

d

dz
− a j + 1

)

−
q∏

j=1

(
z

d

dz
− b j

) ]
Gm,n

p,q

(
ap

bq

∣∣∣z
)

= 0; (A.3)

see [31, formula 16.21.1].
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