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Abstract: A refinement of the stable pair invariants of Pandharipande and Thomas
for non-compact Calabi–Yau spaces is introduced based on a virtual Bialynicki-Birula
decomposition with respect to a C

∗ action on the stable pair moduli space, or alterna-
tively the equivariant index of Nekrasov and Okounkov. This effectively calculates the
refined index for M-theory reduced on these Calabi–Yau geometries. Based on physi-
cal expectations we propose a product formula for the refined invariants extending the
motivic product formula of Morrison, Mozgovoy, Nagao, and Szendroi for local P

1. We
explicitly compute refined invariants in low degree for local P

2 and local P
1 × P

1 and
check that they agree with the predictions of the direct integration of the generalized
holomorphic anomaly and with the product formula. The modularity of the expressions
obtained in the direct integration approach allows us to relate the generating function of
refined PT invariants on appropriate geometries to Nekrasov’s partition function and a
refinement of Chern–Simons theory on a lens space. We also relate our product formula
to wall crossing.
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1. Introduction

The BPS spectrum and its stability conditions determine to a large extent the effective
action of N = 2 supersymmetric theories. In rigid N = 2 theories in four dimensions
one can define a refined BPS state counting, which records the multiplicities N�

jL , jR
∈ N

of BPS particles with charges � in the lattice � of K-theory charges of even D-branes and
spin quantum numbers jL , jR of the twisted off shell Lorentz group SU(2)L ×SU(2)R =
Spin(4) representations [13,18,24]. Many rigid N = 2 theories can be constructed by
type II string compactification on a non-compact Calabi–Yau manifolds M , and in fact
no other examples are known at present.

The topological A-model of the type II string calculates a BPS index of these mul-
tiplicities for the infinite subset �′ ∈ �′ of charges with one unit of D6 brane charge
and arbitrary units of D2 and D0-brane charges [13]. The BPS index is a weighted sum
over the right spins. Mirror symmetry has been used to calculate the corresponding
generating functions F(gs, t) for the index multiplicities in the B-model from the holo-
morphic anomaly equations [7] and appropriate boundary conditions [23] in terms of
quasi-modular forms. It was argued in [18] that in the local limit the topological B-model
admits a deformation of the genus expansion by insertions of the puncture operators of
topological gravity, which captures the refinement and leads to a simple generalization
of the holomorphic anomaly equation [20,33,34]. Together with generalized gap condi-
tions [20,33,34] it allows the efficient calculation of the deformed generating functions
F(ε1, ε2, t) for the N�′

jL , jR
∈ N in terms of quasi-modular forms.

The purpose of this paper is twofold. First, we extend the geometric description of
the moduli space of BPS states with charge �′ given in [31] and extract the refined
multiplicities N�′

jL , jR
from this description by purely algebro-geometric methods. The

mathematical description of the moduli spaces and virtual numbers developed in [31]
to describe the unrefined invariants has been developed in [45,47] using the notion
of stable pairs. This notion is closely related to Donaldson–Thomas invariants and the
refined multiplicities are expected to capture features of the motivic Donaldson–Thomas
invariants. The second purpose is to interpret the physical description of the refined
partition function as a product formula for the refined stable pair invariants, then checking
this description for local P

2 and local P
1 × P

1. Our calculations can be thought of as
either geometric corroboration of the refined B-model calculation or as evidence for a
mathematical conjecture, depending on the viewpoint of the reader. The refined stable
pair invariants can be mathematically defined in terms of a virtual Bialynicki-Birula
decomposition, or equivalently, using an equivariant index of M-theory [42].

The rest of the paper is organized as follows. In Sect. 2 we describe the 5-dimensional
BPS supertrace in the �-deformation and the Schwinger loop calculation which will
allow us to relate the B-model calculation to the SU(2)L × SU(2)R BPS invariants. The
B-model calculation itself is done in Sect. 3, leading to the explicit calculation of the
BPS invariants. In Sect. 4 we review the definition of stable pair invariants and review
the relationship between the stable pair partition function and the Gopakumar-Vafa
invariants. In Sect. 5 we review the paper [31] and update the method, making it more
rigorous by using stable pair invariants instead of the relative Hilbert scheme of a family
of curves. In Sect. 6 we review the localization algorithm of [46] for the PT invariants on
toric Calabi–Yau threefolds, which we have implemented on a computer to perform the
necessary calculations. In Sect. 7 we have defined the refined PT invariants using both a
motivic approach as well as the equivariant index of Nekrasov and Okounkov. In Sect. 8
we express the refined PT partition function as an infinite product depending only on the
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SU(2) × SU(2) BPS invariants, compute the low degree terms of the partition function
by geometry, and confirm that they match the B-model calculation. In Sect. 9 we use
our methods to further update the method of [31], showing how the SU(2)×SU(2) BPS
invariants can be calculated by hand in low degree.

There is related work on refined invariants for surfaces, (rather than local surfaces),
[14]. While this paper was finalized there appeared three papers on the arXiv which
address similar BPS countings, but not with stable pairs invariants, [4,25,26].

2. Physical Expectations

We consider theories with eight supercharges by compactifying M-theory on a Calabi–
Yau threefold X to five dimensions or on X × S1

r to four dimensions. We are interested
in BPS states giving holomorphic corrections to couplings in the vector moduli space.

Since the latter decouples from the type II dilaton φI I , the radius r ∼ (gI I
s )

2
3 of the M-

theory circle with gI I = exp(φI I ) is irrelevant for these corrections. The 5d M-theory
and 4d type IIA descriptions of these BPS states are therefore expected to be equivalent.
At the level of entropy counts from BPS states for 4d and 5d black holes, this has been
made explicit in [12].

2.1. The refined BPS supertrace. M-theory reduced on a compact Calabi–Yau threefold
X to 5 dimensions gives rise to a 5d supergravity theory with eight conserved super-
charges. The superalgebra is acted on by a SU (2)L × SU (2)R ⊂ Spin(4), which is the
little group of the 5d Lorentz group. If gravity can be decoupled, i.e., a rigid limit of
supergravity exists then there emerges a further SU (2)R symmetry acting on the algebra
symmetry group.1 The corresponding states in 5d are specified by their BPS mass M or
equivalently by an integer charge vector � and their spin content given by a represen-
tation ( jL , jR) of the little group and their representation under SU (2)R. Reduction on
the circle leads to a four dimensional theory with N = 2 supersymmetry arising from
the IIA reduction on X . The superalgebra and the symmetry acting on it does not change.
Only now the 4d mass gets shifted by a Kaluza-Klein momentum on the circle. After
this compactification the charge lattice of the BPS states is naturally identified with the
K -theory charge of the type IIA D2k branes

� = (q0, qA, pA, p0) ∈ ⊕3
i=0 H2i (M) . (2.1)

For particles at rest in 4d, the eigenvalues of the Hamiltonian H are the BPS masses
M = |� · �|. The vector � is instanton corrected in the type IIA theory, but it can
be mapped by mirror symmetry to the period vector of the holomorphic 3-form of the
mirror of X and calculated exactly. The relation between the left spin and the D0 brane
charge q0 is [12]

q0 = 2
jL

(p0)2 . (2.2)

Formally one can define a 5d BPS supertrace

ZBPS(εL , εR, t) = TrBPS(−1)2(JL +JR)e−2εL JL e−2εR JR e−2εR JReβH (2.3)

1 In the supergravity theory there can be a U (1)R symmetry arising in the infrared, which is not directly
associated to a geometrical symmetry of space. We would like to thank Greg Moore for discussions about this
point.
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as a refinement of the BPS index ZBPS(εL , 0, t), which was considered in [13] and
shown to reproduce the holomorphic limit of the topological string partition function
Z = exp(F top. str.) on the Calabi–Yau space X . Here and in the following we denote
by J∗ the Cartan element J 3∗ of the SU (2)∗ and by j∗ an SU (2)∗ representation or
the eigenvalue of the Casimir. In (2.3) t stands for all relevant geometric parameters,
see below. The fact that ZBPS(εL , 0, t) is an index implies in particular that only the
left short multiplets contribute, while the contributions of long left multiplets cancel.
The index is then expected to be invariant under complex structure deformations of X .
Geometrical examples where the right spin assignments of states change under complex
deformations of X while the index does not change are provided by ruled surfaces over
higher genus curves [31].

It was argued in [41] that under certain assumptions (2.3) is also an index. The main
focus of the paper is the refined multiplicities N�

jL , jR
of BPS states counted by this index

(2.3).
In this paper we restrict ourselves to charge vectors � = (n, β, 0, 1), where in

particular β ∈ H2(X, Z). We denote by t the complexified Kähler parameters measuring
the mass of D2 wrapped on holomorphic curves Cβ with complexified volume t . The
argument of [41] relies on further assumptions that we will discuss in some detail below,
see also [1,3,24].

First of all fixing the combination εR( j ′R + jR) = εR jR in the trace allows us to twist
the assignment of the right spin content of the theory with JR , the twisted generator of
the Lorentz group. This makes in particular the eight susy generators (in the 4d language)
transform as a scalar Q, a selfdual two form Q+

μν and a vector Qμ. As usual Q could
define a BRST cohomology operator on any four manifold, which is, however, trivial in
R

4. Instead [41] based on earlier work chooses Q̃ = Q + Eα�α ν
μ xμQν , and considers

equivariant cohomology. Here �α
μν can be the U (1)εL ×U (1)εR subgroup of the SO(4)

space time rotation group and still define an interesting equivariant cohomology. Q̃
becomes an equivariant differential on the moduli space of framed instantons, which
are calculated by the Atiyah–Bott localization formula and provides a formula for the
instanton partition function, known as the Nekrasov partition function. The argument
in [41] starts with a supersymmetric gauge theory in 5d, which we do not require here.
We just assume that the supergravity scale can be decoupled, which in the geometric
engineering approach means a decompactification limit of X .

If the theory has additional symmetries, e.g. flavor symmetries, one can consider a
more general choice of the twisting εR( j ′R + jR̃), where R̃ is the R symmetry action
accompanied by an U (1) subgroup of the additional symmetry. Typically these symme-
tries act on mass parameters and, depending on the charge qi of the mass parameter mi
under the U (1), one gets a shift in the mass parameter mi → mi + qiεR [43].

To define (2.3) as a path integral one has to realize the two twists by J∗ geometrically as
twisted boundary conditions for the fermions around a circle in the background geometry
outside of R

4, or its generalizations discussed below. One circle can be the M theory
S1, but the second one needs an S1 isometry inside X . This is clearly not possible if
X is a compact Calabi–Yau manifold. For noncompact Calabi–Yau spaces there is such
an U (1) isometry and this is all that we require for the equivariant localization in the
moduli space of stable pairs.

Geometries realizing the two twists geometrically are referred to as �-backgrounds.
Another way of describing them [41,43] is to start with a 6-dimensional N = 1 gauge
theory and compactify it on a fibration M4 → T 2

r , where the 4d space time M4 has
at least an U (1)1 × U (1)2 isometry and r is the volume of T 2. The εL/R are consid-
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ered as complex variables and the bundle is defined by requiring the flat connections
corresponding to the isometries to have holonomies (exp( r

2 ReεR), exp( r
2 ReεL)) and

(exp( r
2 ImεR), exp( r

2 ImεL)) around the two cycles of the T 2
r .

Typical examples with sufficient isometries for the four dimensional spacetime M4

include Taub–Nut geometries TNp0 in the M-theory compactification on TNp0 ×S1
r × X

studied in [12], which include R
4 for Taub–Nut/D6-brane charge p0 = 1. The rotation

angles ε1,2 of the U (1)i can then be identified with rotation angles in the Cartan subal-
gebra of SU (2)L/R via εL/R = 1

2 (ε1 ∓ ε2), and qL/R = exp(εL/R) counts the σ 3
L/R spin

eigenvalues.
If one has only the M-theory S1 as in particular for compact Calabi–Yau spaces,

one can view the fibration of R
4
ε over this S1 as a Melvin background for I I A [41,44],

metric2

ds2 = (dxμ + �μdθ)2 + dθ2 , (2.4)

i.e., it is characterized by a vev of a selfdual RR 1-form fields �, whose selfdual field
strength has, near the origin, the form

FL = d� = ε1dx1 ∧ dx2 + ε2dx3 ∧ dx4 . (2.5)

The reduction of 5d fields which are twisted around the S1; i.e., all the fields contributing
to the index are charged under FL and give a one loop contribution to the F-term F2g

L R2
L ,

which was calculated by the Schwinger loop of [13].
As explained in [40,41,43], the metric for T 2 compactification of the six dimensional

theory is given by
ds2 = (dxμ + �μdz + �̄dz̄)2 + dzdz̄ , (2.6)

where coordinates (z, z̄) are T 2 coordinates. In the r → 0 limit, one ends up with a
selfdual FL and an anti-selfdual FR field strength in 4d, spelled out in [40], to which
the twisted fields in the index couple accordingly. The generalization of the Schwinger
loop calculation [13] to this coupling is straightforward and will be discussed next.

2.2. The Schwinger loop calculation. The Schwinger loop calculation for these F-term
couplings expresses

Fhol(ε1, ε2, t) =
∑

n,g∈Z

(ε1 + ε2)
2n(ε1ε2)

g−1 F (n,g)(t) (2.7)

in terms of the above BPS trace

Fhol(ε1, ε2, t) = −
∫ ∞

ε

ds

s

TrBPS(−1)2JL +2J ′
R e−sm2

qs JL
L qs JR

R

4
(
sinh2

( sεL
2

) − sinh2
( sεR

2

)) . (2.8)

Here ε1, ε2 is related to the string coupling gs by

ε1 = √
bgs, ε1 = − 1√

b
gs (2.9)

and we denote by s the deformation parameter s = (ε1 + ε2)
2.

2 This is easily generalizable to Taub–Nut spaces.
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To perform the integral (2.8) one considers M2 branes wrapping a curve Cβ and
extending in spacetime with n units of momentum around the M-theory S1-cycle, which
leads to the mass m2 = β · t + 2πn. Since the vector multiplet moduli space decouples
from the I I A-dilaton, one can interpolate between weak and strong coupling and view
the M2 brane as a bound state of a D2 wrapping Cβ with n D0 branes. Geometrically this
corresponds to a stable pair consisting of a sheaf F on M of pure dimension 1 supported
on Cβ together with a section s ∈ H0(M,F) which generates F outside a finite number
of points; i.e., we have the topological data

ch2(F) = β, χ(F) = n . (2.10)

By summing over n and using the Poisson resummation formula
∑

n exp(−2π isn) =∑
k δ(s − k), one obtains up to terms coming from the constant maps at genus 0 and 1

Fhol(ε1, ε2, t) =
∞∑

jL , jR=0
k=1

∑

β∈H2(M,Z)

(−1)2(JL +J ′
R)

Nβ
jL jR

k

jL∑

mL=− jL

qkmL
R

2 sinh
(

kε1
2

)

jR∑

m R=− jR

qkm R
R

2 sinh
(

kε2
2

) e−kβ·t.

(2.11)
This expression is correct up to cubic terms at3 + bt2 + ct in the Kähler parameters
multiplying g−2

s and up to linear classical terms at order g0
s and s

g2
s

, related to classical

intersections on X . There are also constants terms t0 at all orders in s, g2
s obtained by

setting N 0
00 = χ(X)

2 .
The relation between the refined and the unrefined BPS invariants is that the latter

are defined by summing over the jR spin representation with sign and their multiplicity

∞∑

g=0

ng
β I g

L =
∑

j+

Nβ
jL jR

(−1)2 jR (2 jR + 1)

[
jL

2

]

L
, (2.12)

and changing the basis for the left spin representations according to

I n∗ =
(

2[0]∗ +

[
1

2

]

∗

)⊗n

=
∑

i

((
2n

n − i

)
−
(

2n

n − i − 2

))[
i

2

]

∗
. (2.13)

In comparing (2.7) with (2.11) it is convenient to use the identity

Tr I n∗ (−1)2J∗e−2J∗s =
(

2sinh
( s

2

))2n
(2.14)

and express both the left and the right spin in the I n∗ basis. This yields invariants nβ
gR ,gL

which are related to the Nβ
jR , jL

by

∑

gR ,gL

nβ
gR ,gL

I gR
R ⊗ I gL

L =
∑

jR , jL

Nβ
jR , jL

[
jR

2

]

R
⊗
[

jL

2

]

L
. (2.15)

The geometric interpretation implies that Nβ
jL jR

= 0 for β > βmax ( jL , jR) for finite

βmax ( jL jR) and the same properties hold for the n�
gR ,gL

. The n�
0,g are the unrefined BPS
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invariants, which are invariant under complex structure deformations. Both the n�
gR ,gL

and the N�
jR , jL

are in Z, but we have the additional property N�
jR , jL

≥ 0.

Equation (2.11) can be exponentiated to yield the partition function Z = eFhol (ε1,ε2,t),
which has the form [24]

Z =
∏

β

∞∏

jL/R=0

jL/R∏

mL/R=− jL/R

∞∏

m1,m2=1

(
1 − qmL

L qm R
R eε1(m1− 1

2 )eε2(m2− 1
2 )Qβ

)(−1)2( jL + jR ) Nβ
jL jR ,

(2.16)

where we abbreviated e−β·t =: Qβ .

3. The Direct Integration Approach

In [20,33] generalized holomorphic anomaly equations were proposed3 which take the
form

∂̄ī F (n,g) = 1

2
C̄ jk

ī

(
D j Dk F (n,g−1) +

∑

m,h

′
D j F (m,h) Dk F (n−m,g−h)

)
, n + g > 1, (3.1)

where the prime denotes omission of (m, h) = (0, 0) and (m, h) = (n, g) in the sum. The
first term on the right hand side is set to zero if g = 0. These equations together with the
modular invariance of F (n,g) and the gap boundary conditions determine (2.7) recursively
to any order in ε1,2 [18]. The equation (3.1) has been given a B-model interpretation
in the local limit [18] in which the deformation direction corresponds to the puncture
operator of topological gravity coupled to the Calabi–Yau non-linear σ -model.

3.1. Elliptic curve mirrors and closed modular expressions. We discuss in the following
the simple situation in which the B-model or mirror curve for the non-compact Calabi–
Yau manifold is a family of elliptic curves. This holds for the mirror curves of non-
compact Calabi–Yau manifolds defined as the canonical bundle over del Pezzo surfaces
S, i.e., the total space of O(KS) → S.

Let us denote the mirror curve C in the Weierstrass form as

y2 = 4x3 − g2(u, m)x − g3(u, m) . (3.2)

We further denote the holomorphic (1, 0) form ω = dx
y and the complex parameter τ

that lives in the upper halfplane by

τ =
∫

b ω∫
a ω

. (3.3)

Here a, b are an integer basis of H1(C, Z), u is the complex structure parameter of the
curve and m are isomonodromic deformations. The discriminant reads � = g3

2 − 27g2
3

and the j-function defines a universal relation between (u, m) and τ (q = exp(2π iτ))

j = g3
2

�
= 1

q
+ 744 + 196884q + 21493760q2 + O(q3) . (3.4)

The main result of [18] is that the general form of the higher F (n,g) with n + g > 1
is is given by

3 The one in [33] contains an additional term, which is irrelevant for the present purpose of counting BPS
states.
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F (n,g) = 1

�2(g+n)−2(u, m)

3g+2n−3∑

k=0

Xk p(n,g)
k (u, m) (3.5)

where the p(n,g)
k (u, m) are completely fixed by the holomorphic anomaly equation and

behavior of F (n,g) at the cusp points. Here we defined the non-holomorphic generator
X by

X = g3(u, m)

g2(u, m)

Ê2(τ )E4(τ )

E6(τ )
. (3.6)

With Ê2 we denoted the non-holomorphic second Eisenstein series

Ê2(τ, τ̄ ) = E2(τ ) − 3

π Im(τ )
. (3.7)

The unhatted quantities are the usual holomorphic Eisenstein series. We note that

E2
6

E3
4

= 27
g2

3

g3
2

. (3.8)

To prove (3.5) note that flat coordinate t , which vanishes at a given cusp point, can
be integrated from

dt

du
=
√

E6(τ )g2(u, m)

E4(τ )g3(u, m)
= 3

3
4 4

√
E4

g2
. (3.9)

Here dt
du is a period of the holomorphic differential dx

y over the vanishing cycle at a nodal
singularity of C. The period t (u, m) is a period integral of a meromorphic differential and
the constant of the u-integration is zero. t (u, m) can be also determined as the solution
of a third order differential equation in u with polynomial coefficients in (m, u), see
[22].

The proof of (3.5) proceeds by using (3.8),(3.9) and the Ramanujan relations

d

dτ
E2 = 1

12
(E2

2 − E4) ,

d

dτ
E4 = 1

3
(E2 E4 − E6) ,

d

dτ
E6 = 1

2
(E2 E6 − E2

4),

(3.10)

to derive
d

dt
X = 1

�

du

dt
(AX2 + B X + C),

d2u

d2t
= 1

�

(
du

dt

)(
AX +

B

2

)
,

(3.11)

with

A = 9

4
(2g2∂u g3−3g3∂u g2), B = 1

2
(g2

2∂u g2−18g3∂u g3), C = g2 A

33 . (3.12)
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Using (3.9) and the fact that the 3-point function Cttt = ∂3 F (0,0)

∂t3 = − 2π i
c0

dτ
dt is given

in terms of the complex modulus τ of (3.2) one can rewrite (3.1) as

24
∂ F (n,g)

∂ X
= c0

g2(u)

g3(u)

E6

E4

[(du

dt

)2
∂2 F (n,g−1)

∂u2 +
d2u

dt2

∂ F (n,g−1)

∂u

+

(
du

dt

)2 ∑

m,h

′ ∂ F (m,h)

∂u

∂ F (n−m,g−h)

∂u

]
, (3.13)

see [18] for more details. It follows by (3.11,3.13) and a simple inductive argument that
the r.h.s. of (3.13) is a polynomial of X of maximal degree 2(g + n) − 3 and a rational
function in u with denominator �2(g+n)−2(u). Equation (3.13) in particular can be used
to integrate the holomorphic anomaly efficiently up to the polynomial p(n,g)

k (u), which
is undetermined after the integration.

F (0,0) = − 2π i
c0

∫
dt

∫
dt τ(t) can be determined up to irrelevant constants from the

complex structure τ in the upper half plane, which in turn may be calculated using the
j-function of the elliptic curve. It remains to describe the boundary conditions which
fix p(n,g)

k (u) and to provide the remaining initial data F (1,0) and F (0,1) to complete the
recursion (3.5).

The boundary conditions for the higher genus invariants are given by the leading
behavior of F(ε1, ε2, t) at the nodes of the curve (3.2). If we now denote specifically by
t the vanishing coordinate at the node under investigation, then the leading behavior is
given by

F(s, gs, t) =
∫ ∞

0

ds

s

exp(−st)

4 sinh(sε1/2) sinh(sε2/2)
+ O(t0)

= [ − 1

12
+

1

24
(ε1 + ε2)

2(ε1ε2)
−1] log(t)

+
1

ε1ε2

∞∑

g=0

(2g − 3)!
t2g−2

g∑

m=0

B̂2g B̂2g−2mε
2g−2m
1 ε2m

2 + . . .

= [ − 1

12
+

1

24
sg−2

s

]
log(t) +

[ − 1

240
g2

s +
7

1440
s − 7

5760
s2g−2

s

] 1

t2

+
[ 1

1008
g4

s − 41

20160
sg2

s +
31

26880
s2 − 31

161280
s3g−2

s

] 1

t4 + O(t0)

+ contributions to 2(g + n) − 2 > 4 , (3.14)

where g2
s = (ε1ε2) and s = (ε1 + ε2)

2. Here B̂m =
(

1
2m−1 − 1

)
Bm
m! and the Bernoulli

numbers Bm are defined by t/(et − 1) = ∑∞
m=0 Bm

tm

m! . The expansion (3.14) is simply
obtained by evaluating (2.8) with the assumption that a single hypermultiplet with mass
m = t becomes massless at the node.

From (3.14) we can read the leading behavior of the F (n,g)

F (n,g) = N (n,g)

t2(g+n)−2
+ O(t0). (3.15)
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For example

N (2,0) = − 7

5760
, N (1,1) = 7

1440
, N (0,2) = − 1

240
, . . . (3.16)

The absence of subleading terms up to order O(t0) is the gap condition, which provides
just enough condition to fix p(n,g)

k (u) [18]. The genus one case, F (0,1) follows from the
genus one holomorphic anomaly equation and the boundary condition at the node in
(2.8). F (1,0) is purely holomorphic and the simplest global function compatible with its
boundary conditions from (2.8) is given below.

F (0,1) = −1

2
log(Guū |uamb�| 1

3 ) , (3.17)

F (1,0) = 1

24
log(ucmd�) . (3.18)

The constants a, b, c and d can be be determined using the known behavior at large
radius.

3.2. The local Calabi–Yau geometries. It is convenient to use the language of an abelian
(2, 2) gauged linear σ -model [48] whose vacuum manifold describes the geometry of
the local Calabi–Yau threefolds M as a symplectic quotient or as a toric variety. For
the cases at hand one considers r chiral fields Xi , i = 1, . . . , r and a gauge group
U (1)(1) × . . . × U (1)(r−3) under which the fields Xi have integer charges Q(k)

i , i =
1, . . . , r , i = 1, . . . , 3 − r , subject to the anomaly condition

∑
i Q(k)

i = 0. The vacuum
manifold parametrized by the vacuum expectations values xi of scalar components of the
Xi then forms the local Calabi Yau geometry. This can be seen as the quotient manifold
of the xi subject to the D-term constraints

∑r
i=1 Q(k)

i |xi |2 = rk modded out by the gauge
group, where rk are the Kähler moduli which get complexified by Fayet–Iliopoulos terms
to tk = rk + iθk . In the geometric phase one has rk > 0.

Equivalently in the standard toric description one describes M as

M = (Cr\SR)/(C∗)r−3, (3.19)

where SR is the vanishing locus of the Stanley-Reisner ideal and the (C∗)′s act by

xk → (μ(k))Q(k)
i xk , i = 1, . . . , r , k = 1, . . . , r − 3.

The mirror geometry W is given by [17]

uv =
r∑

i=1

yi = H(x, y, u) . (3.20)

Here the yi are identified under a C
∗ scaling relation yi �→ μyi and constrained by

∏r
i=1 y

Q(k)
i

i = uk . This allows us to reduce to the x, y parameters in H(x, y, u). The
uk are complex deformations of the mirror geometry and mirror symmetry allows us
in particular to explore the (ε1, ε2) refinement of the topological partition function in
non-geometric phases as well.

For Calabi–Yau manifolds O(KS) → S the local mirror geometry can be constructed
as decompactification limits of the mirror Wc of a compact elliptic fibration Mc over
S. More precisely in the large radius limit of the elliptic fiber the periods integrals of
the holomorphic (3, 0) form over the relevant 3-cycles in Wc become integrals of the
meromorphic form
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λ = log(x)
dy

y
. (3.21)

over 1-cycles in the Riemann surface C
H(x, y, z) = 0 . (3.22)

More generally the data (3.21, 3.22) may serve as the definition of the B-model geometry.
In the following we give explicit examples of local Calabi–Yau threefolds of the type

M = O(KS) → S, where S is toric.

3.3. The local Calabi–Yau manifold O(−3) → P
2. According to the constructions of

local mirror manifolds reviewed above the (M, W ) geometries are described by the
charges Q(i)

k ∈ Z. For the O(−3) → P
2 geometry one has four chiral fields Xi with

U (1) charges
Q = (−3, 1, 1, 1) . (3.23)

To determine F(ε1, ε2, t) for a local Calabi–Yau geometry with genus one mirror
curves all we have do is to bring the genus one mirror curve C given by

H(x, y; z) = y2 + xy + y + ux3 = 0 (3.24)

of the O(−3) → P
2 geometry to Weierstrass form (3.2) with

g2 = 33(1 + 24u) g3 = 33(1 + 36u + 216u2) . (3.25)

Further we note that c0 = 9, a = 7, b = −1. Using this information the F (n,g) can
be very efficiently calculated as global sections over the moduli space. In the present
case we are interested in the mirror prediction for the A model at the large volume
point. We obtain the BPS invariants as this point by equating (2.7) in the holomorphic
limit Im(τ ) → ∞ with (2.8). The direct integration method is very efficient for the one
parameter cases. We calculated the N d

jL , jR
up to d = 9. The results up to d = 7 are

reported in Table 1.
Up to small typos in [24] the results up to d = 5 agree with the results of the

generalized vertex [24].

3.4. The local Calabi–Yau manifold O(−2,−2) → P
1 × P

1. Here we describe explic-
itly the refinement of the five dimensional index for the local Calabi–Yau manifold
O(−2,−2) → P

1 × P
1. The geometry is physically very interesting as it contains the

refinement of the 4d N = 2 Seiberg–Witten gauge theory [30], the refinement of the
3d Chern–Simons theory on the lens space L(1, 2) [2] and a potential refinement of the
ABJM theory [10,36].

For the case at hand we have five chiral fields Xi , i = 1, . . . , 5 and a gauge group
U (1)(1) × U (1)(2) under which the fields have charges

Q(1) = (−2, 1, 1, 0, 0), Q(2) = (−2, 0, 0, 1, 1) , (3.26)

respectively. The vanishing locus of the Stanley–Reisner ideal is Sr = {x1 = x2 =
0} ∪ {x3 = x4 = 0}

The elliptic curve of the mirror is given as

H(x, y) = 1 + x +
u1

x
+ y +

u2

y
= 0 . (3.27)
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Table 1. Non vanishing BPS numbers N d
jL , jR

of local O(−3) → P
2 up to d = 7

d jL \ jR 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 11

2 6 13
2 7 15

2 8 17
2 9 19

2 10 21
2 11 23

2 12 25
2 13 27

2 14 29
2 15 31

2 16 33
2 17 35

2

1 0 1
2 0 1
3 0 1

1
2 1

4 0 1 1 1
1
2 1 1 1

1 1
3
2 1

5 0 1 1 1 2 2 2 1
1
2 1 1 2 2 3 2 1

1 1 1 2 2 2 1
3
2 1 1 2 1 1

2 1 1 1
5
2 1

3 1
6 0 1 1 3 2 6 4 8 5 7 2 2

1
2 1 2 3 5 6 9 9 10 7 5 1 1

1 1 1 3 3 7 7 11 9 9 4 2
3
2 1 1 3 4 7 7 10 6 4

2 1 1 3 4 7 6 6 2 1
5
2 1 1 3 3 5 3 2

3 1 1 3 3 3 1
7
2 1 1 2 1 1

4 1 1 1
9
2 1

5 1
7 0 6 6 12 13 19 21 26 26 26 22 15 9 4 2

1
2 4 7 12 17 24 29 37 41 45 41 35 23 13 5 1

1 2 3 8 11 18 23 33 40 48 50 49 39 25 12 4 1
3
2 1 3 4 9 13 21 27 38 44 50 46 38 22 10 3 1

2 1 1 3 5 10 14 22 29 38 41 41 31 19 7 2
5
2 1 1 3 5 10 14 22 27 34 32 26 14 6 1

3 1 1 3 5 10 14 21 24 26 19 11 3 1
7
2 1 1 3 5 10 13 18 18 15 7 2

4 1 1 3 5 9 11 13 9 5 1
9
2 1 1 3 5 8 8 7 3 1

5 1 1 3 4 6 4 2
11
2 1 1 3 3 3 1

6 1 1 2 1 1
13
2 1 1 1

7 1
15
2 1

d jL / jR 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 11

2 6 13
2 7 15

2 8 17
2 9 19

2 10 21
2 11 23

2 12 25
2 13 27

2 14 29
2 15 31

2 16 33
2 17 35

2

These periods integrals are annihilated by the two Picard–Fuchs operators θi = ui
d

dui

L(1) = θ2
1 − 2(θ1 + θ2 − 1)(2θ1 + 2θ2 − 1)u1

L(2) = θ2
2 − 2(θ1 + θ2 − 1)(2θ1 + 2θ2 − 1)u2,

(3.28)

which have a constant solution and two logarithmic solutions t1 = log(u1)+�(u1, u2) and
t2 = log(u2) + �(u1, u2). This suggests to change parameters and introduce u =u1 and

�s = log(u1) − log(u2), (3.29)

which is a trivial solution. We can now separate the derivatives in the operators (3.28)
and capture the system by one differential operator of third order in u, where we under-
stand m = e�s now as a deformation parameter. This situation is similar to rank one
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N = 2 Seiberg–Witten (gauge) theories. The latter have one coupling constant related
to the complex structure and thereby to elliptic integrals of the curve and up to 9 mass
parameters for hypermultiplet fields. Indeed the geometry of O(−2,−2) → P

1 × P
1

there has a Seiberg–Witten limit [30], with a SU (2) gauge group and without hypermul-
tiplets. In the above parametrization, it is at (m, u) = (0, 1/4) and the decoupling of the
mass scale m becomes very simple in the (m, u) variables.

After some changes of variables [32] we can parametrize the curve (3.22) as

y2 + x2 − y − xy√
u

− mx2 y = 0 (3.30)

and bring it into Weierstrass form (3.2) using Nagell’s algorithm, with

g2 = 27u4
(
16u2

(
m2 − m + 1

) − 8u(m + 1) + 1
)

g3 = −27u6(−1 + 4u(1 + m))(1 − 8u(1 + m) + 8u2(2 − 5m + 2m2)) .
(3.31)

This yields a J -invariant

J =
(
16

(
m2 − m + 1

)
u2 − 8(m + 1)u + 1

)3

m2u4
(
16(m − 1)2u2 − 8(m + 1)u + 1

) . (3.32)

The coefficients in (3.17, 3.18) are given by a = 7, b = 7
2 , c = −2 and d = −1.

With this information the direct integration determines

�2 F (0,2) = 2560X3

81u6 +
16X2

(
3n2

1u2+5(m+1)u−8
)

27u4

+
X
((

m2+50m+1
)
u2+6n2

1(m+1)u3−20(m+1)u+13
)

54u2

+
9n2

1

(
2m2+5m+2

)
u4−3

(
5m2+76m+5

)
u2−(

31m3−168m2−168m+31
)
u3+51(m+1)u−23

6480 ,

�2 F (1,1) = 32X2n2
27u4 +

X
((

m2−10m+1
)
u2−n2

1(m+1)u3+(m+1)u−1
)

9u2

− n2
1

(
43m2+130m+43

)
u4+

(
90m2−548m+90

)
u2−4

(
29m3−127m2−127m+29

)
u3+4(m+1)u+13

8640 ,

�2 F (2,0) = Xn2
2

54u2 − n2
1

(
17m2−370m+17

)
u4+2

(
75m2+514m+75

)
u2−(

84m3+508m2+508m+84
)
u3−116(m+1)u+33

34560
(3.33)

and all higher genus amplitudes. Here we introduced n1 = (m−1) and n2 = (1−mu−u)

and rescaled u by u → u/4.
Here we note that in order to implement the gap condition we introduce the conifold

variable ũ by

u = 1

4
(√

m + 1
)2 − ũ

16
(3.34)

and expand around small ũ, which means close to the conifold. One property of the
coordinate ũ that follows from (3.32) is that limũ→0

1
J (m,ũ)

= 0 independent of m. As a
consequence, we can invert (3.32) near ũ ∼ 0 and q ∼ 0 for q(m̃, ũ) and obtain (3.9)
and (3.6) as expansions in ũ, whose coefficients are exact rational functions in m1/4.

3.4.1. Nekrasov’s 4d partition function at weak and strong coupling. If we change coor-
dinates to [27,30]

u = 1

4
(1 − ε2usw), m = e�s

�4
Sw(1 − ε2usw)

, (3.35)
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we obtain in leading order in ε from (3.9) the Seiberg–Witten a period and the leading ε

order of Z reproduced exactly Nekrasov’s partition function. Similarly using the variable
(3.34) and expanding near m = 0 in m and near u = ∓�2 we obtain, to leading order
in ε, the partition function Z of N = 2 Seiberg–Witten theory, in the strong coupling
region, i.e., at the monopole and dyon point. The relation between refined string theory
on del Pezzo surfaces and N = 2 field theory is more interesting for higher del Pezzo
surfaces and will be further discussed in [22].

3.4.2. BPS invariants for O(−2,−2) → P
1 × P

1 in the large volume limit. We did the
recursion up to genus 9 and observe for the refined BPS invariants and report first some
of the nβ

gR ,gL (Tables 2,3,4,5,6,7).

Table 2. Instanton numbers n
d1d2
0,0 of O(−2, −2) → P

1 × P
1

d1 0 1 2 3 4 5
d2
0 −2 0 0 0 0
1 −2 −4 −6 −8 −10 −12
2 0 −6 −32 −110 −288 −644
3 0 −8 −110 −756 −3556 −13072
4 0 −10 −288 −3556 −27264 −153324
5 0 −12 −644 −13072 −153324 −1252040

Table 3. Instanton numbers n
d1d2
1,0 of O(−2, −2) → P

1 × P
1

d1 0 1 2 3 4 5
d2
0 1 0 0 0 0
1 1 10 35 84 165 286
2 0 35 359 1987 7620 23414
3 0 84 1987 20554 134882 657672
4 0 165 7620 134882 1392751 10110954
5 0 286 23414 657672 10110954 104334092

Table 4. Instanton numbers n
d1d2
0,1 of O(−2, −2) → P

1 × P
1

d1 0 1 2 3 4 5
d2
0
1 9 68 300 988
2 68 1016 7792 41376
3 300 7792 95313 760764
4 988 41376 760764 8695048
5 2698 172124 4552692 71859628

Table 5. Instanton numbers n
d1d2
2,0 of O(−2, −2) → P

1 × P
1

d1 0 1 2 3 4 5
d2
0
1 −6 −56 −252 −792 −2002
2 −56 −1232 −11396 −65268 −278564
3 −252 −11396 −184722 −1726770 −11307496
4 −792 −65268 −1726770 −24555200 −233289152
5 −2002 −278564 −11307496 −233289152 −3087009512
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Table 6. Instanton numbers n
d1d2
1,1 of O(−2, −2) → P

1 × P
1

d1 0 1 2 3 4 5
d2
0
1
2 −120 −1484 −9632 −43732
3 −1484 −33856 −364908 −2580992
4 −9632 −364908 −6064608 −62822028
5 −43732 −2580992 −62822028 −912904128

Table 7. Instanton numbers n
d1d2
0,2 of O(−2, −2) → P

1 × P
1

d1 0 1 2 3 4 5
d2
0
1
2 −12 −116 −628
3 −12 −580 −8042 −64624
4 −116 −8042 −167936 −1964440
5 −628 −64624 −1964440 −32242268

Table 8. Non vanishing BPS numbers N
(d1,d2)
jL , jR

of local O(−2, −2) → P
1 × P

1

(d1, d2) jL\ jR 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 11

2 6 13
2 7 15

2 8 17
2 9 19

2

(2, 2) 0 1 1
1
2 1

(2, 3) 0 1 1 2
1
2 1 1
1 1

(3, 3) 0 1 1 3 3 4
1
2 1 2 3 3 1
1 1 2 3
3
2 1 1
2 1

(3, 4) 0 1 1 3 4 7 6 7 1 1
1
2 1 2 4 6 8 2
1 1 2 5 6 7 1
3
2 1 2 4 1
2 1 2 3
5
2 1 1
3 1

Changing the basis according to (2.15) yields

N (1,d) =
{

1 if jL = 0, jR = 1
2 + d

0 otherwise
(3.36)

as well as the refined invariants reported in Table 8.
These results of Table 8 agree with the ones of [24].

3.4.3. The refinement of perturbative CS theory on the Lens space L(2, 1). In the above
parametrization the ABJM slice [10,32,36] is given by m = 1 and in particular the
Chern–Simons theory on the lens space point L(2, 1) [2] is at (m, u) = (1,∞). The
analysis and the choice of variables is quite similar to [2] except that we do not have to
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solve differential equations, as we can infer all properties of the local cusp expansions
from the universal relation (3.32) between the complex structure parameter τ , defining
the periods up to normalization, and (3.9).

Unlike at the conifold (3.34) one has to evaluate expressions like (3.33) at a point
in the u-plane where 1/J does not vanish for generic m, but only for m = 1, which is
therefore the cusp point. To get the correct double scaling limit near the orbifold point,
the local parameters (m̃, ũ) can be defined as

m = 1 − m̃, u = 1

ũ2m̃2 . (3.37)

Since 1/J is small we can invert (3.32) for (m̃, ũ).
We further need to express the m̃, ũ in terms of the flat coordinates, which are given

by the periods �s and the period a(ũ, m̃), which can be calculated from (3.9). There is
a subtlety in the latter calculation, because as we mentioned we have normalized g2 and
g3 so that a(u, m) is a solution to the system (3.28) at (u, m) = (0, 0). Clearly scaling
g2 → f 2(u, m)g2 and g3 → f 3(u, m)g3 does not change the J -function and hence the
relation between q and u, m. From (3.9) it is however clear that the scaling changes the

normalization of the period dt
du , that vanished at the cusp, by the factor 1/ f

1
2 . To get the

correctly normalized solution, we set f (u, m) = 1
ũ6m̃4 . That yields

a(ũ, m̃) = m̃ũ +
1

4
m̃2ũ +

9

64
m̃3u +

25

256
m̃4u +

(
1225m̃5ũ

16384
+

m̃3ũ3

192

)
+ . . . (3.38)

as one solution and we chose −�s as the second. We then get

m̃ = 1 − exp(−�s) = �s + O(�2
s )

ũ = a

�
+

a

4
+

1

192
a�s − 1

256

(
a�2

s

)
−
(

a3

192�s
+

49a�3
s

737280

)
+

(
17a�4

s

196608
− a3

768

)

+O
(
ε7
)

. (3.39)

Because the small parameters are m̃ ∼ ũ ∼ ε we have a ∼ ε2 while �s ∼ ε. This
defines the order and convergence of (3.39). Defining as in [2]

N1 = S1 = 1

4
(� + a), N2 = S2 = 1

4
(� − a) (3.40)

we get the genus 0 partition function from integrating F (0,0) = ∫
da

∫
da τ(a)

F (0,0) = 1

2
(S2

1 log(S1) + S2
2 log(S2)) +

1

288

(
S4

1 + 6S3
1 S2 + 18S2

1 S2
2 + . . .

)

− 1

345600

(
4S1 + 45S5

1 S2 + 225S4
1 S2

2 + 1500S3
1 S3

2 + . . .
)

+ O(S6), (3.41)

which agrees with the results [2]. Here and in the following the . . . mean addition
of symmetric terms in S1 and S2. To match with the matrix model, the genus counting
parameters of the topological string and the Chern–Simons matrix model was related [2]
by gtop

s = 2i ĝs . We extend this to the refined model by setting

ε
top
i = √

2iεm
i i = 1, 2 . (3.42)

The rational for this is to reproduce F (0,g) and more general the leading terms (3.16) of
the F (n,g).



The Refined BPS Index from Stable Pair Invariants 919

With this definition we can extract the refined amplitudes and calculate first

F (1,0) = 1

24
(log(S1) + log(S2)) +

1

576
(S2

1 + 30S2S1 + S2
2 )

− 1

138240
(2S4

1 − 255S2S3
1 + 1530S2

2 S2
1 + . . .)

+
1

34836480
(8S6

1 + 945S2S5
1 − 43470S2

2 S4
1 + 150570S3

2 S3
1 − . . .) + O(S8).

(3.43)

The result for F (0,1) agrees with [2]

F (0,1) = − 1

12
(log(S1) + log(S2)) − 1

288

(
S2

1 − 6S2S1 + S2
2

)

+
1

69120
(S4

1 + 105S2S3
1 − 90S2

2 S2
1 + . . .) + O(S6). (3.44)

For n + g = 2 we obtain the results for the refinement

F (2,0) = − 7

5760

(
1

S2
1

+
1

S2
2

)
+

1

192
+

6047S2
1 − 26430S1S2 + 6047S2

2

5529600

+
3653S4

1 − 78912S3
1 S2 + 216054S2

1 S2
2 − . . .

39813120

+
193952S6

1 − 15472305S5
1 S1 + 161797725S4

1 S2 − 351759000S3
1 S3

2 + . . .

63700992000
.

(3.45)

as well as

F (1,1) = 7

1440

(
1

S2
1

+
1

S2
2

)
+

1

96
+

2053S2
1 − 5970S1S2 + 2053S2

2

1382400

+
1207S4

1 − 13428S3
1 S2 + 17226S2

1 S2
2 − . . .

9953280

+
65248S6

1 − 2704095S5
1 S2 + 8059275S4

2 S2
2 + 1839000S3

2 S3
1 + . . .

15925248000
. (3.46)

The result for F (0,2)

F (0,2) = − 1

240

(
1

S2
1

+
1

S2
2

)
− S2

1 + 60S1S2 + S2
2

57600

+
S4

1 + 126S3
1 S2 + 378S2

1 S2
2 + 126S1S3

2 + S4
2

1451520

−64S6
1 + 38385S2S5

1 + 334575S2
2 S4

1 + 124500S3
2 S3

1 + . . .

2654208000
. (3.47)

agrees with the result of [2]. Using our exact results for F (n,g)(X, m, u) these expansions
are available up to n + g = 9. We note the F (0,g) have no constant terms. This is
expected from the matrix model description of [37] and its large N -expansion. In fact
these constants are canceled if we set χ = 4 in N 0

00 contributing via (2.11) to the
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constants at infinity. Similarly the classical terms at large radius at order g−2
s and g0

s can
be fixed from the matrix model expansion. In the εR = 0 slice we also checked to higher
order that the perturbative expansion of the Chern–Simons matrix [37] agrees with the
topological string according to the expectations in [2].

The constant terms in F (n>0,g) are not zero. This is already to be expected from
the fact that the refined Chern–Simons matrix model [3] on S3 involves a shift in the
Kähler parameter, relative to the refined topological string, due to a different choice of
R. We have evidence that the shift �s + ε+ leads to right parameters to compare with
the matrix model description. A more precise parameter map for the full model is under
investigation. It is also noticeable that for the choices b = 1/2 and b = 2 the expansions
simplify. Such specialization of the refined ensemble were recently studied in [35].

4. Enumerative Invariants of Calabi–Yau Threefolds

In this section, we review the enumerative invariants of Calabi–Yau threefolds that we
will use: the stable pair invariants of Pandharipande and Thomas, and the Gopakumar-
Vafa invariants.

4.1. Pandharipande–Thomas invariants. We begin by explaining the theory of stable
pairs due to Pandharipande and Thomas [45,47]. Stable pairs clarify the assertions made
in [31] and also provide mathematical proofs. We then return to the refined invariants
with the benefit of stable pairs.

Definition 1. A stable pair on a smooth threefold X consists of a sheaf F on X and a
section s ∈ H0(F) such that

• F is pure of dimension 1
• s generates F outside of a finite set of points

A stable pair is a D6-D2-D0 brane bound state, and can be written as a complex

I• : OX
s→ F .

Let Pn(X, β) denote the moduli space of stable pairs with ch2(F) = β, χ(F) = n.
Then if X is Calabi–Yau, Pn(X, β) supports a symmetric obstruction theory. See [5] for
the definitions and basic properties of symmetric obstruction theories.

There are only a few things that we need to know about symmetric obstruction
theories. The basic idea of a symmetric obstruction theory is that the obstructions are dual
to the deformations. For stable pairs, the space of first order deformations is Ext1(I•, I•)
and the space of obstructions is Ext2(I•, I•). These are dual by Serre duality.

An important feature of symmetric obstruction theories is that they have virtual
dimension 0, since deformations and obstructions have the same dimension.

If M is the moduli space associated with a symmetric obstruction theory and M is
smooth, then the corresponding virtual number is (−1)dim(M)e(M), where e(M) is the
topological Euler characteristic. This is because the bundle describing the deformations
is the tangent bundle of M , so the obstruction bundle must be the cotangent bundle of
M , and the Euler class of the cotangent bundle is (−1)dim(M)e(M).

In general, the virtual number is a weighted Euler characteristic. See [5] for more
details.
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Now let X be Calabi–Yau and let Pn(X, β) be the moduli space of stable pairs with
ch2(F) = β and χ(F) = n, and let Pn,β be the associated invariant, i.e., the degree of the
virtual fundamental class of Pn(X, β). These invariants can be arranged in a generating
function

Z PT =
∑

n,β

Pn,βqn Qβ.

We let ZGW be the generating function for disconnected Gromov–Witten invariants:

ZGW = exp
(
F ′

GW (λ, Q)
)
, F ′

GW (λ, Q) =
∑

β �=0

∑

g

Ng,βλ2g−2 Qβ,

where Ng,β is the Gromov–Witten invariant. The fundamental conjecture from which
everything will follow is

Conjecture 1. After the change of variables q = −eiλ, we have Z PT = ZGW .

Conjecture 1 is known to be true in the toric case [46].
In low degree, the stable pair moduli spaces have simpler descriptions, as they are

isomorphic to relative Hilbert schemes.
First of all, on a smooth surface S, the stable pair moduli spaces are isomorphic to

relative Hilbert schemes. Let β ∈ H2(S, Z) and let pa be the arithmetic genus of curves
of class β. Let C[n] be the relative Hilbert scheme parametrizing curves C of class β and
n points on C (more precisely, a subscheme Z ⊂ C of length n).

Proposition 1. [47] P1−pa+n(S, β) � C[n] for any n ≥ 0.

Next, we claim that if S is Fano, then for each β ∈ H2(S, Z), stable pairs on the
total space X of KS are identified with stable pairs on S, for small holomorphic Euler
characteristic. We state the result for P

2.

Proposition 2. P1−pa+n(P2, d) = P1−pa+n(X, d) for n ≤ d + 2.

To prove Proposition 2, we first make the following claim:

Claim: If C ⊂ X is a Cohen–Macaulay curve of degree d which is not contained in P
2

scheme-theoretically, then χ(OC ) ≥ 1 − pa + (d + 3).

To prove this claim, we first establish some notation. Let J ⊂ OX be the ideal sheaf of
C and let I ⊂ OX be the ideal sheaf of P

2. For later use, I can be generated by a single
section p ∈ OX (−3) which vanishes precisely along P

2. Note that J must contain I k+1

for some k, so that J + I k+1 = J .
From the filtration

· · · J + I n+1 ⊂ J + I n ⊂ · · · ⊂ J + I 2 ⊂ J + I ⊂ OX

we get exact sequences

0 → J + I n

J + I n+1 → J + I n−1

J + I n+1 → J + I n−1

J + I n
→ 0,
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which allow us to write

χ(OC ) = χ(OX/J ) =
k∑

n=0

χ

(
J + I n

J + I n+1

)
.

Fixing n, we get a map

φn : I n

I n+1 → (J + I n)/(J + I n+1). (4.1)

Since (J + I n)/(J + I n+1) is generated by the image of I n , we see that φn is surjective.
Since I n/I n+1 � OP2(3n) is locally free on P

2, we can form (I n/I n+1)∗⊗ker φn ⊂ OP2 ,
which is necessarily an ideal sheaf Kn of a (not necessarily Cohen–Macaulay) plane
curve. We conclude from (4.1) that (J + I n)/(J + I n+1) � (OP2/Kn)(3n).

Let dn be the degree of the plane curve defined by Kn , so that d = ∑
dn . By

Riemann–Roch we have

χ((J + I n)/(J + I n+1)) ≥ 3ndn + 1 − (dn − 1)(dn − 2)/2.

Then

χ(OC ) =
∑

n

χ((J + I n)/(J + I n+1)) ≥
∑

n

(3ndn + 1 − (dn − 1)(dn − 2)/2) . (4.2)

If d2 = 0, then C is a plane curve. If d2 > 0, then the smallest that the bound (4.2) can be
is if d1 = d −1 and d2 = 1, giving χ(OC ) ≤ 1− (d −2)(d −3)/2 + 4 = 1− pa + d + 3.

The bound is sharp, as can be seen from the example J = (p2, px, xd−1), where
p ∈ OX (−3) is a section vanishing on P

2 and x is a homogeneous coordinate on P
2.

Then J + I = (p, xd−1) and J + I 2 = (p2, px, xd−1) = J , OX/(J + I ) � OP2/(xd−1)

is just a line L with multiplicity d − 1, and (J + I )/J � OL(3), giving χ(OX/J ) =
χ(OLd−1) + χ(OL(3)) = 1 − (d − 2)(d − 3)/2 + 4 = 1 − pa + d + 3.

Proposition 2 follows immediately. If n ≤ d + 2, then by the claim, C must be
supported on P

2 scheme-theoretically, and so a stable pair OX → F with F supported
on C can be functorially identified with a stable pair OP2 → F .

Corollary. P1−pa+n(X, d) � C[n] for n ≤ d + 2.

4.2. Gopakumar-Vafa invariants. By the BPS state counts in M-theory, integer-valued
Gopakumar-Vafa invariants ng

β of X are proposed in [13]. These are are related to the
Gromov–Witten invariants by the formula

∑

β,g

Ng,βλ2g−2 Qβ =
∑

β,g,k
β �=0

ng
β

1

k

(
2 sin

(
kλ

2

))2g−2

Qkβ. (4.3)

A priori, ng
β defined by the above formula are rational numbers because the Gromov–

Witten invariants are rational numbers. The integrality conjecture is the assertion that
the Gopakumar-Vafa invariants defined recursively via (4.3) are integers.
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If Conjecture 1 holds, we can write [28]

Z PT =
∏

β

⎛

⎝
∞∏

j=1

(
1 + (−1) j+1q j Qβ

) jn0
β

×
∞∏

g=1

2g−2∏

k=0

(
1 + (−1)g−k qg−1−k Qβ

)(−1)k+gng
β(

2g−2
k )

⎞

⎠ . (4.4)

Hence, Gopakumar-Vafa invariants can be deduced from Pandharipande–Thomas invari-
ants. See [47] for more details on this approach.

According to its origin in string theory, the GV invariants ng
β may be thought of as a

virtual number of genus g Jacobians inside the moduli space of stable sheaves F on X
of pure dimension 1 with ch2(F) = β. This viewpoint led to a computational method
for the GV invariants which we will review in the next section and will refine in Sect. 7.
Using a symmetric obstruction theory on this moduli space, the genus 0 GV invariants
n0

β can be directly defined mathematically as the associated virtual number [29].

5. KKV Approach

In this section, we review the method of [31] for the geometric computation of the
Gopakumar-Vafa invariants. In Sect. 7.3 we will show that the method readily extends
to compute the refined invariants, using the refinement of the Pandharipande–Thomas
invariants which we will describe in Sect. 7. Furthermore, the refined invariants can be
used to compute the SU(2) × SU(2) BPS invariants. The computation will be imple-
mented for local P

2 in Sect. 8.

5.1. Generalities. The idea of [31] was to compare the cohomology of the Hilbert
schemes C [k] of length k subschemes (i.e., k points counted with multiplicity) of a smooth
curve C with the cohomology of its Jacobian J (C). The comparison can be carried out
either geometrically via the Abel–Jacobi mapping, or representation-theoretically by the
associated Lefschetz actions of SU (2) on the cohomologies of the Hilbert scheme and
the Jacobian. It was further proposed that the relative Hilbert scheme could be used to
extend the comparison to families under certain hypotheses.

Pandharipande and Thomas observed in [47] that the methods of [31] could be gen-
eralized and made more rigorous using the moduli space of stable pairs in place of the
relative Hilbert scheme. We will begin with the ideas of [31] and then will reformulate
these ideas in the language of stable pairs, thereby supplying the details of the observation
of [47].

We follow the conventions of physics and denote by [k] the (half-integer) spin k
representation of SU(2), so that dim[k] = 2k + 1.

Denote by I1 = [ 1
2 ] + 2g[0] the SU (2) content of the standard Lefschetz decompo-

sition of the cohomology H∗(C) of a genus g Riemann surface C .
It is easy to see that the Lefschetz action on a genus g Jacobian J (C) is then

H∗(J (C)) = Ig := (I1)
⊗g =

g⊕

i=0

{(
2g

g − i

)
−
(

2g

g − i − 2

)}[
i

2

]
, (5.1)

as is easily proven by induction.
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Let C [k] denote the Hilbert scheme of length k subschemes of C , which is just the
k-fold symmetric product of C , by the smoothness of C . Noting that [ 1

2 ] corresponds to
the even cohomology of C while 2g[0] corresponds to the odd cohomology, it follows
that as SU(2) representations

H∗ (C [k]) =
⊕

i

Symi
[

1

2

]
⊗ ∧k−i (2g[0]) =

⊕

i

(
2g

k − i

)[
i

2

]
. (5.2)

Comparing (5.1) and (5.2), we see that we have as SU(2) representations

H∗(C [g]) = H∗(J (C)) ⊕ H∗(C [g−2]). (5.3)

More identities can be inferred by comparing (5.1) and (5.2), but we need to establish
some notation and conventions first.

We introduce a linear operator θ on the representation ring of SU(2), defined on
generators as

θ

([
k

2

])
=
{[ k−1

2

]
k > 0

0 k = 0
. (5.4)

In [31], θ was described in terms of the SU(2) raising operator, which acts on H∗(J (C))

as cup product with the cohomology class of the theta divisor of J (C).
Again by comparing (5.1) and (5.2), we get equalities of SU(2) representations

H∗(C [k]) = θ g−k H∗(J (C)) ⊕ H∗(C [k−2]) (5.5)

for each 0 ≤ k ≤ g, where we understand H∗(C [k−2]) = 0 for k < 2 and C [0] to be a
point. The case k = g is just (5.3).

By the structure of massive 5-dimensional BPS representations, the Hilbert space of
BPS states associated to M2-branes wrapping a homology class β ∈ H2(X, Z) can be
written as [(

1

2
, 0

)
⊕ 2 (0, 0)

]
⊗ Ĥβ (5.6)

for some SU(2)× SU(2) representation Ĥβ . The SU(2)× SU(2) BPS invariants Nβ
jL , jR

are then defined as the multiplicities of the representations [( jL , jR)] in Ĥ:

Ĥβ = ⊕ jL , jR Nβ
jL , jR

[( jL , jR)] . (5.7)

The Gopakumar-Vafa invariants can be deduced from (5.7) by

Tr(−1)FR Ĥβ = ⊕gng
β Ig, (5.8)

where as usual the operator (−1)FR is the identity on integer spin representations of
SU(2)R and is minus the identity on half-integer spin representations. Explicitly, we
have ∞∑

g=0

ng
β Ig = Tr(−1)FR Ĥβ =

∑

jL

Nβ
jL jR

(−1)2 jR (2 jR + 1)

[
jL

2

]
. (5.9)

For the rest of this paper, we consider X to be a local toric Calabi–Yau threefold, the
total space of the canonical bundle of a toric Fano surface S. Let β ∈ H2(S, Z) be an
effective class, and let pa be the arithmetic genus of the curves in the divisor class β.
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The ansatz of [31] was that (5.5) holds in families as follows. Let C be the universal
curve of class β. Let C[k] denote the relative Hilbert scheme of k points in the curves of
the family. Let us further suppose that C[k] is smooth, so that its cohomology supports
an SU(2) representation via Lefschetz. Then the assertion was that

H∗ (C[k]) =
(
θ pa−kĤβ

)

SU(2)�
⊕ H∗ (C[k−2]) + correction terms, (5.10)

where the correction terms arise from reducible curves. These correction terms will be
made precise below from the theory of stable pairs. In [31], the GV invariants were
deduced from (5.10) by applying Tr(−1)F .

The identity (5.10) is to be understood as an identity of SU(2) representations. The
SU(2) representations on H∗(C[k]) and H∗(C[k−2]) are just the respective Lefschetz
actions as before so we just have to explain the meaning of (θ pa−kĤβ)SU(2)� . On rep-
resentations of SU(2)L × SU(2)R , we define θ by via the SU(2)L representation, i.e.,

θ ([( jL , jR)]) = (θ ([ jL ])) ⊗ [ jR] .

The subscript SU(2)� denotes that the resulting SU(2) × SU(2) representation should
be restricted to the diagonal SU(2) ⊂ SU(2) × SU(2).

We now update the method of [31], rigorously explaining the computation of the GV
invariants from the PT invariants, assuming the product formula (4.4). While the method
of [31] is not needed to compute the GV invariants from (4.4), the use of this method
will serve as a warm-up for our handling of the refined invariants in Sect. 8.

In Sect. 4.1 we saw that if C denotes the universal curve of class β in S, then we have

Pk+1−pa (X, β) = C[k]

for sufficiently small k. For S = P
2 and curves of degree d, the bound is k ≤ d + 2. For

general k, we need to use Pk+1−pa (X, β) in place of C[k] in (5.10).
Putting r = pa − k and continuing to assume for the moment that the PT moduli

spaces are smooth, (5.10) becomes

H∗ (P1−r (X, β)) =
(
θr Ĥβ

)

SU(2)�
⊕ H∗ (P−1−r (X, β)) + correction terms. (5.11)

If Pn(X, β) is smooth, then we have4

Tr(−1)F H∗(Pn(X, β)) = Pn,β .

Applying Tr(−1)F to (5.10), using (5.8), and replacing the Euler characteristic of a
smooth Pn(X, β) more generally with Pn,β , we arrive at a precise statement that can be
proven.

Proposition 3. There are explicit identities

P1−r,β − P−1−r,β = Tr(−1)F
(
θr Ĥβ

)

SU(2)�
+ O

((
nh

γ

)2
)

=
∑

g≥1

ng
β

((
2g − 2

g − 2 + r

)
−
(

2g − 2

g + r

))
+ δr,0n0

β + O

((
nh

γ

)2
)

,

4 If we have a symmetric obstruction theory on a smooth projective variety M (e.g., the obstruction theory
on the moduli space of stable pairs), then the virtual fundamental class is just (−1)dim M(e(M)). In terms
of the Lefschetz action, this is Tr(−1)F H∗(M).
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where the omitted terms O

((
nh

γ

)2
)

are explicit nonlinear terms in the {nh
γ } arising

from the expansion of (4.4).

The terms O

((
nh

γ

)2
)

are precisely the correction terms of [31]. Thus, Proposition 3

is a mathematically rigorous formulation of the validity of the KKV method. The δr,0 in
the statement of the Proposition is the usual Kronecker delta.

Note that the smoothness of the PT moduli spaces is no longer assumed.
The proof of Proposition 3 is straightforward. We focus on the terms of class β by

writing

ZPT =
∑

β

Zβ
PT Qβ.

Then from (4.4) we obviously have

Zβ
PT =

∑

g≥1

ng
β

(
∑

k

(
2g − 2

g − 1 − k

)
qk

)
+

∞∑

j=1

(−1) j+1 jn0
βq j + O

((
nh

γ

)2
)

. (5.12)

From (5.5) and the definition (5.8) of the ng
β , we compute that

Tr(−1)F
(
θr Ĥβ

)

SU(2)�
=
∑

g≥1

ng
β

{(
2g − 2

g − r

)
−
(

2g − 2

g − r − 2

)}
+ δ0,r n0

β. (5.13)

The lemma follows immediately from (5.12) and (5.13), with the O

((
nh

γ

)2
)

terms in

the statement of the lemma being precisely the difference of the two explicit O

((
nh

γ

)2
)

terms in the expansions of P1−r,β and P−1−r,β arising from the product formula (4.4).

5.2. Local P
2. We now illustrate the low degree cases with X equal to local P

2. For
curves of degree d, we have pa = pa(d) = (d − 1)(d − 2)/2. We will assume that
ng

d = 0 for g > pa(d). As explained in Sect. 4.1, the PT-moduli spaces will be equal
to the relative Hilbert schemes in the cases discussed below, so the PT invariants can be
calculated by hand.

d = 1. Since lines have genus 0, we set n1
g = 0 for g > 0 in the generating function

(4.4), which gives

Z PT =
∞∏

j=1

(
1 + (−1) j+1q j Q

) jn0
1

+ O(Q2)

= 1 + Q

(
n0

1

∞∑

n=0

(−1)n(n + 1)qn+1

)
+ O(Q2)

Comparing coefficients of q Q, we see that P1,1 = n0
1 and there are no correction terms,

matching Proposition 3 with β = 1, r = 0, and Ĥ1 = [0, 1]. But P1(X, 1) is just the
moduli space of lines in P

2, itself a P
2. So P1,1 = +e(P1(X, 1)) = 3, so that n0

1 = 3.
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d = 2. Since degree 2 curves have arithmetic genus 0, we set ng
2 = 0 for g > 0, and

then the expansion of Z PT has the form

2∏

d=1

∞∏

j=1

(
1 + (−1) j+1q j Qd

) jn0
d

+ O(Q3) = 1 + Q(· · · ) + Q2(n0
2q + O(q2)) + O(Q3).

The coefficient of q Q2 gives P1,2 = n0
2. However, P1(X, 2) is the space of conics in P

2

with no point, parametrized by P
5. Thus P1,2 = −e(P5) = −6, giving n0

2 = −6. This
is in agreement with Proposition 3 with d = 2 and r = 0, and Ĥ2 = [0, 5/2].
d = 3. Since degree 3 curves have arithmetic genus 1, we set ng

3 = 0 for g > 1, and
then the expansion of Z PT gives

⎛

⎝
3∏

d=1

∞∏

j=1

(
1 + (−1) j+1q j Qd

) jn0
d

⎞

⎠
(

1 − Q3
)−n1

3
+ O(Q4)

= 1 + Q(· · · ) + Q2(· · · ) + Q3(n1
3 + n0

3q + O(q2)) + O(Q4).

The coefficients of Q3 and q Q3 give P0,3 = n1
3, P1,3 = n0

3.
Now P0(X, 3) is the moduli space of cubics in P

2, which is isomorphic to P
9, so

n0
3 = P0,3 = −10. Next, P1(X, 3) is the universal cubic curve C. Consider the map C →

P
2, which forgets the curve and remembers the point, (C, p) �→ p. This exhibits C as a

P
8-bundle over P

2, since the space of cubics through any point of P
2 is a codimension 1

linear subspace of P
9, i.e. a P

8. In particular C is smooth. Taking the Euler characteristic
gives n1

3 = e(C) = (9)(3) = 27. These results are consistent with Proposition 3 for
d = 3 and r = 0, 1 and Ĥ3 = [1/2, 9/2] + [0, 3].
d = 4. Since degree 4 curves have arithmetic genus 3, we set ng

4 = 0 for g > 3, and
then the expansion of Z PT has the form

1 + Q(· · · ) + . . . + Q4
(

n3
4q−2 +

(
n2

4 + 4n3
4

)
q−1

+
(

n1
4 + 2n2

4 + 6n3
4

)
+
(

n0
4 + n2

4 + 4n3
4 + n0

1n1
3

)
q + . . .

)
+ O(Q5).

Comparing coefficients, we see

P−2,4 = n3
4, P−1,4 = n2

4 + 4n3
4, P0,4 = n1

4 + 2n2
4 + 6n3

4,

P1,4 = n0
4 + n2

4 + 4n3
4 + n0

1n1
3 (5.14)

This gives immediately

P0,4 − P−2,4 = n1
4 + 2n2

4 + 5n3
4, P1,4 − P−1,4 = n0

4 + n0
1n1

3. (5.15)

Note in particular the natural occurrence of n0
1n1

3 in the last equation of (5.15). This
product was explained in [31] as a “correction term” arising from quartic curves which
factor into a line and a cubic, but the equation makes its role very clear.

We now compute the degree 4 GV invariants.
Now P−2(X, 4) is the moduli space of quartic plane curves, which is isomorphic to

P
14; hence P−2,4 = 15.
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P−1(X, 4) is the universal curve, a P
13 bundle over P

2; hence P−1,4 = −(3)(14) =
−42.

P0(X, 4) is the relative Hilbert scheme of length 2 subschemes. Since any length 2
subscheme of P

2 (including the degenerate case of a single point with multiplicity 2)
imposes independent conditions on the space of degree 4 curves, C[2] is a P

12 bundle over
the (smooth) Hilbert scheme (P2)[2] of length 2 subschemes P

2, hence smooth itself.
The Euler numbers of the Hilbert scheme are computed by

∑

n

e

((
P

2
)[n])

sn = η(s)3 (5.16)

and in particular e((P2)[2]) = 9. So P0,4 = (9)(13) = 117.
Next, P1(X, 4) is the relative Hilbert scheme C[3], a P

11 bundle over (P2)[3], which
has Euler characteristic 22. So P1,4 = −(22)(12) = −264.

We then solve (5.14) or equivalently (5.15) for the ng
4 to get

n3
4 = 15

n2
4 = −42 − 4(15) = −102

n1
4 = 117 − 2(−102) − 6(15) = 231

n0
4 = −264 − (−102) − 4(15) − (3)(−10) = −192

This is all consistent with Proposition 3 with Ĥ4 = [3/2, 7] + [1, 11/2] + [1/2, 6 + 5 +
4]+ [0, 13/2 + 9/2 + 7/2], comparing with the first two equalities in (5.14) (for r = 2, 3)
and with (5.15) (for r = 0, 1).

The method can be applied without difficulty for d = 5 and for d = 6, g > 2.
However, for d = 6 and g = 2, there is a problem because P0(X, 6), the relative Hilbert
scheme C[8], is not obviously smooth. This is not an obstacle, since the PT invariants
can be calculated anyway by localization [46]. We will review the calculation in Sect. 6.

To see the problem with smoothness, we project onto (P2)[8] and compute the fibers.
If the 8 points are general, then they impose independent conditions and the fiber is
P

27−8 = P
19. But if the 8 points are contained in a line L , then if they are also contained

in a degree 6 curve C , they are necessarily contained in the intersection C ∩ L . But if
C ∩ L were finite, it could be no more than 6 points; hence C ∩ L is infinite and C must
contain L . We learn that the fiber consists of all degree 6 curves L ∪ D, where D is a
degree 5 curve. But the space of all D is a P

20 and so the fiber dimension jumps, and
we can no longer conclude smoothness.5

In general, for the family of degree d curves, C[k] is smooth whenever k ≤ d + 1. We
confirm this by checking the worst case, when k = d + 1. As usual, we have a fibration
C[d+1] → P

[d+1] and want to check that the fibers are projective spaces of the same
dimension. The generic fibers are projective spaces of dimension d(d + 3)/2− (d + 1) =
(d + 2)(d − 1)/2, since general points will impose d + 1 independent conditions on
the space of all degree d curves. The worst possible case is when the d + 1 points are
contained in a line L . As in the degree 4 case, if these points are also contained in a
degree d curve, we conclude that L is contained in C . Therefore C is the union of L
and an arbitrary curve of degree d − 1. But curves of degree d − 1 are parametrized
by a projective space of dimension (d + 2)(d − 1)/2, and the fibers all have the same
dimension, as claimed.

5 If 7 points are chosen to be contained in a line L instead of 8, the same argument shows C again contains
L , but there will not be any jump in the fiber dimension in that case.
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6. Pandharipande–Thomas for Toric Calabi–Yau Manifolds

6.1. Combinatorics of the T -fixed loci. In this section, we review the classification of
torus fixed locus of Pn(X, d) via box configurations studied in [46]. Let s : OX → F
be a torus fixed stable pair. Consider the associated exact sequence

0 → IC → OX → F → Q → 0.

Then the curve C is a torus invariant curve in X and the zero-dimensional cokernel Q
of s is supported on torus fixed points. We start with a description of the torus invariant
curves.

We may restrict our attention to affine torus invariant open sets containing a unique
fixed point. For example, in local P

2 there are three fixed points and three affine open
sets containing each of these fixed points. Let x1, x2, x3 be the coordinate functions on
an affine torus invariant open set U such that the torus T � (C∗)3 acts by

(t1, t2, t3) · xi = ti xi .

Since C is T -fixed, it is defined by a monomial ideal I of the polynomial ring R =
C[x1, x2, x3]. By the purity of F , C is a Cohen–Macaulay curve, i.e. a pure one-
dimensional curve with no embedded point. Therefore the ring R/I is of pure dimension
one. The set of such monomial ideals I is in one-to-one correspondence with the set of
triples of three outgoing partitions as follows.

A monomial ideal I in R is associated to a three dimensional partition π by consid-
ering a union of boxes corresponding to the weights of R/I in the group of characters
of T , identified with Z

3 in the usual way. The localizations

(I )xi ⊂ C[x1, x2, x3]xi ,

for i = 1, 2, 3 are all T -fixed, and hence each corresponds to a two-dimensional partition
π i . One can think of π i as a cross-section of the three dimensional partition π by a plane
xi = c for a large integer c. We will call π i the outgoing partition of π . Conversely,
given a triple (π1, π2, π3) of outgoing partitions, the monomial ideal I is defined by a
unique minimal three dimensional partition with outgoing partition (π1, π2, π3). The
minimality assumption is due to the Cohen–Macaulay property of the curve C . We
denote the curve corresponding to the outgoing partition �π = (π1, π2, π3) by C �π .

Proposition 4 ([45]). Let m ⊂ OC be the ideal of a zero dimensional subscheme of a
Cohen–Macaulay curve C. A stable pair (F , s) with support C satisfying

Supportred(Q) ⊂ Support(OC/m)

is equivalent to a subsheaf of H om(mr ,OC )/OC , for r � 0.

We have inclusions

H om(mr ,OC ) → H om(mr+1,OC )

by the purity of OC . Hence, by Proposition 4, we may consider a stable pair as a subsheaf
of the limit

lim−→
r

H om(mr ,OC )/OC .
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Under the equivalence of Proposition 4, the subsheaf of lim−→
r

H om(mr ,OC )/OC is

precisely the cokernel Q.
Let π1[x2, x3] be the monomial ideal of C[x2, x3] defined by a partition π1, and let

M1 = C[x1, x−1
1 ] ⊗

(
C[x2, x3]/π1[x2, x3]

)
.

We define M2 and M3 similarly. Hence, Mi may be viewed in the space of T -characters
as an infinite cylinder Cyli ∈ Z

3 along the xi axis with cross-section π i .
Then we have

lim−→
r

H om(mr ,OC ) �
3⊕

i=1

Mi =: M.

The submodule OC in M is generated by (1, 1, 1). Hence, the T -fixed stable pair
(F |U , s|U ) corresponds to a finite dimensional T -invariant submodule of M/〈(1, 1, 1)〉.
In [46], this submodule is described by box configurations as follows.

There are three types of T -weights of M/〈(1, 1, 1)〉:
(i) weights which are contained in exactly one cylinder Cyli and have negative i-th

coordinate. The set of all weights of these type is denoted by I−.
(ii) weights which are contained in exactly two and three cylinders. The sets of weights

of these types are denoted by II and III respectively.

Let Cw be the one dimensional weight space with the weight w. Then, we have by
definition

M/〈(1, 1, 1)〉 =
⊕

w∈I−∪II

Cw ⊕
⊕

w∈III

(Cw)2. (6.1)

The R-module structure on M/〈(1, 1, 1)〉 is such that multiplication by xi increases
the i-th coordinate of the weight vector by one. See [46] for more precise statements.
Therefore, the T -fixed pair on U can be described by a T -invariant R-submodule of
(6.1), which by taking its T -weights, yields a labeled box configuration in I− ∪ II ∪ III.
Figure 1 depicts an example of a labeled box configuration.

A labeled box configuration is a collection of a finite number of boxes supported on
I− ∪ II ∪ III, where a box at a type III weight w may be labeled by a one dimensional
subspace of (Cw)2 in (6.1). A box indicates the inclusion of the corresponding T -weight
in Q. An unlabeled type III box indicates the inclusion of the entire two dimensional space
(Cw)2 in Q. Fixed point loci corresponding to box configurations not containing any
labeled type III boxes are isolated. Since box configurations correspond to submodules
of M/〈(1, 1, 1)〉, it must be invariant under multiplication by xi . We refer to [46] for
more detail.

We return to the case where X is local P
2. Local P

2 has three T -fixed points, denoted
by p0, p1, and p2. Let Li j be the T -invariant line connecting pi and p j . Then, as there is
no compact T -invariant line along the fiber direction, we do not have any type III boxes.6

It follows that all T -fixed points in Pn(X, d) are isolated. Since there are no labeled
type III boxes, the condition that the labeled box configuration defines a T -invariant
R-submodule is simply as follows.

(†) For w = (w1, w2, w3) ∈ I− ∪ II, if any of

6 The same result holds for any local Calabi–Yau threefold based on a toric surface.
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Fig. 1. The figure shows boxes of type I− in red, boxes of type II in blue (light) and two uncolored positive
cylinders corresponding to the partitions (3, 1, 1) and (1, 1). In local toric Calabi–Yau manifolds there are
only two cylinders and no boxes of type III (color figure online)

(w1 − 1, w2, w3), (w1, w2 − 1, w3), (w1, w2, w3 − 1)

support a box then w must support a box.

The length of the box configuration is defined by the dimension of the corresponding
submodule of M/〈(1, 1, 1)〉 as a vector space, which in the case of local P

2, is the same
as the number of boxes. Then by [46], we have the following.

Proposition 5. The torus fixed points in Pn(X, d) are in one-to-one correspondence with
the tuples (B0, B1, B2) of three box configurations satisfying the rule (†) such that for
some triple �λ = (λ01, λ02, λ12) of partitions with |λ01| + |λ02| + |λ12| = d, the outgoing
partitions of B0, B1, B2 are (λ01, λ02,∅), (λ12, λ01,∅), and (λ02, λ12,∅) respectively,
and the sum of the lengths of B0, B1, B2 is equal to n − χ(OC(�λ)), where C(�λ) is the

torus fixed curve on P
2 defined by the partitions λi j along T -invariant line Li j .

Proof. A T -fixed stable pair (F , s) is supported on a T -invariant curve of degree d,
which is given by C(�λ) for some triple �λ of partitions. By the exact sequence

0 → OC(�λ) → F → Q → 0,

we have

n = χ(F) = χ(Q) + χ(OC(�λ)).

Moreover, Q must be supported on fixed points, and by the above discussion, at each
fixed point Q corresponds to a box configuration satisfying the rule (†). ��

For a triple �π = (π1, π2, π3) of partitions, define the renormalized volume | �π | by

| �π | = #
{
π ∩ [0, . . . , N ]3

}
− (N + 1)

3∑

i=1

|π i | , N � 0,

where π is the three dimensional partition corresponding to the curve C �π .
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Lemma 1. In Proposition 5,

χ(OC(�λ)) =
∑

λ∈{λ01,λ02,λ12}

⎛

⎝
l(λ)∑

j=1

(
λ j (3λ j + 1)

2
− jλ j

)⎞

⎠

+ |(λ01, λ02,∅)| + |(λ12, λ01,∅)| + |(λ02, λ12,∅)|,
where the partition λ is written as λ = λ1 + · · · + λl(λ) with λ1 ≥ λ2 ≥ · · · λl(λ) and the
two-dimensional partitions λ are oriented so that λ1 represents the order of thickening
of the associated line in the non-compact direction normal to P

2.

Proof. Each torus fixed line Li j is isomorphic to P
1, and has normal bundle OP1(1) ⊕

OP1(−3). This follows from an elementary computation by applying [38, Lemma 5].
��

The case when X is local P
1 ×P

1 is similar. Local P
1 ×P

1 has four T -fixed points p0,
p1, p2 and p3, and four T invariant lines Li j connecting them. The torus fixed points are
given similarly by tuples of box configurations at four points whose outgoing partitions
are given by partitions along four invariant lines. We state the results.

Proposition 6. Let X be local P
1 × P

1. The torus fixed points in Pn(X, (d1, d2)) are in
one-to-one correspondence with the tuples (B0, B1, B2, B3) of four box configurations
satisfying the rule (†) that for some quadruple �λ = (λ01, λ12, λ23, λ30) of partitions
with (|λ01| + |λ23|, |λ12| + |λ30|) = (d1, d2), the outgoing partitions of B0, B1, B2, and
B3 are (λ30, λ01,∅), (λ01, λ12,∅), (λ12, λ23,∅) and (λ23, λ30,∅) respectively, and the
sum of the lengths of B0, B1, B2, and B3 is equal to n − χ(OC(�λ)), where C(�λ) is the

torus fixed curve on P
1 × P

1 defined by the partition λi j along T -invariant line Li j .

Lemma 2. In Proposition 6,

χ(OC(�λ)) =
∑

λ∈{λ01,λ12,λ23,λ30}

⎛

⎝
l(λ)∑

j=1

λ2
j

⎞

⎠

+ |(λ30, λ01,∅)| + |(λ01, λ12,∅)| + |(λ12, λ23,∅)| + |(λ23, λ30,∅)|.
As before, the two-dimensional partitions λ are oriented so that λ1 represents the order
of thickening of the associated line in the non-compact direction normal to P

1 × P
1.

6.2. Virtual equivariant tangent obstruction theory. The virtual tangent space of Pn(X, d)

at a point corresponding to a pair I• : OX
s→ F is given by

TI• = Ext1(I•, I•) − Ext2(I•, I•).

Consider

χ(I•, I•) =
3∑

i=0

(−1)i Exti (I•, I•).
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The T -action on Ext0(I•, I•) � C is trivial. By Serre duality, Ext3(I•, I•) is the
one dimensional T -representation with T -weight δ−1, where δ is the T -weight of the
Calabi–Yau form. Hence, in the representation ring of the torus T , we have

TI• = 1 − δ−1 − χ(I•, I•).

It is enough to compute the representation of χ(I•, I•).
For each affine invariant open set Uα , we denote the T -character of �(Uα,F) by Fα .

Let Uαβ be the intersection of Uα and Uβ . Then, after reordering the indices if necessary,
the T -character Fαβ of �(Uαβ,F) is of the form

Fαβ = δ(t1)Fαβ(t2, t3),

where t1, t2 and t3 are T -weights of three coordinate axis of Uα . Here δ(t1) is the formal
delta function at t1 = 1

δ(t1) =
∞∑

n=−∞
tn
1 = 1

1 − t1
+

t−1
1

1 − t−1
1

and Fαβ(t2, t3) = ∑
(k2,k3)∈παβ tk2

2 tk3
3 , where παβ is corresponding outgoing partition.

These can be easily obtained from the description of T -fixed stable pair in Sect. 6.1.
In [46], the representation of χ(I•, I•) is computed in terms of Fα and Fαβ via the

local-to-global spectral sequence and Čech complex with respect to open cover {Uα}. It
can be easily seen that we only need contributions from Uα and Uαβ .

Define the bar operation

Q ∈ Z((t1, t2, t3)) �→ Q ∈ Z((t1, t2, t3))

by ti �→ t−1
i on variables. Let

Gα = Fα − Fα

t1t2t3
+ Fα Fα

(1 − t1)(1 − t2)(1 − t3)

t1t2t3
.

This is the contribution to the representation of χ(I•, I•) from open set Uα . In general,
Gα is not a finite Laurent polynomial. To get a finite vertex contribution, a part of the
edge contribution needs to be subtracted. Let

Gαβ = −Fαβ − Fαβ

t2t3
+ Fαβ Fαβ

(1 − t2)(1 − t3)

t2t3
.

Then the edge contribution from the open set Uαβ is δ(t1)Gαβ . We define a vertex
character

Vα = Fα +
∑

βi

Gαβi

1 − ti
,

where the summation runs over the three neighboring vertices βi . We denote the remain-
ing edge contribution by Eαβ . Then it is shown in [46] that Vα and Eαβ are finite Laurent
polynomials. The former is called the vertex contribution and the latter the edge contri-
bution. Hence we obtain the T -character of TI• .
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Proposition 7. In the representation ring of the torus T , we have

TI• =
∑

α

Vα +
∑

αβ

Eαβ. (6.2)

We restrict to a subtorus {δ = 1} ⊂ T preserving the Calabi–Yau form. Then, (6.2) is
of the form TI• = T anI• − ObsI• , where T anI• and ObsI• are T -representations
of Ext1(I•, I•) and Ext2(I•, I•) respectively and are dual to each other. In the next
section, we use T anI• to define the virtual Bialynicki-Birula decomposition of Pn(X, d).

We have written a Mathematica program to compute the equivariant obstruction
theory of the Pn(X, d).

7. Refinement of the Pandharipande–Thomas Invariants

In this section, we define the refined PT invariants, first explaining the motivic viewpoint,
and then the equivariant viewpoint. In Sect. 8 we will see that applying the procedure of
Sect. 5 to the refined invariants leads to a geometric calculation of the SU(2) × SU(2)

BPS invariants, assuming the equivariant product formula (2.16) for the refined invari-
ants. Alternatively, the verification of relationships between refined PT invariants using
wall crossing methods can lead, at least in principle, to a proof of the equivariant product
formula.

7.1. Virtual Bialynicki-Birula decomposition. We first recall the Bialynicki-Birula decom-
position. Let M be a smooth n-dimensional projective variety over C admitting a C

∗
action with finitely many fixed points. For each p ∈ MC

∗
, there is an induced action of

C
∗ on Tp M , leading to a decomposition into eigenspaces of the characters χ of C

∗

Tp M =
⊕

χ∈X (C∗)
T χ

p . (7.1)

Put T +
p = ⊕χ>0T χ

p and T −
p = ⊕χ<0T χ

p and let d+
p = dim T +

p , d−
p = dim T −

p . Zero is
not an eigencharacter since p is an isolated fixed point.

Now let

Up =
{

x ∈ M | lim
t→0

t · x = p

}
. (7.2)

Then Up is a cell of dimension d+
p . The collection of all cells Up constitutes a cell

decomposition, the Bialynicki-Birula decomposition. It follows that the absolute motive
[M] of M is given by

[M] =
∑

p∈MC∗
Ld+

p , (7.3)

a polynomial in the absolute motive L = [C] of C.
Let’s now endow M with its canonical symmetric obstruction theory, with obstruction

bundle T ∗M . We can view this as the symmetric obstruction theory associated to the
trivial superpotential W = 0. Then the construction of [6] associates to (M, W = 0) a
virtual motive7

[M]vir =
(
−L−1/2

)n [M]=
(
−L−1/2

)n ∑

p∈MC∗
Ld+

p =
∑

p∈MC∗

(
−L−1/2

)d+
p−d−

p
. (7.4)

7 Our sign convention is chosen to match both the conventions of physics and the work [42] of Nekrasov
and Okounkov to be discussed in Sect. 7.2.
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Remark. (7.4) shows that [M]vir is independent of the choice of C
∗ action on M with

finitely many fixed points. It is an open question as to whether the virtual motive depends
on the choice of a superpotential on a smooth variety containing M which induces the
same symmetric obstruction theory. It is shown in [6] that the relative virtual motive is
(−L−1/2)n , independent of choices. Furthermore, the argument comes close to proving
the desired independence for the virtual motive itself.

We now return to the situation where X is a local toric Calabi–Yau threefold. Consider
the PT moduli space Pn(X, β) and let Pn(X, β)T be its fixed-point locus. In Sect. 6.1,
we saw that Pn(X, β)T is isolated. Pick a 1-parameter subgroup C

∗ ⊂ T sufficiently
generic so that Pn(X, β)C

∗ = Pn(X, β)T . If Pn(X, β) is smooth, there is an asso-
ciated Bialynicki-Birula decomposition, leading to a formula for the absolute motive
[Pn(X, β)] as a polynomial in L, independent of the choice of C

∗ ⊂ T . The virtual
motive associated with (Pn(X, β), W = 0) is then

[Pn(X, β)]vir =
∑

Z∈Pn(X,β)C
∗

(
−L−1/2

)d+
Z −d−

Z
, (7.5)

a Laurent polynomial in L1/2, and independent of the choice of C
∗ ⊂ T .

We will associate to any Pn(X, β), whether smooth or not, a virtual Bialynicki-
Birula decomposition, leading to a virtual Bialynicki-Birula motive [Pn(X, β)]vir given
by (7.5).

In the smooth case, each term in the virtual motive is equal to the absolute motive of
the corresponding cell in the Bialynicki-Birula decomposition times a power of −L−1/2.
In general, the exponent of L−1/2 is the dimension of the tangent space to Pn(X, β) at
Z . Since Pn(X, β) is not assumed smooth, the exponents can be different for different
fixed points.

We will see in Sect. 7.2 that [Pn(X, β)]vir is independent of the choice of C
∗ ⊂ T0 ⊂

T , where T0 ⊂ T is the subtorus which preserves the holomorphic 3-form. We see this
indirectly, by translating from the motivic to the equivariant setting and using [42].

We remark that this sort of calculation was first attempted in [9].

Remark. A natural question to ask is whether there is a systematic way to define Pn(X, β)

as the critical point locus of a superpotential W on a smooth space. This would lead to
an intrinsic definition of the virtual motive [Pn(X, β)]vir and would make it feasible to
find a motivic proof of its independence of the choice of C

∗ ⊂ T0.

7.2. Nekrasov and Okounkov’s equivariant virtual index. In this section, we review the
results of [42], which will allow us to present our results in a more rigorous manner.

We begin with a quick discussion of the virtual holomorphic Euler characteristic and
virtual Riemann–Roch. A reference for this part is [11].

Let M admit a perfect obstruction theory. Then M has a virtual structure sheaf Ovir
M , a

class in K 0(M). Given any class V ∈ K 0(M), its virtual holomorphic euler characteristic
can be defined as

χvir(M, V ) := χ(M, V ⊗ Ovir
M ). (7.6)

The right hand side of (7.6) can be computed by Riemann–Roch on M , which can be
recast as virtual Riemann–Roch on M taken together with its obstruction theory.
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Now suppose that M admits a perfect obstruction theory, so that in particular its vir-
tual dimension is 0 and M has a Donaldson–Thomas-type invariant which we write as
#vir(M). In this situation, the virtual canonical bundle K vir

M has a square root (K vir
M )1/2

(for example, if M is smooth, then (K vir
M )1/2 is just the ordinary canonical bundle of M).

Then the virtual index of M is

χvir(M, (K vir
M )1/2) = #vir(M). (7.7)

Now suppose that M and its obstruction theory E• are G-equivariant, with (E•)∨ �
E• ⊗ δ, for some character δ of G. While K vir

M inherits inherits a G action, (K vir
M )1/2

need not and so we may need to go to a double cover G̃ of G to define an equivariant
virtual index, a representation of G̃ rather than just a number. The fundamental result is
that

χvir(M, (K vir
M )1/2) ∈ Z[δ1/2, δ−1/2], (7.8)

where δ1/2 is a character of G̃ which is a square root of δ.
Now suppose that we have a 1-parameter subgroup σ : C

∗ ↪→ G contained in the
kernel of δ such that MC

∗
is finite. Then localization is particularly simple.

Proposition 8.

χvir(M, (K vir
M )1/2) =

∑

p∈MC∗

(
−δ1/2

)d+
p−d−

p
. (7.9)

Note that (7.9) is precisely the same as (7.4), with δ in place of L. Since the equivariant
virtual index has been defined without a choice of a 1-parameter subgroup, we see that
the right hand side of (8) is independent of the choice of a 1-parameter subgroup σ

contained in the kernel of δ. Thus the virtual BB motive is independent of the choice of
σ as well.

We now apply this to the situation of the PT invariants of a local toric Calabi–
Yau threefold. Since each Pn(X, β) is compact, the theory of [42] applies. We have
G = T = (C∗)3 and we let δ be the character of the natural T -action on the T -invariant
holomorphic 3-form on X as in Sect. 6.2. Then the PT obstruction theory E• on Pn(X, β)

satisfies (E•)∨ � E• ⊗ δ. We can therefore define and compute the equivariant index
for PT invariants by the results of this section. This index, the refined PT invariant, will
be denoted by P r

n,β(X) ∈ Z[δ1/2, δ1/2] � Z[L1/2, L−1/2].

7.3. Geometric calculation of refined PT-invariants. The calculation of the refined PT
invariants is now straightforward. We choose a generic 1-parameter subgroup C

∗ ⊂ T0
and apply localization using the results of Sect. 6. The refined invariants are then given
by Proposition 8 in the equivariant language or (7.4) in the motivic language. We have
implemented these calculations on a computer.

8. Calculation of the BPS Invariants from the Refined PT-Invariants

The basic idea is to repeat the argument of Sect. 5 equivariantly, using (2.16) in place of
(4.4). For clarity, we rewrite (2.16) here in more geometric language.
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Zr
PT =

∏

β, jL , jR

jL/R∏

mL/R=− jL/R

∞∏

m=1

m−1∏

j=0

×
(

1 − L−m/2+1/2+ j−m R (−q)m−2mL Qβ
)(−1)2( jL + jR ) Nβ

jL , jR , (8.1)

where we have made the changes of variables

q1/2
L → −q−1, qR → L−1, eε1 → L−1/2 (−q) , eε2 → L1/2 (−q)

starting from (2.16). We have also changed the index variables by identifying m1 + m2
and m1 − m2 in (2.16) with m + 1 and m + 1 − 2 j , respectively.

Clearly the SU(2) × SU(2) BPS invariants Nβ
jL , jR

together with (8.1) determine the
refined PT invariants. In this section, we show how to reverse the procedure, determining
the SU(2) × SU(2) BPS invariants from the knowledge of the refined PT invariants and
(2.16).

Claim: The Nβ
jL , jR

are uniquely determined from the refined PT invariants and (8.1).

For convenience, we put

[ jR]L := L− jR + L− jR+1 + · · · + L jR−1 + L jR .

Note that the {[ jR]L} form an additive basis for the vector space of Laurent polynomials
in L and L−1 which are symmetric under the Z2 symmetry L ↔ L−1. The refined PT
invariants always respect this symmetry. Furthermore, since [ jR]L is just the character of
the [ jR] representation of SU(2), the map [ jR] �→ [ jR]L from the representation ring of
SU(2) to the ring of polynomials Z[L1/2, L−1/2] is a ring homomorphism. This allows
one to easily multiply the expressions [ jR]L. For example, we have

[ jR]L

[
1

2

]

L
=
[

jR +
1

2

]

L
+

[
jR − 1

2

]

L

by the analogous identity in the representation ring of SU(2).
We prove the claim by induction on β and k. We start from small β, choosing any

ordering of the β refining the partial ordering β1 ≥ β2 if β1 −β2 is effective, and proceed
inductively using this ordering of the β.

For the fixed β, we look at which factors in (8.1) can contribute to P r
k,β . We have

k = m − 2mL . The smallest value of k that can occur is k = 1 − pa , for m = 1 and
mL = pa/2. We then compare coefficients of q1−pa Qβ in (8.1) and get

PT r
1−pa ,β =

∑

jR

(−1)2 jR Nβ
pa/2, jR

[ jR]L, (8.2)

where we have combined the relevant terms in the sum over m R in 8.1 to get the factor
of [ jR]L in (8.2). After rewriting PT r

1−pa ,β in the [ jR]L basis, the Nβ
pa/2, jR

are read off
immediately from (8.2).

Continuing with this fixed β, we now proceed with a downward induction on jL .

Suppose we have found Nβ ′
jL , jR

for all β ′ < β and for β ′ = β and all jL > JL . We put
k = 1 − 2JL in (8.1) and see that

PT r
1−2JL ,β =

∑

jR

(−1)2 jR Nβ
JL , jR

[ jr ]L + S, (8.3)
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where the omitted terms S only depend on the Nβ ′
jL , jR

for all β ′ < β and for β ′ = β and
all jL > JL , which are known by the inductive procedure. After substituting in these
known quantities and expressing PT r

1−2JL ,β in the [ jR]L basis, the Nβ
JL , jR

are read off
immediately from (8.3).

Remark. It is not immediately obvious from the geometric procedure why the Nβ
jL , jR

should be nonnegative integers.

For local P
1, it is well known that the only nonvanishing BPS invariant is N 1

0,0 = 1.
In that case, (8.1) simplifies to the motivic product formula of [39].

By the computer program, we have checked (8.1) for local P
2 when

d = 3 and n ≤ 10,

d = 4 and n ≤ 9,

d = 5 and n ≤ 1,

and for local P
1 × P

1 for degree (d1, d2) with d1 + d2 ≤ 5 and n ≤ 6.
We now take up the case where X is local P

2 and show how the refined PT invariants
can be used to deduce the BPS invariants.

8.1. Refined invariants for local P
2. We now illustrate the method for low degree in P

2.
For curves of degree d, we have pa = pa(d) = (d − 1)(d − 2)/2. We will assume
that ng

d = 0 for g > pa(d). As explained in Sect. 4.1, the PT-moduli spaces will be
equal to the relative Hilbert schemes in the cases discussed below, so the PT invariants
can be calculated by hand. We will also repeatedly use the fact that the moduli space
of curves of degree d on P

2 is isomorphic to P
(d2+3d)/2, with virtual Bialynicki-Birula

decomposition or equivariant index [(d2 + 3d)/4]L.

d = 1. We have pa = 0, so we get from (8.2) an application of (7.5) and either
P1(X, 1) � P

2 or the computation of Sect. 6,

[1]L = P r
1,1 =

∑

jR

(−1)2 jR N 1
0, jR

[ jR]L,

which leads immediately to

N 1
0, jR

=
{

1 jR = 1
0 otherwise ,

in agreement with the B-model result.

d = 2. We have pa = 0, so we get from (8.2) an application of (7.5), and either
P1(X, 2) � P

5 or the computation of Sect. 6,

−
[

5

2

]

L
= P r

1,2 =
∑

jR

(−1)2 jR N 2
0, jR

[ jR]L,

which leads immediately to

N 2
0, jR

=
{

1 jR = 5/2
0 otherwise

in agreement with the B-model results.
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d = 3. We have pa = 1, so we get from (8.2) an application of (7.5), and either
P0(X, 3) � P

9 or the computation of Sect. 6,

−
[

9

2

]

L
= P r

0,3 =
∑

jR

(−1)2 jR N 3
1/2, jR

[ jR]L,

which leads immediately to

N 3
1/2, jR

=
{

1 jR = 9/2
0 otherwise . (8.4)

Next, expanding the coefficient of q Q3 in (8.1) gives for (8.3)

[5]L+[4]L+[3]L = P r
1,3 =

∑

jR

(
(−1)2 jR N 3

0, jR
[ jR]L + (−1)2 jR+1 N 3

1/2, jR
[1/2]L[ jR]L

)
,

(8.5)
where the factor of [1/2]L comes from combining the terms of the sum over mL in (8.1)
when jL = 1/2. The left hand side of (8.5) arises since P1(X, 3) is a P

8 bundle over P
2

and [4][1] = [5] + [4] + [3], or by the computations of Sect. 6. Then (8.5) simplifies to

[5]L + [4]L + [3]L =
∑

jR

(−1)2 jR N 3
0, jR

[ jR]L +

[
1

2

]

L

[
9

2

]

L
, (8.6)

where we have used (8.4) to get (8.6). Since [1/2][9/2] = [5] + [4], we conclude that

N 3
0, jR

=
{

1 jR = 3
0 otherwise , (8.7)

in agreement with the B-model results.
Note that the last equality in (8.6) agrees with (8.3) with S = [1/2]L[9/2]L (this last

expression only requiring the knowledge of N 3
1/2, jR

and not any other Nβ
jL , jR

).
The higher degrees are done in essentially the same way. For degrees 4 and 5, as with

degree 3, the term S in the proof of the claim can actually be written as a sum of products
of various [ jR]L. In Sect. 9 we will explain this observation by using a refinement of the
KKV method. In general, the calculation can be implemented on a computer without
the need for this algebraic simplification. In general, the refined PT invariants can be
computed algorithmically by the torus localization method of Sect. 6.

8.2. Refined invariants for local P
1 × P

1. For curves of bidegree (d1, d2), we have
pa = pa(d1, d2) = (d1 −1)(d2 −1). We will assume that ng

d1,d2
= 0 for g > pa(d1, d2).

As explained in Sect. 4.1, the PT-moduli spaces will be equal to the relative Hilbert
schemes in the cases discussed below, so the PT invariants can be calculated by hand.
We will also repeatedly use that the moduli space of curves of bidegree (d1, d2) on
P

1 × P
1 is isomorphic to P

(d1+1)(d2+1)−1, with virtual Bialynicki-Birula decomposition
or equivariant index [((d1 + 1)(d2 + 1) − 1)/2]L.

We will find it convenient to rewrite Qβ with β = (d1, d2) as Qd1
1 Qd2

2 .

(d1, d2) = (0, 1). We have pa = 0, so we get from (8.2) and an application of (7.5) or
the computation of Sect. 6
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−
[

1

2

]

L
= P r

1,(0,1) =
∑

jR

(−1)2 jR N 0,1
0, jR

[ jR]L,

which leads immediately to

N 0,1
0, jR

=
{

1 jR = 1/2
0 otherwise ,

in agreement with the B-model result.

(d1, d2) = (1, 0). By symmetry we see immediately that

N 1,0
0, jR

=
{

1 jR = 1/2
0 otherwise ,

(d1, d2) = (1, d2), d2 ≥ 1. We have pa = 0 and the moduli space of these curves is
P

2d2+1, so we get as above

−
[

d2 +
1

2

]

L
= P r

1,(1,d2)
=
∑

jR

(−1)2 jR N 1,d2
0, jR

[ jR]L,

which leads immediately to

N 1,d2
0, jR

=
{

1 jR = d2 + 1/2
0 otherwise ,

in agreement with the B-model results as far as we have checked.
(d1, d2) = (d1, 1), d1 ≥ 1. By symmetry we have immediately

N d1,1
0, jR

=
{

1 jR = d1 + 1/2
0 otherwise .

(d1, d2) = (2, 2). Now pa = 1. For jL = 1/2, we can again use (8.2) and the P
8 moduli

space to get

[4]L = P r
0,(2,2) =

∑

jR

(−1)2 jR N 2,2
1/2, jR

[ jR]L,

which leads immediately to

N 2,2
1/2, jR

=
{

1 jR = 4
0 otherwise .

For jL = 0, we need to use the product formula and examine the coefficient of q Q2
1 Q2

2

using the above result for the N 2,2
jL , jR

.

The moduli space P1(X, (2, 2)) is a P
7 bundle over P

1 ×P
1, with virtual Bialynicki-

Birula decomposition or equivariant index
[

7

2

]

L

[
1

2

]

L

[
1

2

]

L
=
[

9

2

]

L
+ 2

[
7

2

]

L
+

[
5

2

]

L
. (8.8)
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The expansion gives for the coefficient of q Q2
1 Q2

2

[4]L

[
1

2

]

L
+
∑

jR

(−1)2 jR N 2,2
0, jR

[ jR]L (8.9)

Equating (8.8) and (8.9) gives

N 2,2
0, jR

=
{

1 jR = 7/2, 5/2
0 otherwise .

As for P
2, the higher bidegrees are done in essentially the same way, using the torus

localization method of Sect. 6 to compute the refined PT invariants algorithmically by
computer instead of by classical algebraic geometry.

9. Refinement of the KKV Approach

9.1. Local P
2 and asymptotic behavior of the refined PT-invariants. The basic idea is

that for k < d −1, the method of [31] says that we can compute the refined PT invariants
PT r

1−pa+k,d by elementary projective geometry, without the need for the more elaborate
toric computation of Sect. 6. In addition to the increased simplicity, infinite collections
of results can be put into closed form, providing asymptotic formulae.

Recall from the end of Sect. 5 that C[k] is smooth for k in this range. Hence the virtual
BB decomposition arises from the usual BB decomposition, and therefore the refined
invariants arise from the Lefschetz action, as was already well known in the physics
literature.

Furthermore, since correction terms come from products of PT invariants of lower
degree, and for any degree d the minimum holomorphic Euler characteristic that can
occur is 1 − pa(d) = 1 − (d − 1)(d − 2)/2, we see that the minimum holomorphic
Euler characteristic with a correction term is

min {(1 − pa(d1)) + (1 − pa(d2)) | d1 + d2 = d} . (9.1)

The minimum of (9.1) occurs when d1 = 1 or d2 = 1, in which case it simplifies to
1 − pa(d) + (d − 1). We conclude that there are no correction terms if k < d − 1, in
which case (5.10) simplifies to

H∗ (C[k]) =
(
θ pa−kĤβ

)

SU(2)�
⊕ H∗ (C[k−2]) . (9.2)

Furthermore (9.2), with θ pa−kĤβ interpreted as being defined by the refined PT invari-
ants, is rigorously proven by Proposition 3.

To apply (9.2), we only need to compute the PT r
1−pa+k,d for k < d − 1. But this is

easy: P1−pa+k(X, d) is a P
d(d+3)/2−k-bundle over (P2)[k]. So its Lefschetz representation

is immediately computed as a product of the Lefschetz representations of P
d(d+3)/2−k

and (P2)[k]. This is an equivariant/motivic extension of the method of Sect. 5.
Before turning to the asymptotic formulae, we illustrate with low degree examples.

All the results agree with the B-model methods and the computations of Sect. 8.

d = 1. Putting g = 0, k = 0 in (9.2) we get
(
Ĥ1

)

SU(2)�
= H∗(C0) = H∗(P2).
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The Lefschetz of H∗(P2) is [1]. Since the left spin can only be [0], we conclude that the
representation is Ĥ1 = [0, 1]. Since Tr(−1)FR Ĥ1 = 3[0] = 3I0, we obtain n0

1 = 3 and
ng

1 = 0 for g > 0 for the GV invariants.

d = 2. We similarly have
(
Ĥ2

)

SU(2)�
= H∗(C0) = H∗(P5).

We conclude that Ĥ1 = [0, 5/2]. It follows that n0
2 = −6 and ng

2 = 0 for g > 0 for the
GV invariants.

d = 3. Now we can have a left spin of 1/2. First (9.2) gives
(
θĤ3

)

SU(2)�
= H∗(C[0]) = H∗(P0(X, 3)) = H∗(P9).

The Lefschetz of P
9 is [9/2]. We conclude that

Ĥ3 = [1/2, 9/2] ⊕ [0, R0]
for some representation R0 to be determined.

We now apply (9.2) again and get
(
Ĥ3

)

SU(2)�
= H∗(C[1]) = H∗(P1(X, 3)).

The Lefschetz of this P
8-bundle over P

2 is

[4] ⊗ [1] = [5] ⊕ [4] ⊕ [3].
Restricting [1/2, 9/2] ⊕ [0, R0] to SU(2)� gives

[1/2] ⊗ [9/2] ⊕ [0] ⊗ [R0] = [5] ⊕ [4] ⊕ R0.

Comparing, we see that R0 = 3 and conclude that

Ĥ3 = [1/2, 9/2] ⊕ [0, 3].
Then

Tr(−1)FR Ĥ3 = −10[1/2] + 7[0] = −10I1 + 27I0.

Therefore

ng
3 =

⎧
⎨

⎩

27 g = 0
−10 g = 1

0 g ≥ 2

for the GV invariants.

d = 4. We start with
(
θ3Ĥ4

)

SU(2)�
= H∗(C[0]) = H∗(P−2(X, 4)) = H∗(P14)
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and since H∗(P14) = [7] we see that

H4 = [3/2, 7] + [1, R1] + [1/2, R1/2] + [0, R0].
Then we get

θ2Ĥ4 = H∗(C[1]) = H∗(P−1(X, 4)).

We have seen that C[1] is a P
13-bundle over P

2, with Lefschetz

[13/2] ⊗ [1] = [15/2] + [13/2] + [11/2].
This must be equal to the restriction of

θ2 ([3/2, 7] + [1, R1] + [1/2, R1/2] + [0, R0]
) = [1/2, 7] ⊕ [0, R1]

to the diagonal, which is

([1/2] ⊗ [7]) + ([0] ⊗ R1) = [15/2] + [13/2] + R1.

We infer that R1 = [11/2].
To get R1/2, we use Ĥ4 = [3/2, 7] + [1, 11/2] + [1/2, R1/2] + [0, R0] and
(
θĤ4

)

SU(2)�
= H∗(C[2]) − H∗(C[0]) = H∗(P0(X, 4)) − H∗(P−2(X, 4)).

Now P0(X, 4) is a P
12-bundle over (P2)[2]. The Betti numbers of the Hilbert scheme

are found from

∑

m,n

Hm
((

P
2
)[n])

tn ym =
∏

m

((
1 − y2m−2tm

) (
1 − y2mtm

) (
1 − y2m+2tm

))−1
.

The Lefschetz SU(2) of (P2)[2] is easily deduced from the Betti numbers of (P2)[2] as
[2] + [1] + [0]. So the Lefschetz of P0(X, 4) is

[6] ⊗ ([2] + [1] + [0]) = [8] + 2[7] + 3[6] + 2[5] + [4].
Thus

H∗(C[2]) − H∗(C[0]) = [8] + [7] + 3[6] + 2[5] + [4].
Comparing to the restriction to the diagonal of [1, 7] ⊕ [1/2, 11/2] ⊕ [0, R1/2], which
is

= [1] ⊗ [7] + [1/2] ⊗ [11/2] + [0] ⊗ R1/2 = [8] + [7] + 2[6] + [5] + R1/2,

we conclude that R1/2 = [6] + [5] + [4].
This is as far as we can get from (9.2) for d = 4. We briefly digress from our main

development to show how we can complete the calculation by reverting to (5.10) and
computing equivariantly.

We have
(
Ĥ4

)

SU(2)�
= H∗(P1(X, 4)) − H∗(P−1(X, 4)) − H∗(P0(X, 3) × P1(X, 1)). (9.3)
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In [31], the product P0(X, 3) × P1(X, 1) appeared as a correction term, but now we see
from stable pairs theory that it is a natural occurrence. Now P1(X, 4) is a P

11-bundle
over (P2)[3]. The Lefschetz SU(2) of (P2)[3] is easily deduced from the Betti numbers
of (P2)[3] as [3] + [2] + 3[1] + [0]. So we get the Lefschetz of P1(X, 4) as

[11

2
] ⊗ ([3] + [2] + 3[1] + [0])

= [17

2
] + 2[15

2
] + 5[13

2
] + 6[11

2
] + 5[9

2
] + 2[7

2
] + [5

2
]

and therefore from (9.3) and previously computed representations we get
(
Ĥ4

)

SU(2)�
= [17

2
] + [15

2
] + 4[13

2
] + 4[11

2
] + 4[9

2
] + [7

2
] + [5

2
].

We have to compare to the diagonal restriction, which is = [ 3
2 ]⊗ [7]+ [1]⊗ [ 11

2 ]+ [ 1
2 ]⊗

([6] + [5] + [4]) + [0] ⊗ R0.
We solve to get R0 = [13/2] + [9/2] + [5/2], and conclude

Ĥ4 = [3/2, 7] + [1, 11/2] + [1/2, 6 + 5 + 4] + [0, 13/2 + 9/2 + 5/2].
Then

Tr(−1)FR Ĥ4 = 15[3/2] − 12[1] + 33[1/2] − 30[0] = 15I3 − 102I2 + 231I1 − 192I0.

Therefore

ng
4 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−192 g = 0
231 g = 1

−102 g = 2
15 g = 3
0 g ≥ 4

for the GV invariants.
We can now generalize the above computations to compute asymptotic formulae

for the SU(2) × SU(2) invariants for large d. For degree d, the maximum genus is
g = g(d) = (d − 1)(d − 2)/2, so the maximum left spin is

[ g
2

]
. The basic idea is that

for fixed k, we have that for d sufficiently large, P1−g(d)+k(X, d) is a P
d(d+3)/2−k bundle

over the Hilbert scheme (P2)[k], so computations can be done uniformly in d.
We start by writing the SU(2)L × SU(2)R representation as

g∑

i=0

[
i

2
, Ri

]

and solving for Ri in decreasing order.
We have

θ gĤd = [0, Rg] = C[0] = P
d(d+3)/2,

which has Lefschetz representation [d(d + 3)/4]. To simplify notation, let us define
D := d(d + 3)/2. This gives

Rg =
[

D

2

]
. (9.4)
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Note that the bottom row in Table 1 contains only the representation [g/2, D/2] with
multiplicity one, agreeing with (9.4).

For the second row from the bottom we have from (9.2)

θ g−1Ĥd = [0, Rg−1] +

[
1

2
, Rg

]
= C[1].

By the usual argument, the universal curve is a P
D−1-bundle over P

2, with Lefschetz

[1] ⊗
[

D − 1

2

]
=
[

D + 1

2

]
+

[
D − 1

2

]
+

[
D − 3

2

]
,

Restricting
[
0, Rg−1

]
+
[
1/2, Rg

]
to the diagonal and using (9.4) gives

Rg−1 +

[
D + 1

2

]
+

[
D − 1

2

]
.

Equating these last two expressions gives

Rg−1 =
[

D − 3

2

]
, (9.5)

the asymptotic expression for the second to the bottom row (valid for d ≥ 3).
For the next row we have

θ g−2Ĥd = [
0, Rg−2

]
+

[
1

2
, Rg−1

]
+
[
1, Rg

] = C[2] − C[0]. (9.6)

By the usual argument, C[2] is a P
D−2-bundle over (P2)[2], with Lefschetz

([2] + [1] + [0]) ⊗
[

D − 2

2

]

=
[

D + 2

2

]
+ 2

[
D

2

]
+ 3

[
D − 2

2

]
+ 2

[
D − 4

2

]
+

[
D − 6

2

]
,

so the right hand side of (9.6) is

([2] + [1] + [0]) ⊗
[

D − 2

2

]

=
[

D + 2

2

]
+

[
D

2

]
+ 3

[
D − 2

2

]
+ 2

[
D − 4

2

]
+

[
D − 6

2

]
.

Restricting the left hand side of (9.6) to the diagonal and using (9.4) and (9.5) gives

Rg−2 +

([
D − 2

2

]
+

[
D − 4

2

])
+

([
D + 2

2

]
+

[
D

2

]
+

[
D − 2

2

])
.

Equating these last two formulas and solving gives

Rg−2 =
[

D − 2

2

]
+

[
D − 4

2

]
+

[
D − 6

2

]
, (9.7)

the third asymptotic row from the bottom, valid for d ≥ 4.
Table 9 gives the asymptotic rows observed in the B-model calculation with the

ordering reversed, top to bottom instead of bottom to top. We have just explained the
first three rows of Table 9 from the viewpoint of the refined PT invariants and found
complete agreement, and we have similarly checked the first six rows and found complete
agreement with the B-model.
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Table 9. The asymptotic BPS numbers N∗
(gmax +i)/2,(D/2+k)

i/k −12 − 23
2 −11 − 21

2 −10 − 19
2 −9 − 17

2 −8 − 15
2 −7 − 13

2 −6 − 11
2 −5 − 9

2 −4 − 7
2 −3 − 5

2 −2 − 3
2 −1 − 1

2 0

0 1
−1 1
−2 1 1 1
−3 1 1 2 1 1
−4 1 3 3 3 1
−5 1 1 3 4 6 4 2
−6 1 1 3 5 9 8 3 1
−7 1 1 3 5 10 13 16 11 6 1
−8 1 1 3 5 11 16 24 24 20 9 3

9.2. Local P1×P
1 and asymptotic behavior of the refined PT-invariants. We now explain

the low bidegree cases with X equal to local P
1 × P

1, using the equivariant refinement
of the method of Sect. 5. Again, we find asymptotic formulae.

As observed earlier in Sect. 8.2, curves of bidegree (d1, d2) have arithmetic genus
pa = pa(d1, d2) = (d1−1)(d2−1) and these curves are parametrized by P

(d1+1)(d2+1)−1,
with Lefschetz representation [((d1 + 1)(d2 + 1) − 1)/2]. Without loss of generality, we
assume that d1 ≤ d2.

For k < d1, the method of [31] says that we can compute the refined PT invariants
PT r

1−pa+k,d by elementary projective geometry.
Note that the minimum holomorphic Euler characteristic with a correction term is

min
{(

1 − pa(d ′
1, d ′

2)
)

+
(
1 − pa(d ′′

1 , d ′′
2 )
) | d ′

1 + d ′′
1 = d1, d ′

2 + d ′′
2 = d2

}
. (9.8)

The minimum of (9.8) occurs when (d ′
1, d ′

2) = (0, 1) or (d ′′
1 , d ′′

2 ) = (0, 1), in which case
it simplifies to 1 − pa(d1, d2) + d1. In particular, there are no correction terms if k < d1.

Furthermore, it is straightforward to check that C[k] is smooth in this range.
To apply (9.2), we only need to compute the PT r

1−pa+k,(d1,d2)
for k < d1. But this is

easy: P1−pa+k(X, (d1, d2)) = C[k] is a P
(d1+1)(d2+1)−1−k-bundle over (P2)[k]. In particu-

lar, it is smooth. So its Lefschetz representation is immediately computed as a product of
the Lefschetz representations of P

d(d+3)/2−k and (P2)[k]. This is an equivariant/motivic
extension of the method of Sect. 5.

Before turning to the asymptotic formulae, we illustrate with low degree examples.
All the results agree with the B-model methods and the computations of Sect. 8.

(d1, d2) = (0, 1). Since pa = 0, we have Ĥ(0,1) = [0, R0] for some SU(2) represen-
tation R0. Now P1(X, (0, 1)) is the moduli space of curves of bidegree (0, 1), which
is isomorphic to P

1 and therefore has Lefschetz representation [1/2]. By Proposition 3
with β = (0, 1) and r = 0, we get Ĥ0,(0,1) = [0, 1/2]. Since Tr(−1)FR Ĥ0,(0,1) =
−2[0] = −2I0, we get n0

(0,1) = −2 and ng
(0,1) = 0 for g > 0 for the GV invariants, in

agreement with [31], where only the combined invariants ng
d := ∑

d1+d2=d ng
(d1,d2)

were
computed.

(d1, d2) = (1, 1). Since pa = 0, we have Ĥ(1,1) = [0, R0] for some SU(2) represen-
tation R0. Now P1(X, (1, 1)) is the moduli space of curves of bidegree (1, 1), which is
isomorphic to P

3 and therefore has Lefschetz representation [3/2]. This leads as above
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to Ĥ0,(1,1) = [0, 3/2], from which it follows that n0
(1,1) = −4 and ng

(1,1) = 0 for g > 0
for the GV invariants, in agreement with [31].

(d1, d2) = (1, d2). Since pa = 0, and P1(X, (1, d2)) is the moduli space of curves
of bidegree (1, d2), which is isomorphic to P

2d2+1, we have as above that Ĥ0,(1,d2) =
[0, d2 + 1/2], from which it follows that n0

(1,d2)
= −(2d2 + 2) and ng

(1,2d2)
= 0 for g > 0

for the GV invariants.

(d1, d2) = (2, 2). Now pa = 1, so we have Ĥ(2,2) = [1/2, R1/2] + [0, R0] for some
SU(2) representations R1/2 and R0. We apply Proposition 3 with β = (2, 2) and r = 1.
Now P0(X, (2, 2)) is the moduli space of curves of bidegree (2, 2), which is isomorphic
to P

8, so R1/2 = [4]. Since P1(X, (2, 2)) is a P
7-bundle over P

1 × P
1, its Lefschetz

decomposition is
[

7

2

] [
1

2

] [
1

2

]
=
[

9

2

]
+ 2

[
7

2

]
+

[
5

2

]
.

Then Proposition 3 with β = (2, 2) and r = 0 gives
[

9

2

]
+ 2

[
7

2

]
+

[
5

2

]
=
[

1

2

]
[4] + R0 =

[
9

2

]
+

[
7

2

]
+ R0,

so that R0 = [7/2] + [5/2]. Putting this all together, we get

Ĥ(2,2) =
[

1

2
, 4

]
+

[
0,

7

2

]
+

[
0,

5

2

]
.

Then

Tr (−1)FR Ĥ(2,2) = 9

[
1

2

]
− 14 [0] = 9I1 − 32I0.

It follows that

ng
(2,2) =

⎧
⎨

⎩

−32 g = 0
9 g = 1
0 g ≥ 2

for the GV invariants, in agreement with [31] after combining with ng
(1,3) (and ng

3,1).

(d1, d2) = (2, 3). Now pa = 2, so we have Ĥ(2,3) = [1, R1] + [1/2, R1/2] + [0, R0] for
some SU(2) representations R1, R1/2 and R0. We apply Proposition 3 with β = (2, 3)

and r = 2. Now P−1(X, (2, 3)) is the moduli space of curves of bidegree (2, 3), which
is isomorphic to P

11, so R1 = [11/2].
Since C = P0(X, (2, 3)) is a P

10-bundle over P
1 × P

1, its Lefschetz representation
is

[5]

[
1

2

] [
1

2

]
= [6] + 2 [5] + [4] .

Then Proposition 3 with β = (2, 3) and r = 1 gives

[6] + 2 [5] + [4] =
[

1

2

] [
11

2

]
+ R1/2 = [6] + [5] + R1/2,

so that R1/2 = [5] + [4].
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Finally, we have to compute C[2] = P1(X, (2, 3)), which is a P
9 bundle over (P1 ×

P
1)[2]. While we still have smoothness, we will nevertheless have a correction term,

since in this case k = 2 = d1.
We compute the Betti numbers of the Hilbert schemes of P

1 × P
1 by the generating

function
∑

m,n

Hm
((

P
1 × P

1
)[n])

tn ym

=
∏

m

((
1 − y2m−2tm

) (
1 − y2mtm

)2 (
1 − y2m+2tm

))−1

.

This gives the Lefschetz of (P1 × P
1)[2] as [2] + 2[1] + 3[0]. This implies that we get

[9/2]([2] + 2[1] + 3[0]) for P1(X, (2, 3)), which expands to
[

13

2

]
+ 3

[
11

2

]
+ 6

[
9

2

]
+ 3

[
7

2

]
+

[
5

2

]
.

Applying Proposition 3 with β = (2, 3) and r = 0 gives for the left hand side
[

13

2

]
+ 3

[
11

2

]
+ 6

[
9

2

]
+ 3

[
7

2

]
+

[
5

2

]
−
[

11

2

]

=
[

13

2

]
+ 2

[
11

2

]
+ 6

[
9

2

]
+ 3

[
7

2

]
+

[
5

2

]
,

while for the right hand side we get, ignoring correction terms for the moment

[1]

[
11

2

]
+

[
1

2

]
([5] + [4]) + R0 =

[
13

2

]
+ 2

[
11

2

]
+ 3

[
9

2

]
+

[
7

2

]
+ R0

so that R0 = 3[9/2] + 2[7/2] + [5/2]. However there is a correction due to reducible
curves C ′ ∪ C ′′, where C ′ and C ′′ have bidegrees (2, 2) and (1, 0) respectively. The
correction term may be recognized either from the method of [31] or by the product
formula (8.1). Either way, the correction is [1/2][4] = [9/2] + [7/2], coming from the
moduli space P

1 × P
8 of the pair of curves. This gives the corrected value

R0 = 2[9/2] + [7/2] + [5/2].
Putting this all together, we get

Ĥ(2,3) =
[

1,
11

2

]
+

[
1

2
, 5

]
+

[
1

2
, 4

]
+ 2

[
0,

9

2

]
+

[
0,

7

2

]
+

[
0,

5

2

]
.

Then

Tr (−1)FR Ĥ(2,3) = −12 [1] + 20

[
1

2

]
− 34 [0] = −12I2 + 68I1 − 110I0.

It follows that

ng
(2,3) =

⎧
⎪⎨

⎪⎩

−110 g = 0
68 g = 1

−12 g = 2
0 g ≥ 3

for the GV invariants, again agreeing with [31] for d = d1 + d2 = 5.
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We can now turn to the asymptotic formulae for sufficiently large (d1, d2).
We start by writing the SU(2)L × SU(2)R representation as

pa∑

i=0

[
i

2
, Ri

]

and solving for Ri in decreasing order.
We put D = (d1 + 1)(d2 + 1) − 1.
We have

θ pa Ĥd = [0, Rpa ] = C[0] = P
D,

which has Lefschetz representation [D/2]. This gives

Rpa =
[

D

2

]
. (9.9)

For the second row from the bottom we have from (9.2)

θ pa−1Ĥd = [0, Rpa−1] +

[
1

2
, Rpa

]
= C[1].

By the usual argument, the universal curve is a P
D−1-bundle over P

1×P
1, with Lefschetz

[
D − 1

2

] [
1

2

] [
1

2

]
=
[

D + 1

2

]
+ 2

[
D − 1

2

]
+

[
D − 3

2

]
.

Restricting
[
0, Rpa−1

]
+
[
1/2, Rpa

]
to the diagonal and using (9.9) gives

Rpa−1 +

[
D + 1

2

]
+

[
D − 1

2

]
.

Equating these last two expressions gives

Rpa−1 =
[

D − 1

2

]
+

[
D − 3

2

]
(9.10)

the asymptotic expression for the second to the bottom row.
We content ourselves with one more row; the general cases are similar. For the next

row we have

θ pa−2Ĥd1,d2 = [
0, Rpa−2

]
+

[
1

2
, Rpa−1

]
+
[
1, Rpa

] = C[2] − C[0]. (9.11)

By the usual argument, C[2] is a P
D−2-bundle over (P1 × P

1)[2], with Lefschetz

([2] + 2[1] + 3[0]) ⊗
[

D − 2

2

]

=
[

D + 2

2

]
+ 3

[
D

2

]
+ 6

[
D − 2

2

]
+ 3

[
D − 4

2

]
+

[
D − 6

2

]
,
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so the right hand side of (9.11) is
[

D + 2

2

]
+ 2

[
D

2

]
+ 6

[
D − 2

2

]
+ 3

[
D − 4

2

]
+

[
D − 6

2

]
.

Restricting the left hand side of (9.11) to the diagonal and using (9.9) and (9.10) gives

Rpa−2 +

([
D

2

]
+ 2

[
D − 2

2

]
+

[
D − 4

2

])
+

([
D + 2

2

]
+

[
D

2

]
+

[
D − 2

2

])
.

Equating these last two formulas and solving gives

Rg−2 = 3

[
D − 2

2

]
+ 2

[
D − 4

2

]
+

[
D − 6

2

]
, (9.12)

the third asymptotic row from the bottom.

9.3. Wall crossing. In this section, we explain how to understand the correction terms
in the refined KKV approach via a wall crossing on stable pairs in the case of local P

2.
In [8], a wall crossing phenomenon in the moduli spaces of stable pairs is studied. We
alter the notion of stable pairs by introducing the stability parameter denoted by α.

Definition 2. Let α be a positive rational number. An α-stable pair on X is a pair (F , s)
of a sheaf F and a nonzero section s ∈ H0(F) such that

• F is of pure of dimension 1
• For all proper nonzero subsheaves F ′ of F , we have

χ(F ′) + ε(s,F ′)α
r(F ′)

<
χ(F) + α

r(F)
, (9.13)

where r(F) is the leading coefficient of Hilbert polynomial χ(F(m)) and ε(s,F ′) = 1
if s factors through F ′ and zero otherwise.

Let X be local P
2 and let Mα(d, n) denote the moduli space of α-stable pairs (F , s)

on local P
2 with ch2(F)=d and χ(F)=n. One can see that a stable pair as in Sect. 4.1

can be considered as an α-semistable pair for sufficiently large α, which we will denote
by α = ∞. In other words, M∞(d, n) = Pn(X, d). At the other extreme, when α is
sufficiently close to zero, or α=0+, a pair (F , s) is α-stable pair if and only if the sheaf F
itself is a stable sheaf. Hence, we have a connection to the Hilbert space Ĥd . We have [8]

(
Ĥd

)

SU(2)�
= H∗(M0+

(d, 1)) − H∗(M0+
(d,−1)).

This formula is very similar to (5.11) with r = 0. The only difference is that we have
replaced α = ∞ with α = 0+ and removed all correction terms. We claim that in terms of
virtual motives, the correction terms in (5.11) are exactly the wall crossing contributions
from M∞(d, n) to M0+

(d, n) for d ≤ 5.
Wall crossing occurs at the values of α for which there exist strictly semistable

pairs. In general, there are only finitely many such walls and the moduli spaces remain
unchanged for values of α in between walls.

If a pair (F , s) become strictly semistable, we have an exact sequence of the form

0 → (F ′, s′) → (F , s) → (F ′′, s′′) → 0.
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On the one side of the wall, (F , s) is stable and as our stability parameter α passes to
the other side of the wall, this exact sequence destabilizes (F , s). So, we lose those pairs
from the moduli space. Instead, new pairs (F̃, s̃) defined by the flipped exact sequence

0 → (F ′′, s′′) → (F̃ , s̃) → (F ′, s′) → 0

become stable. So, by computing Ext groups corresponding to each exact sequence, we
can see what happens as we cross the wall.

d = 1, 2, and 3. There were no correction terms in the KKV computation and one can
easily see that there are no walls by an elementary calculation.

d = 4. The correction term for
(
Ĥ4

)

SU(2)�
in KKV approach is −H∗(P0(X, 3) ×

P1(X, 1)), which in terms of the virtual motive is
[ 9

2

]
L [1]L after an appropriate sign

change. By an elementary calculation, one can see there is no wall for Mα(4,−1) and a
unique wall at α = 3 for Mα(4, 1). The strictly semistable pairs in M3(4, 1) are of type

(1, (3, 0)) ⊕ (0, (1, 1)),

where (1, (d, n)) (resp. (0, (d, n))) denotes the pairs (F , s) with a nonzero (resp. zero)
section s and ch2(F) = d and χ(F) = n. Note that α-stable pairs of type (1, (3, 0)) are
parametrized by P

9 for any α, and stable pairs of type (0, (1, 1)) are parametrized by P
2.

By the Riemann–Roch theorem and [16, Corollary 1.6], we can compute the extension
group defined on the category of pairs.

Ext1((0, (1, 1)), (1, (3, 0))) � C
3 (9.14)

Ext1((1, (3, 0)), (0, (1, 1))) � C
4 (9.15)

The extension given by an element in (9.15) is stable when α > 3 and becomes unstable
when α < 3. The extension given by an element in (9.14) behaves in the other way. So,
at the wall as we cross from α = ∞ to α = 0+, the P

3-bundle on P
9 × P

2 is replaced by
P

2-bundle on P
9 × P

2. This gives a geometric wall crossing contribution −L3[P9][P2].
To get the contribution to the virtual motive, we multiply (−L−1/2)dim P1(X,4) = −L− 17

2 ,
which yields

[ 9
2

]
L [1]L. This matches with the correction term.

d = 5. The correction term for
(
Ĥ5

)

SU(2)�
is

−H∗(P−2(X, 4) × P3(X, 1)) − H∗(P−1(X, 4) × P2(X, 1)) − H∗(P0(X, 4)

× P1(X, 1)) − H∗(P0(X, 3) × P1(X, 3)) + H∗(P−2(X, 4) × P1(X, 1)).

Possible wall crossing terms for Mα(5, 1) and Mα(5,−1) are as follows.

α Splitting type Associated correction term
Wall crossing for Mα(5, 1)

14 (1, (4,−2)) ⊕ (0, (1, 3)) −H∗(P−2(X, 4) × P3(X, 1))

9 (1, (4,−1)) ⊕ (0, (1, 2)) −H∗(P−1(X, 4) × P2(X, 1))

4 (1, (4, 0)) ⊕ (0, (1, 1)) −H∗(P0(X, 4) × P1(X, 1))
3
2 (1, (3, 0)) ⊕ (0, (2, 1)) −H∗(P0(X, 3) × P1(X, 3))

Wall crossing for Mα(5,−1)

6 (1, (4,−2)) ⊕ (0, (1, 1)) +H∗(P−2(X, 4) × P1(X, 1))
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We explain the wall crossing for Mα(5, 1) at α = 14. The computation for other
walls is similar. As before one can compute

Ext1((0, (1, 3)), (1, (4,−2))) � C
4

Ext1((1, (4,−2)), (0, (1, 3))) � C
7,

and α-stable pairs of type (1, (4,−2)) are parametrized by P
14 for any α, and stable

pairs of type (0, (1, 3)) are parametrized by P
2. Hence as we cross wall from α = ∞ to

9 < α < 14, the P
6-bundle on P

14 × P
2 is replaced by P

3-bundle on P
14 × P

2. Hence,
the wall crossing contribution here is −(L6 + L5 + L4)[P14][P2]. After multiplying

(−L−1/2)dim P1(X,5) = L− 26
2 , we get − [1]L [7]L [1]L. This matches with the associated

correction term −H∗(P−2(X, 4) × P3(X, 1)) = − [7]L [1]L [1]L , as P3(X, 1) is a P
2-

bundle over P
2.

10. Conclusions

We have described refined stable pair invariants and shown that the information of
those invariants, up to a fixed degree, is equivalent to knowing the SU(2) × SU(2) BPS
invariants up to that degree.

Several interesting questions remain for future work. We conjecture that there is
a purely motivic description of our refined stable pair invariants which would make
clearer the connection of our work to the motivic stable pair invariants of [39]. This
would provide a more precise interpretation of (8.1) as a generalization of the motivic
product formulae of [6,39].

It would also be interesting to use other twistings to define new invariants. Perhaps
those new invariants will be related to other related mathematical invariants, either those
arising from a change in stability condition or by choosing different quiver descriptions
of the PT moduli spaces.

To calculate the 5d BPS index, the B-model approach using the refined holomor-
phic anomaly equation, combined with the direct integration approach [15,19] to non-
compact geometries, is the most efficient method.

For the right choice of the R symmetry group it expresses the 5d index Z , e.g., for
local Calabi–Yau manifolds based on del Pezzo surfaces in terms of quasimodular forms
of subgroups of P SL(2, Z). It is independent of the question whether the geometry has
a toric realization [22].

For local O(−2,−2) → P
1 × P

1 the approach yields in one stroke the refined 5d
M-theory index, Nekrasov’s partition function of N = 2 d = 4 theory, the refined Chern–
Simons partition function on L(2, 1), and a refined version of the partition function of
N = 6 d = 3 ABJM theory.

Both approaches described in this paper need to be generalized to incorporate open
string boundary conditions or more general Wilson lines than the one in L(2, 1). For the
B-model, a remodeled and refined version describing Ooguri-Vafa invariants would be
highly desirable and for the A-model, one would like to give a more stringent mathemat-
ical definition of the moduli space related to invariants that the refined vertex computes.
Finally, wall crossing should apply more broadly than in the special cases described in
Sect. 9.
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