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Abstract: We tackle the issue of renormalizability for Tensorial Group Field Theo-
ries (TGFT) including gauge invariance conditions, with the rigorous tool of multi-scale
analysis, to prepare the ground for applications to quantum gravity models. In the process,
we define the appropriate generalization of some key QFT notions, including connected-
ness, locality and contraction of (high) subgraphs. We also define a new notion of Wick
ordering, corresponding to the subtraction of (maximal) melonic tadpoles. We then con-
sider the simplest examples of dynamical 4-dimensional TGFT with gauge invariance
conditions for the Abelian U (1) case. We prove that they are super-renormalizable for
any polynomial interaction.

Introduction

A complete theory of quantum gravity and spacetime should be background indepen-
dent. It should not assume a priori any geometric background for the definition of its
fundamental degrees of freedom or dynamical equations. This has been a guiding prin-
ciple in canonical Loop Quantum Gravity [1–3] and simplicial quantum gravity [4–6],
but is also a necessary feature of any more fundamental formulation of string theory
[7–9]. More radically, one would like independence from any background topological
spacetime structure, hence a sum over topologies [10–14]. This is realized in the simpler
context of matrix models for 2d quantum gravity [15–18]. Whether one intends quan-
tum gravity as a theory of quantum geometry or of quantum spacetime tout court, the
usual spacetime structures (a smooth metric field plus possibly the spacetime manifold
itself) should be reconstructed from more fundamental quantum degrees of freedom of
a different nature. The candidates for such fundamental pre-geometric degrees of free-
dom differ from one approach to another, but several arguments (e.g., suggested by the
thermodynamical properties of black holes [19]) support the idea that they have to be of
a discrete nature. Discrete building blocks of a quantum spacetime are used in simplicial
quantum gravity and matrix models. They are also found as a result of quantization even
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in a priori continuum approaches like LQG, in the form of spin networks and spin foams
[1–3,20,21].

Tensor models and group field theories [22–26] [which we collectively label tensorial
group field theories (TGFT) in this paper] are a fast growing approach with very promis-
ing features. They incorporate many of the insights revealed by the above approaches.
They rely on a fully background independent formalism in which quantum, discrete,
pre-geometric building blocks are used to (hopefully) generate a quantum spacetime
that is dynamical in both geometry and topology. Indeed, TGFTs are a generalization of
matrix models. Rank-d tensors (with d > 2) are the basic dynamical variables. Stranded
diagrams dual to d-complexes are generated as Feynman diagrams of the theory. The
tensor represents a (d − 1)-simplex; the indices refer to its (d − 2)-faces, and the pairing
of tensor indices in the interaction represents the gluing of several (d − 1)-simplices to
form a d-dimensional polyhedron (a d-simplex in the simplest models). This peculiar
combinatorial non-locality of the interactions is a defining feature of the models.

In the simplest, purely combinatorial models of this type, referred to as tensor models
and first introduced in the early 1990s [27–29], the indices of the tensors take value in
finite sets of dimension N . More structure to quantum states, action and dynamical
amplitudes is the result of endowing the tensors with more interesting domain spaces.
Proper TGFTs are obtained when these are chosen to be Lie group manifolds [30] or
their dual Lie algebras [31,32], while maintaining the combinatorial structure of the
interactions. The first examples of such richer models were introduced as a quantization
of discrete BF theories [33,34], and were later refined to give a candidate quantization
of 4d gravity in the context of spin foam models [35,36].

When appropriate data are added to the tensorial field and to its action, TGFTs
become in fact a way to define the dynamics of kinematical states of LQG. Bound-
ary states of the theory assume the form of spin networks, and the Feynman amplitudes
assume the form of spin foam models [30] (TGFTs become then a natural way to remove
the dependence of the spin foam dynamics from a given cellular complex). In different
variables, furthermore, the same amplitudes are expressed as simplicial gravity path
integrals [31,32], as used in simplicial quantum gravity approaches. Beyond the relation
with LQG and simplicial gravity, the group-theoretic data are crucial. On one hand they
allow the use of mathematical tools otherwise unavailable (e.g., Peter–Weyl decompo-
sition and recoupling theory, non-commutative Fourier transforms, etc). On the other
hand they endow the TGFT field, action and amplitudes with a much more transparent
geometric interpretation. This is also a key for extracting effective continuum physics
from the formalism. TGFTs allow then a new point of view on the dynamics of quantum
spacetime as described in these approaches, resting on a bona fide quantum field theory
framework. In this context, models for 4d quantum gravity have been developed, the
most interesting ones being found in [37–42].

The field theory setting is crucial to addressing issues arising when a large number of
pre-geometric degrees of freedom are involved, in particular to explore the continuum
limit of TGFT models. Continuum spacetime and geometry have been suggested [26,43,
44] to arise, in the TGFT context, through a phase transition (dubbed geometrogenesis,
following [45,46]), as happens in matrix models. The study of phase transitions in
TGFTs, obviously, is best tackled using field theoretic tools, just as the analysis of
symmetries [47–49], collective effects and effective dynamics, for example via mean
field techniques [50–52], or simplified models [53]. Related work on the continuum
limit of spin foam models and discrete gravity path integrals, from a lattice gauge theory
perspective, is being carried out by Dittrich and collaborators [54,55].
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Among the relevant quantum field theory tools, the renormalization group plays a pivotal
role. The renormalization of TGFTs has been a subject of intense activity in recent years.
It started with (single scale) power counting theorems for the Feynman amplitudes of
tensor models and topological TGFTs [56–63].1

But ultimately renormalization of TGFTs requires a rather precise control of their
combinatorial structure. For this, we can now rely on two crucial recent results. The
first one is the introduction of colors [67] labelling a multiplet of TGFT fields. Colored
graphs can be shown to encode the topology of general d-dimensional complexes [68–
70]. Colors can be equivalently understood as labelling the ordered arguments of a
single un-symmetric tensorial field [71]. Random un-symmetric tensorial fields have
been found to have natural polynomial interactions based on U (N )⊗d invariance (where
N is again the size of the tensor) [72]. These interactions, obtained by contractions of
indices of the same position between the field and its complex conjugate are the ones
considered in this paper.
The second key result is the TGFT analogue of the 1/N expansion of matrix models
identified in [73–75]. The TGFT perturbative expansion at large N is dominated in any
dimension d by a particular class of triangulations of the d-sphere. They were further
characterized and called melons in [76]. This 1/N expansion has allowed the first proofs
that a phase transition indeed occurs in simple tensor models [76–78], and is a key tool
in the analysis we perform in this paper.

In the context of renormalization, one may distinguish two types of models: ultralo-
cal ones, such as those apt for the description of topological BF theory, characterized
by trivial kinetic operators (delta functions or simple projectors), and dynamical ones
(first considered, with different motivations, in [79–81]) with kinetic operators given
by differential operators such as the Laplacian on the group manifold. In the first case,
the models are non-trivial only thanks to the specific symmetries and other conditions
imposed on the field and to the peculiar non-local nature of the interactions. In the second
case, the propagator allows one to define scales and to launch a proper renormalization
group flow. It is unclear whether ultralocal models are rich enough to give a proper quan-
tization of 4d gravity. Indeed there are indications [82] that even starting from ultralocal
models one falls into dynamical models as soon as radiative corrections are considered,
since the kinetic terms with Laplacian operators are required as counter-terms. Hence it
is the second type of models that are considered in this paper.

TGFTs are truly a new class of quantum field theories. They pose new challenges, in
particular to renormalization, but offer also new promising features. The first examples
of dynamical TGFTs renormalizable to all orders in perturbation theory have been
identified [83–85]. The most natural ones have been proved asymptotically free [84–86].
Asymptotic freedom, thanks to the wave function renormalization which is stronger in
the tensorial context than in the scalar, vector or matrix case, may very well be a generic
property of TGFTs. It makes them prime candidates for a geometrogenesis scenario
which would be a kind of gravitational analog of quark confinement in QCD. Moreover
TGFTs are accessible to rigorous constructive analysis in their dilute perturbative phase,
through a constructive tool called the loop vertex expansion [87,88]. This tool has been
checked to apply to tensor models in [72,89] and to apply to positive even interactions
of arbitrarily high order [90]. TGFTs have therefore the potential for a non-perturbative
and rigorous analytic formulation that, to our knowledge, is yet lacking in some other
approaches to quantum gravity. They also already include applications to domains of

1 Our understanding of divergences in TGFT models of 4d gravity remains still very limited [64–66].
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statistical physics such as dimers [91] or spin glasses [92] which are quite far from the
initial quantum gravity context.

In spite of these recent successes, the renormalizable TGFTs analyzed so far do not
yet have some additional symmetries which are needed for their Feynman amplitudes
to be interpreted as discretized topological BF theories or (together with additional
conditions) 4d quantum gravity. One needs to revise the renormalization tools introduced
in [83] to include these symmetries, usually referred to also as closure conditions, and
hereafter called the gauge invariance conditions. This is what we do in this work. More
precisely, we tackle the issue of renormalizability for TGFT models with such geometric
conditions with the rigorous tool of multi-scale analysis, to prepare the ground for future
applications to gravity models. Our main results are the following.

We define the appropriate generalization of some of the notions of usual QFT which
are key to the renormalization analysis, including:

• a new notion of connectedness for TGFT Feynman diagrams,
• a new notion of (quasi-)locality, that we name traciality, adapted to the TGFT context;
• a new notion of contraction of high subgraphs (the ones that look local).2

• a new notion of Wick ordering for general invariant interactions, which we name
melordering (for melonic Wick ordering). It subtracts their maximal melonic tad-
poles, or melopoles, which are all tracial. Such melordering is a first step in the
renormalization of any TGFT.

We then consider the simplest examples of dynamical 4-dimensional TGFT with gauge
invariance conditions for the Abelian U (1) case. Their complex field depends on four
U (1) group elements (in configuration space). The propagator is the inverse of a Lapla-
cian but with an added projection to represent BF-type gauge invariance conditions.
Interactions are given by arbitrary U (N )4 invariant monomials.

We perform the full multi-scale analysis of these models and we prove that they
are super-renormalizable for any polynomial interaction of arbitrary order. Their only
divergent diagrams are the melopoles. Hence melordering provides the renormalization.
We prove that the models with melordered interactions have a finite renormalized series
at any order in perturbation theory. Therefore these 4-dimensional models are the direct
analogues in the tensor world of the P(φ)2 models of ordinary quantum field theory
[93], which are also super-renormalizable for any polynomial interaction and in which
Wick ordering provides all the renormalization.

We conclude with an outlook into the non-Abelian case. It suggests that in d =
3 a SU (2)-based model of the same type is just renormalizable with the 6-th order
interactions considered in [83].

1. Definition of the Models

1.1. Formal definition. The class of theories we consider are TGFT of one single rank-d
complex tensorial field ϕ(g1, . . . , gd), whose arguments g� take value in a Lie group G.
In the spirit of [72], the tensorial nature of the field ϕ provides us with a natural notion
of locality, encoded by the fact that the interaction part of the action is a sum of tensor
invariants, as is the case in matrix models. Such invariants are obtained by convolution
of a set of fields ϕ and ϕ, in such a way that the k-th index of a field ϕ is always contracted

2 This contraction procedure can be also understood as a new coarse graining procedure for lattice gauge
theory and discrete gravity, from the point of view of the Feynman amplitudes of the TGFT, seen as a discrete
path integral (to be compared with the one used in [54,55]).
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Fig. 1. Some connected tensor invariants in d = 4

with the k-th index of a conjugate field ϕ. Indeed, the result of such a convolution is a
field polynomial invariant under U (N )⊗d , where N is the cut-off on U (1) representations
(playing the role of momenta). They are canonically represented by closed d-colored
graphs, constructed as follows: each field ϕ (resp. ϕ) is represented by a white (resp.
black dot), and each contraction of a k-th index between two fields is pictured as a line
with color label k linking the two relevant dots (see Fig. 1). Connected such graphs are
called d-bubbles. As usual in field theory, we will assume that the interaction is a sum of
invariants which can be represented as such connected graphs, which we call connected
tensor invariants. Therefore, we define the interaction part of the action as

S(ϕ, ϕ) =
∑

b∈B
tb Ib(ϕ, ϕ) , (1)

where B is a finite set of d-bubbles, Ib the connected tensor invariant labelled by b, and
tb ∈ C.3

The kinetic part of the model is given by a Gaussian measure dμC (ϕ, ϕ), with covari-
ance (propagator) C :

∫
dμC (ϕ, ϕ) ϕ(g1, . . . , gd)ϕ(g′

1, . . . , g′
d) = C(g1, . . . , gd; g′

1, . . . , g′
d). (2)

The partition function is defined as

Z =
∫

dμC (ϕ, ϕ) e−S(ϕ,ϕ). (3)

If C itself is the kernel of a tensor invariant, as it is the case in simple i.i.d tensor models
[24,27–29], or a projector, as it is the case in topological GFTs [22,23,25,33,34], the
model is called ultralocal and the usual field-theory notion of scale in terms of the
spectrum of the covariance cannot be applied. In [83] the first examples of renormalizable
models were given, where the usual spacetime-based notion of scales is replaced by a
more abstract notion, based on the spectrum of C . Such a generalization is forced upon us
by the background-independent nature of such models, at least if one wants to extend the
scope of renormalization methods to such theories. Therefore, a covariance with a rich
enough spectrum is necessary to the very definition of renormalizability, which depends

in fact on the notion of scales. This was chosen in [83] to be C̃ =
(

m2 − ∑d
�=1 ��

)−1
,

3 Restrictions on the set of allowed values for {tb} are necessary if we want S to satisfy conditions such as
reality or positivity, but at this stage we keep the discussion as general as possible.
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where �� is the Laplace-Beltrami operator on G acting on color-� indices. Its kernel is
an integral over a Schwinger parameter α of products of heat kernels Kα:

C̃(g1, . . . , gd; g′
1, . . . , g′

d) =
∫ +∞

0
dα e−αm2

d∏

�=1

Kα(g�g′-1
� ). (4)

The parameter α is interpreted as a momentum scale, and can be sliced according to a
geometric progression in order to perform a multi-scale analysis (see [94]), as we do in
the following.

If such a non-trivial propagator allows to deviate from ultralocality and hence address
the question of renormalizability, it is still not satisfying from a discrete gravity (or
lattice gauge theory) perspective. In TGFT models that aim at describing such theories,
the TGFT fields have to satisfy some constraints which give them the interpretation of
quantized (d −1)-simplices, and the Feynman amplitudes that of simplicial gravity path
integrals or lattice gauge theory partition functions [22,23,25]. A common feature in any
dimension d, is the so called closure constraint, which (in group representation) imposes
invariance of the TGFT field under simultaneous (left) translations of its arguments:

∀h ∈ G , ϕ(hg1, . . . , hgd) = ϕ(g1, . . . gd). (5)

This is exactly the condition which, in the cellular complexes labelling TGFT amplitudes,
allows to define a discrete (gravitational or Yang–Mills) connection, and gives them the
general form of a lattice gauge theory amplitude,4 when not that of a lattice gravity
model, like in the Abelian case we will consider in the following. In the present paper, it
is our purpose to explore the consequences for renormalizability of the implementation
of such a constraint. We therefore define the new propagator C as a group-averaged
version of C̃

C(g1, . . . , gd; g′
1, . . . , g′

d) =
∫ +∞

0
dα e−αm2

∫
dh

d∏

�=1

Kα(g�hg′-1
� ) , (6)

which is a way to ensure that only translation invariant degrees of freedom are propa-
gated. This results in the Feynman amplitudes being written as integrals over discrete
connections, i.e., as lattice gauge theory path integrals on the lattice given by the (dual
of the) TGFT Feynman diagram. In Lie algebra representation, the same amplitude will
then take the form of a B F-like simplicial path integral [31,32], while in representation
space it will become a spin foam model [30].

1.2. Regularization and the question of renormalizability. Models as defined in the pre-
vious sections are only formal, and plagued with divergencies. The two possible sources
of divergencies are the vicinity of 0 (UV) and the vicinity of +∞ (IR) for the Schwinger
parameter α.5 In this paper we will discard IR divergencies, since the only explicit exam-
ple we will work out will be defined on a compact group G = U(1), in which case IR

4 This is the reason why, despite the absence of gauge symmetry in the field theory sense, the invariance
of the field (5) is also referred to as gauge invariance condition: it is responsible for a lattice gauge symmetry
at the level of each amplitude.

5 We adopt a standard QFT terminology for the UV/IR distinction, adapted to the renormalization group
flow; this should not be given any geometric interpretation at this stage. Notice that the corresponding nomen-
clature from the point of view of a simplicial gravity interpretation of the amplitudes is usually the opposite.
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divergencies do not occur. Finally, as our main technical tool will be a multi-scale analy-
sis, we choose a UV regulator compatible with a decomposition of the propagator into
slices. The latter goes as follows. We fix an arbitrary parameter M > 1, and decompose
the integral over the Schwinger parameter α into slices [M−2i , M−2(i−1)], where i takes
integer values:

C0(g1, . . . , gd; g′
1, . . . , g′

d) =
∫ +∞

1
dα e−αm2

∫
dh

d∏

�=1

Kα(g�hg′-1
� ) , (7)

∀i ≥ 1 , Ci (g1, . . . , gd; g′
1, . . . , g′

d) =
∫ M−2(i−1)

M−2i
dα e−αm2

∫
dh

d∏

�=1

Kα(g�hg′-1
� )

(8)

The UV regulator ρ is an upper bound in the sum over slices, defining the regularized
propagator:

Cρ =
∑

0≤i≤ρ

Ci . (9)

The theory will be renormalizable if the UV regulator can be removed, and the
resulting infinities absorbed in an appropriate finite set of local interactions. In the next
section, we present the general form of the Feynman amplitudes obtained for this class
of models, using the propagator and interactions (bubble invariants) which we have
introduced above.

2. Amplitudes

2.1. Feynman graphs and gauge symmetry. The Feynman graphs of the theory are con-
structed from vertices or d-bubbles, supplemented by a set of lines (called of color 0),
representing propagators.

The vertices are restricted to U (N )⊗D connected tensor invariants, hence have a
colored representation [71]. Plugging this representation at every vertex, every Feynman
graph of the theory has a unique underlying colored graph, which we also call its colored
extension. Because of the complex nature of the ϕ field, the color-0 lines in this colored
extension (represented as dotted lines) must link black nodes to white nodes of the d-
bubbles, each of these nodes being attached to at most 1 line of color 0. The underlying
colored Feynman graphs are therefore all the (d + 1)-colored graphs with the restriction
that only lines of color 0 can be opened, i.e., external. An example is given in Fig. 2.
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Fig. 2. A graph with three vertices, six (internal) lines, and four external legs
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In the following we will simply call graphs the uncolored ones, their lines being the
lines of color 0. We will also refer to the internal lines of the d-bubbles as the colored
lines.

At the formal level, the connected Schwinger functions of the theory are given by a
sum over connected Feynman graphs:

SN =
∑

G connected,N (G)=N

1

s(G)

(
∏

b∈B
(−tb)

nb(G)

)
AG , (10)

where N (G) is the number of external legs of a graph G, nb(G) the number of vertices
of the type b, and s(G) a symmetry factor. The Feynman rules for building AG are
straightforward: to each d-bubble of the type b is associated an integral with respect to
a measure given by the kernel of Ib, and to each color-0 line corresponds a propagator.
Integrating the different heat kernels defining the propagator, we can write it in a very
similar way as a lattice gauge theory amplitude:

AG =
⎡

⎣
∏

e∈L(G)

∫
dαe e−m2αe

∫
dhe

⎤

⎦

⎛

⎝
∏

f ∈F(G)

Kα( f )

⎛

⎝
−−→∏
e∈∂ f

he
εe f

⎞

⎠

⎞

⎠

⎛

⎝
∏

f ∈Fext (G)

Kα( f )

⎛

⎝gs( f )

⎡

⎣
−−→∏
e∈∂ f

he
εe f

⎤

⎦ g-1

t ( f )

⎞

⎠

⎞

⎠ . (11)

In this formula, α( f ) ≡ ∑
e∈∂ f αe is the sum of the Schwinger parameters appearing

in the face f , and εe f = ±1 is determined by the orientation of e with respect to an
arbitrary orientation of the faces. The faces are split into closed (F) and opened ones
(Fext), gs( f ) and gt ( f ) denoting boundary variables in the latter case, with functions s
and t mapping open faces to their “source” and “target” boundary variables.

This amplitude is invariant under a group action acting on the vertices (i.e., the d-
bubbles). For any assignment of group elements (gv) ∈ GV (G), the integrand of the
amplitude is invariant under:

he �→ gt (e)heg-1

s(e) , (12)

where t (e) [resp. s(e)] is the target (resp. source) vertex of an (oriented) edge e, and one
of the two group elements is trivial for open lines. Because this is a symmetry of the
integrand itself, it can be gauge-fixed following the standard prescription of [95]. When
G is connected, this amounts to set he = 1l for all lines e in a maximal tree T . This gauge
symmetry is a very important feature of the models considered in this paper, that will
require significant modifications of the multi-scale analysis of [83].

2.2. Multi-scale decomposition of the amplitudes. Using the multi-scale decomposition
(9), any graph is written as a sum over scale attributions μ = {ie}, where ie runs over all
integers (smaller than ρ) for every line e.
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Fig. 3. k-dipoles from k = 1 (top, left) to k = 4 (top, right) in d = 4, and their faces (below)

AG =
∑

μ

AG,μ,

AG,μ =
⎡

⎣
∏

e∈L(G)

∫ M−2(i−1)

M−2i
dαe e−m2αe

∫
dhe

⎤

⎦

⎛

⎝
∏

f ∈F(G)

Kα( f )

⎛

⎝
−−→∏
e∈∂ f

he
εe f

⎞

⎠

⎞

⎠

⎛

⎝
∏

f ∈Fext(G)

Kα( f )

⎛

⎝gs( f )

⎡

⎣
−−→∏
e∈∂ f

he
εe f

⎤

⎦ g-1

t ( f )

⎞

⎠

⎞

⎠ . (13)

The strategy of the multi-scale expansion is to replace the complicated expression
for the propagators by a simpler bound which captures their power-counting, and to
integrate the variables he without loosing any such power-counting, hence any powers
of the Mi type. But to implement it and to perform the renormalization of this new type
of models we have to revise some graph-theoretical notions and adapt them to our new
context.

2.3. Dipole moves and reduced graphs. A central notion in colored tensor models and
GFTs is that of dipole contractions. They were key to the discovery of the 1/N -expansion
[73–75], as well as to answering more specific topological questions [62,63,96,97],
essentially because they are the counterparts of Pachner moves in the colored context
[68–70]. The main appeal of these moves is that they allow to reduce the combinato-
rial complexity of colored graphs, while retaining topological properties of their dual
simplicial complexes. In the present paper however we will have a somewhat different
approach as we will use dipole contractions as a way to consistently delete faces, and
implement a contraction scheme for quasi-local graphs. Topological considerations will
therefore be essentially irrelevant in what follows. For this reason, we will not distin-
guish degenerate from non-degenerate dipoles, and will use the generic word dipole for
both. Finally, since lines of color 0 are the only dynamical entities in our framework, we
will also only consider dipoles of a special kind: those which have an internal color-0
line. Their precise definition is the following:

Definition 1. Let G be a graph, and Gc its colored extension. For any integer k such that
1 ≤ k ≤ d + 1, a k-dipole is a line of G whose image in Gc links two nodes n and n
which are connected by exactly k − 1 additional colored lines (see Fig. 3).

With the terminology of previous works [24], a k-dipole of G is nothing but a line
whose image is internal to a k-dipole of Gc. We now define the contraction operation.
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Definition 2. Let G be a graph, and Gc its colored extension. The contraction of a k-
dipole dk is an operation in Gc that consists in:

(i) deleting the two nodes n and n linked by dk, together with the k lines that connect
them;

(ii) reconnecting the resulting d − k open legs according to their colors.

We call Gc/dk the resulting colored graph, and G/dk its pre-image.

1-dipole contractions play a prominent role in colored tensor models an GFTs,
because they implement the topological notion of connected sum of d-bubbles. This
remains true in our context, the relevant move being the contraction of a 1-dipole which
is not a tadpole, that is to say what is usually called a non-degenerate 1-dipole. Interest-
ingly, the contraction of a full set of such 1-dipoles is intimately related to the gauge-
fixing procedure sketched before. In a connected graph G, a full contraction is obtained
by successively contracting a maximal tree of lines T . But we also know that in the
Feynman amplitude of G, the group elements associated to this tree can be set to 1l. Inci-
dentally, the purely combinatorial notion of contraction of lines of T is nothing but the
result of trivial convolutions in the amplitude AG . The only difference between AG and
AG/T , where G/T denotes the fully contracted graph, is a set of simple integrals with
respect to Schwinger parameters, while their integrands have exactly the same structure.
This observation will be crucial to the multi-scale analysis, and most of the discussion
will therefore focus on reduced graphs G/T , with respect to a suitably chosen spanning
tree.

All k-dipoles with k > 1 are necessarily tadpole lines, and contain (k − 1) internal
faces (see Fig. 3). Among them, the d-dipoles will be the focus of special interest, and
will be called melonic tadpoles, or simply melons. In ultralocal tensor models and GFTs,
these structures have been shown to govern the leading order, and henceforth the critical
behaviour.

3. Connectedness and Quasi-Locality

3.1. Contraction of connected subgraphs. We now give general definitions which are
crucial to the implementation of a multi-scale analysis, and hence to the understanding
of the precise structure of divergencies.

Probably the most important notion is that of quasi-local graphs, that is connected
subgraphs which, from the point of view of their external legs, look local. As a tensorial
field theory differs substantially from usual field theory, we need to reconsider in detail
the notions of subgraph, connectedness, and contraction of subgraphs.

A major role will be played by the faces of the graph, which is where the curvature of
the discrete connection introduced by the new gauge invariance condition is assigned.
These faces are followed easily by drawing the colored extension Gc of the graph G [72].
Faces (of fixed color i) of G are the alternating circuits of lines of color 0 and i in Gc, and
can be either closed (internal) or open (external). Rather than the usual incidence matrix
εev between lines and vertices of ordinary graph theory, it is the incidence matrix of lines
and closed faces εe f in G which plays the leading role in group field theory [56–58,83].
To define this matrix one needs an orientation of both the lines and the faces. It is +1 if
the face f goes through line e with the same orientation, −1 if the face f goes through
line e with opposite orientation and 0 otherwise. The colored structure ensures absence
of “tadfaces”, i.e., faces which pass several times through the same line.
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We start with the notion of subgraph. In ordinary graph theory a subgraph of a graph
G is most conveniently defined as a subset S of lines of G, so that a graph with L lines
has exactly 2L subgraphs. Such a subset of lines is then completed canonically by adding
the vertices attached to the lines and the external lines, also called “legs”. The latter are
defined by first cutting in the middle all lines of G−S. Legs of S then correspond either to
true legs of G attached to vertices of S or to half-lines of G − S attached to the vertices of
S. Finally ordinary connectedness of H can be defined through examining the ordinary
incidence matrix εev of H ; the connected components of H are the maximal factorized
rectangular blocks of this matrix. Hence elementary connections between lines come
from their common attached vertices.

Recalling that a tensorial graph G has (0-colored) internal lines, external legs,
(d-bubbles) vertices, and faces, the definition of a subgraph for TGFTs is a natural
generalization of the ordinary definition.

Definition 3. A subgraph H of a graph G is a subset of lines of G, hence G has exactly
2L(G) subgraphs. H is then completed by first adding the vertices that touch its lines.
The faces closed in G which pass only through lines of H form the set of internal faces
of H. The external faces of H are the maximal open connected pieces of either open or
closed faces of G that pass through lines of H. Finally only the external legs touching
the vertices of H that contain external faces of H are considered external legs of H.

To understand the open faces of H, the best is first to “cut”, as in the ordinary case, all
lines of G\H in the middle. This breaks the closed or open faces of G into pieces. Those
remaining open pieces that belong entirely to H are its open faces. Hence a closed or
open face of G which passes through lines of H can generate several open faces of H.

We denote L(H) and F(H) the set of lines and internal faces of H, and N (H) and
Fext(H) the set of external legs and external faces of H. When no confusion is possible
we also write L , F etc for the cardinality of the corresponding sets.

Definition 4. The connected components of a subgraph H are defined as the subsets of
lines of the maximal factorized rectangular blocks of its εe f incidence matrix.

Hence elementary connections between lines now come from their common internal
faces. Notice also that a connected graph H has always a connected colored extension
Hc, but the converse is not true.

Example. The tadpole graph G of the Appendix (Fig. 8b) has three lines, one vertex,
no external legs and ten internal (closed) faces. It has eight subgraphs. The subgraph
S1 = {l1} has one line, one vertex, three internal (closed) faces, one external face and
two external legs (the two halves of line l2). The same is true for the subgraph S3 = {l3}.
The subgraph S2 = {l2} has one line, one vertex, two internal (closed) faces, two external
faces and four external legs. The subgraph H = {l1, l3} has two lines, one vertex, two
external legs, six closed faces and two external faces, but it is not connected (although
its colored extension is). It has two connected components S1 and S3 which although
having a vertex and two external lines in common are not connected through their faces;
the 2 by 6 incidence matrix of this subgraph factorizes in two 1 by 3 blocks, those of S1
and S3.

The third notion we need to extend to tensorial group field theory is that of contraction
of a subgraph. In graph theory, contracting a line simply means shrinking it until its two
end vertices are identified. In our situation this does not make sense anymore, since



614 S. Carrozza, D. Oriti, V. Rivasseau

the vertices have an internal color structure that prevents us from simply concatenating
them. Instead, one can identify the two end nodes in the colored representation of the
graph, which in turn should be interpreted as the identification, color by color, of the group
variables they are attached too. This naturally leads to the realization of line contractions
as dipole contractions. In the following, we will therefore simply call contraction of the
line e the contraction of the canonically associated dipole e. This definition extends to
contractions of subgraphs.

Definition 5. We call contraction of a subgraph H ⊂ G the successive contractions of
all the lines of H. The resulting graph is independent of the order in which the lines of
H are contracted, and is noted G/H.

Proof. To confirm that this definition is consistent, we need to prove that dipole con-
tractions are commuting operations. Consider two distinct lines e1 and e2 in a graph G,
and call H the subgraph made of e1 and e2. We distinguish three cases.

(i) H is disconnected. This means that e1 and e2 are part of two independent dipoles,
with no colored line in common, and the two contraction operations obviously
commute.

(ii) H is connected, and none of its internal faces contain both e1 and e2. This means
that e1 and e2 are contained in two dipoles d1 and d2, such that for each color i , at
most one line of color i connects d1 to d2. Hence contracting d1 (resp. d2) does not
change the nature of the dipole in which e2 (resp. e1) is contained. So here again,
d1 and d2 are local objects which can be contracted independently.

(iii) H has q ≥ 1 internal faces containing both e1 and e2. In this case, the contraction
of e1 (resp. e2) changes the nature of the dipole in which e2 (resp. e1) is contained:
q internal faces are added to it. However, when contracting the second tadpole,
these faces are deleted, so for any order in which the contractions are performed,
all the internal faces are deleted. As for the external faces, the situation is the same
as in the previous case, and the two contractions commute. 
�

We can finally give a more global characterization of the contraction operation.

Proposition 1. Let H be a subgraph of G, and Hc its colored extension. The contracted
graph G/H is obtained by:

(a) Deleting all the internal faces of H;
(b) Replacing all the external faces of Hc by single lines of the appropriate color.

Proof. We prove this by induction on the number of lines in H. If H contains one single
line, then it is a dipole, and the proposition is true according to the very definition of a
dipole contraction. Now, suppose that H is made of n > 1 lines, n − 1 of them being
contained in the subgraph H0 ⊂ H, and call the last one e. The set of internal faces in
H decomposes into several subsets. The faces which are internal to H0 are deleted by
hypothesis when contracting H0. Those common to H0 and e become internal dipole
faces once H0 is contracted, so they are deleted when e is contracted, and the same is
of course true for the remaining internal faces which have e as single line. The same
distinction of cases applied to external faces of Hc allows to prove that they are replaced
by single lines of the appropriate color, which achieves the proof. 
�

Now that we have these notions at our disposal, we can address the question of how
contracting connected subgraphs within bigger graphs affect their properties. In usual
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graph theory, the number of connected components in a graph G is not affected by the
contraction of a subgraph H. This property is crucial to scale analysis in field theory,
which relies on contractions of specific connected divergent subgraphs within bigger
connected graphs. The new notion of connectedness in TGFT should be conserved
under contraction of (at least) some class of connected subgraphs. The key difference
with usual field theory is that now the contraction of a line does not generically conserve
connectedness. Indeed it is easy to check that

Proposition 2. (i) For any connected graph G, if e is a line of G contained in a d-dipole,
then G/e is connected.

(ii) For any 1 ≤ q ≤ d − k + 1, there exists a connected graph G and a k-dipole e such
that G/e has exactly q connected components.

Localization/contraction operators

Combinatorial contractions of graphs are associated to localization operators acting on
amplitudes. Let us consider a graph G, and a connected subgraph H ⊂ G. We define an
operator τH by its action on the integrand of G. The amplitude AG is of the form:

AG =
⎡

⎣
∏

e∈L(H)

∫
dαe e−m2αe

∫
dhe

⎤

⎦

⎛

⎝
∏

f ∈F(H)

Kα( f )

⎛

⎝
−−→∏
e∈∂ f

he
εe f

⎞

⎠

⎞

⎠

⎡

⎣
∏

e∈N (H)

∫
dge

⎤

⎦

⎛

⎝
∏

f ∈Fext (H)

Kα( f )

⎛

⎝gs( f )

⎡

⎣
−−→∏
e∈∂ f

he
εe f

⎤

⎦ g-1

t ( f )

⎞

⎠

⎞

⎠

× RG\H
({gs( f ), gt ( f )}

)
, (14)

where RG\H only depends on g variables appearing in the external faces of H. We then
define τH as:

τHRG\H
({gs( f ), gt ( f )}

) ≡ RG\H
({gs( f ), gs( f )}

)
, (15)

that is by moving all target variables of the external faces of H to the sources. This
definition is motivated by the fact that when the parallel transports insideH are negligible,
holonomies along external faces can be well approximated by directly connecting the
two points at the boundary of H.

Proposition 3. Let H ⊂ G be a connected subgraph. The action of τH on AG factorizes
as:

τHAG = νρ(H)AG/H , (16)

where νρ(H) is a numerical coefficient depending on the cut-off ρ, and given by the
following integral:

νρ(H) ≡
⎡

⎣
∏

e∈L(H)

∫ +∞

M−2ρ

dαe e−m2αe

∫
dhe

⎤

⎦

⎛

⎝
∏

f ∈F(H)

Kα( f )

⎛

⎝
−−→∏
e∈∂ f

he
εe f

⎞

⎠

⎞

⎠ . (17)

Proof. Applying τH in Eq. (14), one remarks that heat kernels associated to external
amplitudes can readily be integrated with respect to the variables gt ( f ). These integrals
give trivial contributions, thanks to the normalization of the heat kernel. We are therefore
left with an integral over the internal faces of H, giving νρ(H), times an amplitude which
is immediately identified to be that of the contracted graph G/H. 
�



616 S. Carrozza, D. Oriti, V. Rivasseau

4 4

1
2
3

1
2
3

4

Fig. 4. A single-line melopole (left), and the result of its contraction

Remark. One can also use the same kind of factorization for the action of τH on AG,μ,
in which case we will use the notation νμ(H) : τHAG,μ = νμ(H)AG/H,μ.

An illustration of the factorizability property is given in Fig. 4. This definition of
the localization operators will be sufficient for the renormalization of logarithmic diver-
gences, hence for all cases we will consider. As usual, the renormalization of power-like
divergencies in more complicated models will require to push to a higher order the Taylor
expansion around localized terms.

3.2. High subgraphs, contractiblity, and traciality. The graph-theoretic tools that have
just been introduced allow to describe the general structures which will be relevant to the
multi-scale analysis of TGFT. As compared to ordinary field theories, renormalizability
of TGFT involves non-trivial refinements, which have to do with the conditions at which
a high subgraph can be seen as a quasi-local effective object. In the usual ϕ4 model for
example, quasi-locality depends only on the separation of internal scales from external
ones. We know already that this property is lost in tensorial models like the one in
[83], where high subgraphs can give rise to disconnected effective invariants. We are
going to see that the non-trivial projection we added in the propagator complicates the
situation even more. The challenge is to keep the notion of scales firmly locked into the
propagators: defining scales for faces is a non-starter, since, contrary to propagators, the
combinatorial structure of faces vary from graph to graph (it is a global construction in
terms of Feynman rules), hence have no QFT meaning.

Let G be an open graph, μ = {ie} a scale attribution, and AG,μ the corresponding
amplitude. As usual, we define high subgraphs according to internal and external scales.
The notion of external leg itself has been chosen to be compatible with the refined notion
of connectedness we adopted, hence the correct notion of external scale is that of external
legs.

Definition 6. (i) Given a subgraph H ∈ G, one defines:

iH(μ) = inf
e∈L(H)

ie(μ) , eH(μ) = sup
e∈N (H)

ie(μ). (18)

(ii) A subgraph H ∈ G is called high if it is connected and eH(μ) < iH(μ).

As usual the key to successful renormalization is an approximate locality property
of all the high divergent subgraphs seen from their external legs.

Our definition that a line is external to a subgraph H if and only if there exists one
colored line linking it to a line of H reflects the need to define this approximate locality
with respect to properties of the faces. This is also a consequence of the fact that, in



Renormalization of Tensorial Group Field Theories 617

our discrete gauge theoretic framework, the “size” of a given group element can only be
compared to the size of the other elements appearing in the same faces.

In scalar field theory, any high subgraph (no matter whether divergent or not) system-
atically looks local and can be interpreted as an effective interaction. In matrix models
such as [98,99], this property is already lost for general high graphs and holds only for
regular subgraphs (planar with a single external boundary), a subclass which fortunately
contains all the divergent ones. In the TGFT considered in this paper, this property is
further restricted, but still applies to all divergent graphs. This is a very important result,
since it is the one that makes renormalization possible, ultimately.

The first source of complications, which lies in the non-conservation of connectedness
under dipole contractions (Proposition 2), was already identified in [83].

The second complication is a new feature of the models considered here, and is due to
the additional projection introduced in the propagator. Indeed, high propagators in these
models do not approximate the identity operator, but rather the projector on translation
invariant fields. At the level of the amplitudes, this tells us that in high subgraphs,
holonomies around closed faces are very close to 1l, which in itself does not say anything
about the value of individual group elements he. But a dipole contraction is a good
approximation only when the variables he themselves are close to 1l, hence the tension.

A first remark is that gauge-symmetry allows to set he = 1l for 1-dipoles between
different vertices and to contract them, reducing all loop lines to tadpole lines of a—big
but single—connected invariant vertex, usually called a “rosette” in the matrix context.
In this rosette the k-dipoles with k > 1 are not a problem, as their internal faces auto-
matically peak he around 1l, allowing to perform their contraction; but remark that this
operation may disconnect the rosette into several connected components. Finally in each
of these components or sub-rosettes the issue reduces to the study of 1-dipoles. Typically
a set of high such 1-dipoles peaks some he around 1l, but not all in general.

To disentangle the loss of tensorial invariance from the loss of connectedness, we
define two classes of subgraphs, the contractible and the tracial subgraphs.

Definition 7. Let G be a connected graph, and H one of its connected subgraphs.

(i) IfH is a tadpole,H is contractible if, for any group elements assignment (he)e∈L(H):

⎛

⎝∀ f ∈ F(H) ,
−−→∏
e∈∂ f

he
εe f = 1l

⎞

⎠ ⇒ (∀e ∈ L(H) , he = 1l) . (19)

(ii) In general, H is contractible if it admits a spanning tree T such that H/T is a
contractible tadpole.

(iii) H is tracial6 if it is contractible and the contracted graph G/H is connected.

A contractible graph is therefore a subgraph on which any flat connection is trivial up
to a gauge transformation. Note that this gauge freedom is what makes the contraction
with respect to a spanning tree an essential feature of the definition. On the other hand,
the notion of traciality is independent of the choice of tree, as it is a statement about
G/H, in which all internal lines of H have been contracted.

In the multi-scale effective expansion, high divergent subgraphs give rise to effective
couplings. To apply this procedure in our context, such subgraphs need to be tracial, or
at least contractible. Traciality ensures that the divergence of a high subgraph can be

6 We thank Adrian Tanasa for suggesting this name.



618 S. Carrozza, D. Oriti, V. Rivasseau

factorized into a divergent coefficient times a connected invariant. For high divergent
subgraphs which are contractible but not tracial, a factorization of the divergences is
still possible, but in terms of disconnected invariants; these have been called anomalous
terms in [83]. It is not clear yet whether this is a major issue and how these anomalies
should be interpreted physically, but in the models considered below all the divergent
high subgraphs are tracial. Indeed we already noticed that any k-dipole with k > 1 is
contractible, and that any d-dipole is tracial, as its contraction also preserves connect-
edness. These two facts combined provide us already with an interesting class of tracial
subgraphs. We call them melopoles because they combine the idea of melonic graphs
and tadpoles. The high divergent graphs considered in the models of this paper will all
be melopoles.

Definition 8. In a graph G, a melopole is a connected single-vertex subgraph H (hence
H is made of tadpole lines attached to a single vertex in the ordinary sense), such that
there is at least one ordering (or “Hepp’s sector”) of its k lines as l1, . . . , lk such that
{l1, . . . , li }/{l1, . . . , li−1} is a d-dipole for 1 ≤ i ≤ k.

The simplest melopole has just one line and is shown in Fig. 4. Its contraction within
a connected graph (grey blob) results in a connected graph times a coefficient (of which
a graphical representation is given). In the example discussed in the Appendix (Fig. 8b),
the subgraphs H = {l1} or H = {l1, l2} are melopoles; the subgraphs H = {l2} and
H = {l1, l3} are not (the last one because it is not connected).

Proposition 4. Any melopole is tracial.

Proof. Obviously it is contractible; and connectedness cannot be lost at any stage if one
contracts in the order of the correct Hepp’s sector. 
�

Now that we have clarified these notions and obtained a first class of very simple
tracial graphs, namely the melopoles, we can proceed with the multislice analysis and
renormalization of the simplest tensor group field theories. The Gallavotti–Nicoló tree
is an abstract tree encoding the inclusion order on high subgraphs of (G, μ), and hence
an expansion of AG,μ in terms of effective vertices. For any i ∈ �0, ρ�, we define
Gi as the subgraph made of all lines of G with scale higher or equal to i . We further
call k(i) its number of connected components, and {G(k)

i , k ∈ �1, k(i)�} its connected
components. This latter set is exactly the set of high subgraphs. Two high subgraphs
are either included into one another, or disjoint. They therefore form what is called an
inclusion forest, because their inclusion relations can be represented by an abstract forest.
When G itself is connected, and because it is also high by convention, the inclusion forest
is actually an inclusion tree: the Gallavotti–Nicoló tree.

4. Multi-Scale Analysis of Abelian Models

4.1. Propagator bounds. The explicit form of the heat-kernel at time α on U(1) is

Kα(θ) = e− 1
4α

θ2

√
α

(
1 + 2

∞∑

n=1

e− π2n2
α cosh

(nπ

α
θ
))

, (20)

so that the propagator can explicitly be written as:

c(θ1, . . . , θd ; θ ′
1, . . . , θ

′
d)

=
∫ +∞

0
dα

e−αm2

αd/2

∫ 2π

0
dλ e− 1

4α

∑
�(θ�−θ ′

�+λ)2
T (α; θ1−θ ′

1+λ, . . . , θd −θ ′
d +λ) , (21)
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with

T (α; θ1, . . . , θd) ≡
d∏

�=1

(
1 + 2

∞∑

n=1

e− π2n2
α cosh

(nπ

α
θ�

))
. (22)

One can then prove generic bounds for the sliced propagators Ci , on which the whole
power-counting will rely. Such bounds have been computed in the model of [83], and
immediately imply the following:

Proposition 5. There exist constants K > 0 and δ > 0, such that for all i ∈ N:

Ci (θ1, . . . , θd ; θ ′
1, . . . , θ

′
d)≤ K M (d−2)i

∫
dλ e−δMi ∑

� |θ�−θ ′
�+λ| , (23)

∀� ∈ �1, d� , ∂
∂θ�

Ci (θ1, . . . , θd ; θ ′
1, . . . , θ

′
d)≤ K M (d−1)i

∫
dλ e−δMi ∑

� |θ�−θ ′
�+λ| ,

(24)

The bound on the derivative of Ci is generalizable to any number of derivatives,
but we will only use the one we have just stated. For Abelian compact Lie groups of
dimension D, θ ’s and λ are D-dimensional and, for example, the first bound becomes

Ci (θ1, . . . , θd; θ ′
1, . . . , θ

′
d) ≤ K M (d D−2)i

∫
dλ e−δMi ∑

e |θe−θ ′
e+λ|. (25)

4.2. Power-counting.

4.2.1. Power-counting in a slice. The divergence degree of Abelian TGFT subgraphs
in a single slice and with a heat kernel regularization has been established and analyzed
in [58]. For an Abelian compact group of dimension D it gives

ω(H) = −2L(H) + D(F(H) − r(H)) (26)

where r is the rank of the εe f incidence matrix of H. The θ integrations transform the
(d D − 2)L into the −2L + DF term, whence the λ integrals (absent in [83]) add the r
term.

The factor −2L is independent of both D and d for a (m2 −∑d
�=1 ��)

−1 propagator,
where �� is the group Laplacian acting on the �-th argument of the field. Indeed it just
reflects the asymptotic quadratic decay “1/p2” of that propagator at large momentum
p.

If the subgraph H is the union of several connected components Hk , the divergence
degree factorizes as the sum of the divergence degrees of the connected components,
from our very definition of connectedness as rectangular block-factorization of the εe f
incidence matrix:

ω(H) =
∑

k

ω(Hk). (27)

In the case of non-commutative TGFT’s the ordering of faces results in a more subtle
single-slice power-counting, established in [59–61]. The factor F−r is still multiplied by
the dimension of the Lie group; but in the case of non-commutative groups and of graphs
triangulating non-simply connected pseudo-manifolds, the rank has to be supplemented
by another term, not necessarily proportional to the dimension of the group, resulting in
a twisted divergence degree ωt [59–61].
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4.2.2. Multi-scale power-counting. Consider a graph G. Consider the multi-scale
decomposition AG = ∑

μAG,μ. The multislice power-counting is a bound that at fixed

momentum attribution μ factorizes over all the G(k)
i nodes of the Gallavotti–Nicoló tree

(hereafter GN tree).

Proposition 6 (Multi-scale fundamental bound). There exists a constant K such that the
following bound holds:

|AG,μ| ≤ K L(G)
∏

i

∏

k∈�1,k(i)�

Mω[G(k)
i ] (28)

Proof. In the ordinary case of an ordinary connected graph with L lines and V vertices,
the slice propagator bound is

|Ci (x, y)| ≤ K M (D−2)i e−δMi |x−y| , (29)

and the divergence degree is ω = (D − 2)L − Dr , where r , the rank of the εev matrix,
is V − 1 since the graph is connected. The multi-scale aspect of the bound requires to
optimize the rank effects at each scale. It follows conveniently from the compatibility
between two trees: the GN tree at fixed assignment μ and a real spanning tree Tμ made of
lines of the graph G which allows to organize in an optimal way the integration over the
vertex positions [94]. More precisely, it is always possible to require Tμ to be a subtree
when restricted to each GN node. This is because the GN nodes form an inclusion forest;
Tμ is chosen recursively from leaves towards the root G of the GN tree. One first picks
a spanning tree in a leaf of the GN tree, then contracts that leaf to a vertex and continue
until the end, obtaining a set of lines Tμ. The inclusion structure of the GN tree implies
that any such Tμ is a tree in the full graph whose restriction to each node is also a tree
in that node. Then one can forget the useless decay factors associated to the lines not in
Tμ; they cannot improve the final bound except at the level of the constant K at best.

But the reduced incidence matrix for Tμ is still V − 1 by V and has still rank V − 1;
there is therefore still “root” vertices to choose in the total graph G in order to obtain
minors of maximal rank. This is done again recursively, but this time in the reverse order.
One can pick an arbitrary root vertex v0 in G. It determines in each node a unique “local”
root vertex vik , which is either v0 if it belongs to the node, or the starting vertex on the
unique path of Tμ leading out of the node to the root v0.

Then performing the “canonical” change of variables of Jacobian 1 associated to Tμ

and V0 from leaves of Tμ to the root, we can integrate all positions of all vertices of G
save V0 through the decay

∏

e∈Tμ

e−δMi(e)|xe−ye|

and the result gives K V −1 ∏
i
∏

k∈�1,k(i)� M−D[V (G(k)
i )−1] as desired.

In the tensorial group field theory case we proceed in the same way to combine the
bound and the optimization over the scales. First we collect all lines factors M2i and
rewrite them as

∏

i

∏

k∈�1,k(i)�

M (d D−2)L[G(k)
i ]



Renormalization of Tensorial Group Field Theories 621

through the usual trivial identities Mi = ∏i
j=1 M . Then we integrate all θ variables in

any face, optimizing along a tree in each face as in [83]. This results in a factor

K L(G)
∏

i

∏

k∈�1,k(i)�

M−d DL(G(k)
i )+DF(G(k)

i )

which combined with the first one gives

K L(G)
∏

i

∏

k∈�1,k(i)�

M−2L(G(k)
i )+DF(G(k)

i ).

It remains to perform the λ integrals, using the remaining decay, which is
∏

f

e−δMi( f )| ∑e εe f λe|, (30)

where i( f ) is the lowest scale in the face f . These integrals should give the rank con-
tribution to ω. But how to optimize this effect according to the scale attribution μ? By
analogy with the previous case we should select a restricted set of faces Fμ such that

the submatrix εe f with f restricted to Fμ still has rank ri,k in each G(k)
i node, and forget

the decay factors from the other faces in (30). This is the analog of selecting the former
spanning tree Tμ, and throwing the loop lines decays.

To select Fμ, we start again from the leaves of the GN tree and proceed towards its
root G. We consider a leaf H and select a first subset of faces such that the restricted
submatrix εe f with f and e in H has maximal rank; then we contract H and continue
the procedure for the reduced graph and the reduced GN tree, until the root is reached.
At the end we obtain a particular set of faces Fμ.

At each node G(k)
i we have discarded the full incidence columns for internal faces

which were combinations of other columns of that node. But because such faces were
internal, these full columns have zeros outside the G(k)

i block. Hence removing them
cannot have any effect on the lower nodes rank. The conclusion is again that the incidence
matrix reduced to Fμ, that is for which all internal faces not contained in Fμ have been

discarded, has still rank ri,k in each G(k)
i node.

Discarding the decay factors for faces not in Fμ, we now need to analyze the result
of the integral ∫ ∏

e∈L(G)

d Dλe

∏

f ∈Fμ

e−δMi( f )| ∑e εe f λe|, (31)

and prove that it gives
∏

i
∏

k∈�1,k(i)� M−Dri,k . This is the analog of the variables change
and choice of the root vertices in each node. In the graph G we can pick a set Lμ of
exactly |Fμ| lines such that the (square) Fμ by Lμ minor εe f has non-zero determinant.

The Lμ by Fμ square incidence matrix εe f must still have exactly ri,k rank in each G(k)
i

node (otherwise the ri,k columns εe f for f ∈ Fμ ∩ G(k)
i would not generate a space of

dimension ri,k , and the rank of the selected Fμ by Lμ square matrix would be strictly
smaller than Fμ).

We can now fix all values of the λe parameters of the lines not in Lμ and consider
the integrals ∫ ∏

e∈Lμ

d Dλe

∏

f ∈Fμ

e−δMi( f )| ∑e εe f λe|, (32)
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We change of variables so that the integral becomes
∫

J
∏

f ∈Fμ

d Dx f e−δMi( f )|x f −y f |, (33)

where the y f variables are functions of the fixed λe parameters of the lines not in Lμ

and J is a Jacobian. This integral gives
∏

f ∈Fμ
M−Di( f ), which by the condition on Fμ

turns into
∏

i
∏

k∈�1,k(i)� M−Dri,k as expected.
Remark that by Hadamard bound, since each column of this determinant is made of

at most d factors ±1 (a line containing at most d internal faces), the Jacobian J of the

corresponding change of variables is not very big, at most
√

d
Fμ , hence can be absorbed

in the K L(G) factor.
Finally we can integrate the fixed λe parameters for e �∈ Lμ at a cost bounded by

K L(G) if our group is compact. The case of a non-compact group requires infrared
regularization and will not be treated here. 
�

5. Application to the U(1) 4d Model

In this section, we illustrate the general formalism outlined in the previous sections,
specializing to d = 4 and G = U(1). We will use angle coordinates θ� ∈ [0, 2π [ for the
group elements g� = eiθ� , parameterizing the field ϕ(θ1, . . . , θ4).

These Abelian models will turn out to be very similar to scalar models with poly-
nomial interactions in 2-dimensional ordinary quantum field theory [93]. The latter are
super-renormalizable for any interaction, and the divergences can be subtracted by a
simple change of variables at the level of the action. This procedure, called Wick order-
ing, removes the divergent tadpole contributions, yielding a perturbatively finite theory.
In our TGFT context, local and polynomial interactions are replaced by finite sums of
connected tensor invariants. Analogously to P(φ)2 models, we will prove that any such
interaction generates a super-renormalizable model. We will then provide a generaliza-
tion of the Wick ordering procedure, again yielding perturbatively finite models.

5.1. Bound on the divergence degree. Since D = 1, the divergence degree of a connected
subgraph H ⊂ G is given by

ω(H) = −2L(H) + F(H) − r(H). (34)

We need to determine the set of divergent subgraphs, that is those H such that ω(H) ≥ 0.
In order to prove the model renormalizable, it will also be necessary to find a uniform
decay of the amplitude associated to convergent graphs (ω < 1), with respect to their
external legs. In this respect, a suitable bound on ω in terms of simple combinatorial
quantities will be sufficient. We can for instance decompose the number of faces with
respect to the number of lines they consist of. We call Fk the number of internal faces
with k lines, and Fext,k the number of external faces with k lines, so that:

F =
∑

k≥1

Fk , Fext =
∑

k≥0

Fext,k . (35)

Note that, contrary to internal faces, external faces of H do not have to contain a line
of H, which explains that the second sum starts from k = 0. We can also express the
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number of lines in terms of these quantities. Since four different faces run through each
line of H, we have:

4L =
∑

k≥1

k Fk +
∑

k≥1

k Fext,k , (36)

where in this formula both sums start with k = 1. We can therefore rewrite ω as

ω =
∑

k≥1

(
1 − k

2

)
Fk −

∑

k≥1

k

2
Fext,k − r. (37)

We remark that the only positive contribution in this sum is given by F1, to which
only p-dipoles with p ≥ 2 contribute. More precisely,

F1 = D2 + 2D3 + 3D4 + 4D5 , (38)

where Dp is the number of p-dipole lines in H. We are thus lead to find a bound on r in
terms of these numbers of dipoles, which is the purpose of the following lemma.

Lemma 1. The rank of the incidence matrix associated to a connected graph H verifies:

r ≥ D2 + D3 + D4 + D5. (39)

Proof. Each p-dipole with p ≥ 2 contains at least one internal face, which is independent
of all the faces appearing in other lines. 
�

Plugging this inequality into the expression of ω yields the following bound:

ω ≤ D5 +
D4

2
− D2

2
−

∑

k≥3

(
k

2
− 1

)
Fk −

∑

k≥1

k

2
Fext,k . (40)

Note also that D5 is always 0, unless H is the unique vacuum graph with a single line
(sometimes called supermelon). So the only non-trivial positive contribution comes from
the 4-dipoles. This seems to suggest that only melopoles will be convergent, which we
confirm in the next section.

5.2. Divergent and convergent graphs. To control the contribution of D4 in (40), we take
a step back and analyse the (exact) effect on ω of a 4-dipole contraction in a connected
graph H. Because 4-dipoles are tracial, the question is well-posed.

Proposition 7. Let H be a connected subgraph, and l a 4-dipole line. Then

ω(H) = ω(H/ l). (41)

Proof. We have immediately L(H/ l) = L(H) − 1 and F(H/ l) = F(H) − 3. As for
the rank of the incidence matrix, it is easy to see that: r(H/ l) = r(H) − 1. Therefore:

ω(H/ l) = ω(H) + 2 − 3 + 1 = ω(H). (42)

This property can be used to recursively reduce the analysis to that of graphs with a
few melonic lines. For such graphs, (40) is constraining enough, and we can obtain the
following classification.

Proposition 8. Let H ⊂ G be a connected subgraph.
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• If ω(H) = 1, then H is a vacuum melopole.
• If ω(H) = 0, then H is either a non-vacuum melopole, or a submelonic vacuum

graph (see Fig. 6).
• Otherwise, ω(H) ≤ −1 and ω(H) ≤ − N (H)

4 .

Proof. Let us first assume that H is a vacuum graph. We can perform a maximal set
of successive 4-dipole contractions, so as to obtain a graph H̃ with D4 = 0 and same
power-counting as H. If D5(H̃) = 1, then H̃ is the supermelon graph, which means
that H is a melopole, and ω(H) = ω(H̃) = −2 + 4 − 1 = 1. On the other hand, when
D5(H̃) = 0, Eq. (40) gives

ω(H̃) ≤ − D2(H̃)

2
−

∑

k≥3

(
k

2
− 1

)
Fk(H̃) , (43)

from which we infer that ω(H̃) ≤ −1 unless perhaps when D2(H̃) = Fk(H̃) = 0 for
any k ≥ 3. But it is easy to see that these conditions immediately imply that H̃ has one
of the structures shown in Fig. 5. A direct calculation then confirms that ω = 0 for the
left drawing, but ω = 1 for the drawing on the right. This finally shows that ω = 0
graphs are exactly the minimal graph on the left side of Fig. 5 dressed with additional
melopoles, as shown in Fig. 6. We propose to call them submelonic vacuum graphs.

Let us now consider the case of a non-vacuum graph H. We can again perform a
maximal set of 4-dipole contractions and construct a new graph H̃ verifying either: (a)
L(H̃) = D4(H̃) = 1; or (b) D4(H̃) = 0. In situation (a), H̃ reduces to a single 4-dipole
line, H itself is a melopole, and ω(H) = ω(H̃) = −2 + 3 − 1 = 0. In situation (b), the
bound on ω gives

ω(H̃) ≤ − D2(H̃)

2
−

∑

k≥3

(
k

2
− 1

)
Fk(H̃) −

∑

k≥1

k

2
Fext,k(H̃) < 0 , (44)

Fig. 5. Two vacuum graphs with D2(H̃) = Fk (H̃) = 0 for any k ≥ 3

Fig. 6. The class of submelonic vacuum graphs: grey blobs represent melopole insertions
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which shows that ω(H̃) = ω(H) ≤ −1. We can finally prove a decay in terms of the
number of external lines. For instance, we remark that the connectedness of H̃ implies
that at least one face going through a given external leg is of the type Fext,k with k ≥ 1.
And because each of these faces contains two external legs, we have

∑
k≥1 Fext,k ≥ N

2 .
So we finally obtain

ω(H) = ω(H̃) ≤ −
∑

k≥1

k

2
Fext,k(H̃) ≤ −1

2

∑

k≥1

Fext,k ≤ − N

4
. (45)

All possible situations have been scanned, which ends the proof. 
�
This classification allows to identify melopoles as the only source of divergences in

the scale decomposition of non-vacuum connected amplitudes. Any model with a finite
set of 4-bubble interactions comes with a finite number of melopoles, and is therefore
expected to be super-renormalizable. The purpose of the next sections is to prove that it
is indeed the case.

5.3. Melordering. In the usual super-renormalizable P(φ)2 field theory [93], the finite
set of counter-terms that are needed to tame divergences is simply provided by Wick
ordering. It consists in a simple change of basis of interaction invariants, the coupling
constants in this new basis being the renormalized ones. The net effect of Wick ordering
at the level of the Feynman expansion is to simply cancel the contributions of graphs
with tadpoles. This suggests a similar strategy to remove the special kind of tadpoles
that are responsible for the divergences of our tensorial model, that is the melopoles. We
will call this particular version of Wick ordering the melordering.

Before going to the details of melordering, a few preliminary remarks are in order. As
in the rest of this paper, we have to face a few subtleties introduced by the refined notion
of connectedness on which TGFT relies. In scalar theories, tadpole lines are exactly local
objects, in the sense that their contributions can be factorized exactly. This is the reason
why Wick ordering can be defined as a choice of a family of orthogonal polynomials
with respect to the regularized covariance. When such invariants are used as a basis to
express the interaction part of the action, their expectation values in the vacuum is zero,
and more generally all tadpole contributions cancel out exactly. In tensorial theories
however, we have seen that tadpoles can only be approximately local, at the condition
of them being tracial (which melopoles are). We therefore cannot hope to cancel them
exactly, but only to eliminate their local divergent part. An important consequence is for
example that melordered invariants will not necessarily have zero expectation value in
the vacuum, but only a finite one (at the additional condition that submelonic vacuum
counter-terms are added when needed, see Sect. 5.4).

We now proceed with the definition of melordering. Let us call Inv the vector space
of connected tensor invariants, generated by the 4-bubbles. Associated to the regularized
covariance Cρ , we want to define a linear and bijective map �ρ : Inv �→ Inv that maps
any 4-bubble to a suitably weighted sum of lower order 4-bubbles. Getting inspiration
from the scalar case, one should define �ρ(Ib) as a sum over pairings of the external legs
of b. The relevant pairings will be those resulting in one or several melopoles. Indeed,
as we will see in an explicit example (see Appendix), a single connected invariant can
give rise to several disconnected melopoles. For this reason, and despite the super-
renormalizable nature of the model, the counter-terms have already a rich structure,
only captured by the full machinery of Zimmermann forests. In such an approach, the
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renormalized amplitudes are given by sums over inclusion forests of divergent subgraphs
F , of contractions of the bare amplitudes

AR
G =

∑

F

∏

H∈F
(−τH)AG . (46)

In our case, the relevant structure is given by inclusion forests of melopoles, which we
call meloforests and define with respect to both subgraphs and bubble invariants.

Definition 9. (i) Let H ∈ G be a subgraph. A meloforest M of H is a set of non-empty
and connected melopoles of H, such that: for any m, m′ ∈ M, either m and m′
are face and line-disjoint (i.e., have neither common lines nor common faces), or
m ⊂ m′ or m′ ⊂ m. We note M(H) the set of meloforest of H.

(ii) Let b be a 4-bubble. A meloforest M of b is a meloforest for a graph made of a
single vertex b. We call I M

b,ρ the observable associated to the smallest such graph,
namely

⋃
m∈Mm. We note M(b) the set of meloforests of b.

Meloforests have a relatively simple structure, due to a uniqueness property [71,72].

Lemma 2. Let b be a 4-bubble. There exists a unique vacuum graph G with a single
vertex b, such that any meloforest of b is a meloforest of G.

Proof. As remarked in [71,72], only melonic 2-point subgraphs (in the sense of colored
graphs) of b can be closed in melopoles, and there is a unique way of doing so. Clos-
ing the maximal 2-point subgraphs of b in such a way results therefore in the unique
graph G. 
�

We can now proceed with the definition of the melordering map.

Definition 10. For any d-bubble b, associated to the invariant Ib, and a cut-off ρ, we
define the melordered invariant �ρ(Ib) as

�ρ(Ib) ≡
∑

M∈M(b)

∏

m∈M
(−τm) I M

b,ρ . (47)

By convention, the sum over meloforests includes the empty one, so that �ρ(Ib) as
same order as Ib. Products of contraction operators are commutative, the definition is
therefore unambiguous. These (non-trivial) products of contractions ensure that each
term in the sum is a weighted d-bubble invariant, making �ρ a well-defined linear map
from Inv to itself. An example is worked out explicitly in the Appendix.

Consider now the theory defined in terms of melordered interaction at cut-off ρ, with
partition function:

Z�ρ =
∫

dμCρ (ϕ, ϕ) e−S�ρ (ϕ,ϕ) , (48)

S�ρ (ϕ, ϕ) =
∑

b∈B
t R
b �ρ(Ib)(ϕ, ϕ). (49)

We shall then consider the perturbative expansion in the renormalized couplings t R
b

and prove that the corresponding Feynman amplitudes are finite. Let us call S�ρ

N the
N -point Schwinger function of the melordered model. The next proposition shows that
renormalized amplitudes have the expected form.
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Proposition 9. The N-point Schwinger function S�ρ

N expands as:

S�ρ

N =
∑

G connected,N (G)=N

1

s(G)

(
∏

b∈B
(−t R

b )nb(G)

)
AR

G , (50)

where the renormalized amplitudes can be expressed in terms of the bare ones as

AR
G =

⎛

⎝
∑

M∈M(G)

∏

m∈M
(−τm)

⎞

⎠ AG . (51)

Proof. We first remark that the set M(G) of meloforests of G can be described according
to meloforests of bubble vertices b ∈ B(G):

M(G) =
{

⋃

b∈B
Mb|Mb meloforest of b ∈ B(G)

}
. (52)

AR
G as defined above can therefore be written

AR
G =

⎛

⎝
∑

(Mb)b∈B(G)

∏

b∈B(G)

∏

m∈Mb

(−τm)

⎞

⎠ AG (53)

=
∏

b∈B(G)

⎛

⎝
∑

Mb

∏

m∈Mb

(−τm)

⎞

⎠ AG . (54)

Each element of the product over b ∈ B(G) is a contraction operator taking all melopoles
associated to b into account. Let us fix a graph G and a bubble b. Among the set of Wick

contractions appearing in S�ρ

N , the operator
∑

Mb

∏
m∈Mb

(−τm) encodes all the terms
due to the interaction �ρ(Ib) that are compatible with the combinatorics of the external
legs of b in G and the structure of the rest of the graph. We therefore understand that

S�ρ

N as written above is a valid repackaging of all the Wick contractions generated by
the melordered interaction. 
�

We will devote the whole Sect. 6 to proving that the renormalized amplitudes are
indeed finite. Before that, we return to submelonic vacuum divergences.

5.4. Vacuum submelonic counter-terms. The melordering we just introduced is designed
to remove melopole divergences, including logarithmic divergences of non-vacuum
graphs and linear divergences resulting from vacuum melopoles. However, we have seen
that a third source of divergences is given by submelonic vacuum graphs. They again
concern tadpole graphs, so they can also be removed by adding extra counter-terms to
the melordering of some of the bubbles. As long as we are concerned with computations
of transition amplitudes, they are irrelevant since they will only affect Z and none of the
connected Schwinger functions. But we include them here for completeness.

We can define an extended melordering �ρ that coincides with �ρ for bubbles which
cannot be closed in a submelonic vacuum graph, and adds additional counter-terms to
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Fig. 7. On the left: structure of a submelonic bubble once all melonic parts have been closed into melopoles
and contracted. On the right: the two ways of obtaining a submelonic vacuum graph

those which can. We can call the latter submelonic bubbles. They are exactly the bubbles
that reduce to a four-point graph as in Fig. 7 once all the melonic parts have been closed
into melopoles and contracted. Such bubbles generate additional divergent forests, which
we can call submelonic forests:

Definition 11. Let b be a submelonic bubble. A submelonic forest of b is a forest S =
M ∪ {G}, where M is a melonic forest and G is a vacuum graph with a single vertex b.
We call I S

b,ρ the amplitude associated to the graph G. We call S(b) the set of submelonic
forests of b.

Remark. Given a submelonic bubble, there are exactly two possible choices for G, which
correspond to the two possible ways of closing the melopole-free graph of Fig. 7.

The extended melordering is finally defined by

�ρ(Ib) ≡
∑

M∈M(b)

∏

m∈M
(−τm) I M

b,ρ +
∑

S∈S(b)

∏

s∈S
(−τs) I S

b,ρ (55)

when b is submelonic. This implies similar formulas for renormalized amplitudes in
the extended melordered model, which in particular do not affect the expression for
melordered connected Schwinger functions. The only difference will be that the partition
function of the extended melordered model will be well-defined as a formal series,
contrary to the simple melordering for which Z will have some logarithmically divergent
coefficients.

6. Finiteness of the Renormalized Series

In this section, we will prove that melordered models with maximal interaction order
p < +∞ are perturbatively finite at any order. To avoid dealing with submelonic vac-
uum graphs, we will only focus on the connected Schwinger functions, which are the
physically meaningful quantities after all. They are well-defined formal series in the
renormalized couplings if all non-vacuum and connected renormalized amplitudes AR

G
are finite.

We will again rely on the multi-scale analysis, following the usual procedure of
[94], which consists in two steps. We first need to show that renormalized amplitudes
associated to bare divergent graphs verify multi-scale convergent bounds. This is most
conveniently done through a classification of divergent forests (in our case meloforests),
which for a given scale attribution μ, splits these in two families: the dangerous ones,
associated to high subgraphs, that cancel genuine divergences; and on the other hand
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inoffensive divergent forests that do not have any quasi-locality property, henceforth
do not serve any purpose. The inoffensive forests bring finite contributions that do not
ruin the power-counting, and can rather be interpreted as a drawback of the renormal-
ized series: they have no physically meaningful consequence, and in addition (in just
renormalizable models, but not for super-renormalizable models like the ones treated
here) results in “renormalon effects” that typically prevents from constructing a conver-
gent series. In a second step, we will prove that the sum over scale attributions can be
performed, and the cut-off ρ sent to infinity while keeping the amplitudes finite.

6.1. Classification of forests. We follow the general classification procedure of [94],
that at each scale attribution allows to factorize the contraction operators defining the
renormalized amplitude. Let G be a connected (non-vacuum) graph. We can decompose
the renormalized amplitude AR

G in terms of its scale attributions:

AR
G =

∑

μ

∑

M∈M(G)

∏

m∈M
(−τm)AG,μ. (56)

The classification of forests is a reshuffling of the sum over meloforests that allows to
permute the two sums. We know that for a given scale attribution μ, the forests that
contribute to the divergences are those containing high melopoles. We therefore need to
define the notion of high meloforest, and reorganize the sum in terms of these quantities.
We follow the standard procedure, and start with the following set of definitions.

Definition 12. Let G be a connected graph, μ a scale attribution, and M a meloforest
of G.

(i) We say that a subgraph g ⊂ G is compatible with a meloforest M if M ∪ {g} is a
forest.

(ii) If g is compatible with a meloforest M, we note BM(m) the ancestor of g in
M ∪ {g}, and we similarly call AM(g) ≡ {m ⊂ g|m ∈ M} the descendants.

(iii) Internal and external scales of a compatible graph g in a meloforest M are defined
by:

ig,M(μ) = inf
e∈L(g\AM(g))

ie(μ) , eg,M(μ) = sup
e∈N (g)∩BM(g)

ie(μ). (57)

(iv) The dangerous part of a meloforest M with respect to μ is:

Dμ(M) = {m ∈ M|im,M(μ) > em,M(μ)} , (58)

and the inoffensive part is the complement Iμ(M) = M\Dμ(M). Finally I (μ)

is the set of all inoffensive forests in G.

Remarks. The notions of internal and external scales with respect to a meloforest are
consistent with the previous definitions, since im,∅ = im and em,∅ = em . Moreover, (non-
vacuum) melopoles have exactly two external legs, which makes the situation relatively
simple.

The following important lemma leads to the partition of forests.

Lemma 3. Given a meloforest M,

Iμ(Iμ(M)) = Iμ(M). (59)

Proof. Similar to [94], but simpler. 
�
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This implies that the set of meloforests M(G) of a connected graph G can be parti-
tioned, according to the inoffensive forests associated to any scale attribution μ:

M(G) =
⋃

M|Iμ(M)=M
{M′|Iμ(M′) = M}. (60)

We can finally characterise the equivalence class of a meloforest M by introducing its
maximal forest M ∪ Hμ(M), where

Hμ(M) = {m compatible with M | m ∈ Dμ(M ∪ {m})}. (61)

We can indeed show that:

Proposition 10. For any M ∈ I (μ), M ∪ Hμ(M) is a meloforest, and moreover:

∀M′ ∈ M(G), Iμ(M′) = M ⇐⇒ M ⊂ M′ ⊂ M ∪ Hμ(M). (62)

Proof. Similar to [94], but simpler. 
�
This finally allows to reorganize the operator defining the renormalized amplitude as

∑

M∈M(G)

∏

m∈M
(−τm) =

∑

M∈I (μ)

∏

m∈M
(−τm)

∏

h∈Hμ(M)

(1 − τh) , (63)

which decomposes the product of contraction operators into inoffensive parts and high
parts. And since it holds for any μ, we can use this formula to invert the two sums in
(56) and obtain:

AR
G =

∑

M∈M(G)

AR
G,M , (64)

AR
G,M =

∑

μ|M∈I (μ)

∏

m∈M
(−τm)

∏

h∈Hμ(M)

(1 − τh)AG,μ. (65)

The factorization (64) is key to the proof of finiteness. We shall first show that, with
respect to the bare theory, the power-counting of AR

G,M for a given scale attribution is
improved, and is always convergent. We will then explain why the sum over scales is
finite given such convergent multi-scale bounds. The final sum over meloforests will not
bring more divergences, since their cardinal is finite (and even bounded by K n(G) for
some K > 0).

6.2. Power-counting of renormalized amplitudes. Let us fix a meloforest M and a scale
attribution μ such that M ∈ I (μ). The product of operators acting on AG,μ in (64) can
be computed explicitly. We can for example first act with

∏
m∈Mτm which evaluates as

∏

m∈M
τm AG,μ =

(
∏

m∈M
νμ(m/AM(m))

)
AG/M,μ , (66)

where G/M is the graph obtained from G once all the subgraphs of M have been
contracted. This graph is nothing but G/AM(G). νμ is a generalized notion of amplitude
associated to subgraphs H ⊂ G, that just discards the contributions of external faces. In



Renormalization of Tensorial Group Field Theories 631

this sense, it is analogue to an amputated amplitude in usual field theories. In particular,
we can assume that AG/M,μ is an amputated amplitude and write:

∏

m∈M
τm AG,μ =

∏

g∈M∪{G}
νμ(g/AM(g)). (67)

The power-counting, which only depends on internal faces, is unaffected by the fact that
we are working with such amputated amplitudes, and we conclude that

|
∏

m∈M
(−τm)AG,μ| ≤ K L(G)

∏

g∈M∪{G}

∏

(i,k)

Mω[(g/AM(g))
(k)
i ]. (68)

This is a generalization of the power-counting (28), and reduces to it when M = ∅. This
proves that the sum over inoffensive forests does not improve nor worsen the power-
counting, as was expected. Finiteness is entirely implemented by the useful part of the
contraction operators, namely

∏
h∈Hμ(M)(1 − τh). To make this apparent, we first write

it as ∏

h∈Hμ(M)

(1 − τh) =
∏

g∈M∪{G}

∏

h∈Hμ(M)|BM(h)=g

(1 − τh) (69)

and act on (67) to get

|
∏

h∈Hμ(M)

(1 − τh)
∏

m∈M
(−τm)AG,μ|

=
∏

g∈M∪{G}

∏

h∈Hμ(M)|BM(h)=g

|(1 − τh) νμ(g/AM(g))|. (70)

Now, the effect of each (1 − τh) is to interpolate one of the variables of (at most two)
external propagators in N (h) ∩ (g/AM(g)). For example, assuming the fourth variable
is concerned (that is h is a melopole that has been inserted on a colored line of color 4),
we have something of the form

Ci (θ1, . . . , θ4; θ ′
�) − Ci (θ1, . . . , θ̃4; θ ′

�)

=
∫ 1

0
dt

(
θ4 − θ̃4

) ∂

∂θ4
Ci (θ1, . . . , θ̃4 + t (θ4 − θ̃4); θ ′

�) , (71)

with i ≤ eM,h(μ). Moreover, since h is high in g/AM(g), |θ4 − θ̃4| is at most of order
M−iM,h(μ). So using the bound (24) on derivatives of the propagator, we conclude that
(1 − τh) improves the bare power-counting by a factor:

Mi |θ4 − θ̃4| ≤ K MeM,h(μ)−iM,h(μ). (72)

This additional decay allows to prove the following proposition.

Proposition 11. There exists a constant K such that for any graph G and meloforest M:

|AR
G,M| ≤ K L(G)

∑

μ|M∈I (μ)

∏

g∈M∪{G}

∏

(i,k)

Mω′[(g/AM(g))
(k)
i ] , (73)

where
ω′[(g/AM(g))

(k)
i ] = min{−1, ω[(g/AM(g))

(k)
i ]} , (74)

except if g ∈ M and (g/AM(g))
(k)
i = g/AM(g), in which case ω((g/AM(g))

(k)
i ) = 0.
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Proof. From (70), and using the additional decays from operators (1−τh), one improves
the degree by a factor −1 for most of the high subgraphs. More precisely, this is possible
for any high subgraph that has external legs in a contraction g/AM(g), that is any high
subgraph (g/AM(g))

(k)
i different from a root g/AM(g). 
�

6.3. Sum over scale attributions. Equipped with this improved power-counting, we can
finally prove that the renormalized amplitudes are finite. For clarity of the presentation,
let us first show it for a fully convergent graph G, that is a graph with no melopole. In
this case, we know that:

|AG,μ| ≤ K L(G)
∏

(i,k)

M−N (G(k)
i )/4 , (75)

from which we need to extract enough decay in μ to sum over the scale attributions. Let
B(G) be the set of vertices (i.e., 4-bubbles) of G, and for b ∈ B(G) let us call Lb(G) the
set of lines that are hooked to it. We can define notions of internal and external scales
associated to a bubble b:

ib(μ) = sup
l∈Lb(G)

il(μ) , eb(μ) = inf
l∈Lb(G)

il(μ). (76)

We then remark that for any i ∈ N and b ∈ B(G), b touches a high subgraph G(k)
i if and

only if i ≤ ib(μ). Moreover when it does, the number of high subgraphs G(k)
i that touch

b is certainly bounded by its number of external legs, and therefore by p. Hence we can
assign a fraction 1/p of the decay of a bubble to every high subgraph with respect to
which it is external. This yields

∏

(i,k)

M−N (G(k)
i )/4 ≤

∏

(i,k)

∏

b∈B(G(k)
i )|eb(μ)<i≤ib(μ)

M− 1
4p , (77)

by using the fact that b is an external vertex of G(k)
i exactly when eb(μ) < i ≤ ib(μ).

We can then invert the two products and obtain

|AG,μ| ≤ K L(G)
∏

b∈B(G)

∏

(i,k)|eb(μ)<i≤ib(μ)

M− 1
4p = K L(G)

∏

b∈B(G)

M− ib(μ)−eb(μ)

3p . (78)

Finally, since the number of pairs of legs hooked to a given vertex b is bounded by
p(p − 1)/2, we can finally conclude that

|AG,μ| ≤ K L(G)
∏

b∈B(G)

∏

(l,l ′)∈Lb(G)×Lb(G)

M
− 2|il′ (μ)−il (μ)|

3p2(p−1) . (79)

With this decay at hand, the sum over scales can be performed by picking a ‘tree of
scales’, very similarly to the choice of a tree adapted to the GN tree that establishes the
power-counting. We refer to [94] for more details, and just state the resulting proposition.
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Proposition 12. There exists a constant K > 0 such that the amplitude of any fully
convergent graph G is absolutely convergent with respect to μ, and moreover

∑

μ

|AG,μ| ≤ K L(G). (80)

We now explain why similarly, when G contains melopoles, the sum over μ in (64) can
be performed without cut-off. From the power-counting (11), and given that melopoles
have at most two external legs, one notices that

ω[(g/AM(g))
(k)
i ] ≤ − N ((g/AM(g))

(k)
i )

2
. (81)

So the decay that was proven for convergent graphs (8) generalizes to

|AR
G,M| ≤ K L(G)

∑

μ|M∈I (μ)

∏

g∈M∪{G}

∏

(i,k)

M− N ((g/AM(g))
(k)
i )

4 . (82)

The strategy used for proving convergence of fully convergent graphs is therefore
applicable. We conclude that AG,M is an absolutely convergent series in μ, and even
bounded by K L(G) for some constant K . The final sum over meloforests is not prob-
lematic, as the number of melopoles associated to a bubble b is clearly bounded by a
constant (for example 2p/2). This means that the number of meloforests associated to a
vertex b is also bounded by a constant K1 > 0, and since meloforests of graphs are by
definition unions of meloforests associated to single vertices, the number of meloforests
of G is itself bounded by K n(G)

1 . Overall, we conclude that:

Proposition 13. There exists a constant K > 0, such that the renormalized amplitude
of any (non-vacuum) graph G verifies:

|AR
G | ≤ K L(G). (83)

This not only proves renormalizability of the model, but also that there is no “renor-
malon effect”. The latter is a specific feature of our super-renormalizable model, that
would not hold for more complicated just-renormalizable models. In such situations, it
will be preferable to resort to the effective series, because it is the unphysical sum over
inoffensive forests automatically generated in the renormalized series that is responsible
for this undesirable effect (see [94]).

We finally state the main theorem that was proven in this section.

Theorem 1. The melordered U (1) model in d = 4, with an arbitrary finite set of 4-
bubble interactions, is perturbatively finite at any order.

Note that this finiteness theorem would still hold true had we relied on the usual
notion of Wick ordering , for the difference between Wick ordering and melordering is
a sum of convergent terms. However, while the Wick ordering preserves locality in the
usual spacetime sense, it is incompatible with the TGFT locality principle (i.e., tensor
invariance), in two respects: first, a tadpole graph can only approximately factorize as a
coefficient times a tensor invariant interaction; second, such an approximate factorization
only occurs for particular tadpoles, the tracial ones. These are the reasons why: (a) the
sum over pairings of external legs defining the usual Wick ordering needs to be restricted
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to pairings yielding tracial graphs; (b) each such pairing must be supplemented with a
contraction operator, which extracts a tensor invariant contribution. This is what makes
the usual Wick ordering inappropriate, and the introduction of the melordering necessary.
In this manner, only tensor invariant counter-terms are introduced in the action, which
approximate the divergent contributions of the melopoles. The fact that the latter are
tracial is key to the whole construction.

7. Conclusion and Outlook

Let us summarize what we have achieved in this paper.
First of all, we have set up the general framework for the multi-scale analysis of TGFT

models. Multi-scale analysis had already been applied to some simpler TGFT models [83,
84], but the models considered in these recent works lacked one ingredient that requires a
more refined analysis, as we have seen: the gauge invariance (closure) condition imposed
on the TGFT field. In simplicial geometric models where the TGFT field is expected to
describe geometric (d −1)-simplices, with its arguments representing normal vectors to
its (d − 2)-faces (or their conjugate gravitational connections), this condition imposes
the closure of the same faces. The Abelian models considered in this paper do not have
such a simplicial geometric interpretation. But this same condition introduces a local
gauge invariance at the level of each d-cell of the cellular complex dual to the TGFT
Feynman diagram, and a corresponding discrete gauge connection associated to each line
of the same diagram. The Feynman amplitudes then take the form (and interpretation) of
lattice gauge theories with gauge group given by the domain space of (each argument of
the) TGFT field. Beside this interpretation, the same condition introduces an additional
coupling between lines and faces of the TGFT Feynman diagram, and a more interesting
dependence of the amplitudes on the topology of the diagram.

In turn, we have seen that this more involved structure forces a revision and a general-
ization of some important notions of standard field theory. We provided such generalized
notions, more precisely we introduced a new notion of connectedness, a new notion of
locality (which we named traciality) and, stemming from them, a new procedure for con-
traction of high subgraphs. From the lattice gauge theory perspective on the amplitudes,
this amounts to a new coarse graining procedure that itself deserves to be investigated
in more detail.

Among the new notions we introduce also that of melonic Wick ordering, or melorder-
ing, generalizing again the usual notion of Wick ordering of interaction monomials and
N -point functions. Such ordering is a first step in standard renormalization of field
theories, which removes divergences associated to tadpoles.

Armed with the multi-scale framework and these new notions, we then analyzed in
detail a concrete Abelian TGFT model, which corresponds to the U (1) type of model
studied in [83] but with the additional gauge invariance condition turning it into a quanti-
zation of a U (1) gauge theory. We prove that it is super-renormalizable for any choice of
polynomial interaction. The Feynman amplitudes are convergent, with the exception of
some TGFT analogues of tadpoles, which we call melopoles. The melordering procedure
then removes these divergences and leaves us with a finite renormalized model. Notice
the striking difference with the power-counting of standard local quantum field theory,
which for arbitrary polynomial local interactions is super-renormalizable in d = 2 rather
than d = 4.

We now turn to an outlook on future developments. Having set up the general frame-
work for multi-scale analysis of renormalizability of TGFTs, the natural thing to do is
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to tackle more elaborate TGFT models. Remaining within the same class of Abelian
models we studied in this paper, with Laplacian kinetic term and invariant tensor inter-
actions, the generalization of our analysis to higher dimensions and higher-dimensional
Abelian groups requires more accurate bounds than those of Sect. 5.1 and the proof of
contractiblity and traciality to more general graphs than the melopoles. We have checked
some examples which indicate that this extension should be doable. We know already the
general power-counting, established first in [58], and the corresponding (single slice)
divergence degree. It suggests that in d = 3, a model with an Abelian gauge group
of dimension 3 would be renormalizable up to polynomial interactions of order 6. On
the other hand, it would also suggest that in d = 4, only models based on groups of
dimension 2 at most would be renormalizable.

This preliminary estimate gives hope that models more closely related to 3d quantum
gravity, thus based on the group SU (2) would be renormalizable with polynomial invari-
ant interactions at order up to 6. The complete analysis would be more complicated than
the one we have performed, because of the non-Abelian nature of the gauge group, but
we can already make some informed guesses on its outcome. Previous studies on power-
counting and scaling bounds [56,57,59–61,72,89] in topological models (thus initially
without a Laplacian in the kinetic term) suggest that the relevant multi-scale fundamental
bound we have given in the Abelian case still holds, but now with each ω(G(k)

i ) replaced

by ωt (G(k)
i ), that is a twisted divergence degree taking into account the ordering of lines

in the boundary of faces of the graph, and dependent on the second twisted Betti number
of the complex corresponding to it. This is also in accordance with our understanding
of the (translation) symmetry of the corresponding lattice gauge theory and simplicial
gravity path integral [48,59–61]. On the other hand, we may also expect the same twist
to be absent for melonic graphs, since they triangulate the 3-sphere. If this is true, then
the SU (2) would be just renormalizable up to order 6 in the interaction, as the Abelian
counterpart U (1)3. Only a detailed analysis can give support to this expectation.

One issue that should be tackled in trying to extend the analysis performed in this paper
to models more directly related to 3d gravity and B F theories (as a step towards proper
quantum gravity models) is how the renormalizability is affected by the introduction
of further gauge invariance projections within the interaction terms of the model we
have studied. Indeed, one way to understand the type of invariant interactions we have
used is that they arise naturally when integrating out d of the d + 1 colored fields in a
colored TGFT with standard d-simplex interaction. However, when this integration is
performed in a topological colored TGFT model in which gauge invariance is imposed
on all fields entering the d-simplex interaction, the corresponding projector ends up
attached to the internal colored lines in each interaction vertex of the resulting single-
field model. The effect of these additional projections on the power-counting should
then be studied carefully.

Other variations of the class of models that we studied in this paper that may be worth
investigating as well are models with the same type of interactions but different kinetic
terms. The choice of the Laplacian in the Euclidean case is suggested by analogy with
standard field theory and by other considerations such as its reflection (Osterwalder-
Schrader) positivity, but we do not have at present a complete axiomatic formulation of
TGFTs that would select it as the only reasonable choice on physical grounds; therefore,
other possibilities can be considered.

The real goal, however, of studying renormalizability of TGFT models is to tackle
and understand TGFT formulations of 4d quantum gravity [35–42]. This is at once
challenging and very interesting. First of all, the same general issues pointed out above
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apply to these models as well (role of projectors, choice of kinetic terms, etc). Second,
these models are obviously based on non-Abelian and, in the Lorentzian context, non-
compact groups, with their additional complications and subtleties that our analysis did
not deal with. Third, even our limited expectations for how the non-Abelian nature of the
group affects the power-counting, based on our analysis, have to be taken with great care
due to the specific construction of these models. Indeed, from the group-theoretic point
of view, the main ingredient that gives 4d gravity models starting from topological B F
ones is the so-called simplicity constraint which amounts to restricting the domain space
of the TGFT field to submanifolds of the 4d rotation or Lorentz group. This submanifold
is 3-dimensional. However, it cannot be assimilated to a 3-dimensional group of the
type we have dealt with in this paper or their non-Abelian version, because it is either an
homogeneous space, for Barrett-Crane-like models [35,36,41], or just a 3d submanifold
of the rotation or the Lorentz group in models involving an Immirzi parameter [37–
40,42]. Therefore, it is premature to guess at this stage what the status of such models
could be, concerning renormalizability. Only a careful analysis will tell.

Last, we would like to mention the need to go beyond perturbative renormalizability.
On this road a first step should be to build fully at the constructive level the models defined
and perturbatively renormalized in this paper. This should be possible for any positive
even monomial interaction, starting with the simplest case, namely the φ4 interaction.
It should probably also work for any polynomial semi-bounded interaction. Such a
constructive analysis should prove that their Schwinger functions are the Borel sums7

of their perturbative expansion. We are quite confident that this can be achieved using
the technique of the loop vertex expansion or LVE [87,88] combined with a “cleaning
expansion” and non-perturbative bounds “à la Nelson”. Indeed a similar program was
recently achieved in the case of the ordinary φ4

2 model [100] and of the non-commutative
super-renormalizable Grosse–Wulkenhaar model in two dimensions [101] whose power-
counting and positivity properties are comparable; furthermore we know that the LVE,
created to tackle non-perturbatively matrix models, applies quite naturally also to tensor
models [72,89]. In the long term, this constructive perspective, currently lacking in other
approaches to quantum gravity, is certainly a major asset of the TGFT approach.

The next steps concern the perturbative study of the renormalization group flows
of more advanced renormalizable TGFT models and ultimately their non-perturbative
construction. The study of the flows starts with computing explicitly the leading terms of
their beta functions. Obviously, this is technically challenging. The impressive analysis
of [86] for the simpler model of [83] seems to indicate that TGFTs could be generically
asymptotically free. If true, this would be very important for TGFTs in general and for
gravitational models in particular. A growing coupling constant and a most likely finite
domain of analyticity of the TGFT free energy would imply that these models would
dynamically (and thus somehow inevitably) undergo a phase transition. In turn, for mod-
els where a pre-geometric interpretation of the variables and amplitudes is possible (e.g.,
the 4d gravity models) in terms at least of simplicial geometry, such phase transition may
be [26,43,44], like in matrix models [15–18], the hallmark of the continuum geometric
limit of the models (geometrogenesis), which would then have to be studied in great
detail to understand its physical implications and generic features.
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Appendix: Wick-Ordering of a ϕ6 Interaction

To illustrate the general statements of the paper, we give some more details for a model
with a single ϕ6 interaction:

S(ϕ, ϕ) =
∫

[dgi ]12ϕ(g1, g2, g3, g4)ϕ(g1, g2, g3, g5)ϕ(g8, g7, g6, g5) (84)

ϕ(g8, g9, g10, g11)ϕ(g12, g9, g10, g11)ϕ(g12, g7, g6, g4). (85)

It is an invariant, represented by the 4-colored graph of Fig. 8a. It is moreover melonic,
and its external legs can be paired so as to form the vacuum melopole shown in Fig. 8b.
This melopole strictly contains four non-empty melopoles: S1 = {l1}, S3 = {l3}, S12 =
{l1, l2}, S23 = {l2, l3}. On the other hand, {l1, l3} and {l2} are not melopoles.

We can construct 16 meloforests out of these melopoles. Half of them, hence 8 do not
contain the full graph S123. They are listed below according to the number of subgraphs:

• the empty forest ∅;
• 4 forests with 1 subgraph: {S1}, {S3}, {S12}, {S23};
• 3 forests with 2 subgraphs: {S1, S12}, {S3, S23}, {S1, S3}.
The other half is simply obtained by adding S123 to all of these forests.

The melordering generates three kinds of counter-terms: vacuum terms, 2-point func-
tion terms, and two types of 4-point function terms. We call b2 the 2-point effective bub-
ble, b4,1 and b4,4 the two 4-point effective bubbles, as shown in Fig. 9. The melordered
interaction will take the form

�ρ(S) = S + t4,1(ρ) b4,1 + t4,4(ρ) b4,4 + t2(ρ) b2 + t∅(ρ) , (86)

where t are sums of products of coefficients ν. To determine them, we need to analyze
the contraction operators they correspond to.

The 4-point interaction terms are simple, since they are generated by forests {S1} and
{S3}. t4,1(ρ) and t4,4(ρ) are therefore both given by the evaluation of νρ on a single-line

1
2
3

3
2

44

1
3

12

4

(a) (b)

Fig. 8. Bubble interaction with color labels, and unique vacuum melopole that can be obtained from it
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3
2
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3

11

4

1
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3
4

Fig. 9. Effective interactions generated by melordering. From left to right: b4,4, b4,1 and b2

melopole [noted νρ(1)]

t4,1(ρ) = t4,4(ρ) = −νρ(1) = −
∫ +∞

M−2ρ

dαe−αm2
∫

dλ (Kα(λ))3 , (87)

which is proportional to ρ in the large ρ limit. As expected, these are log-divergent
terms.

The 2-point interaction is generated by {S12}, {S23}, {S1, S12}, {S3, S23} and {S1, S3}.
{S12} and {S23} contribute with a minus sign, and with an absolute value given by the
evaluation of a two-line melopole, that is

− νρ(2) =
∫ +∞

M−2ρ

dα1e−α1m2
∫ +∞

M−2ρ

dα2e−α2m2

×
∫

dλ1

∫
dλ2

(
Kα1(λ1)

)2 (
Kα2(λ2)

)3
Kα1+α2(λ1 + λ2) (88)

each. The three other terms come with a plus sign, and factorize as the square of a single
line melopole. Therefore:

t2(ρ) = −2νρ(2) + 3(νρ(1))2. (89)

All the other forests contribute to the vacuum counter-term. There are eight of them.
It is then easy to see that:

t∅(ρ) = −μρ(3) + 2νρ(1)μρ(2) + 2νρ(2)μρ(1) − 3(νρ(1))2μρ(1). (90)

where the νρ are the logarithmically divergent previous integrals and the μρ(1, 2, 3) are
full vacuum melopoles amplitudes (with respectively 1 2 and 3 lines), each diverging
linearly in Mρ . One can check that the integral over the Gaussian measure of the full
melordered combination is then finite as all divergent contributions cancel out.
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