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Abstract: We quantise the massless vector potential A of electromagnetism in the pres-
ence of a classical electromagnetic (background) current, j , in a generally covariant way
on arbitrary globally hyperbolic spacetimes M . By carefully following general princi-
ples and procedures we clarify a number of topological issues. First we combine the
interpretation of A as a connection on a principal U (1)-bundle with the perspective of
general covariance to deduce a physical gauge equivalence relation, which is intimately
related to the Aharonov–Bohm effect. By Peierls’ method we subsequently find a Poisson
bracket on the space of local, affine observables of the theory. This Poisson bracket is in
general degenerate, leading to a quantum theory with non-local behaviour. We show that
this non-local behaviour can be fully explained in terms of Gauss’ law. Thus our analysis
establishes a relationship, via the Poisson bracket, between the Aharonov–Bohm effect
and Gauss’ law – a relationship which seems to have gone unnoticed so far. Furthermore,
we find a formula for the space of electric monopole charges in terms of the topology of
the underlying spacetime. Because it costs little extra effort, we emphasise the cohomo-
logical perspective and derive our results for general p-form fields A (p < dim(M)),
modulo exact fields, for the Lagrangian density L = 1

2 d A∧∗d A+ A∧∗ j . In conclusion
we note that the theory is not locally covariant, in the sense of Brunetti–Fredenhagen–
Verch. It is not possible to obtain such a theory by dividing out the centre of the algebras,
nor is it physically desirable to do so. Instead we argue that electromagnetism forces
us to weaken the axioms of the framework of local covariance, because the failure of
locality is physically well-understood and should be accommodated.

1. Introduction

The number of rigorous studies into a quantised, free electromagnetic field system propa-
gating in a globally hyperbolic spacetime is fairly small and unfortunately these studies
have been plagued by problems, or limitations, which are related to the topological
properties of the background spacetime. The main goal of this paper is to give a new
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presentation which overcomes these shortcomings and which fully clarifies all the topo-
logical properties of the theory. In this introduction we will briefly describe the geometric
point of view that will be expounded in the remainder of our paper and we will indicate
the problems that previous investigations encountered and how they will be overcome.

Historically, electromagnetism was described by a field strength F in Minkowski
spacetime, which is a two-form that contains both the electric field strength E and the
magnetic field strength B. The Maxwell equations for F entail that it is closed, d F = 0,
and as the topology of Minkowski spacetime is trivial we may always write F = d A,
where A is the so-called vector potential. Instead of using F as a fundamental object, one
may use gauge equivalence classes of vector potentials A, where two vector potentials
are identified when they give rise to the same field strength F . This means that they
differ by a closed, or, equivalently, an exact, one-form in Minkowski spacetime. (See
[9] for a description of electromagnetism in Minkowski spacetime from the perspective
of algebraic quantum field theory.)

When generalising the theory to more general spacetimes one encounters several
topological obstructions. Firstly, not every closed two-form F is exact, so there may not
always be a vector potential. Secondly, two vector potentials that give rise to the same
field strength differ by a closed one-form, but this one-form may not be exact, so the
choice of gauge equivalence relation to be used becomes relevant. This raises the ques-
tion of which of the three equivalent formulations of electromagnetism in Minkowski
spacetime leads to the correct generalisation in curved spacetimes: the theory based on
F , or a theory based on A with either choice of gauge equivalence.

In this paper we will identify connections on a trivial principal U (1)-bundle over a
spacetime M with vector potential one-forms A. Using general covariance this naturally
leads to a gauge equivalence relation that identifies vector potentials that differ by an exact
one-form.1 This point of view, which essentially coincides with that taken in the standard
model of elementary particles, has emerged in the course of time and incorporates the
well-known Aharonov–Bohm effect [17,40]. In order to treat this effect most clearly,
we will include in our description an electromagnetic current, j , which is regarded as a
given background structure. The choice of gauge equivalence that we employ can then be
motivated by the following physical considerations. Using the Aharonov–Bohm effect,
which is experimentally established [40], we can distinguish vector potentials that differ
by a closed one-form which is not exact. This means that the field strength F itself does
not contain enough information to account for all physical effects and also that a gauge
equivalence on A using closed forms, rather than exact ones, is too crude.

A few early studies in the quantisation of free electromagnetism focused on some
particular (curved) spacetimes and used methods that are ill-suited for a generally covari-
ant approach. Ashtekar and Isham [2] noticed that in Kruskal spacetime there are many
inequivalent Hilbert space representations for free electromagnetism, which are labeled
by magnetic and electric charges, when the field strength F is taken as the basic object.
The existence of inequivalent representations is a circumstance which is now known to
hold even for free scalar fields in general curved spacetimes and which is treated in the
modern literature by separating the construction of the abstract algebra of observables
and its representation. In [1] the usual Weyl quantisation in Minkowski spacetime is
compared to an interesting proposal for quantising the holonomies of the electric field
together with the magnetic field. The two approaches are found to be inequivalent, but
the holonomy based approach seems to make essential use of the choice of a Cauchy

1 Notice that, for any principal U (1)-bundle, the associated bundle of connections is an affine bundle
modeled on the space of one-forms on the base manifold [5].
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Table 1. The geometric interpretation of (classical) phase space

Field theoretic object Geometric interpretation Support

Field configurations, Modulo gauge Ambient kinematic phase space F General
Euler–Lagrange solutions, Modulo gauge Dynamical phase space manifold S General
Solutions to linearised equations around A0 Tangent space TA0S General
Observables for the linearised equation Cotangent space T ∗A0

S Compact
Peierls’ bracket Poisson 2-vector field on S, i.e. an (n.a.)

antisymmetric bilinear form on T ∗S.
We use a Lagrangian approach and ignore issues of infinite dimensional topology. The compact supports arise
from a duality. Note that in systems without gauge symmetry there is an injection G : T ∗A0

S → TA0 S,
whose range consists of spatially compact solutions. One may then interpret the Peierls’ bracket as a (densely
defined) symplectic form on TA0S. In the presence of gauge symmetries, however, G may fail to be injective
(see Remark 3.4 below) and the quantisation schemes based on symplectic and Poisson structures are no longer
equivalent

surface, which makes it doubtful that the approach can be made generally covariant. We
will follow the direction set out in the more recent literature, starting with [16], that uses
an algebraic approach based on the Weyl algebra, because it is the most obvious way
forward towards a generally covariant theory.

Some of the recent quantisations of free electromagnetism in curved spacetimes
were inadequate for describing the Aharonov–Bohm effect ([12,13] and Appendix A
of [33]): they either took the field strength as its basic object or they identified two
vector potentials that differ by a closed one-form. Other investigations run into problems
in the quantisation procedure. Although the well-posedness of the classical Maxwell
equations was not in doubt (see e.g. [42] for p-form fields), [16,20,42] only carry out
the quantisation in spacetimes with a compact Cauchy surface (and [20] additionally
assumes the triviality of a certain de Rham cohomology group). The reason appears to
be that they want to equip the space of spacelike compact solutions with a non-degenerate
symplectic form. This symplectic form gives rise to a Poisson space of observables, which
is quantised [16,42] using (infinitesimal) Weyl algebras. Lang [38] follows a similar path,
but without imposing topological restrictions. Although this quantisation procedure is
successful on any spacetime, it does not behave well under embeddings (cf. Remark
3.4). Alternatively, [12,13] consider general spacetimes and define a (degenerate) pre-
symplectic space, which is quantised directly (see also [20]). This can lead to algebras
with a non-trivial centre, depending on the topology of the underlying spacetime, which
entails that the theory is not locally covariant in the sense of [11]. Indeed, when a
spacetime with non-trivial cohomology is embedded into Minkowski spacetime, this can
lead to algebraic embeddings which vanish on the non-trivial centre. Although the lack
of injectivity was completely characterised in these papers, its interpretation remained
to be understood.

Our presentation differs2 by using Peierls’ method [30,41] to directly find a Poisson
structure on the space of observables, bypassing the need for a symplectic form. This
procedure fits in a general geometric framework for Lagrangian field theories [24,36],
whose most salient aspects are indicated in Table 1, and the resulting affine Poisson space
may be quantised using ideas from deformation quantisation, in particular Fedosov’s

2 We wish to point out that Hollands [33] seems to follow the same quantisation scheme as we do in its study
of quantum Yang-Mills theories. However, this paper does not compute the centre of the quantum algebra
for the U (1) case or investigate its interpretation in this setting. In fact, it only discusses these issues in its
Appendix A, where an alternative quantisation scheme is used.
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Fig. 1. A diagrammatic representation of the logical relationship between the Aharonov–Bohm effect and
Gauss’ law via the Poisson bracket

quantisation method (cf. [47]). Whereas the two approaches are equivalent for the scalar
field, where a non-degenerate symplectic form always exists, this is no longer the case
for electromagnetism, due to the gauge symmetry. In order to obtain an equivalent
formulation in terms of the space of classical spacelike compact solutions, one would
have to modify the gauge equivalence of those solutions in a subtle, but very relevant,
way. (This modification was also noted, but not explained, by [19] in the case of linearised
gravity (see also [31]). For spacetimes with compact Cauchy surfaces the two approaches
are equivalent.)

Carefully computing the Poisson structure by the standard procedure (Peierls’ method),
we find a different space of degeneracies than [12,13]. Furthermore, we show that there
is a perfectly satisfactory explanation for these degeneracies in the form of Gauss’ law.
In particular, the lack of injectivity of algebraic morphisms is only a lack of locality, not
of general covariance, which occurs when observables in a spacetime region M exploit
Gauss’ law to measure charges that are located elsewhere in spacetime. (Using classical
spacelike compact solutions without modifying the gauge equivalence, one would not
find any degeneracies, but the theory would not behave well under embeddings.) The
logical relationship between the Aharonov–Bohm effect and Gauss’ law that we estab-
lish by this procedure is indicated in Fig. 1. In addition to a full clarification of the lack
of locality of the quantum vector potential, our analysis also leads to a formula for the
space of electric monopole charges in terms of the topology of the underlying spacetime.
Moreover, with little extra effort we derive our results for general p-form fields A, where
p < n, the spacetime dimension.

It is not possible to recover locally covariant theories by dividing out the centre of the
algebras, nor is this physically desirable. It is possible to obtain such theories by going
to an off-shell algebra, at the price of losing the dynamics, which is also physically
undesirable. Instead, we argue that one should generalise the axiomatic framework of
local covariance, in order to accommodate the lack of locality of electromagnetism,
which is physically well-understood. What kind of axiomatic restriction should be placed
on the (lack of) injectivity for general spacetime embeddings, if any, remains unclear.
For the theories that we consider, injectivity of morphisms still holds for embeddings
of spacetimes with trivial topology (in the spirit of [23]). However, a purely topological
resolution of this issue seems unlikely, because other theories (like linearised gravity
[19]) possess gauge symmetries that are not related to the spacetime topology alone, but
also to the background metric.

In the algebraic approach the construction of the algebras of the theory is only the first
step, which should be followed by a discussion of the class of physical states. This topic,
however, lies outside the scope of our paper, which aims to clarify the topological issues
involved in the classical theory and on preserving them during quantisation. Nevertheless
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we would like to remark here that we expect that it should be possible to extend the results
of [20] to define Hadamard states for our theory on any globally hyperbolic spacetime and
to prove the existence of such states by a deformation argument. Also the construction
of Hadamard states from a bulk-to-boundary correspondence [13] is expected to remain
valid. In addition we would like to point the interested reader to [22], which constructs
quasi-free Hadamard states on a large class of spacetimes with the additional property
that a Gupta–Bleuler type description of the representation remains valid.

We have organised the contents of our paper as follows. In Sect. 2 we will describe
the (essentially well-known) results on the classical dynamics of the vector potential
and its p-form generalisations. The main result is the well-posedness of the initial value
formulation in the presence of a background current, also for distributional field con-
figurations. In Sect. 3 we find the Poisson structure on the classical phase space, using
Peierls’ method, and we study its degeneracy, which is related to Gauss’ law and the
spacetime topology. Due to the background current the phase space is in general an affine
Poisson space, which will be quantised in Sect. 4. A quantisation of the field strength
can be derived from that of the vector potential. Finally we will show that the theory is
not locally covariant and that the lack of locality may be interpreted in terms of Gauss’
law, also at the quantum level.

2. Classical Dynamics of p-Form Fields

Most of the material that we present here on the classical dynamics of the vector po-
tential and its p-form generalisations is not new, but in view of our later applications
it is fitting to give some results and notations that go beyond standard treatments. This
concerns in particular details on distributional solutions to normally hyperbolic and the
Maxwell equations. The Sects. 2.1 and 2.2 introduce the relevant results and notations
from differential geometry, based on [10,14], and for the Cauchy problem for normally
hyperbolic operators [3]. Subsequently we turn to the Cauchy problem for the Maxwell
equations, in Sect. 2.3, which is a slight generalisation of the work of Pfenning [42].

2.1. Geometric preliminaries. Consider a smooth, n-dimensional manifold M, which
we assume to be Hausdorff, connected, oriented and paracompact. We will denote by∧p M the vector bundle of alternating p-linear forms on T M and the space of their
smooth sections, the p-forms on M, will be denoted by �p(M). The exterior algebra
of differential forms is �(M) = ⊕n

p=0�
p(M), equipped with the exterior (wedge)

product. The exterior derivative d :�(M)→�(M) maps p-forms to (p + 1)-forms,
does not increase the support and satisfies d◦d = 0. A differential formα is called closed
when dα = 0 and exact when α = dβ for some differential form β. The space of closed
p-forms will be denoted by �p

d (M). Corresponding spaces of compactly supported
forms are indicated with a subscript 0 and we may define the de Rham cohomology
groups of M

H p(M) := �
p
d (M)

d�p−1(M)
H p

0 (M) := �
p
0,d(M)

d�p−1
0 (M)

.

The orientation of M allows us to define integration as a linear map
∫
M :�n

0→R

and there is a bilinear map

( , ) :�p(M)⊗�n−p
0 (M)→R (α, β) :=

∫

M
α ∧ β.
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By Stokes’ Theorem we have (dα, β) = (−1)p+1(α, dβ) if α is a p-form. Moreover,
the pairing ( , ) gives rise to the following isomorphism, known as Poincaré duality:

H p
0 (M)∗ � Hn−p(M).

When the de Rham-cohomology groups are finite dimensional we also have H p
0 (M) �

Hn−p(M)∗.

Example 2.1. It is important to note that for a compactly supported, closed form α ∈
�

p
0,d(M) the fact that [α] = 0 ∈ H p

0 (M) trivially implies that [α] = 0 ∈ H p(M), but
the converse is generally not true. A typical example in R is the form α := f (r)dr with
f ∈ C∞0 (R). We always have α = dβ, where β is the function β(r) := ∫ r

−∞ f (s)ds,
which vanishes in a neighbourhood of r = −∞ and is constant in a neighbourhood of
r = ∞. β is compactly supported if and only if

∫
f = 0.

We denote byD p(M) := �n−p
0 (M)′ the space of distribution densities with values in

the dual vector bundle of
∧n−p M.3 The pairing ( , ) can be used to construct a canonical

embedding of �p(M) into D p(M), given by α �→ (α, .). Differential operators on
distributions and exterior products with smooth forms are to be understood by duality
in terms of the pairing ( , ). As for smooth differential forms we define a distributional
differential form α to be closed, respectively exact, when dα = 0, respectively α =
dβ. Compactly supported and closed distribution densities are indicated by the same
subscripts as in the smooth case.

An exact distributional form α = dβ ∈ D p(M) vanishes on all closed γ ∈
�

n−p
0,d (M), because (α, γ ) = (−1)p(β, dγ ) = 0. That the converse is also true is a

result of de Rham ([14] Sec. 22, 23, in particular Theorem 17’):

Theorem 2.2. α ∈ D p
d (M) is in dD p−1(M) if and only if (α, γ ) = 0 for all γ ∈

�
n−p
0,d (M).α ∈ D p

0,d(M) is in dD p−1
0 (M) if and only if (α, γ ) = 0 for all γ ∈ �p

d (M).

Consequently, the cohomology groups for distributional p-forms, which are defined by

(H ′)p(M) := D p
d (M)

dD p−1(M)
(H ′)p

0 (M) := D p
0,d(M)

dD p−1
0 (M)

can be identified with those for smooth p-forms as follows (cf. [14] Theorem 14):

(H ′)p(M) � Hn−p
0 (M)∗ � H p(M), (H ′)p

0 (M) � H p
0 (M).

As a further piece of notation we consider a smoothly embedded, oriented submani-
fold � ⊂M, so that the vector bundles

∧p M restrict to vector bundles
∧p M|� . In

general these restricted bundles cannot be canonically identified with
∧p

�, except for
p = 0, as can be seen by considering their dimensions. With some abuse of notation we
will write�p(M)|� for smooth sections of

∧p M|� over�, and similarly for the case

3 In this paper the term distribution is always meant in the sense of analysis, because the differential
geometric notion of distribution (as it occurs e.g. in the formulation of Frobenius’ Theorem) will not be
needed explicitly. In the literature, however, distributional sections of

∧p M are often called currents, in
order to avoid confusion. The term current was introduced by de Rham (cf. [14]) because, in the setting of
electromagnetism, such objects can be interpreted as electromagnetic currents. Ironically, in this paper we will
mostly consider smooth electromagnetic background currents.
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of compactly supported sections and distribution densities on �. Note that the restric-
tion of a density from M to � incurs an additional factor, when compared to ordinary
sections, due to the change in volume form.

By a spacetime M = (M, g) we mean an n-dimensional manifold M as above
with n ≥ 2, endowed with a smooth pseudo-Riemannian metric g of signature + −
. . .−. We will assume that M is globally hyperbolic, which means by definition that it
admits a Cauchy surface. The latter is a subset which is intersected exactly once by each
inextendible timelike curve. A globally hyperbolic spacetime can be foliated by smooth,
spacelike Cauchy surfaces [6]. In the remainder of our paper we will only consider
Cauchy surfaces which are spacelike and smooth.

It will occasionally be useful to consider forms whose support properties are related
to the Lorentzian geometry of a spacetime M as follows [3,19,25,45]:

�
p
sc(M) =

{
α∈�p(M)| supp(α) ⊂ J (K ) for some compact K ⊂ M

}

�
p
tc(M) =

{
α∈�p(M)| supp(α)⊂ J +(�−)∩ J−(�+) for two Cauchy surfaces �±⊂M

}
.

The subscripts “sc” and “tc” stand for spacelike compact and timelike compact, respec-
tively. We note that�p

sc(M)∩�p
tc(M) = �p

0 (M), by global hyperbolicity. Distribution
densities with timelike, resp. spacelike, compact support will be denoted similarly by
D p

tc(M), resp. D p
sc(M).

In terms of local coordinates and an arbitrary (local) derivative operator ∇a , the
differential geometric calculus given above can be expressed as follows. A p-form α

corresponds to a fully anti-symmetric tensor αa1···ap . We have dxa1 ∧ · · · ∧ dxap =
p!dx [a1⊗· · ·⊗dxap], where the square brackets denote antisymmetrisation as an idempo-
tent operator. The exterior product is given by (α∧β)a1···ap+q = (p+q)!

p!q! α[a1···apβap+1···ap+q ]
and the exterior derivative takes the form (dα)a0···ap = (p + 1)∇[a0αa1···ap]. The met-
ric volume form is given by (dvolg)a1···an =

√| det(gμν)|εa1···an , with the Levi–Civita
tensor satisfying ε1···n = 1.

The metric volume form allows us to define a fibre-preserving linear involution ∗ :∧p
(M)→∧n−p

(M), called the Hodge dual. In local coordinates we have

(∗α)ap+1···an =
√| det(gμν)|

p! εa1···anα
a1···ap ,

which gives rise to a support preserving map∗:�p(M)→�n−p(M). For any embedding
� ⊂ M the Hodge dual ∗ restricts to a map on the restricted vector bundle

∧
M |� which

has the same pointwise properties. In addition, if� is not null, we can consider the Hodge
dual in the induced metric, which we denote by∗� . Forα, β ∈∧p

x M and γ ∈∧n−p
x M

we have the following identities:

∗∗ α = (−1)n−1+p(n−p)α ∗ α ∧ ∗γ =(−1)n−1α ∧ γ ∗ α ∧ β=(−1)p(n−p)α ∧ ∗β
α ∧ ∗β = β ∧ ∗α = 1

p!α
a1···apβa1···ap dvolg.

From this it is easy to see that the Hodge dual can be extended to an operation on
distributions, by duality.

The exterior co-derivative is defined by δ := (−1)p ∗−1 d∗, when acting on p-forms.
It defines a linear map δ :�p(M)→�p−1(M) which does not increase the support and
in local coordinates it takes the form

(δα)a2···ap = −∇a1αa1···ap .
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A differential form α is called co-closed when δα = 0 and co-exact when α = δβ for
some differential form β. The space of co-closed p-forms will be denoted by �p

δ (M)
and similarly for the distributional and compactly supported case. Because δ ◦δ = 0 one
can also define cohomology groups, but these are easily seen to be isomorphic to the de
Rham cohomology groups, by Hodge duality. For α, β ∈ �p(M) and γ ∈ �n−p+1

0 (M)
we note that

(α, ∗β) = (β, ∗α) (δα, γ ) = (−1)p(α, δγ ) (δα, ∗β) = −(α, ∗dβ),
where the last equality is valid when the supports of α and β have a compact intersection.

2.2. The Cauchy problem for normally hyperbolic operators. In preparation for the
initial value formulation of the Maxwell equations, we first review the Cauchy problem
for a normally hyperbolic operator P acting on sections of a vector bundle V over M [3].
The example that is of prime importance in this paper is the de Rham–Laplace–Beltrami
operator � := dδ + δd, whose action on A ∈ �p(M) is given in local coordinates by
([14] Sec. 26)

(�A)a1···ap = −∇b∇b Aa1···ap + pR b
[a1

A|b|a2···ap] −
(

p
2

)

R bc
[a1a2

A|bc|a3···ap]. (1)

Note that � is indeed a normally hyperbolic operator on�p(M) for any p ∈ {0, . . . , n}
(cf. [3]).

In general we denote the smooth sections of V over M by 
(V) and the distribution
densities with values in the dual bundle V∗ by 
′(V∗) := 
0(V)′, where the subscript
indicates a compact support, as usual. The duality

(α, A) :=
∫

M
α(A)dvolg, α ∈ 
0(V∗), A ∈ 
(V)

allows us to identify 
(V) with a subspace of 
′(V). P has a formally adjoint operator
P∗ on V∗, which satisfies (α, P A) = (P∗α, A) and which is also normally hyperbolic.
Given P there is a uniquely associated P-compatible connection on V , which we denote
by ∇a (cf. [3] Lemma 1.5.5).

If we denote the restriction of the bundle to a Cauchy surface � by V|� , then the
main result on the Cauchy problem can be formulated as follows:

Theorem 2.3. Given j ∈ 
(V) and A0, A1 ∈ 
(V|�), where � ⊂ M is a Cauchy
surface with future pointing unit normal vector field na, there is a unique A ∈ 
(V)
such that

P A = j, A|� = A0, na∇a A|� = A1,

where∇a is the P-compatible connection. A depends continuously on the data ( j, A0, A1)

(in the usual Fréchet topology of smooth sections). Furthermore, A is supported in J (K )
with K := supp( j) ∪ supp(A0) ∪ supp(A1).

For the case of compactly supported data ( j, A0, A1) (and the test-section topology on

0(V) and 
0(V|�)) a proof can be found in [3], Theorems 3.2.11 and 3.2.12. For data
with general supports, the proof of existence, uniqueness and the support property is
directly analogous to that of the scalar case, which is given in [29] Corollary 5. The
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continuity for general data follows from the compactly supported case, in light of the
support properties of the solution.

Below we will show that the regularity of the initial data is not essential, if one
also allows distributional solutions. First, however, we will establish some useful results
concerning fundamental solutions for P . Using Theorem 2.3 one can prove the existence
of unique advanced (−) and retarded (+) fundamental solutions G± for P . These are
defined as distributional sections of the bundle V � V∗ over M×2 and by their support
properties they naturally define continuous linear maps [3,45]

G± : 
0(V)→ 
sc(V), G± : 
tc(V)→ 
(V).
If we let (G±)∗ denote the advanced and retarded fundamental solutions for P∗ we find
from a formal partial integration that

((G±)∗α, A) = (α,G∓A), α ∈ 
0(V∗), A ∈ 
0(V), (2)

because the supports of (G±)∗α and G∓A have compact intersection (cf. [3] Lemma
3.4.4). This equality remains true when either α or A only has timelike compact support.

The fundamental solutions can be used to find (distributional) solutions A ∈ 
′(V)
to the wave equation P A = 0, simply by setting A := Gβ with β ∈ 
′tc(V) and
G := G− − G+ and exploiting the duality to define the action of G on distribution
densities. If β is smooth, then so is A. We will see below that all solutions are of this
form and that for Gβ ∈ 
′sc(V)we may choose β to be compactly supported. Moreover,
G can be used to give a useful expression of a general solution A in terms of its initial
data, as the next lemma shows.

Lemma 2.4. If A ∈ 
′(V) satisfies P A = j ∈ 
(V) and α ∈ 
0(V∗), then

(α, A) =
∑

±

∫

J±(�)
((G∓)∗α)( j)dvolg +

∫

�

(G∗α)1(A0)− (G∗α)0(A1),

where � is a Cauchy surface with future pointing unit normal vector field na, G∗ :=
(G−)∗ − (G+)∗, A0 := A|� , A1 := na∇a A|� , (G∗α)0 := G∗α|� , (G∗α)1 :=
na∇∗a G∗α|� , and ∇a, resp. ∇∗a , are the P-compatible, resp. P∗-compatible, connec-
tions.

Proof. In the smooth case this follows from Stokes’ Theorem by a well-known compu-
tation:

(α, A) =
∑

±

∫

J±(�)
(P∗(G∓)∗α)(A)dvolg

=
∑

±

∫

J±(�)
((G∓)∗α)( j)−∇a((∇∗a (G∓)∗α)(A)− ((G∓)∗α)(∇a A))dvolg

=
∑

±

∫

J±(�)
((G∓)∗α)( j)dvolg +

∑

±

∫

�

±na((∇∗a (G∓)∗α)(A)

−((G∓)∗α)(∇a A))dvolh

=
∑

±

∫

J±(�)
((G∓)∗α)( j)dvolg +

∫

�

(na∇∗a G∗α)(A)− (G∗α)(na∇a A))dvolh .
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For the distributional case we note that the initial data of A are well-defined, because
P A = j is smooth, so W F(A) only contains light-like vectors.4 The computation above
can then be performed in an analogous fashion, by multiplication with the characteristic
functions of the sets J±(�). ��

We are now ready to consider the well-posedness of the Cauchy problem in the
distributional case.

Theorem 2.5. Given j ∈ 
(V) and A0, A1 ∈ 
′(V|�), there exists a unique A ∈ 
′(V)
such that

P A = j, A|� = A0, na∇a A|� = A1

and A depends continuously on the data ( j, A0, A1) (in the distributional topology on the
Ai ). Furthermore, A is supported in J (K ) with K := supp( j)∪ supp(A0)∪ supp(A1).

Proof. The expression in Lemma 2.4 proves that the solution A is uniquely determined
in terms of the data ( j, A0, A1). Moreover, it proves the existence of a solution A,
because the right-hand side of that expression depends continuously and linearly on
α, as the maps α �→ (G±)∗α and the subsequent restriction to initial data are linear
and continuous. Furthermore, if we define A by the right-hand side, then A solves the
desired equation (as α = P∗β has (G±)∗α = β) and one may check that it reproduces
the given initial data (by approximating the Ai by smooth data). Finally we note that A
depends continuously on the data ( j, A0, A1), which again follows immediately from the
expression in Lemma 2.4, and that its support property follows from those of (G±)∗. ��

If j ∈ 
′(V) with W F( j) ∩ N∗� = ∅, where N∗� is the conormal bundle of
� ⊂ M (cf. [34]), then the proof of existence and uniqueness still works. To prove
the continuous dependence of A on j , however, one presumably needs to impose some
Hörmander topology on j near �, so that the products χ± j with the characteristic
functions χ± of J±(�) depend continuously on j . In any case, in the remainder of our
paper we will only be concerned with smooth j , so that the wave front set of the solution
A only contains light-like covectors and its initial data are well-defined on all spacelike
Cauchy surfaces.

The fundamental solutions G± are also useful to characterise the freedom involved
in writing a solution A of the homogeneous wave equation in the form Gβ (cf. [16]
Prop.4):

Proposition 2.6. In the notation of Theorem 2.5, A has spacelike compact support if
and only if all of j, A0, A1 have spacelike compact support. When j = 0, A = Gα for
some α ∈ 
′tc(V). If A has spacelike compact support we can choose α ∈ 
′0(V) and
if A is smooth, then α can be chosen smooth also. Finally, if Gα = 0 with α ∈ 
′tc(V),
then α = Pβ for some β ∈ 
′tc(V), β has compact support if and only if α does and β
can be chosen smooth if and only if α is smooth.

Proof. Suppose A has spacelike compact support, supp(A) ⊂ J (K ) with compact
K ⊂ M . The initial data on any Cauchy surface � are compactly supported, because
J (K ) ∩ � is compact, while the support of j = �A is contained in that of A, so j
also has spacelike compact support. For the converse of the first claim we first consider

4 For a definition of the wave front set W F(A) and background material on microlocal analysis we refer
to [34,43].



Electromagnetism, Local Covariance, the Aharonov–Bohm Effect and Gauss’ Law 635

compactly supported j , in which case the result follows directly from Theorem 2.5. By
linearity it then only remains to consider the case of vanishing initial data on � and,
moreover, j ≡ 0 on a neighbourhood of �. Let K ⊂ M be a compact set such that
J (K ) contains the support of j . J (K ) has a compact intersection L with� and we note
that supp( j) ∩ J±(�) ⊂ J±(L). Now let φn ∈ �0

0(I
+(�)) be a partition of unity of

I +(�), with n ∈ N, and let jn := φn j . We may then consider the solutions AN :=∑N
n=0 G+ jn of P AN = ∑N

n=0 jn , which have vanishing initial data on � and their
support is contained in J +(L). The limit A+ := limN→∞ AN is well-defined, because
for every Cauchy surface�′ the set J−(�′)∩J +(�)∩supp( j) is compact in I +(�), so for
M, N sufficiently large we have AN = AM on J−(�′). Moreover, supp(A+) ⊂ J +(L),
because this is true for all N . Constructing a solution A− of P A− = j on I−(�) in a
similar way we find A := A++ A−with spacelike compact support satisfying P A = j on
all of M and with vanishing initial data. This completes the proof of the first statement.

When j = 0 it is clear that Gα is a solution (with spacelike compact support,
when α is compactly supported), by the properties of G±. Conversely, given initial data
Ai ∈ 
′(V|�) we may define β ∈ 
′tc(V) by

(β, η) := −
∫

�

A0(n
b∇bη)− A1(η), η ∈ 
0(V).

Because the identity (2) can be extended to the case where one of the sections is a
distribution, we see that for any D ∈ 
0(V)

(Gβ, η) = −(β,Gη) = (A, η),
where we used Lemma 2.4 for the final equality. Therefore A = Gβ. Now let χ ∈
�0(M) be identically 1 to the future of some Cauchy surface �+ and identically 0 to
the past of some Cauchy surface �−. We let α := −Pχ A ∈ 
′tc(V) and note that
α = ∇a((∇aχ)A) − (∇aχ)∇a A. The compact support, resp. smoothness, of α follow
from spacelike compact support, resp. smoothness, of A. BecauseχG−β and (1−χ)G+β

are compactly supported too we have

G±α = −G±P(χG−β) + G±PG+β − G±P((1− χ)G+β)

= −χG−β + G±β − (1− χ)G+β

and hence Gα = Gβ = A. This proves the second statement.
Finally, if Gα = 0 for α ∈ 
′tc(V), then β := G−α = G+α has timelike compact

support and α = Pβ. Moreover, β is smooth, resp. compactly supported, if and only if
α is smooth, resp. compactly supported. This completes the proof. ��
Remark 2.7. The solution map S : 
′(V|�)⊕2 → 
′(V) is not only continuous (by
Theorem 2.5), but also a homeomorphism onto its range. To see why the inverse is
continuous, fix two test-sectionsα0, α1 ∈ 
0(V∗|�). Using Theorem 2.5 and Proposition
2.6, applied to P∗, we find a test-sectionα ∈ 
0(V∗) such that G∗α has initial dataα0, α1.
Because of Lemma 2.4 this means that the convergence of solutions A on M implies the
convergence of their initial data.

To conclude this subsection we return to the special case of the de Rham–Laplace–
Beltrami operator �. One easily verifies that

d� = �d, δ� = �δ, ∗� = �∗
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and (α, ∗�β) = (�α, ∗β) when either α or β has compact support. We now let G±
denote the advanced and retarded fundamental solutions for � on �(M) and we note
that their restrictions to any�p(M) are the corresponding fundamental solutions for the
restriction of � to �p(M). It follows that ([42] Prop. 2.1)

dG± = G±d, δG± = G±δ, dG = Gd, δG = Gδ,

as may easily be checked by noticing that for any source α ∈ �p
tc(M) the solutions

β = dG±α − G±dα and β = δG±α − G±δα of �β = 0 vanish to the past or future
of some Cauchy surface and hence β = 0.

Corollary 2.8. Let α ∈ D p
tc(M).

1. dGα = 0 if and only if dα = dδβ for some β ∈ D p+1
tc,d (M). If, in addition, δα = 0,

then α = δβ.
2. δGα = 0 if and only if δα = δdβ for some β ∈ D p−1

tc,δ (M). If, in addition, dα = 0,
then α = dβ.

In both cases β can be chosen smooth, resp. compactly supported, whenever α is smooth,
resp. compactly supported.

Proof. We first note that if 0 = dGα = Gdα, then dα = �β for someβ ∈ D p+1
tc (M), by

Proposition 2.6. β can be chosen smooth, respectively compactly supported, whenever
α is smooth, respectively compactly supported, by the same proposition. Note that 0 =
ddα = d�β = �dβ, so dβ = 0, because it has timelike compact support. Thus we have
dα = dδβ. Conversely, if dα = dδβ and dβ = 0, then dGα = Gdδβ = −Gδdβ = 0.
Now, if in addition δα = 0, then �(α − δβ) = δd(α − δβ) = 0, so α = δβ by the
timelike compact support of α − δβ. The proof for the case δGα = 0 is completely
analogous. ��

2.3. The Maxwell equations for p-form fields modulo gauge equivalence. We now turn
to the Cauchy problem for the Maxwell equations. In Paragraph 2.3.1 we set the scene by
considering the geometric setting for electromagnetism and we discuss the Lagrangian
formulation for p-form fields. Paragraph 2.3.2 establishes a parametrisation for the
initial data of p-form fields that is suitable for solving the Maxwell equations [38,42].
This leads to computations which are somewhat involved, because [A] is most easily
described in terms of differential geometric notation, whereas the initial data are most
naturally described in terms of tensor calculus. Finally, in Paragraph 2.3.3, we discuss
the Cauchy problem for the Maxwell equations.

2.3.1. The geometric setting of the vector potential. Let us then consider the physical
situation of electromagnetism. A classical vector potential, in the most general setting,
is a principal connection on a principal U (1)-bundle P over M (see [39] Ch. 10.1 or
[4] for more details). This U (1)-bundle arises as the structure (gauge) group of matter
fields that carry electric charge, but we will not need an explicit description of these
matter fields. We may identify the connection A with a one-form A ∈ �1(M). (This
one-form is not canonical. The space of all connections is an affine space modeled over
�1(M), cf. [4,5].) A gauge transformation on P can then be described by a U (1)-valued
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function λ on M , which changes the connection one-form A into A′ := A − iλ−1dλ.5

We will denote the space of all U (1)-valued functions on M by G(M). In particular we
may choose λ = eiχ for any χ ∈ �0(M), so that A′ := A + dχ . This means that A is
gauge equivalent to A′ whenever A− A′ ∈ d�0(M), but the converse is not necessarily
true, because not all U (1)-valued functions are necessarily of the exponential form eiχ .

A generally covariant perspective brings to light a problem that indicates that the space
G(M) is too large to act as the physical gauge group. To exemplify this we consider an
embedding ψ : M → M̃ of two spacetimes together with two connection one-forms
Ã, Ã′ on M̃ and their pull-backs A := ψ∗( Ã), A′ := ψ∗( Ã′) to M . Now suppose
that A and A′ are gauge equivalent, which means that we cannot distinguish between
A and A′ by performing measurements in M . Based on general covariance one would
expect that it follows that Ã and Ã′ cannot be distinguished by any measurements
in ψ(M). In other words, given a λ ∈ G(M) one expects that there is a λ̃ ∈ G(M̃)
such that ψ∗(λ̃−1dλ̃) = λ−1dλ−1. However, in Example 3.1 below, where we describe
the Aharonov–Bohm effect, we will see explicitly that this is not always true. This
problem can even occur whenψ is causal, so no classical information from the spacelike
complement ψ(M)⊥ in M̃ should influence the physical description in ψ(M).

To resolve this issue we take the perspective of general covariance and show how
it motivates us to modify the gauge equivalence. In analogy to [11] we introduce the
following two categories:

Definition 2.9. • Spac is the category whose objects are globally hyperbolic space-
times M = (M, g) and whose morphisms are orientation and time orientation pre-
serving embeddings ψ : M→ M̃ such that ψ∗g̃ = g and ψ(M) ⊂ M̃ is causally
convex (i.e. ψ∗( J̃±(ψ(p))) = J±(p) for all p ∈ M).

• Grp is the category whose objects are groups and whose morphisms are group ho-
momorphisms.

There is a functor G :Spac→Grp such that G(M) = G(M) and G(ψ) = ψ∗ is the
pull-back. We will endow the space G(M) with the topology of uniform convergence of
all derivatives on all compact sets of M (cf. [32]).

Theorem 2.10. There exists a unique functor G0 :Spac→Grp such that

1. G0(M) ⊂ G(M),
2. for any morphisms ψ :M→ M̃ in Spac, G0(ψ) = G(ψ)|G0(M̃)

= ψ∗|G0(M̃)
has a

dense range (in the relative topology induced by the G(M)),
3. for any functor G′0 satisfying the first two properties we have G′0(M) ⊂ G0(M).

If the spacetime dimension n ≥ 3, then

G0(M) =
{

eiχ | χ ∈ �0(M)
}
.

G0(M) is the largest subgroup of G(M) which avoids the problem indicated above, up
to a topological closure. For this reason we make the following definition:

Definition 2.11. We call G0(M) := G0(M) the physical gauge group.

5 Here the term λ−1dλ is to be interpreted in adapted local coordinates, viewing U (1) as a subset of C. The
gauge transformations are exactly all fibre bundle automorphisms of P covering the identity which preserve
the Lagrangian (3) of the theory, assuming that the matter fields that give rise to j also transform appropriately.
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Proof. Let F be the set of functors satisfying the first two conditions. F is not empty,
because it contains the trivial functor with M �→ {e} where e is the identity element of
G(M). Now define

G0(M) :=
{
γ1 · · · γ j | γi ∈ Fi (M),Fi ∈ F

}
.

Because G(M) is a commutative group, G0(M) is a subgroup. Because the product in
G(M) is jointly continuous one may verify directly that G0 ∈ F . Furthermore, for any
F ∈ F we have F(M) ⊂ G0(M) for all M , by construction. This maximality property
also entails the uniqueness of G0.

Now consider the functor F0 with

F0(M) :=
{

eiχ | χ ∈ �0(M)
}

and F0(ψ) = ψ∗. Any morphism ψ : M→ M̃ is an embedding, so the push-forward
ψ∗ :�0

0(M)→�0
0(M̃) is well-defined. By considering λ̃ = eiψ∗χ with χ ∈ �0

0(M) we
see that ψ∗(λ̃) = eiχ , so ψ∗(F0(M̃)) contains eiχ for all χ ∈ �0

0(M). This is already a
dense set in F0(M), so F0 ∈ F .

Let λ ∈ G(M) be arbitrary. Locally λ is always of exponential form, λ = eiχ , where
χ is unique up an additive constant in 2πZ. To see if λ is globally of exponential form we
fix a base point x0 ∈ M and a χ0 ∈ R such that λ(x0) = eiχ0 . For each x1 ∈ M we can
find a smooth curve γ : [0, 1]→M starting at x0 and ending at x1, because M is arcwise
connected. For each such curve there is a unique smooth function ξγ on γ such that
λ = eiξγ on γ and ξγ (x0) = χ0. For x1 = γ (1)we may try to define χ(x1) := ξγ (γ (1))
and the only question is whether this is independent of the choice of γ . In other words,
λ is globally of exponential form if and only if for each loop γ : [0, 1]→M starting and
ending at x0 ∈ M we have ξγ (γ (1)) = ξγ (γ (0)). (Using suitable approximations in
contractible neighbourhoods of the end points, the loop may always be chosen smooth.)
Note that this condition is invariant under homotopy, so the condition is equivalent to
the vanishing of all holonomies (cf. [37,39]). Also note that the holonomy along a curve
γ depends continuously on λ.

If M is simply connected, then G(M) = F0(M) and hence G0(M) = F0(M). To
prove this equality for general M (and n ≥ 3) we proceed in several small steps. First
we suppose that for some M there is a λ ∈ G0(M) which has a non-zero holonomy a
along a loop γ . We may pick an arbitrary (smooth, spacelike) Cauchy surface �0 ⊂ M
and foliate M = (M, g) by Cauchy surfaces, such that there is a diffeomorphism
ψ :M→R×� for which the projection T onto the first coordinate yields a global time
function t = ψ∗T with �0 = t−1(0) [7]. We then write γ (s) = (t (s), ρ(s)) and we
construct a homotopy H between γ and the curve γ0(s) := (0, ρ(s)), simply by setting
H(τ, s) := ((1− τ)t (s), ρ(s)). As holonomies of λ are homotopy invariant, we see that
the holonomy along γ0 is again a �= 0. Thus we see that it suffices to consider loops in
an arbitrary Cauchy surface of M .

As a second step we consider a morphism ψ :M→ M̃ . If there exists a λ ∈ G0(M)
which has a non-zero holonomy a along a loop γ in M and ε > 0, then by assumption
on the functor G0 there exists a λ̃ ∈ G0(M̃) which has a holonomy along ψ∗(γ ) in
(a − ε, a + ε). Choosing ε small enough we can arrange for this holonomy to be non-
zero, so the existence of non-zero holonomies for G0 in M implies the existence of
non-zero holonomies for G0 in M̃ . When the range of ψ(M) contains a Cauchy surface
for M̃ , the converse is also true by the previous paragraph. Using the functorial properties
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of G0 and a spacetime deformation argument [18,26] we may then conclude that the
existence of non-zero holonomies for G0 in M is equivalent to the existence of non-zero
holonomies for G0 in any spacetime M̃ diffeomorphic to M . In particular we may choose
M̃ to be ultrastatic, by endowing � with a complete Riemannian metric h and setting
M̃ = (R × �,−dt2 + h). (Note that such a spacetime is always globally hyperbolic
[44].)

For the third step we consider an embedding γ of S
1 into the Cauchy surface �0 =

t−1(0) of an ultrastatic spacetime M = (R×�,−dt2 + h), where t is the Killing time
coordinate. With a slight abuse of notation we will denote the range of the embedding
again by γ . We may choose a tubular neighbourhood V of γ [32] Theorem 4.5.2, i.e.
a vector bundle V over S

1 with an embedding τ : V → M such that τ(V ) is an open
neighbourhood of γ in M and the restriction of τ to the zero section of V coincides
with the embedding γ . By construction the tubular neighbourhood is diffeomorphic to
the normal bundle Nγ of γ in�, where we use the Riemannian metric on� to identify
Nγ as a subbundle of T�|γ . Consider the short exact sequence of vector bundles

0→ T γ → T�|γ → Nγ → 0

and note that both T γ and T�|γ are orientable vector bundles, because both S
1 and

� are orientable. It follows from [32] Lemma 4.4.1 that V � Nγ is also an orientable
vector bundle. Now consider another embedding γ̃ of S

1 into �̃ := R
n−1, viewed as a

Euclidean space. Such an embedding exists when n ≥ 3. We may again choose a tubular
neighbourhood Ṽ of γ̃ , which is an orientable vector bundle by the same argument as
for V . Moreover, we may ensure that the range of τ̃ is bounded. By [32] Section 4.4
Exercise 2 there is a (vector bundle) isomorphismψV :V→ Ṽ , because V and Ṽ are both
orientable and they are of the same dimension. This means that there is a diffeomorphism
ψ := τ̃ ◦ψV ◦ τ−1 between the tubular neighbourhoods τ(V ) of γ in� and τ̃ (Ṽ ) in �̃.

By using a partition of unity on � subordinate to the cover
{
τ̃ (Ṽ ), �̃\γ̃

}
we may

construct a complete Riemannian metric h̃ on �̃ which coincides with ψ∗h on a neigh-
bourhood Ũ of γ̃ . (Here we use the fact that the range of τ̃ is bounded, so we may
recover the usual Euclidean metric outside a bounded set and thus ensure completeness
of h̃.) We let M̃ be the ultrastatic spacetime M̃ = (R× �̃,−dt̃2 + h̃). Note that there is
an isometric diffeomorphism ψ−1 :Ũ→U onto some neighbourhood U ⊂ � of γ . We
can extend this to an isometric diffeomorphism � of D(Ũ ) onto D(U ) ⊂ M by setting
�(t̃, ψ(p)) := (t, p), where t and t̃ are the Killing time coordinates on D(U ) and D(Ũ ),
which vanish on U and Ũ , respectively. (Note that the range of t with (t, p) ∈ D(U ) is
exactly equal to the range of t̃ with (t̃, ψ(p)) ∈ D(Ũ ).)

Because M̃ is simply connected, there is no λ̃ ∈ G0(M̃) with a non-zero holonomy
along γ̃ . Hence the same is true for the subspacetime D(Ũ ) ⊂ M̃ . Because γ = ψ∗ ◦ γ̃
we see that there cannot be any λ ∈ G0(D(U )) with a non-zero holonomy. Moreover,
as the loop γ was an arbitrary embedding into �, we see that there can be no non-zero
holonomies along any embedding γ :S1→�.

To complete the proof we note that for n ≥ 4, any loop γ into� can be approximated
arbitrarily closely by an embedding ([32] Theorem 2.2.13), so there are no non-zero
holonomies. For n = 3, γ can be approximated by an immersion with clean double
points, i.e. when γ (s0) = γ (s1) and s0 �= s1, then there are disjoint open neighbourhoods
Ui ⊂ S

1 of si such that the restrictions γ |Ui are embeddings whose ranges are in general
position ([32] Theorem 2.2.12 and Exercise 1 of Section 3.2). Note that for any s0 ∈ S

1
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there are at most finitely many points s1, . . . , sk ∈ S
1 with γ (si ) = γ (s0), because S

1 is
compact. It follows that there is an open neighbourhood U0 of s0 such that γ (U1) contains
at most one double point. Using compactness of S

1 again there are at most finitely many
double points in the range of γ . We may now partition γ into a finite number of piecewise
smooth loops γ j in� without double points. The corners of the γ j can be smoothed out
within a contractible neighbourhood, without changing its holonomy, so we may take
the γ j to be embeddings. As before, all holonomies along the γ j must now vanish. The
holonomy of any λ along γ is the sum of the holonomies along the γi , so it too must
vanish. This completes the proof. ��
Remark 2.12. 1. For n = 2 one may show that G0 = G. Instead of giving this case

the separate treatment that it deserves, we will prefer to consider the ”unphysical”
gauge group F0 consisting of exponential type gauge transformations. This makes
our arguments more convenient, as it is in line with the higher dimensional case. Note
that F0(M) �= G0(M) if and only if M has the topology of a cylinder R× S

1.
2. A remark on the general geometric situation is in order (see [39] Ch. 10.1 or [4] for

more details). In the presence of non-trivial principal U (1)-bundles P the analog of
Theorem 2.10 is less clear, because a morphism ψ : M→ M̃ may not necessarily
admit a fibre bundle morphism � : P → P̃ covering ψ . We will ignore this issue
for the time being, because it is unclear whether it has any physical relevance. In
fact, if the tangent bundle T M of M is isomorphic to a trivial bundle, one may
choose to describe spinors using the Clifford algebra bundle over T M . In this way
one may argue that, at least for electrodynamics, all physically relevant bundles are
trivial. Even though it is not entirely clear whether this assumption holds for all
four-dimensional globally hyperbolic spacetimes,6 we should also note that even a
non-trivial principle U (1)-bundle P still has a trivial adjoint bundle (cf. e.g. [5]).
Because A takes values in this adjoint bundle, any physical effects would have to be
very subtle.

3. The identification of the affine space of connections with sections of A ∈ �1(M)
is not unique, as it uses a reference connection (cf. [4]). Note, however, that by
considering the Maxwell equations with a source term, we will already automatically
end up with an affine Poisson space. A more proper treatment of the affine space of
connections will be given in [5].

For general p-form fields we will consider the kinematic space of field configurations

F p(M) := D p(M)/dD p−1(M),

consisting of gauge equivalence classes of p-forms. For p = 1 and n ≥ 3 this is in
line with Theorem 2.10. By Theorem 2.2, the denominator is a closed subspace (in the
distributional topology), so we can endow F p(M) with the quotient topology, making
it a Hausdorff locally convex topological vector space. The space of continuous linear
maps is then simply F p(M)∗ = �p

0,δ(M), under the duality (., ∗.) (cf. [35] 14.5).
We consider the dynamics for [A] ∈ F p(M), p < n, against the background of a

fixed metric g and electromagnetic current density j ∈ �p(M). The equations of motion
are derived from the Lagrangian density

L := 1

2
F ∧ ∗F + A ∧ ∗ j, (3)

6 The results of Geroch [27,28] only hold for spatially compact spacetimes. We are grateful to an anonymous
referee for pointing this out to us.
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where F := d A. The Euler-Lagrange equations are the Maxwell equations:

δd A = j. (4)

Note that this equation is well-defined for gauge equivalence classes, because [A] = 0
entails d A = 0.

For p = 1 the relation between equation (4) and the usual form of the Maxwell
equations can be seen by noting that d F = 0 and δF = j and writing out these
equations in terms of local Gaussian coordinates near a Cauchy surface �. We will do
this in some detail in the next paragraph, where we consider a suitable parametrisation
of the initial data.

2.3.2. Initial data for p-forms. If� is a Cauchy surface with future pointing unit normal
vector field na , we may extend na to a neighbourhood of� by defining it as the coordinate
vector field of a Gaussian normal coordinate. The extended vector field satisfies

nana ≡ 1, na∇anb ≡ 0, ∇[anb] = 0, (5)

where the last equation can be derived using Frobenius’ Theorem (e.g. [46] Theorem
B.3.2). We let P b

a := δ b
a − nanb. On �, P b

a |� is just the pointwise orthogonal
projection of T M |� onto T�.

Throughout this paragraph we will assume that A ∈ D p(M) satisfies W F(A) ∩
N∗� = ∅, so that A has well-defined initial data on �. We may decompose these data
as follows:

A0 = a + n ∧ φ, A1 = ȧ + n ∧ φ̇,
where n is viewed as a one-form na and we introduced the tangential and normal com-
ponents of Ai , defined by

aa1···ap := P b1
a1
· · · P bp

ap Ab1···bp |�
ȧa1···ap := na∇a P b1

a1
· · · P bp

ap Ab1···bp |�
φa2···ap := na1 Aa1···ap |�
φ̇a2···ap := nb∇bna1 Aa1···ap |�.

Note that, by the properties of na , the normal derivative commutes with the contraction
with na and with the projections P b

a . For p = 1 we may interpret a as the spatial vector
potential,φ as the scalar potential, and φ̇, ȧ as their normal derivatives. In further analogy
to the p = 1 case we may consider the field strength F = d A ∈ D p+1(M) (which for
p = 1 is the curvature of the connection, F = d A − A ∧ A = d A). Decomposing this
in a similar way yields

F |� = B + n ∧ E,

where

Ea1···ap := na0(d A)a0···ap |�
Ba0···ap := P b0

a0
· · · P bp

ap (d A)b0···bp |�.
The expression for B entails that B = ι∗�(d A) = d�ι∗� A = d�a, because the exterior
derivation commutes with the pull-back under the canonical embedding ι� :�→M .

In order to reparametrise the initial data in more differential geometric terms we need
the following
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Lemma 2.13. If A ∈ D p(M) satisfies W F(A)∩N∗� = ∅ on a Cauchy surface� ⊂ M
and its initial data are given by (a, ȧ, φ, φ̇), then

Ea1···ap |� = ȧa1···ap − (d�φ)a1···ap + p(∇[a1 nc)a|c|a2···ap]
(δA)a2···ap |� = −φ̇a2···ap − (δ�a)a2···ap − p(∇a1 n[a1)φa2···ap] − (n ∧ δ�φ)a2···ap .

Proof. The proof is a straightforward computation, using in particular [46] Lemma
10.2.1, which states that

∇�c T a1···ak
b1···bl

= P a1
d1
· · · P ak

dk
P e1

b1
· · · P el

bl
P f

c ∇ f T d1···dk
e1···el

,

where T is a tensor field on � and ∇� is the Levi–Civita derivative of the induced
metric h on �. For the first expression we now expand the anti-symmetrisation in d A,
perform a partial integration and then pull back to�. For the second expression we write
(δA)a2···ap = −(na0 na1 − ha0a1)∇a0 Aa1···ap and then insert a factor δ b

a = P b
a + nanb

for each of the indices of A, to the right of the derivative operator. We omit the details. ��
Introducing a notation for the pull-back of δA,

ωa2···ap := P b2
a2
· · · P bp

ap (δA)b2···bp |�,
we can parametrise the initial data of A as follows:

Corollary 2.14. There is a linear homeomorphism on D p(�)⊕2 ⊕ D p−1(�)⊕2 which
maps the initial data (a, ȧ, φ, φ̇) of A ∈ D p(M) to (a, E, φ, ω).

The same statement is also valid for data in�p(�)⊕2⊕�p−1(�)⊕2, or in�p
0 (�)

⊕2⊕
�

p−1
0 (�)⊕2.

Proof. Lemma 2.13 shows how to express E andω in terms of the initial data (a, ȧ, φ, φ̇).
From these expressions we also see that ȧ can be expressed in terms of (a, φ, E) and φ̇
in terms of (a, φ, ω) and the maps in both directions are clearly continuous. ��
Corollary 2.15. If A ∈ D p(M) satisfies �A = j ∈ �p(M) and α ∈ �p

0 (M), then

(A, ∗α)=
∑

±

∫

J±(�)
j ∧ ∗G∓α +

∫

�

φ ∧ ∗�ωα−a ∧ ∗�Eα−φα ∧ ∗�ω + aα ∧ ∗�E,

where � is a Cauchy surface with future pointing unit normal vector field na and the
initial data (a, E, φ, ω) refer to A, whereas (aα, Eα, φα, ωα) refer to Gα.

Proof. The proof is similar to that of Lemma 2.4, but now performing partial integrations
using d and δ. We refer to [42] Proposition 2.2 for more details on the proof, but we
note that this reference uses compactly supported j , so it gets away with using G±α on
J±(�), rather than G∓α. This causes an overall sign difference for the integrations of
the initial data. ��

In addition we will also make use of the following technical lemma:

Lemma 2.16. If A ∈ D p(M) has initial data on� such that φ = ω = 0, then δA|� = 0
and

na∇aδA|� = pna1(�A)a1···ap |� − p(δ�E)a2···ap |�.
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Proof. Note that for any X ∈ D p(M) with W F(X) ∩ N∗� = ∅ we have

na2(δX)a2···ap |� = −∇a1 na2 Xa1···ap |� = ha0a1∇a0 na2 Xa1···ap |�
= −ha0a2∇�a0

Ya2···ap |� = (δ�Y )a3···ap |�, (6)

where Ya2···ap := na1 Xa1···ap |� and we used the antisymmetry of X and the symmetry
of ∇anb. In case X = A we have Y = φ = 0, so the equality above proves that the
normal component of δA on � vanishes. Together with ω = 0 this implies δA|� = 0.
Similarly we can consider the normal component of the normal derivative:

na1 na2∇a1(δA)a2···ap |� = −na0 na2∇a0∇a1 Aa1···ap |�
= −na0 na2∇a1∇a0 Aa1···ap |�
= (∇a1 na0)na2∇a0 Aa1···ap |� − ∇a1 na0 na2∇a0 Aa1···ap |�
= (∇a0 na1)∇a0 na2 Aa1···ap |� + ∇a2 na0∇a0 na1 Aa1···ap |�
= −(∇a0 na2)∇�a0

φa2···ap |� + (δ�φ̇)a2···ap |�,
where the interchange of derivatives gives no curvature terms because of φ = 0 and we
repeatedly used∇[anb] = 0, the anti-symmetry of A and the symmetry of (∇anb)(∇anc)

in (bc). Now note that φ = 0 and δA|� = 0, so φ̇ = δ�a and hence δ�φ̇ = 0 too.
For the spatial component of the normal derivative of δA we eliminate the second order
derivative in the normal direction in favour of �A as follows:

na1∇a1(δA)a2···ap |� = pna1(dδA)a1···ap |� + (p − 1)na1∇[a2(δA)|a1|a3···ap]|�
= pna1(�A)a1···ap |� − pna1(δd A)a1···ap |�

+(p − 1)na1∇[a2(δA)|a1|a3···ap]|�.
The normal component of the last term vanishes, as we have just seen. Furthermore, the
pull-back of the last term also vanishes, as this is just d�δ�φ. Using X = d A in the
first paragraph we can rewrite the second term on the right-hand side as−pδ�E , which
completes the proof. ��

2.3.3. The Cauchy problem for the Maxwell equations. In order to solve the Maxwell
equations, we first show that each equivalence class [A] ∈ F p(M) has sufficiently nice
representatives:

Lemma 2.17 (Lorenz gauge). For any A ∈ D p(M), [A] ∈ F p(M) has a representative
A′ satisfying the Lorenz gauge condition δA′ = 0. Furthermore, if A ∈ D p

sc(M) we can
choose A′ such that A′ − A ∈ dD p−1

sc (M).

Proof. Let φ+ ∈ �0(M) such that φ+ ≡ 0 in a neighbourhood of a Cauchy surface �+

and such that φ− := 1 − φ+ ≡ 0 in a neighbourhood of another Cauchy surface �−.
Given A, let χ± be the unique solutions of �χ± = −δ(φ±A)with vanishing initial data
on�± (cf. Theorem 2.5). Note that χ± vanishes near�± and that �δχ± = δ�χ± = 0,
so δχ± = 0. Furthermore, χ± has spacelike compact support if and only if A does (cf.
Proposition 2.6). Hence χ := χ+ +χ− satisfies δχ = 0, �χ = −δA and it has spacelike
compact support if and only if A does. Setting A′ := A + dχ completes the proof. ��
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Note that the lemma does not require that A has well-defined initial data on some
Cauchy surface. Also note that there is a residual gauge freedom: A ∼ A′ and δA =
δA′ = 0 hold if and only if A − A′ = dχ with χ ∈ D p−1(M) such that δdχ = 0.
Interestingly, this is the homogeneous Maxwell equations for a p − 1 form. A further
gauge fixing, which is often possible, is the temporal gauge, which consists in setting
φ = 0 on a given Cauchy surface:

Lemma 2.18 (Temporal gauge). Let A ∈ D p(M) with W F(A) ∩ N∗� = ∅ and initial
data (a, E, φ, ω). Then there is a representative A′ ∈ [A] with initial data (a, E, φ′ =
0, ω′ = 0). In particular, δA′ = 0.

Proof. We solve �χ = −δA with initial data (0,−φ, 0, 0) for χ . By Lemma 2.16
and equation (6) we see that the initial data of δχ on � vanish. As �δχ = 0 we have
δχ = 0, so A′ := A + dχ has δA′ = 0. One may verify directly that E ′ = E , φ′ = 0
and a′ − a = ι∗�(dχ) = d�ι∗�χ = 0. ��
Remark 2.19. Lemma 2.18 implies that the Lorenz gauge, δA = 0, and the temporal
gauge, φ = 0, can be achieved simultaneously. Pfenning [42] uses the term Coulomb
gauge for this combination of gauge conditions, but in the physics literature the term
Coulomb gauge usually refers to the gauge condition δ�a = 0. If a given [A] has any
Coulomb gauge representatives, then it has representatives that satisfy Lorenz, temporal
and Coulomb gauge simultaneously.

Note that both the Coulomb and the temporal gauge are required to be valid only on the
prescribed Cauchy surface.

We now make the following fundamental observation:

Lemma 2.20. Let M = (M, g) be a globally hyperbolic spacetime,� a Cauchy surface
with future pointing unit normal vector field na and let j ∈ �p(M) with δ j = 0. Any
A ∈ D p(M) solves

δd A = j, δA = 0, (7)

if and only if it solves

�A = j, δA|� = 0, na∇aδA|� = 0, (8)

in which case it also solves
δd A = j. (9)

Proof. If A solves (7), it clearly also solves (9) and (8). On the other hand, if A solves
(8), then �δA = δ�A = δ j = 0, so δA satisfies a wave equation with vanishing initial
data. From Theorem 2.3 we find δA = 0, so A solves (7). ��

The requirement that the current j is conserved, δ j = 0, is no real restriction, because
if δ j �= 0 there can be no solutions to δd A = j , in view of δ2 = 0. In fact, by the same
reasoning we should even restrict attention to co-exact source terms j .

When considering gauge equivalence classes [A] we encounter the problem that not
all representatives A may have well-defined initial data on a given Cauchy surface �,
due to their distributional nature. We deal with this issue using the following definition:

Definition 2.21. We say that an [A] ∈ F p(M) has well-defined initial data on a Cauchy
surface � if and only if every Lorenz gauge representative A has W F(A) ∩ N∗� = ∅.
In this case we write ι∗�([A]) for [ι∗�(A)] with any Lorenz gauge representative.
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Note that it suffices to find one Lorenz gauge representative satisfying the wave front
set condition. Indeed, for any residual gauge term dχ we may use Lemma 2.17, with χ
in the role of A, to write dχ = dχ ′ where �χ ′ = δχ ′ = 0, so W F(χ ′)∩ N∗� = ∅ and
W F(dχ) = W F(dχ ′) ⊂ W F(χ ′).

Applying Lemma 2.17 to A in the same way we see that it suffices to study the
equation (8) instead of equation (9). Thus we obtain our main result:

Theorem 2.22. Given j ∈ �p(M), E ∈ D p(�) and [a] ∈ D p(�)/dD p−1(�), there is
at most one [A] ∈ F p(M) with well-defined initial data on �, such that

δd A = j, ι∗�([A]) = [a], na0(d A)a0···ap |� = Ea1···ap . (10)

Such a solution exists if and only if j is co-closed and

(δ�E)a2···ap = na1 ja1···ap |�. (11)

Moreover, if we define

D
p
j (�) :=

D p(�)

dD p−1(�)
⊕ {

E ∈ D p(�)| δ�E = na ja···|�
}
,

endowed with the topology that is obtained from the distributional topology by tak-
ing relative topologies, quotients and direct sums, then [A] depends continuously on
([a], E) ∈ D

p
j and on j ∈ �p(M).

Note that for any Cauchy surface�, D p
j (�) is the space of initial data, modulo gauge

equivalence, satisfying the constraint equation (11). It is empty when j is not co-exact
(because j = δd A), while it is otherwise an affine space modeled over the linear space

D
p
0 (�) =

D p(�)

dD p−1(�)
⊕D p

δ (�).

Proof. We first prove existence of a solution. If a is some representative of [a], then there
exists a unique A ∈ D p(M)which solves�A = j with initial data (a, E, φ = 0, ω = 0),
by Theorem 2.5 and Corollary 2.14. Furthermore, na∇a(δA)|� = 0, by Lemma 2.16,
so δA = 0 by Lemma 2.20. This implies that A is a Lorenz gauge solution to δd A = j
with the prescribed initial data. Any other Lorenz gauge solution in [A] has the same E
and [a].

To prove uniqueness we let A, A′ ∈ D p(M) be two solutions to Eq. (10), both in
Lorenz gauge. Then B := A − A′ is in Lorenz gauge and satisfies �B = δB = 0
with na0(d B)a0···ap |� = 0 and ι∗�(B) = d�b for some b ∈ D p−1(�). By the pre-
vious paragraph we may solve δdχ = 0, with initial data such that ι∗�χ = b and
na1(dχ)a1···ap |� = na1 Ba1···ap |� , because (cf. equation (6))

−(∇�)a2 na1 Ba1···ap |� = na2(δB)a2···ap |� = 0.

Then, C := B − dχ solves �C = δC = 0 and the initial data, in the form of Corollary
2.14, are easily seen to vanish, as e.g. ι∗�(C) = ι∗�(B) − d�ι∗�(χ) = 0. Hence, C = 0
and B = dχ , proving that [A] = [A′]. The continuous dependence on that data follows
by taking a Lorenz gauge representative and using Corollary 2.15. ��

The statement of Theorem 2.22 also holds if we assume j ∈ �p
sc(M) with data

E ∈ D p
0 (�) and [a] ∈ D p

0 (�)/dD p−1
0 (�) and if we replace the gauge equivalence by

A ∼ A′ iff A − A′ = dχ with χ ∈ D p−1
sc (M). The proof is completely analogous.
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Remark 2.23. The solution map s p
j :D p

j →F p(M) is not only continuous, but it is also a
homeomorphism onto its range (when taken in the relative topology). This follows from
Corollary 2.15, using Lorenz and temporal gauge representatives of [A] and the following
observation: for any test-forms (aα, Eα) on � we can find a solution χ ∈ �p

sc(M) to
equation (7) with vanishing source term and initial data (aα, Eα, 0, 0). (This follows
e.g. from Theorem 2.22.) By Proposition 2.6 we may write χ = Gα with α ∈ �p

0 (M).
When the pairing with (aα, Eα) in Corollary 2.15 is gauge invariant, so is the pairing
with A. In that case the convergence of [A] on M implies the convergence of its initial
data.

Remark 2.24. Let ι� :�→ M be the canonical embedding of a Cauchy surface � in
a globally hyperbolic spacetime M . Theorem 2.22 entails in particular that if j is co-
closed and na1 ja1...ap |� is co-exact, then j is co-exact. This is the Hodge dual statement
of the fact that the restriction of the pull-back map ι∗� : �p(M)→ �p(�) to closed
forms descends to an isomorphism ι∗� :H p(M)→H p(�). Similarly, a closed form α ∈
�p(M) is of the form α = dχ for some χ ∈ �p

sc(M) if and only if [ι∗�α] = 0 ∈ H p
0 (�).

To prove these statements we note that exterior derivatives commute with pull-backs,
so the restriction ι∗� descends to a well-defined map between the cohomology groups.
By the Künneth formula, these groups are vector spaces of the same dimension, so it
suffices to show that ι∗� is injective. For a given cohomology class [α] we may define
j := ∗α ∈ �n−p

δ (M). If ι∗�α = d�β, then na1 ja1...an−p |� = (δ� ∗� β)a2...an−p . We
may then consider the Maxwell equations δd A = j with Cauchy data (a, E, φ, ω) =
(0, ∗�β, 0, 0). This satisfies the constraint equation (11), so by Theorem 2.22 there
exists a solution A, which explicitly shows that j = δd A is co-exact and hence α is
exact. Similarly, when α = dχ with χ ∈ �p

sc(M), then ∗�β has compact support.
Conversely, when ∗�β has compact support, then A ∈ �

n−p
sc (M) and hence α =

(−1)p(n−p)+1dδA ∈ d�p−1
sc (M).

3. The Poisson Structure for p-Form Fields

In this section we will consider the phase space of solutions to the Maxwell equations
and we will explain in some more detail how the Aharonov–Bohm effect is related to
the choice of gauge equivalence in Sect. 3.1. Next we endow the space of local, affine
observables with a Poisson bracket in Sect. 3.2, which will be used to quantise the theory
in Sect. 4. Moreover, we will compute the degeneracies of the Poisson bracket in Sect. 3.3
and show how they may be interpreted in terms of Gauss’ law.

3.1. Observables and the space of solutions. We have already introduced the kinematic
space of field configurations

F p(M) = D p(M)/dD p−1(M),

and the continuous dual space F p(M)∗ = �p
0,δ(M), under the duality (., ∗.). We will

interpret the elements of the dual space F p(M)∗ as local, linear observables on F and
we will write

Fα(A) :=
∫

M
fα(A), fα(A) := A ∧ ∗α
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Fig. 2. An illustration of the Aharonov–Bohm effect, as described in Example 3.1, for p = 1. The observable
α, proportional to the differential dϕ of the angular coordinate, is supported in a ring-shaped region and
essentially measures the magnetic flux through a disc of radius R intersecting the coil

with α ∈ F p(M)∗. As an illustration of these observables we will now elaborate how
the Aharonov–Bohm effect can be described within our mathematical framework.

Example 3.1. The following example is illustrated in Fig. 2. Let M0 denote Minkowski
spacetime and let ζ denote the solid cylinder along the z-axis, which is given in cylindrical
coordinates (r, ϕ, z, t) by r ≤ 1. We suppose that the cylinder ζ contains a conducting
coil with a current running through it and we denote the current density 1-form by j .
The flux of the current through the t = z = 0 plane will be denoted by �. The current
generates a vector potential, which can be represented in very good approximation by
A� = φ(r)

2π dϕ, for some φ which equals � outside the coil. (The approximation lies in
the fact that in reality the current also has a small component along the z-axis, which we
ignored.)

In the Aharonov–Bohm experiment one uses quantum particles that, effectively, go
around the coil and measure a quantum phase shift that is proportional to the integral
of A along its circular path. (For a more proper description see [40].) We model this
observable by the compactly supported 1-form α = r−1 f (r − R) f (z) f (t)dϕ, where
f ∈ C∞0 (R) has its support in (−1, 1) and R > 2. One may verify that α is co-closed,
so α ∈ F1(M0)

∗ does indeed define an observable, in our sense. A short computation
yields Fα(A�) = �

(∫
f
)3. This observable is therefore non-trivial, unless

∫
f = 0.

We now focus on the region of spacetime M1 = M0\J (ζ ) � R
×3 × S1. In this

region, A� is closed, but not exact. Nevertheless, α is supported only in M1 and defines
a non-trivial observable there, as evidenced by the Aharonov–Bohm effect. (By Hodge
duality, α is not co-exact on M1.) For this reason we cannot identify vector potentials
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whose difference is not exact. Interpreting A� as a connection one-form we see that
A� = −iλ−1dλ with λ := exp(i �2π ϕ) ∈ G(M1). However, ϕ is not a well-defined
smooth function on M1 and λ is not in G0(M1), because it has a non-trivial holonomy.
(Cf. Sect. 2.3.1.)

It is not difficult to construct higher dimensional analogues of this example. Indeed,
let M0 be the n-dimensional Minkowski space and choose p such that 1 ≤ p ≤ n−2. In
the time zero Cauchy surface �0 we now remove a hyperplane H of codimension p + 1
to obtain a surface � := �0\H � R

n−2−p × S
p × R>0. We let M := D(�) ⊂ M0,

so that M � R
n−1−p × S

p × R>0. Let ω denote the volume form on S
p and define

the p-form potential A� := φ(r)∫
ω
ω, where φ(r) takes some constant value � on r > 1.

One may verify by direct computation that d A� = 0 on the region where φ ≡ �

and in particular it solves the homogeneous analogue of Maxwell’s equation there.
Choosing f and R as above we may define the compactly supported p-form α :=
r−p f (x1) · · · f (xn−p−2) f (t)ω, which is again co-closed, so it defines an observable.
We then find Fα(A�) = �(

∫
f )n−p. For a physical interpretation analogous to the

Aharonov–Bohm effect we note that the observable α must now describe an experiment
involving (p − 1)-dimensional objects, rather than particles. (For p = 0 the spacetime
M would no longer be connected. For p = n − 1 one could still take a Cauchy surface
� � S

n−1 and find a closed A which is not exact, but this can no longer be obtained by
removing a hyperplane from M0, so an interpretation analogous to the Aharonov–Bohm
experiment seems less obvious.)

Example 3.1 motivates us to make the following definition, for p-forms:

Definition 3.2. A field configuration [A] ∈ F p(M) is called an Aharonov–Bohm con-
figuration if and only if 0 �= [A] ∈ H p(M). Furthermore, we call an observable
α ∈ F p(M)∗ a field strength observable if and only if α ∈ δ�p+1

0 (M).

The definition of field strength observables is motivated by the fact that an observableα =
δβ is only sensitive to the field strength d A, because Fα(A) =

∫
M d A∧∗β. Equivalently,

they are the observables that vanish on all Aharonov–Bohm field configurations.
For any given background current j ∈ �p(M) we let S p

j denote the phase space of
solutions of (9) :

S p
j :=

{[A] ∈ F p(M)| δd[A] = j
} = {

A ∈ D p(M)| δd A = j
}
/ ∼,

where we divide out the gauge equivalence relation. For any [A′] ∈ S p
j , the map

e[A′] : S p
0 � [A] �→ [A + A′] ∈ S p

j

is a well-defined bijection. Furthermore,

e[A′](0) = [A′], e[A′](B) = e[A](B + e−1
[A]([A′])).

This means that S p
j is an affine space modeled over the vector space S p

0 .

If we equip D p(M)with the usual distribution topology, then the set S p
0 is a quotient

of closed linear subspaces. (That the denominator is closed follows from Theorem 2.2.)
S p

0 will be equipped with the quotient topology of the relative topology and we equip
S p

j with the unique topology that makes all the maps e[A′] homeomorphisms.
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The affine space S p
j can be identified with the space D

p
j of initial data satisfying the

constraint equation, via the map s p
j :D p

j → S p
j , which sends (equivalence classes of)

initial data to the corresponding (equivalence classes of) solutions to Eq. (10). Note that
the s p

j are affine bijections, by the well-posedness of the initial value problem, Theorem

2.22. Moreover, if we endow D
p
j with the topology that is obtained from the distributional

topology by taking quotients and direct sums, then all s p
j are homeomorphisms (cf.

Remark 2.23).
We may view S p

j as an infinite dimensional manifold, where we use e−1
[A′] as a single

coordinate chart. By considering smooth curves into S p
j one finds that the (kinematic)

tangent bundle of this manifold is given by

T S p
j � S p

j × S p
0 .

For the (kinematic) cotangent bundle we consider the continuous linear maps on each
tangent space, so we define

T ∗S p
j � S p

j × (S p
0 )
∗.

We now establish an explicit representation for (S p
0 )
∗:

Proposition 3.3. We have

(S p
0 )
∗ = �

p
0,δ(M)

δd�p
0 (M)

(D
p
0 )
∗ = �

p
0 (�)

d��p−1
0 (�)

⊕�p
0,δ(�).

There are isomorphisms G :(S p
0 )
∗→S p,∞

sc and ρ :S p,∞
sc →(D

p
0 )
∗ with

S p,∞
sc := {

A ∈ �p
sc(M)| �A = δA = 0

}
/d�p−1

sc (M)

and ρ(A) := (ι∗�([A]), na(d A)a···|�).
Proof. Because there is a homeomorphism s p

0 : D p
0 → S p

0 it is clear that (s p
0 )
∗ is a

homeomorphism of (S p
0 )
∗ to (D p

0 )
∗ (cf. Remark 2.23). The expression for (D p

0 )
∗ follows

immediately from Theorem 2.2, keeping in mind the general facts that for a closed
subspace L ⊂ T of a locally convex topological vector space T we have (T/L)∗ = L⊥
and L∗ = T ∗/L⊥, where L⊥ ⊂ T ∗ is the subspace that annihilates L (cf. [35] 14.5).

The map ρ is a well-defined linear isomorphism, by the smooth version of Theorem
2.22. We now show that G descends to an isomorphism from

V := �p
0,δ(M)/δd�

p
0 (M)

to S p,∞
sc . For any α ∈ �p

0,δ(M) we have �Gα = 0 and δGα = Gδα = 0. Furthermore,
if α = δdβ for some β ∈ �p

0 (M), then Gα = Gδdβ = −Gdδβ = dχ with χ :=
−Gδβ ∈ �p−1

sc (M). This means that G descends to a well-defined linear map from V
to S p,∞

sc . Now suppose that A ∈ S p,∞
sc . By Proposition 2.6 there is an α ∈ �p

0 (M)
such that A = Gα. As δA = 0 we conclude from Corollary 2.8 that δα = δdβ for
some β ∈ �p−1

0 (M). Defining γ := α − dβ we have δγ = 0, so [γ ] ∈ V , while
Gγ = A − dGβ ∼ A in S p,∞

sc . This means that G is surjective.
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To prove injectivity of G we choose α ∈ �p
0,δ(M) and we assume that Gα = dχ for

someχ ∈ �p−1
sc (M). Without loss of generality we may assume that δχ = 0 (cf. Lemma

2.17). Note that dGα = 0, so by Corollary 2.8 that α = δβ for some β ∈ �p+1
0,d (M).

Furthermore, �χ = δdχ = δGδβ = 0, so that χ = Gη for some η ∈ �p−1
0 (M). As

0 = δχ = δGη we have δη = δdσ for some σ ∈ �p−2
0,δ (M), by Corollary 2.8. Putting

everything together we have G(δβ − dη) = Gα − dχ = 0, so we can find τ ∈ �p
0 (M)

with δβ = dη+�τ (cf. Proposition 2.6). Note that �(β−dτ) = d(δβ−�τ) = d2η = 0,
which means that β = dτ , by the compact supports. Hence, α = δβ = δdτ , so [α] = 0
in V and G is injective.

From Corollary 2.15, taking [A] in Lorenz and temporal gauge, we see that the
composition ρ ◦ G on V is just the dual map to the solution map s p

0 . In particular,
(S p

0 )
∗ = V . ��

3.2. The Poisson structure. Our next goal is to deduce a Poisson structure on the phase
space S p

j , using Peierls’ method (cf. [41], or [30] Section I.4). For this purpose we
consider for any observable Fα ,α ∈ F p(M)∗, and for any ε > 0 the modified Lagrangian

Lε := L + εFα(A).

This gives rise to the equations of motion

δd A = j + εα.

Given [A] ∈ S p
j we let [A±ε,α] denote the gauge equivalence class of solutions to the

modified equation which coincide (up to gauge equivalence) with [A] in the past (+),
resp. future (−), of the support of α. Due to the affine structure of the equation of motion
these solutions are uniquely defined, up to gauge equivalence, and they are represented
by

A±ε,α = A + εG±α.

The function Fα then defines a vector field on S p
j by setting

[A] �→ δFα [A] := ∂ε(A+
ε,α − A−ε,α)|ε=0 = −Gα.

For another function Fβ on F p(M), β ∈ �p
0,δ(M), we then define the anti-symmetric

bilinear map {
Fα, Fβ

} := δFα (Fβ) = −(Gα, ∗β) = (α, ∗Gβ). (12)

This map descends to an anti-symmetric bilinear map on (S p
0 )
∗, by similar computations

as in the proof of Proposition 3.3. We define the quotient map to be the Poisson bracket,
which is an anti-symmetric bilinear map on each cotangent space T ∗[A]S p

j � (S p
0 )
∗ (it

defines a 2-vectorfield). The canonical trivialisation of the cotangent bundle ensures that
the Poisson bracket takes a form which is independent of the base point [A] ∈ S p

j .
In terms of the initial data (aα, Eα, φα, 0) of Gα and (aβ, Eβ, φβ, 0) of Gβ on a

Cauchy surface � we have:

{
Fα, Fβ

}
(A) ≡

∫

M
α ∧ ∗Gβ =

∫

�

Eβ ∧ ∗�aα − Eα ∧ ∗�aβ, (13)

as may be seen directly from Corollary 2.15. Also note that the constraint equation
δ�Eα = δ�Eβ = 0 is satisfied, by Theorem 2.22.
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Remark 3.4. Our proof of Proposition 3.3 also shows the rather remarkable fact that
(S p

0 )
∗ is isomorphic to S p,∞

sc , which is a space of spacelike compact, smooth solutions
to the Maxwell equations, in Lorenz gauge (see [36] Sec. 5.3 for similar comments).
Furthermore, under this identification the Poisson bracket that we have derived, using
Peierls’ method, takes the same form as the usual (pre-)symplectic form, or Lichnerowicz
propagator, onS p,∞

sc . This makes it tempting to believe that the two quantisation schemes,
using the Poisson bracket on observables or using the (pre-)symplectic structure on the
spacelike compact solutions, are equivalent.

However, there is an important, but subtle difference: the gauge equivalence on S p,∞
sc

is defined by d�p−1
sc (M), so it differs from the original gauge equivalence d�p−1(M).

Using the wrong gauge equivalence would lead to a theory without non-local behaviour
[38], which, however, does not behave well under embeddings.7 The previous literature
has dealt with this subtle difference in various ways: it was either evaded, by considering
only compact Cauchy surfaces [16,20,42], the field strength tensor [12] or a different
choice of gauge equivalence [13], or at best it was taken into account in an ad hoc fashion
(cf. [19] for the case of linearised gravity, or [31] for a more axiomatic approach). The
point of our paper is that the origin of this subtle difference can be understood: it stems
from taking the dual space of S p

0 as the space of observables, in line with Peierls’ method.

3.3. Degeneracies of the Poisson bracket. In general the Poisson bracket is degenerate,
which means that there can be degenerate elements α ∈ (S p

0 )
∗, i.e. elements such that{

Fα, Fβ
} = 0 for all β ∈ (S p

0 )
∗. The subspace C p(M) of degenerate elements of (S p

0 )
∗

can be fully characterised in terms of the topology (and causal structure) of M :

Proposition 3.5. We have

C p(M) := δ(�
p+1
0 (M) ∩ d�p

tc(M))

δd�p
0 (M)

� �
p
0 (�) ∩ d��p−1(�)

d��p−1
0 (�)

=: C p(�).

Proof. We start with the expression for C p(�), which is easiest to obtain. Using the
formula for (D p

0 )
∗ (Proposition 3.3), the Poisson bracket as given in equation (13) and

Poincaré duality one sees that ([a], E) ∈ (D p
0 )
∗ is degenerate if and only if E = 0 and

any representative a of [a] is exact, a ∈ d��p−1(�), but not necessarily in d��p−1
0 (�).

The expression for C p(�) then follows.
Next we note that any α ∈ δ(�p+1

0 (M) ∩ d�p
tc(M)) does define a degenerate ob-

servable in (S p
0 )
∗, because if α = δdβ for some β ∈ �p

tc(M), then every γ ∈ �p
0,δ(M)

satisfies (α, ∗Gγ ) = −(Gδdβ, ∗γ ) = (Gdδβ, ∗γ ) = −(Gδβ, ∗δγ ) = 0. It follows
from Proposition 3.3 that there is a linear injection from the second expression into
C p(M). To prove that this map is surjective we suppose that α ∈ (S p

0 )
∗ is degenerate.

For any γ ∈ �p
0,δ(M) we must then have (Gα, ∗γ ) = 0. This implies firstly that Gα

is closed (by choosing γ ∈ δ�p+1
0 (M)) and even that Gα is exact, by Poincaré duality.

7 To prove these claims one uses arguments as in the proof of Proposition 3.3 to find the space of observables

�
p
0,δ(M)/δd�

p
tc(M) � �p

0 (�)/d�
p−1(�)⊕�p

0,δ(�).

By Corollary 2.15 one sees that the Poisson bracket has no degeneracies. However, item 2 of Remark 3.10
below gives an example where this theory behaves badly under embeddings, because the usual push-forward
on �p

0,δ(M) would map a trivial observable to a non-trivial one.
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Thus Gα = dχ for some χ ∈ �p−1(M). Now, following the penultimate paragraph of
the proof of Proposition 3.3, but allowing supports to be timelike compact only, where
needed, we find that α = δdτ for some τ ∈ �p

tc(M) with β := dτ ∈ �p+1
0 (M). This

completes the proof. ��
Remark 3.6. Since the moment we made our choice of gauge equivalence, we have
only followed standard procedures to find C p(M). It is therefore tempting to think
that observables in C p(M) are related to the Aharonov–Bohm effect, which motivated
our choice of gauge equivalence. However, C p(M) consists entirely of field strength
observables (cf. Definition 3.2), which are not sensitive to the Aharonov–Bohm effect.
(This is in accord with the observations of [2].)

It is clear that C p(M) is trivial whenever � is compact, or whenever H p
0 (�) �

H p+1
0 (M) is trivial. Furthermore, if H p(M) � H p(�) is trivial, thenC p(M) = δH p+1

0 (M)
and C p(�) = H p

0 (�). To close this section we will give an alternative description of
C p(�) for general p and general spacetimes M . This will allow us to physically interpret
the degeneracies in the case of electromagnetism, p = 1.

Suppose, then, that [α] ∈ C p(�), and let β ∈ �p−1(�) be such that α = d�β. Note
that β is unique up to a closed form and therefore [α] = 0 if and only if there is a closed
form γ ∈ �p−1

d (�) such that β − γ has compact support. We will first argue that it
suffices to find γ such that β − γ is exact outside a compact set. Indeed, if β − γ = 0
in some region, then it is certainly exact there. Conversely, if β − γ is exact on the
complement K c := �\K of some compact set K , β − γ = d�ζ , then we may use
a partition of unity subordinate to K c and some relatively compact V ⊃ K to find a
ζ ′ ∈ �p−2(�) which coincides with ζ outside K ′ := V . Hence, γ ′ := γ + d�ζ ′ is
closed and β − γ ′ vanishes outside K ′. This means that [α] = 0 as an observable if and
only if we can find [γ ] ∈ H p−1(�) and a compact K ⊂ � such that [(β − γ )|K c ] = 0
in H p−1(K c).

For any compact K the canonical embedding ι : K c → � gives rise to the linear
restriction map ι∗ : H p−1(�)→ H p−1(K c). If K contains the support of α, then β is
closed on K c and determines an element [β|K c ] ∈ H p−1(K c). We then see that [α] = 0
if and only if [β|K c ] is in the range of ι∗, for some compact K ⊃ supp(α). By Poincaré
duality this is equivalent to the fact that [β|K c ], interpreted as a linear map on Hn−p

0 (K c),
vanishes on the kernel of the push-forward map ι∗ :Hn−p

0 (K c)→Hn−p
0 (�).

When p = 1 this situation simplifies, because H0(�) consists only of all constant
functions and H0(K c) of locally constant functions. Let us decompose supp(α)c into
connected components Vi , i ∈ I some index set, and assume that I is finite. Let I ′ ⊂ I
be the subset of indices for which Vi has a non-compact closure in�. Note that [α] = 0
if and only if β takes the same constant value on all regions Vi with i ∈ I ′. Indeed,
if this is not the case, then β − γ can never have compact support for any constant
γ . Conversely, if β|Vi = γ for all i ∈ I ′, then β − γ has support in the compact set
K := supp(α)

⋃
i∈I\I ′ Vi , because it vanishes on K c =⋃

i∈I ′ Vi .

Note that in order to have [α] �= 0 in C1(M), I ′ must contain at least two distinct
indices. As a physical interpretation, one may think of one of the regions Vi , i ∈ I ′,
as a neighbourhood of infinity, whereas the others may be seen as regions which are
influenced by some electric charges (which themselves lie outside of the spacetime).
The support of α separates all these regions, and we may interpret Fα as an observable
which exploits Gauss’ law to measure the electromagnetic flux through a surface that
separates the regions with charge from the neighbourhood of infinity.
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Fig. 3. An illustration of Gauss’ law, as described in Example 3.7. The observable α = dβ = f (r)dr ,
supported near a sphere of radius R around the locus of the electric point charge Q, essentially measures the
electric flux through the surface of that sphere

We have already seen a concrete example of a non-trivial C1(�) in Example 2.1,
where � � R and the observable is given by α = f (r)dr for some f ∈ C∞0 (R). We
now elaborate the relationship between this example and Gauss’ law:

Example 3.7. The following example is illustrated in Fig. 3. Let M0 be n-dimensional
Minkoswki spacetime, n ≥ 3, and let �0 := {t = 0} for some inertial time coordinate
t . Define M := D(�) ⊂ M0, with � := �0\B1, where B1 is the closed unit ball. (The
case n = 2 requires slight modifications, as � would be disconnected.) Then � is a
Cauchy surface for M and � � R>1 × S

n−2. We consider the 1-form α = f (r)dr ,
where f ∈ C∞0 ((1,∞)) and r ∈ R>1 is the radial coordinate on � ⊂ �0. In analogy
to Example 2.1, α ∈ �1

0(�) and α = −dβ with β(r) := ∫∞
r f (s)ds. β vanishes near

r = ∞ and it is constant in a neighbourhood of the (removed) unit ball B1.β is compactly
supported if and only if

∫
f = 0.

This example can be extended from the Cauchy surface � to the spacetime M as
follows. Let τ ∈ �0

0(R) with
∫
τ = 1 and support sufficiently close to the origin to

ensure that α′(r, t) := α(r) ∧ τ(t)dt is in �2
0(M). We have α′ = dβ ′ with β ′(r, t) :=

−β(r) ∧ τ(t)dt and β ′ is compactly supported if and only if
∫

f = 0. Now consider
the observable ν := −δα′ = −δdβ ′. Note that ν ∈ δd�1

tc(M), so ν ∈ C1(M). We
will show that ν is not trivial, i.e. ν �∈ δd�1

0(M). For this purpose we consider the
field configuration AQ := Q

(3−n)cn−2rn−3 dt when n ≥ 4, or AQ := Q
2π log(r)dt when

n = 3, with Q ∈ R and cn−2 is the volume of the unit sphere S
n−2. One may verify that

AQ ∈ S p
0 is a (Lorenz gauge) solution to the Maxwell equations without source. In fact,

it is the field generated by a point charge at the origin in M0, but the region of charge
has been removed from M . Direct computations now show that d AQ = Q

cn−2rn−2 dr ∧dt
and

(ν, ∗AQ) = (α′, ∗d AQ) =
∫

M
f (r)τ (t)

Q

cn−2rn−2 dvolM

=
∫

�

f (r)
Q

cn−2rn−2 dvol� = Q
∫

f.
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This proves that ν �= 0 ∈ (S p
0 )
∗, by Proposition 3.3. Moreover, the final equation exhibits

the relation between the form ν and Gauss’ law.

The discussion above and these examples motivate us to make the following definition

Definition 3.8. An observable α ∈ C1(M) is called an (external) electric monopole ob-
servable. We call a field configuration A ∈ F1(M) free of (external) electric monopoles
if and only if Fα(A) = 0 for all α ∈ C1(M).

Remark 3.9. Our theory does not contain any magnetic monopole observables, because
F = d A is always exact. To obtain such magnetic monopoles one could e.g. directly
quantise the theory for F (see [12] and Remark 4.6 below), or one can use a 3-form
field B such that F = δB and with a gauge equivalence based on co-closed or co-exact
forms. In these cases F can be closed without being exact and magnetic monopoles can
occur. On the other hand, the theory would no longer be able to describe the Aharonov–
Bohm effect. Alternatively, one may obtain magnetic monopoles by quantising a theory
of principal U (1)-connections [5], or by adding by hand a space of central magnetic
monopole observables, indexed e.g. by a basis of a suitable cohomology group. The latter
approach, however, is somewhat ad hoc and it does not seem amenable to the geometric
techniques that we advocate, using Lagrangians and Peierls’ method. This means in
particular that any choice of a space of extra central observables cannot be motivated
from a geometric analysis similar to the space of electric monopole observables (at least
not without reverting to other theories, e.g. the one based on F).

Our interpretation offers a nice explanation for the fact that C p(M) is trivial when
M has compact Cauchy surfaces. Namely, such a spacetime can only be isometrically
embedded in one with a diffeomorphic Cauchy surface. Thus, in particular, it is not
possible to embed M into a spacetime with an electric charge located outside of the
image of the embedding.

For future convenience we make here a remark, which is closely related to the previous
example of Gauss’ law:

Remark 3.10. Consider two embeddings of� := R×S
n−2, n ≥ 3, into other manifolds.

The first is an embedding ψ1 : � → R
n−1, which is defined as the identity in polar

coordinates. The second is an embedding ψ2 : � → S
1 × S

n−2, where we used an
embedding R → S

1 in the first factor. Now consider the compactly supported 1-form
α of Example 3.7 on � with

∫
f �= 0, and its push-forwards αi := (ψi )∗α. Because

the exterior derivative commutes with the push-forward, both αi are closed. Recall that
α ∈ d�0(�), but α �∈ d�0

0(�). For the αi this is different:

1. α1 ∈ d�0
0(R

n−1).
2. α2 �∈ d�0(S1 × S

n−2).
The first statement follows from the fact that H1

0 (R
n−1) is trivial for n ≥ 3. For the second

statement we argue by contradiction and suppose that α2 = dβ2 for some function β2
on S

1 × S
n−2. Note that the complement of the range of ψ2 is connected, and that β2

is constant there. Without loss of generality we may assume that β2 vanishes there,
so it follows that β := ψ∗2 (β2) satisfies dβ = α and β vanishes outside a compact
set. However, we know from the Examples 2.1 and 3.7 (and from the discussion above
Example 3.7) that this cannot be the case, as

∫
f �= 0.

To close this subsection we provide an example concerning degenerate observables
for p = 2, indicating why an interpretation in terms of charge is more complicated in
that case.
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Example 3.11. For p > 1 one may easily find degenerate observables by generalis-
ing Example 3.7, taking � = R>0 × R

×p−1 × S
n−1−p and α = d�β with β =

(
∫ r

1 f ) f (x2) · · · f (x p)dx2∧ . . .∧dx p, where the xi are Cartesian coordinates on R
p−1.

Then α has compact support and β has compact support if and only if
∫∞

1 f = 0.
Perhaps a more interesting example for p = 2 can be obtained by taking � :=

R
2\ {x1, x2}, where the xi are two distinct points. We let V0 ⊂ R

2 denote the complement
of a closed ball which contains both xi and we let V1, V2 ⊂ R

2 be punctured open balls
around x1, x2, respectively, such that the closures of V0, V1, V2 are pairwise disjoint.
We will view V0, V1, V2 as subsets of � and we note that their topologies are all equal
to R × S

1. For i = 0, 1, 2 we may choose ηi ∈ �1
0,d(Vi ) which is not exact, so that

[ηi ] generates H1
0 (Vi ), and we may choose βi ∈ �1(�) such that (ηi , β j |Vi ) = δi j , the

Kronecker delta.
For any given constants bi ∈ R we can now construct a one-form β ∈ �1(�) such

that β|Vi = biβi , simply by using a suitable partition of unity. Setting α := d�β we see
that α ∈ �2

0(�) has support in the compact set V c
0 . We may wonder whether α = d�β ′

for some β ′ ∈ �1
0(�) with compact support. Now note that [γ ] ∈ H1(�) is uniquely

determined by ci := (ηi , γ ) with i = 1, 2 only. Moreover, the complement of any
compact set K ⊂ � will contain representatives of all three [ηi ]. Hence, for β − γ to
be exact on K c we would need (ηi , β − γ ) = 0 for i = 0, 1, 2. We can choose γ to
ensure this equality for i = 1, 2, but the remaining equality puts a necessary restriction
on β. Indeed, in � the three [ηi ] are linearly dependent, say [η2] = [η0] − [η1]. A short
computation then shows that the necessary condition for [α] = 0 is b2 = b0 − b1. This
condition is also sufficient.

Note that the equation b2 = b0 − b1 involves all three constants bi , which changes
the interpretation somewhat. If we identify V0 as a neighbourhood of infinity we may
choose γ such that (η0, β−γ ) = 0, meaning that there is no charge at infinity. Replacing
β by β̃ := β − γ we are left with the condition that b̃2 = −b̃1, where b̃i = (ηi , β̃). In
the analogous case for p = 1 we would find conditions involving only one constant b̃i ,
which we could then interpret as a charge located at xi , i = 1, 2. In the present case,
however, it seems we must attribute the charge instead to the union of the two points.

Note that the situation above can also be formulated in R
3, simply by adding an

extra dimension, removing two parallel lines, choosing [ηi ] ∈ H2
0 (Vi ), etc. If we would

instead remove a circle and a line from R
3, then the linear dependence between the

[ηi ] would only involve two of these classes and we would obtain an interpretation in
terms of a charge located on the line. On the other hand, if we remove two circles, then
the three [ηi ] would be linearly independent, so no charge is present. This seems to be
independent of whether the removed circles are knotted or linked in any way.

4. The Quantised p-Form Field and Field Strength

After studying the classical dynamics of the p-form field in the presence of a given
background current j , we now discuss the corresponding quantum theory. In the case
where j = 0 we can directly quantise the linear Poisson space and let the Poisson
bracket correspond to a commutator between operators in the usual way. In the gen-
eral case, however, we only have an affine Poisson space. For this reason we will first
discuss a general method for quantising affine Poisson spaces, which can be viewed
as a special case of Fedosov’s quantisation scheme from the theory of deformation
quantisation [47].
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4.1. The quantisation of affine Poisson spaces. In this subsection we consider a real
affine space V , modeled over a real linear topological vector space V0. (Requiring a
topology is no loss of generality, because one may always choose the discrete topology.)
This means that for every x ∈ V there is an affine bijection ex :V0→V such that

ex (0) = x, ex (v) = ey(v + e−1
y (x)) ∀y ∈ V .

We equip V with the unique topology that makes each ex a homeomorphism, so we
may view ex as a coordinate chart covering the affine manifold V . We denote by V ∗0
the topological dual of V0 and we denote the space of continuous affine maps on V0 by
V ′0 � R⊕ V ∗0 . We may identify the tangent and cotangent bundles of V with

T V � V × V0, T ∗V � V × V ∗0 .
In particular we can use the derivative D0ex at 0 to identify T0V0 � V0 with Tx V in
a canonical way, so there is an isomorphism ex ◦ (D0ex )

−1 : Tx V → V . We define a
canonical affine connection on T V using the maps σyx :Tx V→Ty V defined by σyx :=
D0ey ◦ e−1

y ◦ ex ◦ (D0ex )
−1. This affine connection is characterised by (x, D0exv) �→

(y, D0ey(v + e−1
y x)). Because the connection is only affine and not linear it will be

convenient to introduce the bundle T ′V � V×V ′0, so that T ′x V is the space of continuous
affine maps on Tx V .

Now assume that there is a Poisson structure on V , i.e. at each x ∈ V , Px is an
antisymmetric, bilinear map on T ∗x V . Equivalently, Px can be viewed as a bilinear map
on T ′x V which vanishes when at least one of the arguments is a constant map. For
any x ∈ V we can pull-back Px to a bilinear map πx on V ′0 (or on V ∗0 ), πx (ξ, η) :=
Px (ξ ◦(D0ex )

−1, η◦(D0ex )
−1) for all ξ, η ∈ V ′0. We assume in addition that the Poisson

structure is covariantly constant with respect to the canonical affine connection on T V ,
i.e. Py(ξ, η) = Px (ξ ◦ σyx , η ◦ σyx ) for all ξ, η ∈ T ′y V . The covariant constancy is
equivalent to πx (ξ, η) = πy(ξ ◦ e−1

x ◦ ey, η ◦ e−1
x ◦ ey) = πy(ξ, η) for all x, y ∈ V

and all ξ, η ∈ V ′0, where we used the fact that πy is bilinear and vanishes when one of
the two arguments is a constant. In other words, πx = πy for all x, y ∈ V . A further
equivalent formulation uses the identification of Tx V with V by ex ◦ (D0ex )

−1 to define
an antisymmetric, bilinear map P on V ′ which vanishes when one of the arguments is
a constant map. Note that P(ξ, η) = π(ξ ◦ ex , η ◦ ex ) for any x ∈ V .

Definition 4.1. By an affine Poisson space we mean a pair (V, P), where V is an affine
space, modeled over a topological vector space V0, and P is an antisymmetric bilinear
map on V ′. We say that (P, V ) is modeled over the linear Poisson space (V0, π), where
π is the push-forward of P by any of the canonical isomorphisms ex :V0→V , x ∈ V .

Remark 4.2. If V0 is finite-dimensional, the specification of a non-degenerate antisym-
metric bilinear map π on V ∗0 is equivalent to the specification of a (non-degenerate)
symplectic form σ on V0, using the linear isomorphism V ∗0 → V ∗∗0 � V0 : ξ �→ π(ξ, .).
However, when σ or π is degenerate, or when the space V0 is infinite dimensional, the
situation is more complicated. Both complications apply for the vector potential and its
p-form generalisations.

For the linear Poisson space (V0, π) it is well-known how to construct the corre-
sponding quantum theory. One can construct a Weyl C∗-algebra W0, which is generated
by linearly independent Weyl operators W (ξ), ξ ∈ V ∗0 satisfying the Weyl relations

W (ξ)W (η) = e−
i
2π(ξ,η)W (ξ + η), W (ξ)∗ = W (−ξ).
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Note that this also works in the case where π is degenerate [8]. The operators W (ξ) are
unitary and degenerate elements ξ ∈ V ∗0 generate the centre of W0. We will mostly be
interested in the infinitesimal Weyl algebra, A0, which is the ∗-algebra generated by an
identity operator I and the operators �(ξ) satisfying the relation

[�(ξ),�(η)] := �(ξ)�(η)−�(η)�(ξ) = iπ(ξ, η)I.

It may equivalently be described as a ∗-algebra of functions on V0, which are sym-
metric polynomials in elements of V ∗0 , using a deformed (Weyl–Moyal) �-product. For
monomials F := ξ l and G := ηm with ξ, η ∈ V ∗0 this product is given by (cf. [47])

F � G =
min(l,m)∑

n=0

in

n!2n
π(ξ, η)n

l!m!
(l − n)!(m − n)!ξ

l−n ◦s η
m−n,

where ◦s denotes the symmetrised product. Using ξ �η−η�ξ = iπ(ξ, η) and identifying
�(ξ) with the linear map ξ we recover [�(ξ),�(η)] = iπ(ξ, η). Note that symmetric
monomials of the form ξ l generate the linear space of all symmetric polynomials.

For the affine Poisson space (V, P) we will construct an analogous algebra, using a
prescription that can be viewed as an application of Fedosov’s quantisation technique
from the theory of deformation quantisation [47]. For any x ∈ V we let Ax be the
infinitesimal Weyl algebra of the cotangent space T ∗x V , in the Poisson bracket Px at
x ∈ V . It may be interpreted as a quantisation of the perturbations of the system, around
the fixed point x ∈ V . Taking the algebras for all x ∈ V together, one may form a
bundle A of ∗-algebras over V and then consider the algebra ˜A of sections of A, where
algebraic operations are preformed pointwise in Ax . Of course the algebra ˜A is too big
for physical purposes, because it does not take into account the relations between the
algebras Ax at different points x ∈ V . To remedy this defect, Fedosov’s construction
suggests to find a connection on the bundle A, suitably adapted to the Poisson structure
P , and to consider the subalgebra A of ˜A generated by covariantly constant sections.
We will now show that for an affine Poisson space such a connection on A can be found,
using the canonical affine connection of V .

Consider two points, x, y ∈ V , and the affine isomorphism σyx between Tx V and
Ty V . We view Ay as the space of functions on Ty V which can be written as symmet-
ric linear polynomials in V ∗0 , endowed with a �-product. Pulling back these functions
by e−1

y ex yields a linear isomorphism onto Ax , which we denote by αxy . Under this
isomorphism, a generator �y((D0ey)∗ξ) at y ∈ V , with ξ ∈ V ∗0 , gets mapped to

αxy(�y((D0ey)∗ξ)) = �x ((D0ex )∗ξ) + ξ(e−1
y (x))I,

because ((D0ey)∗ξ) ◦ σyx = (D0ex )∗ξ + ξ(e−1
y (x)). One may verify that e−1

x (y) =
−e−1

y (x), so that σyx = σ−1
xy and αyx = α−1

xy . Furthermore, αxyαyz = αxz for all
x, y, z ∈ V and, using the explicit form for the �-product,

αxy(F) � αxy(G) = αxy(F � G).

As x, y range over V , the ∗-isomorphisms αxy piece together the desired connection α
of the algebra bundle A. A section of this bundle, F(x) ∈ ˜A , is covariantly constant
with respect to α if and only if F(x) = αxy(F(y)) for all x, y ∈ V . The subalgebra A
that we obtain from Fedosov’s quantisation method is therefore isomorphic to any Ax .
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The algebra A can also be constructed in a more direct and invariant way as follows.
We consider the algebra A of functions on V that can be written as antisymmetric
polynomials in elements of V ′, with a �-product based on the antisymmetric bilinear
map P on V ′. Equivalently, we may define A as follows:

Definition 4.3. For an affine Poisson space (V, P) we define the algebra A (V, P),
generated by operators �(χ), χ ∈ V ′, satisfying

1. �(1) = I , where 1 is the constant function on V and I the identity operator,
2. χ �→ �(χ) is linear,
3. �(χ)∗ = �(χ) (as χ is real-valued), and
4. [�(χ),�(ψ)] = i P(χ,ψ)I .

To see the relation between the generators�(χ) of A (V, P) and�x (ξ) of Ax for any
x ∈ V , we view these algebras as linear spaces of functions on V , resp. Tx V . The pull-
back under ex ◦(D0ex )

−1 :Tx V→V provides a linear isomorphismαx :A (V, P)→Ax .
For any χ ∈ V ′ we may define the linear part ξχ of χ by ξχ (v) := (e∗xχ)(v)− (e∗xχ)(0).
This is a continuous linear map on V0, which is independent of the choice of x ∈ V ,
because (indicating the possible dependence on x in the subscript)

ξχ,x (v) = χ(ex (v))− χ(x) = (e∗yχ)(v + e−1
y (x))− (e∗yχ)(e−1

y (x))

= ξχ,y(v + e−1
y (x))− ξχ,y(e−1

y (x)) = ξχ,y(v).
The map αx then satisfies

αx (�(χ)) = �x ((D0ex )∗ξχ ) + χ(x)I.

One may directly verify that αx is a ∗-algebra isomorphism, because αx (F) � αx (G) =
αx (F � G). Also note that αxy = αx ◦ α−1

y by construction.

Remark 4.4. A C∗-algebraic formulation exists along similar lines, because the mapsσxy
give rise to Bogolyubov transformations of the second kind on the Weyl C∗-algebras
Wx of each tangent space Tx V � V0, cf. [8].

4.2. Quantising the p-form fields. The procedure described in the previous subsection
applies in particular to the p-form fields, for which we have seen that S p

j is an affine

Poisson space, modeled on the linear Poisson space S p
0 with the Poisson bracket {, }.

Note that the notation can be made a bit more concrete by realising that the affine
space S p

j is a subspace of the linear space F p(M) and by using the maps e[A] (cf.

Sect. 3.1). Any continuous affine map χ in (S p
j )
′ can be extended to a continuous affine

map on F p(M) as follows. First we may extend the linear part ξχ from S p
0 to F p(M),

so there is an α ∈ F p(M)∗ such that ξχ ([A]) = Fα(A) for all [A] ∈ S p
0 . Then we may

define the affine map χα on F p(M) by

χα([A′]) := χ([A]) + Fα(A
′ − A) = (χ([A])− Fα(A)) + Fα(A

′)

for some given [A] ∈ S p
j . The extension is not unique, because χα = χα′ if and only if

α − α′ ∈ δd�p
0 (M) (cf. Proposition 3.3).
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Following the results of Sect. 4.1 we may now describe the quantum p-form field.
Instead of the space (S p

j )
′ we may consider F p(M)′ � R ⊕ F p(M)∗, but we must

divide out the equivalence relation

(c, α) ∼ 0 ⇔ α = δdβ, β ∈ �p
0 (M), c = −Fα(A) = −( j, ∗β),

where A ∈ S p
j is arbitrary. This leads to the following

Definition 4.5. The (on-shell) p-form field algebra is the ∗-algebra A j (M) generated
by a unit I and the symbols A(α), α ∈ F p(M)∗, subject to the relations

1. α �→ A(α) is linear,
2. A(α)∗ = A(α), (as α and A are real-valued),
3. [A(α),A(β)] = i

{
Fα, Fβ

}
I ,

4. (δdA)(β) = ( j, ∗β)I for all β ∈ �p
0 (M).

Note that the constant maps (c, 0) give rise to multiples of the identity, whereas the linear
maps (0, α) give rise to the fields A(α). The equivalence relation (c, α) ∼ 0 gives rise
to the equation of motion. For the homogeneous case, where j = 0, this simply reduces
to the usual infinitesimal Weyl algebra A0.

Just like in Sect. 4.1 we may construct for each [A] ∈ S p
j a unique ∗-isomorphism

α[A] :A j→A0 which preserves the unit and satisfies

α[A](A(α)) = Fα(A)I + A0(α),

i.e. α[A](A)(x) := A(x)I + A0(x), where we wrote the field operators that generate A0
with a subscript 0 for distinction. This ∗-isomorphism can be used to pull back states on
A0 to states on A j . When A is smooth, the microlocal spectrum condition is preserved
under pull-back by e[A] (cf. [4]).

One may define the field strength F := dA also in the quantum case. More precisely,
we consider the field strength observables α = δβ with β ∈ �p+1

0 (M) and F(β) :=
−A(δβ). Together with the unit I these operators generate a subalgebra F j (M) of
A j (M) such that

1. β �→ F(β) is linear,
2. F(β)∗ = F(β), (as β is real-valued),
3.

[
F(β),F(γ )

] = i
{

Fδβ, Fδγ
}

I ,
4. (δF)(γ ) = j (γ )I for all γ ∈ �p

0 (M).

The homogeneous Maxwell equations dF = 0 already follow from the definition
F = dA.

Remark 4.6. Note that the algebra F j (M) differs from the field strength algebra consid-
ered in [12], even for j = 0 and p = 1, because our approach only considers observables
on field strength configurations that are derived from a vector potential, whereas [12]
constructs an algebra directly for F . This is related to our ability to accommodate the
Aharonov–Bohm effect and to our interpretation of electromagnetism as a theory for
the connections of a trivial principal U (1)-bundle. We rely heavily on the existence of
a Lagrangian formulation and on Peierls’ method to derive the Poisson bracket. For this
reason a direct application of our results to analyse the centre of the field strength algebra
of [12] is not straightforward.

Proposition 3.5 implies the following result on the centre of A j (M):
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Corollary 4.7. The centre of A j (M) is generated by I and F(β) = −A(δβ)with−δβ ∈
C p(M).

A similar statement can be derived for the field strength algebra, whose centre is gener-
ated by I and F(β) with β ∈ H p+1

0 (M). This may be compared to [12], who quantised
the field strength tensor for p = 2 directly and whose results imply that the centre can
be written as

�2
0,d(M) +�2

0,δ(M)

d�1
0(M) + δ�3

0(M)
� H2

0 (M) + H2
0,δ(M).

Note that a globally hyperbolic spacetime has no γ ∈ �2
0(M) which is simultaneously

closed and co-closed, since �γ = 0 implies γ = 0. Hence, any ω ∈ �2
0,d + �2

0,δ can

be written uniquely as ω = α + β with α ∈ �2
0,d(M) and β ∈ �2

0,δ(M). Using this
decomposition in the numerator and denominator we see that the space of degeneracies
found by [12] is isomorphic to H2

0 (M) + H2
0,δ(M).

4.3. General covariance and locality. The occurrence of a non-trivial centre as in Corol-
lary 4.7 was first established by [12] in their model of the field strength tensor, although
the centre found in [12] is larger than ours, as it also contains observables of the field
strength tensor which are not observables of the vector potential. Those authors also
realised that the presence of this non-trivial centre implies that local covariance, in the
sense of [11], fails. As we will see in this subsection, this lack of local covariance is
really only a lack of locality. Moreover, the lack of locality is not surprising, because
it already occurs at the classical level in the form of Gauss’ law. We will now use our
careful computation of the centre to show that the lack of locality at the quantum level
can be traced back to the same source, thereby achieving the main goal of this paper,
namely to clarify the topological origins of the non-local (Gauss’ law) observables in
the quantum theory.

Following the seminal paper [11] we may analyse the general covariance of our theory
in a categorical framework. For this purpose we introduce the following categories:

Definition 4.8. • SpacCurr is the category whose objects are triples (M, g, j), where
M = (M, g) is a globally hyperbolic spacetime and j ∈ �p

δ (M), and whose mor-
phisms are orientation and time orientation preserving embeddings ψ :M→ M̃ such
that ψ∗j̃ = j , ψ∗g̃ = g and ψ(M) ⊂ M̃ is causally convex (i.e. ψ−1( J̃±(ψ(p))) =
J±(p) for all p ∈ M).

• Alg is the category whose objects are unital ∗-algebras and whose morphisms are
unit preserving ∗-homomorphisms.

• Alg′ is the subcategory of Alg with the same objects and only injective morphisms.

The inclusion of j in the background structure is a natural modification of the framework
of [11]. The original considered the category Spac (cf. Definition 2.9), which is the full
subcategory of SpacCurr consisting of objects with j = 0. (Alternatively, there is a
forgetful functor from SpacCurr to Spac.) Instead of Alg one may consider topological
∗-algebras (with continuous morphisms) or C∗-algebras, but a choice of topology is not
very relevant for our current investigation and has been omitted.

The idea that physical theories should depend in a generally covariant way on the
background structure can now be stated in a concise way as follows:
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Definition 4.9. A generally covariant quantum field theory with background current is
a covariant functor A : SpacCurr→ Alg. This theory is locally covariant if and only if
its range is contained in Alg′.
The definition of locally covariant quantum field theory is directly analogous to that
of [11] (which has no background current and uses Spac instead of SpacCurr). The
slightly more general notion of generally covariant quantum field theory is new. It has
been introduced to accommodate the quantum p-form fields, as we will see shortly.

Let us first investigate the functorial behaviour of our quantisation scheme of affine
Poisson spaces. (This is in analogy to the functorial behaviour of the infinitesimal Weyl
quantisation of (pre)-symplectic spaces, cf. [3,21].) For this purpose we need the fol-
lowing additional category (cf. Definition 4.1):

Definition 4.10. AffPoiss is the category whose objects are affine Poisson spaces (V, P)
and whose morphisms are continuous affine maps L : V→ Ṽ such that P̃ = L∗P, i.e.
P̃(ξ, η) = P(ξ ◦ L , η ◦ L) for all ξ, η ∈ Ṽ ′.
We can then prove:

Lemma 4.11. There is a contravariant functor Q :AffPoiss→Alg such that Q(V, P)
is the algebra A (V, P) of Definition 4.3 and such that for any morphism L : V →
Ṽ , Q(L) : A (Ṽ , P̃) → A (V, P) is the ∗-algebraic homomorphism determined by
Q(L)(�̃(χ)) := �(χ ◦ L) for all χ ∈ Ṽ . Furthermore, Q(L) is injective if and only if
L∗ : Ṽ ′→V ′ is injective.

Proof. The non-trivial part is to show that Q(L) is well-defined, i.e. that it respects
the relations of the algebras A (V, P) and A (Ṽ , P̃). This follows from the fact that
the pull-back L∗ is linear, and preserves the Poisson structure. (Alternatively one may
show that (V, P) �→ (V ′, P) is a contravariant functor from AffPoiss to a category of
pre-symplectic spaces and compose this functor with the quantisation functor of [21].)
For the last statement we deduce from Definition 4.3 that Q(L) is injective if and only
if it is injective on the generators �̃(χ), χ ∈ Ṽ ′, which is equivalent to injectivity
of L∗. ��

In order to describe the p-form theory as a generally covariant quantum field theory,
it remains to show that there is a contravariant functor P :SpacCurr→AffPoiss, so
that the theory can be described by the composition Q ◦ P. This is the subject of the
following result:

Proposition 4.12. There is a contravariant functor P :SpacCurr→AffPoiss, which
is defined as follows. To each object (M, g, j), P assigns the affine Poisson space
P(M, j) := S p

j (M) (cf. Sect. 3). To each morphism ψ : (M, g, j)→ (M̃, g̃, j̃ ), P

assigns the pull-back P(ψ) :S p
j̃
(M̃)→S p

j (M), so that P(ψ)( Ã) := ψ∗ Ã.

Proof. The non-trivial part is to show that the morphisms are well-defined. To see this
we first note that each isometric embedding ψ : M → M̃ yields a well-defined push-
forward map ψ∗ : �p

0 (M)→ �
p
0 (M̃) so, by duality, there are well-defined pull-back

maps ψ∗ :D p(M̃)→D p(M). Furthermore, ψ∗ commutes with exterior derivatives, so
it maps exact forms to exact forms and hence descends to a well-defined linear map
ψ∗ :F p(M̃)→F p(M). For a morphism in SpacCurr, ψ∗ also respects the equations
of motion, so it restricts to a map ψ∗ :S p

j (M̃)→S p
j (M).
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It remains to show thatψ∗ intertwines the Poisson structures of the two affine spaces.
At an abstract level this follows from the fact thatψ∗ preserves the Lagrangian densities
and from the well-definedness of Peierls’ method. In more detail we note that a continu-
ous affine map Fα on S p

j (M), with α ∈ �p
0,δ(M), gets mapped to Fα ◦ψ∗ = Fψ∗α with

ψ∗α ∈ �p
0,δ(M̃). (A general continuous affine map on S p

j (M) is of the form Fα , up to
a constant. Because the Poisson structures vanish on constants, it suffices to consider
only the Fα .) Expressing the Poisson structure in terms of the advanced-minus-retarded
fundamental solution G we need to verify that

(ψ∗α, ∗G̃ψ∗β) = (α, ∗Gβ).
It is well-known that this follows from the uniqueness of the advanced and retarded
fundamental solutions, together with the fact that the range ψ(M) is causally convex
in M̃ (see for example [3, Ch. 3]). Together these imply that ψ∗(G̃±ψ∗β) = G±β and
using the fact that ψ is isometric the result easily follows. ��

Putting things together we find a functor A := Q ◦P from SpacCurr to Alg which
describes the p-form field in a generally covariant way. Furthermore, one may show that
A is causal and satisfies the time-slice axiom, by which we mean the following:

Definition 4.13. We say that a generally covariant quantum field theory A with back-
ground current is causal, if and only if for every pair of morphisms ψi : (Mi , gi , ji )→
(M, g, j), i = 1, 2, in SpacCurr, whose ranges ψ1(M1) and ψ2(M2) are causally
disjoint in M, [α1(A1), α2(A2)] = 0 in A(M, g, j), where we have writtenαi := A(ψi )

and Ai := A(Mi , gi , ji ) for brevity.
We say that a generally covariant quantum field theory A with background current

satisfies the time-slice axiom, if and only if for every morphism ψ : (M, g, j) →
(M̃, g̃, j̃ ) in SpacCurr, whose range ψ(M) contains a Cauchy surface for M̃, A(ψ)
is an isomorphism.

The causality follows directly from the form of the Poisson structure, in particular from
the support properties of G. The time-slice axiom essentially follows from Corollary
2.15. (For j �= 0 we note that j (x)I is contained in every local algebra, so it does not
spoil the time-slice axiom.) We omit the details of the proofs, because they proceed
along familiar lines (cf. [15] for the scalar field case.)

We now turn to the issue of locality. It was already remarked in [12] that locality may
fail, due to the presence of a gauge equivalence. The following result shows that, when
treated correctly, the lack of locality may be interpreted in terms of Gauss’ law, also at
the quantum level. For completeness we also prove some no-go results for attempts to
restore locality.

Theorem 4.14. The generally covariant theory A is not locally covariant. For any mor-
phism ψ : (M, g, j) → (M̃, g̃, j̃ ) the kernel of A(ψ) is contained in the algebra
generated by A(α) with α ∈ C p(M).

Proof. Quite generally, the kernel of A(ψ) is generated by the operators A(α) which
A(ψ) maps to 0 (cf. Lemma 4.11). This can only occur if α ∈ C p(M), by the canonical
commutation relations (and the fact that morphisms preserve the unit I �= 0). To show
that A is not locally covariant, we need to prove that non-injective morphisms do indeed
exist. For p = 1 this can be seen from Example 3.7 and Remark 3.10, where we have
a canonical injection ι of a spacetime M into Minkowski spacetime M0, both with
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vanishing currents j . M is constructed in such a way that C1(M) is non-trivial (cf.
Proposition 3.5), so the algebra A(M) has a non-trivial centre. However, C1(M0) is
trivial, and hence so is the centre of A(M0). Consequently, the A(ι) cannot be injective.

For general p we proceed as follows. Let S
p−1 be the unit sphere in R

p, with the
induced Riemannian metric. We consider the embedding of the spacetime M × S

p−1

into M0 × S
p−1 which is trivial in the second factor. Now, if ω is the volume form on

S
p−1, then α ∧ ω is a compactly supported p-form on the Cauchy surface � × S

p−1,
where� is the Cauchy surface for M used in Example 3.7. Note that α∧ω = d(β∧ω),
but β ∧ ω is not compactly supported. Indeed, if there were some compactly supported
γ with α ∧ ω = dγ , then 0 = ∫∞

1

∫
Sp−1 α ∧ ω =

∫∞
1 f × ∫

Sp−1 ω, which contradicts
the choices of f and ω. ��

For p = 1 the interpretation of Sect. 3.3 shows that the lack of injectivity is due to
electric monopole observables, which is in line with Gauss’ law.

Because the spaces S p
0 (M) are locally convex, the injectivity of ψ∗ on S p

0 (M)
∗

is equivalent to the surjectivity of ψ∗ on S p
j (M) (by the Hahn–Banach Theorem). If

p < n − 1 this leads to another proof that injectivity fails, as follows. Consider any
source j ∈ �p

δ (M0) with support in J (B1), where B1 is the unit ball of the Cauchy
surface �0. Let A ∈ �p(M0) be any on-shell configuration, solving δd A = j and
δA = 0 (which exists as per Theorem 2.22). Let � ⊂ �0\B1 be any connected open
set and define M := D(�), with canonical embedding ι : M → M0. The pull-back
of A to M solves the homogeneous Maxwell equations and generalises the electric
monopole configuration of Example 3.7. Now, if α ∈ C p(M), then α = δν for some
ν ∈ �p+1

0,d (M). As M0 is topologically trivial and p < n − 1 we may write ι∗ν = dβ

for some β ∈ �p
0 (M0). Hence, (α, ∗ι∗A) = (δdβ, ∗A) = (β, ∗ j) =: c with c ∈ R and

therefore

αι(A(α)− cI ) = 0.

If non-trivial α exist, it follows that the kernel is non-trivial. The existence of non-trivial
α is equivalent to the fact that ι∗ is not surjective.

By introducing background currents one can ensure that the electric monopole ob-
servables are mapped to a non-zero constant, rather than to 0. However, one can still
construct linear combinations of electric monopole observables and the unit which are
in the kernel of the embedding. For this reason the inclusion of background currents
does not help to restore local covariance.

Remark 4.15. We can also define an off-shell algebra for p-form fields, by dropping
the equation of motion from Definition 4.5. In other words, for each globally hyperbolic
spacetime M (independently of any background current) we quantise the (linear) Poisson
space F p(M), where the Poisson structure on F p(M)∗ is still given by

{
Fα, Fβ

} :=
(α, ∗Gβ). For morphisms ψ we use once more the pull-back to obtain a morphism of
Poisson spaces. In this case there is no relation that forces us to divide out a subspace
of �p

0,δ(M), so that the push-forward map on observables Fα is now injective. This
entails that the off-shell theory does abide to the principle of local covariance and it is
also causal. However, it contains no information on the dynamics, since no equation of
motion is imposed, and hence the time-slice axiom fails.

Alternatively, one might say that for the off-shell algebra the external current is left
arbitrary. Indeed, defining the current as a quantum operator j := δdA it is unrestricted.
Thus it seems that considering arbitrary background currents should restore local co-
variance and one may argue [23] that a fully interacting theory like QED, where j is
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the usual normal ordered Dirac current, would give rise to a locally covariant theory
satisfying the time-slice axiom.

To conclude this section we consider an attempt to restore local covariance by dividing
out the centre of the algebras A(M, g, j). Although this procedure is well-defined for
each individual algebra, we now prove that it cannot be done in a functorial way, at least
not for p = 1 and n ≥ 3:

Theorem 4.16. Consider the case p = 1 and n ≥ 3. For each spacetime M with
background current j , let Z(A(M)) denote the centre of the algebra A(M) and let
A′(M) := A(M)/Z(A(M)). Not all morphisms A(ψ), where ψ is a morphism in
SpacCurr, descend to morphisms of the algebras A′(M).

Proof. It suffices to provide one counterexample, which follows from the second item of
Remark 3.10. A spacetime formulation of that remark provides an example of a morphism
ψ : (M, g, j)→ (M̃, g̃, j̃) and a central operator �(α) in A(M) for which αψ(�(α))
is no longer in the centre. Clearly αψ cannot descend to the quotient algebras. ��
Remark 4.17. In analogy to A one may construct a generally covariant theory F for the
field strength tensor F := dA (cf. Remark 4.6 and [12]). This theory is causal and satisfies
the time-slice axiom, but similar arguments as for A show that F is not local either. In
fact, we have an even larger space of degeneracies than before, namely H p+1

0 (M) (cf.
Corollary 4.7 and the remarks below it). Unlike for A, however, F does allow the centre
of the algebra to be divided out in a functorial way, leading to a locally covariant theory.

Indeed, the observables are generated by I and F(β) with β ∈ �
p+1
0 (M)

�
p+1
0,d (M)

, where we

note that the latter space is well behaved under embeddings. Unfortunately, the resulting
theory is based on a classical phase space consisting of field configurations F which are
co-exact, F = d A = δB. Consequently, the theory cannot measure any electric charges
or electromagnetic currents whatsoever.

5. Conclusions

In this paper, we have described the dynamics of the vector potential and its p-form
generalisations, both at a classical and at a quantum level, on a generic globally hyper-
bolic spacetime and in the presence of (classical) background currents. At the classical
level we have recollected mostly well-known results, which are based on imposing the
Lorenz gauge, and extended them to a distributional setting. Like [12] we found a quan-
tum theory which fails to be generally locally covariant. However, unlike [12] we were
able to ascribe the failure to the lack of locality at the quantum level. At least for the
vector potential (p = 1), the source of such a lack is the same as at the classical level:
Gauss’ law.

In order to accomplish this new understanding of the lack of locality, we made es-
sential use of three crucial ingredients. Firstly, we made a judicious choice of the gauge
equivalence for the vector potential. This choice was motivated by the geometric per-
spective of the standard model, combined with insights from general covariance. It is
experimentally justified by the Aharonov–Bohm effect. Secondly, we used a quantisa-
tion scheme that improves on the ones that were used in most of the previous literature
by avoiding the use of (pre)-symplectic spaces. Instead of using a space of classical so-
lutions with spacelike compact support and using G to define a (pre-)symplectic form,
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we followed the general geometric method of Peierls’, which automatically leads to a
Poisson structure on the space of local observables. Peierls’ method applies to any La-
grangian theory, even if the equation of motion is non-linear. Because we were studying
a linear equation (with source term), the extension of the classical space of solutions
to include distributional solutions allowed us to view the space of observables as the
continuous dual space, consisting of smooth test-forms. In this way the Poisson bracket
that we found was automatically well-defined on all observables. Thirdly, we continued
to use a geometric perspective by quantising the affine Poisson space using ideas from
deformation quantisation, in particular Fedosov’s method. It is not clear if (or how) these
methods can be extended to general Lagrangian theories, but in our case they allowed
us to interpret the quantum field operators in terms of observables, in direct analogy to
the classical case.

In addition to these general choices of procedure, our arguments relied on a somewhat
involved computation of the degeneracies of the Poisson bracket. Both at the classical
and at the quantum level we were able to relate these degeneracies to Gauss’ law (at least
for p = 1) and they have lead to a formula for the space of electric monopoles that can
influence a spacetime. For the field strength tensor associated to the vector potential we
have mentioned that the degeneracies are ruled by H2(M). These explanations vindicate
the combination of the three procedural ingredients mentioned above. In addition we
would like to point out that the degeneracies are not directly due to the Aharonov–Bohm
effect, but our computation does establish that the Aharonov–Bohm effect and Gauss’
law are related, via the Poisson bracket.

The quantum theory A that we constructed is not locally covariant. From a mathe-
matical point of view the reason can be ascribed to the degeneracy of the underlying
Poisson structure, which entails that the on-shell algebra possesses a non trivial cen-
tre, depending on the topology of the underlying spacetime. Even though we motivated
the gauge equivalence by viewing electromagnetism as a U (1) Yang-Mills theory in a
general covariant setting, we did not analyse in detail the effect of non-trivial principal
U (1)-bundles on our results. Such a formulation may shed further light on the geometric
(or topological) causes of the failure of locality [5]. We also omitted a detailed study
of the special case n = 2, where a different choice of gauge equivalence would be ap-
propriate. Another potentially interesting research topic is the inclusion of Dirac fields
and their interaction with the vector potential at a perturbative level. In this framework,
one may expect that the on-shell algebra would behave well under general embeddings,
leading to a locally covariant theory (cf. Remark 4.15).

Although the quantum theory A is not locally covariant, we have argued that it is
generally covariant and that the failure of locality is a well-understood consequence of
the gauge invariance. Besides, we have shown that it is impossible to recover a locally
covariant theory by dividing out the degeneracies of the Poisson bracket, at least for the
vector potential. For the field strength such a procedure is possible, and the off-shell
theory is locally covariant from the start, but these theories are rather unphysical or have
a limited physical applicability. Finally, the idealisation of classical background currents
is so useful that it should be considered as a perfectly satisfactory model. In our opinion
these are sufficient grounds to consider modifying the framework of locally covariant
quantum field theory, so as to accommodate physical theories with gauge symmetries
and non-local observables. Our notion of generally covariant quantum field theory is
clearly general enough for this purpose, but it is not clear whether it is too general.

In the spirit of [23] one could argue that the principle of local covariance wants to
stress that algebras of arbitrarily small neighbourhoods of a point should depend only
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on the germ of the metric at this point. This is in line with the fact that for the p-form
theories under consideration, the morphisms A(ψ) are injective as soon as the source
spacetime of ψ has a trivial topology. Such spacetimes could be used as building blocks
for the entire theory, in such a way that topological effects can be inferred out of a failure
of Haag duality. (How this works in detail, and how these ideas relate to the universal
field strength algebra of [12], will hopefully be addressed by some of us in a future
investigation.) On the other hand, one could argue that the topology of the underlying
spacetimes is only relevant because the gauge symmetry of the p-forms fields is related
to the topology. Other linear gauge theories, in particular linearised general relativity,
may have central elements in their algebras which are sensitive to the background metric
g as well as (or instead of) the background topology of M. This could force us to search
for other remedies, which are not of a purely topological nature. (This issue too will
hopefully be addressed in a future investigation involving one of us.)
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