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Abstract: We provide an upper bound on the spectral radius of the Kac–Ward transition
matrix for a general planar graph. Combined with the Kac–Ward formula for the partition
function of the planar Ising model, this allows us to identify regions in the complex plane
where the free energy density limits are analytic functions of the inverse temperature.
The bound turns out to be optimal in the case of isoradial graphs, i.e., it yields criticality
of the self-dual Z-invariant coupling constants.

Introduction

The Ising model, proposed by Lenz [17], and solved in one dimension by his student
Ising [13], is one of the most studied models of statistical mechanics. It was introduced
as a model for ferromagnetism with the intention to explain spontaneous magnetiza-
tion. Ising proved that the one dimensional case does not account for the existence of
this phenomenon and concluded that the same should hold in higher dimensions. This
was later disproved by Peierls [21], whose, now classical, argument established that in
dimensions higher than one the model does exhibit a phase transition in the magnetic
behavior. The critical point, i.e., the value of the temperature parameter where the phase
transition occurs, for the model defined on the two-dimensional square lattice was first
identified by Kramers and Wannier [16] as the fixed point of a certain duality transfor-
mation. The first rigorous proof of criticality of the self-dual point came together with
the exact solution of the two-dimensional model done by Onsager [20], who explicitly
computed the free energy density and showed that it is not analytic only at this particular
value of the temperature.

Since then, several different methods have been developed to study the
two-dimensional Ising model. One of them is the approach of Kac and Ward [14],
who expressed the partition function of the model in terms of the determinant of what
is now called the Kac–Ward operator. This combinatorial-in-nature idea has been so far
a source of numerous results about the planar Ising model. The most classical are the
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(alternative to the solution of Onsager and Yang [27]) analytic derivations of the free
energy density and magnetization performed by Vdovichenko [25,26], who built on ear-
lier works of Sherman [23] and Burgoyne [6]. However, most of the articles concerning
the Kac–Ward formula left many details of the method unexplained and even contained
errors. The first completely rigorous account of this approach seems to be given much
later by Dolbilin et al. [10]. A more recent treatment, presented by Kager, Meester and
the author [15], concentrates on loop expansions of the Kac–Ward determinants. As a
result, the authors not only obtain rigorous proofs of the combinatorial foundations of
the approach, but also rederive the critical temperature of the Ising model on the square
lattice. The Kac–Ward determinants also turned out to be the right tool for the com-
putation of the critical point of Ising models defined on planar doubly periodic graphs
(Cimasoni and Duminil-Copin [9]). Moreover, Cimasoni [8] showed that the Kac–Ward
formula can be generalized to Ising models defined on surfaces of higher genus. Finally,
as pointed out by the author in [18], the Kac–Ward method is intrinsically connected
with the discrete holomorphic approach to the Ising model introduced by Smirnov [24].

In this paper, we continue in the spirit of [15], where the spectral radius and operator
norm of the Kac–Ward transition matrices were first considered. We explicitly compute
the operator norm of what we call the conjugated transition matrix defined for a general
graph in the plane, and hence we provide an upper bound on the spectral radius of the
standard Kac–Ward transition matrix. Combining this result with the Kac–Ward formula
for the high and low-temperature expansion of the partition function yields domains of
parameters of the model where there is no phase transition. We will focus only on
the analytic properties of the free energy, but our bounds, together with the methods
from [15], also allow us to identify regions where there is spontaneous magnetization
or exponential decay of the two-point functions. The advantage of our approach is that
it does not require any form of periodicity of the underlying graph.

Moreover, our results are optimal for the Ising model defined on isoradial graphs with
uniformly bounded rhombus angles (see condition (1.5)), i.e., we can conclude that the
self-dual Z-invariant coupling constants, first considered by Baxter [2], are indeed critical
in the classical sense. To be more precise, after introducing the inverse temperature
parameter β to the corresponding Ising model, we show that the thermodynamic limits
of the free energy density can have singularities only at β = 1. The isoradial graphs, or
equivalently rhombic lattices, were introduced by Duffin [11] as potentially the largest
family of graphs where one can do discrete complex analysis. As mentioned in [7], this
class of graphs seems to be the most general family of graphs where the critical Ising
model can be defined in terms of the local geometry of the graph, and it also seems to be
the one, where our bounds for the spectral radius and operator norm of the Kac–Ward
transition matrix yield the critical point of the Ising model.

The self-dual Z-invariant Ising model has been extensively studied in the mathemat-
ics literature. Chelkak and Smirnov [7] proved that the associated discrete holomorphic
fermion has a universal, conformally invariant scaling limit. Boutillier and de Tilière [4,5]
gave a complete description of the corresponding dimer model, yielding also an alterna-
tive proof of Baxter’s formula for the critical free energy density. Mercat [19] defined a
notion of criticality for discrete Riemann surfaces and investigated its connection with
criticality in the Ising model. The self-dual Z-invariant Ising model is commonly referred
to as critical. However, criticality in the statistical mechanics sense has been established
only in the case of doubly periodic isoradial graphs (see Example 1.6 of [9] and the ref-
erences therein). As already mentioned, we extend this result to a wide class of aperiodic
isoradial graphs.
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This paper is organized as follows: in Sect. 1, we introduce the Ising model and the
notion of phase transition, and we state our main theorem. Section 2 defines the Kac–
Ward operator and presents its connection to the Ising model. It also contains our results
for the Kac–Ward transition matrix. The proof of the main theorem is postponed until
Sect. 3.

1. Results for the Ising Model

1.1. The Ising model. Let � be an infinite, planar, simple graph embedded in the complex
plane and let �∗ be its planar dual. We assume that both � and �∗ have uniformly bounded
vertex degrees. One should think of � as any kind of tiling or discretization of the plane.
In particular, � can be a regular lattice, or an instance of an isoradial graph (see Sect. 1.4).
We call a subgraph G of � a subtiling if there is a collection of faces of �, such that G
is the subgraph induced by all edges forming boundaries of these faces. We define the
boundary ∂G of G to be the set of vertices of G which lie on the boundary of at least one
face which is not in the defining collection of faces. For a simple graph G embedded in
the complex plane, we will write V (G) for the set of vertices of G, which we identify with
the corresponding complex numbers. By E(G) we will denote the set of edges which
are represented by unordered pairs of vertices.

Let J = (Je)e∈E(�) be a system of ferromagnetic, i.e., positive, coupling constants
on the edges of �. For each finite subtiling G, we will consider an Ising model on G
defined by J and the inverse temperature parameter β. Borrowing the notation from
[15], let

�free
G = {−1, +1}V (G) and �+

G = {σ ∈ �free
G : σz = +1 if z ∈ ∂G}

be the spaces of spin configurations with free and positive boundary conditions. The
Ising model with � boundary conditions (� ∈ {free, +}) is defined by a probability
measure on ��

G given by

P�
G,β(σ ) = 1

Z�
G (β)

∏

{z,w}∈E(G)

exp
(
β J{z,w}σzσw

)
, σ ∈ ��,

where the normalizing factor

Z�
G (β) =

∑

σ∈��

∏

{z,w}∈E(G)

exp
(
β J{z,w}σzσw

)

is called the partition function.
Throughout the paper, we will make a natural assumption on the coupling constants,

namely we will require that there exist numbers m and M , such that for all e ∈ E(�),

0 < m ≤ Je ≤ M < ∞. (1.1)

1.2. Phase transition. An object of interest in statistical physics is the free energy density
(or free energy per site) defined by

f �
G (β) = − ln Z�

G (β)

β|V (G)| .
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It is clear that the free energy density is an analytic function of the inverse temperature
β ∈ (0,∞) for every finite subtiling G. However, when G approaches �, or more
generally, some infinite subgraph of � (this is called taking a thermodynamic limit),
the limiting function can have a critical point, i.e., a particular value of β where it is
not analytic. The existence of such a point indicates that the system undergoes a phase
transition when one varies β through the critical value. This is a universal way of looking
at the phenomenon of phase transition since it can be applied to any model of statistical
mechanics.

Another approach, and perhaps a more natural one in the setting of the Ising model,
is to investigate the magnetic behavior of the system. To this end, one defines the spin
correlation functions, i.e., the expectations of products of the spin variables taken with
respect to the Ising probability measure. The simplest cases are the one and two-point
functions

〈σz〉�G,β =
∑

σ∈��
G

σzP�
G,β(σ ), 〈σzσw〉�G,β =

∑

σ∈��
G

σzσwP�
G,β(σ ), z, w ∈ V (G).

Since the model is ferromagnetic, and due to the effect of positive boundary conditions,
the corresponding one-point function 〈σz〉+

G,β
is strictly positive for all finite subtilings G

and for all β. In other words, in finite volume, the spins prefer the +1 state at all temper-
atures. However, when G approaches �, the boundary moves further and further away
and, at temperatures high enough, its influence on a particular spin vanishes. As a result,
the limiting one-point function equals zero and the spin equally likely occupies the +1
and −1 state. On the other hand, this does not happen at low temperatures, i.e., if β

is sufficiently large, then 〈σz〉+
G,β

stays bounded away from zero uniformly in G. This
means that the effect of positive boundary conditions is carried through all length scales
and there is spontaneous magnetization. In this approach, the critical point is the value
of β, which separates the regions with and without spontaneous magnetization. In some
cases, it is more convenient to investigate the behavior of the two-point functions. Here,
one also discerns two different non-critical cases: either the system is disordered, i.e., the
thermodynamic limits of the two point functions decay exponentially fast to zero with the
graph distance between z and w going to infinity, or the system is ordered, which means
that the limiting two-point functions stay bounded away from zero uniformly in z and
w. For periodic Ising models, the critical point defined as the value of β which separates
these two regimes is the same as the critical point defined via spontaneous magnetiza-
tion (see Theorem 1 in [1] and the references therein). In particular, the system exhibits
long-range ferromagnetic order if and only if there is spontaneous magnetization.

Property (1.1), together with the conditions we imposed on � and �∗, is enough
for the existence of a phase transition in terms of spontaneous magnetization and the
behavior of the two-point functions. This is a consequence of the classical arguments of
Peierls [21] and Fisher [12]. In this paper, we will only focus on the phase transition in
the analytic behavior of the free energy density limits, but our results for the Kac–Ward
operator can be also used in the setting of the magnetic phase transition (see Sect. 1.5).

1.3. The main result. Let �E(G) be the set of directed edges of G which are the ordered
pairs of vertices. For a directed edge �e = (z, w), we define its reversion by −�e = (w, z)
and we obtain the undirected version by dropping the arrow from the notation, i.e.,
e = {z, w}. If z is a vertex, then we write OutG(z) = {(z′, w′) ∈ �E(G) : z′ = z} for the
set of edges emanating from z.
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Let �x and x be systems of nonzero complex weights on the directed and undirected
edges of G respectively. We call �x (Kac–Ward) contractive if

∑

�e∈OutG(z)

arctan |�x�e|2 ≤ π

2
for all z ∈ V (G), (1.2)

and we say that x factorizes to �x if

xe = �x�e �x−�e for all �e ∈ �E(G). (1.3)

For the origin of condition (1.2), see Corollary 2.5.
In the context of the Ising model, two particular systems of edge weights will be

important, namely the so called high and low-temperature weights given by

tanh β J = (
tanh β Je

)
e∈E(�)

and exp(−2β J ) = (
exp(−2β Je)

)
e∗∈E(�∗).

Definition. We say that the coupling constants satisfy the high-temperature condition if
tanh J factorizes to a contractive system of weights on the directed edges of �, and we say
that they satisfy the low-temperature condition if exp(−2J ) factorizes to a contractive
system of weights on the directed edges of �∗.

Let

ϒ� = {
f �
G : G is a finite subtiling of �

}

be the family of all free energy densities with � boundary conditions, and let ϒ� be its
closure in the topology of pointwise convergence on (0,∞). Note that ϒ� contains all
thermodynamic limits and can also contain other types of accumulation points of ϒ�.
Using the definition of Z�

G , it is not difficult to prove that, under condition (1.1), ϒ� is
uniformly bounded and equicontinuous on compact subsets of (0,∞). In particular, all
sequences in ϒ� which converge pointwise, converge uniformly on compact sets, and
therefore all functions in ϒ� are continuous on (0,∞). However, this is not enough to
conclude analyticity of the limiting functions, and indeed, critical points do arise.

In this paper, we show that, if the coupling constants satisfy the high-temperature
condition, then all functions in ϒfree can be extended analytically to a complex domain

Thigh =
{
β : 0 < Reβ < 1, 2M |Imβ| <

π

2
,

cosh(2mReβ)

cosh(2m) cos(2MImβ)
< 1

}

which we call the high-temperature regime. Note that (0, 1) ⊂ Thigh. Similarly we prove
that, if the coupling constants satisfy the low-temperature condition, then all functions
in ϒ+ can be extended to analytic functions on

Tlow = {β : 1 < Reβ}
which we call the low-temperature regime. These two regimes are depicted in Fig. 1.
Moreover, we show that ϒ� is uniformly bounded on compact subsets of the corre-
sponding regimes.

For complex analytic functions, this is enough to conclude that all pointwise limits
are also complex analytic. More precisely, let D be a complex domain and let E ⊂ D
have an accumulation point in D. The Vitali–Porter theorem (see [22], §2.4) states that
if a sequence of holomorphic functions defined on D converges pointwise on E , and is
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Fig. 1. The high and low-temperature regimes

uniformly bounded on compact subsets of D, then it converges uniformly on compact
subsets of D and the limiting function is holomorphic. In our context, the role of the
domain D is played by the high and low-temperature regimes, and E is the intersection
of the given regime with the positive real numbers.

In other words, under the high and low-temperature conditions on the coupling con-
stants, the high and low-temperature regimes are free of phase transition in terms of
analyticity of the thermodynamic limits of the free energy density. This is summarized
in the following theorem:

Theorem 1.1. If the coupling constants satisfy

(i) the high-temperature condition, then all functions in ϒfree extend analytically to
Thigh, and ϒfree is uniformly bounded on compact subsets of Thigh. As a consequence,
all functions in ϒ free are analytic on Thigh, and in particular on (0, 1).

(ii) the low-temperature condition, then all functions in ϒ+ extend analytically to Tlow,
and ϒ+ is uniformly bounded on compact subsets of Tlow. As a consequence, all
functions in ϒ+ are analytic on Tlow, and in particular on (1,∞).

The proof of this theorem is provided in Sect. 3. Its main ingredients are the Kac–
Ward formula for the partition function of the Ising model (see Theorem 2.1) and the
bound on the spectral radius of the the Kac–Ward transition matrix given in Theorem 2.7.

In most of the applications, the role of boundary conditions is immaterial for the
thermodynamic limit of the free energy density. Indeed, it is not hard to prove that
whenever |∂G|/|V (G)| is small, then for β ∈ (0,∞), f free

G (β) and f +
G (β) are close

to each other (and also to any other free energy density function defined for other
types of boundary conditions on G). Hence, limits of the free energy density taken
along sequences, where the above ratio approaches zero, are the same for all boundary
conditions. In this paper, we consider the free and positive boundary conditions since
in these cases, the partition function of the model is given in terms of the determinant
of the Kac–Ward operator. Thus, one can use properties of the operator itself to derive
results for the free energy density.

1.4. The isoradial case. Assume that � is an isoradial graph, i.e., all its faces can be
inscribed in circles with a common radius, and all the circumcenters lie within the corre-
sponding faces. An equivalent characterization says that � and �∗ can be simultaneously
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Fig. 2. Local geometry of an isoradial graph and its dual. The underlying rhombic lattice is drawn in pale
lines. The directed arc marks the turning angle ∠(�e1, �e2)

embedded in the plane in such a way, that each pair of mutually dual edges forms diag-
onals of a rhombus. The roles of � and �∗ are therefore symmetric and the dual graph is
also isoradial. The simplest cases of isoradial graphs are the regular lattices: the square,
triangular and hexagonal lattice.

One assigns to each edge e the interior angle θe that e creates with any side of the
associated rhombus (see Fig. 2). Note that θe +θe∗ = π/2. There is a particular geometric
choice of the coupling constants given by

tanh Je = tan(θe/2), or equivalently, exp(−2Je) = tan(θe∗/2). (1.4)

These coupling constants were first considered by Baxter [2]. We will refer to them as the
self-dual Z-invariant coupling constants since these are the only coupling constants that
make the Ising model invariant under the star-triangle transformation, and also satisfy the
above generalized Kramers-Wannier self-duality (1.4). For more details on their origin,
see [3,4].

Observe that in this setting, condition (1.1) is equivalent to the existence of constants
k and K , such that for all e ∈ E(�),

0 < k ≤ θe ≤ K < π. (1.5)

This means that the associated rhombi have a positive minimal area, and also gives a
uniform bound on the maximal degree of � and �∗.

The next corollary states that, for the Ising model defined by the above coupling
constants, the only possible point of phase transition in the analytic behavior of the free
energy density is β = 1.

Corollary 1.2. Let � be an isoradial graph satisfying condition (1.5). Consider Ising
models defined by the self-dual Z-invariant coupling constants on finite subtilings of �.
Then, all functions in ϒ free are analytic on (0, 1), and all functions in ϒ+ are analytic
on (1,∞).

Proof. By (1.4) and the fact that the angles θ sum up to π around each vertex of �

and �∗, the self-dual Z-invariant coupling constants simultaneously satisfy the high and
low-temperature condition. Indeed, the contractive weight systems on the directed edges
are given by �x�e = √

tan(θe/2). The claim follows therefore from Theorem 1.1. �
Note, that in this case, the inequalities in (1.2) become equalities.
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1.5. Implications for the magnetic phase transition. Recently [15], the Kac–Ward op-
erator and the signed weights it induces on the closed non-backtracking walks in a graph
were used to rederive the critical temperature of the homogeneous Ising model on the
square lattice. It was done both in terms of analyticity of the free energy density limit and
the change in behavior of the one and two-point functions. The methods used there to
analyse the correlation functions also work for general planar graphs under some slight
regularity constraints. To be more precise, the proof of Theorem 1.4 in [15] which gives
the existence of spontaneous magnetization, uses the fact that appropriate Kac–Ward
transition matrices have spectral radius smaller than one and that the dual graph (which
is �∗ in our setup) has subexponential growth of volume, i.e., the volume of balls in
graph distance grows subexponentially with the radius. This condition is, for instance,
satisfied by all isoradial graphs where (1.5) holds true. On the other hand, Theorem 1.6
and Corollary 1.7 from [15], which yield exponential decay of the two-point functions,
use the fact that the operator norm of appropriate Kac–Ward matrices is smaller than
one.

The bounds that are stated in Sect. 2 allow us to generalize the above results to
arbitrary planar graphs, i.e., together with the methods from [15] they provide regions
of parameters J and β where there is spontaneous magnetization or exponential decay
of the two-point functions. These regions coincide with those in Theorem 1.1 (one can
analytically extend the correlation functions to the high and low-temperature regime),
that is, if the coupling constants satisfy the low-temperature condition, then there is
spontaneous magnetization on Tlow, and if they satisfy the high-temperature condition,
then there is exponential decay of the two-point functions on Thigh. In particular, our
bounds together with the methods developed in [15] prove that the self-dual Z-invariant
weights are critical in the sense of magnetic phase transition.

We would also like to point out that the arguments, which are used in [15] to conclude
analyticity of the free energy density limit, do not work for general graphs since they rely
on periodicity of the square lattice. This is why, in this paper, we go into details of this
aspect of phase transition and we do not focus on the magnetic behavior of the model.

2. Results for the Kac–Ward Operator

2.1. The Kac–Ward operator and the Ising model. Let G be a finite simple graph em-
bedded in the plane. For a directed edge �e = (z, w), we define its tail t (�e) = z and head
h(�e) = w. For �e, �g ∈ �E(G), let

∠(�e, �g) = Arg
(h(�g) − t (�g)

h(�e) − t (�e)
)

∈ (−π, π ] (2.1)

be the turning angle from �e to �g (see Fig. 2). The transition matrix for G and the weight
system x is given by


�e,�g(x) =
{

xee
i
2 ∠(�e,�g) if h(�e) = t (�g) and �g �= −�e;

0 otherwise,
(2.2)

where �e, �g ∈ �E(G). To each �e ∈ �E(G) we attach a copy of the complex numbers denoted
by C�e and we define a complex vector space

X =
∏

�e∈ �E(G)

C�e.
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We identify 
(x) with the automorphism of X it defines via matrix multiplication. The
Kac–Ward operator for G and the weight system x is the automorphism of X given by

T (x) = Id − 
(x),

where Id is the identity on X . When necessary, we will use subscripts to express the fact
that the above operators depend on the underlying graph G.

If G is a finite subtiling of �, then we will denote by G∗ the subgraph of �∗ whose
edge set consists of all dual edges e∗, such that at least one of the endpoints of e belongs
to V (G)\∂G. One can see that G∗ is a subtiling of �∗ whose defining set of dual faces is
given by the vertices from V (G)\∂G. We will call it the dual subtiling of G.

We say that a graph is even if all its vertices have even degree. There are two classical
methods of representing the partition function of the Ising model on G as a weighted sum
over all even subgraphs of G or G∗. The first one, called the low-temperature expansion,
involves a bijective mapping between the spin configurations with positive boundary
conditions and the collection of even subgraphs of G∗. The graph associated with a
spin configuration is composed of these dual edges, whose corresponding primal edge
has two opposite values of spins assigned to its endpoints. Hence, the resulting even
subgraph forms an interface between the clusters of positive and negative spins in the
configuration. In this expansion, each even graph is given a weight which is proportional
to the product of the low-temperature edge weights exp(−2β J ) taken over all edges in
the graph. The second method is called the high-temperature expansion and it is a way
of expressing the partition function of the Ising model with free boundary conditions
as a sum over all even subgraphs of G. Similarly, it assigns to each even subgraph
a product weight composed of factors given by the high-temperature weight system
tanh β J . However, unlike in the low-temperature case, the even subgraphs do not have
a geometrical interpretation in terms of the spin variables. The weighted sums arising in
both of these expansions are called the even subgraph generating functions.

The Kac–Ward formula expresses the square of an even subgraph generating function
as the determinant of a Kac–Ward matrix with an appropriate edge weight system. The
combined result of the high and low-temperature expansion together with the Kac–Ward
formula is stated in the next theorem. Here, we assume that the edges of G (and also G∗)
are embedded as straight line segments which do not intersect. For the origin of this
condition, a detailed account of the high and low-temperature expansion, and the proof
of the following theorem, see [15].

Theorem 2.1. For all choices of the coupling constants J and all β with Reβ > 0,

(i)
(
Z free

G (β)
)2 = 22|V (G)|( ∏

e∈E(G)

cosh2(β Je)
)

det
[
TG(tanh β J )

]
,

(ii)
(
Z+

G(β)
)2 = exp

(
2β

∑

e∈E(G)

Je

)
det

[
TG∗(exp(−2β J ))

]
.

Note that the condition Reβ > 0 is needed only for the weight system tanh β J to be
well defined.

The determinant of the Kac–Ward matrix is the characteristic polynomial of the
transition matrix evaluated at one:

det T = det(Id − 
) =
2n∏

k=1

(1 − λk),
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where n is the number of edges of G, and λk , k ∈ {1, 2, . . . , 2n}, are the eigenvalues
of 
. Recall that we want to extend the free energy density functions to domains in
the complex plane. The free energy density is given by the logarithm of the partition
function, and the square of the partition function is proportional to the above product
involving eigenvalues of the transition matrix. In this situation, it is natural to use the
power series expansion of the logarithm around one:

ln(1 − λ) = −
∞∑

r=1

λr/r, |λ| < 1.

This series is convergent whenever λ stays within the unit disc, and hence we should
require that the spectral radius of the transition matrix is bounded from above by one.
The next section is devoted to providing the necessary estimates.

2.2. Bounds on the spectral radius and operator norm. In this paper we will make use
of transition matrices conjugated by diagonal matrices of a certain type: if x factorizes
to �x (see 1.3), then we define the conjugated transition matrix by


(�x) = D−1(�x)
(x)D(�x),

where D(�x) is the diagonal matrix satisfying D�e,�e(�x) = �x�e for all �e ∈ �E(G). The
resulting transition matrix takes the following form:


�e,�g(�x) =
{

�x−�e �x�ge
i
2 ∠(�e,�g) if h(�e) = t (�g) and �g �= −�e;

0 otherwise.
(2.3)

This matrix is similar to the standard transition matrix, and in particular has the same
spectrum. Moreover, it turns out that one can explicitly compute its operator norm.

To this end, let us make some additional observations. For a square matrix A, let ‖A‖
be its operator norm induced by the Euclidean norm, and let ρ(A) be its spectral radius.
Note that there is a natural involutive automorphism P of X induced by the map �e �→ −�e,
i.e., the automorphism which assigns to each complex number in C�e the same complex
number in C−�e. Fix �x and let A = P
(�x). Observe that ‖A‖ = ‖
(�x)‖ since P is an
isometry. Moreover, the operator norm of A depends only on the absolute values of �x .
Indeed, if

B = D(�u)AD(�u), where �u�e = |�x�e|/�x�e,

then B is given by the matrix

B�e,�g =
{

|�x�e �x�g|e i
2 ∠(−�e,�g) if t (�e) = t (�g) and �g �= �e;

0 otherwise,
(2.4)

and ‖B‖ = ‖A‖ since D(�u) is an isometry.
Note that X can be decomposed as

X =
∏

z∈V (G)

X z, where X z =
∏

�e∈OutG(z)

C�e.
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One can see from (2.4) that B gives a nonzero transition weight only between two
edges sharing the same tail z. In other words, B maps X z to itself and therefore is
block-diagonal, that is

B =
∏

z∈V (G)

Bz,

where Bz : X z → X z is the restriction of B to the space X z . Moreover, the angles
satisfy

∠(−�e, �g) = −∠(−�g, �e) for �e �= �g, (2.5)

and hence B is Hermitian, i.e., B�e,�g = B�g,�e. Combining these two properties and the
fact that the operator norm of a Hermitian matrix is given by its spectral radius, we arrive
at the identity:

‖B‖ = ρ(B) = max
z∈V (G)

ρ(Bz). (2.6)

It turns out that the characteristic polynomial of Bz is easily expressible in terms of
the weight vector �x :

Lemma 2.2. For any real t and any vertex z,

det(tId − Bz) = Re
( ∏

�e∈OutG(z)

(t + i |�x�e|2)
)
,

where Id is the identity on X z .

Proof. The proof is by induction on the degree of z. One can easily check that the
statement is true for all vertices of degree one or two. Now suppose that it is true for all
vertices of degree at most n ≥ 2. Let z be a vertex of degree n+1 and let �e1, �e2, . . . , �en+1 be
a counterclockwise ordering of the edges of OutG(z). Consider the matrix S = tId − Bz

with columns and rows ordered accordingly. Note that for all �g ∈ OutG(z) different
from �e1 and �e2,

∠(�g, �e1) + ∠(�e1, �e2) + ∠(�e2, �g) = 0 (mod 2π).

Also observe that, for geometric reasons, at least two of the above angles are positive.
Combining this together with the fact that Arg(w) = Arg(−w)±π for any complex w,
and that the angles are between −π and π , yields

∠(−�e1, �g) = ∠(−�e2, �g) + ∠(−�e1, �e2) + π. (2.7)

We now subtract from the first row of S, the second row multiplied by

ie
i
2 ∠(−�e1,�e2)|�x�e1 |/|�x�e2 |. Then, we subtract from the first column the second one multi-

plied by −ie− i
2 ∠(−�e1,�e2)|�x�e1 |/|�x�e2 |. The resulting matrix has the same determinant as S.

By the definition of Bz , (2.5) and (2.7),

det S = det

⎛

⎜⎜⎜⎜⎜⎝

a b 0 0 · · ·
b t −Bz

�e2,�e3
−Bz

�e2,�e4
· · ·

0 −Bz �e2,�e3 t −Bz
�e3,�e4

· · ·
0 −Bz �e2,�e4 −Bz �e3,�e4 t · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎠
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where a = t
(
1 + |�x�e1 |2/|�x�e2 |2

)
and b = −e

i
2 ∠(−�e1,�e2)

(
i t |�x�e1 |/|�x�e2 | + |�x�e1 �x�e2 |

)
. Let

S1 be the matrix resulting from removing from S the first column and the first row,
and let S2 be the matrix, where the first two rows and the first two columns of S are
removed. By the induction hypothesis, det S1 = Re

(
(t + i |�x�e2 |2)ϑ

)
and S2 = Reϑ ,

where ϑ = ∏
�g∈OutG(z)\{�e1,�e2}(t + i |�x�g|2). Expanding the determinant, we get

det S = a det S1 − bb det S2

= t
(
1 + |�x�e1 |2/|�x�e2 |2

)
Re

(
(t + i |�x�e2 |2)ϑ

)

− (|�x�e1 |2|�x�e2 |2 + t2|�x�e1 |2/|�x�e2 |2
)
Reϑ

= Re
(
(t + i |�x�e1 |2)(t + i |�x�e2 |2)ϑ

)
.

The last equality follows since both sides are real linear in ϑ , and one can check that it
holds true for ϑ = 1, i . �
For z ∈ V (G), we define ξ z(�x) to be the unique solution in s of the equation

∑

�e∈OutG(z)

arctan
(|�x�e|2/s

) = π

2
. (2.8)

As a corollary we obtain the following result:

Corollary 2.3. ρ(Bz) = ξ z(�x).

Proof. Since Bz is Hermitian, it has a real spectrum. By Lemma 2.2, the characteristic
polynomial of Bz at a nonzero real number t is given by

t |OutG(z)|( ∏

�e∈OutG(z)

cos
(

arctan(|�x�e|2/t)
))−1

cos
( ∑

�e∈OutG(z)

arctan(|�x�e|2/t)
)
.

This expression vanishes only when the last cosine term is zero. The largest in modulus
values of t for which this happens are equal to ±ξ z

G(�x). �
We can now compute the operator norm of the conjugated transition matrix 
(�x).

The following result is the main tool in our considerations:

Lemma 2.4.

‖
(�x)‖ = max
z∈V (G)

ξ z(�x).

Proof. It follows from the fact that ‖
(�x)‖ = ‖B‖, identity (2.6), and Corollary 2.3.
�

Note that the operator norm depends only on the absolute values of �x . One can
rephrase this result as follows:

Corollary 2.5. ‖
(�x)‖ ≤ s if and only if
∑

�e∈OutG(z)

arctan
(|�x�e|2/s

) ≤ π

2
for all z ∈ V (G).
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We say that an operator is a contraction if its operator norm is smaller or equal one,
and hence the name of condition (1.2). Since the operator norm bounds the spectral
radius from above, we obtain the following corollary:

Corollary 2.6. If x factorizes to �x, then

ρ(
(x)) ≤ max
z∈V (G)

ξ z(�x).

This inequality is preserved when one takes the infimum over all factorizations of the
weight system x . One can check that the spectral radius of the transition matrix depends
not only on the moduli but also on the complex arguments of x . Since the above bound
depends only on the absolute values, it is in general not sharp. Nonetheless, it is optimal
for the self-dual Z-invariant Ising model on isoradial graphs.

Remark 1. Note that finiteness of G was not important in our computations. Since the
transition matrix is defined locally for each vertex, we only used the fact that all vertices
have finite degree. Hence, one can consider transition matrices and Kac–Ward operators
on infinite graphs as automorphisms of the Hilbert space �2 on the directed edges of G.
The results from this section translate directly to this setting by interchanging all maxima
with suprema. This is used in [18] to analyse infinitely dimensional Kac–Ward operators.

2.3. High and low-temperature spectral radii. We will now use the bounds from the
previous section in a more concrete setting of the high and low-temperature weight
systems. We define

R(β) = sup
G

ρ
[

G(tanh β J )

]
and R∗(β) = sup

G
ρ
[

G∗(exp(−2β J ))

]
,

where the suprema are taken over all finite subtilings of �. The reason for our particular
choice of the high and low-temperatures regimes in the statement of Theorem 1.1 is the
following result:

Theorem 2.7. If the coupling constants satisfy

(i) the high-temperature condition, then supβ∈K R(β) < 1 for any compact set K ⊂
Thigh.

(ii) the low-temperature condition, then supβ∈K R∗(β) < 1 for any compact set K ⊂
Tlow.

Proof. We will prove part (i). Fix a compact set K ⊂ Thigh and let

L(β) = sup
j∈[m,M]

| tanh β j |
tanh j

= sup
j∈[m,M]

cosh j

sinh j

√
cosh(2 jReβ) − cos(2 jImβ)

cosh(2 jReβ) + cos(2 jImβ)
.

By compactness of [m, M] and the fact that the hyperbolic tangent does not vanish and
is continuous in the right half-plane, L is a continuous function on {β : 0 < Reβ}. From
a simple computation, it follows that L(β) < 1 if and only if

cosh(2 jReβ)/ cosh 2 j < cos(2 jImβ) for all j ∈ [m, M].
The above inequality can hold only when |Reβ| < 1 and when the right hand side is pos-
itive. The latter is in particular true when 2M |Imβ| < π

2 . Under these assumptions, both
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sides of the inequality are decreasing functions of j . This means that the above condi-
tion is satisfied whenever 0 < Reβ < 1, 2M |Imβ| < π

2 and cosh(2mReβ)/ cosh 2m <

cos(2MImβ). Hence, by the definition of Thigh, we have that Thigh ⊂ {β : L(β) < 1}
and thus, by continuity of L ,

s := sup
β∈K

L(β) < 1.

From the definition of L , it follows that

| tanh β Je|/ tanh Je ≤ s for all e ∈ E(�) and β ∈ K .

We assume that the coupling constants J satisfy the high-temperature condition,
which means that the weight system tanh J factorizes to a contractive weight system �x .
Therefore, for β ∈ K , tanh β J factorizes to a weight system �x(β) satisfying |�x�e(β)| =√| tanh β Je|/ tanh Je · |�x�e|, and hence |�x�e(β)|2/s ≤ |�x�e|2 for all �e ∈ �E(�). Since arctan
is increasing and �x is contractive, we have by Corollary 2.5 that ‖
G(�x(β))‖ ≤ s
for all subtilings G and all β ∈ K . The claim follows because the spectral radius is
bounded from above by the operator norm, and 
G(�x(β)) has the same spectral radius
as 
G(tanh β J ).

Part (ii) involves less computations and can be proved similarly after noticing that

Tlow =
{
β : sup

j∈[m,M]
| exp(−2β j)|

exp(−2 j)
< 1

}
.

�
In the light of Thoerem 2.1 and the remarks which follow it, we are now in a position

to prove our main result.

3. Proof of Theorem 1.1

Proof. We will prove part (i). Suppose that the coupling constants satisfy the high-
temperature condition and fix a compact set K ⊂ Thigh. We have to show that the
functions f free

G extend analytically to Thigh and are uniformly bounded on K .
First of all, since zero is not in Thigh, the factor 1/β is analytic on Thigh and uniformly

bounded on K . Thus, it is enough to consider functions of the form ln Z free
G (β)/|V (G)|.

We will use the formula from part (i) of Theorem 2.1. The logarithm of the partition
function can therefore be expressed as a sum of three different terms. The first one is the
constant |V (G)| ln 2, which equals ln 2 after rescaling by the number of vertices.

To talk about the second term, which comes from the product of hyperbolic cosines,
one has to argue that there is a continuous branch of ln(cosh β Je)onThigh. Indeed, one can
take the principal value of the logarithm since Re(cosh β Je) = cosh(JeReβ) cos(JeImβ)

> 0 on Thigh. Analyticity of this term follows since cosh β Je is analytic. Furthermore,
we have

∣∣∣ ln
( ∏

e∈E(G)

cosh β Je

)∣∣∣ ≤
∑

e∈E(G)

∣∣ ln(cosh β Je)
∣∣

≤
∑

e∈E(G)

(∣∣ ln | cosh β Je|
∣∣ + |Arg(cosh β Je)|

)
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≤ |E(G)|
(

sup
j∈[m,M]

∣∣ ln | cosh β j |∣∣ + π/2
)
.

Since the hyperbolic cosine does not vanish in the right half-plane and [m, M] is compact,
the above supremum is a continuous function of β on Thigh, and therefore is bounded
on K . The number of edges is bounded by the number of vertices times the maximal
degree of �, and thus, after rescaling by the volume, this term is uniformly bounded
in G.

The last term is given by the logarithm of the determinant of the Kac–Ward operator.
Let λk , k ∈ {1, 2, . . . , 2n}, n = |E(G)|, be the eigenvalues of 
G(tanh β J ). By Theo-
rem 2.7, we know that their moduli are bounded from above by some constant s < 1
(uniformly in G and β ∈ K ). One can therefore define the logarithm by its power series
around one, i.e.,

ln det
[
Id − 
G(tanh β J )

] = ln
2n∏

k=1

(1 − λk) =
2n∑

k=1

ln(1 − λk)

= −
2n∑

k=1

∞∑

r=1

λr
k/r = −

∞∑

r=1

2n∑

k=1

λr
k/r

= −
∞∑

r=1

tr[
r
G(tanh β J )]/r,

where tr is the trace of a matrix. It is clear that tr[
r
G(tanh β J )] is an analytic function

of β. Moreover, |tr[
r
G(tanh β J )]| ≤ 2|E(G)|sr for any r , and therefore the above series

converges uniformly on K . It follows that the series defines a holomorphic function on
Thigh. Again, after rescaling by the number of vertices, it becomes uniformly bounded
in G. This completes the proof of the first part of the theorem.

The proof of part (ii) uses the second formula from Theorem 2.1 and proceeds in a
similar manner. �
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