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Abstract: We study the critical behavior of the ferromagnetic Ising model on random
trees as well as so-called locally tree-like random graphs. We pay special attention to
trees and graphs with a power-law offspring or degree distribution whose tail behavior
is characterized by its power-law exponent τ > 2. We show that the critical inverse
temperature of the Ising model equals the hyperbolic arctangent of the reciprocal of the
mean offspring or mean forward degree distribution. In particular, the critical inverse
temperature equals zero when τ ∈ (2, 3] where this mean equals infinity.

We further study the critical exponents δ,β and γ , describing how the (root) magne-
tization behaves close to criticality. We rigorously identify these critical exponents and
show that they take the values as predicted by Dorogovstev et al. (Phys Rev E 66:016104,
2002) and Leone et al. (Eur Phys J B 28:191–197, 2002). These values depend on the
power-law exponent τ , taking the same values as the mean-field Curie-Weiss model
(Exactly solved models in statistical mechanics, Academic Press, London, 1982) for
τ > 5, but different values for τ ∈ (3, 5).

1. Introduction

In the past decades complex networks and their behavior have attracted much attention.
In the real world many of such networks can be found, for instance as social, information,
technological and biological networks. An interesting property that many of them share
is that they are scale free [31]. This means that their degree sequences obey a power law,
i.e., the fraction of nodes that have k neighbors is proportional to k−τ for some τ > 1.
We therefore use power-law random graphs as a simple model for real-world networks.
Examples of how to generate such random graphs can, e.g., be found in [8].

Not only the structure of these networks is interesting, also the behavior of processes
living on these networks is a fascinating subject. Processes one can think of are opinion
formation, the spread of information and the spread of viruses. An extensive overview
of complex networks and processes on them is given by Newman in [31]. It is especially
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interesting if these processes undergo a so-called phase transition, i.e., a minor change
in the circumstances suddenly results in completely different behavior (see [10] for a
mathematical survey on Gibbs measures and phase transitions on sparse random graphs).

Physicists have studied the behavior near phase transitions, the critical behavior,
on complex networks for many different models, see [17] for an overview. Many of
these results have not been rigorously proved. One of the few models for which rigorous
results have been obtained is the contact process [9], where the predictions of physicists,
in fact, turned out not to be correct. A mathematical treatment of other models is therefore
necessary.

We focus on the Ising model, a classical model for the study of phase transitions [32–
34]. In this model a spin value that can be either +1 or −1 is assigned to every vertex.
These spins influence each other with ferromagnetic interactions, i.e., neighboring spins
prefer to be aligned. The strength of these interactions depends on the temperature.
The first rigorous study of the Ising model on a random graph was performed by De
Sanctis and Guerra in [35], where the high and zero temperature regime of the Ising
model on the Erdős-Rényi random graph were analyzed. Later, in [11], Dembo and
Montanari analyzed the Ising model for any temperature on random graphs with a finite-
variance degree distribution that converge locally to a Galton-Watson tree. In [15], we
generalized these results to the case where the degree distribution has strongly finite
mean, but possibly infinite variance, i.e., the degree distribution obeys a power-law with
exponent τ > 2. In [13], Dembo, Montanari and Sun generalize this further to more
general locally tree-like graphs. An analysis of the critical behavior, however, was still
lacking.

In this article, we rigorously study the critical behavior of the Ising model on power-
law random graphs by computing the critical temperature of the model and the critical
exponents describing the scaling of two thermodynamic quantities (the magnetization
and the susceptibility) around the critical point. More precisely, we compute the exponent
δ that describes the behavior of the magnetization at the critical temperature as the
external field vanishes, the exponent β that describes the behavior of the spontaneous
magnetization as the temperature increases to the critical temperature and the exponent γ
that describes the behavior of the susceptibility as the temperature decreases to the critical
temperature. We also provide a heuristic lower bound for the exponent γ ′ describing the
divergence of the susceptibility as the critical temperature is approached from below.
Predictions for the values of these exponents were given by Dorogovtsev et al. in [16]
and independently by Leone et al. in [26] and we prove that these values are indeed
correct. These exponents depend on the power-law exponent τ . We prove that the critical
exponents δ,β and γ take the same values as the mean-field Curie-Weiss model for
τ > 5, and hence also for the Erdős-Rényi random graph, but are different for τ ∈ (3, 5).
In [16,26] also the case τ ∈ (2, 3) is studied for which the critical temperature is
infinite. Hence, the critical behavior should be interpreted as the temperature going to
infinity, which is a different problem from approaching a finite critical temperature and
is therefore beyond the scope of this article.

Our proofs always start by relating the magnetization of the Ising model on the random
graph and various of its derivatives to the root magnetization of a rooted random tree,
the so-called unimodular Galton-Watson tree, see [5] for a detailed discussion of local
convergence of random graphs to unimodular trees. After this, we identify the critical
exponents related to the root magnetization on the rooted random tree. As a result, all our
results also apply to this setting, where only in the case of the regular tree, the mean-field
critical exponents have been identified [2], and which we extend to general offspring
distributions.
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2. Model Definitions and Results

2.1. Ising model on finite graphs. We start by defining Ising models on finite graphs.
Consider a random graph sequence (Gn)n≥1. Here Gn = (Vn, En), with vertex set
Vn = [n] ≡ {1, . . . , n} and with a random edge set En . To each vertex i ∈ [n] an Ising
spin σi = ±1 is assigned. A configuration of spins is denoted by σ = (σi )i∈[n]. The
Ising model on Gn is then defined by the Boltzmann-Gibbs measure

μn(σ ) = 1

Zn(β, B)
exp

⎧
⎨

⎩
β

∑

(i, j)∈En

σiσ j +
∑

i∈[n]
Biσi

⎫
⎬

⎭
. (2.1)

Here, β ≥ 0 is the inverse temperature and B the vector of external magnetic fields
B = (Bi )i∈[n] ∈ R

n . For a uniform external field we write B instead of B, i.e., Bi = B
for all i ∈ [n]. The partition function Zn(β, B) is the normalization constant in (2.1),
i.e.,

Zn(β, B) =
∑

σ∈{−1,+1}n
exp

⎧
⎨

⎩
β

∑

(i, j)∈En

σiσ j +
∑

i∈[n]
Biσi

⎫
⎬

⎭
. (2.2)

Note that the inverse temperature β does not multiply the external field. This turns out to
be technically convenient and does not change the results, because we are only looking
at systems at equilibrium, and hence this would just be a reparametrization.

We let
〈 · 〉

μn
denote the expectation with respect to the Ising measure μn , i.e., for

every bounded function f : {−1, +1}n → R, we write
〈
f (σ )

〉

μn
=

∑

σ∈{−1,+1}n
f (σ )μn(σ ). (2.3)

2.2. Thermodynamics. We study the critical behavior of this Ising model by analyzing
the following two thermodynamic quantities:

Definition 2.1 (Thermodynamic quantities). For a graph sequence (Gn)n≥1,

(a) let Mn(β, B) = 1
n

∑
i∈[n]〈σi 〉μn be the magnetization per vertex. Then, the thermo-

dynamic limit of the magnetization per vertex equals

M(β, B) ≡ lim
n→∞Mn(β, B). (2.4)

(b) letχn(β, B) = 1
n

∑
i, j∈[n]

(〈σiσ j 〉μn − 〈σi 〉μn 〈σ j 〉μn

)
denote the susceptibility. Then,

the thermodynamic limit of the susceptibility equals

χ(β, B) ≡ lim
n→∞χn(β, B). (2.5)

The existence of the above limits for n→∞ has been proved in [15, Theorem 1.5],
using the existence of the pressure per particle proved in [11] and [15, Theorem 1.4] and
using monotonicity properties. We now define the critical temperature. We write f (0+)

for limx↘0 f (x).

Definition 2.2 (Critical inverse temperature). The critical inverse temperature equals

βc ≡ inf{β : M(β, 0+) > 0}. (2.6)
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By the GKS inequalities [24], M(β, B) is non-negative and non-decreasing in B
for B ≥ 0 so that the limit M(β, 0+) indeed exists. Note that βc can only exist in
the thermodynamic limit, but not for the magnetization of a finite graph, since always
Mn(β, 0+) = 0. The critical behavior can now be expressed in terms of the following
critical exponents. We write f (x) 
 g(x) if the ratio f (x)/g(x) is bounded away from
0 and infinity for the specified limit.

Definition 2.3 (Critical exponents). The critical exponents β, δ, γ, γ ′ are defined by:

M(β, 0+) 
 (β − βc)
β , for β ↘ βc; (2.7)

M(βc, B) 
 B1/δ, for B ↘ 0; (2.8)

χ(β, 0+) 
 (βc − β)−γ , for β ↗ βc; (2.9)

χ(β, 0+) 
 (β − βc)
−γ ′

, for β ↘ βc. (2.10)

Remark. The definitions above are meaningful since for β > βc one has M(β, 0+) �=
M(β, 0) = 0, i.e., the magnetization of the low-temperature phase is discontinuous in
B = 0.

We emphasize that there is a difference between the symbol β for the inverse tem-
perature and the bold symbol β for the critical exponent in (2.7). Both notations are
standard in the literature, so we decided to follow both of them and distinguish them by
the font style.

Also note that these are stronger definitions than usual. E.g., normally the critical
exponent β is defined as that value such that

M(β, 0+) = (β − βc)
β+o(1), (2.11)

where o(1) is a function tending to zero for β ↘ βc.

2.3. Locally tree-like random graphs. We study the critical behavior of the Ising model
on graph sequences (Gn)n≥1 that are assumed to be locally like a homogeneous random
tree [3,10], to have a power-law degree distribution and to be uniformly sparse. We give
the formal definitions of these assumptions below, but we first introduce some notation.

Let the random variable D have distribution P = (pk)k≥0, i.e., P[D = k] = pk, for
k = 0, 1, 2, . . .. We define its forward degree distribution by

ρk = (k + 1)pk+1

E[D] , (2.12)

where we assume that E[D] < ∞. Let K be a random variable with P[K = k] = ρk
and write ν = E[K ]. The random rooted tree T (D, K , �) is a branching process with
� generations, where the root offspring is distributed as D and the vertices in each next
generation have offsprings that are independent of the root offspring and are independent
and identically distributed (i.i.d.) copies of the random variable K . We write T (K , �)

when the offspring at the root has the same distribution as K .
We write that an event A holds almost surely (a.s.) if P[A] = 1. If ν ≤ 1 the branching

processes T (D, K , �) and T (K , �) die out a.s. and the random graph sequence (Gn)n≥1
does not have a giant component a.s. [23]. Therefore, there are no phase transitions when
ν ≤ 1 and thus we assume that ν > 1 throughout the rest of the paper.

The ball of radius r around vertex i , Bi (r), is defined as the graph induced by the
vertices at graph distance at most r from vertex i . For two rooted trees T1 and T2, we
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write that T1 � T2, when there exists a bijective map from the vertices of T1 to those of
T2 that preserves the adjacency relations.

Definition 2.4 (Local convergence to homogeneous random trees). Let Pn denote the
law induced on the ball Bi (t) in Gn centered at a uniformly chosen vertex i ∈ [n].
We say that the graph sequence (Gn)n≥1 is locally tree-like with asymptotic degree
distribution P when, for any rooted tree T with t generations

lim
n→∞Pn[Bi (t) � T ] = P[T (D, K , t) � T ]. (2.13)

Note that this implies in particular that the degree of a uniformly chosen vertex of
the graph has an asymptotic degree distributed as D.

Definition 2.5 (Uniform sparsity). We say that the graph sequence (Gn)n≥1 is uniformly
sparse when, a.s.,

lim
�→∞ lim sup

n→∞
1

n

∑

i∈[n]
Di1{Di≥�} = 0, (2.14)

where Di is the degree of vertex i and 1A denotes the indicator of the event A.

Note that uniform sparsity follows if 1
n

∑
i∈[n] Di → E[D] a.s., by the weak conver-

gence of the degree of a uniform vertex.
We pay special attention to cases where the degree distribution satisfies a power law,

as defined below. For power-law degree distributions, not all moments of the degrees
are finite, which has severe consequences for the critical behavior of the Ising model.

Definition 2.6 (Power laws). We say that the distribution P = (pk)k≥0 obeys a power
law with exponent τ when there exist constants C p > cp > 0 such that, for all k =
1, 2, . . .,

cpk−(τ−1) ≤
∑

�≥k

p� ≤ C pk−(τ−1). (2.15)

2.4. The random Bethe tree. We next extend our definitions to the random tree
T (D, K ,∞), which is an infinite random tree. One has to be very careful in defin-
ing a Gibbs measure on this tree, since trees suffer from the fact that the boundaries
of intrinsic (i.e., graph distance) balls in them have a size that is comparable to their
volume. We can adapt the construction of the Ising model on the regular tree in [2] to
this setting, as we now explain. For β ≥ 0, B ∈ R, let μ

+/ f
t,β,B be the Ising model on

T (D, K , t) with + respectively free boundary conditions. For a function f that only
depends on T (D, K , m) with m ≤ t , we let

〈 f 〉
μ

+/ f
β,B
= lim

t→∞〈 f 〉μ+/ f
t,β,B

. (2.16)

These limits indeed exist and are equal for B > 0 [11,15]. This defines a unique infinite
volume Gibbs measure μ

+/ f
β,B on the random Bethe tree. Denoting by φ the root of the

unimodular Galton-Watson random tree, the quantity M(β, B) is defined as the expected
root magnetization for the infinite volume Gibbs measure on the random Bethe tree:

M(β, B) = E

[

〈σφ〉μ+/ f
β,B

]

. (2.17)
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Analogously, the susceptibility of the random Bethe tree is defined as the sum of the
expected edge correlations, i.e.,

χ(β, B) = E

⎡

⎣
∑

j∈T (D,K ,∞)

(
〈σφσ j 〉μ+/ f

β,B
− 〈σφ〉μ+/ f

β,B
〈σ j 〉μ+/ f

β,B

)
⎤

⎦ . (2.18)

Our results also apply to this setting under the assumption that the degree of the root
obeys a power law in (2.15) or that E[K 3] < ∞. The critical value βc for the root
magnetization is again defined by (2.6).

2.5. Main results. We now present our main results which describe the critical behavior
of the Ising model on power-law random graphs and random trees with power-law
offspring distribution. We first give an expression for the critical temperature:

Theorem 2.7 (Critical temperature). Assume that the random graph sequence (Gn)n≥1
is locally tree-like with asymptotic degree distribution P and is uniformly sparse. Then,
a.s., the critical temperature βc of (Gn)n≥1 and of the random Bethe tree T (D, K ,∞)

equals

βc = atanh(1/ν). (2.19)

Note that if ν ↘ 1 then βc →∞which is to be expected as there is no phase transition
for ν ≤ 1 at any positive temperature. The other extreme is when ν = ∞, which is the
case, e.g., if the degree distribution obeys a power law with exponent τ ∈ (2, 3]. In
that case βc = 0 and hence the spontaneous magnetization is positive for any finite
temperature.

Near the critical temperature the behavior of the Ising model can be described by
critical exponents. The values of these critical exponents for different values of τ are
stated in the following theorem:

Theorem 2.8 (Critical exponents). Assume one of the following condition is satisfied:

(a) a random graph sequence (Gn)n≥1 is given. The sequence is locally tree-like with
asymptotic degree distribution P that obeys E[K 3] < ∞ or a power law with
exponent τ ∈ (3, 5], and it is uniformly sparse. Let M(β, B) and χ(β, B) be as
defined in (2.4) and (2.5);

(b) a random Bethe tree that obeys E[K 3] <∞ or a power law with exponent τ ∈ (3, 5]
is given. Let M(β, B) and χ(β, B) be as defined in (2.17) and (2.18) .

Then, the critical exponents β, δ and γ defined in Definition 2.3 for the case (a) and the
analogous exponents for the case (b) exist and satisfy

τ ∈ (3, 5) E[K 3] <∞
β 1/(τ − 3) 1/2
δ τ − 2 3
γ 1 1

The exponent γ ′ defined in Definition 2.3 for the case (a), as well as the analogous
exponent for the case (b), satisfies γ ′ ≥ 1.
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For the boundary case τ = 5 there are logarithmic corrections for β = 1/2 and
δ = 3, but not for γ = 1 and for the lower bound γ ′ ≥ 1. Indeed, (2.9) holds with
γ = 1 and the lower bound in (2.10) holds with γ ′ = 1, while

M(β, 0+) 

( β − βc

log 1/(β − βc)

)1/2
for β ↘ βc,

M(βc, B) 

( B

log(1/B)

)1/3
for B ↘ 0.

(2.20)

Our results show that χ(β, 0+) ≥ c(β − βc)
−1 for some constant c > 0, which,

if the critical exponent γ ′ exists, then it must satisfy γ ′ ≥ 1. See Proposition 6.2.
Unfortunately, we cannot prove that the critical exponent γ ′ exists, see the discussion
in the next section for more details on this issue.

From the previous theorem we can also derive the joint scaling of the magnetization
as (β, B)↘ (βc, 0):

Corollary 2.9 (Joint scaling in B and (β − βc)). Under the conditions of Theorem 2.8
with τ �= 5,

M(β, B) = 

(
(β − βc)

β + B1/δ
)
, (2.21)

where f (β, B) = 
(g(β, B)) means that there exist constants c1, C1 > 0 such that
c1g(β, B) ≤ f (β, B) ≤ C1g(β, B) for all B ∈ (0, ε) and β ∈ (βc, βc + ε) with ε small
enough.

For τ = 5,

M(β, B) = 

(( β − βc

log 1/(β − βc)

)1/2
+
( B

log(1/B)

)1/3)
. (2.22)

2.6. Discussion and open problems. In this section, we discuss relations to the literature,
possible extensions and open problems.

The Ising model on random trees and random graphs. A key idea to analyze the
Ising model on random graphs is to use the fact that expectations of local quantities
coincide with the corresponding values for the Ising model on suitable random trees
[11]. Statistical mechanics models on deterministic trees have been studied extensively
in the literature (see for instance [2,27] and its relation to “broadcasting on trees” in
[19,30]). The analysis on random trees is more recent and has been triggered by the
study of models on random graphs. Extensions beyond the Ising model, e.g., the Potts
model, pose new challenges [12].

Relation to the physics literature. Theorem 2.8 confirms the predictions in [16,26]. For
τ ≤ 3, one has ν = ∞ and hence βc = 0 by Theorem 2.7, so that the critical behavior
coincides with the infinite temperature limit. Since in this case there is no phase transition
at finite temperature, we do not study the critical behavior here. For τ = 5, in [16], also
the logarithmic correction for β = 1/2 in (2.20) is computed, but not that of δ = 3.

The critical exponents γ ′ and other critical exponents. Theorem 2.8 only gives a
lower bound on the critical exponent γ ′. It is predicted that γ ′ = 1 for all τ > 3, while
there are also predictions for other critical exponents. For instance the critical exponent
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α′ for the specific heat in the low-temperature phase satisfies α′ = 0 when E[K 3] <∞
and α′ = (τ −5)/(τ −3) in the power-law case with τ ∈ (3, 5) (see [16,26]). We prove
the lower bound γ ′ ≥ 1 in Sect. 6.2 below, and we also present a heuristic argument
that γ ′ ≤ 1 holds. The critical exponent α′ for the specific heat is beyond our current
methods, partly since we are not able to relate the specific heat on a random graph to
that on the random Bethe tree.

Points of non-analyticity of the free energy. In Definition 2.2 we have defined the
critical temperature as the highest temperature where the spontaneous magnetization is
non-zero. This immediately implies that the free energy [proportional to the logarithm of
the partition function defined in (2.2)] is non-analytic for B = 0 in the low-temperature
phase. Indeed for β > βc, M(β, 0+) > M(β, 0−) = −M(β, 0+), so that the first
derivative of free energy with respect to the external field B has a jump crossing the line
B = 0. The question arises if the phase diagram has more points of non-analyticity. The
Lee-Yang Theorem [25] tells us that the free energy is an analytic function of B �= 0.
For the analyticity of the free energy as a function of the temperature we are not aware
of general results that allow us to locate the zeros of the partition function (so-called
“Fisher zeros” in the complex temperature plane). Although there are many studies on
ferromagnets (see e.g., [6,7]), the problem is largely open and model-dependent. For
Ising and Potts models, a non-rigorous result [14] suggests that Fisher zeros on random
trees and graphs should coincide.

Light tails. The case E[K 3] < ∞ includes all power-law degree distributions with
τ > 5, but also cases where P does not obey a power law. This means, e.g., that
Theorem 2.8 also identifies the critical exponents for the Erdős-Rényi random graph
where the degrees have an asymptotic Poisson distribution.

Inclusion of slowly varying functions. In Definition 2.6, we have assumed that the as-
ymptotic degree distribution obeys a perfect power law. Alternatively, one could assume
that

∑
�≥k p� 
 L(k)k−(τ−1) for some function k �→ L(k) that is slowly varying at

k = ∞. For τ > 5 and any slowly varying function, we still have E[K 3] < ∞, so the
results do not change and Theorem 2.8 remains to hold. For τ ∈ (3, 5], we expect slowly
varying corrections to the critical behavior in Theorem 2.8. For example, E[K 3] < ∞
for τ = 5 and L(k) = (log k)−2, so that the logarithmic corrections present for τ = 5
disappear.

Beyond the root magnetization for the random Bethe tree. We have identified the
critical value and some critical exponents for the root magnetization on the random Bethe
tree. The random Bethe tree is a so-called unimodular graph, which is a rooted graph
that often arises as the local weak limit of a sequence of graphs (in this case, the random
graphs (Gn)n≥1). See [1,4] for more background on unimodular graphs and trees, in
particular, T (D, K ,∞) is the so-called unimodular Galton-Watson tree as proved by
Lyons, Pemantle and Peres in [29]. One would expect that the magnetization of the
graph, which can be defined by

MT (β, B) = lim
t→∞

1

|Bφ(t)|
∑

v∈Bφ(t)

σv, (2.23)

where Bφ(t) is the graph induced by vertices at graph distance at most t from the root φ

and |Bφ(t)| is the number of elements in it, also converges a.s. to a limit. However, we
expect that MT (β, B) �= M(β, B) due to the special role of the root φ, which vanishes
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in the above limit. Thus one would expect to believe that MT (β, B) equals the root
magnetization of the tree where each vertex has degree distribution K + 1. Our results
show that also MT (β, B) has the same critical temperature and critical exponents as
M(β, B).

Relation to the Curie-Weiss model. Our results show that locally tree-like random
graphs with finite fourth moment of the degree distribution are in the same universality
class as the mean-field model on the complete graph, which is the Curie-Weiss model.
We further believe that the Curie-Weiss model should enter as the limit of r → ∞ for
the r -regular random graph, in the sense that these have the same critical exponents (as
we already know), as well as that all constants arising in asymptotics match up nicely
(cf. the discussion at the end of Sect. 6.2). Further, our results show that for τ ∈ (3, 5],
the Ising model has different critical exponents than the ones for the Curie-Weiss model,
so these constitute a set of different universality classes.

Organization of the article. The remainder of this article is organized as follows.
We start with some preliminary computations in Sect. 3. In Sect. 4 we prove that the
critical temperature is as stated in Theorem 2.7. The proof that the exponents stated in
Theorem 2.8 are indeed the correct values of β and δ is given in Sect. 5.3. The value of
γ is identified in Sect. 6, where also the lower bound on γ ′ is proved and a heuristic is
presented for the matching upper bound.

3. Preliminaries

An important role in our analysis is played by the distributional recursion

h(t+1) d= B +
Kt∑

i=1

ξ(h(t)
i ), (3.1)

where

ξ(h) = atanh(θ tanh(h)), (3.2)

with θ = tanh(β), and where h(0) ≡ B, (Kt )t≥1, are i.i.d. with distribution ρ and
(h(t)

i )i≥1 are i.i.d. copies of h(t) independent of Kt . In [15, Proposition 1.7], we have
proved that this recursion has a unique distributional fixed point h that is supported on
[0,∞) for all β ≥ 0 and B > 0. Whenever we write h or hi this is a random variable
distributed as the fixed point of (3.1). Since h is a fixed point, we can interchange

h
d= B +

∑K
i=1 ξ(hi ) in expectations and we often do this. We also often use the facts

that h ≥ 0 for B ≥ 0 (with equality iff B = 0) and 0 ≤ ξ(h) ≤ β for h ≥ 0.
This fixed point h yields the random field acting on the root of the random Bethe tree

T (D, K ,∞) due to its offsprings. In particular we can use the fixed point h to give an
explicit expression for the magnetization:

Proposition 3.1 (Magnetization). Assume that the random graph sequence (Gn)n≥1 is
locally tree-like with asymptotic degree distribution P that obeys E[K ] <∞ or a power
law with exponent τ > 2 and is uniformly sparse. Then, a.s., for all β ≥ 0 and B > 0,
the thermodynamic limit of the magnetization per vertex exists and is given by

M(β, B) = E

[
tanh

(
B +

D∑

i=1

ξ(hi )
)]

, (3.3)
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where

(i) D has distribution P;
(ii) (hi )i≥1 are i.i.d. copies of the fixed point of the distributional recursion (3.1);

(iii) D and (hi )i≥1 are independent.

The same holds on the random Bethe tree T (D, K ,∞).

This proposition was proved in [15, Corollary 1.6(a)] by differentiating the expression
for the thermodynamic limit of the pressure per particle that was first obtained. Here we
present a more intuitive proof:

Proof of Proposition 3.1. Let φ be a vertex picked uniformly at random from [n] and
En be the corresponding expectation. Then,

Mn(β, B) = 1

n

n∑

i=1

〈σi 〉μn = En[〈σφ〉μn ]. (3.4)

Denote by 〈·〉�,+/ f
μn the expectations with respect to the Ising measure with +/free bound-

ary conditions on vertices at graph distance � from φ. Note that 〈σφ〉�,+/ f
μn only depends

on the spins of vertices in Bφ(�). By the GKS inequality [24],

〈σφ〉�, f
μn
≤ 〈σφ〉μn ≤ 〈σφ〉�,+μn

. (3.5)

Taking the limit n → ∞, the ball Bφ(�) has the same distribution as the random tree
T (D, K , �), because of the locally tree-like nature of the graph sequence. With 〈·〉�,+/ f

denoting the expectations with respect to the Ising measure with +/free boundary con-
ditions on T (D, K , �), this means that

lim
n→∞〈σφ〉�,+/ f

μn
= 〈σφ〉�,+/ f . (3.6)

Conditioned on the tree T , we can prune the tree, see [11, Lemma 4.1], to obtain that

〈σφ〉�, f = tanh
(

B +
D∑

i=1

ξ(h(�−1)
i )

)
. (3.7)

Similarly,

〈σφ〉�,+ = tanh
(

B +
D∑

i=1

ξ(h
′(�−1)
i )

)
, (3.8)

where h
′(t+1)
i also satisfies (3.1), but has initial value h

′(0) = ∞. Since this recursion has
a unique fixed point [15, Proposition 1.7], we prove the proposition by taking the limit
�→∞ and taking the expectation over the tree T (D, K ,∞). ��

To study the critical behavior we investigate the function ξ(x) = atanh(θ tanh x) and
prove two important bounds that play a crucial role throughout this paper:

Lemma 3.2 (Properties of x �→ ξ(x)). For all x, β ≥ 0,

θx − θ

3(1− θ2)
x3 ≤ ξ(x) ≤ θx . (3.9)

The upper bound holds with strict inequality if x, β > 0.



Ising Critical Exponents on Random Trees and Graphs 365

Proof. By Taylor’s theorem,

ξ(x) = ξ(0) + ξ ′(0)x + ξ ′′(ζ )
x2

2
, (3.10)

for some ζ ∈ (0, x). It is easily verified that ξ(0) = 0,

ξ ′(0) = θ(1− tanh2 x)

1− θ2 tanh2 x

∣
∣
∣
∣
x=0
= θ, (3.11)

and

ξ ′′(ζ ) = −2θ(1− θ2)(tanh ζ )(1− tanh2 ζ )

(1− θ2 tanh2 ζ )2
≤ 0, (3.12)

thus proving the upper bound. If x, β > 0 then also ζ > 0 and hence the above holds
with strict inequality.

For the lower bound, note that ξ ′′(0) = 0 and

ξ ′′′(ζ ) = −2θ(1− θ2)(1− tanh2 ζ )

(1− θ2 tanh2 ζ )3

(
1− 3(1− θ2) tanh2 ζ − θ2 tanh4 ζ

)

≥ −2θ(1− θ2)(1− tanh2 ζ )

(1− θ2)2(1− tanh2 ζ )
= − 2θ

1− θ2 . (3.13)

Thus, for some ζ ∈ (0, x),

ξ(x) = ξ(0) + ξ ′(0)x + ξ ′′(0)
x2

2
+ ξ ′′′(ζ )

x3

3! ≥ θx − 2θ

1− θ2

x3

3! . (3.14)

��
We next study tail probabilites of (ρk)k≥0. Here, for a probability distribution (qk)k≥0

on the integers, we write q≥k =∑�≥k q�.

Lemma 3.3 (Tail probabilities of (ρk)k≥0). Assume that (2.15) holds for some τ > 2.
Then, for the size-biased distribution defined in (2.12), there exist 0 < cρ ≤ Cρ such
that, for all k ≥ 1,

cρk−(τ−2) ≤ ρ≥k ≤ Cρk−(τ−2). (3.15)

Proof. The lower bound follows directly from the fact that ρ≥k ≥ (k + 1)p≥k+1/E[D],
and (2.15). For the upper bound, we note that for any probability distribution (qk)k≥0
on the non-negative integers, we have the partial summation identity

∑

k≥0

qk f (k) = f (0) +
∑

�≥1

q≥�[ f (�)− f (�− 1)], (3.16)

provided that either [ f (�)− f (�−1)]q≥� is absolutely summable, or k �→ f (k) is either
non-decreasing or non-increasing. Indeed,

∑

k≥0

qk f (k) = f (0) +
∞∑

k=0

qk[ f (k)− f (0)] = f (0) +
∞∑

k=0

qk

k∑

�=1

[ f (�)− f (�− 1)],

(3.17)
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and the claim follows by interchanging the summation order, which is allowed by
Fubini’s Theorem for non-negative functions (see [21, Section 3.6, Theorem B]) when
k �→ f (k) is non-decreasing, and by Fubini’s Theorem [21, Section 3.6, Theorem C]
when [ f (�) − f (� − 1)]1{0≤�≤k}qk is absolutely summable, which, by non-negativity
of qk , is equivalent to the absolutely summability of [ f (�)− f (�− 1)]q≥�.

We start by proving bounds on ρ≥k . We rewrite

ρ≥k =
∑

�≥k

(� + 1)p�+1

E[D] =
∑

�≥0

f (�)p�+1, (3.18)

where f (�) = (�+1)1{�≥k}/E[D]. By (3.16) with q� = p�+1, for k ≥ 1 so that f (0) = 0,

ρ≥k =
∑

�≥1

[ f (�)− f (�− 1)]p≥�+1 = (k + 1)p≥k+1

E[D] +
1

E[D]
∑

�≥k+1

p≥�+1. (3.19)

From (2.15), it follows that

ρ≥k ≤ C p

E[D] (k + 1)−(τ−2) +
∑

�≥k+1

C p

E[D] (� + 1)−(τ−1), (3.20)

so that there exists a constant Cρ such that

ρ≥k ≤ Cρk−(τ−2). (3.21)

��
When computing the critical exponents for τ ∈ (3, 5], we often split the analysis into

two cases: one where K is small and one where K is large. For this we need bounds on
truncated moments of K which are the content of the next lemma.

Lemma 3.4 (Truncated moments of K ). Assume that (2.15) holds for some τ > 2. Then
there exist constants Ca,τ = Ca,τ (Cρ) > 0 such that, as �→∞,

E
[
K a1{K≤�}

] ≤
{

Ca,τ �
a−(τ−2) when a > τ − 2,

Cτ−2,τ log � when a = τ − 2,
(3.22)

and, when a < τ − 2,

E
[
K a1{K>�}

] ≤ Ca,τ �
a−(τ−2). (3.23)

Finally, when τ = 5, there exists a constant c3,5 = c3,5(cρ) > 0 such that, as �→∞,

E
[
K (K − 1)(K − 2)1{K≤�}

] ≥ c3,5 log �. (3.24)

Proof. We start by bounding the truncated moments of K . We rewrite, using (3.16) and
with f (k) = ka1{k≤�},

E
[
K a1{K≤�}

] =
∞∑

k=0

f (k)ρk =
∞∑

k=1

[ f (k)− f (k − 1)]ρ≥k ≤
���∑

k=1

[ka − (k − 1)a]ρ≥k .

(3.25)
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Using ka − (k − 1)a = a
∫ k

k−1 xa−1dx ≤ aka−1, we arrive at

E
[
K a1{K≤�}

] ≤ aCρ

���∑

k=1

ka−1k−(τ−2) ≤ aCρ

���+1∑

k=1

ka−(τ−1). (3.26)

Note that k �→ ka−(τ−1) is either increasing or decreasing. Hence,

���+1∑

k=1

ka−(τ−1) ≤
∫ �+2

1
ka−(τ−1)dk. (3.27)

For a > τ − 2,
∫ �+2

1
ka−(τ−1)dk ≤ 2

a + 2− τ
�a−(τ−2), (3.28)

whereas for a = τ − 2,
∫ �+2

1
ka−(τ−1)dk ≤ 2 log �. (3.29)

Similarly, for a < τ − 2,

E
[
K a1{K>�}

] = ���aρ≥� +
∑

k>�

[ka − (k − 1)a]ρ≥k

≤ Cρ���a−(τ−2) + aCρ

∞∑

���+1

ka−1(k + 1)−(τ−2) ≤ Ca,τ �
a−(τ−2).

(3.30)

Finally, we prove (3.24), for which we compute with f (k) = k(k − 1)(k − 2),

E
[
K (K − 1)(K − 2)1{K≤�}

] =
∞∑

k=1

[ f (k)− f (k − 1)]
�∑

l=k

ρl

=
∞∑

k=3

3(k − 1)(k − 2)

�∑

l=k

ρl . (3.31)

We bound this from below by

E
[
K (K − 1)(K − 2)1{K≤�}

] ≥
√

�∑

k=0

3(k − 1)(k − 2)[ρ≥k − ρ≥�]. (3.32)

By Lemma 3.3, for τ = 5, the contribution due to ρ≥� is at most

�3/2ρ≥� ≤ Cρ�−3/2 = o(1), (3.33)

while the contribution due to ρ≥k and using 3(k − 1)(k − 2) ≥ k2 for every k ≥ 4, is at
least

cρ

√
�∑

k=4

k−1 ≥ cρ

∫ √�+1

4

dx

x
= cρ[log (

√
� + 1)− log 4], (3.34)

which proves the claim by chosing the constant c3,5 correctly. ��
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4. Critical Temperature

In this section we compute the critical temperature.

Proof of Theorem 2.7. Let β∗ = atanh(1/ν). We first show that if β < β∗, then

lim
B↘0

M(β, B) = 0, (4.1)

which implies that βc ≥ β∗. Later, we show that if limB↘0 M(β, B) = 0 then β ≤ β∗,
implying that βc ≤ β∗.

Proof of βc ≥ β∗. Suppose that β < β∗. Then, by the fact that tanh x ≤ x and Wald’s
identity,

M(β, B) = E

[

tanh

(

B +
D∑

i=1

ξ(hi )

)]

≤ B + E[D]E[ξ(h)]. (4.2)

We use the upper bound in Lemma 3.2 to get

E[ξ(h)] = E[atanh(θ tanh h)] ≤ θE[h] = θ (B + νE[ξ(h)]) . (4.3)

Further, note that

E[ξ(h)] = E[atanh(θ tanh h)] ≤ β, (4.4)

because tanh h ≤ 1. Applying inequality (4.3) � times to (4.2) and subsequently using
inequality (4.4) once gives

M(β, B) ≤ B + BθE[D]1− (θν)�

1− θν
+ βE[D](θν)�. (4.5)

Hence,

M(β, B) ≤ lim sup
�→∞

(

B + BθE[D]1− (θν)�

1− θν
+ βE[D](θν)�

)

= B

(

1 + θE[D] 1

1− θν

)

, (4.6)

because θ < θ∗ = 1/ν. Therefore,

lim
B↘0

M(β, B) ≤ lim
B↘0

B

(

1 + θE[D] 1

1− θν

)

= 0. (4.7)

This proves the lower bound on βc.

Proof of βc ≤ β∗. We adapt Lyons’ proof in [27] for the critical temperature of determin-
istic trees to the random tree to show that βc ≤ β∗. Assume that limB↘0 M(β, B) = 0.
Note that Proposition 3.1 shows that the magnetization M(β, B) is equal to the expec-
tation over the random tree T (D, K ,∞) of the root magnetization. Hence, if we denote
the root of the tree T (D, K ,∞) by φ, then M(β, B) = E[〈σφ〉]. It follows from our
assumption on M(β, B) that, a.s., limB↘0〈σφ〉 = 0, since the latter limit exists by the
GKS inequalities.
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We therefore condition on the tree T = T (D, K ,∞). Define for v ∈ T

h(v) = 〈σv〉 and h�,+(v) = 〈σv〉�,+, (4.8)

and let |v| denote the graph distance from φ to v. Furthermore, we say that w ← v if
{w, v} is an edge in T and |w| = |v| + 1. By [11, Lemma 4.1], for |v| < �,

h�,+(v) = B +
∑

w←v

ξ(h�,+(w)). (4.9)

Since this recursion has a unique solution by [15, Proposition 1.7] we have h(φ) =
lim�→∞ h�,+(φ). Therefore, if we suppose that limB↘0〈σφ〉 = 0, then also
limB↘0 h(φ) = 0 and then it thus also holds that limB↘0 lim�→∞ h�,+(φ) = 0. Be-
cause of (4.9), we must then have, for all v ∈ T ,

lim
B↘0

lim
�→∞ h�,+(v) = 0. (4.10)

Now, fix 0 < β0 < β and choose � large enough and B small enough such that, for
some ε = ε(β0, β) > 0 that we choose later,

h�,+(v) ≤ ε, (4.11)

for all v ∈ T with |v| = 1. Note that h�,+(v) = ∞ > ε for v ∈ T with |v| = �.
As in [27], we say that � is a cutset if � is a finite subset of T \ {φ} and every path

from φ to infinity intersects � at exactly one vertex v ∈ �. We write v ≤ � if every
infinite path from v intersects � and write σ < � if σ ≤ � and σ /∈ �. Then, since
h�,+(v) ≤ ε for v ∈ T with |v| = 1 and h�,+(v) = ∞ > ε for v ∈ T with |v| = �, there
is a unique cutset ��, such that h�,+(v) ≤ ε for all v ≤ ��, and for all v ∈ �� there is
at least one w← v such that h�,+(w) > ε.

It follows from the lower bound in Lemma 3.2 that, for v < ��,

h�,+(v) = B +
∑

w←v

ξ(h�,+(w)) ≥
∑

w←v

θh�,+(w)− θh�,+(w)3

3(1− θ2)

≥
∑

w←v

θh�,+(w)
(

1− ε2

3(1− θ2)

)
, (4.12)

while, for v ∈ ��,

h�,+(v) = B +
∑

w←v

ξ(h�,+(w)) > ξ(ε). (4.13)

If we now choose ε > 0 such that

θ
(

1− ε2

3(1− θ2)2

)
= θ0, (4.14)

which is possible because β0 < β, then, iterating (4.12) in each direction until �� and
then using (4.13),

h�,+(φ) ≥
∑

v∈��

θ
|v|
0 ξ(ε). (4.15)
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Since ξ(ε) > 0 and limB↘0 lim�→∞ h�,+(φ) = 0,

inf
�

∑

v∈�
θ
|v|
0 = 0. (4.16)

From [28, Proposition 6.4] it follows that θ0 ≤ 1/ν. This holds for all β0 < β, so

β ≤ atanh(1/ν) = β∗. (4.17)

This proves the upper bound on βc, thus concluding the proof. ��
We next show that the phase transition at this critical temperature is continuous:

Lemma 4.1 (Continuous phase transition). Let ((βn, Bn))n≥1 be a sequence with βn and
Bn non-increasing, βn ≥ βc and Bn > 0, and βn ↘ βc and Bn ↘ 0 as n→∞. Then,

lim
n→∞E[ξ(βn, Bn)] = 0. (4.18)

In particular,

lim
B↘0

E[ξ(h(βc, B))] = 0, and lim
β↘βc

E[ξ(h(β, 0+))] = 0. (4.19)

Proof. For all sequences ((βn, Bn))n≥1 satisfying the assumptions stated in the lemma,
E[ξ(βn, Bn)] is non-increasing in n and it is also non-negative so that the limit as n→∞
exists. By the concavity of h �→ ξ(h) and Jensen’s inequality,

0 ≤ c ≡ lim
n→∞E[ξ(βn, Bn)] ≤ lim

n→∞ ξ
(
Bn + νE[ξ(h(βn, Bn))]) = ξ(νc). (4.20)

Since ξ(x) < θcx for x > 0 by Lemma 3.2 and using θc = 1/ν, we obtain

ξ(νc) < θcνc = c, (4.21)

leading to a contradiction when c > 0. ��

5. Critical Exponents: Magnetization

In this section we prove that the critical exponents related to the magnetization, i.e., β
and δ, take the values stated in Theorem 2.8. The analysis involves Taylor expansions
performed up to the right order. By these Taylor expansions, higher moments of ξ(h)

appear, where we remind the reader that ξ(h) = atanh(θ tanh h) and h is the unique
non-negative distributional fixed point of (3.1). Therefore, we first bound these higher
moments of ξ(h) in terms of its first moment in Sect. 5.1.

In Sect. 5.2 we use these bounds to give appropriate bounds on E[ξ(h)]which finally
allow us to compute the critical exponents β and δ in Sect. 5.3.

Throughout Sect. 5 we assume that B is sufficiently close to zero and βc < β <

βc + ε for ε sufficiently small, so that we can apply Lemma 4.1 to make sure E[ξ(h)] is
sufficiently small.

In the following, we write ci , Ci , i ≥ 1 for constants that have the properties: i) they
only depend on β and moments of K (they do not depend on B); ii) they satisfy

0 < lim inf
β↘βc

ci (β) ≤ lim sup
β↘βc

ci (β) <∞, (5.1)
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and the same holds for the Ci . The index i is just a label for the constants. For reader
convenience we try to use the i th label to denote a constant appearing in a bound involving
the i th moment of ξ(h). However this is not always possible and therefore in general
nothing should be sought from the labeling of the constants. What we consistently do
is to use Ci for constants appearing in upper bounds, while ci appears in lower bounds.
Furthermore, we write ei , i ≥ 1 (again the labeling is arbitrary) for error functions that
only depend on β, B, E[ξ(h)] and moments of K , and satisfy for all β ∈ (βc, βc + ε)

lim sup
B↘0

ei (β, B) <∞ and lim
B↘0

ei (βc, B) = 0. (5.2)

The expressions of ci , Ci , ei are given in the proofs of the results of this section and
conditions (5.1) and (5.2) are verified explicitly . Finally, we write νk = E[K (K −
1) · · · (K − k + 1)] for the kth factorial moment of K , so that ν1 = ν.

5.1. Bounds on higher moments of ξ(h). We start with bounding the second moment
of ξ(h).

Lemma 5.1 (Bounds on second moment of ξ(h)). Let β ≥ βc and B > 0. Then,

E[ξ(h)2] ≤

⎧
⎪⎨

⎪⎩

C2E[ξ(h)]2 + Be2 when E[K 2] <∞,

C2E[ξ(h)]2 log (1/E[ξ(h)]) + Be2 when τ = 4,

C2E[ξ(h)]τ−2 + Be2 when τ ∈ (3, 4).

(5.3)

Proof. We first treat the case E[K 2] <∞. We use Lemma 3.2 and the recursion in (3.1)
to obtain

E[ξ(h)2] ≤ θ2
E[h2] = θ2

E

[(
B +

K∑

i=1

ξ(hi )
)2]

= θ2
(

B2 + 2BνE[ξ(h)] + ν2E[ξ(h)]2 + νE[ξ(h)2]
)

. (5.4)

Since 1− θ2ν > 0, because β is sufficiently close to βc and θc = 1/ν < 1, the lemma
holds with

C2 = θ2ν2

1− θ2ν
, and e2 = Bθ2 + 2θ2νE[ξ(h)]

1− θ2ν
. (5.5)

It is not hard to see that (5.1) holds. For e2 the first property of (5.2) can also easily be
seen. The second property in (5.2) follows from Lemma 4.1.

If τ ≤ 4, then E[K 2] = ∞ and the above does not work. To analyze this case, we
apply the recursion (3.1) and split the expectation over K in small and large degrees:

E[ξ(h)2] = E

[
ξ
(

B +
K∑

i=1

ξ(hi )
)2
1{K≤�}

]
+ E

[
ξ
(

B +
K∑

i=1

ξ(hi )
)2
1{K>�}

]
. (5.6)

We use Lemma 3.2 to bound the first term as follows:

E

[
ξ
(

B +
K∑

i=1

ξ(hi )
)2
1{K≤�}

]
≤ θ2

E

[(
B +

K∑

i=1

ξ(hi )
)2
1{K≤�}

]

≤ θ2
(

B2 + 2BνE[ξ(h)] + E[K 21{K≤�}]E[ξ(h)]2 + νE[ξ(h)2]
)

, (5.7)
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where in the second inequality we used the independence of the ξ(hi ) and Wald’s identity,
and bounded E[K1{K≤�}] ≤ ν. For τ ∈ (3, 4),

E[K 21{K≤�}] ≤ C2,τ �
4−τ , (5.8)

by Lemma 3.4, while for τ = 4,

E[K 21{K≤�}] ≤ C2,4 log �. (5.9)

To bound the second sum in (5.6), note that ξ(h) ≤ β. Hence,

E

[
ξ
(

B +
K∑

i=1

ξ(hi )
)2
1{K>�}

]
≤ β2

E[1{K>�}] ≤ C0,τ β
2�2−τ . (5.10)

The optimal bound (up to a constant) can be achieved by choosing � such that
�4−τ

E[ξ(h)]2 and �2−τ are of the same order of magnitude. Hence, we choose � =
1/E[ξ(h)]. This choice of the truncation value � turns out to be the relevant choice when
making the distinction between small and large values of K also in further computations
and hence will also be used (up to a constant) there.

Combining the two upper bounds gives the desired result with

C2 = 1

1− θ2ν

(
C2,τ θ

2 + C0,τ β
2
)

, (5.11)

where, for τ = 4, we have also used that E[ξ(h)]2 ≤ E[ξ(h)]2 log(1/E[ξ(h)]), and

e2 = Bθ2 + 2θ2νE[ξ(h)]
1− θ2ν

. (5.12)

��
We next derive upper bounds on the third moment of ξ(h):

Lemma 5.2 (Bounds on third moment of ξ(h)). Let β ≥ βc and B > 0. Then,

E[ξ(h)3] ≤

⎧
⎪⎨

⎪⎩

C3E[ξ(h)]3 + Be3 when E[K 3] <∞,

C3E[ξ(h)]3 log (1/E[ξ(h)]) + Be3 when τ = 5,

C3E[ξ(h)]τ−2 + Be3 when τ ∈ (3, 5).

(5.13)

Proof. For E[K 3] <∞ we bound, in a similar way as in Lemma 5.1,

E[ξ(h)3] ≤ θ3
(

B3 + 3B2νE[ξ(h)] + 3Bν2E[ξ(h)]2 + 3BνE[ξ(h)2]

+ ν3E[ξ(h)]3 + 3ν2E[ξ(h)]E[ξ(h)2] + νE[ξ(h)3]
)

. (5.14)

Using (5.3), we indeed get the bound

E[ξ(h)3] ≤ C3E[ξ(h)]3 + Be3, (5.15)

where

C3 = θ3

1− θ3ν
(ν3 + 3ν2C2) , (5.16)
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and

e3 = θ3

1− θ3ν

{
B2 + 3Bνe2 + 3 (Bν + ν2e2) E[ξ(h)] + 3 (ν2 + νC2) E[ξ(h)]2

}
.

(5.17)

To see that C3 satisfies (5.1), note that ν2, ν3 < ∞ since E[K 3] < ∞. Furthermore,
ν2 > 0 since P[K ≥ 2] > 0 because ν > 1 and ν3 ≥ 0 because K can only take non-
negative integer values. That e3 satisfies (5.2) follows from the bound E[ξ(h)] ≤ β <∞
and Lemma 4.1.

For τ ∈ (3, 5], we use the recursion (3.1), make the expectation over K explicit and
split in small and large values of K to obtain

E[ξ(h)3]=E

[
ξ
(

B+
K∑

i=1

ξ(hi )
)3
1{K≤1/E[ξ(h)]}

]
+E

[
ξ
(

B+
K∑

i=1

ξ(hi )
)3
1{K>1/E[ξ(h)]}

]
.

(5.18)

We bound the first expectation from above by

θ3
E

[(
B +

K∑

i=1

ξ(hi )
)3
1{K≤1/E[ξ(h)]}

]

= θ3
(

B3+3B2
E[K1{K≤1/E[ξ(h)]}]E[ξ(h)]+3BE[K (K−1)1{K≤1/E[ξ(h)]}]E[ξ(h)]2

+ 3BE[K1{K≤1/E[ξ(h)]}]E[ξ(h)2] + E[K (K − 1)(K − 2)1{K≤1/E[ξ(h)]}]E[ξ(h)]3
+ 3E[K (K − 1)1{K≤1/E[ξ(h)]}]E[ξ(h)]E[ξ(h)2] + E[K1{K≤1/E[ξ(h)]}]E[ξ(h)3]

)
.

(5.19)

By Lemma 3.4, for τ ∈ (3, 5),

E[K 31{K≤1/E[ξ(h)]}] ≤ C3,τ E[ξ(h)]τ−5, (5.20)

while, for τ = 5,

E[K 31{K≤1/E[ξ(h)]}] ≤ C3,5 log (1/E[ξ(h)]) . (5.21)

Similarly, by Lemma 3.4, for τ ∈ (3, 4),

E[K 21{K≤1/E[ξ(h)]}] ≤ C2,τ E[ξ(h)]τ−4, (5.22)

while, for τ = 4,

E[K 21{K≤1/E[ξ(h)]}] ≤ C2,4 log (1/E[ξ(h)]) . (5.23)

For the other terms we can replace the indicator function by 1 and use the upper
bound on E[ξ(h)2] of Lemma 5.1. For the second expectation in (5.18) we bound
ξ(x) ≤ β, so that this expectation is bounded from above by β3C0,τ E[ξ(h)]τ−2.
Combining these bounds and using E[ξ(h)]3 ≤ log (1/E[ξ(h)]) E[ξ(h)]3 for τ = 5,
E[ξ(h)]3 ≤ E[ξ(h)]τ−2 for τ ∈ (4, 5), E[ξ(h)]3 log (1/E[ξ(h)])2 ≤ E[ξ(h)]2 for τ = 4
and E[ξ(h)]2τ−5 ≤ E[ξ(h)]τ−2 for τ ∈ (3, 4) gives the desired result. ��
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5.2. Bounds on first moment of ξ(h).

Proposition 5.3 (Upper bound on first moment of ξ(h)). Let β ≥ βc and B > 0. Then,
there exists a C1 > 0 such that

E[ξ(h)] ≤ θ B + θνE[ξ(h)] − C1E[ξ(h)]δ, (5.24)

where δ takes the values as stated in Theorem 2.8. For τ = 5,

E[ξ(h)] ≤ θ B + θνE[ξ(h)] − C1E[ξ(h)]3 log (1/E[ξ(h)]) . (5.25)

Proof. We first use recursion (3.1) and rewrite it as

E[ξ(h)] = E

[
ξ
(

B +
K∑

i=1

ξ(hi )
)]
= θ B + θνE[ξ(h)] + T1 + T2, (5.26)

where

T1 = E

[
ξ
(

B + KE[ξ(h)]
)
− θ (B + KE[ξ(h)])

]
, (5.27)

and

T2 = E

[
ξ
(

B +
K∑

i=1

ξ(hi )
)
− ξ (B + KE[ξ(h)])

]
. (5.28)

Here, T1 can be seen as the error of a first order Taylor series approximation of
ξ (B + KE[ξ(h)]) around 0, whereas T2 is the error made by replacing ξ(hi ) by its
expected value in the sum. By Lemma 3.2, T1 ≤ 0 and by concavity of x �→ ξ(x) and
Jensen’s inequality T2 ≤ 0. We bound T1 separately for the cases where E[K 3] < ∞,
τ ∈ (3, 5) and τ = 5. Since these bounds on T1 are already of the correct order to prove
the proposition it suffices to use T2 ≤ 0 and we do not bound T2 more sharply.

Bound on T1 when E[K 3] <∞. To bound T1 for E[K 3] <∞ we use that ξ ′′(0) = 0,
so that it follows from Taylor’s theorem that, a.s.,

ξ (B + KE[ξ(h)])− θ (B + KE[ξ(h)]) = ξ ′′′(ζ )

6
(B + KE[ξ(h)])3 , (5.29)

for some ζ ∈ (0, B + KE[ξ(h)]). Note that

ξ ′′′(ζ ) = −2θ(1− θ2)(1− tanh2 ζ )

(1− θ2 tanh2 ζ )3

(
1− 3(1− θ2) tanh2 ζ − θ2 tanh4 ζ

)
, (5.30)

which we would like to bound from above by a negative constant. By Lemma 3.2, a.s.,

ξ (B + KE[ξ(h)])− θ (B + KE[ξ(h)]) ≤ 0, (5.31)

so that we are allowed to assume that B + KE[ξ(h)] is sufficiently small. Indeed, from
the above equation it follows that, for any constant a,

T1 ≤ E
[
(ξ (B + KE[ξ(h)])− θ (B + KE[ξ(h)]))1{B+KE[ξ(h)]≤a}

]
. (5.32)
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If, for convenience, we choose a = atanh 1
2 , then

ξ ′′′(ζ ) ≤ −3

8
θ(1− θ2), (5.33)

and hence,

T1 ≤ − 1

16
θ(1− θ2)E

[
(B + KE[ξ(h)])3 1{B+KE[ξ(h)]≤atanh 1

2 }
]

≤ − 1

16
θ(1− θ2)E[K 31{KE[ξ(h)]≤atanh 1

2−B}]E[ξ(h)]3. (5.34)

Note that B + KE[ξ(h)] converges to zero for both limits of interest. Thus
E[K 31{KE[ξ(h)]≤atanh 1

2−B}] goes to infinity in the case E[K 3] = ∞ and hence this
bound is not useful. We provide better bounds in the next paragraph for this case.

Bound on T1 when τ ∈ (3, 5]. For τ ∈ (3, 5], we make the expectation over K explicit:

T1 =
∞∑

k=0

ρk (ξ (B + kE[ξ(h)])− θ (B + kE[ξ(h)])) , (5.35)

where it should be noted that all terms in this sum are negative because of Lemma 3.2. De-
fine f (k) = ξ (B + kE[ξ(h)])− θ (B + kE[ξ(h)]) and note that f (k) is non-increasing.
We use (3.16) and Lemma 3.3 to rewrite

T1 =
∞∑

k=0

f (k)ρk = f (0) +
∑

k≥1

[ f (k)− f (k − 1)]ρ≥k

≤ f (0) + cρ

∑

k≥1

[ f (k)− f (k − 1)]k−(τ−2)

= f (0) + cρ

∑

k≥1

[ f (k)− f (k − 1)]
∑

�≥k

(�−(τ−2) − (� + 1)−(τ−2)). (5.36)

Then, we can again interchange the summation order as we did to obtain (3.16) to rewrite
this as

T1 ≤ f (0) + cρ

∑

�≥1

�∑

k=1

[ f (k)− f (k − 1)](�−(τ−2) − (� + 1)−(τ−2))

= f (0)(1− cρ) + cρ

∑

�≥1

f (�)(�−(τ−2) − (� + 1)−(τ−2)). (5.37)

Using the convexity of �−(τ−2) this can be bounded as

T1 ≤ f (0)(1− cρ) + (τ − 2)cρ

∑

�≥1

f (�)(� + 1)−(τ−1). (5.38)

Since we can assume that cρ ≤ 1, f (0)(1− cρ) ≤ 0. Hence,

T1 ≤ (τ − 2)cρ (E[ξ(h)])τ−1
∞∑

k=0

((k + 1)E[ξ(h)])−(τ−1)

× (ξ (B + kE[ξ(h)])− θ (B + kE[ξ(h)]))
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≤ (τ − 2)cρ (E[ξ(h)])τ−1
b/E[ξ(h)]∑

k=a/E[ξ(h)]
(kE[ξ(h)])−(τ−1)

× (ξ (B + kE[ξ(h)])− θ (B + kE[ξ(h)])) , (5.39)

where we choose a and b such that 0 < a < b < ∞. We use dominated convergence
on the above sum. The summands are uniformly bounded, and E[ξ(h)] → 0 for both
limits of interest. Further, when kE[ξ(h)] = y, the summand converges pointwise to
y−(τ−1) (ξ (B + y)− θ (B + y)). Hence, we can write the sum above as

E[ξ(h)]−1
(∫ b

a
y−(τ−1) (ξ (B + y)− θ (B + y)) dy + o(1)

)

, (5.40)

where o(1) is a function tending to zero for both limits of interest [22, 216 A]. The
integrand is uniformly bounded for y ∈ [a, b] and hence we can bound the integral from
above by a (negative) constant −I for B sufficiently small and β sufficiently close to
βc. Hence,

E[ξ(h)] ≤ θ B + θνE[ξ(h)] − (τ − 1)cρ IE[ξ(h)]τ−2. (5.41)

Logarithmic corrections in the bound for τ = 5. We complete the proof by identifying
the logarithmic correction for τ = 5. Since the random variable in the expectation in T1
is non-positive, we can bound

T1 ≤ E
[
ξ (B + KE[ξ(h)])− θ (B + KE[ξ(h)])1{K≤ε/E[ξ(h)]}

]
. (5.42)

Taylor expansion h �→ ξ(h) to third order, using that ξ(0) = ξ ′′(0) = 0, while the linear
term cancels, leads to

T1 ≤ E

[
ξ ′′′(ζ )

6
(B + KE[ξ(h)])3 1{K≤ε/E[ξ(h)]}

]

, (5.43)

for some ζ ∈ (0, KE[ξ(h)]). On the event that K ≤ ε/E[ξ(h)], we thus have that
ζ ∈ (0, ε), and ξ ′′′(ζ ) ≤ −cε ≡ supx∈(0,ε) ξ ′′′(x) < 0 when ε is sufficiently small.
Thus,

T1 ≤ −cε

6
E

[
(B + KE[ξ(h)])3 1{K≤ε/E[ξ(h)]}

]

≤ −cε

6
E[ξ(h)]3E

[
K (K − 1)(K − 2)1{K≤ε/E[ξ(h)]}

]
. (5.44)

When τ = 5, by Lemma 3.4, E
[
K (K − 1)(K − 2)1{K≤�}

] ≥ c3,5 log �, which com-
pletes the proof. ��
Proposition 5.4 (Lower bound on first moment of ξ(h)). Let β ≥ βc and B > 0. Then,
there exists a constant C2 > 0 such that

E[ξ(h)] ≥ θ B + θνE[ξ(h)] − c1E[ξ(h)]δ − Be1, (5.45)

where

δ =
{

3 when E[K 3] <∞,

τ − 2 when τ ∈ (3, 5).
(5.46)
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For τ = 5,

E[ξ(h)] ≥ θ B + θνE[ξ(h)] − c1E[ξ(h)]3 log(1/E[ξ(h)])− Be1. (5.47)

Proof. We again use the split in (5.26) and we bound T1 and T2.

The lower bound on T1. For E[K 3] <∞, we use the lower bound of Lemma 3.2 to get

T1 ≥ − θ

3(1− θ2)
E

[
(B + KE[ξ(h)])3

]
. (5.48)

By expanding, this can be rewritten as

T1 ≥ − θ

3(1− θ2)
E[K 3]E[ξ(h)]3 − Be4. (5.49)

For τ ∈ (3, 5], we first split T1 in a small K and a large K part. For this, write

t1(k) = ξ (B + kE[ξ(h)])− θ (B + kE[ξ(h)]) . (5.50)

Then,

T1 = E[t1(K )] = E
[
t1(K )1{K≤ε/E[ξ(h)]}

]
+ E

[
t1(K )1{K>ε/E[ξ(h)]}

]
. (5.51)

To bound the first term, we again use (5.48):

E
[
t1(K )1{K≤ε/E[ξ(h)]}

] ≥ − θ

3(1− θ2)
E

[
(B + KE[ξ(h)])31{K≤ε/E[ξ(h)]}

]
. (5.52)

It is easy to see that the terms B3
E
[
1{K>ε/E[ξ(h)]}

]
and 3B2

E[ξ(h)]E [K1{K≤ε/E[ξ(h)]}
]

that we get by expanding the above are of the form Be. To bound the other two terms,
we use Lemma 3.4 to obtain, for ε ≤ 1,

3BE[ξ(h)]2E

[
K 21{K≤ε/E[ξ(h)]}

]

≤

⎧
⎪⎨

⎪⎩

3BE[ξ(h)]2E
[
K 2
]

when τ ∈ (4, 5],
3BC2,4E[ξ(h)]2 log(1/E[ξ(h)]) when τ = 4,

3BC2,τ E[ξ(h)]τ−2 when τ ∈ (3, 4),

(5.53)

which are all of the form Be, and

E

[
K 31{K≤ε/E[ξ(h)]}

]
E[ξ(h)]3 ≤

{
C3,5E[ξ(h)]3 log(1/E[ξ(h)]) when τ = 5,

C3,τ E[ξ(h)]τ−2 when τ ∈ (3, 5).

(5.54)

To bound T1 for large K , we observe that

E
[
t1(K )1{K>ε/E[ξ(h)]}

] ≥ −θ BE[1{K>ε/E[ξ(h)]}] − θE[ξ(h)]E[K1{K>ε/E[ξ(h)]}].
(5.55)

Applying Lemma 3.4 now gives, for τ ∈ (3, 5]
E
[
t1(K )1{K>ε/E[ξ(h)]}

] ≥ −θ BC0,τ E[ξ(h)]τ−2 − θC1,τ E[ξ(h)]τ−2

= −C4E[ξ(h)]τ−2 − Be4. (5.56)
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The lower bound on T2. To bound T2, we split in a small and a large K contribution:

T2 = E[t2(K )1{K≤ε/E[ξ(h)]}] + E[t2(K )1{K>ε/E[ξ(h)]}] ≡ T ≤2 + T >

2 , (5.57)

where

t2(k) = ξ

(

B +
k∑

i=1

ξ(hi )

)

− ξ (B + kE[ξ(h)]) . (5.58)

To bound T >

2 , we note that

t2(k) ≥ −β, (5.59)

so that

T >

2 ≥ −βE[1{K>ε/E[ξ(h)]}] ≥ −C5E[ξ(h)](τ−2)∧3, (5.60)

where we have used Lemma 3.4 in the last inequality and the Markov inequality when
E[K 3] <∞.

To bound T ≤2 , we start from

T ≤2 = E

⎡

⎣
ξ ′′(ζ )

2

(
K∑

i=1

ξ(hi )− KE[ξ(h)]
)2

1{K≤ε/E[ξ(h)]}

⎤

⎦ , (5.61)

for some ζ in between B +
∑K

i=1 ξ(hi ) and B + KE[ξ(h)]. We use that

ξ ′′(ζ ) ≥ − 2θ

1− θ2

(
B +

K∑

i=1

ξ(hi ) + KE[ξ(h)]
)
, (5.62)

to obtain

T ≤2 ≥ −
θ

1−θ2 E

[(
B+

K∑

i=1

ξ(hi )+KE[ξ(h)]
)( K∑

i=1

ξ(hi )−KE[ξ(h)]
)2
1{K≤ε/E[ξ(h)]}

]

≥ − θ

1−θ2

(
BνE

[
(ξ(h)−E[ξ(h)])2

]
+νE

[
(ξ(h)+E[ξ(h)]) (ξ(h)−E[ξ(h)])2

]

+ 2E[K 21{K≤ε/E[ξ(h)]}]E[ξ(h)]E
[
(ξ(h)− E[ξ(h)])2

] )

≥ − θ

1−θ2

(
BνE[ξ(h)2]+(2E[K 21{K≤ε/E[ξ(h)]}]+ν

)
E[ξ(h)]E[ξ(h)2]+νE[ξ(h)3]

)
.

(5.63)

Using the bounds of Lemmas 3.4, 5.1 and 5.2 we get,

T ≤2 ≥

⎧
⎪⎪⎨

⎪⎪⎩

− θ
1−θ2

((
2E[K 2] + ν

)
C2 + C3ν

)
E[ξ(h)]3 − Be5 when E[K 3] <∞,

− θ
1−θ2

((
2E[K 2]+ν

)
C2 +C3ν

)
E[ξ(h)]3 log(1/E[ξ(h)])−Be5 when τ = 5,

− θ
1−θ2

(
C ′2,τ + C3ν

)
E[ξ(h)]τ−2 − Be5 when τ ∈ (3, 5),

(5.64)
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where C ′2,τ =
(
2E[K 2] + ν

)
C2 for τ ∈ (4, 5) and C ′2,τ = (2C2,τ + ν)C2 for τ ∈ (3, 4].

Here, we have also used that (a) E[ξ(h)]3 ≤ E[ξ(h)]3 log(1/E[ξ(h)]) for τ = 5; (b)
E[ξ(h)]3 ≤ E[ξ(h)]τ−2 for τ ∈ (4, 5]; (c) E[ξ(h)]3 log (1/E[ξ(h)])2 ≤ E[ξ(h)]2 and
E[ξ(h)]3 log (1/E[ξ(h)]) ≤ E[ξ(h)]2 for τ = 4; and (d) E[ξ(h)]τ−1 ≤ E[ξ(h)]τ−2 and
E[ξ(h)]2τ−5 ≤ E[ξ(h)]τ−2 for τ ∈ (3, 4). Combining the bounds on T1 and T2 gives
the desired lower bound on E[ξ(h)]. ��

5.3. Critical exponents β and δ. It remains to show that the bounds on E[ξ(h)] give us
the desired result:

Theorem 5.5 (Values of β and δ). The critical exponents β and δ equal the values as
stated in Theorem 2.8 when E[K 3] <∞ and τ ∈ (3, 5). Furthermore, for τ = 5, (2.20)
holds.

Proof. We prove the upper and the lower bounds separately, starting with the upper
bound.

The upper bounds on the magnetization. We start by bounding the magnetization
from above:

M(β, B) = E

[

tanh

(

B +
D∑

i=1

ξ(hi )

)]

≤ B + E[D]E[ξ(h)]. (5.65)

We first perform the analysis for β. Taking the limit B ↘ 0 in (5.24) in Proposition 5.3
yields

E[ξ(h0)] ≤ θνE[ξ(h0)] − C1E[ξ(h0)]δ, (5.66)

where h0 = h(β, 0+). For β > βc, by definition, E[ξ(h0)] > 0 and thus we can divide
through by E[ξ(h0)] to obtain

E[ξ(h0)]δ−1 ≤ θν − 1

C1
. (5.67)

By Taylor’s theorem,

θν − 1 ≤ ν(1− θ2
c )(β − βc). (5.68)

Hence,

E[ξ(h0)] ≤
(

ν(1− θ2
c )

C1

)1/(δ−1)

(β − βc)
1/(δ−1). (5.69)

Using that β = 1/(δ − 1),

M(β, 0+) ≤ E[D]
(

ν(1− θ2
c )

C1

)β

(β − βc)
β , (5.70)

from which it easily follows that

lim sup
β↘βc

M(β, 0+)

(β − βc)β
<∞. (5.71)

We complete the analysis for β by analyzing τ = 5. Since (5.24) also applies to τ = 5,
(5.71) holds as well. We now improve upon this using (5.25) in Proposition 5.3, which
yields in a similar way as above that
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E[ξ(h0)]2 ≤ θν − 1

C1 log(1/E[ξ(h0)]) . (5.72)

Since x �→ 1/ log(1/x) is increasing on (0, 1) and E[ξ(h0)] ≤ C(β − βc)
1/2 for some

C > 0, we immediately obtain that

E[ξ(h0)]2 ≤ θν − 1

C1 log(1/E[ξ(h0)]) ≤
θν − 1

C1 log(1/[C(β − βc)1/2]) . (5.73)

Taking the limit of β ↘ βc as above then completes the proof.
We continue with the analysis for δ. Setting β = βc in (5.24) and rewriting gives

E[ξ(hc)] ≤
(

θc

C1

)1/δ

B1/δ, (5.74)

with hc = h(βc, B). Hence,

M(βc, B) ≤ B + E[D]
(

θc

C1

)1/δ

B1/δ, (5.75)

so that, using 1/δ < 1,

lim sup
B↘0

M(βc, B)

B1/δ
<∞. (5.76)

The analysis for δ for τ = 5 can be performed in an identical way as for β.

The lower bounds on the magnetization. For the lower bound on the magnetization
we use that

d2

dx2 tanh x = −2 tanh x(1− tanh2 x) ≥ −2, (5.77)

so that

tanh x ≥ x − x2. (5.78)

Hence,

M(β, B) ≥ B + E[D]E[ξ(h)] − E

[(
B +

D∑

i=1

ξ(hi )
)2]

≥ B + E[D]E[ξ(h)] − Be6 − E[D(D − 1)]E[ξ(h)]2 − E[D]C2E[ξ(h)]2∧(τ−2)

= B + (E[D] − e7)E[ξ(h)] − Be6, (5.79)

with a ∧ b denoting the minimum of a and b, where e7 satisfies (5.2) both also
lim infβ↘βc e7(β, 0+) = 0, because E[ξ(h)] converges to zero for both limits of in-
terest.

We again first perform the analysis for β and τ �= 5. We get from (5.45) in Proposi-
tion 5.4 that

E[ξ(h0)] ≥
(

θν − 1

c1

)1/(δ−1)

≥
(

ν(1− θ2)

c1

)β

(β − βc)
β , (5.80)



Ising Critical Exponents on Random Trees and Graphs 381

where the last inequality holds because, by Taylor’s theorem,

θν − 1 ≥ ν(1− θ2)(β − βc). (5.81)

Hence,

M(β, 0+) ≥ (E[D] − e7)

(
ν(1− θ2)

c1

)β

(β − βc)
β , (5.82)

so that

lim inf
β↘βc

M(β, 0+)

(β − βc)β
≥ E[D]

(
ν(1− θ2)

c1

)β

> 0. (5.83)

For τ = 5, we note that (5.47) as well as the fact that log 1/x ≤ Aεx−ε for all x ∈ (0, 1)

and some Aε > 0, yields that

E[ξ(h0)] ≥
(

θν − 1

Aεc1

)1/(2+ε)

≥
(

ν(1− θ2)

Aεc1

)1/(2+ε)

(β − βc)
1/(2+ε). (5.84)

Then again using (5.47) yields, for some constant c > 0,

E[ξ(h0)] ≥
(

θν − 1

c1 log(1/E[ξ(h0)])
)1/2

≥ c
( β − βc

log(1/(β − βc))

)1/2
, (5.85)

once more since x �→ 1/(log(1/x)) is increasing.
We continue with the analysis for δ. Again, setting β = βc in (5.45), we get

E[ξ(hc)] ≥
(

θc − e1

c1

)1/δ

B1/δ, (5.86)

from which it follows that

M(βc, B) ≥ (E[D] − e7)

(
θc − e1

c1

)1/δ

B1/δ − Be6, (5.87)

and hence,

lim inf
B↘0

M(βc, B)

B1/δ
≥ E[D]

(
θc

c1

)1/δ

> 0, (5.88)

as required. The extension to τ = 5 can be dealt with in an identical way as in (5.84)
and (5.85). This proves the theorem. ��

We can now also derive the joint scaling of the magnetization as (β, B)↘ (βc, 0):

Proof of Corollary 2.9. We start with the lower bound for τ �= 5. From the GKS in-
equality it follows that, for β > βc and B > 0, M(β, B) ≥ 1

2

(
M(βc, B) + M(β, 0+)

)
.

Combined with the lower bounds in (5.82) and (5.87) this gives

M(β, B) ≥ c6(β − βc)
β + c7 B1/δ, (5.89)

which gives the desired lower bound.
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For the upper bound for τ �= 5 we rewrite (5.24) as

C1E[ξ(h)]δ ≤ B + (θν − 1)E[ξ(h)]. (5.90)

Dividing both sides by E[ξ(h)], which is allowed for β > βc and B > 0, and using (5.68)
gives

C1E[ξ(h)]δ−1 ≤ B

E[ξ(h)] + ν(1− θ2
c )(β − βc). (5.91)

Since, by the GKS inequality and (5.86),

E[ξ(h)] ≥ E[ξ(hc)] ≥ c8 B1/δ, (5.92)

we thus have that

E[ξ(h)]≤
(

1

c8C1
B(δ−1)/δ +

ν

C1
(1− θ2

c )(β − βc)

)1/(δ−1)

≤C6 B1/δ + C7(β − βc)
β ,

(5.93)

where we used (x + y)1/(δ−1) ≤ (2(x∨ y))1/(δ−1) ≤ 21/(δ−1)x1/(δ−1) +21/(δ−1)y1/(δ−1),
with x ∨ y denoting the maximimum of x and y, in the second inequality. The result for
τ �= 5 now follows from (5.65). The proof for τ = 5 is similar. ��

6. Critical Exponents: Susceptibility

In this section, we study the susceptibility. In Sect. 6.1 we identify γ , in Sect. 6.2 we
prove a lower bound on γ ′ and add a heuristic why this is the correct value.

6.1. The critical exponent γ . For the susceptibility in the subcritical phase, i.e., in the
high-temperature region β < βc, we can not only identify the critical exponent γ , but
we can also identify the constant:

Theorem 6.1 (Critical exponent γ ). For E[K ] <∞ and β < βc,

χ(β, 0+) = 1 +
E[D]θ
1− νθ

. (6.1)

In particular,

lim
β↗βc

χ(β, 0+)(βc − β) = E[D]θ2
c

1− θ2
c

, (6.2)

and hence

γ = 1. (6.3)

Proof. The proof is divided into three steps. We first reduce the suceptibility on the
random graph to the one on the random Bethe tree. Secondly, we rewrite the susceptibility
on the tree using transfer matrix techniques. Finally, we use this rewrite (which applies
to all β and B > 0) to prove that γ = 1.
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Reduction to the random tree. Let φ denote a vertex selected uniformly at random
from [n] and let Eφ denote its expectation. Then we can write the susceptibility as

χn ≡ 1

n

n∑

i, j=1

(
〈σiσ j 〉μn − 〈σi 〉μn 〈σ j 〉μn

)
= Eφ

⎡

⎣
n∑

j=1

(
〈σφσ j 〉μn − 〈σφ〉μn 〈σ j 〉μn

)
⎤

⎦ .

(6.4)

Note that

〈σiσ j 〉μn − 〈σi 〉μn 〈σ j 〉μn =
∂〈σi 〉μn

∂ B j
, (6.5)

which is, by the GHS inequality [20], decreasing in external fields at all other vertices
k ∈ [n]. Denote by 〈·〉t,+/ f the Ising model with +/free boundary conditions, respectively,
at all vertices at graph distance t from φ. Then, for all t ≥ 1,

χn ≥ Eφ

⎡

⎣
n∑

j=1

(
〈σφσ j 〉t,+μn

− 〈σφ〉t,+μn
〈σ j 〉t,+μn

)
⎤

⎦ . (6.6)

By introducing boundary conditions, only vertices in the ball Bφ(t) contribute to the
sum. Hence, by taking the limit n→∞ and using that the graph is locally tree-like,

χ ≥ E

⎡

⎣
∑

j∈Tt

(
〈σφσ j 〉t,+ − 〈σφ〉t,+〈σ j 〉t,+

)
⎤

⎦ , (6.7)

where the expectation now is over the random tree Tt ∼ T (D, K , t) with root φ.
For an upper bound on χn we use a trick similar to one used in the proof of [11,

Corollary 4.5]: Let B ′j = B if j ∈ Bt (φ) and B ′j = B + H if j /∈ Bt (φ) for some
H > −B. Denote by 〈·〉H the associated Ising expectation. Then, because of (6.5),

Eφ

⎡

⎣
∑

j /∈Bt (φ)

(
〈σφσ j 〉 − 〈σφ〉〈σ j 〉

)
⎤

⎦ = Eφ

[
∂

∂ H
〈σφ〉H

∣
∣
∣
∣

H=0

]

. (6.8)

By the GHS inequality, 〈σφ〉H is a concave function of H and hence,

Eφ

[
∂

∂ H
〈σφ〉H

∣
∣
∣
∣

H=0

]

≤ Eφ

[
2

B

(〈σφ〉H=0 − 〈σφ〉H=−B/2
)
]

. (6.9)

Using the GKS inequality this can be bounded from above by

Eφ

[
2

B

(
〈σφ〉t,+H=0 − 〈σφ〉t, f

H=−B/2

)]

= Eφ

[
2

B

(
〈σφ〉t,+ − 〈σφ〉t, f

)]

, (6.10)

where the equality holds because the terms depend only on the system in the ball Bt (φ)

and hence not on H . By letting n→∞, by the locally tree-likeness, this is equal to

2

B
E

[(
〈σφ〉t,+ − 〈σφ〉t, f

)]
, (6.11)
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where the expectation and the Ising model now is over the random tree Tt ∼ T (D, K , t)
with root φ. From [15, Lemma 3.1] we know that this expectation can be bounded from
above by M/t for some constant M = M(β, B) <∞. Hence, if t →∞,

lim
t→∞E

⎡

⎣
∑

j∈Tt

(
〈σφσ j 〉t,+ − 〈σφ〉t,+〈σ j 〉t,+

)
⎤

⎦

≤ χ ≤ lim
t→∞E

⎡

⎣
∑

j∈Tt

(
〈σφσ j 〉t, f − 〈σφ〉t, f 〈σ j 〉t, f

)
⎤

⎦ . (6.12)

Rewrite of the susceptibility on trees. It remains to study the susceptibility on trees.
For this, condition on the tree T∞. Then, for some vertex j at height � ≤ t in the tree,
denote the vertices on the unique path from φ to j by φ = v0, v1, . . . , v� = j and let,
for 0 ≤ i ≤ �, S≤i = (σv0 , . . . , σvi ). We first compute the expected value of a spin σvi

on this path, conditioned on the spin values S≤i−1. Note that under this conditioning
the expected spin value only depends on the spin value σvi−1 and the effective field

hvi = ht,+/ f
vi obtained by pruning the tree at vertex vi , i.e., by removing all edges at

vertex vi going away from the root and replacing the external magnetic field at vertex
vi by hvi which can be exactly computed using [11, Lemma 4.1]. Hence,

〈σvi |S≤i−1〉t,+/ f = eβσvi−1 +hvi − e−βσvi−1−hvi

eβσvi−1 +hvi + e−βσvi−1−hvi
. (6.13)

We can write the indicators 1{σvi−1=±1} = 1
2 (1± σvi−1), so that the above equals

1

2
(1 + σvi−1)

eβ+hvi − e−β−hvi

eβ+hvi + e−β−hvi
+

1

2
(1− σvi−1)

e−β+hvi − eβ−hvi

e−β+hvi + eβ−hvi

= σvi−1

1

2

(
eβ+hvi − e−β−hvi

eβ+hvi + e−β−hvi
− e−β+hvi − eβ−hvi

e−β+hvi + eβ−hvi

)

+
1

2

(
eβ+hvi − e−β−hvi

eβ+hvi + e−β−hvi
+

e−β+hvi − eβ−hvi

e−β+hvi + eβ−hvi

)

. (6.14)

By pairwise combining the terms over a common denominator the above equals

σvi−1

1

2

(eβ+hvi − e−β−hvi )(e−β+hvi + eβ−hvi )− (e−β+hvi − eβ−hvi )(eβ+hvi + e−β−hvi )

(eβ+hvi + e−β−hvi )(e−β+hvi + eβ−hvi )

+
1

2

(eβ+hvi − e−β−hvi )(e−β+hvi + eβ−hvi ) + (e−β+hvi − eβ−hvi )(eβ+hvi + e−β−hvi )

(eβ+hvi + e−β−hvi )(e−β+hvi + eβ−hvi )
.

(6.15)

By expanding all products, this equals, after cancellations,

σvi−1

e2β + e−2β

e2β + e−2β + e2hvi + e−2hvi
+

e2hvi + e−2hvi

e2β + e−2β + e2hvi + e−2hvi

= σvi−1

sinh(2β)

cosh(2β) + cosh(2hvi )
+

sinh(2hvi )

cosh(2β) + cosh(2hvi )
. (6.16)
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Using this, we have that

〈σv�
〉t,+/ f = 〈〈σv�

|S≤�−1〉t,+/ f 〉t,+/ f

= 〈σv�−1〉t,+/ f sinh(2β)

cosh(2β) + cosh(2hv�
)

+
sinh(2hv�

)

cosh(2β) + cosh(2hv�
)
. (6.17)

Applying this recursively, we get

〈σv�
〉t,+/ f = 〈σv0〉t,+/ f

�∏

i=1

sinh(2β)

cosh(2β) + cosh(2hvi )

+
�∑

i=1

(
sinh(2hvi )

cosh(2β) + cosh(2hvi )

�∏

k=i+1

sinh(2β)

cosh(2β) + cosh(2hvk )

)

. (6.18)

Similarly,

〈σv0σv�
〉t,+/ f =

〈

σv0

(

σv0

�∏

i=1

sinh(2β)

cosh(2β) + cosh(2hvi )

+
�∑

i=1

(
sinh(2hvi )

cosh(2β) + cosh(2hvi )

�∏

k=i+1

sinh(2β)

cosh(2β) + cosh(2hvk )

))〉t,+/ f

=
�∏

i=1

sinh(2β)

cosh(2β) + cosh(2hvi )

+〈σv0〉t,+/ f
�∑

i=1

(
sinh(2hvi )

cosh(2β) + cosh(2hvi )

�∏

k=i+1

sinh(2β)

cosh(2β) + cosh(2hvk )

)

.

(6.19)

Combining the above yields

〈σv0σv�
〉t,+/ f −〈σv0〉t,+/ f 〈σv�

〉t,+/ f =
(

1−
(
〈σv0〉t,+/ f

)2
) �∏

i=1

sinh(2β)

cosh(2β) + cosh(2hvi )
.

(6.20)

By taking the limit t →∞, we obtain

χ = E

⎡

⎣
∑

j∈T∞

(
1− 〈σv0〉2

) | j |∏

i=1

sinh(2β)

cosh(2β) + cosh(2hvi )

⎤

⎦ . (6.21)

Finally, we can rewrite

sinh(2β)

cosh(2β) + cosh(2hvi )
= 2 sinh(β) cosh(β)

2 cosh(β)2 − 1 + cosh(2hvi )
= θ

1 +
cosh(2hvi )−1

2 cosh(β)2

, (6.22)



386 S. Dommers, C. Giardinà, R. van der Hofstad

so that

χ(β, B) = E

⎡

⎣
(

1− 〈σv0〉2
) ∑

j∈T∞
θ | j |

| j |∏

i=1

(
1 +

cosh(2hvi )− 1

2 cosh(β)2

)−1

⎤

⎦ . (6.23)

The rewrite in (6.23) is valid for all β and B > 0, and provides the starting point for all
our results on the susceptibility.

Identification of the susceptibility for β < βc. We take the limit B ↘ 0, for β < βc,
and apply dominated convergence. First of all, all fields hi converge to zero by the

definition of βc, so we have pointwise convergence. Secondly, 1 +
cosh(2hvi )−1

2 cosh(β)2 ≥ 1, so

that the random variable in the expectation is bounded from above by
∑

j∈T∞ θ | j |, which
has finite expectation as we show below. Thus, by dominated convergence, the above
converges to

lim
B↘0

χ(β, B) = E

⎡

⎣
∑

j∈T∞
θ | j |

⎤

⎦ . (6.24)

Denote by Z� the number of vertices at distance � from the root. Then,

E

⎡

⎣
∑

j∈T∞
θ | j |

⎤

⎦ = E

[ ∞∑

�=0

Z�θ
�

]

=
∞∑

�=0

E[Z�]θ�, (6.25)

because Z� ≥ 0, a.s. Note that Z�/(E[D]ν�−1) is a martingale, because the offspring of
the root has expectation E[D] and all other vertices have expected offspring ν. Hence,

lim
B↘0

χ(β, B) =
∞∑

�=0

E[Z�]θ� = 1 +
∞∑

�=1

E[D]ν�−1θ� = 1 +
E[D]θ
1− θν

. (6.26)

This proves (6.1). We continue to prove (6.2), which follows by using (5.68) and (5.81):

1 +
E[D]θ

ν(1− θ2)
(βc − β)−1 ≤ 1 +

E[D]θ
1− θν

≤ 1 +
E[D]θ

ν(1− θ2
c )

(βc − β)−1. (6.27)

��

6.2. Partial results for the critical exponent γ ′. For the supercritical susceptibility, we
prove the following lower bound on γ ′:

Proposition 6.2 (Critical exponent γ ′). For τ ∈ (3, 5] or E[K 3] < ∞, there exists a
c > 0 such that

χ(β, B) ≥ c(β − βc)
−1. (6.28)

In particular, if γ ′ exists, then

γ ′ ≥ 1. (6.29)

Proof. We start by rewriting the susceptibility in a form that is convenient in the low-
temperature phase.
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A rewrite of the susceptibility in terms of i.i.d. random variables. For β > βc we
start from (6.23). We further rewrite

χ(β, B) =
∞∑

�=0

θ�
E

⎡

⎣(1− 〈σv0〉2)
∑

v�∈T∞
exp

{
−

�∑

i=1

log
(

1 +
cosh(2hvi )− 1

2 cosh(β)2

)}
⎤

⎦ .

(6.30)

Here, and in the sequel, we use the convention that empty products, arising when � = 0,
equal 1, while empty sums equal 0. Thus, the contribution due to � = 0 in the above
sum equals 1. We write v0 = φ and vi = a0 · · · ai−1 ∈ N

i for i ≥ 1, so that vi the ai−1st
child of vi−1. Then,

χ(β, B) =
∞∑

�=0

θ�
∑

a0,...,a�−1

E

[

(1−〈σv0〉2)1{v�∈T∞}

× exp
{
−

�∑

i=1

log
(

1+
cosh(2hvi )−1

2 cosh(β)2

)}
]

. (6.31)

Let Kvi be the number of children of vi , and condition on Kvi = ki for every i ∈ [0, �−1],
where we abuse notation to write [0, m] = {0, . . . , m}. As a result, we obtain that

χ(β, B) =
∞∑

�=0

θ�
∑

a0,...,a�−1

∑

k0,...,k�−1

P(v� ∈ T∞, Kvi = ki ∀i ∈ [0, �− 1])

×E

[

(1−〈σv0 〉2) exp
{
−

�∑

i=1

log
(

1+
cosh(2hvi )−1

2 cosh(β)2

)}
| v�∈T∞, Kvi = ki ∀i ∈[0, �−1]

]

.

(6.32)

Note that

P(Kvi = ki ∀i ∈ [0, �− 1], v� ∈ T∞) = P(D = k0)1{a0≤k0}
�−1∏

i=1

P(K = ki )1{ai≤ki }.

(6.33)

Let Ti, j be the tree that describes all descendants of the j th child of vi , with the ai th
child removed, and T� the offspring of v�. When v� ∈ T∞, all information of the tree
T∞ can be encoded in the collection of trees (Ti, j ) j∈[0,Kvi−1],i∈[0,�−1] and T�, together

with the sequence (ai )
�−1
i=0 . Denote �T = ((Ti, j ) j∈[0,Kvi−1],i∈[0,�−1], T�

)
. Then, for any

collection of trees �t = ((ti, j ) j∈[0,ki−1],i∈[0,�−1], t�
)
,

P( �T = �t | Kvi = ki ∀i ∈ [0, �− 1], v� ∈ T∞)

= P(T = t�)
∏

(i, j)∈[0,ki−1]×[0,�−1]
P(T = ti, j ), (6.34)

where the law of T is that of a Galton-Watson tree with offspring distribution K . We
conclude that
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χ(β, B) =
∞∑

�=0

θ�
∑

a0,...,a�−1

∑

k0,...,k�−1

P(D = k0)1{a0≤k0}
�−1∏

i=1

P(K = ki )1{ai≤ki }

×E

[

(1− 〈σv0〉2) exp
{
−

�∑

i=1

log
(

1 +
cosh(2h�

i (
�k))− 1

2 cosh(β)2

)}
]

, (6.35)

where (h�
i (
�k))�i=0 satisfy the recursion relations h�

� = h�,1

h�
i (
�k) = B + ξ(h�

i+1(
�k)) +

ki−1∑

j=1

ξ(hi, j ), (6.36)

and where (hi, j )i∈[0,�], j≥1 are i.i.d. copies of the random variable h(β, B). We note
that the law of (h�

i (
�k))�i=0 does not depend on (ai )i∈[0,�−1], so that the summation over

(ai )i∈[0,�−1] yields

χ(β, B) =
∞∑

�=0

θ�
∑

k0,...,k�−1

k0P(D = k0)

�−1∏

i=1

ki P(K = ki )

×E

[

(1− 〈σv0〉2) exp
{
−

�∑

i=1

log
(

1 +
cosh(2h�

i (
�k))− 1

2 cosh(β)2

)}
]

. (6.37)

For a random variable X on the non-negative integers with E[X ] > 0, we let X� be the
size-biased distribution of X given by

P(X� = k) = k

E[X ]P(X = k). (6.38)

Then

χ(β, B) = E[D]
ν

∞∑

�=0

(θν)�
∑

k0,...,k�−1

P(D� = k0)

�−1∏

i=1

P(K � = ki )

×E

[

(1− 〈σv0〉2) exp
{
−

�∑

i=1

log
(

1 +
cosh(2h�

i (
�k))− 1

2 cosh(β)2

)}
]

. (6.39)

Define (h�
i )

�
i=0 =

(
h�

i (D�, K �
1 , . . . , K �

�−1, K�)
)�

i=0, where the random variables
(D�, K �

1 , . . . , K �
�−1, K�) are independent. Then we finally arrive at

χ(β, B) = E[D]
ν

∞∑

�=0

(θν)�E

[

(1− 〈σv0〉2) exp
{
−

�∑

i=1

log
(

1 +
cosh(2h�

i )− 1

2 cosh(β)2

)}
]

.

(6.40)

Reduction to second moments. We now proceed towards the lower bound on γ ′. Note
that, a.s.,

〈σv0〉 = tanh(h�
v0

), (6.41)
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where

hv�
0
= B + ξ(h�

v1
) +

D�−1∑

j=1

ξ(h0, j ) ≤ B + β +
D�−1∑

j=1

ξ(h0, j ). (6.42)

Therefore,

〈σv0〉 ≤ tanh(B + β +
D�−1∑

j=1

ξ(h0, j )). (6.43)

The right hand side is independent of (h�
i )

�
i=1, so that the expectation factorizes. Further,

E

[
tanh(B + β +

D�−1∑

j=1

ξ(h0, j ))
]
→ tanh(β) = θ < 1, (6.44)

as B ↘ 0, β ↘ βc. Further, we restrict the sum over all � to � ≤ m, where we take
m = (β − βc)

−1. This leads to

χ(β, B) ≥ (1− θ2)E[D]
ν

m∑

�=0

(θν)�E

[

exp
{
−

�∑

i=1

log
(

1 +
cosh(2h�

i )− 1

2 cosh(β)2

)}
]

.

(6.45)

We condition on all coordinates of (D�, K �
1 , . . . , K �

�−1, K�) being at most b = (β −
βc)
−1/(τ−3), which has probability

P(D� ≤ b, K �
1 ≤ b, . . . , K �

�−1 ≤ b, K� ≤ b) ≥ (1− o(1))P(K � ≤ b)m

≥ (1− o(1))
(
1− CK �b−(τ−3)

)m
,

(6.46)

which is uniformly bounded from below by a constant for the choices m = (β − βc)
−1

and b = (β − βc)
−1/(τ−3). Also, we use that θν ≥ 1, since β > βc. This leads us to

χ(β, B) ≥ cχ

m∑

�=0

Eb

[

exp
{
−

�∑

i=1

log
(

1 +
cosh(2h�

i )− 1

2 cosh(β)2

)}
]

, (6.47)

where Eb denotes the conditional expectation given that D� ≤ b, K �
1 ≤ b, . . . , K �

�−1 ≤
b, K� ≤ b. Using that E[eX ] ≥ eE[X ], this leads us to

χ(β, B) ≥ cχ

m∑

�=0

exp
{
−

�∑

i=1

Eb

[

log
(

1 +
cosh(2h�

i )− 1

2 cosh(β)2

)] }
. (6.48)

Define, for a > 0 and x ≥ 0, the function q(x) = log
(

1 + a(cosh(x)− 1)
)

. Differen-

tiating leads to

q ′(x) = a sinh(x)

1 + a(cosh(x)− 1)
, (6.49)
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so that q ′(x) ≤ Cq x/2 for some constant Cq and all x ≥ 0. As a result, q(x) ≤ Cq x2/4,
so that

χ(β, B) ≥ cχ

m∑

�=0

exp
{
− Cq

�∑

i=1

Eb

[
(h�

i )
2
] }

. (6.50)

Second moment analysis of h�
i . As a result, it suffices to investigate second moments

of h�
i , which we proceed with now. We note that

h�
i = ξ(h�

i+1) + B +

K �
i −1
∑

j=1

ξ(hi, j ). (6.51)

Taking expectations and using that ξ(h) ≤ θh leads to

Eb
[
h�

i

] ≤ θEb
[
h�

i+1

]
+ B + E[K � − 1 | K � ≤ b]E[ξ(h)]. (6.52)

Iterating this inequality until � − i and using that Eb
[
h�

�

] ≤ B + νE[ξ(h)] (since
Eb[K ] ≤ E[K ]) leads to

Eb
[
h�

i

] ≤ θ�−i (B + νE[ξ(h)]) +
�−i−1∑

s=0

θ s(B + E[K � − 1 | K � ≤ b]E[ξ(h)])

≤ θ�−i (B + νE[ξ(h)]) +
B + E[K � − 1 | K � ≤ b]E[ξ(h)]

1− θ
. (6.53)

Similarly,

Eb

[
(h�

i )
2
]
≤ θ2

Eb

[
(h�

i+1)
2
]

+ 2θEb
[
h�

i+1

] (
B + E[K � − 1 | K � ≤ b]E[ξ(h)])

+ B2 + 2BE[K � − 1 | K � ≤ b]E[ξ(h)]
+ E[(K � − 1)(K � − 2) | K � ≤ b]E[ξ(h)]2
+ E[K � − 1 | K � ≤ b]E[ξ(h)2]. (6.54)

Taking the limit B ↘ 0 we thus obtain

Eb

[
(h�

i )
2
]
≤ θ2

Eb

[
(h�

i+1)
2
]

+ 2θEb
[
h�

i+1

]
E[K � − 1 | K � ≤ b]E[ξ(h)]

+ E[(K �−1)(K �−2) | K � ≤ b]E[ξ(h)]2+E[K �−1 | K � ≤ b]E[ξ(h)2].
(6.55)

We start analysing the case where E[K 3] <∞. By Theorem 2.8, for E[K 3] <∞,

E[ξ(h)] ≤ C0(β − βc)
1/2, (6.56)

for some constant C0. Substituting (6.53), and iterating in a similar fashion as in the
proof of (6.53), we obtain that, for E[K 3] <∞,

Eb

[
(h�

i )
2
]
≤ C(β − βc). (6.57)
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We next extend this analysis to τ ∈ (3, 5). Note that, for every a > 0,

E[(K �)a | K � ≤ b] = E[K a+11{K≤b}]
E[K1{K≤b}] , (6.58)

so that, for τ ∈ (3, 5),

E[(K �)2 | K � ≤ b] ≤ C3,τ

E[K1{K≤b}]b
5−τ . (6.59)

Further, for τ ∈ (3, 5),

E[ξ(h)] ≤ C0(β − βc)
1/(3−τ), (6.60)

and thus

E[(K �)2 | K � ≤ b]E[ξ(h)]2C ≤ b5−τ
E[ξ(h)]2

≤ C(β − βc)
−(5−τ)/(3−τ)+2/(3−τ) = C(β − βc). (6.61)

It can readily be seen that all other contributions to Eb
[
(h�

i )
2
]

are of the same or smaller
order. For example, when E[K 2] <∞ and using that 1/(τ −3) ≥ 1/2 for all τ ∈ (3, 5),

E[K � − 1 | K � ≤ b]E[ξ(h)2] ≤ CE[ξ(h)]2 = O(β − βc), (6.62)

while, when τ ∈ (3, 4),

E[K � − 1 | K � ≤ b]E[ξ(h)2] ≤ Cb4−τ
E[ξ(h)]τ−2

= C(β − βc)
−(4−τ)/(3−τ)+(τ−2)/(3−τ) = C(β − βc)

2. (6.63)

We conclude that

Eb

[
(h�

i )
2
]
≤ C(β − βc). (6.64)

Therefore,

χ(β, B) ≥ cχ

m∑

�=0

exp
{
− C�(β − βc)

}
= O((β − βc)

−1), (6.65)

as required.
The proof for τ = 5 is similar when noting that the logarithmic corrections present

in E[ξ(h)]2 and in E[(K �)2 | K � ≤ b] precisely cancel. ��
We close this section by performing a heuristic argument to determine the upper

bound on γ ′. Unfortunately, as we will discuss in more detail following the heuristics,
we are currently not able to turn this analysis into a rigorous proof.

The upper bound on γ ′: heuristics for E[K 3] <∞. We can bound from above

χ(β, B) ≤ E[D]
ν

∞∑

�=0

(θν)�E

[

exp
{
−

�∑

i=1

log
(

1 +
cosh(2h�

i )− 1

2 cosh(β)2

)}
]

. (6.66)
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Now, the problem is that θν > 1 when β > βc, so that we need to extract extra decay
from the exponential term, which is technically demanding, and requires us to know
various constants rather precisely. Let us show this heuristically. It suffices to study
large values of �, since small values can be bounded in a simple way.

We blindly put the expectation in the exponential, and Taylor expand to obtain that

χ(β, B) ≈ E[D]
ν

∞∑

�=0

(θν)� exp
{
−

�∑

i=1

E
[
(h�

i )
2
]

cosh(β)2

}
. (6.67)

We compute that

cosh(β)2 = 1

1− θ2 . (6.68)

Since

h�
i ≈ θh�

i+1 +

K �
i −1
∑

j=1

ξ(hi, j ), (6.69)

we have

E
[
h�

i

] ≈ E[K � − 1]
1− θ

E[ξ(h)], (6.70)

and

E

[
(h�

i )
2
]
≈ 2θE[K � − 1]2 + E[(K � − 1)(K � − 2)](1− θ)

(1− θ2)(1− θ)
E[ξ(h)]2

+
E[K � − 1]

1− θ2 E[ξ(h)2]. (6.71)

Ignoring all error terms in the proof of Lemma 5.1 shows that

E[ξ(h)2] ≈ ν2θ
2

1− θ
E[ξ(h)]2 = C2E[ξ(h)]2, (6.72)

so in total we arrive at (also using that θ ≈ 1/ν)

E

[
(h�

i )
2
]
≈ ν3(1− θ)/ν + 3ν2

2/ν3

(1− θ2)(1− θ)
E[ξ(h)]2. (6.73)

As a result,

E
[
(h�

i )
2
]

cosh(β)2 ≈
ν3(1− θ)/ν + 3ν2

2/ν3

1− θ
E[ξ(h)]2. (6.74)

Ignoring error terms in the computation in Lemma 5.2 shows that

E[ξ(h)3] ≈ C3E[ξ(h)]3, (6.75)

where

C3 = θ3

1− θ3ν
(ν3 + 3ν2C2) ≈ θ3

1− θ2 (ν3 + 3ν2C2)

= θ3

(1− θ2)(1− θ)

(
ν3(1− θ) + 3(ν2/ν)2

)
, (6.76)
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since θ ≈ 1/ν. Further, again ignoring error terms in (5.24) and Taylor expanding to
third order shows that

E[ξ(h)] ≈ θνE[ξ(h)] − C1E[ξ(h)]3, (6.77)

where

C1 = −ξ ′′′(0)

6

(
νC3 + 3ν2C2 + ν3

)
, (6.78)

and ξ ′′′(0) = −2θ(1− θ2). Substituting the definitions for C2 and C3 yields

C1 = θ(1− θ2)

3

(
νC3 + 3ν2C2 + ν3

)

= θ

3(1− θ)

(
νθ3ν3(1− θ) + 3νθ3(ν2/ν)2 + 3ν2

2θ2(1− θ2) + ν3(1− θ)(1− θ2)
)

= θ

3(1− θ)

(
ν3(1− θ) + 3ν2

2θ2). (6.79)

Thus, we arrive at

E[ξ(h)]2 ≈ θν − 1

C1
, (6.80)

so that substitution into (6.74) leads to

E
[
(h�

i )
2
]

cosh(β)2 ≈ (θν − 1)
3
(
ν3(1− θ)/ν + 3ν2

2/ν3
)

θ
(
ν3(1− θ) + 3ν2

2θ2
) = 3(θν − 1). (6.81)

We conclude that

(θν) exp
{− E

[
(h�

i )
2
]

cosh(β)2

} ≤ (1 + (θν − 1)
)
e−3(θν−1) ≤ e−2(θν−1). (6.82)

This suggests that

χ(β, B) ≤ E[D]
ν

∞∑

�=0

e−2�(θν−1) = O((θν − 1)−1), (6.83)

as required. Also, using (6.67), this suggests that

lim
β↘βc

(θν − 1)χ(β, 0+) = E[D]/(2ν), (6.84)

where the constant is precisely half the one for the subcritical susceptibility [see (6.1)].
It can be seen by an explicit computation that the same factor 1/2 is also present in the
same form for the Curie-Weiss model.

Indeed for the Boltzmann-Gibbs measure with Hamiltonian Hn(σ ) = − 1
2n

∑
i, j σiσ j

one has βc = 1 and a susceptibility χ(β, 0+) = 1/(1 − β) for β < βc, χ(β, 0+) =
(1−m2)/(1− β(1−m2)) with m the non-zero solution of m = tanh(βm) for β > βc.
Expanding this gives m2 = 3(β − 1)(1 + o(1)) for β ↘ 1 and hence χ(β, 0+) =
(1 + o(1))/(1− β(1− 3(β − 1))) = (1 + o(1))/(2(β − 1)).
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It is a non-trivial task to turn the heuristic of this Section into a proof because of
several reasons: (a) We need to be able to justify the step where we put expectations in
the exponential. While we are dealing with random variables with small means, they are
not independent, so this is demanding; (b) We need to know the constants very precisely,
as we are using the fact that a positive and negative term cancel in (6.82). The analysis
performed in the previous sections does not give optimal control over these constants,
so this step also requires substantial work.

The above heuristic does not apply to τ ∈ (3, 5]. However, the constant in (6.81)
is always equal to 3, irrespective of the degree distribution. This suggests that also for
τ ∈ (3, 5], we should have γ ′ ≤ 1.
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