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Abstract: The jellium is a model, introduced by Wigner (Phys Rev 46(11):1002, 1934),
for a gas of electrons moving in a uniform neutralizing background of positive charge.
Wigner suggested that the repulsion between electrons might lead to a broken transla-
tional symmetry. For classical one-dimensional systems this fact was proven by Kunz
(Ann Phys 85(2):303–335, 1974), while in the quantum setting, Brascamp and Lieb
(Functional integration and its applications. Clarendon Press, Oxford, 1975) proved
translation symmetry breaking at low densities. Here, we prove translation symmetry
breaking for the quantum one-dimensional jellium at all densities.
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1. Introduction

In a landmark paper [Wig34], Wigner introduced the jellium model for a gas of electrons
and predicted that when the potential energy of the system overwhelms the kinetic energy,
the electrons would form a “close-packed lattice configuration”. We are interested in the
one-dimensional quantum jellium (using the potential −|x |) which models uniformly
charged parallel sheets which are able to move in the transverse direction. Alternatively,
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one can consider this as a model of electrons inside a very thin insulated conducting wire.
In the case of wires which are not insulated (e.g., with interaction 1/r ), Schulz [Sch93]
predicted that the crystallization could still persist in the weaker form of quasi long-range
order. Deshpande and Bockrath [DB08] recently observed Wigner-crystal type behavior
in experiments on carbon nanotubes.

Wigner crystallization was proven for the classical one-dimensional jellium in Refs.
[Kun74,BL75] by showing periodicity of the one-point correlation functions at almost
all densities and at all low electron densities (high spacing). Later, [AM80,AGL01] used
ergodic-theoretic arguments to show crystallization at all densities. This argumentation
was extended to the classical quasi-one-dimensional1 jellium by Aizenman et al. [AJJ10].

Wigner’s original model was of course in the quantum setting, and Kunz states that
“the quantum case (in one-dimension) might be rewarding for the following reasons:
whereas a crystalline phase will certainly survive in the strong coupling regime, quantum
effects become important in the weak coupling limit. But in this regime classically the
particles already tend to be delocalized, so that it is not excluded that the uncertainty and
the exclusion principle will keep the particles sufficiently far apart that they go into a gas
phase. But evidently the presence or absence of such a transition remains to be proved.”2

Only a year later [BL75] proved, using the now well-known Brascamp–Lieb inequality
for Gaussian measures, crystallization for the one-dimensional quantum system at suffi-
ciently low densities (again, through the periodicity of the one-particle density). In this
work, we generalize and combine some arguments of Refs. [Kun74,AM80] to prove
crystallization for the quantum one-dimensional jellium at all densities. The main tool
we use is the Krein–Rutman theorem (a generalization of Perron–Frobenius) applied to
a transfer operator.

In the next section, we introduce the model and state our main results. In Sect. 3,
we present some tools and lemmas that are used in the proofs of the main results. The
final two sections are devoted to those proofs. In the appendix, we present a connection
between our model and a family of non-colliding Ornstein–Uhlenbeck bridges.

2. Model and Results

In this section we formulate the model and results in the language of quantum statistical
mechanics. The path integral formulation and associated probabilistic setup for systems
of non-colliding Gaussian bridges are given in the next section.

Consider N particles of charge −1 each, with positions

x1, . . . , xN ∈ [a, b] ⊂ R.

The charges interact with each other through the one-dimensional Coulomb potential
V (x) := −|x |, x ∈ R. Note the distributional identity −V ′′ = 2δ0. In addition, there is
a neutralizing background of homogeneous charge density ρ = N/(b − a); the inverse
density λ = ρ−1 denotes the typical spacing between the electrons. The total potential
energy of the system is

1 One infinite dimension crossed with a compact manifold.
2 In the strong coupling regime (β/ρ � 1), the potential energy dominates the entropy and entropic

fluctuations should not destroy the periodicity. At weak coupling, this is less clear, especially since the quantum
system has more fluctuations than the classical system (due to fluctuations of Brownian bridges in the Feynman–
Kac picture).



Wigner Crystallization in the Quantum 1D Jellium at All Densities 1135

U (x1, . . . , xN ) := −
∑

1≤ j≤k≤N

|x j − xk | + ρ
N∑

j=1

∫ b

a
|x j − x |dx

−ρ
2

2

∫ b

a

∫ b

a
|x − x ′|dxdx ′. (1)

The Hilbert space HN for N fermions on the line [a, b] is the space of square-
integrable complex-valued functions f ∈ L2([a, b]N ) that are antisymmetric, i.e.,
f (xσ(1), . . . , xσ(N )) = sgn(σ ) f (x1, . . . , xN ) for all permutations σ of {1, . . . , N }.
The quantum-mechanical Hamiltonian is

HN := −1

2

N∑

j=1

∂2

∂x2
j

+ U (x1, . . . , xN ). (2)

Here we use, as usual, the same letter U for the function and for the associated multiplica-
tion operator, and we have chosen units such that h̄2/m = 1. We take Dirichlet boundary
conditions, i.e., HN is the closure of the operator with domain C∞

0 ((a, b)N )∩ HN . It is
well-known that HN is self-adjoint (see [RS80, Thm X.28] and (19) below).

Fix an inverse temperature β > 0. The canonical partition function is

Z N (β) := Tr exp(−βHN ). (3)

In the next section we shall express Z N (β), via the Feynman–Kac formula, as the expec-
tation of a functional of Brownian bridges. Standard arguments show that exp(−βHN )

is an integral operator with continuous kernel exp(−βHN )(x1, . . . , ; . . . , yN ) [Gin65,
RS80].

For n ∈ {1, . . . , N }, the n-particle reduced density matrix [Gin65,BR97] is the
function of x = (x1, . . . , xn) and y = (y1, . . . , yn), proportional to

ρN
n (x; y) ∝

∫

[a,b]N−n
e−βHN (x, x′; y, x′)dx′ (4)

with proportionality constant fixed by the condition
∫

[a,b]n
ρN

n (x; x)dx1 · · · dxn = N (N − 1) · · · (N − n + 1). (5)

The one-particle density ρN
1 (x; x) (corresponding to n = 1 and x = y) represents

the expected number of particles in an infinitesimal neighborhood of x . Equation (5)
becomes

∫ b
a ρ

N
1 (x; x)dx = N and expresses that there are N particles in [a, b]. The

reduced density matrices inherit the antisymmetry, e.g.,

ρN
2 (x1, x2; y1, y2) = −ρN

2 (x1, x2; y2, y1) = ρN
2 (x2, x1; y2, y1). (6)

We are now ready to state our results on the thermodynamic limit: we fix the back-
ground charge density ρ and inverse temperature β. Recalling that N = ρ(b − a), we let

a → −∞, b → ∞ (thus N → ∞). (7)

Our first result concerns the asymptotics, under (7), of the partition function Z N (β).
Recall that the free energy
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f (β, ρ) := − lim
1

βN
log Z N (β),

was shown to exist in [LN76] (their proof is with respect to the Coulomb potential |x |−1,
but as they state on p. 292, applies to −|x | as well).

Theorem 2.1 (Surface corrections). The following limit along (7) exists in R:

βs(β, ρ) := − lim
(

log Z N (β) + N f (β, ρ)
)
.

One can rewrite the above as

−β−1 log Z N (β) = N f (β, ρ) + s(β, ρ) + o(1)

in order to see that the finite-size corrections to the free energy are bounded. The free
energy itself can be written, as we will see in Sect. 5, as

f (β, ρ) = 1

12ρ
+

(√
ρ

2
+

1

β
log(1 − e−β√

2ρ)
)

− 1

β
log z0(β, ρ). (8)

The first term is the minimum of the potential energy, the second term is the free energy
for N independent harmonic oscillators, and z0(β, ρ) is the principal eigenvalue of some
transfer operator that encodes the “non-collision” of certain Gaussian bridges; the last
term is small at low density since limρ→0 z0(β, ρ) = 1. Equation (8) is the analogue of
Eq. (17) in [Kun74].

If the system is non-neutral with fixed excess charge Q = ρL − N , the bulk free
energy f (β, ρ) is given by (8) plus the term −Q2/(4ρ). This term represents the inter-
action between charges Q/2 placed at distance b − a: in Coulomb systems the excess
charge typically accumulates at the boundary. This follows by combining our proofs with
arguments given in [Kun74]; these arguments also show that the bulk reduced density
matrices in Theorem 2.2, which we now state, are unaffected by the excess charge.

Theorem 2.2. (i) In the limit (7) along a, b ∈ λZ, all reduced density matrices have
uniquely defined limits

ρn(x1, . . . , xn; y1, . . . , yn) = lim ρN
n (x1, . . . , xn; y1, . . . , yn). (9)

The convergence is uniform on compact subsets of R
n ×R

n, and the reduced density
matrices ρN

n and ρn are continuous functions.
(ii) The limit is periodic with respect to shifts by λ = ρ−1,

ρn(x1 − λ, . . . ; . . . , yn − λ) = ρn(x1, . . . ; . . . , yn) (10)

for all n ∈ N and x, y ∈ R
n. Furthermore for every θ /∈ λZ there is some n ∈ N

and some x ∈ R
n such that ρn(x − θ; x − θ) �= ρn(x; x).

The translation symmetry breaking of the reduced density matrices in part (ii) of
the above theorem will follow from the symmetry breaking of probability measures on
point configurations in the thermodynamic limit (Theorem 2.4 below) and adequately
addressing a “moment problem”. Let us make a couple further comments concerning
part (ii), but before doing so, we rephrase the above theorem in terms of quantum states
on C∗ algebras.
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Let A be the algebra of observables for fermions on the line, i.e., A is the CAR algebra
(canonical anticommutation rules) over the one-particle Hilbert space L2(R) [BR97,
Ch. 5.2]. Let ωN and ω be the states on A with reduced density matrices ρN

n and ρn ,
respectively. Write τx : A → A for the action of translation by x on the observables. The
following is an immediate consequence of Theorem 2.2 (locally uniform convergence
of the reduced density matrices implies convergence of states on the CAR algebra, see
[BR97, Ch. 6.3.4]).

Corollary 2.3. In the thermodynamic limit along a, b ∈ λZ, the states (ωN ) converge
weakly to ω, i.e.,

∀A ∈ A : lim
N→∞ωN (A) = ω(A). (11)

The limit state is invariant under translations by integer multiples of λ, and λ is the
smallest period:

ω ◦ τx = ω ⇔ x ∈ λZ. (12)

Let us now make two remarks on further aspects of symmetry breaking. Our first
remark concerns the decay of correlation functions and ergodicity. Part (c) of Lemma 3.5
below, together with arguments adapted from [Kun74], shows that the n-particle densities
ρn(x; x) decay exponentially, e.g.,

|ρ2(x1, x2; x1, x2)− ρ1(x1; x1)ρ1(x2; x2)
∣∣ ≤ C exp(−α|x1 − x2|

)
(13)

for suitable α,C > 0. We expect that in addition there is no off-diagonal long range
order.3 In other words, we expect, for example, that ρ1(x; y) → 0 as |y − x | → ∞;
however, a proof would draw us too far from the objective at hand. But if this holds
true, the limiting state ω is ergodic with respect to shifts by integer multiples of λ; in the
absence of a proof, we know only that the restriction of ω to a commutative subalgebra
of observables—described by the probability measure ν0

R
defined below—is ergodic (in

fact, exponentially mixing).
The second remark concerns the appearance of reduced density matrices ρn with

n ≥ 2 in part (ii) of Theorem 2.2. Brascamp and Lieb [BL75] showed that at low
densities, i.e., ρ3/2/ tanh(β

√
ρ/2) sufficiently small,4 the one-particle density ρ1(x; x)

is a periodic function of x with smallest period λ (see also [Kun74, p. 314]). It is of the
form

ρ1(x; x) =
∑

k∈Z

F(x − kλ) exp
(
− (x − kλ)2

2σ(β, ρ)2

)
(14)

with F a log-concave function and σ(β, ρ) as in Appendix A. Explicit estimates on
the amplitude of oscillations of ρ1(x; x) for λ � σ(β, ρ) can be deduced from the
arguments in Brascamp and Lieb [BL75]. Our result holds for all positive ρ and β, but
leaves open the possibility that at high density, the period λ is not visible at the level of
the one-particle density – in principle, a quantum state can have a non-trivial period but
constant one-particle density, as illustrated by the next example.

3 A path integral picture is given in Fig. 3 at the end of Sect. 3.1. One must show that the relative probability
of an “open loop” from x to y of winding number n, versus that of n Brownian bridges with the same starting
and ending points, goes to 0. This is intuitive since the probability that a Brownian motion is at a distance of
order n at time n decays exponentially.

4 The Hamiltonian for a single charged particle is a harmonic oscillator. “Small density” means that the fluc-
tuations of the harmonic oscillator/Ornstein–Uhlenbeck bridges are small compared to the typical interparticle
spacing, σ(β, ρ) � λ = ρ−1 (see Appendix A).
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Example. Let ρ = λ = 1, a = −b, and let N be the many-fermion state given by the
antisymmetrized product of χ−b, . . . , χb−1 where χ j (x) ( j ∈ Z) is the indicator that
x is in [ j, j + 1). In the limit b → ∞, the state is clearly not shift-invariant since the
probability of seeing more than one particle in a small interval of width ε is zero if the
interval is contained in a cell [ j, j + 1), and non-zero if it intersects two distinct cells.
Nevertheless, the one-particle density ρ1(x; x) = ∑∞

j=−∞ χ j (x) = 1 is constant.

The quantum state on HN determines a probability measure on point configurations
as follows. Denote the Weyl chamber by

WN (a, b) := {(x1, . . . , xN ) | a < x1 < · · · < xN < b}. (15)

Because of Eqs. (5) and (6), the N -particle density ρN
N (x; x) integrates to N ! on [a, b]N

and thus
∫

WN (a,b)
ρN

N (x; x)dx = 1. (16)

We can thus think of ρN
N (x; x) as a probability measure on point configurations in [a, b]

(or equivalently, a point process). To emphasize this perspective we rename this measure
on configurations in [a, b] as

ν0
a,b(dx) ≡ ρN

N (x; x)dx, (17)

we identify vectors x with sets {x1, . . . , xN }, and view ν0
a,b as a measure on the space

� consisting of locally finite subsets of R (every compact set contains at most finitely
many points x j ). The space � is equipped with the shift operator

τu x := {u + xi | xi ∈ x}
and the topology (and Borel σ -algebra) generated by the continuous functionals x �→∑

x j ∈x f (x j ) where f runs over the continuous functions on R with compact support.
As always, we are interested in these measures in their thermodynamic limit (7).

Theorem 2.4 (Symmetry breaking: point processes). In the limit (7) along a, b ∈ λZ,
the measures ν0

a,b converge weakly to a limiting probability measure ν0
R

. The measure ν0
R

is invariant under shifts τnλ of integer multiples of λ. Shifting by a non-integer multiple
yields a measure which is singular with respect to ν0

R
:

u /∈ λZ implies ν0
R

◦ τu ⊥ ν0
R
.

Here “⊥” means as usual that the measures are mutually singular, and weak conver-
gence means

∫
f dν0

a,b → ∫
f dν0

R
for every continuous bounded function f :� → R.

We end this section with a brief intuitive explanation of the above theorem, i.e., a
heuristic reason why there is symmetry breaking for one-dimensional Coulomb inter-
actions. The general mechanism was highlighted in Refs. [AM80,AGL01]: the total
charge enclosed in an interval [a, b] is the difference of the electric fields at a and b;
since the field stays well-defined in the thermodynamic limit, this implies tightness of
charge fluctuations, which in turn implies symmetry breaking. The same mechanism is at
work here, albeit in a hidden way: roughly, instead of proving tightness of overall charge
fluctuations, we prove that particles x j do not stray too far away from their preferred
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positions m j and that the thermodynamic limit exists not only for the point process but
also for the measure on labelled particles.5 Recall that ρ = N/(b − a), and let

m j := a + λ

(
j − 1

2

)
( j = 1, . . . , N ). (18)

It was noticed in [Bax63, Eq. 18] that for a = 0 and x1 ≤ · · · ≤ xN , the two sums in
the classical potential energy of a configuration given by (1) can be written as

aU (x1, . . . , xN ) = −
∑

j=1

(2 j − 1 − N )x j + ρ
N∑

j=1

(x2
j − bx j ) + const.

= ρ

N∑

j=1

(
x j − m j

)2 +
N

12ρ
. (19)

If we ignore for a moment, the fact that the above expression assumes that the x j ’s are
ordered, then the Gibbs measure e−βU (x)/Z(β)dx is Gaussian which, as one can easily
see, induces crystallization in the thermodynamic limit. A key observation of [BL75],
now known as the Brascamp–Lieb inequality, showed that the constraint that particles
be ordered can only decrease the variance of x j , making it more likely to stay close
to its mean. As the conditioning might in principle change the mean, slightly modified
boundary conditions were employed in [BL75] to ensure that the mean stays equal to
m j ; the use of the transfer operator in our work removes the need for modified boundary
conditions.

3. Tools of the Trade

3.1. Path integrals. An identity analogous to (19) holds for a �= 0, and together with the
Feynman–Kac formula, allows us to relate ν0

a,b in (17) to a Gaussian measure conditioned
on a Weyl chamber. This alternative formulation of (17) and its immediate consequences
are the goals of this section.

Let E be the space of continuous paths γ : [0, β] → R, equipped with the topol-
ogy of uniform convergence and the corresponding Borel σ -algebra. Let μxy be the
measure on E given by the non-normalized Brownian bridge measure, with total
mass μxy(E) = Pβ(x, y), where Pt (x, y) is the transition semi-group (heat kernel)
for a standard Brownian motion in R with generator 1

2�. Thus under μxy , for all
0 < t1 < · · · < tr < β, the vector (γ (t1), . . . , γ (tn)) has density

Pt1(x, x1)Pt2−t1(x1, x2) · · · Pβ−tr (xr , y).

and for μxy-almost all γ ∈ E, γ (0) = x and γ (β) = y. Write

μxy( f ) :=
∫

E
f (γ )dμxy(γ )

5 For short-range interactions, labelled particles are not the correct object: let (X N−N , . . . , X N
N ) be a vector

uniformly distributed (=zero interaction) in the Weyl chamber −N ≤ x−N ≤ . . . ≤ xN ≤ N : then as
N → ∞, the random variable X N

1 is not tight.
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Fig. 1. Non-colliding Brownian bridges: a typical path configuration in Wβ
N (a, b), contributing to the partition

function Z N (β)

and generalize the Weyl chamber (15) to a Weyl chamber for paths

Wβ
N (a, b) := {(γ1, . . . , γN ) ∈ E N | ∀t ∈ [0, β] a < γ1(t) < · · · < γN (t) < b},

see Fig. 1.

Lemma 3.1 (Feynman–Kac formula). We have

Z N (β)

=
∫

WN (a,b)
μx1x1 × · · · × μxN xN

(
e− ∫ β

0 U (γ1(t),...,γN (t))dt 1
Wβ

N (a,b)
(γ )

)
dx1 · · · dxN

and for all x, y ∈ WN (a, b),

ρN
N (x; y) = 1

Z N (β)
μx1 y1 × · · · × μxN yN

(
e− ∫ β

0 U (γ1(t),...,γN (t))dt 1
Wβ

N (a,b)
(γ )

)
.

The full proof is omitted as the lemma is a standard consequence of Fermi sta-
tistics and the usual Feynman–Kac formula [Sim79, Sec. 6]. However, let us briefly
recall the general argument. First the antisymmetry is used to go from R

N to the Weyl
chamber.6 The relevant boundary conditions are Dirichlet boundary conditions: indeed,
ψ(x2, x1) = −ψ(x1, x2) yields ψ(x1, x2) = 0 whenever x1 = x2. The Laplacian with
Dirichlet boundary conditions is the infinitesimal generator of a sub-Markov process,
namely Brownian motion killed at the boundary of the Weyl chamber. The Feynman–
Kac formula then gives a representation of the integral kernel of the Hamiltonian in the
Weyl chamber and the lemma follows.

Note that in our notation, we have employed two equivalent ways to view the above
result. One is to think of γ (t) as a single N -dimensional Brownian bridge inside the Weyl
chamber; the other is to think of the components γi (t) as non-colliding one-dimensional
Brownian bridges as shown in the Fig. 1.

6 For free fermions (U ≡ 0), Lemma 3.1 reduces to the Karlin-McGregor determinantal formulas [KM59]
for non-coincidence probabilities of Brownian motions.
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Using (16) and (19), the Feynman–Kac formula gives us an alternative way of viewing
the measure ν0

a,b:

ν0
a,b(dx) = 1

Z N (β)
μx1x1 × · · · × μxN xN

(
e− ∫ β

0
∑

j (γ j (t)−m j )
2dt 1

Wβ
N (a,b)

(γ )
)
, (20)

where by abuse of notation we write an equality between the measure ν0
a,b and its density

with respect to Lebesgue measure. Our next lemma recasts (20) in a way that will prepare
us to employ a transfer operator. Let νxy be the measure on E that is absolutely continuous
with respect to μxy with Radon–Nikodým derivative

dνxy

dμxy
(γ ) = 1

c(β, ρ)
exp

(
−ρ

∫ β

0
γ (t)2dt

)
(21)

with c(β, ρ) chosen so that the mixture

ν :=
∫

R

νxx dx (22)

is a probability measure (in fact it is Gaussian since μxx is Gaussian and the exponent
is quadratic; see Proposition A.1 where we also compute c(β, ρ) explicitly). Define ν j

similarly but with (γ (t)− m j )
2 replacing γ (t)2 in (21). Set

ν̂a,b := ν1 × ν2 × · · · × νN (23)

which is by construction, a probability measure for N independent Gaussian paths.

Lemma 3.2. We have

Z N (β) = c(β, ρ)N e−βN/(12ρ) ν̂a,b

(
Wβ

N (a, b)
)
. (24)

Moreover, if νa,b(dγ ) is defined as the measure ν̂a,b(dγ ) conditioned on the event γ ∈
Wβ

N (a, b), i.e.,

dνa,b

dν̂a,b
(γ1, . . . , γN ) := 1

ν̂a,b(W
β
N (a, b))

1
Wβ

N (a,b)
(γ1, . . . , γN ),

then the law of (γ1(0), . . . , γN (0)) under νa,b(dγ ) has a density with respect to Lebesgue
measure on R

N given by ν0
a,b(dx) as defined in (17).

Proof. Equation (24) follows from (19), Lemma 3.1, and the definition of ν̂a,b given by
(21)–(23). The statement concerning ν0

a,b follows from (20). ��
The Feynman–Kac formulation also gives us a nice representation for the reduced

density matrices, which is a variant of some well-known functional integral representa-
tions (see [Gin65] or [BR97, Ch. 6.3.3]). We give an expression and proof only for the
one-particle matrix and content ourselves with a geometric description for the n-particle
matrices.

Fix x, y ∈ [a, b] with x ≤ y and fix j, k ∈ {1, . . . , N } such that j ≤ k. Let
�x jky ⊂ Wβ

N (a, b) (see Fig. 2) be the set of non-intersecting paths (γ1, . . . , γN ) such
that
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Fig. 2. A path configuration in the set �x jky with j = 3 and k = 6 contributing to the one-particle reduced

density matrix ρN
1 (x; y)

• γi (0) = γi (β) for all i < j and i > k,
• γi (β) = γi+1(0) for i = j, . . . , k − 1 (if j = k this condition is vacuous),
• γ j (0) = x and γk(β) = y.

Also, we label the starting point of the i th path as xi so that in particular x = x j .
For x = x j and x = (x1, . . . , xN ) ∈ WN (a, b), let

Wx jky := {(x, y) : a < x1 < · · · < xk < y < xk+1 < · · · < xN < b, x j = x}.
By integrating over Wx jky , on �x jky we define the measure

νx jky(dγ ) :=
∫

Wx jky

1
Wβ

N (a,b)
νx1x1(dγ1)

× · · ·
(
νxx j+1 × · · · × νxk y

)
· · · × νxN xN (dγN ) dx1 · · · d̂x j · · · dxN , (25)

where d̂x j signifies that integration over this variable is omitted. The above is a mixture
of bridge measures obtained by integrating out the free starting and ending points.

Because of the self-adjointness of exp(−βHN ), the reduced density matrices are
symmetric with respect to the starting and ending points (x, y) (this is different from
(6)); in particular, ρN

1 (x; y) = ρN
1 (y; x) and we need only treat the case x ≤ y.

Lemma 3.3. Let x, y ∈ [a, b] with x ≤ y. The reduced one-particle matrix is given by

ρN
1 (x; y) = 1

ν̂a,b(W
β
N (a, b))

∑

j≤k

(−1)k− jνx jky
(
Wβ

N (a, b)
)
. (26)

Remark. When x = y, we must have j = k. Therefore the one-particle density ρ1(x; x)
has a much simpler expression as a sum of one-dimensional marginals of bridge start-
ing points γ j (0), j = 1, . . . , N , under ν̂a,b. In particular, Eq. (26) is compatible with∫ b

a ρ
N
1 (x; x)dx = N .

Proof. Consider first the case N = 2. Fix x, y ∈ R and assume x ≤ y. The one-particle
matrix is by definition proportional to
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Fig. 3. An “open loop” from x and y with winding number 4. The endpoints of dotted lines are identified

ρ2
1 (x; y) ∝

∫ b

a
ρ2

2 (x, x ′; y, x ′)dx ′. (27)

We use the antisymmetry (6) to reorder the arguments of ρ2
2 in the integrand and obtain

∫ x

a
ρ2

2 (x
′, x; x ′, y)dx ′ −

∫ y

x
ρ2

2 (x, x ′; x ′, y)dx ′ +
∫ b

y
ρ2

2 (x, x ′; y, x ′)dx . (28)

We may now apply Lemma 3.1: the first term corresponds to paths (γ1, γ2)with γ1(0) =
γ1(β) = x ′, γ2(0) = x , and γ2(β) = y. The third term is similar, except for a switch in
the roles of γ1 and γ2. The middle term corresponds to paths with γ1(0) = x, γ1(β) =
x ′ = γ2(0), and γ2(β) = y. Thus we find

ρ2
1 (x; y) = 1

C

(
νx11y − νx12y + νx22y

)(
WN (a, b)

)
(29)

for some constant C > 0. The proof of Eq. (26) is concluded by computing C > 0 via
the condition

∫ b
a ρ

2
1 (x; x)dx = 2.

The computation for general N ∈ N is similar; the sign (−1)k− j comes from reorder-
ing the arguments in the sector where there are k − j variables x ′

i between x and y. ��
Lemma 3.3 has analogues for the n-particle matrices, which we now briefly describe.

In Fig. 3 below, we show a common geometric picture, c.f. [BR97, Ch. 6.3.3]: we view
[a, b]× [0, β] as a cylinder, with β the periodic (angular) coordinate, and think of paths
γ ∈ E as loops of winding number n = 1. If γ (0) = γ (β), the loop is closed, otherwise
it is open. More generally, a loop of winding number w ≥ 2 is a vector (γ1, . . . , γw)

such that γ j (β) = γ j+1(0) for all j = 1, . . . , w− 1. It is closed if γw(β) = γ1(0). Note
that we may also write the loop as a single “composite” path γ : [0, nβ] → [a, b], where
γ ( jβ + t) = γ j (t) for every j = 1, . . . , N − 1 and t ∈ [0, β]. Loops are not allowed to
have self-intersections (i.e., γ1, . . . , γw do not collide), but they can wind from right to
left: we may have γw(β) < γ1(0).

Fix x1 < · · · < xn, y1, . . . , yn (the yk’s need not be ordered). The paths (γ1, . . . , γN )

contributing to the representation of the n-particle matrix consist of

• n open loops of respective winding numbers w1, . . . , wn ≥ 1. The kth open loop
starts at xk and ends at yk .
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• N − ∑
k wk closed loops of winding number 1.

• The loops do not collide and have no self-intersections.

Open loops can be entwined – we may have, for example, an open loop of winding number
2 going from x1 to x ′ and then y1, and another open loop going from x2 ∈ (x1, x ′) to
y2 ∈ (x ′, y1). In this example, x1 < x2 but y2 < y1.

The representation of the n-particle reduced density matrix is in terms of the nat-
ural analogs of Eqs. (25) and (26). Each open loop configuration comes with the sign∏n

i=1(−1)wi −1.

3.2. Krein–Rutman theorem. As mentioned in the introduction, following [Kun74,
AM80], the Krein–Rutman theorem [KR48] is one of our main tools for proving sym-
metry breaking. It is a generalization of the Perron–Frobenius theorem.

Before stating a version of the Krein–Rutman theorem, let us first describe the transfer
operator to which it will be applied. The transfer operator will be used to reproduce the
probability measure (20) on point configurations x in [a, b]. By Lemma 3.2, it is in fact
enough to produce the measure νa,b(dγ ), which we now do. Our kernel K : E × E → R

operates on L2(E). It is defined by

K (γ, η) :=
{

1, ∀t ∈ [0, β] : γ (t) < η(t) + λ,

0, else.
(30)

We let K be the associated integral operator on the separable Hilbert space L2(E, ν)
with ν defined as in (22),

(K f )(γ ) :=
∫

E
K (γ, η) f (η)ν(dη). (31)

Its adjoint is

(K∗ f )(γ ) :=
∫

E
K (η, γ ) f (η)ν(dη). (32)

Write 〈 f, g〉 := ∫
E f g dν for the scalar product in L2(E, ν) and || f || := √〈 f, f 〉 for

the L2-norm.

Lemma 3.4. Let

F(γ ) := K (−1/(2ρ), γ ) = 1{∀t∈[0,β]: γ (t)>−1/(2ρ)}
G(γ ) := K ( γ , 1/(2ρ) = 1{∀t∈[0,β]: γ (t)<1/(2ρ)}.

We have

ν̂a,b
(
Wβ

N (a, b)
) = 〈F,KN−1G〉.

Proof. Recall the definition of m j from (18). Note that

a < γ1(t) < · · · < γN (t) < b

if and only if the shifted paths γ̃ j (t) := γ j (t)− m j satisfy

γ̃1(t) > a − m1 = −1/(2ρ) and γ̃N (t) < b − m N = 1/(2ρ), (33)
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and for all j ∈ {1, . . . , N − 1},
γ̃ j (t) < γ̃ j+1(t) + m j+1 − m j = γ̃ j+1(t) + λ.

From Lemma 3.2 and (22) we have that

ν̂a,b

(
Wβ

N (a, b)
)

=
∫

a<γ1<···<γN<b
ν1(dγ1) · · · νN (dγN )

=
∫

E N
K (−1/(2ρ), γ̃1)K (γ̃1, γ̃2) · · · K (γ̃N−1, γ̃N )K (γ̃N , 1/(2ρ))ν(dγ̃1) · · · ν(dγ̃N )

=
∫

E N
F(γ̃1)K (γ̃1, γ̃2) · · · K (γ̃N−1, γ̃N )G(γ̃N )ν(dγ̃1) · · · ν(dγ̃N )

= 〈F,KN−1G〉. (34)

��
We are now ready for our version of the Krein–Rutman theorem [KR48]. It follows

from the standard theorem by simple arguments adapted from [Kun74, Appendix A].
In particular, the Cauchy–Schwarz inequality allows us to transfer properties from the
Hilbert space L2(E, ν) to the space of bounded functions. Our statements are uniform in
γ and do not involve ν-null sets. This is important because the representation of reduced
density matrices uses paths from x to y �= x , which form a ν-null set.

Lemma 3.5 (Krein–Rutman). Let z0 := ||K|| > 0. Then:

(a) There is a unique strictly positive function 0 : E → R such that (K0)(γ ) =
z00(γ ) for all γ ∈ E and

∫
E 0(γ )0(−γ )ν(dγ ) = 1.

(b) The reflected function ̃0(γ ) := 0(−γ ) satisfies K
∗̃0 = z0̃0.

(c) 0 is bounded.
(d) For suitable ε,C > 0, all f ∈ L2(E, ν) and all n ∈ N,

∣∣∣
1

zn
0
K

n f (γ )− 〈̃0, f 〉0(γ )

∣∣∣ ≤ Ce−εn|| f ||,
∣∣∣

1

zn
0
(K∗)n f (γ )− 〈0, f 〉̃0(γ )

∣∣∣ ≤ Ce−εn|| f ||.
(35)

Proof. (a) One can easily check that our operator is Hilbert-Schmidt and irreducible,
and that it maps non-negative functions to non-negative functions. The Krein–Rutman
theorem [KR48] shows that z0 is a simple eigenvalue, and the eigenfunction can
be chosen strictly positive. Hence there is a unique 0 ∈ L2(E, ν) such that∫

E 0(−γ )0(γ )ν(dγ ) = 1, 0(γ ) > 0 and (K0)(γ ) = z00(γ ) for ν-almost
all γ . Asking that the last equality holds for all γ ∈ E removes the ambiguity on ν-null
sets.
Part (b) follows from the symmetry K (γ, γ̃ ) = K (−γ̃ ,−γ ). For later purposes we also
note the following: the projection |0〉〈̃0|: f �→ 〈̃0, f 〉0 satisfies K|0〉〈̃0| =
|0〉〈̃0|K = z0|0〉〈̃0|.
(c) The Cauchy–Schwarz inequality yields

0(γ ) = z−1
0

∫

E
K (γ, γ̃ )0(γ̃ )ν(dγ̃ ) ≤ z−1

0 ||0||(
∫

E
K (γ, γ̃ )2ν(dγ̃ ))1/2. (36)



1146 S. Jansen, P. Jung

(d) The spectrum of K consists of eigenvalues only because K is compact. We have also
just shown that z0 is a simple eigenvalue of K and that every other eigenvalue has a
strictly smaller absolute value. Let

z1 := max
{
|λ| : λ ∈ σ(K), λ �= z0} < z0

}
(37)

The operator K − z0|0〉〈̃0| is compact and has spectral radius z1,

lim
n→∞

1

n
log ||(K − z0|0〉〈̃0|

)n|| = z1. (38)

Since

K(K − z0|0〉〈̃0|) = (K − z0|0〉〈̃0|)K = 0,

we have

K
n = (K − z0|0〉〈̃0|)n + zn

0 |0〉〈̃0|,
and we deduce that for suitable ε,C ′ > 0 and all n ∈ N,

|| 1

zn
0
K

n − |0〉〈̃0| || ≤ C ′ exp(−εn). (39)

The proof is completed by applying the Cauchy–Schwarz inequality as in the proof of
(c) and then applying the inequality (39)

∣∣∣
( 1

zn
0
K

n f − |0〉〈̃0| f
)
(γ )

∣∣∣ =
∣∣∣

1

z0
K

( 1

zn−1
0

K
n−1 − |0〉〈̃0|

)
f (γ )

∣∣∣

≤ ||( 1

zn−1
0

K
n−1 − |0〉〈̃0|

)
f (γ )||

≤ C ′e−ε(n−1)|| f ||. (40)

The proof for the adjoint is similar. ��

4. Symmetry Breaking

Proof of Theorem 2.4. We start with the existence of the limiting probability measure
for labeled particles; the existence of ν0

R
(on particles without labels, i.e., a point process)

will be a direct consequence. Using Lemma 3.2 and Kolmogorov’s extension theorem,
it is enough to prove the existence along (7) of νR := lim νa,b in the sense of weak
convergence of the finite-dimensional cylinder distributions. For this to make sense, we
must first relabeling the bridges so as to view νa,b as a measure on E {aρ+1,...,bρ} rather
than E {1,...,N }.

More specifically, we relabel each of the N conditioned Brownian bridge measures
using sub-indices � j , j ∈ Z. The sub-index shifts the original index by aρ so that

�aρ+1 = 1, . . . , �0 = −aρ, . . . , �aρ+N = �bρ = N (41)

and in general � j = −aρ + j . Note that in the limit (7), we have aρ + 1 → −∞ and
aρ + N = bρ → ∞, and the lattice points defined in (18) satisfy

m� j = ( j − 1/2)λ. (42)
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We will show that for every fixed ( j1, . . . , jn) ∈ Z
n , the law of (γ� j1

, . . . , γ� jn
) under

νa,b converges weakly to a measure on E { j1,..., jn}. The family of measures obtained
in this way satisfies the consistency conditions required by Kolmogorov’s extension
theorem and hence are the cylinder marginals of a uniquely defined measure νR on EZ.
In this sense, we obtain lim νa,b = νR.

For simplicity, we show the convergence of cylinder marginals only for the single
marginal γ�1 since the general argument is similar (note that m�1 is the smallest positive
m j as defined in (18), see (42)). We will leave it to the reader to confirm that the limits
are consistent in the sense required by Kolmogorov’s theorem.

We show pointwise convergence to a probability density, under the limit (7), which
implies weak convergence of the distributions of γ�1 . Fix γ̄ ∈ E and for a system of N
bridges recall that γ̃�(t) = γ�(t)− m�.

By Lemma 3.2, we have a density, with respect to ν�1 , for the �1-th bridge given by

fa,b(γ̄ ) := 1

ν̂a,b(W
β
N (a, b))

∫

a<γ1<···<γ�0<γ̄<γ�2<···<γN<b
dν1 · · · dν�0 dν�2 · · · dνN .

Using the adjoint K
∗ defined in (32) and the arguments in Lemma 3.4, we obtain the

shifted density with respect to ν:

f̃a,b(γ̄ ) = 1

ν̂a,b(W
β
N (a, b))

((K∗)�1−1 F)(γ̄ )(KN−�1 G)(γ̄ )

= ((K∗)�1−1 F)(γ̄ )(KN−�1 G)(γ̄ )

〈F,KN−1G〉 .

By Lemma 3.5, since �1 → ∞ under the limit (7), we have

f̃a,b(γ̄ ) −→ 〈F, 0〉̃0(γ̄ )〈̃0,G〉0(γ̄ )

〈F, 0〉〈̃0,G〉 = ̃0(γ̄ )0(γ̄ ) =: f̃ (γ̄ ), (43)

where 0 is the positive eigenvector associated to the largest eigenvalue z0 of
K, ̃0(γ ) := 0(−γ ), and 〈̃0, 0〉 = 1 as in Lemma 3.5. Note that f̃ (γ ) = f̃ (−γ )
is even. Note also that the value of �1 appears in the argument only through the fact
that �1 → ∞ under (7). Thus, the single-bridge marginal distributions are shifts of each
other under integer multiples of λ. As mentioned earlier, the above argument can be
extended to show the existence of other limiting cylinder marginals of νR as well as the
fact that they are translations of each other under the shifts λZ.

Thus we have shown that the measures for bridges labeled by the shifted indices
converge to a measure νR on EZ for infinitely many bridges. By Lemma 3.2, it follows
that the measure for labeled particles converges to the law of

(
γ j (0)

)
j∈Z

under νR.

From this one can deduce that ν0
a,b, which is the law of {γ1(0), . . . , γN (0)} under νa,b,

converges weakly to the law of {γ j (0) | j ∈ Z} under νR. A technicality arises because
the map R

Z → �, (x j ) j∈Z �→ {x j | j ∈ Z} is not, in general, continuous. For example,
it may not map a finite number of points to a finite interval. But one can check using
(57) that in our case, the mapping is a.s. continuous. We leave the details to the reader.

We turn now to the mutual singularity of measures shifted by non-integer multiples
of λ. It follows from Eq. (43), the evenness of f̃ (γ̃ ) = f̃ (−γ̃ ), and the evenness of
the reference Gaussian measures from Eq. (22), that the law of γ j (0) is invariant under
reflections around ( j − 1/2)λ. Thus the random variable Y j : (EZ, νR) → R defined by
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Y j (γ ) := γ j (0)− ( j − 1/2)λ

satisfies

EY j = 0. (44)

Let τλ(γ ) := (
γ j+1 − λ

)
j∈Z

, so that

Y j (γ ) = Y j−1(τλ(γ )).

The sequence of random variables (Y j ) j∈Z is stationary, and by Lemma 3.5 and standard
arguments, is also ergodic (in fact mixing). Thus, we have that νR-a.s., for every k ∈ Z,

lim
n→∞

1

n

n∑

j=1

Yk+ j = 0. (45)

Intuitively, we also have that νR ◦ τλu-a.s.,

lim
n→∞

1

n

n∑

j=1

Yk+ j ≡ u (mod λ) (46)

which proves the mutual singularity. The rest of the proof is devoted to rigorously proving
(46).

For γ ∈ EZ, let k(γ ) := min{ j ∈ Z | γ j (0) ≥ 0}. One can check that such a k(γ )
exists a.s. using, for example, the Borel–Cantelli lemma. Set

Y ′
j (γ ) := γk(γ )+ j (0)− ( j − 1/2)λ.

We have

1

n

n∑

j=1

Y ′
j (γ ) = 1

n

n−1∑

j=0

Yk(γ )+ j − k(γ )λ

thus

lim
n→∞ exp

(
i
2π

λ

1

n

n∑

j=1

Y ′
j

)
= 1 νR-a.s. (47)

Since Y ′
j is a function of the set of starting points, we may rewrite the latter identity in

terms of the point process: label the points x j = x j (ω) in a configuration ω ⊂ R as
ω = {· · · < x0 < 0 ≤ x1 < x2 < · · · }. We have

lim
n→∞ exp

(
i
2π

λ

1

n

n∑

j=1

(
x j (ω)− ( j − 1/2)λ

)) = 1 ν0
R

-a.s. (48)

Let u ∈ R and m = m(u, ω) be such that xm(ω) ≤ −u < xm+1(ω). We have

exp
(

i
2π

λ

1

n

n∑

j=1

(
x j (τuω)− ( j − 1/2)λ

))

= exp
(

i
2πu

λ

)
× exp

(
i
2π

λ

1

n

n∑

j=1

(
x j+m(u,ω)(ω)− ( j − 1/2)λ

))
. (49)
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An argument similar to the proof of Eq. (48) shows that the second factor on the right
side converges to 1, ν0

R
-almost surely. It follows that

lim
n→∞ exp

(
i
2π

λ

1

n

n∑

j=1

(
x j (ω)− ( j − 1/2)λ

)) = exp
(

i
2πu

λ

)
(ν0

R
◦ τu)-a s. (50)

Remarks. 1. An elementary proof of a weaker version of Theorem 2.4 follows by apply-
ing Theorem 1.9 of [BL75] to the expression (20) to conclude tightness for a marginal
distribution of a single conditioned Brownian bridge (see also, end of Sect. 2). Then
one can appeal to Theorem 2.1 of [AGL01]. See also [AJJ10, Sec. 4.2].

2. A proof using the electric field as in [AM80,AJJ10] is also possible. Such a route
would however require the vanishing of volume averages for the electric field (see
[AJJ10, Thm 3.4]). The easiest way to achieve this, that the authors are aware of, is via
the ergodic theorem which brings us back to the transfer operator and Krein–Rutman
theorem (see [AM80, Proof of Lemma 4]).

5. Free Energy and Reduced Density Matrices

First we prove the result on the asymptotics of the partition function.

Proof of Theorem 2.1. By (34), we have

ν̂a,b
(
Wβ

N (a, b)
) = 〈F,KN−1G〉

= zN−1
0 〈F, ̃0〉〈0,G〉 + 〈F, (K − z0|0〉〈̃0|)N−1G〉

= zN−1
0 〈F, ̃0〉〈0,G〉

(
1 + O

(
e−εN ))

(51)

with ε > 0 as in Lemma 3.5. Combined with Eqs. (24) and (68), this yields

log Z N (β) = N

(
− β

12ρ
− log

(
2 sinh(β

√
ρ/2

)
+ log z0

)

− log z0 + log〈F, ̃0〉 + log〈0,G〉 + O
(
e−εN )

. (52)

��
Next we come to the existence of reduced density matrices in the thermodynamic

limit and to symmetry breaking.

Proof of Theorem 2.2. (i) We start with the one-particle matrix. Let x ≤ y, j ≤ k, and
νx jky as in Lemma 3.3. The quotient νx jky

(
Wβ

N (a, b)
)
/ν̂a,b

(
Wβ

N (a, b)
)

is equal to the
integral of

(
(K∗) j−1 F

)
(γ j )× K (γ j , γ j+1) · · · K (γk−1, γk)× (

K
N−k G

)
(γk)

〈F,KN−1G〉 (53)

against
∫

Rk− j+1
νx−m j ,x ′

j −m j
× νx ′

j −m j+1,x ′
j+1−m j+1

× · · · × νx ′
k−mk ,y−mk

dx ′
j · · · dx ′

k . (54)
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Let IN (x, y; m j ,mk) be the resulting integral. Note the one-to-one correspondence
between the index set {1, . . . , N } and the finite lattice LN = {m1, . . . ,m N }, hence we
may replace sums over j and k by sums over lattice points. The one-particle matrix is

ρN
1 (x; y) =

∑

�,�′∈LN
�≤�′

(−1)ρ(�
′−�) IN (x, y; �, �′). (55)

Next, relabel the paths γ j , . . . , γk as γ�, γ�+λ, . . . , γ�′ with � = m j and �′ = mk . Let
j → ∞ and N − k → ∞ in such a way that � and �′ stay fixed. In this limit, the
expression (53) converges to

0(−γ�)K (γ�, γ�+λ)

z0
· · · K (γ�′−λ, γ�′)

z0
0(γ�′). (56)

uniformly on Ek− j . The measures νxy have total masses bounded by

νxy(E) ≤ C ′ exp
(
−C(x2 + y2)

)
(57)

for suitable constants C,C ′ > 0 and all x, y ∈ R (see (21) and Proposition A.1).
Therefore the measure (54) is a finite measure with total mass bounded by

Dρ(�′−�) exp
(
−C(x − �)2 − C(y − �′)2

)
(58)

for some D > 0 and all x, y ∈ R. We can exchange limits and integration: IN (x, y; �, �′)
converges to the integral I (x, y; �, �′) of the expression (56) against the measure (54).

To check that we can also bring the limit (7) inside the sum

lim ρN
1 (x; y) = lim

∑

�,�′∈LN
�≤�′

(−1)ρ(�
′−�) IN (x, y; �, �′),

we bound IN (x, y; �, �′) as follows. By Lemma 3.5 there is a c > 0 such
that for all N , j, γ , we have 〈F,KN−1G〉 ≥ czN−1

0 , 1
zN− j

0

K
N− j G(γ ) ≤ c, and

1
z j−1

0

(K∗) j−1 F(γ ) ≤ c. As a consequence,

IN (x, y; j, k) ≤
( DC ′

z0

)ρ(�−�′)
exp

(
−C(x − �)2 − C(y − �′)2

)
. (59)

The bound is independent of N and its sum over �, �′ ∈ L is finite, where L = λ/2+λZ.
By dominated convergence, we see that we can exchange the sum and limit and obtain
that

ρ1(x; y) = lim ρN
1 (x; y) =

∑

�,�′∈L
�≤�′

(−1)ρ(�
′−�) I (x, y; �, �′) (60)

The convergence is uniform on compact subsets of R×R because the sum over �, �′ ∈ L
of the last line in (59) is a locally bounded function of x and y. This proves part (1) of
Theorem 2.2 for the one-particle matrix. The proof for the n-particle reduced density
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matrices is similar and therefore omitted; the roles of j and k (resp. � and �′) are played,
loosely speaking, by the smallest and largest index belonging to some open loops.

In finite volume, the reduced density matrices ρN
n are continuous functions of x and

y because the integral kernel of exp(−βHN ) is continuous. The limits ρn , as locally
uniform limits of continuous functions, are also continuous.

(ii) The invariance under shifts by multiples of λ is immediate from the expres-
sions (60) and the covariance

I (x − λ, y − λ; �, �′) = I (x, y; � + λ, �′ + λ) (61)

(and its n-particle analogues) inherited from the covariance of the measure (54).
In order to get to the smallest period, we apply Theorem 2.4. First we note that the

diagonals (x = y) of the reduced density matrices are nothing else but the factorial
moment densities [DVJ03, Chapter 5.4], also called product densities or correlation
functions, of the measures ν0

a,b, considered as point processes. This statement survives
in the thermodynamic limit. Thus for every interval I ⊂ R, and all n ∈ N,

∫

In
ρn(x; x)dx =

∞∑

k=0

k(k−1) · · · (k−n+1) ν0
R

(
{there are exactly k particles in I}

)

(62)

Let NI be the number of particles in the interval I. The previous equation shows that
the set of functions ρn(x; x), n ∈ N, determine the moments of random variables NI .
Because of Lemma 5.1 below, NI satisfies Carleman’s condition and the moments of
NI determine the law of NI uniquely. Since the point process ν0

R
in turn is uniquely

determined by the law of the variables NI , I running over the intervals in R, we see
that the measure ν0

R
is uniquely determined by the ρn(x; x).

The same argument applies of course to the shifted measure ν0
R

◦ τθ for θ /∈ λZ,
which has factorial moment densities ρn(x − θ; x − θ). The mutual singularity of the
shifted measure to the original measure then implies that there must be an n ∈ N and an
x ∈ R

n such that ρn(x − θ; x − θ) �= ρn(x; x). ��
Lemma 5.1. Let N[x,y) be the (random) number of particles in [x, y). Then for suitable
α,C > 0, all x, y ∈ R with x < y, and every n ∈ N,

ν0
R

(∣∣N[x,y) − ρ(y − x)
∣∣ ≥ n

)
≤ C exp(−αn2). (63)

Proof. In the proof of Theorem 2.4, we showed that the point process is ν0
R

is the law
of {X j | j ∈ Z} for a sequence (X j ) j∈Z of random variables such that · · · < X j <

X j+1 < · · · and EX j = ( j − 1/2)λ. The X j ’s are the starting points of bridges. We
note that for suitable C, α > 0,

P
(|X j − ( j − 1/2)λ| ≥ m

) ≤ C exp(−αm2). (64)

This follows because X j−( j−1/2) equals γ̃ j (0), which has the law0(−γ̃ )0(γ̃ )ν(dγ̃ );
0 is bounded by Lemma 3.5, and the law of γ (0) under ν is Gaussian (see Appendix A).
For x ∈ R, define the random variable

K(x) := card{ j ∈ Z | ( j − 1/2)λ < x, X j ≥ x}
−card{ j ∈ Z | ( j − 1/2)λ ≥ x, X j < x}. (65)
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K(x) is a particle excess number: it counts the number of particles that should be to the
right of x but are to the left, minus those that should be to the right but are to the left.
The number of particles in the interval [x, y) (x < y) equals

N[x,y) = card{ j ∈ Z | ( j − 1/2)λ ∈ [x, y)} + K(x)− K(y). (66)

Lemma 5.1 follows from estimates on K(x) and K(y). Consider first K(0). Let n ∈ N0.
By using that the X j ’s are ordered from left to right, we obtain

P(K(0) ≥ n) ≤ P

(
card{ j ∈ Z | ( j − 1/2)λ < x, X j ≥ x} ≥ n

)

≤ P
(
X−n ≥ 0

) = P(Y0 ≥ nλ) ≤ C exp(−α(n + λ/2)2). (67)

A similar reasoning yields an estimate of P(K(0) ≤ −n) and of the deviation probabil-
ities of K(x), K(y). Lemma 5.1 then follows from Eq. (66). ��
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Appendix A. Non-Colliding Ornstein–Uhlenbeck Bridges

Let E0 be the subset of E consisting of all continuous paths on [0, β] with the same
starting and ending points. Here we show that ν, as defined in (22), is a probability
measure on E0 under which (γ (t))0≤t≤β is a Gaussian process:

Proposition A.1. The constants in (21) are calculated as

c(β, ρ) = 1

2 sinh(β
√
ρ/2)

= exp(−β√
ρ/2)

1 − exp(−β√
2ρ)

. (68)

Furthermore, for all 0 ≤ t0 < t1 < · · · < tr < β, the vector (γ (t1), . . . , γ (tr )) under
the measure ν is Gaussian, and the variance of γ (0) is

σ(β, ρ)2 =
[
2
√

2ρ tanh
(
β

√
ρ

2

)]−1
. (69)

The result was essentially proven in [BL75, Eqs. (1.12)–(1.13)], we provide some
more technical details.

Proof. First we note that c(β, ρ) = Tr exp(−βA) where A

A = −1

2

d2

dx2 + ρx2 (70)

is the Hamiltonian of a harmonic oscillator. It is well-known that A, with a suitable
domain, is a self-adjoint operator on L2(R) [RS80, Thm. X.28]. The associated semi-
group exp(−t A) is an integral operator with kernel

kt (x, y) = (2ρ)1/4√
2π sinh(t

√
2ρ)

exp

(
−

√
2ρ(x2 + y2)

2 tanh(t
√

2ρ)
+

√
2ρxy

sinh(t
√

2ρ)

)
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(obtained from Mehler’s formula [Sim79, p. 55] by a change of variables). In particular,

kβ(x, x) = (2ρ)1/4√
2π sinh(β

√
2ρ)

exp
(
− x2

2σ(β, ρ)2

)
, (71)

where

1

2σ(β, ρ)2
= √

2ρ tanh
(
β

√
ρ

2

)
.

The trace of exp(−βA) is

c(β, ρ) = Tr exp(−βA) = 1

2 sinh(β
√
ρ/2)

.

The law of (γ (t0), . . . , γ (tr )) has a density proportional to

kt1(x0, x1)kt2−t1(x1, x2) · · · ktr −tr−1(xr−1, xr )kβ−tr (xr , x0),

which is a Gaussian. In particular, γ (0) has a density proportional to kβ(x, x), hence is
a Gaussian with variance σ(β, ρ)2. ��
Remark. Let us mention that ν is a mixture of Ornstein–Uhlenbeck bridges. This is
because of the well-known relation between the Ornstein–Uhlenbeck process and the
harmonic oscillator (see [Sim79, Thm 4.7]). We have, for example,

− ex2√
ρ/2

(
A −

√
ρ

2
id

)
e−x2√ρ/2 f = (1

2

d2

dx2 − √
2ρ x

d

dx

)
f. (72)

and we recognize the infinitesimal generator of the Markov process associated with the
stochastic differential equation dXt = −√

2ρXt dt + dBt .
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