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Abstract: Resurgent transseries have recently been shown to be a very powerful con-
struction for completely describing nonperturbative phenomena in both matrix models
and topological or minimal strings. These solutions encode the full nonperturbative
content of a given gauge or string theory, where resurgence relates every (generalized)
multi-instanton sector to each other via large-order analysis. The Stokes phase is the
adequate gauge theory phase where a ’t Hooft large N expansion exists and where resur-
gent transseries are most simply constructed. This paper addresses the nonperturbative
study of Stokes phases associated to multi-cut solutions of generic matrix models, con-
structing nonperturbative solutions for their free energies and exploring the asymptotic
large-order behavior around distinct multi-instanton sectors. Explicit formulae are pre-
sented for the Z2 symmetric two-cut set-up, addressing the cases of the quartic matrix
model in its two-cut Stokes phase; the “triple” Penner potential which yields four-point
correlation functions in the AGT framework; and the Painlevé II equation describing
minimal superstrings.
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1. Introduction and Summary

For almost 40 years the large N limit of gauge theory [1] has been a source of many
fascinating results and ideas, with large N duality [2] playing a definite central role. Given
some nonabelian gauge theoretic system, this limit produces an asymptotic perturbative
expansion1 in powers of 1/N 2 (or, from the point-of-view of large N duality, in powers
of the closed string coupling g2

s ). What this means is that the genus g perturbative
contributions to the free energy,2 Fg(t), will display large-order behavior of the type
Fg ∼ (2g)! and the perturbative expansion will have zero radius of convergence [3].
But, more importantly, what this implies is that the perturbative series is not enough
to define the free energy and nonperturbative corrections of the type ∼ exp (−N ) are
needed in order to properly make sense out of this expansion.

The study of nonperturbative corrections, their relation to the large-order growth of
the perturbative expansion and their application within the resummation of perturbation
theory has a long history. It is also almost 40 years since these topics were first consid-
ered within the quantum mechanical context of the quartic anharmonic oscillator [4].
Later, they were extended to the usual perturbative expansion in quantum field theoretic
systems; see, e.g., [5] for a review of early developments. In the present work we are
interested in yet another extension of these ideas, namely towards trying to understand,
nonperturbatively, the 1/N expansion. This topic has a more recent history where we will
follow previous work in [6–15] (we refer the reader to the introduction of [15] for a quick
overview of these developments, or to [16] for an excellent review of some of the main
ideas which were put forward in the aforementioned references). For the moment let us
simply mention that most of the original ideas and results in [5] have their counterparts
within the large N context. In particular, the leading growth of the free energies Fg(t)
is dictated by a suitable instanton action, A(t), whose physical origin is associated to
eigenvalue tunneling, at least within the matrix model context [7,17,18]. Moreover, the
subleading growth is associated to the one-loop amplitude around the one-instanton sec-
tor [7,17,18]. Further corrections to the large-order (2g)! growth arise from higher loop
amplitudes around some fixed instanton sector—corrections in 1/g—and from higher
instanton numbers—corrections in 1/ng , where n is the instanton number [15].

A very interesting novelty emerges as one addresses the asymptotic perturbative
expansion around some fixed multi-instanton sector. Although one might naïvely expect
that the large-order growth of this asymptotic expansion would be controled by sectors
with different instanton numbers (either higher or lower), it turns out that this expecta-
tion is incomplete: one actually needs to introduce new nonperturbative sectors in order

1 This is, of course, the very well known topological or genus expansion due to ’t Hooft [1].
2 If one has the gauge theory in mind, in here t = Ngs is the ’t Hooft coupling. If one has the dual closed

string theory in mind, in here t is a geometric modulus associated to the background geometry.
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to match all large-order results [13,15]. In the examples studied so far, these “gener-
alized” multi-instantons have instanton actions with opposite sign as compared to the
“physical” multi-instantons, and they may be assembled all together into a so-called
transseries solution to the problem at hand—where resurgent analysis relates every gen-
eralized nonperturbative sector to each other via large-order analysis. In this way, by
checking that no further corrections exist deep in the large-order asymptotics, one is
led to the assumption that these resurgent transseries solutions completely encode the
full nonperturbative content of a given gauge or string theory. Transseries solutions
were first introduced in the string theoretic context in [8], and this approach was later
extended in [15] (see, e.g., [19] for a mathematical overview). The use of resurgent
analysis as a tool towards fully understanding generalized nonperturbative sectors of
string theoretic systems was first introduced in [13,20], and those approaches were later
extended in [15] (see, e.g., [21,22] for mathematical overviews). In particular, we refer
the reader to [15] for a complete exposition of the ideas and techniques we shall use in
the course of the present work. In fact, it is precisely one of our main goals in this paper
to extend the techniques of resurgent analysis and transseries solutions to other exam-
ples beyond the ones in [15]. Furthermore, let us mention that ideas from resurgence
and transseries have also appeared in, e.g., [23–25], in a quantum mechanical context,
and have recently been shown to be very promising in the study of quantum field theory
[26–31].

In our endeavor to understand the nonperturbative structure of the large N limit, we
have begun with a simpler class of gauge theoretic systems: random matrix models.3

In this case, it is very well known that, at large N , matrix eigenvalues cluster into the
cuts of a corresponding spectral geometry [32]. Within the context of large N duality,
this was later understood as relating matrix models to B-model topological string theory
in local Calabi–Yau geometries [33–35] (see [36] for an excellent review). Depending
on the potential appearing in the matrix partition function, and the phase in which the
model is to be found, generically the spectral geometry will correspond to a multi-cut
configuration. This is an important point, especially in light of the following question:
is it always the case that, as one considers the large N limit of some given gauge theory,
one will find an expansion of ’t Hooft type with a closed string dual? Within the matrix
model context, this question was first raised in [37] and answered negatively.

Let us dwell on this point for a moment as it is also at the basis of the class of
examples we choose to address in this work. The nature of the large N asymptotic
limit depends very much on which gauge theoretic phase one considers [12,37] and is
analogous to the study of Stokes phenomena in classical analysis. When considering
single-cut models, one finds the familiar 1/N 2 expansion [38–40], i.e., one finds a
topological genus expansion with a closed string dual. However, this is not usually
the case when considering multi-cut models, where one finds large N theta-function
asymptotics instead [10,37,41], i.e., there is no genus expansion and possibly no closed
string dual. These two distinct large N asymptotics are associated to what we call Stokes
and anti-Stokes phases, respectively, generalizing the usual Stokes and anti-Stokes lines
in classical analysis [16]. In fact, in the Stokes phase the single cut would correspond
to the leading saddle, with pinched cuts corresponding to exponentially suppressed
saddles [7]. On the other hand, in the anti-Stokes phase the many cuts correspond to
many different saddles of similar order, where their joint contribution translates into

3 Although further motivated by their relation to topological strings, these models are probably the simplest
already showing all features of large N resurgence, without the added complication of renormalon physics
[27,28].
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an oscillatory large N behavior [37]. Of course one should start the analysis in the
opposite direction: having identified Stokes and anti-Stokes phases with particular large
N asymptotics, one may then ask what spectral geometry configurations appear in each
distinct phase. The point of interest to us in here is that there are regions of moduli space
where the Stokes phase is actually realized by a multi-cut configuration (essentially,
by configurations where all cuts are equal, i.e., they have the precise same eigenvalue
filling). It is this type of multi-cut configurations which we investigate and explore in
this work, within the framework of resurgent transseries.

This paper is organized as follows. We begin in Sect. 2 by reviewing background
material concerning both matrix models and resurgent transseries. We briefly review
saddle-point and orthogonal polynomial approaches to solving (multi-cut) matrix mod-
els, and then go through the basics of resurgence and transseries. In Sect. 3 we address
the multi-instanton analysis when we have two cuts with Z2 symmetry (ensuring we are
in a multi-cut Stokes phase). This is done using methods of spectral geometry which
essentially generalize previous work in [7,9]. Elliptic functions and theta functions,
which, due to the elliptic nature of the spectral curve, appear during the calculation,
end up canceling in the final result thus providing further evidence on the nature of
the Stokes phase. This is actually an interesting point of the calculation, as, on what
concerns the perturbative sector, it was the source of some confusion in early studies
of Z2 symmetric spectral configurations. In fact, the original saddle-point calculation
of the two-point resolvent in a Z2 symmetric distribution of eigenvalues [42,43], with
an explicit elliptic function dependence, did not match the corresponding orthogonal
polynomial calculation [44–46], which saw no trace of these elliptic functions. The
reason for this was that [42,43] worked in a fixed canonical ensemble, while in the
spectral curve approach to solving some given multi-cut scenario, one needs to address
the full grand-canonical ensemble as later explained in [37]. We shall explicitly see in
Sect. 3 what is the counterpart of those ideas within the multi-instanton context. Sec-
tion 4 presents applications of these general multi-instanton results into two different
examples. On the one hand we study the two-cut phase of the quartic matrix model. This
example further explores the quartic matrix model along the lines of [15], in particular
as we construct a two-parameter transseries solution in this phase. Instantons in this
example are associated to B-cycle eigenvalue tunneling [7] and we provide tests of our
analytical results by comparing against the large-order behavior of perturbation theory.
Earlier results addressing the asymptotics of this model were presented in [47] and we
extend them in here within the context of transseries and resurgent analysis. On the other
hand, we address the example of the “triple” Penner potential which is associated to the
computation of four-point correlation functions within the AGT framework [48]. This
is an interesting example as it is actually exactly solvable via generalized Gegenbauer
polynomials and where instantons are associated to A-cycle eigenvalue tunneling [11].
In Sect. 5 we turn to the asymptotics of multi-instanton sectors, and we do this in the
natural double-scaling limit of the two-cut quartic matrix model, which is the Painlevé
II equation. This equation describes 2d supergravity, or type 0B string theory [49–52],
and we fully construct its two-parameter transseries solution, checking the existence of
generalized multi-instanton sectors via resurgent analysis. Earlier results addressing the
asymptotics of this model were presented in [53] and we extend them in here within
the context of transseries and resurgent analysis. In particular, we compute many new
Stokes constants for this system (in this way verifying and generalizing the one known
Stokes constant [54]), and present the complete nonperturbative free energy of type 0B
string theory. We close in Sect. 6 with a discussion of some ideas which could lead to
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future research. Let us also stress that, due to the nature of the large-order analysis, we
have generated a large amount of data concerning both the two-cut quartic matrix model
and the Painlevé II equation. Due to space constraints, it is impossible to list all such
results in the paper, but we do present some of this data in a few appendices.

2. Revisiting Multi-Cut Matrix Models

Let us begin by setting our notation concerning both saddle-point and orthogonal poly-
nomial approaches to solving matrix models, with emphasis on multi-cut configurations.
We shall also review the required background in order to address the construction of
(large N ) resurgent transseries solutions for these multi-cut configurations, when in their
Stokes phases.

2.1. The saddle-point analysis. Let us first address the saddle-point approximation to
computing the one-matrix model partition function (within the hermitian ensemble,
β = 1) in a general multi-cut set-up; see, e.g., [9,32,36,42,55]. In such configurations the
N eigenvalues condense into s different cuts C1 ∪· · ·∪Cs = [x1, x2]∪· · ·∪[x2s−1, x2s],
and, in diagonal gauge, the partition function is written as

Z(N1, . . . , Ns) = 1

N1! · · · Ns !
∫
λ
(1)
k1

∈ C1

· · ·
∫
λ
(s)
ks

∈ Cs

N∏
i=1

(
dλi

2π

)
�2(λi ) e− 1

gs

∑N
i=1 V (λi ),

(2.1)
with ’t Hooft coupling t = Ngs (fixed in the ’t Hooft limit). In the above expression the
{λ(I )kI

} are the eigenvalues sitting on the I th cut, with kI = 1, . . . , NI and
∑s

I=1 NI = N ,
and �(λi ) is the Vandermonde determinant. In this picture it is natural to consider the
hyperelliptic Riemann surface which corresponds to a double-sheet covering of the
complex plane, C, with precisely the above cuts. One can then define A-cycles as the
cycles around each cut, whereas B-cycles go from the endpoint of each cut to infinity
on one of the two sheets and back again on the other. For shortness, we shall refer to C
as the contour encircling all the cuts, i.e., C =⋃s

I=1 AI .
The large N saddle-point solution is usefully encoded in the planar resolvent, defined

in closed form as

ω0(z) = 1

2t

∮
C

dw

2π i

V ′(w)
z − w

√
σs(z)

σs(w)
, (2.2)

where we have defined

σs(z) ≡
2s∏

k=1

(z − xk) (2.3)

and where one still needs to specify the endpoints of the s cuts, {xk}. One may now
describe the large N matrix model geometry via the corresponding spectral curve, y(z),
which is given in terms of the resolvent by

y(z) = V ′(z)− 2t ω0(z) ≡ M(z)
√
σs(z). (2.4)

If the potential V (z) in the matrix model partition function (2.1) is such that V ′(z) is a
rational function with simple poles at z = βi , i = 1, 2, . . . , k and with residues αi at



660 R. Schiappa, R. Vaz

each pole, the expression for M(z) in the expression above is simply

M(z) =
∮
(∞)

dw

2π i

V ′(w)
w − z

1√
σs(w)

+
k∑

i=1

αi

(βi − z)
√
σs(βi )

. (2.5)

At this stage one still needs to specify the endpoints of the cuts. If the eigenvalue
distribution across all cuts is properly normalized, the planar resolvent will have the
asymptotic behavior ω0(z) ∼ 1

z as z → +∞. In turn, this asymptotic condition implies
the following set of constraints

∮
C

dw

2π i

wn V ′(w)√
σs(w)

= 2t δns, (2.6)

with n = 0, 1, . . . , s. These are s + 1 conditions for 2s unknowns, where the remaining
s −1 conditions still need to be specified and they come from the number of eigenvalues
NI one chooses to place at each cut. This distribution of eigenvalues may be equivalently
described by the partial ’t Hooft moduli tI = gs NI , which may be written directly in
terms of the spectral curve:

tI = 1

4π i

∮
AI

dz y(z), I = 1, 2, . . . , s. (2.7)

Notice that, as expected, these are only s − 1 conditions as they are not all independent,
i.e.,

∑s
I=1 tI = t . Both constraints (2.6) and moduli (2.7) now determine the full spectral

geometry.
It is also useful to define the holomorphic effective potential

V ′
h;eff(z) = y(z). (2.8)

In this case, the effective potential is given by the real part of the holomorphic effective
potential, in such a way that

Veff(λ) = Re
∫ λ

dz y(z). (2.9)

2.2. The approach via orthogonal polynomials. While saddle-point analysis is the
appropriate framework to describe the spectral geometry of multi-cut configurations,
it gets a bit more cumbersome when one wishes to address the computation of the
full free energy. In the ’t Hooft limit, where N → +∞ with t = gs N held fixed, the
perturbative, large N , topological expansion of the free energy is given by4

F(gs, {tI }) = log Z 

+∞∑
g=0

g2g−2
s Fg(tI ). (2.10)

Computing this genus expansion out of a hyperelliptic spectral curve has a long history—
starting in [38,42], passing through [37], and recently culminating in the recursive pro-
cedure of [39]—and it is in fact an intricate problem in algebraic geometry [40].

4 Throughout this paper we shall use the symbol 
 to signal when in the presence of an asymptotic series
[15].
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An easier approach to computing the free energy of a matrix model is to use the method
of orthogonal polynomials; see, e.g., [15,36,55,56]. On the other hand, this method is less
general as it is not applicable to arbitrary multi-cut configurations. However, as we shall
also see in the course of this paper, orthogonal polynomials do work when addressing
multi-cut Stokes phases. As such, let us swiftly review this method in the context of
the one-cut solution (the multi-cut extension will be addressed later). Considering the
partition function (2.1) with a single cut, one may consider the positive-definite measure
on R given by

dμ(z) = e− 1
gs

V (z) dz

2π
. (2.11)

Normalized orthogonal polynomials with respect to this measure are introduced as
pn(z) = zn + · · · , with inner product

∫
R

dμ(z) pn(z)pm(z) = hnδnm, n ≥ 0. (2.12)

As the Vandermonde determinant may be written �(λi ) = det p j−1(λi ), the partition
function of our matrix model may be computed as

Z =
N−1∏
n=0

hn = hN
0

N∏
n=1

r N−n
n , (2.13)

where we have defined rn = hn
hn−1

for n ≥ 1. These rn coefficients further appear in the
recursion relations

pn+1(z) = (z + sn) pn(z)− rn pn−1(z), (2.14)

together with coefficients {sn} which will vanish for an even potential. Plugging the
above (2.14) in the inner product (2.12) one obtains a recursion relation directly for the
rn coefficients [56].

One example of great interest to us in the present work is that of the quartic potential
V (z) = μ

2 z2 + λ
4! z

4. In this case it follows that sn = 0 and [56]

rn

(
μ +

λ

6

(
rn−1 + rn + rn+1

)) = ngs . (2.15)

The free energy of the quartic matrix model (normalized against the Gaussian weight
VG(z) = 1

2 z2, as usual) then follows straight from the definition of the partition function
(2.13)

F ≡ F − FG = log
Z

ZG



+∞∑
g=0

g2g−2
s Fg(t) = t

gs
log

h0

hG
0

+
t2

g2
s

1

N

N∑
n=1

(
1 − n

N

)
log

rn

rG
n
.

(2.16)
This genus expansion is made explicit by first understanding the large N expansion of
the rn recursion coefficients. Changing variables as x ≡ ngs , with x ∈ [0, t] in the
’t Hooft limit, and defining R(x) = rn with RG(x) = x , the above example of the
quartic potential (2.15) becomes [15,56]

R(x)
{
μ +

λ

6

(R(x − gs) + R(x) + R(x + gs)
)} = x . (2.17)
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As R(x) is even in the string coupling, it admits the usual asymptotic large N expansion

R(x) 

+∞∑
g=0

g2g
s R2g(x), (2.18)

allowing for a recursive solution for the R2g(x). In particular, in the continuum limit the
sum in (2.16) may be computed via the Euler–Maclaurin formula (with B2k the Bernoulli
numbers and x = t ξ )

lim
N→+∞

1

N

N∑
n=1

�
( n

N

)


∫ 1

0
dξ �(ξ)+

1

2N
�(ξ)

∣∣∣∣
ξ=1

ξ=0
+

+∞∑
k=1

1

N 2k

B2k

(2k)! �
(2k−1)(ξ)

∣∣∣∣
ξ=1

ξ=0
,

(2.19)
yielding

F(t, gs) 
 t

2gs

(
2 log

h0

hG
0

− log
R(x)

x

∣∣∣∣
x=0

)
+

1

g2
s

∫ t

0
dx (t − x) log

R(x)
x

+

+
+∞∑
g=1

g2g−2
s

B2g

(2g)!
d2g−1

dx2g−1

[
(t − x) log

R(x)
x

]∣∣∣∣
x=t

x=0
. (2.20)

This analysis was first presented in [56] and was recently extended to a full resurgent
transseries analysis in [15], and we refer the reader to these references for further details.
We shall later see how it generalizes to accommodate the two-cut Stokes phase of the
quartic matrix model.

2.3. Transseries and resurgence: basic formulae. The discussion so far has focused
upon the large N , perturbative construction of the matrix model free energy (2.10). If,
on the other hand, one wishes to go beyond the perturbative analysis in order to build
a fully nonperturbative solution to a given matrix model, one needs to make use of
resurgent transseries. This subject was recently thoroughly addressed in [15], and we
refer the reader to this reference for full details on these techniques and their origins. In
here, we shall nonetheless cover just enough background to make the present paper a bit
more self-contained.

Resurgent transseries essentially encode the full (generalized) multi-instanton con-
tent of a given non-linear system and, as such, yield nonperturbative solutions to these
problems as expansions in both powers of the coupling constant and the (generalized)
multi-instanton number(s). In general, many distinct instanton actions may appear and, as
such, transseries will depend upon as many free parameters5 as there are distinct instan-
ton actions. For most of this paper, and similarly to what was found in [15] for the one-cut
quartic matrix model and the Painlevé I equation [13], a two-parameter transseries will
be sufficient to describe the two-cut quartic matrix model and the Painlevé II equation.
These two-parameter transseries generalize the one-parameter cases which were first
introduced in the matrix model context in [8].

Similarly to what happened in [15], we shall only need to consider the special case of
a two-parameter transseries ansatz with instanton action A and “generalized instanton”

5 Free parameters which are essentially parameterizing the corresponding nonperturbative ambiguities.
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action −A. This may be written as

F(z, σ1, σ2) =
+∞∑
n=0

+∞∑
m=0

σ n
1 σ

m
2 F (n|m)(z), (2.21)

where z is the coupling parameter (here chosen ∼ 1/gs) and σ1, σ2 are the transseries
parameters. Further, the above (n|m) sectors label generalized multi-instanton contribu-
tions of the form

F (n|m)(z) ≡ e−(n−m)Az �(n|m)(z) 
 e−(n−m)Az
+∞∑
g=1

F (n|m)
g

zg+βnm
. (2.22)

In this expression βnm is a characteristic exponent, to which we shall later return when
needed. Resurgent transseries are defined along wedges in the complex z-plane (upon
Borel resummation, see, e.g., [15] for details) and they are “glued” along Stokes lines
in order to construct the full analytic solution. This “gluing” is achieved via the Stokes
automorphism Sθ which essentially acts upon the transseries (2.21) by shifting its para-
meters. For instance, given a one-parameter transseries with Stokes line on the positive
real axis, the gluing is achieved by shifting σ → σ + S1 as one crosses from the upper
to the lower positive-half-plane, where S1 is the Stokes constant associated to that par-
ticular Stokes line—although, generically, there may be an infinite number of distinct
Stokes constants. In our two-parameter case, there are two sets of Stokes coefficients,
S(k)� and S̃(k)� , labeled by integers k and � with k ≥ 0. Do notice that not all of these
coefficients are independent and in [15] some empirical relations between them have
been found in the Painlevé I context. We refer the reader to that reference for further
details.

The main point of interest to us in this subsection concerns large-order analysis [5],
and how resurgent analysis improves it [13,15]. Recall that if a given function F(z) has
a branch-cut in the complex plane along some direction θ , being analytic elsewhere,
then

F(z) = 1

2π i

∫ eiθ ·∞

0
dw

Disc θ F(w)

w − z
, (2.23)

where we have assumed that there is no contribution arising from infinity [4,5]. The key
point now is that the aforementioned Stokes automorphism Sθ , which may be expressed
as a multi-instanton expansion [15], relates to this branch-cut discontinuity as

Sθ = 1 − Disc θ , (2.24)

in such a way that the discontinuity itself may be written in terms of multi-instanton
data. For instance, starting with the perturbative sector, it was shown in [15] that in the
two-parameter transseries set-up (2.21) there will be two branch-cuts, along θ = 0 and
θ = π , such that with β00 = 0 one finds

Disc 0�(0|0) = −
+∞∑
k=1

(
S(0)1

)k
e−k Az �(k|0), (2.25)

Disc π �(0|0) = −
+∞∑
k=1

(
S̃(0)−1

)k
ek Az �(0|k). (2.26)
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Using (2.22) and (2.23), we then find the perturbative asymptotic coefficients to be given
by [15]

F (0|0)
g 


+∞∑
k=1

(
S(0)1

)k

2π i

�
(
g − βk,0

)
(k A)g−βk,0

+∞∑
h=1

�
(
g − βk,0 − h + 1

)
�
(
g − βk,0

) F (k|0)
h (k A)h−1

+
+∞∑
k=1

(
S̃(0)−1

)k

2π i

�
(
g − β0,k

)
(−k A)g−β0,k

+∞∑
h=1

�
(
g − β0,k − h + 1

)
�
(
g − β0,k

) F (0|k)
h (−k A)h−1 .

(2.27)

What this expression shows is that the asymptotic coefficients of the perturbative sector,
for large g, are precisely controled by the coefficients of the (generalized) multi-instanton
sectors, (n|0) and (0|n). Of course that besides the coefficients F (n|0)

g and F (0|n)
g , the

perturbative coefficients also depend on the two Stokes constants, S(0)1 and S̃(0)−1, and these
still need to be determined. For the moment, let us just note that the leading large-order
growth is dictated by the Stokes constants and the one-loop (generalized) one-instanton
coefficients F (1|0)

1 and F (0|1)
1 . Higher loop coefficients in the (1|0) and (0|1) sectors

yield corrections in 1/g, whereas the higher (n|0) and (0|n) sectors yield corrections
which are suppressed as 1/ng .

As we turn to the models of interest to us in the present work—such as matrix models
or topological strings—there are a few extra points to consider. First, the perturbative
sector (2.10) is given by a topological genus expansion, in powers of 2g − 2, where
the string coupling is z = 1/gs . Secondly, as we address matrix models or topological
strings, one needs to consider a version of the multi-instanton sectors (2.22) where both
the action A and the perturbative coefficients F (n|m)

g become functions of the partial
’t Hooft moduli (or geometric moduli) tI . But, more importantly, due to resonance
effects which will later appear in either the quartic matrix model or the Painlevé II
equation, one also needs to consider the inclusion of logarithmic sectors as [13,15]:

F (n|m)(gs, {tI }) 
 e−(n−m)
A(tI )

gs

knm∑
k=0

logk gs

+∞∑
g=0

gg+β[k]
nm

s F (n|m)[k]
g (tI )

≡ e−(n−m)
A(tI )

gs �(n|m)(gs, {tI }). (2.28)

We shall later uncover that the maximum logarithmic power is knm = kmn =
min(n,m) − m δnm and that β[k]

nm = β
[k]
mn = β(m + n) − [(knm + k)/2]I , where [•]I

is the integer part of the argument and where β = 1/2. In practice, this essentially
means that all we have done up to now was for the k = 0 “sector”, and that the β[k]

nm
coefficients take into account the fact that the perturbative expansions may in fact begin
at some negative integer. Going back to the perturbative (0|0) sector in (2.10), we know
that F (0|0) is given by a genus expansion containing only powers of the closed6 string
coupling g2

s . Thus, one needs to impose F (0|0)
2n+1 = 0 in (2.27), which will produce a

series of relations between the (0|k) and (k|0) contributions since its right-hand-side

6 One has to be a bit careful with the precise meaning of the labels: in full rigor, the coefficients Fg in (2.10)

precisely stand for F(0|0)
2g in the present transseries language, as can be seen by comparing against (2.22).
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must vanish order by order in both 1
g and k−g . As further explained in [15], in the end

we find that for all k and g,

(
S(0)1

)k
F (k|0)[0]

g = (−1)g+β[0]
0,k

(
S̃(0)−1

)k
F (0|k)[0]

g . (2.29)

When working out the full details of either the two-cut quartic matrix model or the
Painlevé II equation, we shall find further relations between different coefficients
F (n|m)[k]

g , either when m and n are exchanged, or relating the k �= 0 coefficients to
the k = 0 coefficients. In some cases, these will imply further relations between differ-
ent Stokes constants.

Finally, using the above relations (2.29) back in the large-order formula for the per-
turbative sector (2.27), we obtain the asymptotic large-order behavior of the perturbative
coefficients in the string genus expansion (2.10) as

F (0|0)
2g 


+∞∑
k=1

(
S(0)1

)k

iπ

�
(

2g − β
[0]
k,0

)

(k A)2g−β[0]
k,0

+∞∑
h=0

�
(

2g − h − β
[0]
k,0

)

�
(

2g − β
[0]
k,0

) F (k|0)[0]
h (k A)h .

(2.30)
This procedure may be extended in order to find the large-order behavior of all (gen-
eralized) multi-instanton sectors. In particular, we are here interested in the large-order
behavior of the physical multi-instanton series F (n|0). The precise calculation is a bit
more cumbersome due to the logarithmic sectors appearing in (2.28), and we refer the
reader to [15] for full details. The final result is

F (n|0)[0]
g 


+∞∑
k=1

(
n + k

n

)
(S(0)1 )k

2π i

�(g + β[0]
n,0 − β

[0]
n+k,0)

(k A)g+β[0]
n,0−β[0]

n+k,0

×
+∞∑
h=1

�(g + β[0]
n,0 − β

[0]
n+k,0 − h)

�(g + β[0]
n,0 − β

[0]
n+k,0)

F (n+k|0)[0]
h (k A)h

+
+∞∑
k=1

⎧⎨
⎩

1

2π i

k∑
m=1

1

m!
m∑
�=0

∑
γi ∈�(m,k)

∑
δ j ∈�(m,m−�+1)

⎛
⎝ m∏

j=1

�(n, j)

⎞
⎠
⎫⎬
⎭

×
kn+�−k,�∑

r=0

�(g + β[0]
n,0 − β

[r ]
n+�−k,�)

(−k A)g+β[0]
n,0−β[r ]

n+�−k,�

×
+∞∑
h=0

�(g + β[0]
n,0 − β

[r ]
n+�−k,� − h)

�(g + β[0]
n,0 − β

[r ]
n+�−k,�)

F (n+�−k|�)[r ]
h (−k A)h

×
{
δr0 +�(r − 1)

(
Bk A(a) + ∂a

)r−1
Bk A(a)

}∣∣∣∣
a=g+β[0]

n,0−β[r ]
n+�−k,�−h−1

.

(2.31)

Let us define the many ingredients in this expression (but, again, we refer the reader to
[15] for the full details). The sums over γi and δ j are sums over Young diagrams, where
a diagram γi ∈ �(k, �) : 0 < γ1 ≤ · · · ≤ γk = � has length �(�) = k, and where
the maximum number of boxes for each γi is �(�T ) = �. The sum over δs is similar,
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now with 0 < δ1 ≤ δ2 ≤ · · · ≤ δk = k − m + 1 and 0 < δs ≤ s + 1. These δs form a
diagram �(k, k − m + 1) that has length �(�) = k and �(�T ) = k − m + 1, with an extra
condition that each component δs ∈ �(k, k − m + 1) has at most s + 1 boxes. For these
definitions to be consistent we still have to set γ0 ≡ 0, δ0 ≡ 1, as well as the Stokes
constants S(k)0 = S̃(k)0 = S(k)−k ≡ 0. Next, defining dγ j ≡ γ j − γ j−1, and similarly for
dδs , one has

�(n, j) ≡
((

j + 1 − δ j
)

S̃
(dδ j )

−dγ j
+
(
n − γ j + j + 1 − δ j

)
S
(dγ j +dδ j )

−dγ j

)
�
(

j + 1 − δ j
)
,

(2.32)
where �(x) is the Heaviside step-function. Finally, we have introduced the function

Bs(a) ≡ ψ(a + 1)− log(−s) ≡ B̃s(a)− iπ, (2.33)

with ψ(z) = �′(z)
�(z) the digamma function.

There are a few relevant features to be found in (2.31). Besides the multitude of
(generalized) multi-instanton sectors and Stokes constants that now play a role, there is
also a new type of large-order effect. In fact, and unlike the usual perturbative case which
had a leading large-order growth of g!, essentially arising from the gamma function
dependence, we now find a large-order growth of the type g! log g, arising from the
digamma function, and this is actually a leading effect as compared to the g! growth.
The first signs of this effect were found in [13], in the context of the Painlevé I equation,
and further studied in [15].

3. Multi-Instanton Analysis for Z2-Symmetric Systems

Having reviewed the main background ingredients required for our analysis, we may
now proceed with our main goal and address the nonperturbative study of Stokes phases
associated to multi-cut configurations. These phases arise when all cuts are equally filled
and, to be very concrete and present fully explicit formulae, we shall next focus on two-
cut set-ups (see [9] as well). In this case, equal filling also implies that the configuration
is Z2-symmetric. As we shall see in detail throughout this section, this symmetry implies
that hyperelliptic integrals which appear in the calculation will reduce to elliptic integrals,
and that, physically, the system will be found in a Stokes phase. Notice that, strictly within
the orthogonal polynomial framework, it was already noticed in [57] that equal filling
of the cuts would lead to a Stokes phase.

3.1. Computing the multi-instanton sectors. Let us begin by considering the multi-
instanton sectors of a two-cut matrix model. We shall do this by following the strategy
in [9], i.e., we shall consider the two-cut spectral geometry as a degeneration from a
three-cut configuration. In principle one could also consider degenerations from more
complicated configurations if one were to introduce several distinct instanton actions,
but for our purposes degenerations from three cuts will suffice. In this case, a reference
filling of eigenvalues across the cuts is of the form (N1, N2, N3), with N1 + N2 + N3 = N ,
the degeneration will simply be N2 → 0, and the Z2 symmetry will eventually demand
N1 = N3.

In matrix models, (multi) instantons are associated to (multiple) eigenvalue tunneling
[7,9,17,18] and, as such, the multi-instanton sectors are described by tunneling eigenval-
ues in-between the three cuts, as shown in Fig. 1 (it is simple to see that two integers, n1
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Fig. 1. Eigenvalue tunneling as the multi-instanton sectors of a three-cut matrix model

and n2, are enough to parameterize all possible exchanges of eigenvalues between three
cuts, i.e., all possible background choices). In the particular case of the Z2-symmetric
two-cut configuration, the reference background is of the form(

N

2
, 0,

N

2

)
. (3.1)

As we shall see later on, the one-instanton sector will correspond to summing over all
configurations which leave a single eigenvalue on the middle-cut. From the spectral
geometry viewpoint, the Z2 symmetry essentially places the cuts at [−b,−a] ∪ [a, b]
and the spectral curve (2.4) becomes

y(z) = M(z)
√(

z2 − a2
) (

z2 − b2
)
, (3.2)

where M(z) is given by (2.5). In this configuration, the pinching cycle will be found at
z = 0. The action associated to eigenvalue tunneling essentially measures their energy
difference in-between cuts [7,9,17,18], as given by the holomorphic effective potential
(2.8), and in the particular case of this Z2-symmetric configuration with equal filling it
is simple to check that the equal filling essentially translates to∫ a

−a
dz y(z) = 0. (3.3)

This condition will further imply that one may completely evaluate all data in the spectral
geometry just by using the asymptotics of the resolvent (2.6). One is left with one
instanton action to evaluate, describing tunneling from each of the (equal) cuts up to the
pinched cycle7 located at x0 such that M(x0) = 0 [7]. In here x0 = 0 and

A =
∫ 0

a
dz y(z). (3.4)

Having briefly explained the set-up, one may proceed and compute the partition func-
tions associated to the relevant configurations along the lines in [9]. Let now y(z) be

7 This is the non-trivial saddle located outside the cut, where eigenvalues may tunnel to [7].
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the spectral curve (2.4) of the three-cut configuration, with cuts [x1, x2] ∪ [x3, x4] ∪
[x5, x6]. Let us consider the aforementioned set-up with N1 − n1, N2 + (n1 + n2) and
N3 − n2 eigenvalues in the first, second and third cuts, respectively, and let us con-
sider the associated multi-instanton amplitude written in terms of the ’t Hooft moduli
(2.7)

Z (n1,n2) ≡ Z (t1 − n1gs, t2 + n1gs + n2gs, t3 − n2gs)

Z (t1, t2, t3)
, (3.5)

with t1 + t2 + t3 = t . For convenience we introduce the variables

s1 = 1

2
(t1 − t2 − t3) , (3.6)

s2 = 1

2
(t3 − t2 − t1) , (3.7)

and use them to expand the exponent of (3.5) above (i.e., the difference of free energies
between the “eigenvalue-shifted” configuration and the reference background), around
gs = 0 and for n1, n2 � N . One simply finds8

Z (n1,n2) = exp

(
− 1

gs

2∑
i=1

ni ∂si F0

)
exp

⎛
⎝1

2

2∑
i, j=1

ni n j ∂si ∂s j F0

⎞
⎠
{

1 + O(gs)

}
.

(3.8)
In this expression we find two, in general different, actions

Ai = ∂si F0, i = 1, 2, (3.9)

which may be computed in terms of geometric data if we use the special geometry
relations

∂F0

∂tI
=
∮

B I
dz y(z). (3.10)

In the present three-cut configuration, the two actions are then given by

A1 = ∂F0

∂s1
=
∫ x3

x2

dz y(z), (3.11)

A2 = ∂F0

∂s2
=
∫ x4

x5

dz y(z), (3.12)

and they have the usual geometric interpretation appearing in Fig. 2, generalizing the
one-cut case appearing in [7,9]. The extension to an arbitrary number of cuts is straight-
forward. The other feature we find in (3.8) are the second derivatives of F0, and for those
it is convenient to introduce the (symmetric) period matrix

τi j ≡ 1

2π i

∂2 F0

∂si∂s j
. (3.13)

Having understood the general form of the multi-instanton amplitudes, we still need
to understand the precise nature of the multi-instanton expansion. The grand-canonical
partition function is obtained as a sum over all possible eigenvalue distributions into

8 For shortness we shall many times omit the arguments; it should be clear that whenever we write F0 we
always mean the reference configuration F0(t1, t2, t3), and similarly in other cases.
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Fig. 2. The two-cut spectral curve y(z) is a genus one curve, with a pinched cycle at the non-trivial saddle x0
which is obtained by taking x3 → x4 in the three-cut geometry (in the Z2 symmetric scenario x0 = 0). The
instanton actions A1 and A2 naturally appear as B-cycles in this spectral geometry

the multiple cuts, with their total number fixed. In our case, and making use of the
multi-instanton amplitudes (3.5), this translates to

Z(N ) =
N1∑

n1=−N2+N3

N3∑
n2=−n1−N2

Z (n1,n2). (3.14)

Let us now consider the reference background of interest to us, i.e., the Z2-symmetric
two-cut configuration describing a multi-cut Stokes phase. This background has moduli
t1 = t3 = t

2 and t2 = 0, in which case both instanton actions will be equal A1 = A2 ≡ A,
as well as τ11 = τ22. Changing variables from n1 and n2 to � = n1 +n2 and m = n1 −n2,
we may write the multi-instanton amplitudes (3.8) as

Z (�,m)=exp

(
−�A

gs

)
exp

(
iπ

2
(τ11+τ12) �

2
)

exp

(
iπ

2
(τ11−τ12)m2

){
1 + O(gs)

}
,

(3.15)

where it now becomes clear that it is � = n1 + n2 ≥ 0 which will label the multi-
instanton sectors. Of course this further implies that we still need to sum over the
“relative” index m in order to obtain the “purely” �-instanton amplitude: it is this
sum over m which essentially moves our calculation to the grand-canonical ensem-
ble. In other words, the grand-canonical partition function (3.14) is of the schematic
form

Z(N ) = Z(�=0) + Z(�=1) + Z(�=2) + · · · = Z(�=0)

(
1 +

Z(�=1)

Z(�=0)
+

Z(�=2)

Z(�=0)
+ · · ·

)
,

(3.16)

where now each term Z(�) contains a sum over all possible values of m = n1 − n2 that
satisfy n1 + n2 = �. Fixing � eigenvalues on the middle-cut implies that we only have
N −� available eigenvalues to place in each of the two side-cuts, which yields the limits
on the m-sum. But because m jumps by values of two, it turns out that it is actually more
convenient to change variables and use as the “relative” index m = 2r − �. Overall, we
find



670 R. Schiappa, R. Vaz

Z(�) = exp

(
−�A

gs

)
exp

(
iπ

2
(τ11 + τ12) �

2
)

×
N/2∑

r=−N/2+�

exp

(
iπ

2
(τ11 − τ12) (2r − �)2

){
1 + O(gs)

}
. (3.17)

With a certain abuse of notation, we shall immediately identify the �th instanton ampli-
tude as

Z (�) = Z(�)

Z(0)
, (3.18)

where all that is now missing is the explicit evaluation of the many different ingredients
which appear above, in particular explicitly evaluating the sum.

Let us begin by addressing the period matrix (3.13), i.e., the second derivatives of
the planar free energy. Using the special geometry relation (3.10) and the explicit form
of the spectral curve (2.4), it follows that

∂2 F0

∂si∂s j
= (−1) j+1

∫ x2 j+1

x2 j

dz (−2)
∂(tω0(z))

∂si
, (3.19)

where the derivative of the resolvent has the form9

∂(tω0(z))

∂si
= C (i)

0 (t, sk) + C (i)
1 (t, sk) z√

σ3(z)
. (3.20)

The coefficients which appear in this expression, C (i)
0 (t, sk) and C (i)

1 (t, sk), may be fixed
by taking derivatives of the partial ’t Hooft moduli (2.7), and by using the definition of
the variables {si }, (3.6) and (3.7), as

∂tI

∂si
=
⎛
⎝+1

0
−1

⎞
⎠ = − 1

2π i

∮
AI

dz
C (i)

0 (t, sk) + C (i)
1 (t, sk) z√

σ3(z)
, i = 1, 2, I = 1, 2, 3.

(3.21)
Note that although this relation corresponds to a system of 6 equations for 4 unknowns,
two of the equations are redundant as we can deform contours in order to find

∑
I

∮
AI = 0

(there is no residue at infinity). If we now define the integrals

KI =
∮

AI

dz

2π i

1√
σ3(z)

and LI =
∮

AI

dz

2π i

z√
σ3(z)

, (3.22)

then we can express all the coefficients C (i)
j in terms of these integrals as

C (1)
0 = L1 + L2

L1K2 − L2K1
, C (2)

0 = L2 + L3

L3K2 − L2K3
, (3.23)

C (1)
1 = K1 + K2

L2K1 − L1K2
, C (2)

1 = K2 + K3

L2K3 − L3K2
. (3.24)

So far these results are only formal: hyperelliptic integrals are hard to evaluate. However,
they may in fact be explicitly evaluated when one imposes Z2 symmetry into the problem.

9 In order to check this relation one explicitly uses (2.4) and (2.5) when taking derivatives, and this will
yield the polynomial structure in z. In order to fix the degree of this polynomial, one compares the asymptotics
as z → +∞ on both sides of the equation. Generically, the degree will depend on the number of cuts as s − 2.
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In this case, one places the cuts as [−b,−a] ∪ [−c, c] ∪ [a, b] (where we shall later be
interested in the c → 0 degeneration) and it immediately follows that

K1 = K3 = −1

2
K2 ≡ −K, (3.25)

L1 = −L3 ≡ −L, L2 = 0, (3.26)

leading to the (simplified) coefficients

C (1)
0 = C (2)

0 = 1

2K , (3.27)

−C (1)
1 = C (2)

1 = 1

2L . (3.28)

As they will be needed in the following, let us also introduce the B-cycle integrals:

K̃ ≡
∫ −c

−a

dz√
σ3(z)

=
∫ a

c

dz√
σ3(z)

, (3.29)

L̃ ≡ −
∫ −c

−a
dz

z√
σ3(z)

=
∫ a

c
dz

z√
σ3(z)

. (3.30)

All these A and B-cycle integrals may be explicitly evaluated, and expressed in terms
of complete elliptic integrals of the first kind, K (k2), with k being the elliptic modulus.
This is also the technical reason why one may find Stokes phases within multi-cut config-
urations: symmetries (in this case a Z2 symmetry) may effectively reduce hyperelliptic
geometries to elliptic ones! The results are

K = −
∫ b

a

dx

π

1√|σ3(x)| = − 1

πb
√

a2 − c2
K

(
c2
(
b2 − a2

)
b2
(
c2 − a2

)
)
, (3.31)

L =
∫ −a

−b

dx

π

x√|σ3(x)| = − 1

π
√

a2 − c2
K

(
b2 − a2

c2 − a2

)
, (3.32)

and, for (3.29) and (3.30),

K̃ = 1

a
√

b2 − c2
K

(
b2
(
c2 − a2

)
a2
(
c2 − b2

)
)
, (3.33)

L̃ = 1√
b2 − a2

K

(
a2 − c2

a2 − b2

)
. (3.34)

Having explicitly evaluated all integrals, we may now start assembling these results back
into our original formulae and address the degeneration limit c → 0. In order to do that,
it is first important to notice that this limit must be taken carefully as the free energy is
not analytic in the ’t Hooft modulus associated to the shrinking cycle [9]. This may be
explicitly seen by splitting the free energies as

Fg(t1, t2, t3) = FG
g (t2) + F̂g(t1, t2, t3), (3.35)

where FG
g (t2) are the genus g free energies of the Gaussian model depending on the

vanishing ’t Hooft modulus, which, at genus g = 0 and g = 1, have a dependence as
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log t2. As explained in [9], for the �-instanton sector it is not appropriate to look at the
integration over the � eigenvalues in the collapsing cycle as a large N approximation;
rather one should exactly evaluate the Gaussian partition function associated to this
cycle, which is

ZG
� = g�

2/2
s

(2π)�/2
G2 (� + 1) (3.36)

with G2 (� + 1) the Barnes function. Then, the partition function around the �-instanton
configuration should be properly written as

Z (�) = ZG
� Ẑ (�), (3.37)

where all “hatted” quantities in Ẑ (�) are now regularized and analytic in the t2 → 0
limit.

The instanton action is the simplest quantity to evaluate as it is in fact regular in the
t2 → 0 limit. One simply finds

Â =
∫ c

a
dz M̃(z)

√
(z2 − a2)(z2 − b2)(z2 − c2) −−→

c→0

∫ 0

a
dz M(z)

√
(z2 − a2)(z2 − b2),

(3.38)
where M(z) = zM̃(z). To compute the period matrix we must first address the second
derivatives of the planar free energy, (3.19), which are given by

∂2
s1

F0 ≡ ∂2
s2

F0 = 1

K
∫ a

c

dz√
σ3(z)

+
1

L
∫ a

c
dz

z√
σ3(z)

= K̃
K +

L̃
L , (3.39)

and by

∂s1∂s2 F0 = K̃
K − L̃

L . (3.40)

With these results, the period matrix follows immediately. In particular we obtain

τ11 + τ12 = − i

π

K̃
K , (3.41)

τ11 − τ12 = − i

π

L̃
L . (3.42)

The need for regulation of the shrinking cycle is now very clean. In fact, if one takes the
c → 0 limit in (3.41) above one obtains

lim
c→0

iπ (τ11 + τ12) ∼ 2 lim
c→0

log c + log

(
b2 − a2

16a2b2

)
+ · · · . (3.43)

However, as explained, this logarithmic divergence—which emerges in one of the elliptic
integrals—will be precisely canceled by the “Gaussian divergence” arising from the
shrinking cycle. The regulation is simply [9]

∂2
s F̂0 = lim

c→0

(
∂2

s F0 − log t2
)
, (3.44)

where the vanishing ’t Hooft modulus is, via (2.7),

t2 = 1

2π

∫ c

−c
dz M̃(z)

√
(z2 − a2)(z2 − b2)(z2 − c2). (3.45)
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Changing variables z → z/c, expanding the result in powers of c and performing the
integration, it follows10

t2 = 1

4
M̃ ab c2

(
1 + O(c2)

)
, (3.46)

which will indeed cancel the divergence above. As for the combination (3.42), it has a
regular c → 0 limit. Using known properties of elliptic integrals [58] one may compute

τ11 − τ12 = i

2

K (1 − k2)

K (k2)
≡ i

2

K ′

K
, (3.47)

where the elliptic modulus in this Z2-symmetric limit is simply given by k = b−a
b+a .

Finally, in order to obtain the multi-instanton amplitudes (3.18), all one has to do is
evaluate the sums in (3.17). When � = 0, the sum in (3.17) yields the Jacobi (elliptic)
theta-function given by

ϑ3 (z | q) = 1 + 2
+∞∑
r=1

qr2
cos (2r z) . (3.48)

In fact, using this definition it is straightforward to evaluate

lim
N→+∞

N/2∑
r=−N/2

exp

(
iπ

2
(τ11 − τ12) (2r)2

)
= ϑ3

(
0

∣∣∣∣ e−π K ′
K

)
. (3.49)

When � �= 0, and using simple properties of theta-functions [58], one may obtain
instead11

lim
N→+∞

N/2∑
r=−N/2+�

exp

(
iπ

2
(τ11 − τ12) (2r − �)2

)
= k

1−(−1)�
4 ϑ3

(
0, e−π K ′

K

)
. (3.50)

As we use both results above in the ratio (3.18) for the �-instanton partition function,
we observe the remarkable cancelation of the elliptic/theta function contribution: the
only trace of their existence which remains is that the result will have a different k-
dependence, depending on whether the instanton number is even or odd. That neither
elliptic nor theta functions should be present in the final result is of course what one
would have expected, when addressing a Stokes phase of a given matrix model. As such,
our final result is

Z (�) = g�
2/2

s

(2π)�/2
G2 (� + 1) k

1−(−1)�
4 q̂

�2
2 exp

(
−� Â

gs

){
1 + O(gs)

}
, (3.51)

where

q̂
1
2 ≡

√
b2 − a2

2
√

M̃ (ab)3/2
. (3.52)

In the following sections we shall test this result with great accuracy, by matching
against large-order data. Besides the instanton action we shall give particular attention

10 In the purely three-cut scenario it is simple to check that M̃ is just a constant; more on this in the following.
11 The periodicity of the theta-function ϑ3 (z + n π | q) = ϑ3 (z | q) implies that only the parity of � is

relevant.
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Fig. 3. Numerical data for the quartic potential. The first image shows the quartic potential V (z) = μ
2 z2 + λ

4! z4

with μ = −1 and λ = 6, while the second image displays the corresponding recursion coefficients rn
recursively obtained from the string equation (2.15) (in the plots with choosing N = 1,000 and after 4,000
iterations in the numerical method described in [61,62])

to testing the one-loop coefficient in the one-instanton sector (which also relates to one
of the Stokes constants [7,15]) which, written in terms of spectral geometry data, is very
simply given by

S(0)1 F (1|0)
0 = 1

2
√

2π M̃

b − a

(ab)3/2
. (3.53)

3.2. Stokes phases and background independence. In the previous subsection we used
saddle-point analysis in order to explicitly find all multi-instanton amplitudes in a two-
cut matrix model (at least to leading order in the string coupling). As we have seen, the
situation with a multiple number of cuts is—as long as one can evaluate all hyperelliptic
integrals—a straightforward extension from the single-cut case [7,9,37]. Another inter-
esting aspect of our line of work is that all these analytical results may be numerically
tested to very high precision by making the match against large-order analysis; see,
e.g., [4–9,11–15]. As such, the obvious question to address now is whether obtaining
large-order data for all the (generalized) multi-instanton coefficients F (n|m)

g is feasible,
and perhaps also a simple extension from the one-cut case. In general, this is not the
case and producing large-order data in multi-cut situations is a much harder problem;
see, e.g., [9,14].

While there are several approaches to constructing large-order data, in this paper
we shall focus solely on the orthogonal polynomial method [56] (more generally, the
transseries approach as developed in [8,15]). As mentioned, in general this method
is in fact not applicable to multi-cut configurations and what we shall discuss now is
how this situation changes if we focus on a given Stokes phase of our system. As we
also discussed in the introduction, some of the earlier work done in the exploration
of the phase spaces of matrix models with multi-welled potentials was carried out in
the orthogonal polynomial framework; see, e.g., [57,59–63]. Such works were mainly
based on numerical computations of the recursion coefficients, rn , appearing in the string
equation (Eq. (2.15) in the case of the quartic model) and the main discovery concerned
the appearance of multi-branch solutions at large N , as we illustrate in Fig. 3.

Let us consider the case of the quartic potential V (z) = μ
2 z2 + λ

4! z
4 which, when

μ = −1 and λ = 6, is depicted in the first image of Fig. 3. With a large N choice
of N = 1,000 eigenvalues, and given the string equation for this model presented in
(2.15), one may numerically iterate the recursion in order to compute the coefficients
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Fig. 4. Numerical data for a sixth-order potential. The first image shows a sixth-order potential, while the
second image displays the corresponding recursion coefficients rn recursively obtained from its string equation
(with N = 1,000 and after 4,000 iterations in the numerical method described in [61,62])

rn and the result is shown in the second image of Fig. 3 (in here we have used the
same numerical method as in [61,62]). What this plot tells us is that, in some region of
parameter space, the large N behavior of the rn coefficients falls into a single branch,
whereas in another region the even and odd coefficients actually split into alternating
branches, with period two. As we shall show in the next section, this splitting of branches
is telling us how the continuum limit should be taken in a multi-cut Stokes phase and,
as such, how orthogonal polynomials may be used to generate large-order results. In
other words, if the recursion coefficients have a periodic large N behavior, the free
energy will have a well-defined topological expansion with exponentially suppressed
instanton corrections—characteristic of a Stokes phase—and orthogonal polynomials
may be simply used. Furthermore, notice that the variable n/N in the horizontal axis
becomes the ’t Hooft parameter in the continuum limit. In this case, note that the two
branches merge near n/N = 1/4 which in the continuum language corresponds to
λt = 3/2. This critical point actually occurs when the two cuts of the quartic matrix
model collide, and at this point the system is described in the double-scaling limit by
the Painlevé II equation. We shall have more to say about this in a later section.

It is important to distinguish the Stokes phase, where the free energy has a “good”
large N ’t Hooft expansion, from more complicated cases which may also appear as
transitions occur to other phases. For instance, a different behavior is shown in Fig. 4,
obtained from the string equation of a sixth-order potential. We no longer find just
periodic behavior, but also regions of quasi-periodic behavior (as shown in [37]): this
quasi-periodicity is a sign of the theta-functions which control the recursion coefficients
in this phase and which appear as one constructs the grand-canonical partition function
of the matrix model as a sum over all choices of filling fractions [37]. This was recently
made explicit in [10,41], with the construction of general, nonperturbative, background
independent partition functions for matrix models and topological strings in terms of
theta functions. In this case, the free energy has an asymptotic large N behavior which
is also controled by theta functions and a naïve use of orthogonal polynomials will not
work; rather, one has to use the full power of resurgent transseries.

In summary, one may be faced with at least two different phases or backgrounds
when addressing multi-cut configurations: either periodic or quasi-periodic behavior of
the recursion coefficients, corresponding to either Stokes or anti-Stokes phases. In the
Stokes phase, the large N asymptotics is essentially given by an ’t Hooft topological
genus expansion, while in the anti-Stokes phase the asymptotics is of theta-function type.
These issues were addressed in [12] and we refer the reader to their excellent discussion
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(where the authors of [12] used the terminology of “boundary” and “interior” points to
denote what we here call Stokes and anti-Stokes regions). In particular, an expansion
around a given background is well-defined when either [12]:

1. In a Stokes region, one will find an admissible large N ’t Hooft genus expansion in
powers of 1/N 2, with exponentially suppressed multi-instanton corrections, if

Re

(
A(t)

gs

)
> 0. (3.54)

2. In an anti-Stokes region, the free energy will display theta-function asymptotics
[10,41]. This expansion will be admissible if the filling fractions are real, Ni

N ∈ R,
and if

Re

(
∂si F0

gs

)
= 0. (3.55)

The conditions of admissibility were first discussed in [17,18], and later further addressed
in [64–66] where they were shown to be equivalent to having the spectral curve as a
Boutroux curve. Let us now stress that our construction in the previous subsection
precisely fulfills the first condition above. In fact we were able to find a well-defined
(exponentially suppressed) multi-instanton expansion, which is clear both from the gen-
eral structure of (3.16) as well as from our final result (3.51). In this process, the Z2
symmetry plays an important role since it is the equality of the two instanton actions that
allows us to write down a multi-instanton expansion for the (grand-canonical) partition
function. Of course we still must make sure that the examples we shall address next also
satisfy this condition.

4. Large-Order Behavior of Z2-Symmetric Systems

Our next goal is to illustrate how the multi-instanton effects we have uncovered in
the previous section make their appearance in different examples, and how we may
test them by comparing against large-order analysis. We shall first address the quartic
matrix model in its two-cut Stokes phase, as this is a particularly clean application of
all our nonperturbative machinery. However, it is also important to have in mind that
not all nonperturbative effects arise from what we may call B-cycle instantons [7], i.e.,
instantons whose action is given by a B-cycle integration of the spectral curve one-form
as in Fig. 2. In fact, in some cases one needs to consider A-cycle instantons instead
[11], i.e., instantons whose action arises from integrating the spectral curve one-form
along an A-cycle and thus, because of (2.7), instantons which have an almost “universal”
structure. As such, we shall illustrate this possibility with another example: the “triple”
Penner matrix model which appears in the context of studying four-point correlation
functions in the AGT set-up. Finally, notice that one of the key points that allowed us
to solve for the nonperturbative structure of a multi-cut configuration in the previous
section was its Z2 symmetry and, as such, this will be a required ingredient also for our
following examples.

4.1. The two-cut quartic model in the Stokes phase. Let us begin by addressing the
quartic matrix model in its two-cut Stokes phase. This is accomplished by considering
the matrix model partition function (2.1) with quartic potential

V (z) = μ

2
z2 +

λ

4! z4, μ < 0, λ > 0, (4.1)
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Fig. 5. The real part of the holomorphic effective potential for the two-cut quartic matrix model, (4.4), both
on the real axis (left) and on the complex plane (right), when t = 1 and λ = 0.42. The brown areas indicate
when Re Vh;eff (z) > 0 and the blue ones when Re Vh;eff (z) < 0. The horizontal black lines are precisely the
cuts of the spectral curve and the black dot the pinched cycle (color figure online)

where we shall chooseμ = −1 without any loss of generality (this potential was depicted
earlier, in Fig. 3). We shall first fully work out its two-cut spectral geometry and use
this data to obtain explicit formulae for all the nonperturbative quantities we addressed
earlier in Sect. 3.1. Then, we will use orthogonal polynomials and resurgent transseries
in order to, on one hand, readdress the results of Sect. 3.1, and, on the other hand, produce
large-order data that will be used to test and confirm our overall nonperturbative picture.

Beginning with the spectral curve (2.4), it is simple to compute

M(z) = λ

6
z (4.2)

from (2.5), and the endpoints of the cuts follow from the asymptotic constraints (2.6) as

a2 = 6

λ

(
1 −

√
2λt

3

)
and b2 = 6

λ

(
1 +

√
2λt

3

)
. (4.3)

Integrating the spectral curve, the holomorphic effective potential (2.8) follows:

Vh;eff(z) = λ

48

{(
2z2 − a2 − b2

)√(
z2 − a2

) (
z2 − b2

)

−
(

b2 − a2
)2

log

(√
z2 − a2 +

√
z2 − b2

√
b2 − a2

)}
. (4.4)

The real part of this potential is shown in Fig. 5 where the symmetric cuts and the pinched
cycle are very clearly identifiable. Given this result, one may immediately compute the
instanton action, with either (3.4) or (3.38), as

A(λ, t) = Vh;eff(0)− Vh;eff(a) = 3

2λ

√
1 − 2λt

3
− t log

(√
3 +

√
3 − 2λt√

2λt

)
. (4.5)

In its domain of validity, 0 < λt < 3
2 , this action is indeed real positive as expected.
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Similarly to what was done in the one-cut case with the quartic matrix model [7,15],
one may now test all our nonperturbative formulae against large-order data in a simple
and explicit example. Of course one first needs to generate the large-order data itself and,
for the present two-cut scenario, the procedure will be slightly more involved than the one
in [7,15] (which, on what concerned the perturbative sector, was a simple extension of
the pioneering work in [56]). Let us also stress that because this data precisely constructs
the large N expansion in this phase, it will further confirm that it is in fact of ’t Hooft
type, i.e., a Stokes phase. The analysis starts by addressing orthogonal polynomials in
this model, whose string equation (2.15) is currently written as

rn

{
−1 +

λ

6
(rn−1 + rn + rn+1)

}
= ngs . (4.6)

Recall from our review in Sect. 2.2 that, in the one-cut case, the recursion coefficients
rn approach a single function R(x) with genus expansion (2.18) in its perturbative
sector. This function satisfies a finite difference equation, (2.17), which was solved
using resurgent transseries in [8,15]. The key point here is that transseries solutions
allow for an inclusion of all multi-instanton sectors, as we briefly mentioned in (2.21),
going beyond the usual large N expansion. Furthermore, the free energy follows as
(2.20). This time around, with two cuts, as we discussed previously and plotted in Fig. 3,
a numerical solution of the above recursive Eq. (4.6), approaches, in the large N limit,
two distinct functions. Thus, what one now has to do is to generalize the aforementioned
framework into a period two ansatz, as first suggested in [59,60,63,67]. As such, we
shall consider

rn → P(x), n even, (4.7)

rn → Q(x), n odd. (4.8)

In this case, the large N limit of our recursion (4.6) will split into two coupled equations

P(x)
{
−1 +

λ

6
(Q(x − gs) + P(x) + Q(x + gs))

}
= x, (4.9)

Q(x)
{
−1 +

λ

6
(P(x − gs) + Q(x) + P(x + gs))

}
= x, (4.10)

and these are the equations we wish to solve via transseries methods, following the work
in [15].

Two-parameter transseries solution to the string equations The simplest approach to
solving the above string equations, (4.9) and (4.10), is to start with a perturbative ansatz
for both P(x) and Q(x) of the type (2.18), generalizing the work in [56], as

P(x) 

+∞∑
g=0

g2g
s P2g(x), Q(x) 


+∞∑
g=0

g2g
s Q2g(x). (4.11)

At genus zero, for instance, it is then simple to obtain

P0(x) = 3

λ

(
1 −

√
1 − 2λx

3

)
, (4.12)
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Q0(x) = 3

λ

(
1 +

√
1 − 2λx

3

)
, (4.13)

where we have assumed that P �= Q, i.e., explicitly imposed the period-two ansatz
[60,63,67]. In the domain of validity of the two-cut phase, 0 < λx < 3

2 , this in fact
corresponds to two distinct (real) functions which meet at the (critical) point λx = 3

2 ,
where P0 = 3

λ
= Q0.

Going beyond the perturbative large N expansion, one is first required to include all
multi-instanton sectors via an one-parameter transseries ansatz [8,15],

P(x) =
+∞∑
n=0

σ n P(n)(x), P(n)(x) 
 e−n A(x)/gs

+∞∑
g=0

gg
s P(n)g (x), (4.14)

Q(x) =
+∞∑
n=0

σ n Q(n)(x), Q(n)(x) 
 e−n A(x)/gs

+∞∑
g=0

gg
s Q(n)

g (x), (4.15)

where we have imposed that both transseries expansions have the same structure, in par-
ticular that they have the same instanton action. This may a priori seem as an unnecessary
assumption, but it is justified on two levels. On the one hand, this is required so that we
may actually find non-trivial solutions to the string equations (4.9) and (4.10) (which are
being solved “perturbatively”, i.e., as an expansion both in powers of the string coupling
and in powers of the transseries parameter which corresponds to the instanton number).
On the other hand, as we shall see later on, our large-order analysis will show that the
perturbative sectors P(0)(x), Q(0)(x) are indeed governed by the same instanton action,
thus “experimentally” confirming this assumption. Plugging these expressions back into
the string equations, (4.9) and (4.10), one finds, at first order in instanton number and
zeroth order in the string coupling, an equation for the instanton action as

cosh2 (A′(x)
) = 3

2λx
. (4.16)

Notice that there are four sign ambiguities in this equation: two from the quadratic power
and two from the (even) hyperbolic cosine function. For the moment we shall assume
the quadratic sign ambiguity arises as an artifact of the period-two ansatz, and thus only
address the cosh z sign ambiguity (which is now equivalent to the one in the one-cut case
[8,15]), leaving the complete exploration of the four sign ambiguities for future work.
In this case one obtains for the instanton action:

A(x) = ±
√

9 − 6λx

2λ
∓ x arccosh

(√
3

2λx

)
+ 2π i x p + cint, (4.17)

where p ∈ Z. We shall set both the integer ambiguity p and the integration constant
cint to zero so that later this result will yield the Painlevé II instanton action, in the
corresponding double-scaling limit. As to the sign ambiguity, notice that choosing the
upper sign makes this expression precisely match the instanton action as computed via
spectral methods, (4.5).

However, as shown in [15] in the one-cut case, both signs of the instanton action (4.17)
are important when performing the fully nonperturbative resurgent transseries analysis.
A similar situation will happen in the present two-cut scenario, as we shall adopt the
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following two-parameter transseries ansätze for the full nonperturbative content of the
two-cut quartic matrix model:

P(x) =
+∞∑
n=0

+∞∑
m=0

σ n
1 σ

m
2 P(n|m)(x), Q(x) =

+∞∑
n=0

+∞∑
m=0

σ n
1 σ

m
2 Q(n|m)(x), (4.18)

where each P(n|m)(x) sector (and similarly for Q(n|m)(x)) has an expansion of the form:

P(n|m)(x) 
 e−(n−m)A(x)/gs

+∞∑
g=βnm

gg
s P(n|m)

g (x). (4.19)

As one plugs these expansions back into the string equations, (4.9) and (4.10), one can
equate the terms with given powers σ n

1 and σm
2 and find the following two coupled

equations

x δn0 δm0 = −P(n|m)(x)

+
λ

6

n∑
n1=0

m∑
m1=0

P(n1|m1)(x)
{

Q(n−n1|m−m1)(x − gs)

+ P(n−n1|m−m1)(x) + Q(n−n1|m−m1)(x + gs)
}
, (4.20)

x δn0 δm0 = −Q(n|m)(x)

+
λ

6

n∑
n1=0

m∑
m1=0

Q(n1|m1)(x)
{

P(n−n1|m−m1)(x − gs)

+ Q(n−n1|m−m1)(x) + P(n−n1|m−m1)(x + gs)
}
. (4.21)

If one next expands these equations in powers of the string coupling, gs , this will
produce—at each order—systems of either algebraic or (linear) differential equations
which allow us to find the coefficients P(n|m)

g (x) and Q(n|m)
g (x) in terms of the “earlier”

ones P(n
′|m′)

g′ (x) and Q(n′|m′)
g′ (z)with n′ ≤ n,m′ ≤ m and g′ ≤ g (and their derivatives).

As a technical aside, let us also note that the many exponentials appearing in (4.20) and
(4.21) via (4.19) will bring down extra powers of the string coupling. In fact, we shall
always have in mind the following expansions:

exp

(
−n

A(x ± gs)

gs

)
= exp

(
−n

A(x)

gs

)

×e∓n A′(x)
+∞∑
�′=0

1

�′!

(
−n

+∞∑
�=2

(±1)� g�−1
s

A(�)(x)

�!

)�′
. (4.22)

From here on, the extraction of the P(n|m)
g and Q(n|m)

g coefficients is absolutely straight-
forward with the help of a computer, very much in line with the strategy used in [15].
Most of our explicit results are collected in Appendix A, but for completeness we next
discuss a couple of examples.
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Consider the purely perturbative sector, corresponding to n = 0 = m, which we have
also addressed a few paragraphs above. At order g0

s it is simple to see that, once again,
one finds the solution

P(0|0)
0 (x) = 3 − √

9 − 6λx

λ
≡ 3 − p

λ
, (4.23)

Q(0|0)
0 (x) = 3 +

√
9 − 6λx

λ
≡ 3 + p

λ
. (4.24)

Here we have defined p ≡ √
9 − 6λx , as rewriting and solving most equations in terms

of this variable will make life much easier. The remaining perturbative coefficients are
recursively obtained from algebraic equations and this is generically the case for most
of the (n|m) sectors (see the Appendix A for further details and explicit expressions).

One exception to the aforementioned straightforward algebraic procedure is when
n = m ± 1. In this case one finds the phenomenon of resonance, also discussed in the
present context in [13,15], and one needs to solve a (linear) differential equation instead.
Let us illustrate this situation in the one-instanton sector (1|0). One finds, at order g0

s ,

P(1|0)
0 +

3 − p

3
cosh

(
A′(x)

)
Q(1|0)

0 = 0, (4.25)

Q(1|0)
0 +

3 + p

3
cosh

(
A′(x)

)
P(1|0)

0 = 0. (4.26)

These two equations do not allow us to solve for both P(1|0)
0 and Q(1|0)

0 , but only for their

ratio P(1|0)
0 /Q(1|0)

0 . On the other hand, eliminating P(1|0)
0 and Q(1|0)

0 , one may instead
find a differential equation for the instanton action—which we have solved earlier in
(4.17). Proceeding to next order, g1

s , the equations read12

P(1|0)
1 +

(3 − p) p

9λ
sinh

(
A′(x)

)
Q(1|0)′

0 (x)

+
3 − p

6
cosh

(
A′(x)

) (
2Q(1|0)

1 − Q(1|0)
0 A′′(x)

)
= 0, (4.27)

Q(1|0)
1 +

(3 + p) p

9λ
sinh

(
A′(x)

)
P(1|0)′

0 (x)

+
3 + p

6
cosh

(
A′(x)

) (
2P(1|0)

1 − P(1|0)
0 A′′(x)

)
= 0. (4.28)

The situation is the same as in the (1|0) sector at order g0
s . All we can now do is to

eliminate the ratio P(1|0)
1 /Q(1|0)

1 and use our knowledge of the lower sectors—namely

the relation between P(1|0)
0 and Q(1|0)

0 , and the result for the instanton action—in order
to obtain a linear differential equation yielding

Q(1|0)
0 =

√
3 + p

p
and P(1|0)

0 = −
√

3 − p

p
. (4.29)

These examples show a feature which is characteristic of resonance and of the n = m±1
sectors, namely, that the equations we obtain at order gk

s produce differential equations

12 Notice that these equations involve derivatives of P(1|0)
0 (x) and Q(1|0)

0 (x).
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whose solutions yield the instanton coefficients at order k − 1. At this stage the reader
may object that the differential equations alone are not enough if one does not specify
boundary conditions. In fact, all integration constants involved in this procedure must
be fixed by using data available in the double-scaling limit and we shall postpone that
discussion for the next section (although we have already used this fact in fixing the
integration constants in (4.29) above).

Other interesting features appear in the higher multi-instanton sectors, and many of
these were first uncovered in the one-cut example studied in [15]. For example starting
in the (2|1) sector, logarithms make their appearance into the game and they recursively
propagate to the ensuing higher sectors. Akin to what happened in [15], these logarithms
are indeed expected in the construction of the transseries solution and, again, we shall
further discuss this issue in the next section, within the analysis of the Painlevé II
equation. Another interesting feature happens when n = m (and the exponential term
cancels). In this case, we find that all the coefficients P(n|n)

g (respectively Q) with odd
g vanish, and the perturbative expansion in (4.19) contains only powers of g2

s , i.e., it is
an expansion in the closed string coupling. As aforementioned, further data is presented
in Appendix A, where we also find general patterns for the multi-instanton coefficients
and relate the logarithmic sectors with the non-logarithmic ones.

The nonperturbative free energy and large-order analysis. In order to test the multi-
instanton results obtained in Sect. 3, one needs to match them against the large-order
behavior of the free energy, and this is what we shall now address. As such, we will derive
the nonperturbative free energy of the two-cut quartic matrix model out of the transseries
solution to the string equations (4.9) and (4.10) we have just obtained, even though we
will not be interested in extracting as much data. The starting point in this construction
is expression (2.13), which yields the partition function in terms of the orthogonal-
polynomial recursion coefficients rn . Since in the present configuration these recursion
coefficients split into two different branches at large N , it is useful to first rewrite (2.13)
for 2N eigenvalues (and thus with ’t Hooft coupling t = 2Ngs) as

Z = h2N
0

2N∏
i=1

r2N−i
i = h2N

0

N∏
i=1

r2N−2i
2i

N∏
j=1

r2N−(2 j−1)
2 j−1 . (4.30)

Similarly to what was done in (2.16), the free energy follows by taking the logarithm
of the above expression (and normalizing against the Gaussian weight, as usual). One
finds:

F = t

gs
log

h0

hG
0

+
t2

g2
s

1

2N

N∑
n=1

(
1 − n

N

)
log

r2n

rG
2n

+
t2

g2
s

1

2N

N∑
n=1

(
1 − n − 1

2

N

)
log

r2n−1

rG
2n−1

.

(4.31)
It is now clear the reason why we rewrote the partition function (2.13) as (4.30) above:
because of the even/odd split in (4.7) and (4.8), the large N limit of (4.31) will precisely
construct the free energy out of P(x) and Q(x). In the continuum limit the first sum in
(4.31), which we will denote by the “even” sum, is essentially the same as the sum in
(2.16) and thus may be computed via the Euler–Maclaurin formula (2.19). The second
sum in (4.31), the “odd” sum, is a bit more subtle and requires slight modifications. In
fact, from (4.24), recall that limx→0 Q(0|0)

0 (x) �= 0 making Q(0|0)
0 (x)/x ill-defined at the

origin (alongside with its derivatives), but this problem is solved by simply considering
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the Gaussian contribution separately in the “odd” sector. Furthermore, the “odd” Euler–
Maclaurin formula is now written as (following a similar analysis in [68])

lim
N→+∞

1

N

N∑
n=1

�

(
n − 1

2

N

)


∫ 1

0
dξ �(ξ)−

+∞∑
k=1

1

N 2k

(
1 − 21−2k

)
B2k

(2k)! �(2k−1)(ξ)

∣∣∣∣∣
ξ=1

ξ=0

.

(4.32)
Assembling all contributions together, our formula for the free energy finally takes a
familiar form [8,36,56]

F(t, gs) 
 t

2gs

(
2 log

h0

hG
0

− log
P(x)

x

∣∣∣∣
x=0

)

+
1

g2
s

G(t, gs) +
1

2g2
s

∫ t

0
dx (t − x) log

P(x)
x

+
1

2g2
s

∫ t

0
dx (t − x) log Q(x)

+
1

2

+∞∑
g=1

g2g−2
s

22g B2g

(2g)!
d2g−1

dx2g−1

[
(t − x) log

P(x)
x

]∣∣∣∣
x=t

x=0

−1

2

+∞∑
g=1

g2g−2
s

(
22g − 2

)
B2g

(2g)!
d2g−1

dx2g−1

[
(t − x) log Q(x)

]∣∣∣∣
x=t

x=0
. (4.33)

The function G(t, gs) comes from the Gaussian normalization in the “odd” part and is
given by

G(t, gs) ≡ −
N∑

k=1

(2N − 2i + 1) log ((2i − 1) gs) . (4.34)

When computing the free energy, this expression may be first evaluated exactly and then
expanded in powers of the string coupling.

Let us note that while at the perturbative level, i.e., when n = 0 = m, the Euler–
Maclaurin recipe (4.33) is an efficient way to produce large-order data, the same is not
valid when addressing the (generalized) multi-instanton sectors (more on this next). In
any case, using the expansions (4.19) when n = 0 = m (which we have described how to
compute in the paragraphs above, and whose data we have presented in Appendix A) and
inserting them into a Mathematica script encoding the Euler–Maclaurin expansion, we
have computed the coefficients F (0|0)

g in the perturbative free energy of the Z2-symmetric
two-cut quartic matrix model up to genus g = 20 and some partial results are presented
in greater detail in Appendix B.

In order to obtain data concerning the higher instanton sectors in an effective way,
and while remaining within the orthogonal polynomial framework, one uses a small trick
due to [8]. Starting off with the partition function, written as either (2.13) or (4.30), it
is simple to show that (subscripts in the partition function indicate the total number of
eigenvalues considered)

Z2(N+1) Z2(N−1)

Z2
2N

= r2N+1 r2
2N r2N−1, (4.35)
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which, at the free energy level, may be written as

F(t + 2gs)− 2F(t) + F(t − 2gs) = log
(
Q (t + gs)P2 (t)Q (t − gs)

)
. (4.36)

This expression is, in fact, a rewriting of the Euler–Maclaurin formula (4.33), but from
a computational point-of-view it also makes it much easier to extract large-order data.

We may now finally address tests of our multi-instanton formulae using large-order
analysis, and further compute Stokes coefficients for the problem at hand. The main
quantity we wish to focus upon is the one-instanton, one-loop coefficient F (1|0)

0 . At this
stage, its calculation is simple if we are to use (4.36) above: all one has to do is to plug
in two-parameter transseries ansätze for all quantities and it quickly follows that, for
n = 1,m = 0 and at order g0

s , one has

4 sinh2 (A′(x)
)F (1|0)

0 = 2

(
P(1|0)

0 (x)

P(0|0)
0 (x)

+ cosh
(

A′(x)
) Q(1|0)

0 (x)

Q(0|0)
0 (x)

)
. (4.37)

If we plug in our results for the perturbative contributions, (4.23) and (4.24), for the one-
instanton contributions, (4.29), and for the instanton action, (4.17), we finally obtain

F (1|0)
0 = −λ

2

√
3 − p

p3 . (4.38)

As we have discussed in detail in Sect. 2.3, a key point about this quantity is that it
controls the leading large-order growth of the asymptotic perturbative expansion, as
explicitly shown in (2.30). For completeness, let us just recall that expression in here:

F (0|0)
g ∼ S(0)1

iπ

� (2g + b)

A2g+b

{
F (1|0)

0 +
A

2g + b − 1
F (1|0)

1 + · · ·
}
. (4.39)

Many large-order tests may now be carried out; let us here mention a few of those
following [7] (but, let us note, many more higher-precision tests may be carried through,
as in [15], and these we leave for future work). One obvious test concerns the instanton
action, which may be numerically extracted from the sequence:

α(F)g = F (0|0)
g+1

4g2F (0|0)
g

∼ 1

A2

(
1 +

2b + 1

2g
+ · · ·

)
. (4.40)

The parameter b will be equal to −5/2, but that can be tested as well, e.g., using the
sequence:

b ∼ 1

2

(
2g
(

A2α(F)g − 1
)

− 1
)

+ · · · . (4.41)

Finally, one approach to testing the one-loop coefficient is to use the sequence:

β(F)g = iπ

S(0)1

A2g+b F (0|0)
g

� (2g + b)
∼ F (1|0)

0 + · · · . (4.42)

We should note that all sequences above have been built with free energy quantities but,
of course, one may also perform the exact analogue large-order tests directly using the
solutions to the string equations, P(x) and Q(x). In fact, all these quantities have their
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Fig. 6. The first image depicts a test of the instanton action using the sequence α(P)g and its first Richardson
transforms, when λ = 0.5 and p = 1.2. The large-order convergence towards the correct result is clear
(the dashed horizontal line is the analytical prediction), with an error of 10−6 % after just four Richardson
transforms. The second image shows a test of the instanton action at fixed λ = 1 but with varying p, after
implementing four Richardson transforms. Large-order data makes up the dots, while the analytical prediction
is given as the solid red line. Again, the match is extremely clear (color figure online)

large-order behavior dictated by the very same instanton action13 and, as such, we shall
use either P(x) or Q(x) whenever possible as we have obtained far more large-order
data for these quantities than for the free energy. We shall denote those corresponding
sequences with the respective superscript. We also note that all these quantities have
“closed string” expansions (i.e., in powers of g2

s ) in their (0|0) sectors, so the sequences
above are tested for even g.

The first natural test to do concerns the instanton action, which is shown in Fig. 6.
Clearly, there is a very strong agreement between the “theoretical” prediction (be it from
either saddle-point (4.5) or transseries (4.17) approaches) and the “numerical” data. On
the left of Fig. 6 we have plotted data at a particular point in moduli space,14 namely,
λ = 0.5 and p = 1.2, concerning the sequence α(P)g and its first sequential Richardson
extrapolations (see, e.g., [7] for a short discussion of Richardson transforms and their
role in accelerating the convergence of a given sequence, within the present matrix model
context). That the large-order data approaches the analytic prediction is very clear: after
just four Richardson transforms the error is already of the order 10−6 % at genus g = 60.
On the right of Fig. 6 we have fixed λ = 1 but vary p over its full range. Once again we
check that the numerical data (the black dots in the figure), after just four Richardson
transforms, is never further than 10−6 % away from the analytical prediction (the solid
red line), thus fully validating our results.

As we move on to testing the one-instanton, one-loop coefficient, it is important to
first recall that the transseries framework only predicts large-order behavior up to the
Stokes factors—in this case up to the Stokes factor S(0)1 , see (4.39). However, we also
have computed the same quantity via spectral curve analysis (3.53) (this was one of the
main results in Sect. 3.1) and, following [7,8,15], the spectral curve result should provide
for the full answer, Stokes factor included. In this case, the calculation of S(0)1 F (1|0)

0 in

(3.53) and the calculation of F (1|0)
0 in (4.38) combine to predict the Stokes parameter as

S(0)1 = −i

√
6

πλ
. (4.43)

13 This was previously shown via the string equations, but we also checked it numerically to very high
precision.

14 Recall the domain of validity of the two-cut Stokes phase, 0 < λx < 3
2 , or, equivalently, 0 < p < 3.
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Fig. 7. The first image depicts a test of the one-instanton, one-loop coefficient using the sequence β(P)g and
its first Richardson transforms, when λ = 0.5 and p = 1.5. The large-order convergence towards the correct
result is clear (the dashed horizontal line is the analytical prediction), with an error of the order of 10−6 %.
The second image shows a test of the one-instanton, one-loop coefficient at fixed λ = 1 but with varying p

over its full range, after implementing just four Richardson transforms on the sequence β(P)g . Large-order
data makes up the dots, while the analytical prediction is given as the solid red line. As in previous cases, the
agreement is extremely clear (color figure online)

It is quite interesting to compare the result for this “simplest” Stokes constant (at least
that one constant which may be analytically computed from saddle-point analysis), in
the present two-cut configuration, with the analogue Stokes constant for the one-cut
configuration in [8,15]. For the quartic matrix model one thus finds:

S(0)1

∣∣∣
two-cut

= −√
2 S(0)1

∣∣∣
one-cut

. (4.44)

With the knowledge of this Stokes constant (which we should more properly denote by
S(0)F1 since it refers to the free energy), we can proceed to test the relation (4.42) for
the sequence βg . Since besides the free energy the quantities P(x) and Q(x) also obey
a relation similar to (4.42), a natural question to ask is whether the Stokes constant for
these different quantities is the same. Indeed we find that it is the case, namely that

S(0)F1 = S(0)P1 = S(0)Q1 ≡ S(0)1 . (4.45)

This is to say that, when testing the asymptotic relation (4.42) for either β(P)g , β
(Q)
g or

β
(F)
g , we find that the relation holds to very high accuracy with the Stokes constants

being the same in all three cases. On the other hand, the value of b is different, with
b = −1/2 for β(P)g and β(Q)g and b = −5/2 for β(F)g (see [15] for a discussion of
this point). With this knowledge, we have tested our instanton predictions with the
sequences β(P,Q)g , finding that the numerical data has an error smaller than 10−5 % at

genus g = 60 as compared to the analytical prediction for S(0)1 P(1|0)
0 (or Q), within

most of the allowed range for λ and the variable p. Note, however, that P(1|0)
0 (and also

Q) diverges as one approaches p → 0, making the convergence of numerical data to
analytical prediction naturally a bit worse once we get too close to p = 0. These results
are illustrated in Fig. 7. On the left of this figure we have fixed λ = 0.5 and p = 1.5,
and plotted the sequence β(P)g alongside with its Richardson transforms. It is again very
clear how the data approaches the analytical prediction (the horizontal dashed line). On
the right of Fig. 7 we have fixed λ = 1 and changed p over its full range, plotting
the fourth Richardson transform of the sequence β(P)g (black dots) and the analytical
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prediction (solid red line). The agreement is, once again, evident. Let us mention that
the very same tests may also be carried out for the free energy. In this case, we find an
equally conclusive agreement, albeit with a smaller accuracy (10−3 %) as we have less
large-order data available.

At this stage one could proceed along the lines in [15] and test both multi-instanton
formulae as well as the validity of generalized multi-instanton sectors appearing via our
resurgence formulae. This would involve techniques of Borel–Padé resummation and,
as such, within the context of the two-cut Stokes phase of the quartic matrix model, we
shall leave these precision tests for future work. Do notice that we shall, nonetheless,
test the validity of our multi-instanton formulae in the double-scaling limit towards the
Painlevé II equation in a following section.

4.2. The triple Penner potential and AGT Stokes phenomena. As we address nonpertur-
bative phenomena within Stokes phases of multi-cut solutions, it is important to note that
it is not always the case that instanton effects arise from B-cycle eigenvalue tunneling
(as discussed in [7,9] and also as developed in Sect. 3 of the present paper). In some
situations, one finds systems whose instanton effects are dictated by A-cycle eigenvalue
tunneling instead [11,69]. For completeness of our analysis, we shall now address an
example along these lines. As before, we will remain within the simplified realm of
two-cut configurations, with the equal filling of eigenvalues ensuring Z2 symmetry of
the spectral curve.

We shall address multi-Penner matrix models. The single Penner model was first
introduced in [70–72] and its nonperturbative effects were later addressed in [11]. Extra
motivation for studying this system arises within the framework of the AGT conjecture
[48,73], establishing a relation between partition functions in 4dN = 2 superconformal
quiver gauge theories and correlation functions in 2d conformal field theories (CFT).
Within this set-up, we are particularly interested in the relation to matrix models fol-
lowing [74], where the quiver gauge theories are related to multi-Penner matrix models,
and where the AGT relations follow from the interconnections betweens these matrix
models and CFT [75,76]. This was further studied in [69], in particular addressing the
three-point correlation function as a Penner matrix model calculation. The results we
shall obtain below follow in this very same spirit, as they similarly relate to the CFT
four-point correlation function with a specific, symmetric choice of insertion points.
However, all our computations are carried through exclusively from a matrix model
point of view, and any possible applications within the AGT context will require further
examination.

The multi-Penner potential is a sum over logarithms, as

V (z) =
k∑

i=1

μi log (z − θi ) . (4.46)

In order to obtain a Z2-symmetric potential with two wells, we shall set k = 3, θ2 =
1
2 (θ1 + θ3) , μ1 = α = μ3 and μ2 = β. The potential now reads

V (z) = α log (z − θ1) + β log

(
z − 1

2
(θ1 + θ3)

)
+ α log (z − θ3) . (4.47)

An example of such a potential is shown in Fig. 8 (where we plot the real part of the
potential—the imaginary part just jumps by π at each logarithmic singularity). The
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Fig. 8. Real part of the Penner potential (4.47) for θ1 = 0, θ2 = 1/2, θ3 = 1, and μ1 = μ2 = μ3 = −1

choice of parameters in Fig. 8 is precisely the case we are going to address, with θ1 =
0, θ2 = 1

2 and θ3 = 1. In this case the potential is symmetric with respect to z = 1/2
and not z = 0, but the motivation for this choice is clear: when studying four-point
correlation functions on the sphere it is usual to make three of the insertions at z = 0, 1
and ∞, with the fourth varying between 0 and 1. Herein, the matrix model does not “see”
the point at ∞, and placing the fourth insertion at z = 1/2 gives us the Z2 symmetry we
are looking for. In the end, all that distinguishes the two cases is a change of variables:
a rescaling and a horizontal shift.

The saddle-point analysis we introduced in Sect. 2.1 applies straightforwardly to this
case, so we can proceed and compute the endpoints of the cuts, which we here denote
by C1 ∪ C2 = [1/2 − b, 1/2 − a] ∪ [1/2 + a, 1/2 + b]. The asymptotic behavior of the
resolvent gives us three conditions for the endpoints, one of them being redundant. The
other two are

2α√( 1
4 − a2

) ( 1
4 − b2

) +
β√
a2b2

= 0, (4.48)

2α + β +
1√( 1

4 − a2
) ( 1

4 − b2
) − β

4
√

a2b2
= 2t, (4.49)

from where we find the solutions

a2 = 2t (t − 2α) + β (β + 2α − 2t)− 2
√

t (t − 2α) (t − β) (t − 2α − β)

4 (β + 2α − 2t)2
, (4.50)

b2 = 2t (t − 2α) + β (β + 2α − 2t) + 2
√

t (t − 2α) (t − β) (t − 2α − β)

4 (β + 2α − 2t)2
. (4.51)

From this point on, the picture is different from the one we discussed for the quartic
potential. The main difference is that now there is no eigenvalue tunneling, in the sense
that one eigenvalue gets removed from one of the cuts and displaced along a B-cycle to
a non-trivial saddle outside of that cut [7]. We can check this explicitly by looking for
the zeroes of M(z) (recall that the eigenvalues get displaced from their cut to a pinched
cycle, x0, such that M(x0) = 0). For a general multi-Penner potential (4.46), the moment
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function M(z) is given by (2.5) as

M(z) =
k∑

i=1

μi

(z − θi )
√
σ(θi )

. (4.52)

For our particular example (4.47) we find that M(z) only has two zeroes, lying inside
the cuts. In this case there are no non-trivial saddle points, i.e., no “hills” to place
eigenvalues on top of. Nonperturbative tunneling effects will thus have to be distinct
from our previous discussion of the quartic potential.15 Let us see how they arise in the
following.

One may next compute the holomorphic effective potential (2.8) and find the intricate
expression (we are using the shorthand z̄ = z − 1/2)

Vh;eff (z) = √σ2(z̄)

⎛
⎝ 4α√(

4a2 − 1
) (

4b2 − 1
) +

β

2ab

⎞
⎠ +

1√(
4a2 − 1

) (
4b2 − 1

) 1√
b2 − a2

×
{(

8aα
(
2a2 + 2b2 − 1

)
+

2β

b

(
a2 + b2)√(4a2 − 1

) (
4b2 − 1

))
�
(
φ,−√

n1n2,m
)

−4bβ
√(

4a2 − 1
) (

4b2 − 1
)
�
(
φ,

√
n1n2,m

)

+
1

b

(
b2 − a2) F(φ,m)

(
β

√(
4a2 − 1

) (
4b2 − 1

)
+ 8abα

)

−4aα
(
4b2 − 1

)
(�(φ, n1,m) +�(φ, n2,m))

}
. (4.53)

In this expression, F(φ,m) is the incomplete elliptic integral of the first kind and
�(φ, n,m) the incomplete elliptic integral of the third kind, with n the elliptic char-
acteristic and m = k2 with k the elliptic modulus (see, e.g., [58]). Furthermore, we have
introduced

φ =
√
(b − a)(z̄ + a)

(b + a)(z̄ − a)
, m = (b + a)2

(b − a)2
, n1 = (1 − 2a)(b + a)

(1 + 2a)(b − a)
,

n2 = (1 + 2a)(b + a)

(1 − 2a)(b − a)
. (4.54)

In Fig. 9 we show the above potential (4.53) for the choice α = −1, β = −1/2 and
t = 1/2.

While expression (4.53) may not be extremely insightful, it suffices to show that the
holomorphic effective potential is a multi-valued function. This multi-sheeted structure
arises from the branch cuts of the square roots but, more importantly and more non-
trivially, from the branch cuts of the elliptic functions. As we shall see in detail next, this
implies that in this case multi-instantons are associated to eigenvalue tunneling which
removes one eigenvalue from the endpoint of a cut and then takes it back to this cut but on
a different sheet [11]. In other words, multi-instantons are associated to A-cycles of the
spectral curve [11]. This may be shown in two ways. On the one hand one may analyze
the branch-cut configurations of the elliptic integrals in (4.53) and explicitly construct

15 Further note that there is no tunneling from one cut to the other as
∫ 1/2+a

1/2−a dz y(z) = 0.
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Fig. 9. The real part of the holomorphic effective potential for the two-cut “triple” Penner matrix model, along
the real axis. In here we have chosen t = 1/2, α = −1 and β = −1/2

the multi-sheeted structure of this function in order to study its monodromy properties.
On the other hand, one may use orthogonal polynomials to first exactly evaluate the
partition function of the model and then perform a semiclassical expansion, where one
will be able to identify the instanton actions with A-cycles via (2.7). For simplicity, we
shall choose the second approach where we will find many different instanton actions
reflecting the many different spacings between the several sheets. All these actions will
be multiples of 2π i.

As such, moving on to the orthogonal polynomial description, we first need to find
the measure (2.11) for our “triple” Penner potential (4.47). It is simple to find

dμ(z) = e− 1
gs

V (z) dz

2π
= |z|− α

gs |z − 1/2|− β
gs |z − 1|− α

gs
dz

2π
. (4.55)

If we now do the very simple change of variables

z → λ = 2z − 1, dz → dλ = 2dz, (4.56)

the orthogonal polynomial measure becomes

dμ(λ) = 2
2α
gs

+ β
gs

−1
∣∣∣1 − λ2

∣∣∣−
α
gs |λ|− β

gs
dλ

2π
. (4.57)

The reason for doing this change of variables is because orthogonal polynomials with
respect to this last measure, (4.57), are known. In fact, in the same way that in the single
Penner potential (which is k = 1 in (4.46)) we deal with the Laguerre polynomials (see,
e.g., [11]) in here the relevant orthogonal polynomials are the generalized Gegenbauer
polynomials [77–79]. Their precise definition is

∫ 1

−1
dλwρ,σ (λ)C (ρ,σ )

n (λ)C (ρ,σ )
m (λ) = hn δnm, (4.58)

with wρ,σ (λ) being the weight function

wρ,σ (λ) = 1

B (ρ + 1/2, σ + 1/2)

(
1 − λ2

)ρ−1/2 |λ|2σ , ρ, σ > −1

2
, (4.59)
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and

B(x, y) = �(x)�(y)

�(x + y)
. (4.60)

Going back to our multi-Penner measure (4.57) one immediately identifies

dμ(λ) = 2
2α
gs

+ β
gs

−1 B

(
1 − α

gs
,

1

2
− β

2gs

)
w 1

2 − α
gs
,− β

2gs
(λ)

dλ

2π
. (4.61)

In order to compute the partition function (2.13) the next step is to address the
coefficients hn . This requires a few intermediate steps,16 for the polynomials need to
be monic (i.e., the coefficient of the highest order term equals one). First, let us use
the relation between the generalized Gegenbauer polynomials and the standard Jacobi
polynomials P(μ,ν)n [77]

C (ρ,σ )
2n (λ) = (ρ + σ)n

(σ + 1/2)n
P(ρ−1/2,σ−1/2)

n (2λ2 − 1), (4.62)

C (ρ,σ )
2n+1 (λ) = (ρ + σ)n+1

(σ + 1/2)n+1
λ P(ρ−1/2,σ+1/2)

n (2λ2 − 1), (4.63)

where we used the Pochhammer symbol

(a)m = a (a + 1) · · · (a + m − 1) = �(a + m)

�(a)
. (4.64)

Given this relation, one may immediately extract

h2n = (ρ + 1/2)n (ρ + σ)n (ρ + σ)

n! (σ + 1/2)n (ρ + σ + 2n)
, (4.65)

h2n+1 = (ρ + 1/2)n (ρ + σ)n+1 (ρ + σ)

n! (σ + 1/2)n+1 (ρ + σ + 2n + 1)
. (4.66)

These are not yet the coefficients we are looking for: as mentioned above, one must work
with monic orthogonal polynomials and this is not the case for the C (ρ,σ )

n polynomials.
But now one does know that Jacobi polynomials are normalized as

Jμ,νn (λ) ≡ 2n n!�(n + μ + ν + 1)

�(2n + μ + ν + 1)
Pμ,νn (λ) ∼ λn + · · · , (4.67)

which will allow us to normalize the generalized Gegenbauer polynomials. In fact,
further taking into account the pre-factors in (4.62) and (4.63), we finally define the
adequately normalized version of these polynomials as17

G(ρ,σ )
2n (λ) = (σ + 1/2)n

(ρ + σ)n

n!�(n + ρ + σ)

�(2n + ρ + σ)
C (ρ,σ )

2n (λ) ∼ λ2n + · · · , (4.68)

G(ρ,σ )
2n+1 (λ) = (σ + 1/2)n+1

(ρ + σ)n+1

n!�(n + ρ + σ + 1)

�(2n + ρ + σ + 1)
C (ρ,σ )

2n+1 (λ) ∼ λ2n+1 + · · · . (4.69)

16 In these intermediate computations that follow we shall work with ρ = 1
2 − α

gs
and σ = − β

2gs
for

shortness. Then, when addressing the partition function, we will reintroduce the original expressions.
17 Note that one needs to divide by 2n because Jn(2x2 − 1) ∼ 2n x2n + · · · , so this cancels the 2n factor in

(4.67).
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We now have complete information to find the correctly normalized coefficients hn .
As should be clear from the above analysis, they naturally split into “even” and “odd”,
where one finds,

h2n = n!
2π

2
2α
gs

+ β
gs

−1
�
(

n − α
gs

+ 1
)
�
(

n − β
2gs

+ 1
2

)
�
(

n − α
gs

− β
2gs

+ 1
2

)

�
(

2n − α
gs

− β
2gs

+ 1
2

)
�
(

2n − α
gs

− β
2gs

+ 3
2

) , (4.70)

h2n+1 = n!
2π

2
2α
gs

+ β
gs

−1
�
(

n − α
gs

+ 1
)
�
(

n − β
2gs

+ 3
2

)
�
(

n − α
gs

− β
2gs

+ 3
2

)

�
(

2n − α
gs

− β
2gs

+ 3
2

)
�
(

2n − α
gs

− β
2gs

+ 5
2

) . (4.71)

Finally, one may compute the partition function for this model following (2.13). Due
to the Z2 symmetry of the spectral geometry, and similarly to what happened in the
quartic model in (4.30), the partition function naturally splits into “even” and “odd”
coefficients (the ones just above) as one writes

Z =
N/2−1∏

n=0

h2n

N/2−1∏
n=0

h2n+1. (4.72)

As we shall see when addressing the calculation of the free energy, it turns out that it
is useful to write the many products of Gamma functions which appear in the partition
function as Barnes functions. This may be done with a reorganization of the products
which appear in the expression above and, besides its definition �(z + 1) = z �(z), the
use of the property

�

(
z +

1

2

)
= 21−2z √

π
� (2z)

� (z)
. (4.73)

This property is particularly useful for the Gamma functions containing half-integer
factors; indeed the two terms with a β factor may now be rewritten as

�

(
n − β

2gs
+

1

2

)
�

(
n − β

2gs
+

3

2

)
= π 2−4n−1+ 2β

gs

�
(
2n − β

gs
+1
)
�
(

2n − β
gs

+ 2
)

�
(

n − β
2gs

+ 1
)2 .

(4.74)
A similar reasoning may be applied to the terms whose numerators contain the combina-
tion α

gs
+ β

2gs
. Using η ≡ n − α

2gs
− β

4gs
, the combination which appears in the respective

denominators will become

�

(
2η +

1

2

)
�

(
2η +

3

2

)2

�

(
2η +

5

2

)

= π2 2−16η−6 � (4η + 1) � (4η + 2) � (4η + 3) � (4η + 4)

� (2η + 1)2 � (2η + 2)2
. (4.75)

The final required ingredient is the definition of the Barnes function, G2(z), in terms of
products of Gamma functions. Essentially, we shall use

N−1∏
n=0

�(n + x + 1) = G2(N + x + 1)

G2(x + 1)
(4.76)
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alongside with its useful extension

N−1∏
n=0

�(kn + x + 1) �(kn + x + 2) · · ·�(kn + x + k) = G2(k N + x + 1)

G2(x + 1)
. (4.77)

Assembling all different pieces together, and introducing the ’t Hooft coupling t = Ngs
as usual, the partition function of the “triple” Penner model finally follows as

Z(t, gs) = 2
t

gs

(
t+β
gs

−2
)

π
t

gs

G2

(
1 +

t

2gs

)2

G2

(
1 − α

gs

)−2

G2

(
1 +

t − 2α

2gs

)2

×
G2

(
1 − β

2gs

)2

G2

(
1 − β

gs

) G2

(
1 + t−β

gs

)

G2

(
1 + t−β

2gs

)2

G2

(
1 + t−2α−β

gs

)

G2

(
1 + t−2α−β

2gs

)2

G2

(
1 + 2t−2α−β

2gs

)2

G2

(
1 + 2t−2α−β

gs

) .

(4.78)

This is, of course, an exact result; it encodes both perturbative and nonperturbative
contributions. In order to analyze instantons in this model we will have to understand the
usual large N semi-classical expansion of the free energy. But this is actually a simple
calculation given (4.78), as all one needs to know is the asymptotic expansion of the
logarithm of the Barnes function, i.e.,

log G2(z+1) 
 1

2
z2 log z−3

4
z2+

1

2
z log 2π− 1

12
log z+ζ ′(−1)+

+∞∑
g=2

B2g

2g(2g − 2)

1

z2g−2 .

(4.79)
As always, we are interested in the normalized free energy F = F − FG. The genus
g free energies, Fg(t), then follow from the logarithm of the partition function (4.78),
given the asymptotic expansion (4.79). As we are mainly interested in comparing the
large-order behavior of the perturbative expansion against instanton data we shall only
present results with genus g ≥ 2, although F0 and F1 also follow straightforwardly
from this procedure. One finds:

Fg(t) = B2g

2g (2g − 2)

{
22g−1 (t − 2α)2−2g − 2 α2−2g

+
(

22g−1 − 1
) (

t2−2g + β2−2g − (t − β)2−2g

− (t − 2α − β)2−2g + (2t − 2α − β)2−2g
)}
. (4.80)

This final result for the perturbative genus g free energies confirms that indeed the
tunneling effects are not associated to non-trivial saddle-points as in [7] but rather to
A-cycle effects as in [11]: in fact, its large-order growth is essentially dictated by
“Bernoulli numbers growth” which immediately indicates that all different actions will
be multiples of 2π i [11].

The final step we have to address is, thus, the explicit construction of the A-cycle
instanton contributions. This again is done very much in line with the discussions in
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[11,69] where each Barnes function in (4.78), or each Bernoulli component in (4.80),
leads to a discontinuity of the type

Disc log G2(N + 1) = i
+∞∑
m=0

( |N |
m

+
1

2πm2

)
e−2π |N |m (4.81)

at the Stokes line N = i|N |. This is an exact expression for the discontinuity of the
Barnes function and, as we discussed earlier in Sect. 2.3, it immediately yields the full
multi-instanton content of the associated free energy. In particular, the full disconti-
nuity of the free energy (4.80) is given by the sum of the discontinuities of the loga-
rithms of Barnes functions, and this encodes its full multi-instanton structure. We finally
find

Disc F = 1

πgs

+∞∑
n=1

{(
π t

n
− igs

n2

)
e− π itn

gs − 1

2

(
2π t

n
− igs

n2

)
e− 2π itn

gs

−1

2

(
2πα

n
− igs

n2

)
e− 2π iαn

gs +

(
πβ

n
− igs

n2

)
e− π iβn

gs

−1

2

(
2πβ

n
− igs

n2

)
e− 2π iβn

gs +

(
π(t − 2α)

n
− igs

n2

)
e− π i(t−2α)n

gs

−
(
π(t − β)

n
− igs

n2

)
e− π i(t−β)n

gs +
1

2

(
2π(t − β)

n
− igs

n2

)
e− 2π i(t−β)n

gs

−
(
π(t − 2α − β)

n
− igs

n2

)
e− π i(t−2α−β)n

gs +
1

2

(
2π(t − 2α − β)

n
− igs

n2

)
e− 2π i(t−2α−β)n

gs

+

(
π(2t − 2α − β)

n
− igs

n2

)
e− π i(2t−2α−β)n

gs − 1

2

(
2π(2t − 2α − β)

n
− igs

n2

)
e− 2π i(2t−2α−β)n

gs

}
.

(4.82)

An alternative approach to obtaining the above result would be to first compute the
Borel transform of the free energy (which we can do as we have an exact expression
at arbitrary genus which, in particular, tells us that the pre-factor grows as (2g − 3)!).
Then, when performing the inverse Borel transform out of our analytically continued
result, one would extract its imaginary part as a sum over residues which would yield
precisely the very same result as in (4.82) [11].

Overall, (4.82) yields 12 different types of nonperturbative effects, all with instanton
action associated to an A-cycle as in (2.7), and all including only one and two-loops
contributions around each multi-instanton sector, as further explained in [11]. The large-
order behavior of perturbation theory will be controled by the instanton whose absolute
value of its action is closest to the origin in the complex Borel plane. In this example
this is simple to understand without going into Borel analysis, by simply looking at the
free energies (4.80). This expression is essentially a sum of numbers of the form x−2g

and, as the genus g grows larger, the dominant term will be the one with the smallest
x . Having said this, one may now test our nonperturbative discussion of this subsec-
tion by matching against large-order results. We shall do this by picking two distinct
sets of moduli, namely, (α, β, t) = (−1,−1, 1/2) and (α, β, t) = (−1,−1/3, 2). In
the first case the leading large-order behavior will be dictated by the dominant contri-
bution in (4.82) which is the first one in that expression (of the form ∼ t/2), while
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Fig. 10. We plot the sequence 1/
√
α
(F)
g associated to the instanton action (see 4.40), alongside with its

Richardson transforms, for the choices (α, β, t) = (−1,−1, 1/2) (left image) and (α, β, t) = (−1,−1/3, 2)
(right image). The predictions for the leading asymptotics A = π/2 and A = π/3 are given by the horizontal
lines. In both cases the errors at genus g = 100 are of the order 10−7 %

in the second case the leading large-order behavior will dictated by the correspond-
ing dominant contribution in (4.82) which will now be the fourth term in that expres-
sion (of the form ∼ β/2). The instanton actions are A = iπ

2 and A = iπ
3 , respec-

tively. We test the overall nonperturbative structure in Fig. 10 by plotting, up to genus

g = 100, the behavior of the sequence 1/
√
α
(F)
g (of its imaginary part, to be precise),

alongside with the first three Richardson transforms, and for both sets of moduli. In
a straight solid line we plot the two predictions. The error after the third Richardson
transform is, in both cases, of the order 10−7 %, fully validating our nonperturbative
analysis.

5. Asymptotics of Instantons in the Painlevé II Equation

The analysis in the previous section allowed us to check the validity of our one-instanton
results, for the Stokes phase of two distinct multi-cut models. In particular, we have
checked both the instanton action (3.38) and the one-loop one-instanton coefficient
(3.53), predicted in Sect. 3, to very high precision. But our saddle-point analysis also
yields multi-instanton results, as for instance in (3.51), and the general structure of
resurgent transseries solutions further predicts many, new, generalized multi-instanton
sectors, as discussed in Sect. 2.3. As such, we would now like to check all this multi-
instantonic structure, and we shall do so within the context of 2d supergravity, or type
0B string theory, by analyzing the Painlevé II equation. This equation arises as a double-
scaling limit from the two-cut quartic matrix model we have previously analyzed, but
is simpler to analyze from a numerical point-of-view than the full off-critical matrix
model.

5.1. Painlevé II and resurgent transseries. Recalling the discussions in Sects. 3.2 and
4.1, it should be obvious that the two-cut quartic matrix model has a natural critical
point. This is clearly depicted in Fig. 3, which shows a critical point for the recursion
coefficients at λt = 3/2. At this point a phase transition takes place, from the two-
cut phase to an unstable one-cut phase. In the double-scaling limit, this critical point
is precisely described by the Painlevé II equation. At the critical point, and referring
to Fig. 5, the two cuts collide with each other, having the non-trivial saddle for the
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eigenvalue instantons at this collision point. In practice what this means is that the
smaller endpoints of the cuts will vanish, with a → 0 (and with the non-trivial saddle
kept fixed at the origin, x0 = 0). In terms ofλ, t and gs , the double-scaling limit is defined
as

gs → 0, λ → λc = 3

2
, t → 1, (5.1)

with the variable

z = (1 − t) g
− 2

3
s (5.2)

kept fixed in this limit. As mentioned, it is known that in this limit the matrix model
describes 2d supergravity or type 0B minimal superstrings, see, e.g., [49,51,52,54,80],
and that the physics is encoded in the Painlevé II equation. This differential equation
precisely appears as we take the double-scaling limit in the string equations (4.9) and
(4.10), as discussed in, e.g., [49,67]. Let us quickly review this point, following [55], as
this will also be important as we connect transseries solutions off and at criticality: start
with the string equations (4.9) and (4.10), and introduce scaling ansätze for both P(x)
and Q(x) [49]

P(x) → 2
(

1 − g1/3
s u(z) + g2/3

s v(z)
)
, (5.3)

Q(x) → 2
(

1 + g1/3
s u(z) + g2/3

s v(z)
)
. (5.4)

Plugging these expressions into (an appropriate rewriting of) the string equations, it is
simple to obtain in the double-scaling limit

4u(z)v(z)− 2u′′(z) = 0, (5.5)

2u2(z)− 8v(z)− 2z = 0. (5.6)

The first equation is readily solved for v(z) which may then be replaced in the second
one. As such, one finally obtains a second-order differential equation for u(z),

2u′′(z)− u3(z) + z u(z) = 0. (5.7)

The equation above is the Painlevé II equation in the normalization used in, e.g., [54,80].
In the present paper we are using a slightly different normalization, which follows with
a simple rescaling of u and z as u → 21/3 u and z → 22/3 z. In this case the Painlevé II
equation becomes

u′′(z)− 2u3(z) + 2z u(z) = 0, (5.8)

which, in particular, also matches the normalization used in [8]. The perturbative solution
corresponds to an expansion around z ∼ +∞ where one has upert(z) ∼ √

z.
From here on, the procedure to compute the resurgent transseries solution to the

Painlevé II Eq. (5.8) follows in parallel, step by step, with what was done in [15]. The
one-parameter transseries solution to (5.8) was addressed in [8], from where we recall
the following points. First, the perturbative solution to (5.8) yields

x = z−3/2 (5.9)

as the open string coupling. In this case, one may immediately write down an one-
parameter transseries solution to the Painlevé II equation of the form [8,15]

u(z) 
 x−1/3
+∞∑
n=0

σ n e−n A/x xnβ
+∞∑
g=0

u(n)g xg, (5.10)
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where A is the instanton action and β a characteristic exponent. Then, plugging this
expression back into the Painlevé II equation, a solution of this form exists if

A = ±4

3
, β = 1

2
. (5.11)

As discussed in [13,15] and earlier in this paper, when building nonperturbative solu-
tions with transseries it is important to take into consideration all possible values of the
instanton action—in fact, via resurgence, deep in the asymptotics of the solution one
will find the need for both signs, and thus the need for the two-parameter transseries
ansatz. As such, we shall now focus on the two-parameter case (but we will also recover
some of the results in [8] along the way).

Let us begin by writing the Painlevé II equation in terms of a different variable

w = x1/2 = z−3/4. (5.12)

This is motivated by having found β = 1
2 above: in the two-parameter case the prefactors

will not be of the simple form xnβ but will depend on two integers, say n and m. As we
shall see, it will be more convenient to include these contributions inside the perturbative
expansions and, as such, to work directly with the variable xβ . For simplicity of the
calculation, it is also convenient to remove the overall factor of z1/2 in front of the
solution. This motivates us to introduce the new variables (with a slight, but obvious,
abuse of notation)

u(w) ≡ u(z)√
z

∣∣∣∣
z=w−4/3

. (5.13)

It is then a straightforward exercise to rewrite the original equation in terms of this new
function

9

16
w6 u′′(w) +

9

16
w5 u′(w)− 2u3(w)−

(
w4

4
− 2

)
u(w) = 0. (5.14)

Our goal is to solve this equation with a two-parameter transseries ansatz, along the lines
in [15], as (we remind the reader that w2 = x is the open string coupling)

u (w, σ1, σ2) =
+∞∑
n=0

+∞∑
m=0

σ n
1 σ

m
2 e−(n−m)A/w2

�(n|m)(w). (5.15)

At this stage one might be tempted to assume �(n|m)(w) as a power series in w but,
due to resonance effects, this will not work (see [13,15]): in order to obtain a solution
one further needs to add terms multiplying powers of logw. As such we shall use
the following ansatz for the asymptotic expansions around generalized multi-instanton
sectors

�(n|m)(w) =
min(n,m)∑

k=0

logk(w) ·�[k]
(n|m)(w) 


min(n,m)∑
k=0

logk w ·
+∞∑
g=0

u(n|m)[k]
g wg. (5.16)

In this case, finding a two-parameter transseries solution to the Painlevé II equation now
translates to determining the full list of coefficients u(n|m)[k]

g . Inserting our ansätze (5.16)
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and (5.15) back into Painlevé II (5.14), yields the recursion relation which constructs
this transseries:

2
n∑

n1=0

n−n1∑
n2=0

m∑
m1=0

m−m1∑
m2=0

k∑
k1=0

k−k1∑
k2=0

g∑
g1=0

g−g1∑
g2=0

u(n1|m1)[k1]
g1

u(n2|m2)[k2]
g2

×u(n−n1−n2|m−m1−m2)[k−k1−k2]
g−g1−g2

=
(

9

4
A2(n − m)2 + 2

)
u(n|m)[k]

g

+
9

4
A(n − m)(k + 1) u(n|m)[k+1]

g−2 +
9

4
A(n − m)(g − 3) u(n|m)[k]

g−2 +

+
9

16
(k+2)(k+1) u(n|m)[k+2]

g−4 +
9

8
(k+1)(g − 4) u(n|m)[k+1]

g−4 +
140 + 9g(g − 8)

16
u(n|m)[k]

g−4 .

(5.17)

The above recursion now allows us to see resonance explicitly. Let us consider the
case where |n − m| = 1 and look for the leading terms in the recursion, the u(n|m)[k]

g

coefficients. The first term on the second line above is 6u(n|m)[k]
g , but the sum in the first

line also contains terms with this factor; they are:

2u(n|m)[k]
g u(0|0)[0]

0 u(0|0)[0]
0 + 2u(0|0)[0]

0 u(n|m)[k]
g u(0|0)[0]

0 + 2u(0|0)[0]
0 u(0|0)[0]

0 u(n|m)[k]
g

(5.18)
such that the leading terms in the recursion will cancel.18 As explained in greater detail
in [15] this cancelation describes resonance in the Painlevé II equation and thus the need
to introduce the “[k]-sectors”, which will still allow us to find a solution for the recursion
in spite of the aforementioned cancelation. We refer the reader to [15] for further details
on this phenomenon.

Another issue which arises when solving the above recursion deals with reparame-
terization invariance of the transseries [15]: the obvious freedom to choose the para-
meterization of the transseries coefficients σ1 and σ2 translates to a long list of free
coefficients, i.e., coefficients in the transseries which are not fixed by the recursion. Do
notice that this is not a problem, but rather a requirement from the transseries structure,
but we refer the reader to [15] for further details on this phenomenon. The punch line
is that one needs to choose a prescription to fix these free coefficients. As it turns out,
the most natural choice is to set as many free coefficients to zero as possible, as this will
also yield the simplest final results. Following [15], we shall fix the reparameterization
invariance by setting

u(m+1|m)[0]
1 = 0, ∀m ≥ 1, and u(n|n+1)[0]

1 = 0, ∀n ≥ 1. (5.19)

Having addressed the aforementioned subtleties, all one is left to do is to iterate the
recursion in a computer. Results for the lowest sectors follow as

�
[0]
(0|0)(w) = 1 − 1

16
w4 − 73

512
w8 − 10, 657

8, 192
w12 − 13, 912, 277

524, 288
w16 − · · · , (5.20)

�
[0]
(1|0)(w) = w − 17

96
w3 +

1, 513

18, 432
w5 − 850, 193

5, 308, 416
w7 +

407, 117, 521

2, 038, 431, 744
w9 − · · · ,

(5.21)

18 Recall that limz→+∞ upert(z) ∼ √
z, so that one has u(0|0)[0]

0 = 1.
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�
[0]
(2|0)(w) = 1

2
w2 − 41

96
w4 +

5, 461

9, 216
w6 − 1, 734, 407

1, 327, 104
w8 +

925, 779, 217

254, 803, 968
w10 − · · · ,

(5.22)

�
[0]
(1|1)(w) = −3w2 − 291

128
w6 − 447, 441

32, 768
w10 − 886, 660, 431

4, 194, 304
w14

−13, 316, 458, 344, 441

2, 147, 483, 648
w18 − · · · . (5.23)

Let us note that, as expected, the first three lines above containing physical multi-
instanton sectors precisely agree with the results in [8] (once we translate from our
notation to theirs). Results concerning generalized multi-instanton sectors are new, and
we present more details of this explicit transseries solution to the Painlevé II equation
in Appendix C.

We end this subsection with a few more comments on the (logarithmic) structure of the
transseries solution and how it relates—in the double-scaling limit—to the transseries
solution of the two-cut quartic matrix model we have discussed in Sect. 4.1 and in
Appendix A. The first thing to notice is that it is simple to determine the lowest order
for which the coefficients u(n|m)[k]

g are non-vanishing; let us call this number 2β[k]
nm . The

result, which can be immediately checked from the results above and in Appendix C, is
the following

2β[k]
nm = n + m − 2

[
knm + k

2

]
I
, (5.24)

with [�]I denoting the integer part, and

knm = min(n,m)− m δnm . (5.25)

Next, and similarly to what was found for the Painlevé I equation in [15], the logarithmic
sectors turn out to be related to each other and, in particular, to the non-logarithmic
sectors. In fact, we here find a formula very similar to the expression (5.40) in [15],
which reads

u(n|m)[k]
g = 1

k!
(

8 (m − n)
)k

u(n−k|m−k)[0]
g . (5.26)

This relation will be very useful in reducing the number of independent Stokes constants
which enter the game; it provides relations between many of them in the same way as the
analogue Painlevé I expression was very helpful in [15]. As a final point in discussing the
structure of the Painlevé II transseries solution, let us see how to make the bridge back to
the two-cut string equations (4.9) and (4.10). Its two-parameter transseries solution, i.e.,
its coefficients P(n|m) and Q(n|m) in (4.18), must agree, in the double-scaling limit, with
the coefficients of our present solution u(n|m). That this has to be the case is clear since
the Painlevé II equation itself was derived from the aforementioned string equations via
(5.3) and (5.4). But our point here is that this may be made explicit as we find:

− (C √
gs
)n+m

gg−1/3
s P(n|m)[0]

g −−→
DSL

z− 3(n+m)+6g−2
4 u(n|m)[0]

2g+n+m . (5.27)

In this expression, the “DSL” arrow simply means that we have applied the double-scaling
limit (5.1) and (5.2) to the left-hand-side. On the right-hand-side the coefficients which
appear are the ones associated to the original variables, i.e., where we have inverted the
redefinitions of u and z we did before. There is a similar expression involving the Q
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coefficients which relates to the one above by a simple change of sign, as can be seen in
(5.4). Finally, the constant C is given by

C = 2 · 31/2

√
λ

. (5.28)

5.2. The resurgence of multi-instantons and Stokes coefficients. We shall now turn to the
resurgence of the generalized multi-instanton (n|m)[k] sectors. The resurgence formulae
we have discussed in Sect. 2.3 will verify the validity of these multi-instanton sectors, and
they will further allow—upon consistency—to extract many unknown Stokes constants.
We shall only focus on effects at exponential order 1−g and our analysis will be less
detailed than the one in [15] where, using more refined techniques, it was possible to “dig”
deep in the asymptotics and study effects at orders 2−g, 3−g , et cetera. Nonetheless, our
results will fully validate the two-parameter multi-instantonic structure of the Painlevé
II solutions.

Let us begin by addressing the Stokes constant S(0)1 . On what concerns large-order
behavior, this constant appears in the perturbative (0|0) sector and we may use the
large-order expression (2.30) to write in the present case

u(0|0)[0]
4g 
 S(0)1

iπ

�
(
2g − 1

2

)
A2g− 1

2

+∞∑
h=0

u(1|0)[0]
2h+1 Ah �

(
2g − h − 1

2

)
�
(
2g − 1

2

) + O(2−g). (5.29)

Given this expression, it is immediate to construct the sequence

iπ A2g− 1
2

�
(
2g − 1

2

) u(0|0)[0]
4g (5.30)

which is asymptotic to S(0)1 . Taking its Richardson extrapolation, it follows an extremely
precise check on the well-known result (see, e.g., [8,54]), where we found a match of
the first 30 decimal places after N = 20 Richardson transforms

S(0)1 = − i√
2π

= −0.3989422804014327 . . . i. (5.31)

There is a simple relation between the above Stokes constant at criticality, and the
corresponding Stokes constant off-criticality, (4.43), which is similar to the relation
between the corresponding Stokes constants in [15]—i.e., Stokes constant for Painlevé
I and for the one-cut quartic matrix model. Namely, we find19

S(0)1

∣∣∣
PII

=
S(0)1

∣∣∣
QMM

C
, (5.32)

where the constant C was defined above. Naturally, this expression is simply encoding the
double-scaling limit at the level of Stokes constants (see [15] for other Stokes constants).

As we move forward there is one point to have in mind: except for a limited set
of empirical relations they satisfy among themselves—which we shall discuss in the

19 For shortness we will avoid the labels referring to either “Painlevé II” or “Quartic Matrix Model” through-
out the rest of the paper. All constants discussed from here onwards refer to the critical (double-scaled) model.
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following—there are no further analytical predictions for all other Stokes constants. As
such, we need to compute them at the same time we test resurgence in an independent
fashion. This is done in two steps [13,15]: we choose one resurgent formula and validate
it via some resurgent relations; then we use different resurgent relations in this formula
to numerically compute new Stokes constants. As one iterates this procedure towards
several Stokes constants and several multi-instanton sectors, consistency independently
double-checks both the Stokes constants and the resurgence of instantons.

In this spirit, let us move on to the multi-instanton sectors and address the Stokes
constant S(2)−1 which appears in the (2|0) sector. If we apply our large-order formula for
multi-instanton sectors, (2.31), with two physical instantons, n = 2 and m = 0, and
focus only on the leading contributions to the asymptotics, k = 1, we arrive at

u(2|0)[0]
2g+2 
 3S(0)1

2π i

�
(
g − 1

2

)
Ag− 1

2

+∞∑
h=0

�
(
g − h − 1

2

)
�
(
g − 1

2

) u(3|0)[0]
2h+3 Ah

+
S(2)−1

2π i

�
(
g + 1

2

)
(−A)g+ 1

2

+∞∑
h=0

�
(
g − h + 1

2

)
�
(
g + 1

2

) u(1|0)[0]
2h+1 (−A)h

+
S̃(0)−1

2π i

�
(
g − 1

2

)
(−A)g− 1

2

+∞∑
h=0

�
(
g − h − 1

2

)
�
(
g − 1

2

) u(2|1)[0]
2h+3 (−A)h

+
S̃(0)−1

4π i

�
(
g + 1

2

)
(−A)g+ 1

2

+∞∑
h=0

�
(
g − h + 1

2

)
�
(
g + 1

2

) u(2|1)[1]
2h+1 (−A)h

×
{
ψ

(
g − h +

1

2

)
− log (A)− iπ

}
. (5.33)

A novel feature of this case is that, adding to the familiar g! large-order growth, the
digamma function further produces effects which grow as g! log g and which will in fact
be the dominant effects. One procedure to extract and confirm the new Stokes coefficients
associated to this expression, via Richardson transforms and when in the presence of
log g factors, was introduced in [13] within the context of the Painlevé I equation and
further extended in [15]. Let us see how to address this issue. We move a factor of

2π i
Ag+ 1

2

�
(
g + 1

2

) (5.34)

to the left-hand-side of the above equation, and expand its right-hand-side in powers of
1/g. In this way, one obtains a sequence with the following asymptotic behavior:

Ag ∼ Bg log g + Cg, where Bg 

+∞∑
k=0

bk

gk
, Cg 


+∞∑
k=0

ck

gk
. (5.35)

To extract the leading coefficient, b0, we may construct a new sequence,

Ãg = g
(

Ag+1 − Ag
)
, (5.36)

which behaves as

Ãg ∼ B̃g log g + C̃g, where B̃g 

+∞∑
k=1

b̃k

gk
, C̃g 
 b0 +

+∞∑
k=1

c̃k

gk
, (5.37)
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thus isolating the coefficient we are looking for. In fact, should we apply a couple of
Richardson transform (at least two), we remove the subleading tails in 1/gk and in
log g/gk and immediately obtain b0 numerically. Similarly, if we want to find b1, we
can define

A(1)g = g
(

Ãg − b0
)
, (5.38)

and now apply the Richardson transforms to the sequence Ã(1)g = g
(

A(1)g+1 − A(1)g

)
in

order to extract the coefficient −b1. As we move on to the extraction of the ci coefficients,
the procedure is more or less straightforward. For instance, if we subtract the leading
logarithm to the left-hand-side of the original sequence, the new sequence20

Pg = Ag − b0 log g (5.39)

will now yield c0. Along the same lines, P(1)g = Ag − (b0 + b1/g) log g allows us to
extract −c1, and so on. Applying all this in our present context we now have to consider
the sequence21

Ag = 2π i
Ag+ 1

2

�
(
g + 1

2

) u(2|0)[0]
2g+2 , (5.40)

where we should notice that, due to the factors of (−1)g in (5.33), we need to look
separately at the sequences for g odd and for g even. For simplicity, we shall only
discuss the even case, but the odd one is completely analogous. If we now use the
sequence (5.36) to compute Ã2g , we expect it to converge towards the leading coefficient
multiplying log g in the resurgent relation (5.33). What is this number? Using the value
of u(2|1)[1]

1 = −8 (simply obtained for instance via (5.26)) and using the fact22 that

S̃(0)−1 = −i S(0)1 , if the resurgent formulae hold in the present context then this number
should be equal to the analytical value

− i S̃(0)−1

2
u(2|1)[1]

1 = 1.59576 . . . . (5.41)

Let us then turn to the sequence and analyze it. This is shown on the first image of
Fig. 11, where we plot the original sequence and some of its Richardson transforms.
After N = 20 Richardson transforms we find the numerical value of 1.59573 . . . which
differs from the prediction above by less than 0.01 %, thus fully validating our resurgent
multi-instanton structure.

Taking our analysis one step further, we may now extract a new Stokes constant by
looking at the leading non-logarithmic term, which may be computed using the sequence
(5.39). According to the same large-order resurgent relation, (5.33), this term should be

− i S̃(0)−1

2
u(2|1)[1]

1 (log A + iπ)− i S(2)−1 u(1|0)[0]
1 , (5.42)

20 Notice that we can subtract further logarithmic terms in order to accelerate the convergence.
21 A trivial word on notation: A is the instanton action, Ag the sequence we are addressing.
22 At this precise moment this only adds numerical evidence to the fact that S̃(0)−1 = −i S(0)1 . But, as we shall

see in the following, we can actually show that this relation is true, so we may as well use it already.
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Fig. 11. The left image shows the sequence Ã2g built from (5.40) (blue) alongside with its 5th (green) and
20th (red) Richardson transforms. This can be shown to quickly converge towards our prediction (5.41) with
errors ∼ 0.01 %. The right image shows the sequence Pg in (5.39) (blue) alongside its 5th (green) and 20th
(red) Richardson transforms. This quickly converges towards our prediction (5.43) (color figure online)

where we do not know the value of the Stokes constant S(2)−1. However, we may find it by
analyzing the sequence (5.39), as shown in the second image of Fig. 11: after N = 20
Richardson iterations we extract the numerical prediction

S(2)−1 = −5.3455144 . . .− 5.013256493 . . . i. (5.43)

Before moving on with further Stokes constants, let us make a remark concerning
the new Stokes constant we have just computed, (5.43): it is a complex number, with
both real and imaginary contributions. But, as explained in detail in [15], there are many
relations between the Stokes constants and a large number of these depend on each other
(although it is unclear how many truly independent Stokes constants exist). Some of
these relations may be derived from the general structure of the string genus expansion,
and are thus model-independent; while others were found “experimentally”, and will
thus depend upon which equation is under analysis (but see [15] for more details on both
these points). In particular, all Stokes constants of the form S(n)� and S̃(n)� with � > 0 are
purely imaginary. We will thus only list this type of Stokes constants. We shall discuss
how these relations arise when we discuss the (1|1) sector below; for the moment let us
just mention that, for (5.43) above, the relation which involves S̃(2)1 out of S(2)−1 is

S̃(2)1 = −i S(2)−1 + 4π i S(0)1 = 5.3455144 . . . i. (5.44)

Having successfully addressed a two-instanton sector, let us next address a sector
involving generalized instantons. In this case, the simplest choice is to study a generalized
“closed string” sector; the example where we have n = 1 = m and k = 0. By “closed
string” we mean that sectors of the type (n|n) are expected to have an asymptotic
expansion in powers of the closed string coupling g2

s ∼ w4 rather than in powers
of the open string coupling gs ∼ w2, as can be seen in (5.23) [15]. In this case the (1|1)
sector has no logarithmic contributions and the relevant large-order relation is [15]

2π i Ag+ 1
2

�
(
g + 1

2

) u(1|1)[0]
2g+2 
 S(1)1

+∞∑
h=0

�
(
g − h + 1

2

)
�
(
g + 1

2

) u(1|0)[0]
2h+1 Ah

+2S(0)1 A
+∞∑
h=0

�
(
g − h − 1

2

)
�
(
g + 1

2

) u(2|1)[0]
2h+3 Ah
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−2S(0)1

+∞∑
h=0

�
(
g − h + 1

2

)
�
(
g + 1

2

) u(2|1)[1]
2h+1 Ah B̃A

(
g − h − 3

2

)

− i S̃(1)−1

(−1)g

+∞∑
h=0

�
(
g − h + 1

2

)
�
(
g + 1

2

) u(0|1)[0]
2h+1 (−A)h

+
2i S̃(0)−1

(−1)g
A

+∞∑
h=0

�
(
g − h − 1

2

)
�
(
g + 1

2

) u(1|2)[0]
2h+3 (−A)h

+
2i S̃(0)−1

(−1)g

+∞∑
h=0

�
(
g − h + 1

2

)
�
(
g + 1

2

) u(1|2)[1]
2h+1 (−A)h BA

(
g − h − 3

2

)
.

(5.45)

As we have just mentioned, the (1|1)[0] sector will have a standard, topological pertur-
bative expansion, which implies that all terms above with odd g will have to vanish [15].
In other words, imposing u(1|1)[0]

2(2g+1)+2 = 0 will result in a tower of relations between the
Stokes constants appearing on the right-hand-side of (5.45), as this expression needs to
vanish order by order in both powers of 1/gk and log g/gk . For example, expanding the
digamma functions we find that imposing that the term proportional to log g vanishes
will imply the condition

S(0)1 − i S̃(0)−1 = 0 ⇒ S̃(0)−1 = −i S(0)1 , (5.46)

which we had already put forward and checked numerically—now being “theoretically”
justified. On the other hand, the term at order O(1) yields a relation involving two
unknown constants,

S(1)1 + i S̃(1)−1 + 8π i S(0)1 = 0, (5.47)

where we have used (5.26) to relate u(1|2)[1]
1 = 8u(0|1)[0]

1 . Continuing along these lines
and looking at further required cancelations, one may use this procedure in order to
extract similar relations between further Stokes constants, such as (5.44) which we have
discussed above. Our goal now is to apply the same reasoning as used within the (2|0)
sector in order to compute this new Stokes constant, S(1)1 (and, along the way, S̃(1)−1 as
well). This is very similar to what we have done before, with the slight difference that
now only the sequences for even g are relevant. Once again the term proportional to log g
offers just a consistency check on the resurgent structure of the transseries solution and
on (already) known Stokes constants, and we show in Fig. 12 that this is indeed working
perfectly: the relevant sequence, after Richardson extrapolation, converges towards the
correct number, −S(0)1 u(2|1)[1]

1 + i S̃(2)−1 u(1|2)[1]
1 , with an error smaller than 0.001 %.

The new constants we are after appear at order O(1), without logarithmic contribu-
tions. After using the relevant sequence, (5.39), we find, as we show in Fig. 12, a fast
convergence towards the number ξ = −19.54576 . . . i that resurgence sets to

ξ = S(0)1 u(2|1)[1]
1 log A + S(1)1 u(1|0)[0]

1 − i S̃(1)−1 u(0|1)[0]
1 − i S̃(0)−1 u(1|2)[1]

1 (log A + iπ) .
(5.48)

Using this result together with the previous relation, (5.47), we find S(1)1 (which is, as
expected, a purely imaginary number)

S(1)1 = −10.6910288 . . . i. (5.49)
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Fig. 12. The left image shows the sequence which tests the leading, log g, coefficient of the large-order relation
(5.45) (blue), alongside with its 5th (green) and 20th (red) Richardson transforms. This sequence quickly

converges towards the expected limit −S(0)1 u(2|1)[1]
1 + i S̃(2)−1 u(1|2)[1]

1 with an error smaller than 0.001 %.
The right image shows the sequence which tests the leading, order O(1), term in the large-order relation
(5.45) (blue), alongside its 5th (green) and 20th (red) Richardson transforms. Again, this quickly leads to our
prediction (5.48) (color figure online)

Table 1. The independent Stokes constants we have calculated

Precision From

S(0)1 −0.39894228 . . . i ∞ �
[0]
(0|0)

S(1)1 −10.6910288 . . . i 7 �
[0]
(1|1)

S̃(2)1 5.3455144 . . . i 7 �
[0]
(2|0)

The third column gives the number of decimal places to which the answer is explicitly computed, while the
fourth column shows the instanton sector where each constant appears for the first time. All constants we
address first appear at order 1−g

The (independent) Stokes constants we have computed are summarized in Table 1. It is
interesting to notice that a further “experimental” relation S̃(2)1 = − 1

2 S(1)1 is (apparently)
true in this case. The exact same relation was also found in [15], in the context of the
Painlevé I equation, alongside with some other extra relations, all of them emerging
from purely numerical relations. We expect that by examining further data in the present
Painlevé II context also many similar relations will be found. However, at this stage, we
have no first principles explanation for these extra relations: determining the minimal set
of independent Stokes constants is a very interesting open problem for future research.

5.3. The nonperturbative free energy of type 0B string theory. The final point we wish
to address is the construction of the nonperturbative free energy for 2d supergravity or 1d
type 0B string theory. In fact, using the results of our transseries analysis of the Painlevé
II equation, we may now build its associated double-scaled free energy. This free energy
is obtained from the solution of the Painlevé II equation via [49,51,52,80]

F ′′
ds(z) = −1

4
u(z)2. (5.50)

For convenience, from this point on we shall drop the double-scaled label, but we will
always be talking about the free energy at the critical point. The first thing to notice is
that there is now a fundamental difference with respect to the Painlevé I case, studied in
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[15]: the relation between the (twice differentiated) free energy and the solution of the
differential equation is no longer linear. Nonetheless, the right-hand-side of (5.50) still
has a transseries expansion

−1

4
u(z)2 ≡

+∞∑
n=0

+∞∑
m=0

σ n
1 σ

m
2 e−(n−m) A z3/2

ϕ(n|m)(z), (5.51)

but where now one has

ϕ(n|m)(z) =
n∑

n′=0

m∑
m′=0

�(n′|m′)(z)�(n−n′|m−m′)(z) 

+∞∑
g=0

ũ(n|m)
g

z
3g
4

. (5.52)

Relating this expression to the free energy now just requires a double-integration, as
follows from (5.50). Let us begin by looking at the perturbative sector, where we bring
back the

√
z factor we had pulled out in (5.13). In this case, the integration leads to

F (0|0)(z) = −1

4

∫∫
dz z

(
�(0|0)(z)

)2 = − z3

24
− log (z)

32
+

3

512z3 +
63

4096z6 + · · · .
(5.53)

As a check on this result, notice that if we apply the double-scaling limit, (5.1) and
(5.2), to the quartic matrix model free energies, Fg(t), which we have computed via the
Euler–Maclaurin formula in (4.33) (the first few of which are presented in Appendix
A), and if we further implement the rescalings u → 21/3 u and z → 22/3 z associated to
our choice of normalization, then the answer one obtains precisely matches the above
result.

Having understood how to construct the free energy in the perturbative sector, one
may move on towards multi-instanton sectors. Beginning with the one-instanton sector
arising from the product �(0|0)(z)�(1|0)(z), the first coefficient to compute is simply
given by

−1

2
σ1 u(1|0)[0]

1

∫∫
dz z1/4 e−Az3/2 = −1

8
σ1 u(1|0)[0]

1 z−3/4 e−Az3/2
+ · · · . (5.54)

In the expression above we have kept only the leading term and we have explicitly
displayed the coefficient u(1|0)[0]

1 . Recall that when solving the Painlevé II equation we

chose to set u(1|0)[0]
1 = 1, and recall that this freedom in choosing the normalization was

a consequence of a reparameterization invariance of the double-transseries solution [15].
One now needs to readdress this point in order to properly fix the free energy transseries.
As shown in [15], rescaling the transseries parameters as σ1 = c1 σ̂1 and σ2 = c2 σ̂2
makes the following quantities scale accordingly

�(n|m) = c−n
1 c−m

2 �̂(n|m), (5.55)

S(k)� = c1−k
1 c1−k−�

2 Ŝ(k)� , (5.56)

S̃(k)� = c1+�−k
1 c1−k

2
̂̃S(k)� . (5.57)

The convenient scaling to do, when dealing with the free energy, is

σ1,2 = S(0)1 σ F
1,2. (5.58)
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In fact, this immediately implies that the leading coefficient of the one-instanton free
energy is

F (1|0)[0]
0 = −1

8
S(0)1 u(1|0)[0]

1 = i

8
√

2π
, (5.59)

and thus the free energy Stokes constant is very simply

S(0)F1 = 1. (5.60)

This convenient normalization may further be double-checked by using the large-order
connection (4.39)

F (0|0)[0]
g ∼ S(0)F1

iπ

�
(

2g − 5
2

)

A2g− 5
2

F (1|0)[0]
0 . (5.61)

After just a few Richardson transforms we find that (5.60) is indeed consistent. It is
important to remark that physical quantities should not depend on normalization choices,
so that only combinations which are left invariant by the above rescalings are physical.
In this particular case, the physical quantity is

S(0)F1 · F (1|0)[0]
0 . (5.62)

Had we chosen to have σ F
1 = σ1, then we would have found S(0)F1 = S(0)1 , but the

combination above would not have changed. A longer discussion on normalizations
may be found in [15].

We are now ready to proceed and explicitly compute generalized (n|m) multi-
instanton sectors in the free energy of 2d supergravity or 1d type 0B string theory.
From the point-of-view of the double-integration, the only complicated sectors are the
ones with logarithms. In fact, when n = m the procedure is immediate and a straightfor-
ward generalization of what we did for the perturbative (0|0) sector in (5.53). As such,
and always having in mind that we are now dealing with the function u(z)2, in (5.51),
we have for general n �= m,

σ n
1 σ

m
2 e−(n−m)A/w2

ϕ
[0]
(n|m)(w) 
 σ n

1 σ
m
2 e−(n−m)A/w2

+∞∑
g=0

ũ(n|m)[0]
2g+2β[0]

nm
w2g+2β[0]

nm . (5.63)

It can be shown—and easily checked—that the relation (5.26) connecting logarithmic
(n + k|m + k)[k] to non-logarithmic (n|m)[0] sectors still holds in the precise same form
for ϕ[k]

(n|m) and its components. In this case, it is convenient to assemble together all
sectors which are related to the (n|m)[0] sector; due to the aforementioned relation each
of these is of the form (transseries parameters and logarithmic factor included)

1

k! (8 (m − n) σ1σ2 logw)k σ n
1 σ

m
2 e−(n−m)A/w2

ϕ
[0]
(n|m)(w). (5.64)

Finally summing over k, one finds

ϕ
[sum]
(n|m)(w) = e8(m−n)σ1σ2 logw ϕ

[0]
(n|m)(w) = w8(m−n)σ1σ2 ϕ

[0]
(n|m)(w). (5.65)
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In order to do the double-integration, let us first move back to the z variable so that the
(n|m) contribution becomes

σ n
1 σ

m
2 e−(n−m)Az3/2

+∞∑
g=0

ũ(n|m)[0]
2g+2β[0]

nm
z− 3g+3β[0]

nm−2
2 + 8(n−m)σ1σ2

A . (5.66)

The double-integration may now be carried through using that

∫∫
dz zq e−�Az3/2 = 2

3�A
zq+1/2 e−�Az3/2

+∞∑
m=1

am(q) ·
(
−�Az3/2

)−m
, (5.67)

where the coefficients am(q) are given by

am(q) =
�
(

m − 2q+1
3

)

�
(
− 2q+1

3

) −
�
(

m − 2q−1
3

)

�
(
− 2q−1

3

) . (5.68)

Notice that the am(q) coefficients are polynomials in q of degree m − 1. Further, given
the integrand in (5.66), the variable q is actually linear in σ1σ2 and, as such, the am(q)
coefficients will be polynomials of degree m −1 in σ1σ2. This effectively means that the
double-integration of the (n|m) sector of u(z)2 contributes not only to the (n|m) sector
of the free energy, but to all other (n + r |m + r) sectors as well (with r > 0).

We are now essentially done. Using a computer, we can apply the integral (5.67)
systematically and find that the free energy has the structure

F(z, σ F
1 , σ

F
2 )=

+∞∑
n=0

+∞∑
m=0

(
S(0)1

)n+m (
σ F

1

)n (
σ F

2

)m
e−(n−m)Az3/2

z
3
π
(m−n)σ F

1 σ
F
2 F (n|m)(z),

(5.69)
where the “coefficients” F (n|m)(z) will be asymptotic expansions in powers of z−3/2

(both integer and half-integer, and also containing the occasional logarithm). The first
few sectors of the critical free energy are the following

F (0|0)(z) = − 1

24
z3 − 1

32
log z +

3

512
z−3 +

63

4, 096
z−6 + · · · , (5.70)

F (1|0)(z) = −1

8
z− 3

4 +
65

768
z− 9

4 − 19, 273

147, 456
z− 15

4 +
13, 647, 905

42, 467, 328
z− 21

4 − · · · , (5.71)

F (1|1)(z) = 4

3
z

3
2 +

25

96
z− 3

2 +
6, 323

24, 576
z− 9

2 +
5, 015, 413

3, 145, 728
z− 15

2 + · · · , (5.72)

F (2|0)(z) = − 1

32
z− 3

2 +
59

1, 536
z−3 − 9, 745

147, 456
z− 9

2 +
3, 335, 669

21, 233, 664
z−6 − · · · , (5.73)

F (2|1)(z) = − 9

16
z− 9

4 +
737

512
z− 15

4 − 398, 375

98, 304
z− 21

4 +
142, 017, 823

9, 437, 184
z− 27

4 − · · · , (5.74)

F (2|2)(z) = −3 log z +
111

64
z−3 +

54, 507

8, 192
z−6 +

15, 245, 711

196, 608
z−9 + · · · , (5.75)

F (3|0)(z) = − 1

96
z− 9

4 +
59

3, 072
z− 15

4 − 7, 645

196, 608
z− 21

4 +
1, 836, 031

18, 874, 368
z− 27

4 − · · · ,
(5.76)
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F (3|1)(z) = −17

64
z−3 +

1, 211

1, 536
z− 9

2 − 655, 883

294, 912
z−6 +

161, 783, 969

21, 233, 664
z− 15

2 − · · · ,
(5.77)

F (3|2)(z) = 17

8
z− 9

4 − 2, 267

384
z− 15

4 +
3, 488, 915

147, 456
z− 21

4 − 251, 878, 099

2, 654, 208
z− 27

4 + · · · ,
(5.78)

F (3|3)(z) = 17

3
z− 3

2 +
35, 675

2, 304
z− 9

2 +
11, 452, 163

81, 920
z− 15

2 +
157, 674, 856, 009

58, 720, 256
z− 21

2 + · · · .
(5.79)

In the list above we presented the sectors (n|m)with n ≥ m. The coefficients with n < m
differ at most by signs, obeying the rule

F (m|n)
g = (−1)g+[n/2]I F (n|m)

g , n > m. (5.80)

The starting powers in the free energy coefficients F (n|m) can be easily related to the
starting powers β[0]

nm of the Painlevé II coefficients u(n|m), for instance by looking at
(5.67). At the end of the day we find

F (n|n) ∼ z− 3
2β

[0]
nn +3, (5.81)

F (n|m) ∼ z− 3
2β

[0]
nm , n �= m, (5.82)

where β[0]
nm was defined above in (5.24). For completeness, we also recall that the loga-

rithmic sectors are “hidden” inside the term

z
3
π
(m−n)σ F

1 σ
F
2 = exp

(
3

π
(m − n) σ F

1 σ
F
2 log z

)
. (5.83)

As a final point, we should also comment on the Stokes constants for the free energy.
Since the Stokes constants for u(z) and u(z)2 are the same, the Stokes constants for the
free energy are related to those of Painlevé II via the rescalings described above, (5.56)
and (5.57), and so

S(k)F� = �2
(

S(0)1

)2k+�−2
S(k)� , (5.84)

S̃(k)F� = �2
(

S(0)1

)2k−�−2
S̃(k)� . (5.85)

The extra �2 appearing above comes from taking two derivatives on the factor
exp

(±�Az3/2
)
. On what concerns the independent Stokes constants we computed in

Sect. 5.2, the respective values for the independent free energy Stokes constants are
presented in Table 2.

6. Conclusions and Outlook

In this paper we have continued our analysis of the nonperturbative structure of the
large N limit, and of string theory, along the lines of [15]. We have generalized many
results [7–9,11,13,14] to the multi-cut realm, with emphasis on proceeding with the
nonperturbative study of the quartic matrix model initiated in [7,8,15], this time around
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Table 2. The independent Stokes constants for the free energy of 2d supergravity or 1d type 0B string theory

Precision

S(0)F1 1.0000000000 . . . ∞
S(1)F1 −4.26510341 . . . i 8

S̃(2)F1 2.13255170 . . . i 8

They are related to the Stokes constants of the Painlevé II equation via (5.84) and (5.85)

in its two-cut phase with its Painlevé II double-scaling limit. Our results support the
need for resurgent analysis and transseries, in particular the need for two-parameter
transseries solutions including new nonperturbative sectors. As in previous work, the
question remains to explain, semi-classically, what these new sectors are: for exam-
ple, in the Painlevé II context, while the physical multi-instanton sectors correspond
to ZZ-branes [8,81,82] there is no similar understanding of the generalized sectors.
Partial discussions may be found in [13–15,83] but no conclusive answer has yet been
reached. This question is also related to finding a first-principles calculation of the many
“experimental” Stokes constants we have found: for one of these constants, S(0)1 , in the
Painlevé II framework, there are many analytical methods which determine it, see, e.g.,
[8,47,53,54,84], but for all others finding one such analytical method is still an open
problem. This is probably related to first determining how many truly independent Stokes
constants there are for each problem, and further explaining the empirical relations we
have found among them.

As one looks towards future research, some natural generalizations of our present
work quickly come to mind. For example, one natural extension would be to “dig” deeper
into the asymptotics of our examples, putting the full resurgent formulae on even stronger
grounds. Recall that in [15], both for the one-cut quartic model and for its Painlevé
I double-scaling limit, techniques of Borel–Padé resummation were used in order to
analyze contributions to the large-order behavior arising at exponentially suppressed
orders of 2−g, 3−g , and so on. It would be very interesting to extend those results within
the present examples of the two-cut quartic model and its Painlevé II double-scaling limit.
Another interesting line of work would be to further explore the connection to the AGT
framework, along the lines in [69,74]. For example, one could address the calculation
of (symmetric) higher-point correlation functions, or, in a different line, compare our
present nonperturbative construction with other nonperturbative completions suggested
within the AGT set-up as in [85]. Yet another interesting line of work would be to address
extensions of our Painlevé II results toward its deformations which arise within the type
0B minimal superstring context, when turning on RR flux or in the presence of charged
ZZ-branes [50,52]. This flux is controled by a parameter, q, and the equation which
describes the minimal string set-up is now a deformation of Painlevé II, namely

u′′(z)− 2u3(z) + 2z u(z) = − q2

u3(z)
. (6.1)

This equation is certainly addressable within our framework and it would be very inter-
esting to fully carry out its resurgent transseries analysis, extending our Painlevé II
results.

In order to be fully explicit when addressing multi-cut Stokes phases, we have focused
on the two-cut case where the Stokes phase is essentially related to the Z2 symmetry



The Resurgence of Instantons 711

of the spectral curve configuration. But one may extend this calculation for an arbitrary
number of cuts, k, as long as one keeps the corresponding spectral geometry configuration
having a Zk symmetry on its cuts—this symmetry will ensure that, although generically
dealing with hyperelliptic configurations, at the end of the day all calculations reduce
to elliptic integrals (very much along the same lines as it occurred for us in Sect. 3.1).
Afterwards, and still following our own guidelines from the Z2 case, a proper treatment
of the sum over instantons will further ensure that these elliptic functions will cancel in
the end, thus producing adequate results for a Stokes phase. Setting up such Zk symmetric
spectral configurations is very simple, as it is to compute their corresponding instanton
actions. The multi-instanton analysis should then follow with some extra work. Another
interesting point of this example is its own double-scaling limit [67,86] which seems to
lead to new integrable hierarchies. For a Zk-symmetric configuration the string equations
get more complicated, but are certainly solvable within our framework. In this way, it
should be possible to say a lot about the nonperturbative structure of their corresponding
solutions and, thus, about the general structure of these new integrable hierarchies.

The two-parameter transseries solution we have obtained for the Painlevé II equation
is, in principle, its full nonperturbative solution. How may we understand the information
encoded in this solution? When addressing 2d supergravity, or type 0B string theory, we
are looking for a real solution to this equation, (5.8), for all z ∈ R. Recall from, e.g.,
[8] that this is naturally associated to the two phases of the Painlevé II solutions: the
weak-coupling phase, when z → +∞, and the strong-coupling phase, when z → −∞,
where one finds the asymptotic behaviors [53,87]

u(z) ∼ √
z, z → +∞, (6.2)

u(z) ∼ 1

21/12
√

2π
(−z)−1/4 e− 2

√
2

3 (−z)3/2 , z → −∞. (6.3)

There is in fact one such real solution interpolating between the above weak and strong
couplings, the Hastings–McLeod solution [87]. Notice that there are many solutions to
the Painlevé II equation: for example, in [53] one finds a large class of global purely
imaginary solutions, alongside another large class of global real solutions of which the
Hastings–McLeod solution is a particular (singular limit) case—and the asymptotics of
all these solutions are well known [53]. In particular, all these solutions should be encoded
in our transseries solution, but in here we shall only discuss the Hastings–McLeod
solution which was also addressed in [8]. This in itself is already a non-trivial problem:
clearly, the “instanton action” in (6.3) is different from the Painlevé II instanton actions
appearing in its two-parameter transseries solution. The natural question that follows is:
how is the Hastings–McLeod solution encoded in our two-parameter transseries solution,
and how can it provide for both types of weak and strong coupling behaviors displayed
above? In particular, how may A and −A of Painlevé II “conspire” to yield the extra

√
2

factor? This question was partially addressed in [8], in the context of a one-parameter
transseries solution. In there, it was shown that—upon Borel resummation—one may
perform a median resummation of the transseries along the Stokes line in the positive
real axis to yield a real solution of the Painlevé II equation (see the final discussion in
[15] as well), i.e.,

uR(z, σ ) ≡ S+u

(
z, σ − 1

2
S1

)
, (6.4)

where S+ denotes a left Borel resummation along the positive real axis (see, e.g., [15]).
Once this is done, the Hastings–McLeod solution is that particular real solution which
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has σ = 0 in the expression above [8]. In particular, this median resummation of the
one-parameter transseries reproduces the Hastings–McLeod content for z ∈ R

+. But one
question remained open: what happens along the negative real axis instead? To answer
this question, one needs the full two-parameter transseries solution we have constructed
in this paper, but this is not yet the full story: constructing a median resummation along
the negative real axis, where one now finds an infinite number of highly non-trivial
Stokes constants, is a much harder problem, and moving from positive z to negative z
will also entail crossing Stokes lines. These crossings will make Stokes constants jump,
not only as overall factors but also inside exponential terms due to the logarithmic sectors
as we discussed in Sect. 5.3. As such, it would be a very interesting project to make this
strong/weak coupling interpolation completely explicit within the resurgent transseries
framework. We hope to return to some of these ideas in the future.
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A. The Two-Cut Quartic Matrix Model: Structural Data

In this appendix we present some explicit results concerning the two-parameter
transseries solution to the two-cut quartic matrix model. Let us recall that in Sect. 4.1
we have solved the string equations of this model, (4.20) and (4.21), by introducing the
ansatz

P(x) =
+∞∑
n=0

+∞∑
m=0

σ n
1 σ

m
2 P(n|m)(x), (A.1)

with

P(n|m)(x) 
 e−(n−m)A(x)/gs

+∞∑
g=βnm

gg
s P(n|m)

g (x), (A.2)

and similarly for Q(x). In the table below we show the maximum order (in g) in the string
coupling to which we have recursively computed the above nonperturbative coefficients:
Do note that, since the sums in (A.2) have a “starting genus” which is (in general)
βnm = − min(m, n) ≤ 0, the actual number of coefficients that we have computed is
bigger than the numbers displayed in Table 3. It is also worth pointing out that in the
cases where n = m the asymptotic expansions contain only even powers of gs , which

Table 3. Values for the highest g for which we have calculated P(n|m)
g and Q(n|m)

g

m n

0 1 2 3 4

0 60 10 10 10 5
1 10 5 5 5
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implies half of the indicated coefficients vanish. Finally, the sectors (m|n) and (n|m) are
trivially related via (similar for Q(x))

P(n|m)
g (x) = (−1)g P(m|n)

g (x). (A.3)

Let us begin by presenting explicit results for the first few coefficients in the perturbative
sector23

P(0|0)
0 = 1

λ
(3 − p) , Q(0|0)

0 = 1

λ
(3 + p) , (A.4)

P(0|0)
1 = λ

162 − 27p − 9p2

2p5
, Q(0|0)

1 = λ
−162 − 27p + 9p2

2p5
, (A.5)

P(0|0)
2 = λ3 1, 915, 812 − 314, 928p − 181, 521p2 + 18, 711p3 + 1, 944p4

8p11 , (A.6)

Q(0|0)
2 = λ3 −1, 915, 812 − 314, 928p + 181, 521p2 + 18, 711p3 − 1, 944p4

8p11 . (A.7)

Proceeding with the multi-instanton sectors (and just explicitly showing results for P(x)
from now on), the first few coefficients in the (1|0) sector are

P(1|0)
0 = −

√
3 − p

p
, (A.8)

P(1|0)
1 = λ

459 − 45p2 + 6p3

8 p7/2 (3 + p) (3 − p)1/2
, (A.9)

P(1|0)
2 = λ2 9

128 p13/2 (3 + p)2 (3 − p)3/2

×
(

− 122, 553 − 15, 552p + 27, 270p2 + 2, 844p3

−1, 593p4 − 132p5 + 4p6
)
, (A.10)

while in the (2|0) sector we find

P(2|0)
0 = −λ 3 − p

2p2 , (A.11)

P(2|0)
1 = λ2 1, 107 + 108p − 117p2 − 6p3

8 p5 (3 + p)
, (A.12)

P(2|0)
2 = λ3 9

64 p8 (3 + p)2 (3 − p)

×
(

− 442, 341 − 65, 448p + 102, 330p2 + 12, 924p3

−6, 669p4 − 636p5 + 80p6
)
. (A.13)

One of the main features of using multi-parameters transseries is the appearance of
generalized multi-instanton sectors, which may have different signs of the instanton

23 Recall from the main body of the text that we are using the variable p = √
9 − 6λx .
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action within the nonperturbative exponential contribution. This may lead, sometimes,
to the cancelation of all terms in this exponential contribution—for example, in the
present setting this happens when n = m—and we will be left with a (perturbative)
expansion in the closed string coupling. The first sector with this feature is the (1|1)
sector, where the first few coefficients are

P(1|1)
0 = λ

9 − p

p2 , (A.14)

P(1|1)
2 = λ3 70, 713 − 10, 125p − 4, 617p2 + 261p3

8 p8 , (A.15)

P(1|1)
4 = λ5 1

128 p14

(
8, 806, 981, 203 − 1, 369, 011, 699p − 959, 100, 102p2

+103, 563, 198p3 + 18, 833, 715p4 − 787, 563p5
)
. (A.16)

The general case n �= m is more complicated. Generically, asymptotic expansions will
be in powers of the string coupling, gs , and the “starting genus” may start taking nega-
tive values. Furthermore, logarithmic contributions begin to appear [15]. For example,
one may compute the following coefficient in the (2|1) sector (this is the second non-
vanishing coefficient in this sector):

P(2|1)
0 = λ2 1

16 p7/2 (3 + p) (3 − p)1/2

{(
−432 − 180p + 24p2 + 12p3

)

+
(

153 − 15p2 + 2p3
)

log

(
p6

9 − p2

)}
. (A.17)

Even though we have not produced as much data as in the one-cut solution discussed
in [15], we are still able to conjecture the general form of all these coefficients. Our
data, together with the experience gathered in [15], indicate that the nonperturbative
coefficients take the form

P(n|m)
g (x) =

min(n,m)∑
k=0

logk ( f (x)) · P(n|m)[k]
g (x), (A.18)

where

P(n|m)[k]
g (x) = λc1

pc2 (3 − p)c3 (3 + p)c4
P(n|m)[k]

g (x), (A.19)

and where the function f (x), written in terms of the variable p, is

f (p) = p6

9 − p2 . (A.20)

Above, the coefficients ci are given by

c1 = n + m + g − 1, (A.21)

c2 = 3

2
(n + m) + 3g − 1, (A.22)

c3 = (1 − δnm)
1

2
(3m − n + 2g) , (A.23)
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Table 4. Prefactor c and coefficients of the polynomials P
(2|1)[0]
g (left) and P

(2|1)[1]
g (right)

g 0 1 2

c − 3
4

1
32 − 3

512

p0 36 670,680 811,753,164

p1 15 8,991 163,196,127

p2 −2 −159,732 −277,986,654

p3 −1 486 −53,318,331

p4 11,340 33,149,088

p5 −261 6,037,173

p6 −208 −1,519,542

p7 −264,789

p8 16,680

p9 3,068

g −1 0 1
c − 1

6
1
16 − 3

256

p0 1 153 122,553

p1 0 15,552

p2 −15 −27,270

p3 2 −2,844

p4 1,593

p5 132

p6 −4

c4 = (1 − δnm) (m + g) , (A.24)

and they are valid whenever n ≥ m. The P
(n|m)[k]
g (x) are polynomials in p of degree

3 (m + g). When n = m, these polynomials get reduced and have degree n + g. Con-
cerning the pattern for the Q(n|m)

g (x) coefficients, we find a similar result, but with the
roles of c3 and c4 interchanged,

Q(n|m)[k]
g (x) = λc1

pc2 (3 − p)c4 (3 + p)c3
Q(n|m)[k]

g (x), (A.25)

and with the extra condition

Q(n|m)[k]
g (p) = −P(n|m)[k]

g (−p). (A.26)

Finally, upon further analyzing our data, a relation emerges between the coefficients
in the (n|m)[k] and the (n −k|m −k)[0] sectors (this is very similar to the relation (5.26)
which we have found for the nonperturbative Painlevé II coefficients in the main body
of the text). We find

P(n|m)[k]
g = 1

k!
(
λ (n − m)

6

)k

P(n−k|m−k)[0]
g+k . (A.27)

For completeness, let us be fully specific on a few of the polynomials P
(n|m)[k]
g , which

we have explicitly computed. These polynomials take the form c
∑

ai pi , where p is
their variable and c and ai their coefficients. We list these coefficients in the Tables 4, 5
and 6 that follow.

B. Perturbative Free Energy in the Quartic Matrix Model

In the main text we have discussed how the Euler–Maclaurin formula (suitably adapted
to the period-two case) provides for a recipe in order to extract the genus g perturbative
free energies, F (0|0)

g , out of the recursion coefficients in the orthogonal polynomial
framework. However, it is important to notice that this method is computationally very
time consuming (even more so that in the one-cut case addressed in [15]) and thus ends
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Table 5. Prefactor c and coefficients of the polynomials P
(3|1)[0]
g (left) and P

(3|1)[1]
g (right)

g 0 1 2
c − 1

4
1
8 − 3

128

p0 297 528,525 2,176,342,749

p1 54 69,255 368,793,810

p2 −27 −118,584 −766,103,913

p3 −4 −12,744 −118,696,752

p4 7,533 96,370,155

p5 549 13,149,378

p6 −94 −4,972,095

p7 −549,324

p8 8,1696

p9 5,288

g −1 0 1
c − 1

6
1
8 − 3

64

p0 1 369 442,341

p1 36 65,448

p2 −39 −102,330

p3 −2 −12,924

p4 6,669

p5 636

p6 −80

Table 6. Prefactor c and coefficients of the polynomials P
(4|1)[0]
g (left) and P

(4|1)[1]
g (right)

g 0 1 2
c − 3

16
3

128 − 9
2048

p0 351 2,998,377 14,430,217,473

p1 54 451,980 2,674,565,406

p2 −33 −654,156 −4,961,854,665

p3 −4 −82,620 −841,785,048

p4 39,393 605,366,703

p5 3,600 90,717,246

p6 −382 −29,788,263

p7 −3,633,804

p8 442,368

p9 30,856

g −1 0 1
c − 1

8
3

64 − 9
1024

p0 1 1,269 3,852,765

p1 126 593,892

p2 −135 −876,582

p3 −8 −115,236

p4 55,341

p5 5,544

p6 −572

up providing for less data in the resurgence tests than directly using the coefficients
P(0|0)

g or Q(0|0)
g . Nonetheless, we explicitly need to know these coefficients as they are

used to determine the Stokes coefficient out of the large-order sequence (4.42). In here,
we shall explicitly list a few of these results for the F (0|0)

g (as usual, written in terms of
the variable p). We find

F (0|0)
0 =

(
9 − p2

)2
576λ2 log

(
1296

λ4

)
, (B.1)

F (0|0)
1 = 1

4
log

(
3 + p

2p

)
, (B.2)

F (0|0)
2 = λ2

320 p6
(
9 − p2

)2
×
(

787, 320 − 174, 960p − 215, 055p2 + 43, 740p3

+18, 630p4 − 3, 780p5 − 471p6
)
, (B.3)
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F (0|0)
3 = λ4

1, 792 p12
(
9 − p2

)4
×
(

1, 214, 950, 653, 504 − 234, 633, 327, 264p − 653, 277, 037, 896p2

+119, 905, 844, 184p3 + 141, 553, 030, 437p4 − 24, 374, 010, 024p5

−15, 592, 951, 332p6 + 2, 467, 933, 272p7 + 895, 852, 062p8

−125, 778, 744p9 − 23, 861, 628p10 + 2, 857, 680p11 + 181, 989p12
)
.

(B.4)

As the genus increases, the expressions become exponentially longer and we shall not
show any more explicit formulae. However, our results do indicate a clear pattern for
the perturbative genus g free energies: for genus g ≥ 2 they have the form

F (0|0)
g (λ, p) = λ2(g−1)

p6(g−1)
(
9 − p2

)2(g−1)
Fg(p), (B.5)

where Fg(p) is a polynomial in p of degree 6(g − 1). Finally, as we have discussed in
Sect. 5.3, applying the double-scaling limit to these results, and taking two derivatives,
yields a precise match with (the square of) the perturbative data arising within the
Painlevé II equation.

C. The Painlevé II Equation: Structural Data

In this Appendix we present some explicit results concerning the two-parameter
transseries solution to the Painlevé II equation. Let us recall that in Sect. 5.1 we have
solved this equation, (5.8), by introducing the ansatz

u (w, σ1, σ2) =
+∞∑
n=0

+∞∑
m=0

σ n
1 σ

m
2 e−(n−m)A/w2

�(n|m)(w), (C.1)

with

�(n|m)(w) 

min(n,m)∑

k=0

logk w ·
+∞∑
g=0

u(n|m)[k]
g wg. (C.2)

For shortness we introduce

�
[k]
(n|m)(w) 


+∞∑
g=0

u(n|m)[k]
g wg. (C.3)

As we discussed in the main text, this ansatz turns the original differential equation
into a recursive equation for the coefficients u(n|m)[k]

g . In Table 7 we show the maximum
order inw to which we have calculated these coefficients. We have only listed the n ≥ m
cases, but we shall see below how the (m|n) and (n|m) sectors are trivially related. We
shall also see that there is a relation between the [k]th and the [0]th logarithmic sectors.
In the following we will reproduce a few examples concerning all this data.
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Table 7. Maximum order in w for which we have calculated u(n|m)[k]
g

m n

0 1 2 3 4

0 1,000 1,000 1,000 500 500

1 1,000 100 100 100

2 100 100 100

3 100 100

4 100

The first few (n|0) sectors we found are:

�
[0]
(0|0) = 1 − 1

16
w4 − 73

512
w8 − 10, 657

8, 192
w12 − 13, 912, 277

524, 288
w16 − · · · , (C.4)

�
[0]
(1|0) = w − 17

96
w3 +

1, 513

18, 432
w5 − 850, 193

5, 308, 416
w7 +

407, 117, 521

2, 038, 431, 744
w9 − · · · ,

(C.5)

�
[0]
(2|0) = 1

2
w2 − 41

96
w4 +

5, 461

9, 216
w6 − 1, 734, 407

1, 327, 104
w8 +

925, 779, 217

254, 803, 968
w10 − · · · .

(C.6)

The lowest �[0]
(n|1) are

�
[0]
(1|1) = −3w2 − 291

128
w6 − 447, 441

32, 768
w10 − 886, 660, 431

4, 194, 304
w14 − · · · , (C.7)

�
[0]
(2|1) = w3 − 115

48
w5 +

30, 931

18, 432
w7 − 4, 879, 063

663, 552
w9 + · · · . (C.8)

The first time we encounter logarithmic terms is for n = 2,m = 1, where we have

�
[1]
(2|1) = −8w +

17

12
w4 − 1, 513

2, 304
w6 +

850, 193

663, 552
w8 + · · · . (C.9)

From the full list of data we computed, one finds a relation between the coefficients in
sectors (n|m)[k] (logarithmic) and (n − k|m − k)[0] (non-logarithmic), which is the
following

u(n|m)[k]
g = 1

k!
(
8 (m − n)

)k
u(n−k|m−k)[0]

g . (C.10)

Finally, the sectors with n < m are very closely related to the ones with n > m as24

u(m|n)[k]
g =

∣∣∣u(n|m)[k]
g

∣∣∣ , for n > m. (C.11)

As a final note, we add that all our off-criticality transseries results, i.e., the results for
the two-cut quartic matrix model partially presented in Appendix A, match the present
transseries solution of Painlevé II, when in the double-scaling limit. A Mathematica
notebook with the complete explicit results we have obtained is available upon request.

24 Similarly to what was found in [15] for the Painlevé I equation, we may suspect that this is just an
“apparent” relation, only to be falsified at some high n,m and g (in [15] one had to go to n = 3,m = 4 and
genus g = 11 to falsify it). However, all the data we have produced is consistent with this relation.
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