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Abstract: We study Hermitian random matrix models with an external source matrix
which has equispaced eigenvalues, and with an external field such that the limiting mean
density of eigenvalues is supported on a single interval as the dimension tends to infinity.
We obtain strong asymptotics for the multiple orthogonal polynomials associated to these
models, and as a consequence for the average characteristic polynomials. One feature
of the multiple orthogonal polynomials analyzed in this paper is that the number of
orthogonality weights of the polynomials grows with the degree. Nevertheless we are
able to characterize them in terms of a pair of 2 × 1 vector-valued Riemann–Hilbert
problems, and to perform an asymptotic analysis of the Riemann–Hilbert problems.

1. Introduction

We consider random matrix ensembles under the influence of an external source matrix
with equidistant eigenvalues. The ensembles consist of the space of n × n Hermitian
matrices with a probability distribution of the form

1

Zn
exp(−n Tr [V (M)− AM])d M, (1.1)

where

d M =
∏

i< j

d�Mi j d�Mi j

n∏

j=1

d M j j . (1.2)

The external field V (x) is a real analytic function which has sufficiently fast growth at
infinity,

lim
x→±∞

V (x)

|x | + 1
= +∞, (1.3)



1024 T. Claeys, D. Wang

and the external source matrix A is a deterministic Hermitian matrix. Due to the unitary
invariance of the model, we assume, without loss of generality,

A = diag(a1, a2, . . . , an). (1.4)

In our paper, we further assume the eigenvalues of A are equispaced on a certain interval,
such that a j = a( j − 1)/n + b where a and b are constants. By arguments of shifting
and scaling, it suffices to consider the case

a j = j − 1

n
, where j = 1, 2, . . . , n, (1.5)

and we work with the external source matrix A given by (1.4) and (1.5) throughout
this paper. The normalization constant Zn in (1.1) depends on n and V . In the simplest
example we have V (x) = x2

2 , which gives the Gaussian Unitary Ensemble (GUE) in
external source A. If we allow singularities of V , and let V (x) = (x − m

n log x)χx>0, we
have the complex Wishart ensemble that has wide applications in statistics and wireless
communication, see e.g. [8].

Random matrix ensembles with external source were introduced in [18,33], and are
intimately connected to multiple orthogonal polynomials [15]. If the external field is the
classical one V (x) = x2

2 or V (x) = (x − m
n log x)χx>0, i.e., the ensemble becomes

the GUE with external source or the complex Wishart ensemble, more techniques are
available for asymptotic analysis, and for a large class of external source matrices,
including the equispaced one defined by (1.4) and (1.5), the asymptotics can be obtained.
See [22] for the complex Wishart ensemble. However, when the external field V (x) is
general, the asymptotic analysis of the random matrix ensembles with external source
has only had success for particular choices of external source matrices. Asymptotics for
large n have been studied in [4–6,13,14,16,17] in the case where the external source
matrix A has two different eigenvalues a and −a with equal multiplicity, and in [9–12]
when A has a bounded, or slowly growing with n, number of non-zero eigenvalues. Large
n asymptotics for general external source matrices have been considered in the physics
literature, see e.g. [23], but rigorous asymptotic results have not been obtained to the best
of our knowledge except for the two above-mentioned cases. We remark that the GUE
with external source and the complex Wishart ensemble have other generalizations, the
complex Wigner matrix model with external source and the complex sample covariance
matrix model respectively. They have also been studied extensively, see e.g. [7].

Let us first recall some general properties about random matrix ensembles with exter-
nal source. An ensemble of the form (1.1) with eigenvalues of the external source matrix
being a1, . . . , an induces a probability distribution on the eigenvalues λ1, . . . , λn of the
matrices given by [18,26,27]

1

Z ′
n

det(enaiλ j )ni, j=1�(λ)

n∏

j=1

e−nV (λ j )
n∏

j=1

dλ j , (1.6)

where Z ′
n = const ·Zn ·�(a), and�(λ) =∏i< j (λ j − λi ) and �(a) =∏i< j (a j − ai )

are Vandermonde determinants. A remarkable fact is that the average characteristic
polynomial of such an ensemble (1.1) satisfies orthogonality conditions: indeed, let

p(n)n (z) := En(det(z I − M)) = E
′
n(

n∏

j=1

(z − λ j )), (1.7)
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where En is the average with respect to (1.1), and E
′
n is the average with respect to (1.6),

then it was proved in [15] that p(n)n is characterized as the unique monic polynomial of
degree n satisfying the orthogonality conditions

∫

R

p(n)n (x)ena j x e−nV (x)dx = 0, for j = 1, . . . , n. (1.8)

These are the orthogonality conditions for the so-called type II multiple orthogonal poly-
nomials with respect to n different orthogonality weights ena j x e−nV (x), j = 1, . . . , n.
Specialized to our situation a j = j−1

n for j = 1, . . . , n, the joint probability distribution
of the eigenvalues takes the form

1

Z ′
n

∏

i< j

(λ j − λi )
∏

i< j

(eλ j − eλi )

n∏

j=1

e−nV (λ j )
n∏

j=1

dλ j , (1.9)

and the monic type II multiple orthogonal polynomials p(n)j (x), where j = 0, 1, . . . is
the degree, are characterized by

∫

R

p(n)j (x)ekx e−nV (x)dx = 0, for k = 0, . . . , j − 1. (1.10)

It is well-known that the point process (1.6) is determinantal [33], and its two-point
correlation kernel can be written in terms of multiple orthogonal polynomials. If a j =
j−1
n , the kernel takes the form [15]

Kn(x, y) = e− n
2 (V (x)+V (y))

n−1∑

j=0

1

h(n)j

p(n)j (x)Q(n)
j (y), (1.11)

where p(n)j (x) are the type II monic multiple orthogonal polynomials characterized by

(1.10), and Q(n)
j (y) = q(n)j (ey) are linear combinations of eky with k = 0, 1, 2, . . . , j ,

subjected to the orthogonality conditions
∫

R

xkq(n)j (ex )e−nV (x)dx = 0, for k = 0, . . . , j − 1, (1.12)

where q(n)j is a monic polynomial of degree j . Finally the constants h(n)j are given by

h(n)j =
∫

R

p(n)j (x)q(n)j (ex )e−nV (x)dx . (1.13)

The orthogonality conditions (1.10) and (1.12) for p(n)j and q(n)j can also be written at
once as

∫

R

p(n)j (x)q(n)k (ex )e−nV (x)dx = 0, for j �= k ∈ N = {1, 2, . . .}. (1.14)

Note that the multiple weights ekx e−nV (x) constitute an AT system [30, Section 4.4],
and hence p(n)j and q(n)j are uniquely defined, and h(n)j �= 0 [31].

Remark 1. As the counterpart of p(n)j (x), Q(n)
j (x) is the j th multiple orthogonal poly-

nomial of type I, up to the constant factor h(n)j . Generally the type I multiple orthogonal
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polynomials are not polynomials, but in the present setting, Q(n)
j (x) is a polynomial

in ex .

Remark 2. If the external field V is a quadratic polynomial, distributions of the form
(1.6) can also be realized in models consisting of n non-intersecting Brownian motions.
In particular, (1.9) is the joint probability distribution at an intermediate time of n non-
intersecting Brownian motions starting at one point and ending at n equidistant points.
Such a model has been studied in [29]. Different endpoint configurations have been
studied e.g. in [2,3].

In analogy to (1.7), q(n)n can also be interpreted as an average over the determinantal
point process (1.9). We will prove the following result in Appendix A.1.

Proposition 1. Let V be real analytic satisfying (1.3). We have the identities

q(n)n (ez) = En(det(ezI − eM )) = E
′
n(

n∏

j=1

(ez − eλ j )), (1.15)

where En denotes the expectation associated to (1.1) with A given by (1.4)–(1.5), and
E

′
n is the expectation associated to (1.9).

The main goal of this paper is to obtain asymptotics for the average characteristic
polynomials p(n)n of the random matrix ensemble as n → ∞. In addition we will also
obtain asymptotics for the dual polynomials q(n)n . A key observation is that p(n)n+k and q(n)n+k
can be characterized in terms of 1 × 2 vector-valued Riemann–Hilbert (RH) problems.
These RH problems are different from the known (n + k + 1)× (n + k + 1) RH problems
characterizing the multiple orthogonal polynomials p(n)n+k and q(n)n+k [32] and from the
classical RH problem for orthogonal polynomials [24]. Since n is a large parameter in
our settings, the 1×2 RH problem will be much more convenient for asymptotic analysis
than a RH problem of large size. As a drawback, our RH problem is non-standard in the
sense that the entries of the solution live in different domains. This requires a modification
of the Deift/Zhou steepest descent method to analyze the RH problem asymptotically.
The transformation J will play a crucial role here: it allows us to transform the 1 × 2
RH problem to a scalar shifted RH problem, and to obtain small norm estimates for the
solution to this RH problem.

A crucial role in the description of the asymptotic behavior of the polynomials will
be played by an equilibrium measure. By (1.9), the joint probability density function of
eigenvalues is maximal for the n-tuples (λ1, . . . , λn) for which

∑

i< j

log |λi − λ j |−1 +
∑

i< j

log |eλi − eλ j |−1 + n
n∑

j=1

V (λ j ) (1.16)

is minimal. As in [21, Section 6.1], one can then expect that the limiting mean distribution
of the eigenvalues of the random matrices is given by the equilibrium measureμV which
minimizes the energy functional

IV (μ) := 1

2

∫∫
log|t − s|−1dμ(t)dμ(s)

+
1

2

∫∫
log|et − es |−1dμ(t)dμ(s) +

∫
V (s)dμ(s), (1.17)
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among all Borel probability measures μ supported on R. This is in analogy to the
equilibrium measure corresponding to a matrix model of the form (1.1) without external
source, which is given as the unique minimizer of the energy

∫∫
log|t − s|−1dμ(t)dμ(s) +

∫
V (s)dμ(s). (1.18)

Following the proof in [21] of existence and uniqueness of the minimizer of (1.18), we
will show existence and uniqueness of the equilibrium measure minimizing (1.17).

Theorem 1. Let V be real analytic, satisfying the growth condition (1.3). Then there
exists a unique measure μ = μV with compact support which minimizes the functional
(1.17) among all probability measures on R.

Remark 3. It should be noted that the growth condition (1.3) is stronger than the usual
logarithmic growth needed to have a unique minimizer of the one-matrix logarithmic
energy (1.18). This is a consequence of the second term in (1.17).

The proof of this result will be given in Sect. 2 but it does not give any information
about the measure μV itself. For that reason, in what follows, we will restrict ourselves
to a class of external fields V for which the equilibrium measure behaves nicely and is
supported on a single interval.

We say that a real analytic external field V satisfying (1.3) is one-cut regular if there
exists an absolutely continuous measure dμV (x) = ψV (x)dx satisfying the properties

(i) supp μV = [a, b] for a < b ∈ R, and
∫

dμV (x) = 1,
(ii) ψV (x) > 0 for x ∈ (a, b),

(iii) limx→a+
ψV (x)√

x−a
and limx→b−

ψV (x)√
b−x

exist and are different from zero,
(iv) for x ∈ [a, b], there exists a constant � depending on V such that

∫
log|t − x |−1dμV (t) +

∫
log|et − ex |−1dμV (t) + V (x) + � = 0, (1.19)

(v) for x ∈ R\[a, b], we have
∫

log|t − x |−1dμV (t) +
∫

log|et − ex |−1dμV (t) + V (x) + � > 0. (1.20)

Properties (iv) and (v) are variational conditions for μV , and it follows from standard
arguments that a measure satisfying (i), (ii), (iv) and (v) minimizes the energy functional
(1.17). Under the condition that V is one-cut regular, we obtain large n asymptotics for
p(n)n (z) and q(n)n (ez) defined by (1.14), and state it in the following theorem. For the
purpose of a subsequent paper, we give slightly more general asymptotics for p(n)n+k(z)

and q(n)n+k(e
z), where k is a constant integer.

Suppose the equilibrium measureμV associated to V is supported on a single interval
[a, b] and the density function is ψV (x). In order to be able to formulate our results, let
us define c0 ∈ R and c1 ∈ R

+ such that

c0 = b + a

2
, (1.21)

c1

√
1

4
+

1

c1
− log

√
1
4 + 1

c1
− 1

2√
1
4 + 1

c1
+ 1

2

= b − a

2
. (1.22)
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Note that c1 is well defined since as c1 runs from 0 to +∞, the left-hand side of (1.22)
increases monotonically from 0 to +∞. Then we define the transformation

J(s) = Jc1,c0(s) := c1s + c0 − log
s − 1

2

s + 1
2

(1.23)

for s ∈ C\[− 1
2 ,

1
2 ], where the logarithm corresponds to arguments between −π and π .

For s < − 1
2 , Jc1,c0(s) has a maximum at sa , and for s > 1

2 , Jc1,c0(s) has a minimum at
sb, where

sa = −
√

1

4
+

1

c1
, sb =

√
1

4
+

1

c1
. (1.24)

The extrema sa and sb are also characterized by identities a = Jc1,c0(sa) and b =
Jc1,c0(sb).

In Sect. 3.2, a region D ⊂ C is defined by Proposition 2, and it is shown there that
J maps C\D biholomorphically into C\[a, b], and maps D\[− 1

2 ,
1
2 ] biholomorphically

into S\[a, b], where

S := {z ∈ C | −π < �z < π}. (1.25)

Let the functions I1 and I2 be inverse functions of J for these two branches respectively:
I1 is the inverse map of Jc1,c0 from C\[a, b] to C\D, and I2 is the inverse map of Jc1,c0

from S\[a, b] to D\[− 1
2 ,

1
2 ]:

I1(J(s)) = s, for s ∈ C\D, (1.26)

I2(J(s)) = s, for s ∈ D\[−1

2
,

1

2
]. (1.27)

Writing, for x ∈ (a, b),

I+(x) := lim
ε→0+

I1(x + iε) = lim
ε→0+

I2(x − iε), (1.28)

I−(x) := lim
ε→0+

I1(x − iε) = lim
ε→0+

I2(x + iε), (1.29)

we have that I+(x) lies in the upper half plane, I−(x) in the lower half plane, and their
loci are the upper and lower boundaries of D (denoted as γ1 and γ2 in Proposition 2)
respectively. The mapping J outside and inside D is illustrated in Figs. 1 and 2. The
proof of Proposition 2 is given in Appendix A.2. In Fig. 3 we give two examples of γ1
and γ2 by numerical simulation.

Fig. 1. Mapping J outside D
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Fig. 2. Mapping J inside D

Fig. 3. The shapes of γ1 and γ2 when c1 = 1 (left) and c1 = 10 (right), where γ1 is the upper boundary of
the region and γ2 the lower boundary

Let the functions Gk(s) and Ĝk(s) be defined as

Gk(s) := ck
1
(s + 1

2 )(s − 1
2 )

k

√
s2 − 1

4 − 1
c1

, Ĝk(s) := i
ek(

c1
2 +c0)

√
c1

(s − 1
2 )

−k

√
s2 − 1

4 − 1
c1

, (1.30)

where the square root
√

s2 − 1
4 − 1

c1
has its branch cut along the upper edge of D (γ1

defined in Proposition 2) in Gk(s), along the lower edge of D (γ2 defined in Proposition

2) in Ĝk(s), and
√

s2 − 1
4 − 1

c1
∼ s as s → ∞ in both cases. Further we define

rk(x) := 2|Gk(I+(x))|, θk(x) := arg(Gk,+(I+(x))), (1.31)

r̂k(x) := 2|Ĝk(I−(x))|, θ̂k(x) := arg(Ĝk,+(I−(x))), (1.32)

for x in (a, b). Here the argument of Gk,+(I+(x)) corresponds to its value as I+(x) ∈ γ1

is approached from above, i.e. from the outside of D, and the argument of Ĝk,+(I−(x))
corresponds to the limit as I−(x) ∈ γ2 is approached from above, i.e. from the inside
of D.

We also need to define the functions

g(z) :=
∫ b

a
log(z − x)ψV (x)dx, g̃(z) :=

∫ b

a
log(ez − ex )ψV (x)dx, (1.33)
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Fig. 4. The four regions in the complex upper half plane where asymptotics for the multiple orthogonal

polynomials p(n)n+k (z) and q(n)n+k (e
z) will be given in different formulas

with the branch cut of the logarithms for z ∈ (−∞, x) and ez ∈ (0, ex ), and ψV is the
equilibrium density. Let

φ(z) := g(z) + g̃(z)− V (z)− � (1.34)

for z ∈ S\(−∞, b), where � is a constant to make φ(a) = φ(b) = 0 (see (1.19) and
(3.8)). Then we will see later on, see Sect. 4.4, that

fb(z) :=
(

−3

4
φ(z)

) 2
3

(1.35)

is a well defined analytic function in a certain neighborhood of b, with fb(b) = 0,
f ′
b(b) > 0. Similarly,

fa(z) :=
(

−3

4
φ(z)± 3

2
π i

) 2
3

(1.36)

(where the sign is + in C
+ and − in C

−,) is a well defined analytic function in a certain
neighborhood of a, with fa(a) = 0, f ′

a(a) < 0.

Since both p(n)j (z) and q(n)j (ez) are analytic functions that are real for z ∈ R, it
suffices to give their asymptotics in the upper half plane and the real line. For the ease of
the statement of the theorem, we divide the upper half plane into regions Aδ , Bδ , Cδ and
Dδ where δ is a small enough positive parameter, such that Cδ and Dδ are semicircles
with radius δ and centered at a and b respectively, Bδ consists of complex numbers not
in Cδ or Dδ , with real part between a and b and imaginary part between 0 and δ

2 , and
Aδ = C

+\(Bδ ∪ Cδ ∪ Dδ). See Fig. 4 for the shapes of the four regions.

Theorem 2. Let V be one-cut regular. As n → ∞, we have the following asymptotics
of p(n)n+k(z) and q(n)n+k(e

z), k ∈ Z, uniform for z in regions Aδ , Bδ , Cδ and Dδ , if δ is small
enough.

(a) In region Aδ and on its boundary,

p(n)n+k(z) = (1 + O(n−1))Gk(I1(z))e
ng(z), (1.37)

q(n)n+k(e
z) = (1 + O(n−1))Ĝk(I2(z))e

ng̃(z), (1.38)

where (1.38) is valid for �z < π .
(b) In region Bδ ,

p(n)n+k(z) = (1 + O(n−1))Gk(I1(z))e
ng(z) + (1 + O(n−1))Gk(I2(z))e

n(V (z)−g̃(z)+�),

(1.39)

q(n)n+k(e
z) = (1 + O(n−1))Ĝk(I2(z))e

ng̃(z) + (1 + O(n−1))Ĝk(I1(z))e
n(V (z)−g(z)+�).

(1.40)



Random Matrices with Equispaced External Source 1031

If x ∈ (a, b) is on the boundary of region Bδ , then

p(n)n+k(x) = rk(x)e
n
∫

log |x−y|dμV (y)
[

cos

(
nπ
∫ b

x
dμV (t) + θk(x)

)
+ O(n−1)

]
,

(1.41)

q(n)n+k(e
x ) = r̂k(x)e

n
∫

log|ex −ey |dμV (y)
[

cos

(
nπ
∫ b

x
dμV (t) + θ̂k(x)

)
+ O(n−1)

]
.

(1.42)

(c) In region Cδ , let Ai denote the Airy function [1]. Then

p(n)n+k(z)=
√
π

[(
(1+O(n−1))Gk(I1(z))−(1+O(n−1))iGk(I2(z))

)
n

1
6 f

1
4

a (z)Ai(n
2
3 fa(z))

−
(
(1+O(n−1))Gk(I1(z))+(1+O(n−1))iGk(I2(z))

)
n− 1

6 f
− 1

4
a (z)Ai′(n

2
3 fa(z))

]

×e
n
2 (g(z)−g̃(z)+V (z)+�), (1.43)

q(n)n+k(e
z)= √

π

[(
(1+O(n−1))Ĝk(I2(z))−(1+O(n−1))i Ĝk(I1(z))

)
n

1
6 f

1
4

a (z)Ai(n
2
3 fa(z))

−
(
(1+O(n−1))Ĝk(I2(z))+(1+O(n−1))i Ĝk(I1(z))

)
n− 1

6 f
− 1

4
a (z)Ai′(n

2
3 fa(z))

]

×e
n
2 (g̃(z)−g(z)+V (z)+�), (1.44)

where f
1
4

a (z) has branch cut on (a, b), and f
1
4

a (x) > 0 for x < a. In particular, if
z = a + f ′

a(a)
−1n−2/3t with t bounded, then

e
n
2 (g̃(z)−g(z)−V (z)−�) p(n)n+k(z)

= (−1)k
√

2π

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
+

1

2

)k−1

c
k− 1

2
1 (− f ′

a(a))
1
4 n

1
6

(
Ai(t)+O(n− 1

3 )
)
,

(1.45)

e
n
2 (g(z)−g̃(z)−V (z)−�)q(n)n+k(e

z)

= (−1)k
√

2π

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
+

1

2

)−k

ek(
c1
2 +c0)(− f ′

a(a))
1
4 n

1
6

(
Ai(t)+O(n− 1

3 )
)
.

(1.46)

(d) In region Dδ ,

p(n)n+k(z)=
√
π

[(
(1+O(n−1))Gk(I1(z))−(1+O(n−1))iGk(I2(z))

)
n

1
6 f

1
4

b (z)Ai(n
2
3 fb(z))

−
(
(1+O(n−1))Gk(I1(z))+(1+O(n−1))iGk(I2(z))

)
n− 1

6 f
− 1

4
b (z)Ai′(n

2
3 fb(z))

]

×e
n
2 (g(z)−g̃(z)+V (z)+�), (1.47)

q(n)n+k(e
z)= √

π

[(
(1+O(n−1))Ĝk(I2(z))−(1+O(n−1))i Ĝk(I1(z))

)
n

1
6 f

1
4

b (z)Ai(n
2
3 fb(z))

−
(
(1+O(n−1))Ĝk(I2(z))+(1+O(n−1))i Ĝk(I1(z))

)
n− 1

6 f
− 1

4
b (z)Ai′(n

2
3 fb(z))

]

×e
n
2 (g̃(z)−g(z)+V (z)+�). (1.48)
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If z = b + f ′
b(b)

−1n−2/3t with t bounded, then

e
n
2 (g̃(z)−g(z)−V (z)−�) p(n)n+k(z)

= √
2π

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
− 1

2

)k−1

c
k− 1

2
1 f ′

b(b)
1
4 n

1
6

(
Ai(t)+O(n− 1

3 )
)
, (1.49)

e
n
2 (g(z)−g̃(z)−V (z)−�)q(n)n+k(e

z)

= √
2π

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
− 1

2

)−k

ek(
c1
2 +c0) f ′

b(b)
1
4 n

1
6

(
Ai(t)+O(n− 1

3 )
)
. (1.50)

(e) The inner product h(n)n+k of p(n)n+k(z) and q(n)n+k(e
z) defined in (1.13) has the asymptotics

h(n)n+k = 2πc
k+ 1

2
1 ek(

c1
2 +c0)en�(1 + O(n−1)). (1.51)

The above result is only valid if the equilibrium measure μV is supported on a single
interval. In the case of a multi-interval support, several non-trivial modifications are
needed to make the asymptotic analysis of the polynomials work. For instance, the
mapping J would have to be modified. In general it is not easy to determine whether an
external field V is one-cut regular or not, or to find the support [a, b] of the equilibrium
measure and the density function ψV . However, if the external field is strongly convex,
i.e. V ′′(x) is bounded from below by a positive constant for x ∈ R, then V is one-cut
regular, and we can compute the support and density function of the equilibrium measure
explicitly in terms of the functions I± defined before.

Theorem 3. If V is a real analytic strongly convex function, then V is one-cut regular.
Moreover, the quantities c0 and c1 that are related to the endpoints a, b of the support of
the equilibrium measure by (1.21) and (1.22) are obtained by solving a pair of equations
(3.2) and (3.3) expressed in V , and a, b are determined by c1 and c0 by (3.4), (1.21) and
(1.22). The density function ψV is given by

ψV (x) = 1

2π2

∫ b

a
V ′′(u) log

∣∣∣∣
I+(u)− I−(x)
I+(u)− I+(x)

∣∣∣∣ du. (1.52)

Remark 4. The conditions of Theorem 3 are sufficient but far from necessary to have
one-cut regularity. See Example 2 in Appendix B for non-convex one-cut regular external
fields.

For the random matrix model without external source, it is well known that

(1) the empirical distribution of the eigenvalues of the random matrix,
(2) the normalized counting measure of the n-Fekete set,
(3) the normalized counting measure of the zeros of the orthogonal polynomial (which

is the average characteristic polynomial of the random matrix),

all converge to the equilibrium measure as the dimension n → ∞. The counterpart of
(3) in our equispaced external source model, in case that the external field V is one-cut
regular, is a direct consequence of Theorem 2(b).

Corollary 1. Let V be one-cut regular, and p(n)n and q(n)n be defined by (1.10) and
(1.12) respectively. Suppose real numbers z j and ẑ j are zeros of p(n)n (z) and q(n)n (ez)

respectively, andμn = 1
n

∑n
j=1 δz j and μ̂n = 1

n

∑n
j=1 δẑ j respectively. Then as n → ∞,

μn and μ̂n converge weakly to μV .
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Counterparts of (1), (2) and (3) can also be proved by mimicking the arguments in [21,
Sections 6.3 and 6.4]. Although we are not going to pursue this approach, we remark that
all the counterparts of (1)–(3) should not rely on the assumption of one-cut regularity.

Outline. In Sect. 2, we prove the uniqueness and existence of the equilibrium measure,
as stated in Theorem 1. In Sect. 3, we explain in detail how one can construct the
equilibrium measure μV and its density in the case of a strongly convex external field
V , by solving a scalar RH problem and by using the transformation J. This also leads
to the proof of Theorem 3. In Sect. 4, we characterize the polynomials p(n)n+k in terms
of a 1 × 2 RH problem, and we analyse this RH problem asymptotically for large
n. In Sect. 5, we formulate a similar RH problem and perform a similar asymptotic
analysis for the polynomials q(n)n+k . In Sect. 6, we use the results obtained from the RH
analysis to prove Theorem 2 and Corollary 1. In Appendix A, we prove Proposition 1
and several technical lemmas used in this paper. In Appendix B we give explicit formulas
for the equilibrium measure for quadratic and quartic V as examples. In Appendix C
we derive the asymptotics for the polynomials p(n)n for quadratic V using an integral
representation and the classical steepest descent method. In this derivation we show that
the transformation J also arises in a more direct way in the equispaced external source
model.

The main novel feature of this paper is the successful asymptotic analysis of the
non-standard RH problem which characterizes the multiple orthogonal polynomials.
Although the resulting large n asymptotics for the polynomials resemble those for usual
orthogonal polynomials relevant in the one-matrix model without external source, the RH
method used to obtain those asymptotics had to be modified in a nontrivial way. We feel
that the modification of the RH method, with in particular the use of the transformation
J, is the main contribution of the present paper. We believe it is the first time that a RH
analysis has been carried through for multiple orthogonal polynomials with a growing
number of orthogonality weights.

2. Proof of Theorem 1

Following [21, Section 6.2] (see also [28]), one can prove the existence of a unique
Borel probability measure minimizing the energy IV (μ) given in (1.17), which can
conveniently be written as

IV (μ) =
∫∫

kV (t, s)dμ(t)dμ(s), (2.1)

with

kV (t, s) = 1

2
log |t − s|−1 +

1

2
log |et − es |−1 +

1

2
V (t) +

1

2
V (s). (2.2)

From the inequality |v − u| ≤ √
1 + v2

√
1 + u2 for v, u ∈ R, we obtain

1

2
log |t − s|−1 +

1

2
log |et − es |−1

≥ −1

4
log(1 + t2)− 1

4
log(1 + s2)− 1

4
log(1 + e2t )− 1

4
log(1 + e2s). (2.3)

If V satisfies the growth condition (1.3), it easily follows that there exists a constant
cV such that kV (t, s) ≥ cV for all s, t ∈ R. Thus IV (μ) ≥ cV for any probability
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measure μ, which implies that EV = inf{IV (μ)} ≥ cV , where the infimum is taken
over all probability measures on R. This is the crucial estimate for proving the existence
of a unique equilibrium measure. The existence follows, exactly as in [21, Section 6.2],
from the construction of a vaguely convergent tight sequence μn of measures with limit
μ such that IV (μ) = EV , as well as the fact that any minimizer must have compact
support.

The uniqueness is slightly more complicated, and we need the following lemma
for it:

Lemma 1. Let μ be a finite signed measure on R such that
∫

dμ = 0 and with compact
support. Then

∫∫
log |x − y|−1dμ(x)dμ(y) ≥ 0, (2.4)

∫∫
log |ex − ey |−1dμ(x)dμ(y) ≥ 0. (2.5)

The first inequality was showed in [21, Lemma 6.41], and the second part can be
proved by replacing x �→ ex and y �→ ey in the proof.

Now assume that we have two measuresμV and μ̃ such that IV (μV ) = IV (μ̃) = EV .
Then, for μt = μV + t (μ̃− μV ) and t ∈ [0, 1], we have

IV (μt ) = 1

2
I (μV , μV ) +

1

2
Ĩ (μV , μV ) +

∫
V (x)dμV (x)

+ t

(
I (μV , μ̃− μV ) + Ĩ (μV , μ̃− μV ) +

∫
V (x)d(μ̃− μV )(x))

)

+ t2
(

1

2
I (μ̃− μV , μ̃− μV ) +

1

2
Ĩ (μ̃− μV , μ̃− μV )

)
, (2.6)

where

I (μ, ν) =
∫∫

log |x − y|−1dμ(x)dν(y), (2.7)

Ĩ (μ, ν) =
∫∫

log |ex − ey |−1dμ(x)dν(y). (2.8)

The above lemma ensures that IV (μt ) is a convex function of t . But since μt is a
probability measure, we have IV (μt ) ≥ IV (μ0) = IV (μ1) = EV , and hence IV (μt ) =
EV for all t ∈ [0, 1]. In particular this implies

1

2
I (μ̃− μV , μ̃− μV ) +

1

2
Ĩ (μ̃− μV , μ̃− μV ) = 0, (2.9)

and using a similar argument as in [21], this implies that μV = μ̃, which yields the
uniqueness of the equilibrium measure.

3. Construction of the Equilibrium Measure

In this section we assume the external field V is a convex real analytic function and
V ′′(x) is bounded below by a positive constant for all x ∈ R. We are going to show
that V is one-cut regular, by an explicit construction of its equilibrium measure. The
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strategy of our construction is as follows. First in Sect. 3.1 we give the support of the
equilibrium measure [a, b] without proof. Then in Sect. 3.2 we compute the density of
the equilibrium measure, based on the information of the support. The density function
is expressed in terms of the so-called g-functions g(z), g̃(z) and their derivatives, which
are characterized by a RH problem. At last in Sect. 3.3 we verify that the measure with
the support and the density obtained in the first two steps satisfy the criteria of one-
cut regularity, and conclude that it is the unique equilibrium measure that we want to
construct.

Remark 5. In what follows, it may seem that the values of the endpoints a and b appear
out of the blue, but if the external field V (x) is quadratic, the endpoints (as well as g(x)
and g̃(x)) can be computed by a classical steepest-descent method. This computation is
shown in Appendix C as our inspiration.

Remark 6. If an external field is non-convex but we know a priori that it is one-cut regular
with support [a, b], then the method in Sect. 3.2 can still be applied and allows us to
obtain the expression of the density function of the equilibrium measure.

3.1. The support of the equilibrium measure. Let Jx1,x0 be defined as before by

Jx1,x0(s) = x1s + x0 − log
s − 1

2

s + 1
2

, (3.1)

and let γ = J−1
x1,x0

([a, b]), depending on x1, x0, be the boundary of the region D defined
in the Introduction, consisting of the curves γ1 and γ2, encircling the interval [− 1

2 ,
1
2 ]

in the counterclockwise direction, see also Proposition 2 below. Since Jx1,x0(s) ∈ [a, b]
for s ∈ γ , V ′(Jc1,c0(s)) is well defined for s in a neighborhood of the curve γ , if V is
real analytic.

Lemma 2. Given any strongly convex real analytic function V , i.e. such that V ′′(x) ≥
c > 0 for all x ∈ R, the system of equations with unknowns x0 and x1

x−1
1 = 1

2π i

∮

γ

V ′(Jx1,x0(s))ds, (3.2)

1 = 1

2π i

∮

γ

V ′(Jx1,x0(s))

s − 1
2

ds, (3.3)

has a solution x0 = c0 ∈ R and x1 = c1 ∈ R
+.

We will prove Lemma 2 in Appendix A. Based on this lemma, we construct the
support, and furthermore the density function, of the equilibrium measure. We do not
prove the uniqueness of the solution of equations (3.2) and (3.3), for this uniqueness
is a consequence of the uniqueness of the equilibrium measure by Theorem 1, as from
different solutions we construct different equilibrium measures.

Here and later we take the value of the parameters c0 and c1 as the pair of solutions
of (3.2) and (3.3). Then we claim that a and b, the two edges of the support of the
equilibrium measure, are given by

a = Jc1,c0(sa), b = Jc1,c0(sb), (3.4)

where sa = −
√

1
4 + 1

c1
, sb =

√
1
4 + 1

c1
. Then it is easy to verify that Eqs. (1.21)–(1.22)

are satisfied.
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3.2. The g-functions and the density function of the equilibrium measure. Under the
assumption that the external field V is one-cut regular, with equilibrium measure
dμV (x) = ψV (x)dx supported on [a, b] as we claimed in (3.4), we construct two
functions g(z) = ∫

log(z − x)dμV (x) and g̃(z) = ∫
log(ez − ex )dμV (x) as in (1.33).

To describe the domain of the function eg̃(z), we introduce the notation of the cylinder
S

c which is formed by identifying the two edges of the strip S. If a function f (z) is
defined for z ∈ S, the limits f (x ± π i) = limz→x±π i,z∈S f (z) exist point-wise, and
furthermore f (x + π i) = f (x − π i), we say f is defined on S

c. The properties (1)–(5)
in the Introduction satisfied by μV are then translated into properties satisfied by g and
g̃ as follows.

(i) For x ∈ (−∞, a),

g+(x) = g−(x) + 2π i, g̃+(x) = g̃−(x) + 2π i, (3.5)

and then eg(z) is analytic in C\[a, b] and eg̃(z) is analytic on the cylinder with slit
S

c\[a, b]; eg(z) ∼ z as z → ∞, eg̃(z) ∼ ez as �z → +∞ and eg̃(z) = O(1) as
�z → −∞,

(ii) for x ∈ (a, b), we have

ψV (x) = − 1

2π i
(g′

+(x)− g′−(x)) = − 1

2π i
(g̃′

+(x)− g̃′−(x)) > 0, (3.6)

(iii) as z → a or z → b, the limits of g(z), g̃(z), g′(z) and g̃′(z) exist, and as x → a+
or x → b− for x ∈ (a, b),

lim
x→a+

g′
+(x)− g′−(x)√

x − a
, lim

x→a+

g̃′
+(x)− g̃′−(x)√

x − a
,

lim
x→b−

g′
+(x)− g′−(x)√

b − x
, lim

x→b−

g̃′
+(x)− g̃′−(x)√

b − x

(3.7)

all exist and are all different from zero,
(iv) for x ∈ [a, b], there exists a constant � such that

g±(x) + g̃∓(x)− V (x)− � = 0, (3.8)

(v) for x ∈ R\[a, b], we have

g±(x) + g̃∓(x)− V (x)− � < 0. (3.9)

Let us consider the derivatives

G(x) := g′(x) and G̃(x) := g̃′(x). (3.10)

The properties (i), (iii) and (iv) for g(x) and g̃(x) then imply that G and G̃ need to satisfy
the following RH problem:

RH problem for G and G̃

(a) G is analytic in C\[a, b], G̃ is analytic in S
c\[a, b],

(b) for x ∈ [a, b], we have

G±(x) + G̃∓(x)− V ′(x) = 0, (3.11)
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(c) we have the asymptotic conditions that G±(x) and G̃±(x) are bounded for all
x ∈ [a, b], and

G(z) = 1

z
+ O(z−2), as z → ∞, (3.12)

G̃(z) = 1 + O(e−z), as �z → +∞, (3.13)

G̃(z) = O(1), as �z → −∞. (3.14)

The main technical difficulty in solving the RH problem for G and G̃ lies in the fact
that the two functions live on different domains: G is defined in the complex plane with
slit [a, b], and G̃ is defined in the cylinder S

c with slit [a, b]. In order to resolve this
problem, we will use the transformation (1.23) J(s) that maps C\[− 1

2 ,
1
2 ] to both C and

S. Recall that sa and sb are the two critical points of J(s) given by (1.24) and that they
satisfy the identity (3.4). The following property will be used in the construction of G
and G̃.

Proposition 2. There are an arc γ1 from sa to sb in the upper half plane, and an arc γ2
from sa to sb in the lower half plane, such that

(a) J(γ1) = J(γ2) = [a, b], and the mapping is homeomorphic on these two curves.
(b) Denote the region enclosed by γ1 and γ2 by D. Then J(C\D̄) = C\[a, b], and the

mapping is univalent.
(c) J(D\[− 1

2 ,
1
2 ]) = S\[a, b], the mapping is univalent, and the upper and lower sides

of (− 1
2 ,

1
2 ) are mapped to R − π i and R + π i respectively.

Let us now define the function M(s) by

M(s) :=
{

G(J(s)) for s ∈ C\D̄,

G̃(J(s)) for s ∈ D\[− 1
2 ,

1
2 ], (3.15)

so that M is analytic in C\(γ1∪γ2∪[− 1
2 ,

1
2 ]). Note that the domain of G̃ can be extended

from S to S
c, so that M(s) can be analytically continued to (− 1

2 ,
1
2 ) accordingly. The

RH conditions for G, G̃ are now transformed to the following conditions for M .

RH problem for M

(a) M is analytic in C\(γ1 ∪ γ2 ∪ {− 1
2 ,

1
2 }),

(b) M satisfies the jump condition

M+(s) + M−(s) = V ′ (J(s)) , for s ∈ γ1 ∪ γ2, (3.16)

(c) M±(s) is bounded on γ1 and γ2, and M has the asymptotics

M(s) = 1

c1s
+ O(s−2), as s → ∞, (3.17)

M(s) = 1 + O(s − 1

2
), as s → 1

2
, (3.18)

M(s) = O(1), as s → −1

2
. (3.19)
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It is straightforward to solve this scalar RH problem. We write

U (s) = V ′(J(s)), (3.20)

and note that U is analytic in a neighborhood of γ1 ∪ γ2, since V is real analytic. Then
it is readily verified that the unique solution M to the above RH problem for M is given
by

M(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1

2π i

∮

γ

U (ξ)

ξ − s
dξ, for s ∈ C\D,

1

2π i

∮

γ

U (ξ)

ξ − s
dξ, for s ∈ D,

(3.21)

where γ is the closed curve which is the union of γ1 and γ2 and has counterclockwise
orientation. In particular, (3.17) and (3.18) follow from the system of equations (3.2)
and (3.3) in Lemma 2 satisfied by c0, c1.

Now we can give an expression for g(z), g̃(z) and the density function ψV (x) of the
equilibrium measure, under the assumption that the support of the equilibrium measure
is known. Recall that I1 is the inverse map of J from C\[a, b] to C\D, I2 is the inverse
map of J from S\[a, b] to D\[− 1

2 ,
1
2 ], and their boundary values define I±(x), see

(1.26)–(1.29). We have I+(x) ∈ γ1, I−(x) ∈ γ2, and I−(x) = I+(x). To obtain a formula
for the density ψV (x) of the equilibrium measure, note that it follows from (3.6) and the
identities G = g′, G̃ = g̃′ that

ψV (x) = − 1

2π i
(G+(x)− G−(x)) = − 1

2π i
(G̃+(x)− G̃−(x)), for x ∈ [a, b].

(3.22)

From (3.22) and (3.15), we obtain

ψV (x) = − 1

2π i
(M+(I+(x))− M−(I−(x)))

= − 1

2π i
(M+(I−(x))− M−(I+(x))), for x ∈ [a, b], (3.23)

where the boundary values of M correspond to the orientations of γ1 and γ2, from left
to right. Applying the first identity in (3.23) and the formula (3.21) for M(s), we let
z = x + iε, ε > 0, approach x from above and have

ψV (x) = lim
ε→0

−1

4π2

∮

γ

U (ξ)

(
1

ξ − I1(z)
− 1

ξ − I1(z)

)
dξ

= lim
ε→0

1

4π2

∫ b

a
V ′(u)

(
I′

+(u)

I+(u)− I1(z)
− I′

+(u)

I+(u)− I1(z)

− I′−(u)
I−(u)− I1(z)

+
I′−(u)

I−(u)− I1(z)

)
du

= lim
ε→0

1

2π2

∫ b

a
V ′(u)�

(
I′

+(u)

I+(u)− I1(z)
− I′

+(u)

I+(u)− I1(z)

)
du
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= lim
ε→0

−1

2π2

∫ b

a
V ′(u)� d

du
log

(
I+(u)− I1(z)

I+(u)− I1(z)

)
du

= lim
ε→0

1

2π2

∫ b

a
V ′′(u)� log

(
I+(u)− I1(z)

I+(u)− I1(z)

)
du

= 1

2π2

∫ b

a
V ′′(u) log

∣∣∣∣
I+(u)− I−(x)
I+(u)− I+(x)

∣∣∣∣ du. (3.24)

3.3. Proof of Theorem 3. We showed so far that the equilibrium measure associated to
the external field V has the density function ψV as we have constructed in Sect. 3.2,
as long as it is supported on the single interval [a, b] that is given by (3.4). However,
we have not proved that [a, b] is the correct support yet. We will show that the measure
with support [a, b] and density function ψV (x) satisfies the properties (i)–(v) stated
in the Introduction for one-cut regular equilibrium measures, which implies that the
constructed measure is indeed the true equilibrium measure. Note that these properties
are equivalent to properties (i)–(v) in Sect. 3.2.

From the construction ofψV (x), it is normalized, i.e.,
∫ b

a ψV (x)dx = 1. This follows
from the asymptotics of G and G̃, given in (3.12) and (3.13), and the definitions of g
and g̃, the antiderivatives of G and G̃.

For x ∈ (a, b), it is geometrically obvious that |I+(u) − I−(x)| > |I+(u) − I+(x)|,
and then � log((I+(u) − I−(x))/(I+(u) − I+(x))) > 0 for all u ∈ (a, b). Substituting
this inequality into (3.24) and noting that V ′′ is positive, we have that ψV (x) > 0 for all
x ∈ (a, b). Similarly we have ψV (x) → 0 for x → a+ and x → b−.

The identity (1.19) that gives condition (iv) in the Introduction, or equivalently the
identity (3.8) that gives condition (iv) in Sect. 3.2, is obvious from the construction
of ψV . Thus we only need to prove the remaining two properties for the equilibrium
measure hold, i.e., ψV (x) vanishes like a square root as x → a+ or x → b−, and
G+(x) + G̃−(x)− V (x) < � for x < a or x > b.

Let the function H be defined by

H(z) =
(

G(z) + G̃(z)− V ′(z)
)2
. (3.25)

It is well defined where G, G̃, V are defined, and it can only be discontinuous on [a, b].
However, by (3.6) and (3.8),

H+(x) = (G̃+ − G̃−)2 = −4π2ψV (x)
2 = (G− − G+)

2 = H−(x). (3.26)

Hence H(z) can be defined on (a, b) so that a, b become isolated singularities. If we
express G(z) and G̃(z) in terms of M(s) and then by the contour integral as in (3.15)
and (3.21), we find that G(z) and G̃(z) grows at most logarithmically at a and b. Thus
a and b are removable singularities of H(z), and H(z) can be defined analytically in S

where V is defined, i.e., an open region containing the real line. Furthermore, by (3.26)
and the fact that ψV (x) → 0 as x → a+ or x → b−, we have that H(a) = H(b) = 0.

To show that ψV (x) vanishes like a square root at a and b, by (3.26) it suffices to
show that a, b are simple zeros of H(z). We consider b first. From (3.26) and (3.25),
we see that H(x) changes sign as the real variable x increases around b, so if b is not a
simple zero, it has multiplicity at least 3, and then d

dx

√
H(x), which is well defined for

x ∈ (b,∞), would tend to 0 as x → b+. But we have for all x > b
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d

dx

(
G(x) + G̃(x)− V ′(x)

)
= g′′(x) + g̃′′(x)− V ′′(x)

= −
∫ b

a
ψV (s)

(
1

(x − s)2
+

ex es

(ex − es)2

)
ds − V ′′(x) < −V ′′(x). (3.27)

Since V ′′(x) is bounded below by a positive constant, d
dx

√
H(x) cannot approach 0.

Thus b is a simple zero of H(z). Similarly a is a simple zero.
To show that G+(x) + G̃−(x) − V (x) < � for x > b, we need only that G+(x) +

G̃−(x) − V (x) is decreasing, since at x = b the identity G+(x) + G̃−(x) − V (x) = �

holds. The decreasing property is given by the negative derivative shown in (3.27).
Similarly we can show that G+(x) + G̃−(x)− V (x) < � for x < a.

Now we have proved that the measure ψV (x) on [a, b] satisfies all the properties for
one-cut regular equilibrium measures, so it is the unique equilibrium measure associated
to V . Combining the results we have obtained in this section, we prove Theorem 3.

4. Asymptotic Analysis for the Type II Multiple Orthogonal Polynomials

In this section, we write p(n)j (x), the monic multiple orthogonal polynomials of type II
satisfying orthogonality relations (1.10), as p j (x) if there is no confusion.

4.1. RH problem characterizing the polynomials. Recall that the j th degree monic poly-
nomial p j (x) = p(n)j (x) is characterized by the orthogonality (1.10).

Consider the following modified Cauchy transform of p j :

C̃ p j (z) := 1

2π i

∫

R

p j (x)

ex − ez
e−nV (x)dx, (4.1)

which is well-defined for z ∈ S\R. Since e−nV (x) is real analytic and vanishes rapidly
as x → ±∞, for any polynomial p(x), we have the following asymptotic expansion for
C̃ p(z) as z ∈ S and �z → +∞:

C̃ p(z) = −1

2π iez

∫

R

p(x)

1 − ex/ez
e−nV (x)dx

= −1

2π i

M∑

k=0

(∫

R

p(x)ekx e−nV (x)dx

)
e−(k+1)z + O(e−(M+2)z), (4.2)

for any M ∈ N, uniformly in �z. Thus due to the orthogonality,

C̃ p j (z) = −h(n)j

2π i
e−( j+1)z + O(e−( j+2)z), (4.3)

where h(n)j is given by (1.13). For x ∈ R, a residue argument shows that

(C̃ p j )+(x)− (C̃ p j )−(x) = p j (x)e
−nV (x)e−x . (4.4)

Hence we conclude that if we consider p j (x) and C̃ p j (x) together and write them in
vector form

Y (z) = Y ( j,n)(z) := (p j (z), C̃ p j (z)), (4.5)

they satisfy the conditions
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RH problem for Y

(a) Y = (Y1,Y2), where Y1 is an analytic function defined on C, and Y2 is an analytic
function on S

c\R,
(b) Y has continuous boundary values Y± when approaching the real line from above

and below, and we have

Y+(x) = Y−(x)
(

1 e−x e−nV (x)

0 1

)
, for x ∈ R, (4.6)

(c1) as z → ∞, Y1 behaves as Y1(z) = z j + O(z j−1),
(c2) as ez → ∞ (i.e., �z → +∞), Y2 behaves as Y2(z) = O(e−( j+1)z); as ez → 0 (i.e.,

�z → −∞), Y2(z) remains bounded.

Conversely, the RH problem for Y has a unique solution given by (4.5). We give a
proof of the uniqueness of the RH problem for Y based on the uniqueness of the multiple
orthogonal polynomials p j .

Theorem 4. The solution to the RH problem for Y above has a unique solution, given
by Y1(z) = p j (z) and Y2(z) = C̃ p j (z), where p j (z) is the monic multiple orthogonal
polynomial of type II defined by (1.10), and C̃ p j (z) is given in (4.1).

Proof. First, (4.6) in the jump condition (b) implies that Y1 is an entire function, and
condition (c1) implies that Y1 grows like z j as z → ∞. So Y1 =: p is a monic polynomial
of degree j .

Now we show that if Y = (Y1,Y2) satisfies all the conditions (a)–(c2) of the RH
problem, then Y2 is given in terms of Y1 = p by

Y2(z) = 1

2π i

∫

R

p(s)

es − ez
e−nV (s)ds. (4.7)

By condition (b), Y2 satisfies

Y2,+(x)− Y2,−(x) = p(x)e−nV (x)−x . (4.8)

Consider the function

U (u) = Y2(log u)− 1

2π i

∫

R

Y1(s)

es − u
e−nV (s)ds, (4.9)

where we take the principal branch of the logarithm with branch cut on R
−. Obviously

U (u) is analytic for u ∈ C\R. By the jump condition Y2 on the real line given by (4.6)
and the property that Y2(x + π i) = Y2(x − π i), we verify that U+(u) = U−(u) for
u ∈ (0,∞) or u ∈ (−∞, 0), so that U is an analytic function for u ∈ C\{0}. Note that
since p is a polynomial and e−nV (s) vanishes rapidly as s → ±∞, we have

1

2π i

∫

R

p(s)

es − u
e−nV (s)ds = O(1) as u → 0, (4.10)

1

2π i

∫

R

p(s)

es − u
e−nV (s)ds = O(u−1) as u → ∞. (4.11)

From (4.10) we find that 0 is a removable singularity of U (u) and then U (u) is an entire
function. Then from (4.11) we have U (u) = 0 by Liouville’s theorem. Therefore (4.7)
is proved.
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At last we apply the expansion (4.2) for M = j − 1 to Y2 given in (4.7). We see that
the asymptotic condition Y2 = O(e−( j+1)z) implies that

∫

R

p(x)ekx e−nV (x)dx = 0, k = 0, . . . , j − 1. (4.12)

Comparing this with (1.10), we see that p = Y1 is indeed the monic multiple orthogonal
polynomial p j . ��

Below we take j = n + k where k a constant integer, and our goal is to obtain the
asymptotics for Y = Y (n+k,n) as n → ∞.

4.2. First transformation Y �→ T . Recall g(z) and g̃(z) defined in (1.33) on C\(−∞, b]
and S\(−∞, b]. Denote Y = Y (n+k,n) and define T as follows:

T (z) := e− n�
2 Y (z)

(
e−ng(z) 0

0 eng̃(z)

)
e

n�
2 σ3 , (4.13)

where � is the constant appearing in (1.19) and (3.8), and σ3 =
(

1 0
0 −1

)
. Then T satisfies

a RH problem with the same domain of analyticity as Y , but with a different asymptotic
behavior and a different jump relation.

RH problem for T

(a) T = (T1, T2), where T1 is analytic in C\R, and T2 is analytic in S
c\R,

(b) T satisfies the jump relation

T+(x) = T−(x)JT (x), for x ∈ R, (4.14)

with

JT (x) =
(

en(g−(x)−g+(x)) en(g−(x)+g̃+(x)−V (z)−�)−x

0 en(g̃+(x)−g̃−(x))

)
, (4.15)

(c1) as z → ∞, T1 behaves as T1(z) = zk + O(zk−1),
(c2) as ez → ∞, T2 behaves as T2(z) = O(e−(k+1)z), and as ez → 0, T2 behaves as

T2 = O(1).

4.3. Second transformation T �→ S. For x ∈ R\[a, b], it follows from the analyticity
of eg and (3.9) that the jump matrix JT (x) tends to the identity matrix exponentially fast
in the limit n → ∞. For x ∈ (a, b), we decompose the jump matrix into

JT (x) =
(

1 0

e−nφ−(x)+x 1

)(
0 en(g−(x)+g̃+(x)−V (x)−�)−x

−en(−g+(x)−g̃−(x)+V (x)+�)+x 0

)

×
(

1 0
e−nφ+(x)+x 1

)
, (4.16)

where the function φ(z) = g(z) + g̃(z)− V (z)− � is defined as in (1.34). The function
φ(x) has discontinuity on (−∞, b]), and by (3.5) and (3.8) it satisfies

φ+(x) = φ−(x) + 4π i for x < a, (4.17)

φ+(x) = −φ−(x) for x ∈ (a, b). (4.18)
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Fig. 5. The lens �S

Then we “open the lens”, where the lens �S is a contour consisting of the real axis
and two arcs from a to b. We assume that one of the two arcs lies in the upper half plane
and denote it by�1, the other lies in the lower half plane and denote it by�2, see Fig. 5.
We do not fix the shape of �S at this stage, but only require that �S is in S and V is
analytic in a simply-connected region containing �S .

Define

S(z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T (z) outside of the lens,

T (z)

(
1 0

e−nφ(z)+z 1

)
in the lower part of the lens,

T (z)

(
1 0

−e−nφ(z)+z 1

)
in the upper part of the lens.

(4.19)

From the definition of S, we see that S is discontinuous on the upper and lower arcs

with jump matrix
(

1 0
e−nφ(z)+z 1

)
. On (a, b), it follows from (3.8) and (4.16) that the jump

matrix for S takes the form
(

0 e−x

−ex 0

)
. Summarizing, we have the following RH problem

for S.

RH problem for S

(a) S = (S1, S2), where S1 is analytic in C\�S , and S2 is analytic in S
c\�S , and

�S = R ∪�1 ∪�2 is the contour depicted in Fig. 5,
(b) we have

S+(z) = S−(z)JS(z), for z ∈ �S , (4.20)

where (note that eφ(z) is well defined for z ∈ (−∞, a) by (4.17))

JS(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

e−nφ(z)+z 1

)
, for z ∈ �1 ∪�2,

(
0 e−z

−ez 0

)
, for z ∈ (a, b),

(
1 enφ(z)−z

0 1

)
, for z ∈ R\[a, b].

(4.21)

(c1) as z → ∞, S1(z) = zk + O(zk−1),
(c2) as ez → ∞, S2 behaves as S2(z) = O(e−(k+1)z), and as ez → 0, S2 behaves as

S2(z) = O(1).
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Fig. 6. The contour � and the jump matrices for A

By (3.8), we have, for x ∈ (a, b),

φ′±(x) = g′±(x) + g̃′±(x)− V ′(x) = g′±(x)− g′∓(x) = ∓2π iψV (x). (4.22)

Since ψV (x) > 0 for all x ∈ (a, b), it follows from the Cauchy-Riemann conditions
that

�φ(z) = � (g(x) + g̃(x)− V (x)− �) > 0 (4.23)

on both the upper arc and the lower arc, if these arcs are chosen sufficiently close to
(a, b). As a consequence, the jump matrices for S on the lenses tend to the identity
matrix as n → ∞. Uniform convergence breaks down when x approaches the endpoints
a and b. We need to construct local parametrices near those points.

4.4. Construction of local parametrices near a and b. Define

y j := y j (ζ ) = ω j Ai(ω jζ ), for j = 0, 1, 2, (4.24)

where ω = e
2π i

3 and Ai is the Airy function.
Let

� := e− 2π i
3 R

+ ∪ e
2π i

3 R
+ ∪ R (4.25)

be the contour consisting of four rays oriented each from the left to the right shown in
Fig. 6, and define the 2 × 2 matrix-valued function A in C\� as

A(ζ ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2πe− π i

4

(
y0 −y2

y′
0 −y′

2

)
, for 0 < arg ζ < 2π

3 ,

√
2πe− π i

4

(
−y1 −y2

−y′
1 −y′

2

)
, for 2π

3 < arg ζ < π ,

√
2πe− π i

4

(
−y2 y1

−y′
2 y′

1

)
, for −π < arg ζ < − 2π

3 ,

√
2πe− π i

4

(
y0 y1

y′
0 y′

1

)
, for − 2π

3 < arg ζ < 0.

(4.26)

Using the identity y0 + y1 + y2 = 0, the fact that the Airy function is an entire function,
and the asymptotics as ζ → ∞ of the Airy function, one verifies that A satisfies the
following model RH problem. This RH problem (and equivalent forms of it) appeared
many times in the literature and is often referred to as “the Airy RH problem”, see for
example [20,21].
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RH problem for A

(a) A is a 2 × 2 matrix-valued function analytic in C\�.
(b) A satisfies the following jump relations on �,

A+(ζ ) = A−(ζ )
(

1 1
0 1

)
, for arg ζ = 0, (4.27)

A+(ζ ) = A−(ζ )
(

1 0
1 1

)
, for arg ζ = 2π

3
or arg ζ = −2π

3
, (4.28)

A+(ζ ) = A−(ζ )
(

0 1
−1 0

)
, for arg ζ = π . (4.29)

(c) A has the following behavior at infinity,

A(ζ ) = 1√
2
ζ− 1

4σ3

(
1 1

−1 1

)
e− π i

4 σ3(I + O(ζ−3/2))e− 2
3 ζ

3/2σ3 , as ζ → ∞,

(4.30)

uniformly for ζ ∈ C\�.

Using the regularity condition which says that limx→b−
ψV (x)√

b−x
exists and is positive,

and the formulas of g(z) and g̃(z), and noting in addition that φ(b) = 0, we obtain the
following local behavior for φ near b,

φ(z) = −c(z − b)3/2 + O(|z − b|5/2), as z → b, where c > 0. (4.31)

Then in a neighborhood Ub of b, there is a unique analytic function fb satisfying fb(b) =
0, f ′

b(b) > 0 and

2

3
fb(z)

3/2 = −1

2
φ(z). (4.32)

Now we choose the lens�S in such a way that fb(z)maps the jump contour Ub ∩�S for
S on the jump contour � for A, and we define the 2 × 2 matrix-valued function P(b)(z)
on Ub\�S as

P(b)(z) := A(n2/3 fb(z))e
− 1

2 (nφ(z)−z)σ3 . (4.33)

Using the jump relations (4.27)–(4.29) for A and (4.17) and (4.18) for φ(z), one verifies
that

P(b)+ (z) = P(b)− (z)JS(z), for z ∈ Ub ∩�S , (4.34)

where JS is given in (4.21). Since the determinant of A is identically equal to 1, A is
invertible, and so is P(b)(z) for z ∈ Ub ∩�S . By (4.34) and (4.20), we have

S+(z)P
(b)
+ (z)−1 = S−(z)P(b)− (z)−1, for z ∈ Ub ∩�S . (4.35)

Similarly, near a,

φ(z) = −c̃(a − z)3/2 + O(|a − z|5/2)± 2π i, as z → a, c̃ > 0, (4.36)
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where the sign of ±2π i depends on whether z is in the upper or lower half plane. In
a neighborhood Ua of a, there is a unique analytic function fa satisfying fa(a) = 0,
f ′
a(a) < 0, and

2

3
fa(z)

3/2 = −1

2
φ(z)± π i. (4.37)

Again we can choose the lens�S in such a way that fa(z)maps the jump contour Ua ∩�S
for S on the jump contour � for A. Then define the 2×2 matrix-valued function P(a)(z)
on Ua\�S as

P(a)(z) := σ3 A(n2/3 fa(z))e
− 1

2 (nφ(z)−z)σ3σ3. (4.38)

Similarly to (4.34) and (4.35), we have

S+(z)P
(a)
+ (z)−1 = S−(z)P(a)− (z)−1, for z ∈ Ua ∩�S . (4.39)

Remark 7. Usually, a local parametrix serves as a local approximation to the solution of
the RH problem. Since S is vector-valued and our local parametrices P(a) and P(b) are
2 × 2-valued, this is not quite true in our situation, but it will turn out later that large
n asymptotics for S near a and b can be expressed in terms of P(b) and P(a), and thus
in terms of the Airy function. Later in Sect. 4.6, we will build a vector-valued “global
parametrix” P(∞), which approximates S away from the endpoints a and b. Before
introducing P(∞), we perform one more transformation of the RH problem for S in the
next subsection.

4.5. Third transformation S �→ P. The following transformation will modify the jumps
in the vicinity of a and b: the jumps on �1 and �2 will be removed in Ua and Ub. As a
drawback, a discontinuity will appear on ∂Ua and ∂Ub, but the jump matrices on these
boundaries will be close to the identity matrix for large n.

Define

P(z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S(z) for z ∈ C\(Ua ∪ Ub ∪�S),

S(z)P(a)(z)−1 1√
2
(n2/3 fa(z))−

1
4 σ3

(
1 1

−1 1

)
e−( π i

4 − z
2 )σ3 for z ∈Ua\�S ,

S(z)P(b)(z)−1 1√
2
(n2/3 fb(z))−

1
4 σ3

(
1 1

−1 1

)
e−( π i

4 − z
2 )σ3 forz ∈ Ub\�S .

(4.40)

Then P is constructed in such a way that it has jumps on a contour

�P := (�S\(Ua ∪ Ub)) ∪ ∂Ua ∪ ∂Ub ∪ [a, b] (4.41)

as shown in Fig. 7. We define (n2/3 fb(z))−
1
4σ3 and (n2/3 fa(z))−

1
4σ3 in such a way that

they have branch cuts on [a, b] and they are positive on (b,∞) and (−∞, a) respectively.
The jumps inside the disks on R\[a, b] and the lips�1, �2 are equal to the identity matrix
since S(z)P(b)(z)−1 and S(z)P(a)(z)−1 are analytic there, but there is a jump on (a, b)

due to the branch cuts of (n2/3 fb(z))−
1
4σ3 and (n2/3 fa(z))−

1
4σ3 . Also note that, unlike

Y, T, S whose entries are all bounded in any bounded region of their domains, P(z) has
inverse fourth root singularities at a and b.
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Fig. 7. The contour�P . On the boldface part of the contour, JP = ( 0 e−z

−ez 0
)

and on the other parts, JP → I
uniformly. Note that �P divides the complex plane into six regions: the two “edge regions” Ua and Ub , the
two “bulk regions” in the upper and lower parts of the lens and not in Ua or Ub , and the two “outside regions”.
The dashed lines that belong to �S but not to �P , together with the interval (a, b), divide each edge region
into four subregions, two inside the lens and two out of the lens

RH problem for P

(a) P = (P1, P2), where P1 is analytic in C\�P , and P2 is analytic in S
c\�P ,

(b) we have

P+(z) = P−(z)JP (z), forz ∈ �P , (4.42)

where

JP (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JS(z) for z ∈ �S\(Ua ∪ Ub),

1√
2

e(
π i
4 − z

2 )σ3

(
1 −1
1 1

)
(n2/3 fa(z))

1
4σ3 P(a)(z) forz ∈ ∂Ua,

1√
2

e(
π i
4 − z

2 )σ3

(
1 −1
1 1

)
(n2/3 fb(z))

1
4σ3 P(b)(z) forz ∈ ∂Ub,

(
0 e−z

−ez 0

)
for z ∈ (a, b),

(4.43)

(c1) as z → ∞, P1(z) = zk + O(zk−1),
(c2) as ez → +∞, P2 behaves as P2(z) = O(e−(k+1)z), and as ez → 0, P2 behaves as

P2(z) = O(1).
(c3)

P(z) = (O(|z − a|−1/4),O(|z − a|−1/4)) asz → a, (4.44)

P(z) = (O(|z − b|−1/4),O(|z − b|−1/4)) asz → b. (4.45)

4.6. Construction of the outer parametrix. For z ∈ ∂Ua ∪ ∂Ub, the definition of the
local parametrices (4.33) and (4.38) together with the asymptotics (4.30) for A imply
that JP (z) = I + O(n−1) as n → ∞. For z ∈ �S\[a, b] and not included in Ua or
Ub, by the asymptotics of φ(z) given in (4.23) and (3.9), we have that JP (z) decays
exponentially as n → ∞. Thus, in some sense, it is expected that

P(z) → P(∞)(z), (4.46)
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where P(∞)(z) has the same analyticity, asymptotic, and periodicity properties, and has
the jump condition

P(∞)
+ (x) = P(∞)

− (x)

(
0 e−x

−ex 0

)
, for x ∈ (a, b). (4.47)

We would like to construct a solution to the following RH problem:

RH problem for P(∞)

(a) P(∞) = (P(∞)
1 , P(∞)

2 ), where P(∞)
1 is an analytic function in C\[a, b], and P(∞)

2
is an analytic function in S

c\[a, b],
(b) P(∞) satisfies the jump relation (4.47),

(c1) as z → ∞, P(∞)
1 (z) = zk + O(zk−1),

(c2) as ez → +∞, P(∞)
2 behaves as P(∞)

2 (z) = O(e−(k+1)z), and as ez → 0, P(∞)
2

behaves as P(∞)
2 (z) = O(1),

(c3)

P(∞)(z) = (O(|z − a|−1/4),O(|z − a|−1/4)) as z → a, (4.48)

P(∞)(z) = (O(|z − b|−1/4),O(|z − b|−1/4)) as z → b. (4.49)

After the construction of P(∞), we will prove the convergence (4.46).
We use the transformation Jc1,c0 defined before in (1.23), where the parameters c1

and c0 depend on a and b, the endpoints of the support of the equilibrium measure.
Recall sa and sb defined in (1.24) and the relation (3.4) between sa, sb and a, b. Below
we write Jc1,c0 as J if there is no confusion.

By Proposition 2, J maps C\D̄ conformally to C\[J(sa), J(sb)], and maps D\[− 1
2 ,

1
2 ]

conformally to S\[J(sa), J(sb)], so that we can define the function F(s) on C\(γ1 ∪γ2 ∪
[− 1

2 ,
1
2 ]) by

F(s) :=
⎧
⎨

⎩
P(∞)

1 (J(s)) for s ∈ C\D̄,

P(∞)
2 (J(s)) for s ∈ D\[− 1

2 ,
1
2 ].

(4.50)

Since P(∞)
2 is defined on S

c, that is, it satisfies a periodic boundary condition on S, we
have that the definition of F(s) can be extended to (− 1

2 ,
1
2 ). In this way the transformation

from P(∞) to F is invertible: we can recover the outside parametrix P(∞) by the formula

P(∞)
1 (z) = F(I1(z)), for z ∈ C\[a, b], (4.51)

P(∞)
2 (z) = F(I2(z)), for z ∈ S\[a, b], (4.52)

where I1 and I2 are, as defined in (1.26) and (1.27), the inverses of J mapping C\[a, b] to
C\D and to D\[− 1

2 ,
1
2 ] respectively. All information about the vector-valued function

P(∞) is now carried by the single complex-valued function F , which is discontinuous
on γ1 ∪ γ2 by definition.

From condition (c2) of the RH problem for P(∞) and the definition of J, it follows
that F has a removable singularity at − 1

2 , and that F has a zero of multiplicity k + 1 at
1
2 if k ≥ 0, a removable singularity if k = −1, and a pole of order −k − 1 if k < −1.
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The inverse fourth root singularities of P(∞) at a, b are transformed into inverse square
root singularities of F at sa, sb, because J′(s) has simple zeros at sa and sb. In order to
compute the jump relation satisfied by F , note that

eJ(s) = ec1s+c0
s + 1

2

s − 1
2

, (4.53)

and

F+(s) = P(∞)
1,+ (J(s)), F−(s) = P(∞)

2,− (J(s)), for s ∈ γ1, (4.54)

F+(s) = P(∞)
2,+ (J(s)), F−(s) = P(∞)

1,− (J(s)), for s ∈ γ2. (4.55)

It is now straightforward to verify the following RH conditions for F .

RH problem for F

(a) F is analytic in C\(γ1 ∪γ2) if k ≥ −1, and analytic in C\(γ1 ∪γ2 ∪{ 1
2 }) if k < −1,

(b) for s ∈ γ1 ∪ γ2, we have

F+(s) = −ec1s+c0
s + 1

2

s − 1
2

F−(s), for s ∈ γ1, (4.56)

F+(s) = e−c1s−c0
s − 1

2

s + 1
2

F−(s), for s ∈ γ2, (4.57)

(c) we have the asymptotic conditions

F(s) = ck
1sk + O(sk−1), as s → ∞, (4.58)

F(s) = O((s − 1

2
)k+1), as s → 1

2
, (4.59)

F(s) = O(|s − sa |− 1
2 ) as s → sa , (4.60)

F(s) = O(|s − sb|− 1
2 ) as s → sb. (4.61)

One can explicitly construct a solution F to the above RH problem:

F(s) =

⎧
⎪⎨

⎪⎩

ck
1
(s+ 1

2 )(s− 1
2 )

k
√
(s−sa)(s−sb)

for s ∈ C\D̄,

ck
1(s − 1

2 )
k+1 e−c1s−c0√

(s−sa)(s−sb)
for s ∈ D.

(4.62)

where
√
(s − sa)(s − sb) is taken to be continuous in C\γ1 and

√
(s − sa)(s − sb) ∼ s

as s → ∞.
Note that F(s) and the function Gk(z) defined in (1.30) are related by (upon express-

ing sa and sb by (1.24))

Gk(s) =
{

F(s) if s ∈ C\D,

eJ(s)F(s) if s ∈ D.
(4.63)
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Fig. 8. The contour J−1(�P ). The boldface part consists of γ1 and γ2, the solid part is �′ and the dashed
part is �′′

4.7. The convergence of P → P(∞). We will now apply the same idea as in the con-
struction of the outer parametrix to P , and want to transform the RH problem to the
s-plane using the transformation z = J(s), in such a way that P = (P1, P2) is trans-
formed to a single complex-valued function F . Therefore we define F on C\J−1(�P )

analogous to (4.50):

F(s) :=
{

P1(J(s)) if s ∈ C\D̄ and J(s) /∈ �P ,

P2(J(s)) if s ∈ D\[− 1
2 ,

1
2 ] and J(s) /∈ �P .

(4.64)

The inverse of this transformation is given by

P1(z) = F(I1(z)), for z ∈ C\�P , (4.65)

P2(z) = F(I2(z)), for z ∈ S\�P . (4.66)

The jump contour of F will consist of the inverse image of�P under J. We can decom-
pose this jump contour J−1(�P ) into three different parts: γ1 ∪ γ2, the part in D and the
part in C\D as follows, see Fig. 8:

J−1(�P )=�′ ∪�′′ ∪ (γ1 ∪ γ2), where �′ =I1(�P\[a, b]), �′′ =I2(�P\[a, b]).
(4.67)

Similar to F(s), the definition of F(s) can be extended to [− 1
2 ,

1
2 ) because of the

periodicity of P2 and its behavior as �z → −∞. The RH problem for P , however, no
longer transforms to a scalar RH problem for F(s). For s ∈ γ1 ∪ γ2, we still have the
scalar jump conditions

F+(s) = −eJ(s)F−(s), for s ∈ γ1, (4.68)

F+(s) = e−J(s)F−(s), for s ∈ γ2, (4.69)

but on the other parts of the jump contour, the jump conditions become non-local. Since
F±(s) = P1,±(J(s)) for s ∈ �′ and F±(s) = P2,±(J(s)) for s ∈ �′′, where the
orientation for �′ and �′′ is that inherited from the orientation on �P through I1 and
I2, the jump conditions (4.42) for P transform into

F+(s) = JP,11(J(s))F−(s) + JP,21(J(s))F−(I2(J(s))), for s ∈ �′, (4.70)

F+(s) = JP,12(J(s))F−(I1(J(s))) + JP,22(J(s))F−(s), for s ∈ �′′, (4.71)

where JP is the 2 × 2 jump matrix defined in (4.43). In other words, the boundary value
F+(I1(z)) depends not only on F−(I1(z)), but also on F−(I2(z)), and vice versa for
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F+(I2(z)). For this reason, we will call the jump relations (4.70)–(4.71) “shifted” jump
relations, and the RH problem for F a shifted RH problem, following the terminology
of [25]. The asymptotic conditions for F are the same as the ones for F . By conditions
4.6–4.6 of the RH problem for P , we have analogous to (4.58)–(4.61) that

F(s) = ck
1sk + O(sk−1), as s → ∞, (4.72)

F(s) = O((s − 1

2
)k+1), as s → 1

2
. (4.73)

F(s) = O(|s − sa |−1/2), as s → sa , (4.74)

F(s) = O(|s − sb|−1/2), as s → sb. (4.75)

Since F(s) �= 0 for all s ∈ C\(γ1 ∪ γ2 ∪ { 1
2 }), while at 1

2 the order of the pole of F(s)
is at most equal to that of F(s), we can define the analytic function

R(s) := F(s)
F(s)

, for s ∈ C\J−1(�P ). (4.76)

By (4.68), (4.69) and (4.56), (4.57), it follows that R is analytic across (γ1 ∪γ2). Further-
more, the RH problem for F(s) and the shifted RH problem for F(s) yield the following
shifted RH conditions satisfied by R.

Shifted RH problem for R

(a) R is analytic in C\(�′ ∪�′′),
(b) R has the jump conditions

R+(s) = JR,11(s)R−(s) + JR,21(s)R−(I2(J(s))), for s ∈ �′, (4.77)

R+(s) = JR,12(s)R−(I1(J(s))) + JR,22(s)R−(s), for s ∈ �′′, (4.78)

where

JR,11(s) = JP,11(J(s)), JR,21(s) = JP,21(J(s))
F(I2(J(s)))

F(s)
,

(4.79)

JR,12(s) = JP,12(J(s))
F(I1(J(s)))

F(s)
, JR,22(s) = JP,22(J(s)), (4.80)

(c) R is bounded, and R(s) = 1 + O(s−1) as s → ∞.

Substituting the asymptotic properties of JP stated in the beginning of Sect. 4.6 and
the formula (4.62) of F(s) into (4.79) and (4.80), as n → ∞, we have the uniform
asymptotic estimates

JR,11(s) = 1 + O(n−1), JR,21(s) = O(n−1), for s ∈ �′, (4.81)

JR,12(s) = O(n−1), JR,22(s) = 1 + O(n−1), for s ∈ �′′. (4.82)

Moreover, for s on the real parts of�′ and�′′, JR,21 vanishes identically: by (4.43) and
(4.21), we have

JR,21(s) = 0, for s ∈ (�′ ∪�′′) ∩ R. (4.83)
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To obtain asymptotics for R(s), we introduce an operator �R that acts on functions
defined on �R = �′ ∪ �′′. Let f be a complex-valued function defined on �R . Then
we define g = �R f by

g(s) = [JR,11(s)− 1] f (s) + JR,21(s) f (I2(J(s))), for s ∈ �′, (4.84)

g(s) = JR,12(s) f (I1(J(s))) + [JR,22(s)− 1] f (s), for s ∈ �′′. (4.85)

For bounded function f (s), g(s) is also bounded and decays rapidly as |s| → ∞. If we
regard�R as a linear operator from L2(�R) to itself, we will see that it is bounded and
that its operator norm is O(n−1) as n → ∞. For that purpose, note first that, by (4.84)
and (4.85),

‖�R f ‖L2(�R)
≤ ‖[JR,11 − 1] f ‖L2(�′) + ‖JR,21 f (I2(J))‖L2(�′)

+ ‖JR,12 f (I1(J))‖L2(�′′) + ‖[JR,22 − 1] f ‖L2(�′′). (4.86)

Using the fact that JR,11 − 1 and JR,22 − 1 are uniformly O(n−1) on �′ and �′′ as
n → ∞, see (4.81)–(4.82), we obtain that there exists a constant c > 0 such that

‖�R f ‖L2(�R)
≤ c

n
‖ f ‖L2(�R)

+ ‖JR,21 f (I2(J))‖L2(�′) + ‖JR,12 f (I1(J))‖L2(�′′).

(4.87)

For the second term on the right-hand side, we have

‖JR,21 f (I2(J))‖2
L2(�′) =

∫

�′
| f (I2(J(s)))|2|JR,21(s)|2ds

=
∫

�′′
| f (u)|2|JR,21(I1(J(u)))|2|(I1(J))′(u)|du

≤ sup
u∈�′′

(
|JR,21(I1(J(u)))|2|(I1(J))′(u)|

)
· ‖ f ‖2

L2(�R)
. (4.88)

For u ∈ �′′ bounded away from ±1/2, it is straightforward to verify by (4.81) and prop-
erties of the transformation J that |JR,21(I1(J(u)))|2|(I1(J))′(u)| is O(n−2) as n → ∞,
uniformly in u. For u ∈ �′′ close to±1/2, we observe by (4.83) that JR,21(I1(J(u))) = 0,
which implies the existence of a constant c′ such that

‖JR,21 f (I2(J))‖L2(�′) ≤ c′

n
‖ f ‖L2(�R)

. (4.89)

Regarding the last term in (4.87),

‖JR,12 f (I1(J))‖2
L2(�′′) =

∫

�′′
| f (I1(J(s)))|2|JR,21(s)|2ds

=
∫

�′
| f (u)|2|JR,12(I2(J(u)))|2|(I2(J))′(u)|du

≤ sup
u∈�′

(
|JR,12(I2(J(u)))|2|(I2(J))′(u)|

)
· ‖ f ‖2

L2(�R)
, (4.90)

and it follows from (4.82) that

‖JR,12 f (I1(J))‖L2(�′′) ≤ c′′

n
‖ f ‖L2(�R)

. (4.91)
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From the above estimates, it follows that there exists a constant M > 0 such that

‖�R f ‖L2(�R)
≤ M

n
‖ f ‖L2(�R)

, ‖�R‖L2(�R)
≤ M

n
. (4.92)

Next, we define another bounded linear operator C�R from L2(�R) to itself, by

C�R ( f ) := C−(�R( f )), where C−g(s) = 1

2π i
lim

s′→s−

∫

�R

g(ξ)

ξ − s′ dξ, (4.93)

and the limit s′ → s− is taken when approaching the contour from the minus side. The
operator norm of C�R is also uniformly O(n−1) as n → ∞ since the Cauchy operator
C− is bounded. Thus (1 − C�R ) can be inverted by a Neumann series for n sufficiently
large. We claim now that R satisfies the integral equation

R(s) = 1 + C(�R R−)(s), where Cg(s) = 1

2π i

∫

�R

g(ξ)

ξ − s
dξ. (4.94)

To prove this claim, note that the solution to the RH problem for R is unique because it
is equivalent to the uniquely solvable RH problem for Y . This means that it is sufficient
to prove that the right-hand side of (4.94), which we will denote by R̃ for simplicity,
satisfies the RH conditions for R. Obviously R̃(z) is bounded and tends to 1 as z → ∞,
and it suffices to prove that the solution R̃ satisfies the jump relations (4.77) and (4.78).
Using the Cauchy operator identity C+ − C− = 1, it follows that

R̃+ − R̃− = (1 + C+(�R R̃−))− (1 + C−(�R R̃−)) = (C+ − C−)(�R R̃−) = �R R̃−,
(4.95)

which implies indeed that R̃ satisfies the jump relations (4.77) and (4.78) for R. Hence
we conclude that R = R̃, and (4.94) is proved. Since R satisfies (4.94), we have, taking
the limit where s approaches the minus side of �R ,

R− − 1 = C−(�R R−) = C�R (R− − 1) + C−(�R(1)). (4.96)

By the invertibility of (1 − C�R ), (4.96) implies

R− = 1 + (1 − C�R )
−1C−(�R(1)). (4.97)

This further implies that

‖R− − 1‖L2(�R)
= O(n−1), as n → ∞. (4.98)

Substituting (4.97) into (4.94), we obtain an expression for R:

R = 1 + C(�R(1 + (1 − C�R )
−1C−(�R(1)))). (4.99)

For s at a small distance δ > 0 away from the contour �R , (4.94) reads

R(s)− 1 = 1

2π i

∫

�R

�R(R− − 1)(ξ)

ξ − s
dξ +

1

2π i

∫

�R

�R(1)(ξ)

ξ − s
dξ. (4.100)
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The second term at the right-hand side of the above equation can be estimated by
O(δ−1n−1), using the definition of the operator �R and asymptotic properties of JR .
Using in addition the Cauchy-Schwarz inequality applied on the first term on the right-
hand side of the above equation, by (4.98) we obtain

|R(s)− 1| ≤ 1

2π
‖�R(R− − 1)‖L2(�R)

· ‖ 1

ξ − s
‖L2(�R)

+ O(δ−1n−1)

≤ 1

2π
‖�R‖L2(�R)

· ‖R− − 1‖L2(�R)
· ‖ 1

ξ − s
‖L2(�R)

+ O(δ−1n−1)

= O(δ−1n−1) + O(δ−1n−1). (4.101)

Although the estimate (4.101) does not work well for s in a δ-neighborhood of �R , we
note that for such s, given that δ is small enough, the jump contour �R can always be
deformed in such a way that s lies at a distance δ away from it. After this deformation,
the above argument can be applied to obtain the uniform estimate

R(s)− 1 = O(n−1), as n → ∞, s ∈ C\�R . (4.102)

Through (4.76), (4.51), and (4.65), the uniform estimate (4.102) yields

P1(z) = (1 + O(n−1))P(∞)
1 (z), as n → ∞, for z ∈ C\�P , (4.103)

P2(z) = (1 + O(n−1))P(∞)
2 (z), as n → ∞, for z ∈ S

c\�P . (4.104)

The asymptotics for R can be used to obtain asymptotics for the polynomials p(n)n by
inverting the transformations

Y �→ T �→ S �→ P �→ R. (4.105)

We will do this in Sect. 6.

5. Asymptotic Analysis for the Type I Multiple Orthogonal Polynomials

In a similar way as for the type II multiple orthogonal polynomials p(n)j (z), in this section

we construct a RH problem for q(n)j (ez), and we analyze this RH problem asymptotically
when j = n+k. Both the RH problem and the asymptotic analysis show many similarities
with the ones for the type II polynomials, and once again the use of the transformation
J will turn out to be crucial.

In this section, we write q(n)j (x), the monic polynomials that define the multiple
orthogonal polynomials of type I and satisfy the orthogonality relations (1.12), as q j (x)
if there is no confusion.

5.1. RH problem characterizing the polynomials. Consider the Cauchy transform of
q j (ez),

Cq j (z) := 1

2π i

∫

R

q j (es)

s − z
e−nV (s)ds. (5.1)
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Due to the orthogonality (1.12), as z → ∞,

Cq j (z) = −1

2π i z

∫

R

q j (es)

1 − s/z
e−nV (s)ds

= −1

2π i z

∫

R

(
1 +

s

z
+

s2

z2 + · · ·
)

q j (e
s)e−nV (s)ds

= O(z− j−1). (5.2)

For x ∈ R, Cauchy’s theorem implies

(Cq j )+(x)− (Cq j )−(x)

= 1

2π i

∫

R

q j (es)e−nV (s)

s − x+
ds − 1

2π i

∫

R

q j (es)e−nV (s)

s − x−
ds = q j (e

x )e−nV (x). (5.3)

Similar to (4.5), let

X (z) = X ( j,n)(z) := (q j (e
z),Cq j (z)). (5.4)

One verifies that X satisfies the following RH problem.

RH problem for X

(a) X = (X1, X2), where X2 is an analytic function defined on C\R and X1 is an
analytic function on S

c,
(b) X has continuous boundary values X± when approaching the real line from above

and below, and we have

X+(x) = X−(x)
(

1 e−nV (x)

0 1

)
, for x ∈ R, (5.5)

(c1) as z → ∞, X2 behaves as X2(z) = O(z− j−1),
(c2) as ez → ∞ (i.e., �z → +∞), X1 behaves as X1(z) = e jz +O(e( j−1)z); as ez → 0

(i.e., �z → −∞), X1 remains bounded.

In an analogous way as for the RH problem for Y in Sect. 4.1, it can be shown that
X = X ( j,n) given by (5.4) is the unique solution to this RH problem.

We will now perform an asymptotic analysis of the RH problem for X = X (n+k,n) as
n → ∞, with k a constant integer. This method will be to a large extent analogous to the
nonlinear steepest descent method done in the previous section. Again we will construct
a series of transformations of X and end up with a shifted small-norm RH problem.
In order to emphasize the analogies with the previous section, we will use notations
T̂ , Ŝ, P̂, R̂, . . . for the counterparts of the functions T, S, P, R, . . . used before.

5.2. First transformation X �→ T̂ . Recall the functions g(z) and g̃(z) defined in (1.33),
and define

T̂ (z) := e− n�
2 X (z)

(
e−ng̃(z) 0

0 eng(z)

)
e

n�
2 σ3 . (5.6)

Analogously to T in Sect. 4.2, T̂ satisfies the RH problem
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RH problem for T̂

(a) T̂ = (T̂1, T̂2), where T̂2 is analytic on C\R and T̂1 is defined and analytic in S
c\R,

(b) T̂ satisfies the jump relation

T̂+(x) = T̂−(x)JT̂ (x), for x ∈ R. (5.7)

with

JT̂ (x) =
(

en(g̃−(x)−g̃+(x)) en(g̃−(x)+g+(x)−V (x)−�)

0 en(g+(x)−g−(x))

)
, (5.8)

(c1) as z → ∞, T̂2 behaves as T̂2(z) = O(z−(k+1)),
(c2) as ez → ∞, T̂1 behaves as T̂1(z) = ekz + O(e(k−1)z), and as ez → 0, T̂1 behaves

as T̂1(z) = O(1).

5.3. Second transformation T̂ �→ Ŝ. By (3.8), we have, like (4.16), the following fac-
torization on [a, b]:

JT̂ (x) =
(

1 0

e−nφ−(x) 1

)(
0 1

−1 0

)(
1 0

e−nφ+(x) 1

)
, (5.9)

where φ is defined in (1.34), Recall the lens�S defined in Sect. 4.3 and shown in Fig. 5.
Similarly as in (4.19) for S, let us define Ŝ by

Ŝ(z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T̂ (z) outside of the lens,

T̂ (z)

(
1 0

e−nφ(z) 1

)
in the lower part of the lens,

T̂ (z)

(
1 0

−e−nφ(z) 1

)
in the upper part of the lens,

(5.10)

where φ(z) is defined in (1.34). Then similar to the RH conditions satisfied by S in
Sect. 4.3, we have the RH problem for Ŝ as follows.

RH problem for Ŝ

(a) Ŝ = (Ŝ1, Ŝ2), where Ŝ2 is analytic in C\�S , and Ŝ1 is analytic in S
c\�S ,

(b) we have

Ŝ+(z) = Ŝ−(z)JŜ(z), for z ∈ �S , (5.11)

where

JŜ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

e−nφ(z) 1

)
, for z ∈ �1 ∪�2,

(
0 1

−1 0

)
, for z ∈ (a, b),

(
1 enφ(z)

0 1

)
, for z ∈ R\[a, b],

(5.12)
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(c1) as z → ∞, Ŝ2 behaves as Ŝ2(z) = O(z−(k+1)),
(c2) as ez → ∞, Ŝ1 behaves as Ŝ1(z) = ekz + O(e(k−1)z), and as ez → 0, Ŝ1 behaves

as Ŝ1(z) = O(1).
5.4. Construction of local parametrices near a and b. In a similar way as for the con-
struction of P(a) and P(b) in Sect. 4.4, we can construct local parametrices P̂(a) and
P̂(b) in sufficiently small neighborhoods Ua and Ub of the endpoints a and b in such a
way that they satisfy exactly the jump conditions

P̂(a)+ (z) = P̂(a)− (z)JŜ(z), z ∈ �S ∩ Ua, (5.13)

P̂(b)+ (z) = P̂(b)− (z)JŜ(z), z ∈ �S ∩ Ub. (5.14)

Similar to the P(a)(z) and P(b)(z) defined in (4.38) and (4.33) respectively, the local
parametrices P̂(a)(z) and P̂(b)(z) are expressed by

P̂(a)(z) := σ3 A(n2/3 fa(z))e
− n

2 φ(z)σ3σ3, (5.15)

P̂(b)(z) := A(n2/3 fb(z))e
− n

2 φ(z)σ3 , (5.16)

where the functions fa and fb are as in (4.32) and (4.37), A is as in (4.26), and the
neighborhoods Ua and Ub as well as the contour �S can be taken the same as in (4.38)
and (4.33). We omit the details of the verification of (5.13) and (5.14) here, since almost
identical arguments were used in Sect. 4.4.

5.5. Third transformation Ŝ �→ P̂. Define analogously to P(z) in (4.40),

P̂(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ŝ(z) for z ∈ C\(Ua ∪ Ub ∪�S),

Ŝ(z)P̂(a)(z)−1 1√
2
(n2/3 fa(z))−

1
4 σ3

(
1 1

−1 1

)
e− π i

4 σ3 for z ∈ Ua\�S ,

Ŝ(z)P̂(b)(z)−1 1√
2
(n2/3 fb(z))−

1
4 σ3

(
1 1

−1 1

)
e− π i

4 σ3 for z ∈ Ub\�S .

(5.17)

Then like the RH conditions satisfied by P , P̂ satisfies the following RH conditions.

RH problem for P̂

(a) P̂ = (P̂1, P̂2), where P̂2 is analytic in C\�P , and P̂1 is analytic in S
c\�P ,

(b) we have

P̂+(z) = P̂−(z)JP̂ (z), for z ∈ �P , (5.18)

where �P is the same as in (4.41), and

JP̂ (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JŜ(z) for z ∈ �S\(Ua ∪ Ub),

1√
2

e
π i
4 σ3

(
1 −1
1 1

)
(n2/3 fa(z))

1
4σ3 P(a)(z) for z ∈ ∂Ua ,

1√
2

e
π i
4 σ3

(
1 −1
1 1

)
(n2/3 fb(z))

1
4σ3 P(b)(z) for z ∈ ∂Ub,

(
0 1

−1 0

)
for z ∈ (a, b),

(5.19)
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(c1) as z → ∞, P̂2(z) = O(z−(k+1)),
(c2) as ez → ∞, P̂1 behaves as P̂1(z) = ekz + O(e(k−1)z), and as ez → 0, P̂1 behaves

as P̂1(z) = O(1).
(c3)

P̂(z) = (O(|z − a|−1/4),O(|z − a|−1/4)) as z → a, (5.20)

P̂(z) = (O(|z − b|−1/4),O(|z − b|−1/4)) as z → b. (5.21)

5.6. Construction of the outer parametrix. The RH problem for P̂ has, as P , the property
that its jump matrix tends to the identity matrix uniformly as n → ∞, except on [a, b].
We will first construct a solution to the following RH problem for P̂(∞), which is the
limiting RH problem (formally, ignoring small neighborhoods of a and b) for P̂ as
n → ∞.

RH problem for P̂(∞)

(a) P̂(∞) = (P̂(∞)
1 , P̂(∞)

2 ), where P̂(∞)
2 is an analytic function in C\[a, b], and P̂(∞)

1
is an analytic function in S

c\[a, b],
(b) P̂(∞) satisfies the jump relation

P̂(∞)
+ (x) = P̂(∞)

− (x)

(
0 1

−1 0

)
, for x ∈ (a, b), (5.22)

(c1) as z → ∞, P̂(∞)
2 (z) = O(z−(k+1)),

(c2) as ez → +∞, P̂(∞)
1 behaves as P̂(∞)

1 (z) = ekz + O(e(k−1)z), and as ez → 0, P̂(∞)
1

behaves as P̂(∞)
1 (z) = O(1).

(c3)

P̂(∞)(z) = (O(|z − a|−1/4),O(|z − a|−1/4)) as z → a, (5.23)

P̂(∞)(z) = (O(|z − b|−1/4),O(|z − b|−1/4)) as z → b. (5.24)

Inspired by the construction of P(∞) in Sect. 4.6, we search for P̂(∞) in the form
P̂(∞)(z) = (F̂(I2(z)), F̂(I1(z))), where I1 and I2 are, as before, the two inverses of the
map J defined in (1.26) and (1.27). Hence

F̂(s) :=
{

P̂(∞)
2 (J(s)) for s ∈ C\D̄,

P̂(∞)
1 (J(s)) for s ∈ D\[− 1

2 ,
1
2 ], (5.25)

and like F(s) in Sect. 4.6, F̂ can be analytically continued to [− 1
2 ,

1
2 ). At 1

2 , F̂ has a
pole of order k if k > 0, a removable singularity if k = 0 and a zero of multiplicity
−k if k < 0. From the RH conditions for P̂(∞), we deduce the following RH problem
for F̂ .

RH problem for F̂

(a) F̂ is analytic in C\(γ1 ∪ γ2) if k ≤ 0, and analytic in C\(γ1 ∪ γ2 ∪ { 1
2 }) if k > 0,

(b) for s ∈ γ1 ∪ γ2, we have

F̂+(s) = F̂−(s), for s ∈ γ1, (5.26)

F̂+(s) = −F̂−(s), for s ∈ γ2, (5.27)
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(c) we have the asymptotic conditions

F̂(s) = O(s−(k+1)), as s → ∞, (5.28)

F̂(s) = ek( 1
2 c1+c0)(s − 1

2
)−k + O((s − 1

2
)−k+1), as s → 1

2
, (5.29)

F̂(s) = O(|s − sa |− 1
2 ), as s → sa , (5.30)

F̂(s) = O(|s − sb|− 1
2 ), as s → sb. (5.31)

It is verified directly that

F̂(s) =
√
( 1

2 − sa)(
1
2 − sb)√

(s − sa)(s − sb)
ek( 1

2 c1+c0)(s − 1

2
)−k, for s ∈ C\γ2, (5.32)

solves the above RH problem. Here we choose the branch of the square root√
(z − sa)(z − sb) that is analytic except on γ2 and close to z as z → ∞,

5.7. The convergence of P̂ → P̂(∞). Define analogous to F(s) in (4.64)

F̂(s) :=
{

P̂2(J(s)) if s ∈ C\D̄ and J(s) /∈ �P ,

P̂1(J(s)) if s ∈ D\[− 1
2 ,

1
2 ] and J(s) /∈ �P .

(5.33)

We have the scalar jump conditions

F̂+(s) = F̂−(s), for s ∈ γ1, (5.34)

F̂+(s) = −F̂−(s), for s ∈ γ2, (5.35)

and the shifted jump conditions

F̂+(s) = JP̂,11(J(s))F̂−(s) + JP̂,21(J(s))F̂−(I1(J(s))), for s ∈ �′′, (5.36)

F̂+(s) = JP̂,12(J(s))F̂−((I2(J(s)))) + JP̂,22(J(s))F̂−(s),for s ∈ �′. (5.37)

The asymptotic conditions are the same as those for F̂(s)

F̂(s) = O(s−(k+1)), as s → ∞, (5.38)

F̂(s) = ek( 1
2 c1+c0)(s − 1

2
)−k + O((s − 1

2
)−k+1), as s → 1

2
, (5.39)

F̂(s) = O(|s − sa |−1/2), as s → sa , (5.40)

F̂(s) = O(|s − sb|−1/2), as s → sb. (5.41)

Next we define, analogous to R(s) in (4.76),

R̂(s) := F̂(s)
F̂(s)

, for s ∈ C\J−1(�P ). (5.42)

Then like R, R̂ is analytic at 1
2 and across (γ1 ∪ γ2), and satisfies the following shifted

RH problem.
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Shifted RH problem for R̂

(a) R̂ is analytic in C\(�′ ∪�′′), where �′ and �′′ are defined in (4.67),
(b) R̂ has the jump conditions

R̂+(s) = JR̂,11(s)R̂−(s) + JR̂,21(s)R̂−(I1(J(s))), for s ∈ �′′, (5.43)

R̂+(s) = JR̂,12(s)R̂−(I2(J(s))) + JR̂,22(s)R̂−(s), for s ∈ �′, (5.44)

where

JR̂,11(s) = JP̂,11(J(s)), JR̂,21(s) = JP̂,21(J(s))
F̂(I1(J(s)))

F̂(s)
,

(5.45)

JR̂,12(s) = JP̂,12(J(s))
F̂(I2(J(s)))

F̂(s)
, JR̂,22(s) = JP̂,22(J(s)). (5.46)

(c) R̂ is bounded, and R̂(s) = 1 + O(s−1) as s → ∞.

As n → ∞, we have the uniform asymptotic estimates analogous to (4.81) and (4.82)

JR̂,11(s) = 1 + O(n−1), JR̂,21(s) = O(n−1), for s ∈ �′′, (5.47)

JR̂,12(s) = O(n−1), JR̂,22(s) = 1 + O(n−1), for s ∈ �′, (5.48)

These estimates imply, in a similar way as (4.81) and (4.82) do in Sect. 4.7, the uniform
convergence of R̂ to 1:

R̂(s) = 1 + O(n−1), as n → ∞, for s ∈ C\ (�′ ∪�′′). (5.49)

Hence, by (5.42), (5.25), and (5.33), we have, like (4.103) and (4.104),

P̂1(z) = (1 + O(n−1))P̂(∞)
1 (z), as n → ∞, for z ∈ S

c\�P , (5.50)

P̂2(z) = (1 + O(n−1))P̂(∞)
2 (z), as n → ∞, for z ∈ C\�P . (5.51)

6. Proof of Main Results

In this section we collect the asymptotics of p(n)n+k(z) and q(n)n+k(e
z), from the analysis in

Sects. 4 and 5. The goal is to prove Theorem 2.

6.1. The asymptotics of p(n)n+k(z). The main task in the computation of the asymptotics

for p(n)n+k consists of the inversion of the transformations Y �→ T �→ S �→ P . By
(4.5), (4.13), (4.19), (4.40) and the asymptotics obtained in Sect. 4.6, we will find the
asymptotics of p(n)n+k . In Fig. 7 it is shown that the complex plane is divided into the
outside region, upper and lower bulk regions and two edge regions by �P . We restrict
ourselves to the upper half plane because of symmetry, and do the computation in each
of the four regions.

Outside region. For z in the outside region, we have

p(n)n+k(z) = Y (n+k,n)
1 (z) = T1(z)e

ng(z) = S1(z)e
ng(z) = P1(z)e

ng(z). (6.1)
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By (4.103) and (4.51),

p(n)n+k(z) = (1 + O(n−1))F(I1(z))e
ng(z), as n → ∞, (6.2)

where F is defined in (4.50). Substituting the identity (4.63) for F into (6.2), we have

p(n)n+k(z) = (1 + O(n−1))Gk(I1(z))e
ng(z), as n → ∞. (6.3)

This proves (1.37) for z in the outside region.

Bulk region. Similar to (6.1)–(6.3), for z in the upper part of the lens but not in Ua and
Ub, we obtain

p(n)n+k(z) = Y (n+k,n)
1 (z) = T1(z)e

ng(z)

= (S1(z) + S2(z)e
−nφ(z)+z)eng(z)

= P1(z)e
ng(z) + P2(z)e

zen(V (z)−g̃(z)+�)

= (1 + O(n−1))F(I1(z))e
ng(z)

+ (1 + O(n−1))F(I2(z))e
zen(V (z)−g̃(z)+�)

= (1 + O(n−1))Gk(I1(z))e
ng(z)

+ (1 + O(n−1))Gk(I2(z))e
n(V (z)−g̃(z)+�), (6.4)

as n → ∞. In the last identity of (6.4) we use (4.63) and the identity z = J(I2(z)). We
obtain the formula (1.39) for z in the upper bulk region.

In particular, if x ∈ (a, b) and z → x from above, we have by (3.8) that V (x)−g̃+(x)+
� = g−(x), and further from the definition (1.33) of g(z), we have g±(x) = ∫

log|x −
y|dμV (y)±π i

∫ b
x dμV . On the other hand, as z → x from above, by (1.28) and (1.29),

I1(z) and I2(z) converge to I+(x) and I−(x) respectively. Noting that I−(x) = Ī+(x),
we have from (6.4) and (1.39)

p(n)n+k(x) = rk(x)e
n
∫

log |x−y|dμV (y)
[

cos

(
nπ
∫ b

x
dμV (t) + θk(x)

)
+ O(n−1)

]
,

(6.5)

where rk(x) and θk(x), as defined in (1.31), are the modulus and argument of

2Gk(I+(x)) = 2ck
1
(I+(x)+ 1

2 )(I+(x)− 1
2 )

k
√
(I+(x)−sa)(I+(x)−sb)

.

Edge region. For brevity we only consider the case z ∈ Ub, the case z ∈ Ua can be
treated similarly. As shown in Fig. 7, the part of Ub in the upper half plane is divided
by the lens �S into two parts, one in the lens and one out of the lens. If z ∈ Ub ∩ C

+ is
outside the lens, we obtain

p(n)n+k(z) = Y (n+k,n)
1 (z) = T1(z)e

ng(z) = S1(z)e
ng(z), (6.6)

and by (4.40),

(S1, S2) = √
2(P1, P2)e

( π i
4 − z

2 )σ3

(
1 1

−1 1

)−1

(n2/3 fb(z))
1
4σ3 P(b)(z)

= 1√
2
(P1, P2)

(
e
π i
4 − z

2 n
1
6 fb(z)

1
4 −e

π i
4 − z

2 n− 1
6 fb(z)−

1
4

e− π i
4 + z

2 n
1
6 fb(z)

1
4 e− π i

4 + z
2 n− 1

6 fb(z)−
1
4

)
P(b)(z). (6.7)
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By (4.33), (4.51) and (4.103)–(4.104), we further obtain

p(n)n+k(z) = √
π
[(

P1(z)− i P2(z)e
z) n

1
6 fb(z)

1
4 Ai(n

2
3 fb(z))

− (
P1(z) + i P2(z)e

z) n− 1
6 fb(z)

− 1
4 Ai′(n

2
3 fb(z))

]
e

n
2 (g(z)−g̃(z)+V (z)+�)

= √
π
[(

F(I1(z))− iF(I2(z))e
J(I2(z))

)
n

1
6 fb(z)

1
4 Ai(n

2
3 fb(z))

−
(
F(I1(z)) + iF(I2(z))e

J(I2(z))
)

n− 1
6 fb(z)

− 1
4 Ai′(n

2
3 fb(z))

]
e

n
2 (g(z)−g̃(z)+V (z)+�)

= √
π
[
(Gk(I1(z))− iGk(I2(z))) n

1
6 fb(z)

1
4 Ai(n

2
3 fb(z))

− (Gk(I1(z)) + iGk(I2(z))) n− 1
6 fb(z)

− 1
4 Ai′(n

2
3 fb(z))

]
e

n
2 (g(z)−g̃(z)+V (z)+�),

(6.8)

where Gk is defined, analogous to the formula (4.63) for Gk , as

Gk(s) :=
{

F(s) if s ∈ C\D̄ and J(s) /∈ �P ,

eJ(s)F(s) if s ∈ D\[− 1
2 ,

1
2 ] and J(s) /∈ �P .

(6.9)

From (4.76) and (4.102), we have that

Gk(s) = Gk(s)(1 + O(n−1)), as n → ∞. (6.10)

Hence we obtain (1.47) for z in the edge region Ub, upper half plane, and outside of the
lens.

Let us now focus on the asymptotics of p(n)n+k(z) for z = b + f ′
b(b)

−1n−2/3t which is
in the upper half plane and outside of the lens, where t is bounded. Then

Ai(n2/3 fb(z)) = Ai(t) + O(n−2/3), as n → ∞, (6.11)

Direct computation yields, as n → ∞, by (1.23)–(1.24) and (1.26)–(1.27),

I1(z) = sb +
(sb + 1

2 )(sb − 1
2 )√

sb
f ′
b(b)

−1/2n−1/3√t(1 + O(n−2/3)t), (6.12)

I2(z) = sb − (sb + 1
2 )(sb − 1

2 )√
sb

f ′
b(b)

−1/2n−1/3√t(1 + O(n−2/3)t), (6.13)

and that as s → sb, by (6.10) and (1.30),

Gk(s)=(1+O(n−1))

(
2− 1

2 (
1

4
+

1

c1
)−

1
4 ck−1

1 (

√
1

4
+

1

c1
− 1

2
)k−1+O(s − sb)

)
1√

s − sb
,

(6.14)

where all square roots take the principal value. Hence when t is bounded

Gk(I1(z))−iGk(I2(z))=
⎛

⎝1

2

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
− 1

2

)k−1

c
k− 1

2
1 +O(n− 1

3 )

⎞

⎠ n
1
6 t−

1
4 ,

(6.15)

Gk(I1(z)) + iGk(I2(z)) = O(n− 1
6 )t

1
4 . (6.16)
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Substituting (6.15) and (6.16) into (6.8) and noting that fb(b) = 0 and f ′
b(b) > 0, we

obtain (1.49) for z outside of the lens.
If z ∈ Ub ∩ C

+ and inside the lens, then like (6.4),

p(n)n+k(z) = (S1(z) + S2(z)e
−nφ(z)+z)eng(z), (6.17)

and like (6.7),

(S1 + S2e−nφ(z)+z, S2)

= √
2(P1, P2)e

( π i
4 − z

2 )σ3

(
1 1

−1 1

)−1

(n2/3 fb(z))
1
4σ3 P(b)(z)

(
1 0

e−nφ(z)+z 1

)
. (6.18)

Hence by (4.33), (4.51) and (4.103)–(4.104), and using the identity Ai(x) +ωAi(ωx) +
ω2 Ai(ω2x) = 0, we find that the result in (6.8) still holds, and so do the subsequent
asymptotic formulas (6.9)–(6.16). Thus we can still prove (1.47) and (1.49).

6.2. The asymptotics of q(n)n+k(e
z). The derivation of the asymptotics for q(n)n+k(e

z) is

similar, and we need to invert the transformations X �→ T̂ �→ Ŝ �→ P̂ using (5.4), (5.6),
(5.10), and (5.17). For brevity, we only consider the outside region and the bulk region.

Outside region. If z is in the upper half plane and not in the lens or Ua , Ub, we have

q(n)n+k(e
z) = X (n+k,n)

1 (z) = T̂1(z)e
ng̃(z) = Ŝ1(z)e

ng̃(z) = P̂1(z)e
ng̃(z). (6.19)

By (5.33) and (5.42), we find similar to (6.1)

q(n)n+k(e
z) = F̂(I2(z))e

ng̃(z) = R̂(I2(z))F̂(I2(z))e
ng̃(z). (6.20)

By the formula (5.32) for F̂ and the asymptotic formula (5.49) for R̂, this yields

q(n)n+k(e
z) = (1 + O(n−1))

√
( 1

2 − sa)(
1
2 − sb)√

(I2(z)− sa)(I2(z)− sb)

×ek( 1
2 c1+c0)(I2(z)− 1

2
)−keng̃(z), as n → ∞. (6.21)

In (6.21) and later in (6.23),
√
(z − sa)(z − sb) is chosen to be close to z as z → ∞ and

has branch cut along γ2. Substituting sa and sb by (1.24), we prove (1.38) for z in the
outside region.

Bulk region. Similar to (6.4),

q(n)n+k(e
z) = T̂1(z)e

ng̃(z) = Ŝ1(z)e
ng̃(z) + Ŝ2(z)e

n(V (z)−g(z)+�)

= P̂1(z)e
ng̃(z) + P̂2(z)e

n(V (z)−g(z)+�). (6.22)

By (5.33), (5.42), (5.32) and (5.49), we find that as n → ∞,

q(n)n+k(e
z) = F̂(I2(z))e

ng̃(z) + F̂(I1(z))e
n(V (z)−g(z)+�)

= R̂(I2(z))F̂(I2(z))e
ng̃(z) + R̂(I1(z))F̂(I1(z))e

n(V (z)−g(z)+�)
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= (1 + O(n−1))

√
( 1

2 − sa)(
1
2 − sb)√

(I2(z)− sa)(I2(z)− sb)
ek( 1

2 c1+c0)(I2(z)− 1

2
)−keng̃(z)

+ (1+O(n−1))

√
( 1

2 −sa)(
1
2 −sb)√

(I1(z)−sa)(I1(z)−sb)
ek( 1

2 c1+c0)(I1(z)− 1

2
)−ken(V (z)−g(z)+�).

(6.23)

Substituting sa and sb by (1.24), we prove (1.40) for z in the upper bulk region.
As z → x ∈ R from above, noting that V (x) − g−(x) + � = g̃+(x) by (3.8),

I2(z) → I−(x), and I1(z) → I+(x), and using the identities I−(x) = Ī+(x) and g̃±(x) =∫
log|ex − ey |dμV (y)± π i

∫ b
x dμV , we have like (6.5),

q(n)n+k(e
x ) = r̂k(x)e

n
∫

log|ex −ey |dμV (y)
[

cos

(
nπ
∫ b

x
dμV (t) + θ̂k(x)

)
+ O(n−1)

]
,

(6.24)

where r̂k(x) and θ̂k(x), as defined in (1.32), are the modulus and argument of

2Ĝk(I−(x)) = 2

√
( 1

2 −sa)(
1
2 −sb)

(I−(x)−sa)(I−(x)−sb)
ek( 1

2 c1+c0)(I−(x)− 1
2 )

−k .

6.3. Proof of Theorem 2. The asymptotic results obtained in the last two subsections
nearly prove items (a), (b) and part of (c) and (d) of Theorem 2. However, in the statement
of the theorem, the regions where asymptotic formulas are given, are Aδ , Bδ , Cδ , and
Dδ , which are similar but not exactly equal to the outside, upper bulk, left edge and right
edge regions that depend on �P . We observe that if δ is a fixed small enough number,
we can take the radius of Ua and Ub large enough so that they cover Cδ and Dδ . On the
other hand, we can also take the radius of Ua and Ub small enough and the shape of the
lens thick enough to let the upper bulk region cover Bδ , and we can take the radius of Ua
and Ub small enough and the shape of the lens thin enough to let the outside region cover
Aδ . In this way, by using different contours �P , the asymptotic results in the outside,
upper bulk, left edge and right edge regions are translated into results in regions Aδ , Bδ ,
Cδ , and Dδ respectively.

Although we have not proved all the asymptotic formulas in items (c) and (d) of
Theorem 2, the remainders can be proved using the method presented in the previous
two subsections, and we omit the details.

To compute h(n)n+k and prove item (e) of Theorem 2, we note that it appears in the
leading coefficient of C̃ pn+k(z), see (4.3). Using (4.5), (4.13), (4.19) and (4.40), we
have, for z in S, outside of the lens and away from a and b,

C̃ pn+k(z) = Y (n+k,n)
2 (z) = en�e−ng̃(z)T2(z) = en�e−ng̃(z)S2(z) = en�e−ng̃(z)P2(z).

(6.25)

Since g̃(z) = z + O(e−z) as z → +∞ in S, (6.25) yields

P2(z) = −h(n)n+k

2π i
e−n�e−(k+1)z + O(e−(k+2)z), as z → +∞. (6.26)
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By (5.51), (4.65), and (4.62), we have as n → ∞,

lim
z→+∞ P2(z)e

(k+1)z = lim
z→+∞ P(∞)

2 (z)e(k+1)z(1 + O(n−1))

= lim
z→+∞ F(I2(z))e

(k+1)z(1 + O(n−1))

= lim
z→+∞ ck

1

(
I2(z)− 1

2

)k+1 e−c1I2(z)−c0

√
(I2(z)− sa)(I2(z)− sb)

× e(k+1)z(1 + O(n−1)). (6.27)

From the formula (1.23) of J(s) which is the inverse function of I2(z), we have

I2(z) = 1

2
+ e

c1
2 +c0 e−z + O(e−2z), as z → +∞, (6.28)

and we obtain that

lim
z→+∞ ck

1

(
I2(z)− 1

2

)k+1 e−c1I2(z)−c0

√
(I2(z)− sa)(I2(z)− sb)

e(k+1)z

= ck
1ek(

c1
2 +c0)

i√
( 1

2 − sa)(sb − 1
2 )

= ic
k+ 1

2
1 ek(

c1
2 +c0), (6.29)

where sa and sb are expressed in c1 by (1.24). Formulas (6.29), (6.27) and (6.26) yield
Theorem 2(e).
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A. Proofs of Several Technical Results

A.1. Proof of Proposition 1. Our proof is similar to that of [15, Proposition 2.1]. By the
formula of the probability density function (1.9), the average of

∏n
j=1(e

z − eλ j ) can be
expressed as

E
′
n(

n∏

j=1

(ez − eλ j ))

= 1

Z ′
n

∫

Rn

n∏

j=1

(ez − eλ j )
∏

i< j

(λ j − λi )
∏

i< j

(eλ j − eλi )

n∏

j=1

e−nV (λ j ) dλ j . (A.1)

From this formula, it is clear that E
′
n(
∏n

j=1(e
z − eλ j )) is a linear combination of ekz

with k = 0, 1, . . . , n, and that the coefficient of enz is equal to 1 since the probability
measure is normalized. To show that it is equal to q(n)n (ez), we only need to verify that
it satisfies the orthogonality conditions (1.12), which characterize q(n)n (ez) uniquely.
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Expanding the Vandermonde determinant over the symmetric group Sn gives

∏

i< j

(λ j − λi ) = det(λ j−1
i )i, j=1,...,n =

∑

σ∈Sn

(−1)σ
n∏

j=1

λ
σ( j)−1
j . (A.2)

Substituting (A.2) into (A.1), we obtain

E
′
n(

n∏

j=1

(ez −eλ j )) = 1

Z ′
n

∫

Rn

∑

σ∈Sn

(−1)σ
n∏

j=1

(ez −eλ j )
∏

i< j

(eλ j −eλi )

n∏

j=1

λ
σ( j)−1
j e−nV (λ j ) dλ j

= n!
Z ′

n

∫

Rn

n∏

j=1

(ez − eλ j )
∏

i< j

(eλ j − eλi )

n∏

j=1

λ
j−1
j e−nV (λ j ) dλ j . (A.3)

Substituting the identity

n∏

j=1

(ez − eλ j )
∏

i< j

(eλ j − eλi ) = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 eλ1 . . . enλ1

1 eλ2 . . . enλ2

...
...

...

1 eλn . . . enλn

1 ez . . . enz

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(A.4)

into (A.3), we obtain after integrating with respect to λi that

E
′
n(

n∏

j=1

(ez − eλ j )) = n!
Z ′

n
det

⎛

⎜⎜⎜⎜⎜⎜⎝

m00 m01 . . . m0n

m10 m11 . . . m1n

...
...

...

mn−1,0 mn−1,1 . . . mn−1,n

1 ez . . . enz

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where m jk =
∫

R

λ j ekλe−nV (λ)dλ. (A.5)

Then it is straightforward to verify that for k = 0, 1, . . . , n − 1,

∫

R

E
′
n(

n∏

j=1

(ez − eλ j ))zke−nV (z)dz = n!
Z ′

n
det

⎛

⎜⎜⎜⎜⎜⎜⎝

m00 m01 . . . m0n

m10 m11 . . . m1n

...
...

...

mn−1,0 mn−1,1 . . . mn−1,n

mk0 mk1 . . . mkn

⎞

⎟⎟⎟⎟⎟⎟⎠
= 0.

(A.6)

Thus we prove that E
′
n(
∏n

j=1(e
z − eλ j )) satisfies the orthogonality condition (1.12) that

determines q(n)n (ez), and then it follows that E
′
n(
∏n

j=1(e
z − eλ j )) = q(n)n (ez).
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A.2. Proof of Proposition 2. In this proof, we fix c1 ∈ R
+ and c0 ∈ R, and J stands for

Jc1,c0 such that J(s) = c1s + c0 − log
s− 1

2

s+ 1
2

. Recall that sa = −
√

1
4 + 1

c1
, sb =

√
1
4 + 1

c1

as in (1.24), and a = J(sa), b = J(sb) as in (3.4).
To prove part (a), we show that the equation J(s) = x :

(1) has a unique solution s in the upper half plane C
+ = {s = u + iv with v > 0} if

x ∈ (a, b),
(2) has no solution in C

+ if x ∈ R\(a, b).

Moreover, as x runs from a to b, the solutions s = s(x) form an arc in C
+ from sa to sb.

Then this arc is the desired γ1 in Proposition 2, and the complex conjugate of γ1 is the
arc γ2.

For s = u + iv with v > 0, J(s) ∈ R if and only if the identity for its imaginary part

c1v − arccot
u2 + v2 − 1

4

v
= 0 (A.7)

is satisfied, where the range of arccot is (0, π). It is a direct consequence of (A.7) that
v < π

c1
. Under the condition 0 < v < π

c1
, (A.7) is equivalent to

u2 = 1

4
+ v cot(c1v)− v2. (A.8)

By direct calculation we find that the right-hand side of (A.8) is a decreasing function
in v for 0 < v < π

c1
. Moreover, as v → 0, it tends to 1

4 + 1
c1

, and as v → π
c1

, it tends to
−∞.

Thus for J(s) to be real where s = u + iv with v > 0, u has to be in (sa, sb), and for
any u in this interval there is a unique v > 0 to make (A.8) hold. The locus of all such
s = u + iv is an arc in C

+ connecting sa and sb. As a consequence of (A.8), v increases
as u runs from sa to 0, and then decreases as u runs from 0 to sb. At any s in this arc,

dJ(s)
ds

= c1 − 1

s2 − 1
4

�= 0, (A.9)

and it follows that J is a homeomorphism from this arc to the interval [a, b], which
proves part (a) of Proposition 2.

Next we prove part (b). It is easy to check that J maps the ray (sb,∞) to (b,∞) and
the ray (−∞, sa) to (−∞, a) homeomorphically. Then it suffices to show that J is a
univalent map from C

+\D̄ onto C
+, and the univalent property of J on C

−\D̄ follows
by complex conjugation. To this end, we use the following elementary lemma:

Lemma 3 (Exercise 10 in Section 14.5 of [19]). Suppose that G and � are simply
connected Jordan regions and f is a continuous function on the closure of G such that
f is analytic on G and f (G) ⊆ �. If f maps ∂G homeomorphically onto ∂�, then f
is univalent on G and f (G) = �.

But this lemma is not directly applicable, since both C
+\D̄ and C

+ are unbounded.
Let g(s) := −i s−i

s+i be the conformal map from the unit disk to the upper half plane, we
find that g−1 ◦J ◦ g is a map from the simply connected region g−1(C+\D̄) into the unit
disk, and the map is homeomorphic on the boundary. A direct application of Lemma
3 shows that g−1 ◦ J ◦ g is univalent in g−1(C+\D̄) and onto the unit disk, hence J is
univalent in C

+\D̄ and onto the upper half plane, and part (b) is proved.
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To prove part (c), we find by direct calculation that J maps homeomorphically

(1) the interval (sa,− 1
2 ) to the ray (−∞, a),

(2) the interval ( 1
2 , sb) to the ray (b,∞),

(3) the upper side of the interval (− 1
2 ,

1
2 ) to the horizontal line R − π i , and

(4) the lower side of the interval (− 1
2 ,

1
2 ) to the horizontal line R + π i .

Then it suffices to show that J maps D ∩ C
+ onto S ∩ C

− univalently. We use Lemma
3 again. Similar to the conformal map g, we use the conformal map h(s) := log g(s) =
log −is−1

s−i that transforms the unit disk to S∩C
+. We omit the details since the arguments

are very similar to those in the proof of part (b).

A.3. Proof of Lemma 2. First, we show that for any x1 ∈ R
+, (3.3) has a unique solution

as an equation in x0. Note that

d

dx0

1

2π i

∮

γ

V ′ (Jx1,x0(s)
) ds

s − 1
2

= 1

2π i

∮

γ

V ′′ (Jx1,x0(s)
) ds

s − 1
2

= −1

π
�
∫

γ1

V ′′ (Jx1,x0(s)
) ds

s − 1
2

= 1

π

∫ π

0
V ′′ (Jx1,x0(s(θ))

)�d log(s(θ)− 1
2 )

dθ
dθ,

(A.10)

where we parametrize s ∈ γ1 by its argument θ that runs from 0 toπ . This parametrization
is well defined since as s moves along γ1, its imaginary part increases as its real part
increases from sa to 0, and then decreases as its real part continues to increase from 0
to sb, as shown in the proof of Proposition 2.

Below we show that the right-hand side of (A.10) is bounded below by a positive
constant for all x0 ∈ R. Since V ′′(Jx1,x0(s(θ))) is bounded below by a positive number by
the strong convexity of V , we need only to prove for all θ ∈ (0, π), � log(s(θ)− 1

2 ) =
arg(s(θ) − 1

2 ) is an increasing function. We show the increasing for θ ∈ (π2 , π) and
θ ∈ (0, π2 ) separately. For geometric reasons, when θ ∈ (π2 , π), arg(s(θ) − 1

2 ) is
increasing with θ since both �s(θ) < 0 and �s(θ) > 0 are decreasing. For θ ∈ (0, π2 ),
we use the identity

� log(s(θ)− 1

2
) = �

(
x1s(θ) + x0 + log(s(θ) +

1

2
)

)
− �Jx1,x0(s(θ)). (A.11)

Here �Jx1,x0(s(θ)), by the construction of γ1, vanishes, �s(θ) increases as θ runs from
0 to π

2 and for geometric reasons � log(s + 1
2 ) also increases as θ runs from 0 to π

2 . Thus
we have that for θ ∈ (0, π2 ), � log(s(θ)− 1

2 ) = x1�s(θ)+ � log(s(θ)+ 1
2 ) is increasing.

Now we have that as a function in x0, 1
2π i

∮
γ

V ′(Jx1,x0(s))/(s − 1
2 )ds is a bijection

from R to R, since its derivative is bounded below by a positive constant. Hence by
continuity, there must be a unique x0 to make this function equal to 1. Given x1 ∈ R

+,
we denote the unique x0 that solves (3.3) by c0(x1). Similarly we can show that c0(x1)

is a continuous function in x1.
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Although we do not have a simple formula for c0(x1), we show below that

1

2π i

∮

γ

V ′(Jx1,c0(x1)(s))ds < x−1
1 , for x1 sufficiently small, (A.12)

1

2π i

∮

γ

V ′(Jx1,c0(x1)(s))ds > x−1
1 , for x1 sufficiently large. (A.13)

Hence, by continuity, it follows that there exists c1 ∈ R
+ that, together with c0 = c0(c1),

solves (3.2)–(3.3).
As x1 → 0+, from (A.8), it follows that the shape of γ is close to the circle with

radius x−1/2
1 and center 0. Hence if we parametrize s ∈ γ as before by its argument θ ,

we have for θ ∈ [0, 2π),

s(θ) = eiθ x−1/2
1 + o(1), lim

x1→0+

s′(θ)
s(θ)− 1

2

= i, lim
x1→0+

V ′(Jx1,x0(s(θ))) = V ′(x0).

(A.14)

By the dominated convergence theorem, we have

lim
x1→0+

1

2π i

∮

γ

V ′(Jx1,x0(s))
ds

s − 1
2

= 1

2π i
lim

x1→0+

∫ 2π

0
V ′(Jx1,x0(s(θ)))

s′(θ)
s(θ)− 1

2

dθ

= 1

2π i

∫ 2π

0
V ′(x0)idθ = V ′(x0). (A.15)

We find limx1→0+ c0(x1) = x̃0, where x̃0 is the unique value such that V ′(x̃0) = 1. From
the results obtained above, we have that

1

2π i

∮

γ

V ′(Jx1,c0(x1)(s))ds = o(x−1
1 ) as x1 → 0+, (A.16)

since the shape of contour γ approaches to the circle with radius x−1/2
1 , and the integrand

tends uniformly to V ′(x̃0) = 1.
On the other hand, for large values of x1, we use the expression

1

2π i

∮

γ

V ′(Jx1,x0(s))ds = −1

π
�
∫

γ1

V ′(Jx1,x0(s))ds

= −1

π

∫ sb

sa

V ′(Jx1,x0(s(u)))�v′(u)du, (A.17)

where s ∈ γ1 is expressed as a function in its real part u = �s, and v(u) > 0 is defined
by the condition that s(u) = u + iv(u) ∈ γ1, and sa, sb are the two endpoints of γ1,
as denoted in the beginning of Appendix A.2, with the parameters c1, c0 substituted by
x1, x0. Let us decompose the integral at the right of (A.17) as I1 + I2 + I3, where

I1 = −1

π

∫ − 1
2

sa

V ′(Jx1,x0(s(u)))�v′(u)du, (A.18)

I2 = −1

π

∫ 1
2

− 1
2

V ′(Jx1,x0(s(u)))�v′(u)du, (A.19)

I3 = −1

π

∫ sb

1
2

V ′(Jx1,x0(s(u)))�v′(u)du. (A.20)
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From (A.8), it is not difficult to find that as x1 → ∞,

v(−1

2
) = v(

1

2
) = π

2
x−1

1 + o(x−1
1 ). (A.21)

We know that V ′ is an increasing function in u and that v(u) is an even function.
From Appendix A.2 we have that v(u) is increasing for u ∈ (sa, 0) and decreasing
for u ∈ (0, sb). Hence the integral I2 is positive. Using the monotonicity of V ′ and
integration by parts for I1 and I3, we similarly obtain

I1 + I3 >
1

π
V ′(Jx1,x0(s(

1

2
)))(v(

1

2
)−v(sb))− 1

π
V ′(Jx1,x0(s(−

1

2
)))(v(−1

2
)−v(sa))

= 1

π

(
V ′(Jx1,x0(s(

1

2
)))− V ′(Jx1,x0(s(−

1

2
)))

)
v(

1

2
), (A.22)

where in the last line we used the identities v(sa) = v(sb) = 0 and v(− 1
2 ) = v( 1

2 ).
Hence (A.17) and the estimates of I2 and I1 + I3 above imply that

1

2π i

∮

γ

V ′(Jx1,x0(s))ds >
1

π

(
V ′(Jx1,x0(s(

1

2
))− V ′(Jx1,x0(s(−

1

2
))

)
v(

1

2
). (A.23)

As x1 → ∞,

Jx1,x0(s(−
1

2
)) = x0 − x1

2
+ o(x1), Jx1,x0(s(

1

2
)) = x0 +

x1

2
+ o(x1), (A.24)

where the two o(x1) terms are independent to x0. By (A.24) and the assumption V ′′(x) >
c > 0 for all x , we have that if x1 is large enough, then uniformly for all x0 ∈ R

V ′(Jx1,x0(s(
1

2
)))− V ′(Jx1,x0(s(−

1

2
)) > cx1. (A.25)

Substituting (A.25) and (A.21) into (A.23), we have that as x1 → ∞ and x0 = c0(x1),

1

2π i

∮

γ

V ′(Jx1,c0(x1)(s))ds � x−1
1 . (A.26)

We note that 1
2π i

∮
γ

V ′(Jx1,c0(x1)(s))ds is continuous in x1, since 1
2π i

∮
γ

V ′(Jx1,x0(s))ds
is continuous in x1, x0 and c0(x) is continuous. Then we find that the estimates (A.16)
and (A.26) imply that there is a pair (c1, c0 = c0(c1)) such that both (3.3) and (3.2) are
satisfied.

B. Explicit Construction of the Equilibrium Measure for Quadratic and Quartic V

In this appendix we use the method developed in Sect. 3 to find the endpoints of the
support of the equilibrium measure explicitly for quadratic and quartic external fields
V . In the quadratic case, we consider a monomial external field V (x) = x2

t , but the
same method can be applied to all quadratic V . We also construct the density function
of the equilibrium measure. In the quartic case, we confine our attention to V such that
V (x)− x

2 is an even function. Under this condition the equilibrium measure is symmetric
around the origin. In contrast to the quadratic V that is automatically convex, we also
consider quartic V that is one-cut but not convex.
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External field V (x) = x2

2t In this case, V ′(x) = x
t , and a simple calculation of residue

yields

1

2π i

∮

γ

V ′
(

c1s + c0 − log
s − 1

2

s + 1
2

)
ds = 1

t
,

1

2π i

∮

γ

V ′
(

c1s + c0 − log
s− 1

2

s+ 1
2

)

s − 1
2

ds = c0

t
+

c1

2t
.

(B.1)

Thus by Lemma 2, we have

c1 = t, c0 = t

2
. (B.2)

The support of the equilibrium measure, as expressed by (3.4), is

[a, b] = [Jt, t
2
(sa), Jt, t

2
(sa)]

=
[

1

2
(t−

√
t2+4t)−log

t +2+
√

t2+4t

2
,

1

2
(t +
√

t2+4t)−log
t +2−√

t2+4t

2

]
.

(B.3)

In particular, for t = 1, we have

[a, b] =
[

−√
5 + 1

2
− log

3 +
√

5

2
,

√
5 + 1

2
− log

3 − √
5

2

]
. (B.4)

To find the equilibrium density, we have as a particular case of (3.21) that

M(s) =
⎧
⎨

⎩

−1
t log

s− 1
2

s+ 1
2
, for s ∈ C\D̄,

s + 1
2 , for s ∈ D.

(B.5)

Then by (3.23), after a straightforward calculation, we obtain the following expression

ψV (x) = 1

π
�I+(x), (B.6)

where I+ is as before the boundary value of the inverse of J = Jt, t
2

which parametrizes
the curve γ1.

External field V (x) = x4/4 + ux2/2 + x/2

In this case, V ′(x) = x3 + ux + 1
2 , and the calculation of residues yields

1

2π i

∮

γ

V ′
(

c1s + c0 − log
s − 1

2

s + 1
2

)
ds = c2

1

4
+ 3c1 + 3c2

0 + u, (B.7)

1

2π i

∮

γ

V ′
(

c1s + c0 − log
s− 1

2

s+ 1
2

)

s − 1
2

ds

= c3
1

8
+ (

3c0

4
+

3

2
)c2

1 + (
3c2

0

2
+ 6c0 +

u

2
)c1 + c3

0 + uc0 +
1

2
. (B.8)
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As a consequence of the relation V (x) = V (−x) + x , the equilibrium measure μV
is symmetric around the origin. Indeed, changing variables s �→ −s and t �→ −t in
the energy functional (1.17), it is straightforward to verify that IV (μV ) = IV (μ̃V ),
where μ̃V is defined by the fact that μ̃V (A) = μV (−A) for any Borel set A. From
the uniqueness of the equilibrium measure, it follows that μV = μ̃V . In particular this
implies that the support of the equilibrium measure is of the form [−b, b]. By (1.21),
we have c0 = 0. Substituting this and (B.7) into (3.2), we obtain the equation

c3
1 + 12c2

1 + 4uc1 − 4 = 0. (B.9)

Remark 8. Although the equilibrium measure, which is the limiting mean eigenvalue
distribution of the random matrix ensemble as n → ∞, is symmetric around the origin,
this is not true for the finite n joint probability distribution of eigenvalues (1.6). The
latter would only be invariant under the change of variables λi → −λi if the term x/2
in V (x) were replaced by ( 1

2 − 1
2n )x .

For any value of u, the Eq. (B.9) has a unique positive solution by Descartes’ rule
of signs. We have an explicit formula for c1 ∈ R

+ in u by the formula for the roots of
a cubic equation, but we will not write down the long formula. Together with c0 = 0,
c1 > 0 gives us a solution to the pair of Eqs. (3.2) and (3.3). Under the condition that
the equilibrium measure is one-cut supported, this pair c0, c1 yields expressions for the
support and the density function of the equilibrium measure, but we omit the formulas.

We note that the external field V is convex if u ≥ 0. If u is negative, it is not but the
construction of the equilibrium measure given above can still be carried out formally.
When u is negative but sufficiently close to 0, we can check that the equilibrium measure
constructed in this way is still a probability measure. When u is a large negative number,
the constructed density function ψV (x) is negative on an interval centered at 0, and
therefore not a probability density. This means that the external field is not one-cut
regular, and our construction fails. Based on the analogy with matrix models without
external source, the symmetry of the equilibrium measure and numerical simulations,
we conjecture that V is one-cut regular for values of u such that ψV (0) > 0.

From (B.9), we derive that u = 1
c1

− 3c1 − 1
4 c2

1, where c1 is the positive solution to
(B.9). This makes u a strictly decreasing function of c1. Since c0 = 0, it is easy to see
that I+(0) is on the imaginary axis, and we denote it as I+(0) = i p (p > 0). From the
relation

Jc1,c0(I+(0)) = c1I+(0)− log
I+(0)− 1

2

I+(0) + 1
2

= 0, (B.10)

we derive that c1 = 2
p arctan 1

2p and c1 is a strictly decreasing function in p, which
means that u is a strictly increasing function in p.

Like (B.5), with our quartic V (using the fact that c0 = 0), we have by (3.21)

M(s) =

⎧
⎪⎨

⎪⎩

−(3c2
1s2+u) log

s− 1
2

s+ 1
2

+3c1s

(
log

s− 1
2

s+ 1
2

)2

−
(

log
s− 1

2

s+ 1
2

)3

−3c2
1s s ∈ C\D̄,

c3
1s3 + uc1s + 3c2

1s + 1
2 s ∈ D.

(B.11)

Similarly to the quadratic case, we can recover the equilibrium density using (3.23). In
particular at zero we have
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Fig. 9. The density function ψV of the equilibrium measure for the external field V (x) = x4

4 − 1.925x2

2 + x
2

ψV (0) = 1

π
�M−(I+(0)) = 1

π
�
(

c3
1I+(0)

3 + (uc1 + 3c2
1)I+(0) +

1

2

)

= 1

π

(
−c3

1 p3 + (1 − c3
1

4
)p

)

= p

π

(
1 − c3

1(p
2 +

1

4
)

)
= p

π

(
1 − (

8

p
+

2

p3 )(arctan
1

2p
)3
)
. (B.12)

Here we used (B.9) to pass from the first to the second line. Thus ψV (0) > 0 if and only
if ( 8

p + 2
p3 )(arctan 1

2p )
3 < 1, which is equivalent to p > pc for some value pc > 0.

Since u is an increasing function in p, this is equivalent to u > uc, where uc can be
approximated numerically as uc ≈ −1.9250. Although we have not rigorously proved
that for u > uc the external field is one-cut regular, numerical results are convincing.
When u = −1.925, the constructed equilibrium measure is shown in Fig. 9. It suggests
that around u = uc ≈ −1.925 the transition between one-cut and two-cut equilibrium
measures occurs.

C. Asymptotics of p(n)
n (x) When V (x) = x2

2

In this appendix, we give an alternative derivation of the asymptotic results in Theorem
2 when the external field is V (x) = x2

2 . The derivation is based on the contour integral
formula of multiple Hermite polynomials in [16, Theorems 2.1 and 2.3]. This method
can essentially reproduce all results in Theorem 2 for quadratic external field, but for
brevity we only give the derivation for p(n)n (x) where x ∈ R and is away from the edges
of the equilibrium measure. Although this contour integral method cannot be applied
when the external field is not quadratic, it shows that the transformation Jc1,c0 arises
naturally in the uniform external source model.

The result [16, Theorem 2.1] states that the monic polynomial Pn(x) of degree n that
satisfies

∫ ∞

−∞
Pn(x)e

na j x e−n x2
2 dx = 0, for j = 1, 2, . . . , n, (C.1)
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is expressed by an integral over the imaginary axis:

Pn(x) =
√

n√
2π i

∫ i∞

−i∞
e

n
2 (t−x)2

n∏

i=1

(t − ai )dt. (C.2)

When a j = j−1
n as in (1.5), we have, in our notations, Pn = p(n)n where V (x) = x2/2.

Setting t = s + 1
2 , we have

p(n)n (x) =
√

n√
2π i

∫ i∞

−i∞
enFn(s;x)ds, (C.3)

where

Fn(s; x) = 1

2
(s +

1

2
− x)2 +

n∑

i=1

log(s +
1

2
− i − 1

n
)

1

n
. (C.4)

For s away from the interval [− 1
2 ,

1
2 ], we have the following uniform (in s and x)

asymptotic expansion as n → ∞,

Fn(s; x) = F(s; x) +
1

n
log

√√√√ s + 1
2

s − 1
2

+ O( 1

n2 ), (C.5)

where

F(s; x) = 1

2
(s +

1

2
− x)2 + (s +

1

2
) log(s +

1

2
)− (s − 1

2
) log(s − 1

2
)− 1, (C.6)

and we take the principal branch of the logarithm and square root. Hence

d

ds
F(s; x) = s +

1

2
− log

s − 1
2

s + 1
2

− x = J1, 1
2
(s)− x . (C.7)

Below we consider the zeros s of the derivative d
ds F(s; x) and express them as functions

in x . We use the functions I1(x), I2(x) and their boundary values I±(x) as defined in

(1.26)–(1.29) with c1 = 1 and c0 = 1
2 . Note that sa = −

√
5

2 and sb =
√

5
2 as given in

(1.24); we denote

a = J1, 1
2
(sa) = −√

5+1

2
+ 2 log

√
5−1

2
, b = J1, 1

2
(sb) =

√
5+1

2
+ 2 log

√
5+1

2
,

(C.8)

as in (3.4), which agree with (B.4). We can say the following about the zeros of d
ds F(s; x):

(1) if x > b, then there are two zeros of d
ds F(s; x): I1(x) ∈ (sb,∞) and I2(x) ∈ ( 1

2 , sb),
(2) if x < a, then there are two zeros of d

ds F(s; x): I1(x) ∈ (−∞, sa) and I2(x) ∈
(sa,− 1

2 ),
(3) if x ∈ (a, b), then there are two zeros of d

ds F(s; x): I+(x) ∈ γ1 and I−(x) ∈ γ2.

By explicit computation, we find that for x ∈ (−∞, a)∪(b,+∞), then along the vertical
line {z = I1(x) + i t | t ∈ R}, �F(z) attains its maximum at z = I1(x). If we deform
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the contour iR of integration in (C.3) to the vertical line through I1(x), the standard
application of the saddle point method yields

p(n)n (x) =
√

n√
2π i

∫ I1(x)+n− 1
3 i

I1(x)−n− 1
3 i

enFn(s;x)ds(1 + o(n−1))

=
√

n√
2π i

∫ I1(x)+n− 1
3 i

I1(x)−n− 1
3 i

enF(s;x)
√√√√ s + 1

2

s − 1
2

ds(1 + O(n−1))

=
√

nenFn(I1(x);x)
√

2π i

∫ I1(x)+n− 1
3 i

I1(x)−n− 1
3 i

exp

(
n

2
(s − I1(x))

2 d2

ds2 F(s; x)

∣∣∣∣
s=I1(x)

)

×
√√√√ s + 1

2

s − 1
2

ds(1 + O(n− 1
2 ))

= enF(I1(x);x) I1(x) + 1
2√

I1(x)2 − 5
4

(1 + O(n− 1
2 )). (C.9)

If x ∈ (a, b), by explicit computation, we find that along the vertical line that passes
through I+(x) and I−(x), �F(z) attains its maximum at two points z = I+(x) and
z = I−(x). (Note that although F(z) is discontinuous on the interval [− 1

2 ,
1
2 ], �F(z) is

continuous everywhere.) Then we take the contour in (C.3) as this vertical line. When the
contour crosses the interval [− 1

2 ,
1
2 ], F(z) is no longer a good approximation of Fn(z),

but we can estimate the magnitude of Fn(z) by other methods, (say, some rough and
direct estimate of (C.4)) and still find the vertical line suitable for saddle point analysis.
The standard application of saddle point method yields, like (C.9),

√
n√

2π i

∫ I±(x)+n− 1
3 i

I±(x)−n− 1
3 i

enFn(s;x)ds = enF(I±(x);x) I±(x) + 1
2√

I±(x)2 − 5
4

(1 + O(n− 1
2 )), (C.10)

and

p(n)n (x) =
√

n√
2π i

⎛

⎝
∫ I+(x)+n− 1

3 i

I+(x)−n− 1
3 i

enFn(s;x)ds +
∫ I−(x)+n− 1

3 i

I−(x)−n− 1
3 i

enFn(s;x)ds

⎞

⎠ (1 + o(n−1))

= 2en�F(I+(x);x) |I+(x)+ 1
2 |

|I+(x)− 5
4 | 1

2

⎡

⎣cos

⎛

⎝n�F(I+(x); x)+arg

⎛

⎝ I+(x)+ 1
2√

I+(x)2− 5
4

⎞

⎠

⎞

⎠+O(n− 1
2 )

⎤

⎦ ,

(C.11)

where the square roots take the principal value. It is not obvious that the asymptotic
formulas (C.9) and (C.11) agree with the formulas (1.37) and (1.41). To convince the
reader, we show that (C.9) is equivalent to (1.37) (with k = 0 and x ∈ R) in the leading
term.

It is easy to check that

I1(x) + 1
2√

I1(x)2 − 5
4

= G0(I1(z)) (C.12)
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where G0 is the function defined in (1.30) with c1 = 1. We need also to show that
F(I1(x); x) = g(x) where g(x) is defined in (1.33). Since it is not hard to verify by
direct computation that g(x) = log(x)+ o(1) and F(I1(x); x) = log(x)+ o(1), we need
only to show that the function g′(x) = G(x), defined in (3.10), satisfies

G(x) = d

dx
F(I1(x); x), (C.13)

Note that by the relation x = J1, 1
2
(I1(x)), we have

F(I1(x); x) = F̃(I1(x))

:= 1

2

(
log

I1(x) + 1
2

I1(x)− 1
2

)2

+ (I1(x) +
1

2
) log(I1(x) +

1

2
)

− (I1(x)− 1

2
) log(I1(x)− 1

2
)− 1, (C.14)

where we consider F̃ as a function of u = I1(x), and

d

dx
F(I1(x); x) = d

du
F̃(u)

(
dJ(u)

du

)−1

= log
I1(x) + 1

2

I1(x)− 1
2

. (C.15)

On the other hand, by the identities (3.15) and (3.21), we have

G(x) = − 1

2π i

∮

γ

J(ξ)
ξ − I1(x)

dξ

= − 1

2π i

∮

γ

ξ + 1
2

ξ − I1(x)
dξ − 1

2π i

∮

γ

log(
ξ+ 1

2

ξ− 1
2
)

ξ − I1(x)
dξ. (C.16)

By the calculation of residue, it is obvious that the first contour integral in the second
line of (C.16) vanishes, and after some effort, we find the second contour integral has

value −2π i log
I1(x)+

1
2

I1(x)− 1
2

. Thus (C.13) is proved, and together with (C.12) the equivalence

between (C.9) and (1.37) is obtained.
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