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Abstract: We introduce a cohomology theory of grading-restricted vertex algebras. To
construct the correct cohomologies, we consider linear maps from tensor powers of a
grading-restricted vertex algebra to “rational functions valued in the algebraic comple-
tion of a module for the algebra,” instead of linear maps from tensor powers of the algebra
to a module for the algebra. One subtle complication arising from such functions is that
we have to carefully address the issue of convergence when we compose these linear
maps with vertex operators. In particular, for each n ∈ N, we have an inverse system
{Hn

m(V, W )}m∈Z+ of nth cohomologies and an additional nth cohomology Hn∞(V, W )

of a grading-restricted vertex algebra V with coefficients in a V -module W such that
Hn∞(V, W ) is isomorphic to the inverse limit of the inverse system {Hn

m(V, W )}m∈Z+ .
In the case of n = 2, there is an additional second cohomology denoted by H2

1
2
(V, W )

which will be shown in a sequel to the present paper to correspond to what we call
square-zero extensions of V and to first order deformations of V when W = V .

1. Introduction

Vertex (operator) algebras arose naturally in both mathematics and physics (see [BPZ,
B1,FLM]) and are analogous to both Lie algebras and commutative associative alge-
bras. In the studies of various algebraic structures, including in particular Lie algebras,
associative algebras, commutative associative algebras, and their representations, the
corresponding cohomology theories, such as Chevalley–Eilenberg cohomology of Lie
algebras [CE], Hochschild cohomology of associative algebras [Ho] and Harrison or
André–Quillen cohomology of commutative associative algebras [Ha,A,Q], play im-
portant roles. See, for example, the book [W] for an excellent introduction to these
theories (except for the Harrison cohomology). These cohomologies describe naturally
certain extensions of these algebras, extensions of their modules and also deformations
of these algebras. Moreover, the powerful tool of homological algebra developed in the
last sixty years has been used to obtain many old and new results on these algebras and
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their modules. Though much progress has been made in the theory of vertex (opera-
tor) algebras, especially in the case of simple vertex operator algebras satisfying certain
finiteness and reductivity conditions, a correct cohomology theory of vertex (operator)
algebras is urgently needed in order to have a better understanding of the structures of
vertex (operator) algebras and their modules and to use the powerful tool of homological
algebra.

In [KV], applying the general theory for algebras over operads developed by Ginzburg
and Kapranov [GK], Kimura and Voronov introduced a cohomology theory of algebras
over the operad of the moduli space of configurations of disjoint and ordered biholomor-
phic embeddings of the unit disk into the Riemann sphere. Motivated by the operadic
and geometric formulation of vertex operator algebras by the author [Hu1,Hu2] and by
Lepowsky and the author [HL1,HL2], Kimura and Voronov proposed in [KV] that their
cohomology theory of algebras over the moduli space above also gives the cohomology
theory of vertex operator algebras. Unfortunately, their proposal was based on the as-
sumption that vertex operator algebras are in particular algebras over the operad of the
moduli space mentioned above, while this assumption holds only for vertex operator al-
gebras obtained from commutative associative algebras. In fact, given a vertex operator
algebra

(
V =

∐
n∈Z

V(n), Y, 1, ω

)

that is not obtained from a commutative associative algebra, for u, v ∈ V and a, b,

z ∈ C
×,

Y (aL(0)u, z)bL(0)v

is in general not an element of V , even when a, b and z are chosen such that they give
the configuration of three disjoint and ordered biholomorphic embeddings of the unit
disk into the Riemann sphere. Instead, it is an element of the algebraic completion

V =
∏
n∈Z

V(n)

of V . So for z ∈ C
×, the map

Y (aL(0)·, z)bL(0)· : V ⊗ V → V

in general does not belong to the endomorphism operad of the vector space V . There-
fore, the vertex operator algebra V in general does not give an algebra over the operad
of the moduli space mentioned above. In particular, the cohomology theory introduced
by Kimura and Voronov cannot be used to give a cohomology theory of vertex operator
algebras because of this subtle but crucial feature of the geometric and operadic formula-
tion of vertex operator algebra. Moreover, vertex operator algebras satisfy an additional
meromorphicity condition which one must take into account in any cohomology theory
of vertex operator algebras.

In Section 11 of [B2], Borcherds also proposed a cohomology theory for general
vertex algebras by using his categorical formulation of vertex algebra and an analogy
with the Hochschild homology of associative algebras. However, the subtle details of
this cohomology theory were not carried out and the basic properties that a cohomology
theory must have were not discussed. More importantly, we are interested only in what
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we call grading-restricted vertex algebras and for these vertex algebras, a cohomology
theory for general vertex algebras cannot be the correct one. Here is the reason: The
notion of vertex algebra is too general to give properties strong enough for a good
representation theory. The class of vertex algebras for which many substantial results in
representation theory have been obtained is that of vertex operator algebras. Since we
want to allow the deformations of the representation structures of the Virasoro algebra,
especially the deformations of the central charges, we are interested in the slightly more
general class of grading-restricted vertex algebras, for which conformal elements are not
specified but Z-gradings are still given and the grading-restriction condition is satisfied.
For grading-restricted vertex algebras, a cohomology theory for general vertex algebras
cannot be the correct one, because, for example, starting from a grading-restricted vertex
algebra, the deformations corresponding to such a general cohomology theory in general
will not give such a vertex algebra again.

In the present paper, we introduce a cohomology theory of grading-restricted vertex
algebras (including vertex operator algebras). To overcome the difficulties in the proposal
in [KV] mentioned above, our main new idea is to consider, instead of linear maps
from the tensor powers of the vertex algebra to a module for the algebra, linear maps
from the tensor powers of the vertex algebra to suitable spaces of “rational functions
valued in the algebraic completion of the V -module” such that they are “composable”
with m vertex operators in a natural sense and satisfy certain other natural properties.
These linear maps form a chain complex but it is still not a correct chain complex
for the grading-restricted vertex algebra because the commutativity property for the
vertex algebra has not been taken into consideration. The correct chain complex for
our cohomology is a subcomplex of this complex obtained by using shuffles in analogy
with the construction of the Harrison cochain complex of a commutative associative
algebra from its Hochschild cochain complex. One subtle complication arising from the
functions mentioned above is that we have to carefully address the issue of convergence
when we compose these linear maps with vertex operators. In particular, for each n ∈ N,
we have an inverse system {Hn

m(V, W )}m∈Z+ of nth cohomologies and an additional nth
cohomology Hn∞(V, W ) of a grading-restricted vertex algebra V with coefficients in a
grading-restricted generalized V -module W such that Hn∞(V, W ) is isomorphic to the
inverse limit of the inverse system {Hn

m(V, W )}m∈Z+ . In the case of n = 2, there is an
additional second cohomology denoted by H2

1
2
(V, W ) which will be shown in a sequel

[Hu3] to the present paper to correspond to what we call square-zero extensions of V
and to first order deformations of V when W = V .

The ideas and constructions in the present paper can also be applied to grading-
restricted open-string vertex algebras (see [HK1]) and grading-restricted full field al-
gebras (see [HK2]) to introduce and study cohomologies for these algebras. We shall
present these cohomology theories in future publications.

Note that for open-string vertex algebras and full field algebras, we have to work with
complex variables, not formal variables. In particular, these algebras are defined over
only the field of complex numbers. In this paper, we present our cohomology theory of
grading-restricted vertex algebras only over the field of complex numbers so that it will
be easy for us to generalize the definitions and results given in the present paper to these
algebras. However, the cohomologies introduced in the present paper can be defined and
studied for grading-restricted vertex algebras over an arbitrary field F of characteristic
0. In fact, to define and study these cohomologies for such grading-restricted vertex
algebras over F, we need only replace rational functions with only possible poles at
zi = z j for i �= j by the localization of the polynomial ring F[z1, . . . , zn] by the first
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order polynomials zi − z j for i �= j and replace series absolutely convergent to such
rational functions in certain regions by series which are expansions of the elements of the
localization corresponding to the expansions of such rational functions in the regions.
See [FHL] for discussions on formal rational functions and their expansions over such
a field F.

In a sequel [Hu3] to the present paper, we shall show that for any m ∈ Z+, the
first cohomology H1

m(V, W ) of a grading-restricted vertex algebra V with coefficients
in a grading-restricted generalized V -module W is linearly isomorphic to the space of
derivations from V to W . We shall also show that the second cohomology H2

1
2
(V, W )

of V with coefficients in W corresponds bijectively to the set of equivalence classes of
square-zero extensions of V by W and the second cohomology H2

1
2
(V, V ) of V with

coefficients in V corresponds bijectively to the set of equivalence classes of first order
deformations of V .

At this moment, the author still does not have any vanishing theorem or duality
theorem for the cohomologies introduced in the present paper. It is not even clear whether
Hn∞(V, W ) vanishes when n is large. These are important research topics for the future
development and applications of this cohomology theory.

This paper is organized as follows: In Sect. 2, we recall the notions of grading-
restricted vertex algebra and grading-restricted generalized module and also some useful
results. In Sect. 3, we introduce and study W -valued rational functions for a grading-
restricted generalized module for a grading-restricted vertex algebra. These functions
are crucial to our cohomology theory. We present our cohomology theory in Sect. 4.

The cohomologies introduced in the present paper were first presented in a talk by
the author at the Cao Xi-Hua Algebra Forum at East China Normal University on June
1, 2010.

2. Grading-Restricted Vertex Algebras and Modules

In this section, we give the definitions of grading-restricted vertex algebra and grading-
restricted generalized module and discuss their basic properties. As is mentioned in the
introduction, we shall work only over the field C of complex numbers in this paper. In
particular, all vector spaces are over C.

A large part of the material in this section is from [FHL] but we shall use the duality
properties instead of the Jacobi identity in this paper. Below we recall the definition of
grading-restricted vertex algebra using the duality properties as the main axiom.

By a rational function of z1, . . . , zn , we mean a function of z1, . . . , zn of the form

f (z1, . . . , zn) = P(z1, . . . , zn)

Q(z1, . . . , zn)
,

where P(z1, . . . , zn) and Q(z1, . . . , zn) are polynomials in z1, . . . , zn . If the polynomi-
als P(z1, . . . , zn) and Q(z1, . . . , zn) have no common factors, then for a linear factor
g(z1, . . . , zn) of Q(z1, . . . , zn), we say that f (z1, . . . , zn) has poles at the set of zeros
of g(z1, . . . , zn) and the maximal power of g(z1, . . . , zn) in Q(z1, . . . , zn) is called the
order of these poles. By a rational function with the only possible poles at a set of
points in C

n , we mean a rational function of the form above such that P(z1, . . . , zn)

and Q(z1, . . . , zn) have no common factors, Q(z1, . . . , zn) is a product of linear factors
whose zeros are contained in that set of points in C

n .
In the following definitions and in the rest of this paper, x, x1, x2, . . . are formal

commuting variables and z, z1, z2, . . . are complex numbers or complex variables.
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Definition 2.1. A grading-restricted vertex algebra is a Z-graded vector space V =∐
n∈Z

V(n) equipped with a vertex operator map

Y : V ⊗ V → V [[x, x−1]],
u ⊗ v �→ YV (u, x)v =

∑
n∈Z

(YV )n(u)vx−n−1,

a vacuum 1 ∈ V(0) satisfying the following conditions:

1. Grading restriction condition: For n ∈ Z, dim V(n) < ∞ and when n is sufficiently
negative, V(n) = 0.

2. Lower-truncation condition for vertex operators: For u, v ∈ V , YV (u, x)v contain
only finitely many negative power terms, that is, YV (u, x)v ∈ V ((x)) (the space of
formal Laurent series in x with coefficients in V and with finitely many negative
power terms).

3. Identity property: Let 1V be the identity operator on V . Then YV (1, x) = 1V .
4. Creation property: For u ∈ V , YV (u, x)1 ∈ V [[x]] and limx→0 YV (u, x)1 = u.
5. Duality: For u1, u2, v ∈ V , v′ ∈ V ′ = ∐

n∈Z
V ∗

(n), the series

〈v′, YV (u1, z1)YV (u2, z2)v〉,
〈v′, YV (u2, z2)YV (u1, z1)v〉,

〈v′, YV (YV (u1, z1 − z2)u2, z2)v〉
are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| >

|z1 − z2| > 0, respectively, to a common rational function in z1 and z2 with the only
possible poles at z1, z2 = 0 and z1 = z2.

6. L(0)-bracket formula: Let LV (0) : V → V be defined by LV (0)v = nv for v ∈ V(n).
Then

[LV (0), YV (v, x)] = YV (LV (0)v, x) + x
d

dx
YV (v, x)

for v ∈ V .
7. L(−1)-derivative property: Let LV (−1) : V → V be the operator given by

LV (−1)v = Resx x−2YV (v, x)1 = Y−2(v)1

for v ∈ V . Then for v ∈ V ,

d

dx
YV (u, x) = YV (LV (−1)u, x) = [LV (−1), YV (u, x)].

Definition 2.2. A grading-restricted generalized V -module is a vector space W
equipped with a vertex operator map

YW : V ⊗ W → W [[x, x−1]],
u ⊗ w �→ YW (u, x)w =

∑
n∈Z

(YW )n(u)wx−n−1

and linear operators LW (0) and LW (−1) on W satisfying the following conditions:

1. Grading restriction condition: The vector space W is C-graded, that is, W = ∐
n∈C

W(n), such that W(n) = 0 when the real part of n is sufficiently negative.
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2. Lower-truncation condition for vertex operators: For u∈V and w∈W , YW (u, x)w

contain only finitely many negative power terms, that is, YW (u, x)w ∈ W ((x)).
3. Identity property: Let 1W be the identity operator on W . Then YW (1, x) = 1W .
4. Duality: For u1, u2 ∈ V , w ∈ W , w′ ∈ W ′ = ∐

n∈Z
W ∗

(n), the series

〈w′, YW (u1, z1)YW (u2, z2)w〉,
〈w′, YW (u2, z2)YW (u1, z1)w〉,

〈w′, YW (YV (u1, z1 − z2)u2, z2)w〉
are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| >

|z1 − z2| > 0, respectively, to a common rational function in z1 and z2 with the only
possible poles at z1, z2 = 0 and z1 = z2.

5. LW (0)-bracket formula: For v ∈ V ,

[LW (0), YW (v, x)] = YW (L(0)v, x) + x
d

dx
YW (v, x).

6. L(0)-grading property: For w ∈ W(n), there exists N ∈ Z+ such that (LW (0) −
n)N w = 0.

7. L(−1)-derivative property: For v ∈ V ,

d

dx
YW (u, x) = YW (LV (−1)u, x) = [LW (−1), YW (u, x)].

Since in this paper, we shall always consider grading-restricted generalized V -
modules, for simplicity, we shall call them simply V -modules.

If a meromorphic function f (z1, . . . , zn) on a region in Cn can be analytically ex-
tended to a rational function in z1, . . . , zn , we shall use R( f (z1, . . . , zn)) to denote this
rational function.

Remark 2.3. Let V be a grading-restricted vertex algebra and W a V -module. Then the
duality axiom can be rewritten as: For u1, u2 ∈ V , w ∈ W , w′ ∈ W ′,

R(〈w′, YW (u1, z1)YW (u2, z2)w〉) = R(〈w′, YW (u2, z2)YW (u1, z1)w〉)
= R(〈w′, YW (YV (u1, z1 − z2)u2, z2)w〉).

The following result was proved in [FHL] (Proposition 3.5.1 in [FHL]):

Proposition 2.4. For v1, . . . , vn ∈ V , w ∈ W and w′ ∈ W ′,

〈w′, YW (v1, z1) · · · YW (vn, zn)w〉
is absolutely convergent in the region |z1| > · · · > |zn| > 0 to a rational function

R(〈w′, YW (v1, z1) · · · YW (vn, zn)w〉)
in z1, . . . , zn with the only possible poles at zi = z j , i �= j , and zi = 0. Moreover, the
following commutativity holds: For σ ∈ Sn,

R(〈w′, YW (v1, z1) · · · YW (vn, zn)w〉)
= R(〈w′, YW (vσ(1), zσ(1)) · · · YW (vσ(n), zσ(n))w〉).
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The following result, though not explicitly stated in [FHL], was implicitly given in
Subsection 3.5 in [FHL]:

Proposition 2.5. For v1, . . . , vn ∈ V , w ∈ W , w′ ∈ W ′ and i = 1, . . . , n − 1,

〈w′, YW (v1, z1) · · · YW (vi−1, zi−1)

·YW (YV (vi , zi − zi+1)vi+1, zi+1)YW (vi+2, zi+2) · · · YW (vn, zn)w〉
is absolutely convergent in the region given by |z1| > · · · > |zi−1| > |zi+1| > · · · >

|zn| > 0, |zi+1| > |zi − zi+1| > 0 and |zk − zi+1| > |zi − zi+1| > 0 for k �= i, i + 1 to a
rational function

R(〈w′, YW (v1, z1) · · · YW (vi−1, zi−1)

·YW (YV (vi , zi − zi+1)vi+1, zi+1)YW (vi+2, zi+2) · · · YW (vn, zn)w〉)
with the only possible poles at zi = z j , i �= j , and zi = 0. Moreover, the following
associativity holds:

R(〈w′, YW (v1, z1) · · · YW (vi−1, zi−1)

·YW (vi , zi )YW (vi+1, zi+1)YW (vi+2, zi+2) · · · YW (vn, zn)w〉)
= R(〈w′, YW (v1, z1) · · · YW (vi−1, zi−1)

·YW (YV (vi , zi − zi+1)vi+1, zi+1)YW (vi+2, zi+2) · · · YW (vn, zn)w〉).
Recall from Subsection 5.6 in [FHL] the linear map

Y W
W V : W ⊗ V → W [[z, z−1]]

w ⊗ v �→ Y W
W V (w, z)v

defined by

Y W
W V (w, z)v = ezL(−1)YW (v,−z)w

for v ∈ V and w ∈ W . The following result is a special case of Theorem 6.6.2 in [FHL]:

Proposition 2.6. For v1, . . . , vi−1, vi+1, . . . , vn, v ∈ V , w ∈ W and w′ ∈ W ′,

〈w′, YW (v1, z1) · · · YW (vi−1, zi−1)Y
W
W V (w, zi )YV (vi+1, zi+1) · · · YV (vn, zn)v〉

is absolutely convergent in the region |z1| > · · · > |zn| > 0 to a rational function

R(〈w′, YW (v1, z1) · · · YW (vi−1, zi−1)Y
W
W V (w, zi )YV (vi+1, zi+1) · · · YV (vn, zn)v〉)

in z1, . . . , zn with the only possible poles at zi = z j , i �= j , and zi = 0. Moreover, the
following commutativity holds: For σ ∈ Sn,

R(〈w′, YW (v1, z1) · · · YW (vi−1, zi−1)Y
W
W V (w, zi )YV (vi+1, zi+1) · · · YV (vn, zn)v〉)

= R(〈w′, YW (uσ(1), zσ(1)) · · · YW (uσ−1(i)−1, zσ−1(i)−1)

·Y W
W V (w, zi )YV (uσ(σ−1(i)+1), zσ−1(i)+1) · · · YW (vσ(n), zσ(n))v〉).

The following result, though not explicitly stated in [FHL], was implicitly given in
Section 5.6 in [FHL]:
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Proposition 2.7. Let v1, . . . , vi−1, vi+1, . . . , vn, v ∈ V , w ∈ W and w′ ∈ W ′. Let
uk = vk for k = 1, . . . , i − 1, i + 1, . . . , n, ui = w and 1 ≤ j ≤ n. Let Y1, . . . ,Yn be
YW , Y W

W V or YV such that the expressions below are uniquely defined. Then

〈w′,Y1(u1, z1) · · · Y j−1(u j−1, z j−1)

·Y j (Y j+1(u j , z j − z j+1)u j+1, z j+1)Y j+2(u j+2, z j+2) · · · Yn(un, zn)v〉
is absolutely convergent in the region given by |z1| > · · · > |z j−1| > |z j+1| > · · · >

|zn| > 0, |z j+1| > |z j − z j+1| > 0 and |zk − z j+1| > |z j − z j+1| > 0 for k �= j, j + 1
to a rational function

R(〈w′,Y1(u1, z1) · · · Y j−1(u j−1, z j−1)

·Y j (Y j+1(u j , z j − z j+1)u j+1, z j+1)Y j+2(u j+2, z j+2) · · · Yn(un, zn)v〉)
in z1, . . . , zn with the only possible poles at zi = z j , i �= j , and zi = 0. Moreover, the
following associativity holds: For j = 1, . . . , i − 2 or j = i + 1, . . . , n − 1,

R(〈w′, YW (v1, z1) · · · YW (vi−1, zi−1)

·Y W
W V (w, zi )YV (vi+1, zi+1) · · · YV (vn, zn)v〉)

= R(〈w′,Y1(u1, z1) · · · Y j−1(u j−1, z j−1)

·Y j (Y j+1(u j , z j − z j+1)u j+1, z j+1)Y j+2(u j+2, z j+2) · · · Yn(un, zn)v〉).
Let W be the algebraic completion of W , that is, W = ∏

n∈C
W(n) = (W ′)∗. For

n ∈ Z+, let FnC be the configuration space of n points in C, that is,

FnC = {(z1, . . . , zn) ∈ C
n | zi �= z j , i �= j}.

For each (z1, . . . , zn, ζ ) ∈ Fn+1C, v1, . . . , vn ∈ V , w ∈ W and w′ ∈ W ′, we have an
element

E(YW (v1, z1) · · · YW (vn, zn)Y W
W V (w, ζ )1) ∈ W

given by

〈w′, E(YW (v1, z1) · · · YW (vn, zn)Y W
W V (w, ζ )1)〉

= R(〈w′, YW (v1, z1) · · · YW (vn, zn)Y W
W V (w, ζ )1〉).

For (z1, . . . , zn, ζ ) ∈ Fn+1C, v1, . . . , vn ∈ V and w ∈ W , set

(E (n,1)
W (v1 ⊗ · · · ⊗ vn;w))(z1, . . . , zn, ζ )

= E(YW (v1, z1) · · · YW (vn, zn)Y W
W V (w, ζ )1) ∈ W .

We also define

E (n)
W (v1 ⊗ · · · ⊗ vn;w) : {(z1, . . . , zn) ∈ FnC | zi �= 0, i = 1, . . . , n} → W

by

(E (n)
W (v1 ⊗ · · · ⊗ vn;w))(z1, . . . , zn)

= (E (n,1)
W (v1 ⊗ · · · ⊗ vn;w))(z1, . . . , zn, 0)

= E(YW (v1, z1) · · · YW (vn, zn)w).
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The next result was in fact proved in [Hu1,Hu2] but was formulated using the geom-
etry of spheres with punctures and local coordinates in a more general setting. Here we
formulate it without using the language of geometry or operads and give a direct proof.
Given a V -module W = ∐

n∈C
W(n), let Pn : W → W(n) for n ∈ C be the projection

from W to W(n).

Proposition 2.8. For k, l1, . . . , ln+1 ∈ Z+ and v
(1)
1 , . . . , v

(1)
l1

, . . . , v
(n+1)
1 , . . . , v

(n+1)
ln+1

∈
V , w ∈ W and w′ ∈ W ′, the series∑

r1,...,rn∈Z,rn+1∈C

〈w′, (E (n,1)
W (Pr1((E (l1)

V (v
(1)
1 ⊗ · · · ⊗ v

(1)
l1

; 1))(z(1)
1 , . . . , z(1)

l1
))

⊗ · · · ⊗ Prn ((E (ln)
V (v

(n)
1 ⊗ · · · ⊗ v

(n)
ln

; 1))(z(n)
1 , . . . , z(n)

ln
));

Prn+1((E (ln+1)
W (v

(n+1)
1 ⊗ · · · ⊗ v

(n+1)
ln+1

;w))(z(n+1)
1 , . . . , z(n+1)

ln+1
))))

(z(0)
1 , . . . , z(0)

n+1)〉 (2.1)

converges absolutely to

〈w′, (E (n)
W (v

(1)
1 ⊗ · · · ⊗ v

(n+1)
ln+1

;w))(z(1)
1 + z(0)

1 , . . . , z(1)
l1

+ z(0)
1 ,

. . . , z(n+1)
1 + z(0)

n+1, . . . , z(n+1)
ln+1

+ z(0)
n+1)〉. (2.2)

when 0 < |z(i)
p | + |z( j)

q | < |z(0)
i − z(0)

j | for i, j = 1, . . . , n + 1, i �= j , p = 1, . . . , li ,
q = 1, . . . , l j .

Proof. By definition,

〈w′, (E (n)
W (v

(1)
1 ⊗ · · · ⊗ v

(n+1)
ln+1

;w))(z1, . . . , zl1+···+ln+1)〉
is a rational function in z1, . . . , zl1+···+ln+1 with the only possible poles at zi = 0 or

zi = z j , i �= j . Thus for fixed z(i)
p ∈ C

×, p = 1, . . . , li , i = 1, . . . , n + 1 and z(0)
i for

i = 1, . . . , n + 1 satisfying 0 < |z(i)
p | + |z( j)

q | < |z(0)
i − z(0)

j | for i, j = 1, . . . , n + 1,
i �= j , p = 1, . . . , li , q = 1, . . . , l j , the function

〈w′, (E (n)
W (t L(0)

1 v
(1)
1 ⊗ · · · ⊗ t L(0)

1 v
(1)
l1

⊗ · · · ⊗ t L(0)
n+1 v

(n+1)
1 ⊗ · · · ⊗ t L(0)

n+1 v
(n+1)
ln+1

;w))

(t1z(1)
1 + z(0)

1 , . . . , t1z(1)
l1

+ z(0)
1 ,

. . . , tn+1z(n+1)
1 + z(0)

n+1, . . . , tn+1z(n+1)
ln

+ z(0)
n+1)〉. (2.3)

of t1, . . . , tn+1 has an expansion as a Laurent series in t1, . . . , tn+1 when (t1, . . . , tn+1) are
in the direct product of some annuli containing 1. Using induction and the associativity
for V and W repeatedly, we see that the coefficients of this Laurent expansion are the
same as the coefficients of the formal Laurent series∑

r1,...,rn+1∈Z

〈w′, (E (n,1)
W (Pr1((E (l1)

V (v
(1)
1 ⊗ · · · ⊗ v

(1)
l1

; 1))(z(1)
1 , . . . , z(1)

l1
))

⊗ · · · ⊗ Prn ((E (ln)
V (v

(n)
1 ⊗ · · · ⊗ v

(n)
ln

; 1))(z(n)
1 , . . . , z(n)

ln
));

Prn+1((E (ln+1)
W (v

(n+1)
1 ⊗ · · · ⊗ v

(n+1)
ln+1

;w))(z(n+1)
1 , . . . , z(n+1)

ln+1
))))

(z(0)
1 , . . . , z(0)

n+1)〉tr1
1 · · · trn

n . (2.4)
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Thus (2.4) is absolutely convergent to (2.3) in the region where (2.3) has a Laurent
expansion. In particular, when t1 = · · · = tn+1 = 1, we obtain that (2.1) is absolutely
convergent to (2.2). �

For each (ζ, z1, . . . , zn) ∈ Fn+1C, v1, . . . , vn ∈ V , w ∈ W and w′ ∈ W ′, we have
an element

E(Y W
W V (w, ζ )YV (v1, z1) · · · YV (vn, zn)1) ∈ W

given by

〈w′, E(Y W
W V (w, ζ )YV (v1, z1) · · · YV (vn, zn)1)〉

= R(〈w′, Y W
W V (w, ζ )YV (v1, z1) · · · YV (vn, zn)1〉).

For (ζ, z1, . . . , zn) ∈ Fn+1C, v1, . . . , vn ∈ V and w ∈ W , set

(EW ;(1,n)
W V (w; v1 ⊗ · · · ⊗ vn))(ζ, z1, . . . , zn)

= E(Y W
W V (w, ζ )YV (v1, z1) · · · YV (vn, zn)1) ∈ W .

We have:

Proposition 2.9. For (ζ, z1, . . . , zn) ∈ Fn+1C, v1, . . . , vn ∈ V and w ∈ W ,

(EW ;(1,n)
W V (w; v1 ⊗ · · · ⊗ vn))(ζ, z1, . . . , zn)

= (E (n,1)
W (v1 ⊗ · · · ⊗ vn;w))(z1, . . . , zn, ζ ).

Proof. For (ζ, z1, . . . , zn) ∈ Fn+1C, v1, . . . , vn ∈ V , w ∈ W and w′ ∈ W ′,

〈w′, (EW ;(1,n)
W V (w; v1 ⊗ · · · ⊗ vn))(ζ, z1, . . . , zn)〉

= R(〈w′, Y W
W V (w, ζ )YV (v1, z1) · · · YV (vn, zn)1〉)

= R(〈w′, eζ L(−1)YW (YV (v1, z1) · · · YV (vn, zn)1,−ζ )w〉)
= R(〈w′, eζ L(−1)YW (v1, z1 − ζ ) · · · YW (vn, zn − ζ )w〉)
= R(〈w′, YW (v1, z1) · · · YW (vn, zn)eζ L(−1)w〉)
= R(〈w′, YW (v1, z1) · · · YW (vn, zn)Y W

W V (w, ζ )1〉)
= 〈w′, (E (n,1)

W (v1 ⊗ · · · ⊗ vn;w))(z1, . . . , zn, ζ )〉.
�

We also define

EW ;(n)
W V (w; v1 ⊗ · · · ⊗ vn) : {(z1, . . . , zn) ∈ FnC | zi �= 0, i = 1, . . . , n} → W

by

(EW ;(n)
W V (w; v1 ⊗ · · · ⊗ vn))(z1, . . . , zn) = (EW ;(1,n)

W V (w; v1 ⊗ · · · ⊗ vn))(0, z1, . . . , zn).

Then by Proposition 2.9,

EW ;(n)
W V (w; v1 ⊗ · · · ⊗ vn) = E (n)

W (v1 ⊗ · · · ⊗ vn;w)

for v1, . . . , vn ∈ V and w ∈ W .
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3. W -Valued Rational Functions

Let V be a grading-restricted vertex algebra and W a V -module (recall our convention
that a V -module means a grading-restricted generalized V -module in this paper). Recall
the configuration spaces

FnC = {(z1, . . . , zn) ∈ C
n | zi �= z j , i �= j}

for n ∈ Z+.

Definition 3.1. A W -valued rational function in z1, . . . , zn with the only possible poles
at zi = z j , i �= j is a map

f : FnC → W

(z1, . . . , zn) �→ f (z1, . . . , zn)

such that for any w′ ∈ W ′,

〈w′, f (z1, . . . , zn)〉
is a rational function in z1, . . . , zn with the only possible poles at zi = z j , i �= j .

For simplicity, we shall call the map that we just defined a W -valued rational function
in z1, . . . , zn unless there might be other poles. Denote the space of all W -valued rational
functions in z1, . . . , zn by W̃z1,...,zn . We define a left action of Sn on W̃z1,...,zn by

(σ ( f ))(z1, . . . , zn) = f (zσ(1), . . . , zσ(n))

for f ∈ W̃z1,...,zn .

Example 3.2. For w ∈ W , the W -valued function E (n)
W (v1 ⊗ · · · ⊗ vn;w) given by

(E (n)
W (v1 ⊗ · · · ⊗ vn;w))(z1, . . . , zn) = E(YW (v1, z1) · · · YW (vn, zn)w)

in general might not be an element of W̃z1,...,zn , since there might be singularities at

zi = 0. But for w ∈ W such that YW (v, x)w ∈ W [[x]], E (n)
W (v1 ⊗· · ·⊗vn;w) is indeed

an element of W̃z1,...,zn . Since

EW ;(n)
W V (w; v1 ⊗ · · · ⊗ vn) = E (n)

W (v1 ⊗ · · · ⊗ vn;w),

EW ;(n)
W V (w; v1 ⊗ · · · ⊗ vn) is also an element of W̃z1,...,zn . In particular, when W = V

and w = 1, E (n)
V (v1 ⊗ · · · ⊗ vn; 1) ∈ Ṽz1,...,zn .

For z ∈ C
×, we shall use log z to denote log |z| + i arg z, 0 ≤ arg z < 2π . Let

(LW (0))s be the semisimple part of LW (0), that is, (LW (0))sw = nw for w ∈ W(n).
Since W is a (grading-restricted generalized) V -module, for any z ∈ C

×,

zLW (0) = e(log z)LW (0)

= e(log z)(LW (0))s e(log z)(LW (0)−(LW (0))s )

is a well-defined linear operator on W .
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Definition 3.3. For n ∈ Z+, a linear map � : V ⊗n → W̃z1,...,zn is said to have the
L(−1)-derivative property if (i)

∂

∂zi
〈w′, (�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉
= 〈w′, (�(v1 ⊗ · · · ⊗ vi−1 ⊗ LV (−1)vi ⊗ vi+1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉

for i = 1, . . . , n, v1, . . . , vn ∈ V and w′ ∈ W ′ and (ii)

(
∂

∂z1
+ · · · +

∂

∂zn

)
〈w′, (�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉

= 〈w′, LW (−1)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉

and v1, . . . , vn ∈ V , w′ ∈ W ′. A linear map � : V ⊗n → W̃z1,...,zn is said to have the
L(0)-conjugation property if for v1, . . . , vn ∈ V , w′ ∈ W ′, (z1, . . . , zn) ∈ FnC and
z ∈ C

× so that (zz1, . . . , zzn) ∈ FnC,

〈w′, zLW (0)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉
= 〈w′, (�(zL(0)v1 ⊗ · · · ⊗ zL(0)vn))(zz1, . . . , zzn)〉.

Note that since LW (−1) is a weight-one operator on W , for any z ∈ C, ezLW (−1) is
a well-defined linear operator on W .

Proposition 3.4. Let � : V ⊗n → W̃z1,...,zn be a linear map having the L(−1)-derivative
property. Then for v1, . . . , vn ∈ V , w′ ∈ W ′, (z1, . . . , zn) ∈ FnC, z ∈ C such that
(z1 + z, . . . , zn + z) ∈ FnC,

〈w′, ezLW (−1)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉
= 〈w′, (�(v1 ⊗ · · · ⊗ vn))(z1 + z, . . . , zn + z)〉

and for v1, . . . , vn ∈ V , w′ ∈ W ′, (z1, . . . , zn) ∈ FnC, z ∈ C and 1 ≤ i ≤ n such that

(z1, . . . , zi−1, zi + z, zi+1, . . . , zn) ∈ FnC,

the power series expansion of

〈w′, (�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zi−1, zi + z, zi+1, . . . , zn)〉 (3.1)

in z is equal to the power series

〈w′, (�(v1 ⊗ · · · ⊗ vi−1 ⊗ ezL(−1)vi ⊗ vi+1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉 (3.2)

in z. In particular, the power series (3.2) in z is absolutely convergent to (3.1) in the disk
|z| < mini �= j {|zi − z j |}.
Proof. This result follows immediately from the definition of L(−1)-derivative property
and Taylor’s theorem on power series expansions of analytic functions. �
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We would like to take linear maps from tensor powers of V to W̃z1,...,zn to be cochains
in our cohomology theory. But to define the coboundary operator, we have to compose
cochains with vertex operators. However, the images of vertex operator maps in general
are not in the algebras or in the modules. They are in the algebraic completions of the
algebras or modules. This is one of the most subtle features of the theory of grading-
restricted vertex algebras or vertex operator algebras. Because of this subtlety, we cannot
compose vertex operators directly. Instead, we first write a series by projecting an element
of the algebraic completion of an algebra or a module to its homogeneous components,
composing these homogeneous components with other vertex operators and then taking
the formal sum. If this formal sum is absolutely convergent, then these operators can be
composed and we shall use the usual notation to denote the composition obtained from
the sums of these series. See [Hu2] for detailed discussions in the case of vertex operator
algebras.

Since W -valued rational functions above are valued in W , not W , and for z ∈ C
×,

u, v ∈ V , w ∈ W , YV (u, z)v ∈ V and YW (u, z)v ∈ W , in general, we might not be able
to compose a linear map from a tensor power of V to W̃z1,...,zn with vertex operators.
So we have to consider linear maps from tensor powers of V to W̃z1,...,zn such that these
maps can be composed with vertex operators in the sense mentioned above.

For a V -module W = ∐
n∈C

W(n) and m ∈ C, let Pm : W → W(m) be the projection
from W to W(m).

Definition 3.5. Let � : V ⊗n → W̃z1,...,zn be a linear map. For m ∈ N, � is said to be
composable with m vertex operators if the following conditions are satisfied:

1. Let l1, . . . , ln ∈ Z+ such that l1 + · · · + ln = m + n, v1, . . . , vm+n ∈ V and w′ ∈ W ′.
Set

�i = (E (li )
V (vl1+···+li−1+1 ⊗ · · · ⊗ vl1+···+li−1+li ; 1))

(zl1+···+li−1+1 − ζi , . . . , zl1+···+li−1+li − ζi ) (3.3)

for i = 1, . . . , n. Then there exist positive integers N (vi , v j ) depending only on vi
and v j for i, j = 1, . . . , k, i �= j such that the series

∑
r1,...,rn∈Z

〈w′, (�(Pr1�1 ⊗ · · · ⊗ Prn �n))(ζ1, . . . , ζn)〉,

is absolutely convergent when

|zl1+···+li−1+p − ζi | + |zl1+···+l j−1+q − ζi | < |ζi − ζ j |
for i, j = 1, . . . , k, i �= j and for p = 1, . . . , li and q = 1, . . . , l j . and the sum
can be analytically extended to a rational function in z1, . . . , zm+n, independent of
ζ1, . . . , ζn, with the only possible poles at zi = z j of order less than or equal to
N (vi , v j ) for i, j = 1, . . . , k, i �= j .

2. For v1, . . . , vm+n ∈ V , there exist positive integers N (vi , v j ) depending only on vi
and v j for i, j = 1, . . . , k, i �= j such that for w′ ∈ W ′,

∑
q∈C

〈w′, (E (m)
W (v1 ⊗ · · · ⊗ vm;

Pq((�(vm+1 ⊗ · · · ⊗ vm+n))(zm+1, . . . , zm+n)))(z1, . . . , zm)〉
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is absolutely convergent when zi �= z j , i �= j |zi | > |zk | > 0 for i = 1, . . . , m and
k = m + 1, . . . , m + n and the sum can be analytically extended to a rational function
in z1, . . . , zm+n with the only possible poles at zi = z j of orders less than or equal
to N (vi , v j ) for i, j = 1, . . . , k, i �= j ,.

Remark 3.6. In the first version of the present paper, we did not assume the existence
of the positive integers N (vi , v j ) for i, j = 1, . . . , k, i �= j . We did get a cohomology
theory without such an assumption. On the other hand, since the correlation functions
for grading-restricted vertex algebras do have this property, here we add this assumption.
(In fact, the existence of N (vi , vi+1) can be seen immediately from Proposition 2.5 and
the fact that YV (vi , zi − zi+1)vi+1 contains only finitely many negative power terms in
zi − zi+1 (the lower-truncation condition). The existence of N (vi , v j ) then follows from
the existence of N (vi , vi+1) and Proposition 2.4.) But we remark that the cohomology
theory without this assumption might still be important in the future studies. We might
call the cohomology theory without this assumption of the paper the cohomology theory
without upper bounds on orders of poles.

We shall denote the rational functions in Conditions 1 and 2 of Definition 3.5 by

R(〈w′,�(E (l1)
V (v1 ⊗ · · · ⊗ vl1; 1) ⊗

· · · ⊗ E (ln)
V (vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln ; 1))(z1, . . . , zm+n)〉)

and

R(〈w′, (E (m)
W (v1 ⊗ · · · ⊗ vm;�(vm+1 ⊗ · · · ⊗ vm+n))(z1, . . . , zm+n)〉),

respectively.

Example 3.7. For w ∈ W satisfying YW (v, x)w ∈ W [[x]], the W -valued rational func-
tion E (n)

W (v1 ⊗ · · · ⊗ vn;w) for v1, . . . , vn ∈ V give a linear map

E (n)
W ; w

: V ⊗n → W̃z1,...,zn

v1 ⊗ · · · ⊗ vn �→ E (n)
W (v1 ⊗ · · · ⊗ vn;w).

This linear map has the L(−1)-derivative property, the L(0)-conjugation property and
by Proposition 2.8 is composable with m vertex operators for any m ∈ Z+. Moreover, let
f be a homogeneous rational functions of degree 0 in z1, . . . , zn with the only possible
poles at zi = z j , i �= j , then f E (n)

W ; w
: V ⊗n → W̃z1,...,zn defined by

(( f E (n)
W ; w

)(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)

= f (z1, . . . , zn)(E (n)
W (v1 ⊗ · · · ⊗ vn;w))(z1, . . . , zn)

for v1, . . . , vn ∈ V has the L(0)-conjugation property and is composable with m vertex
operators for any m ∈ Z+. In particular, f E (n)

V ; 1 has the L(0)-conjugation property and
is composable with m vertex operators for any m ∈ Z+.
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Let � : V ⊗n → W̃z1,...,zn be composable with m vertex operators. Then for l1, . . . , ln
∈ Z+ such that l1 + · · · + ln = m + n, v1, . . . , vm+n ∈ V and w ∈ W , we have an element

E(�(E (l1)
V (v1 ⊗ · · · ⊗ vl1; 1) ⊗ · · · ⊗ E (ln)

V (vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln ; 1)))

of W̃z1,...,zm+n−1 given by

〈w′, (E(�(E (l1)
V (v1 ⊗ · · · ⊗ vl1; 1) ⊗

· · · ⊗ E (ln)
V (vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln ; 1))))(z1, . . . , zm+n)〉

= R(〈w′,�(E (l1)
V (v1 ⊗ · · · ⊗ vl1; 1) ⊗

· · · ⊗ E (ln)
V (vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln ; 1))(z1, . . . , zm+n)〉)

For v1, . . . , vm+n ∈ V , we have an element

E(E (m)
W (v1 ⊗ · · · ⊗ vm;�(vm+1 ⊗ · · · ⊗ vm+n)))

of W̃z1,...,zm+n given by

〈w′, (E(E (m)
W (v1 ⊗ · · · ⊗ vm;�(vm+1 ⊗ · · · ⊗ vm+n)))(z1, . . . , zm+n)〉

= R(〈w′, (E (m)
W (v1 ⊗ · · · ⊗ vm;

(�(vm+1 ⊗ · · · ⊗ vm+n))(zm+1, . . . , zm+n))(z1, . . . , zm)〉)).
Also for v1, . . . , vn+m ∈ V , since by Proposition 2.9,∑

q∈C

〈w′, (EW ;(m)
W V (Pq((�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn));

vn+1 ⊗ · · · ⊗ vn+m))(zn+1, . . . , zn+m)〉
=

∑
q∈C

〈w′, (E (m)
W (vn+1 ⊗ · · · ⊗ vn+m;

Pq((�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn))))(zn+1, . . . , zn+m)〉, (3.4)

the left-hand side of (3.4) is absolutely convergent and can be analytically expended to a
rational function in z1, . . . , zn with the only possible poles at zi = z j , i �= j if and only
if the same conclusions hold for the right-hand side of (3.4). Since � is composable
with m vertex operators, the right-hand side is indeed absolutely convergent and can
be analytically expended to a rational function z1, . . . , zn with the only possible poles
at zi = z j , i �= j . Thus the same conclusions hold for the left-hand side. Denote the
corresponding rational function by

R(〈w′, (EW ;(m)
W V (�(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m))(z1, . . . , zn+m)〉).

We obtain an element

E(EW ;(m)
W V (�(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m))

of W̃z1,...,zn+m given by

〈w′, E(EW ;(m)
W V (�(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m))(z1, . . . , zn+m)〉

= R(〈w′, (EW ;(m)
W V (�(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m))(z1, . . . , zn+m)〉).
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By Proposition 2.9, we have

E(EW ;(m)
W V (�(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m))(z1, . . . , zn+m)

= (E(E (m)
W (vn+1 ⊗ · · · ⊗ vn+m;�(v1 ⊗ · · · ⊗ vn)))(zn+1, . . . , zn+m, z1, · · · zn).

(3.5)

We now define

� ◦ (E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1) : V ⊗m+n → W̃z1,...,zm+n ,

E (m)
W ◦m+1 � : V ⊗m+n → W̃z1,...,zm+n−1

and

EW ;(m)
W V ◦0 � : V ⊗m+n → W̃z1,...,zm+n−1

by

(� ◦ (E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1))(v1 ⊗ · · · ⊗ vm+n−1)

= E(�(E (l1)
V ;1(v1 ⊗ · · · ⊗ vl1) ⊗ · · ·

⊗E (ln)
V ;1(vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln ))),

(E (m)
W ◦m+1 �)(v1 ⊗ · · · ⊗ vm+n)

= E(E (m)
W (v1 ⊗ · · · ⊗ vm;�(vm+1 ⊗ · · · ⊗ vm+n)))

and

(EW ;(m)
W V ◦0 �)(v1 ⊗ · · · ⊗ vm+n)

= E(EW ;(m)
W V (�(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m)),

respectively. In the case that l1 = · · · = li−1 = li+1 = 1 and li = m − n − 1 for some i ,
for simplicity, we shall also use � ◦i E (li )

V ; 1 to denote � ◦ (E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1).

We define an action of Sn on the space Hom(V ⊗n, W̃z1,...,zn ) of linear maps from
V ⊗n to W̃z1,...,zn by

(σ (�))(v1 ⊗ · · · ⊗ vn) = σ(�(vσ(1) ⊗ · · · ⊗ vσ(n)))

for σ ∈ Sn and v1, . . . , vn ∈ V .
We shall use the notation σi1,...,in ∈ Sn to denote the permutation given by

σi1,...,in ( j) = i j

for j = 1, . . . , n. We have

Proposition 3.8. For m ∈ Z+,

EW ;(m)
W V ◦0 � = σn+1,...,n+m,1,...,,n(E (m)

W ◦m+1 �). (3.6)

Proof. The equality (3.6) follows from (3.5) and the definition of the action of Sm+n on
W̃z1,...,zm+n . �
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We also have:

Proposition 3.9. The subspace of Hom(V ⊗n, W̃z1,...,zn ) consisting of linear maps having
the L(−1)-derivative property, having the L(0)-conjugation property or being compos-
able with m vertex operators is invariant under the action of Sn.

Proof. This result follows directly from the definitions. �
We know that compositions of maps are associative. But for maps whose compositions

are defined using sums of absolutely convergent series as we have discussed above, even
if all the compositions involved exist, we still might not have associativity in general
because iterated sums in different orders might not be equal to each other in general.
However, when such compositions are analytic in some sense, associativity does hold.
In particular, for the maps considered in this paper, we do have the following proposition
that gives in particular some associativity results:

Proposition 3.10. Let � : V ⊗n → W̃z1,...,zn be composable with m vertex operators.
Then we have:

1. For p ≤ m, � is composable with p vertex operators and for p, q ∈ Z+ such that
p+q ≤ m and l1, . . . , ln ∈ Z+ such that l1 +· · ·+ln = p+n, �◦(E (l1)

V ; 1⊗· · ·⊗E (ln)
V ; 1)

and E (p)
W ◦p+1 � are composable with q vertex operators.

2. For p, q ∈ Z+ such that p + q ≤ m, l1, . . . , ln ∈ Z+ such that l1 + · · · + ln = p + n
and k1, . . . , kp+n ∈ Z+ such that k1 + · · · + kp+n = q + p + n, we have

(� ◦ (E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1)) ◦ (E (k1)
V ; 1 ⊗ · · · ⊗ E

(kp+n)

V ; 1 )

= � ◦ (E
(k1+···+kl1 )

V ; 1 ⊗ · · · ⊗ E
(kl1+···+ln−1+1+···+kp+n)

V ; 1 ).

3. For p, q ∈ Z+ such that p +q ≤ m and l1, . . . , ln ∈ Z+ such that l1 + · · ·+ln = p +n,
we have

E (q)
W ◦q+1 (� ◦ (E (l1)

V ; 1 ⊗ · · · ⊗ E (ln)
V ; 1)) = (E (q)

W ◦q+1 �) ◦ (E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1).

4. For p, q ∈ Z+ such that p + q ≤ m, we have

E (p)
W ◦p+1 (E (q)

W ◦q+1 �) = E (p+q)
W ◦p+q+1 �.

Proof. Conclusion 1 is clear from the definition.
Let v

(i)
j ∈ V for i = 1, . . . , p + n, j = 1, . . . , ki . Then

((� ◦ (E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1)) ◦ (E (k1)
V ; 1 ⊗ · · · ⊗ E

(kp+n)

V ; 1 ))(v
(1)
1 ⊗ · · · ⊗ v

(p+n)
kp+n

)

= E((� ◦ (E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1))(E (k1)
V ; 1(v

1)
1 ⊗ · · · ⊗ v

(1)
k1

) ⊗
· · · ⊗ E

(kp+n)

V ; 1 (v
(p+n)
1 ⊗ · · · ⊗ v

(p+n)
kp+n

)))

= E(�(E (l1)
V ; 1(E (k1)

V ; 1(v
(1)
1 ⊗ · · · ⊗ v

(1)
k1

) ⊗ · · · ⊗ E
(kl1 )

V ; 1 (v
(l1)
1 ⊗ · · · ⊗ v

(l1)
kl1

)) ⊗
· · · ⊗ E (ln)

V ; 1(E
(kl1+···+ln−1+1)

V ; 1 (v
(l1+···+ln−1+1)

1 ⊗ · · · ⊗ v
(l1+···+ln−1+1)

kl1+···+ln−1+1
) ⊗

· · · ⊗ E
(kp+n)

V ; 1 (v
(p+n)
1 ⊗ · · · ⊗ v

(p+n)
kp+n

)))). (3.7)
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By Proposition 2.8, the right-hand side of (3.7) is equal to

E(�(E
(k1+···+kl1 )

V ; 1 (v
(1)
1 ⊗ · · · ⊗ v

(l1)
kl1

) ⊗
· · · ⊗ E

(kl1+···+ln−1+1+···+kp+n)

V ; 1 (v
(l1+···+ln−1+1)

1 ⊗ · · · ⊗ v
(p+n)
kp+n

)))

= (� ◦ (E
(k1+···+kl1 )

V ; 1 ⊗ · · · ⊗ E
(kl1+···+ln−1+1+···+kp+n)

V ; 1 ))(v
(1)
1 ⊗ · · · ⊗ v

(p+n)
kp+n

).

(3.8)

From (3.7) and (3.8), we obtain Conclusion 2.
Conclusions 3 and 4 can be proved similarly. �

4. Chain Complexes and Cohomologies

Let V be a vertex operator algebra and W a V -module. For n ∈ Z+, let Ĉn
0 (V, W ) be the

vector space of all linear maps from V ⊗n to W̃z1,...,zn satisfying the L(−1)-derivative
property and the L(0)-conjugation property. For m, n ∈ Z+, let Ĉn

m(V, W ) be the vector
spaces of all linear maps from V ⊗n to W̃z1,...,zn composable with m vertex operators and
satisfying the L(−1)-derivative property and the L(0)-conjugation property. Also, let
Ĉ0

m(V, W ) = W . Then we have

Ĉn
m(V, W ) ⊂ Ĉn

m−1(V, W )

for m ∈ Z+. Let

Ĉn∞(V, W ) =
⋂

m∈N

Ĉn
m(V, W ).

By Example 3.7, Ĉn∞(V, V ) is nonempty.
For n ∈ N and m ∈ Z+, we define a coboundary operator

δ̂n
m : Ĉn

m(V, W ) → Ĉn+1
m−1(V, W )

by

δ̂n
m(�) = E (1)

W ◦2 � +
n∑

i=1

(−1)i� ◦i E (2)
V ;1 + (−1)n+1 EW ;(1)

W V ◦0 �

= E (1)
W ◦2 � +

n∑
i=1

(−1)i� ◦i E (2)
V ;1 + (−1)n+1σn+1,1,...,n(E (1)

W ◦2 �) (4.1)

for � ∈ Ĉn
m(V, W ), where the second equality is obtained by using (3.6). Explicitly, for

v1, . . . , vn+1 ∈ V , w′ ∈ W ′ and (z1, . . . , zn+1) ∈ Fn+1C,

〈w′, ((δ̂n
m(�))(v1 ⊗ · · · ⊗ vn+1))(z1, . . . , zn+1)〉

= R(〈w′, YW (v1, z1)(�(v2 ⊗ · · · ⊗ vn+1))(z2, . . . , zn+1)〉)
+

n∑
i=1

(−1)i R(〈w′, (�(v1 ⊗ · · · ⊗ vi−1
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⊗(YV (vi , zi − ζi )YV (vi+1, zi+1 − ζi )1)

⊗vi+2 ⊗ · · · ⊗ vn+1))(z1, . . . , zi−1, ζi , zi+2, . . . , zn+1)〉)
+(−1)n+1 R(〈w′, YW (vn+1, zn+1)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉),

which is in fact independent of ζi . In particular, when we take ζi = zi+1 for i = 1, . . . , n,
we obtain

〈w′, ((δ̂n
m(�))(v1 ⊗ · · · ⊗ vn+1))(z1, . . . , zn+1)〉

= R(〈w′, YW (v1, z1)(�(v2 ⊗ · · · ⊗ vn+1))(z2, . . . , zn+1)〉)
+

n∑
i=1

(−1)i R(〈w′, (�(v1 ⊗ · · · ⊗ vi−1 ⊗ YV (vi , zi − zi+1)vi+1

⊗ · · · ⊗ vn+1))(z1, . . . , zi−1, zi+1, . . . , zn+1)〉)
+(−1)n+1 R(〈w′, YW (vn+1, zn+1)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉).

By Proposition 3.10, δ̂n
m(�) is composable with m − 1 vertex operators and has the

L(−1)-derivative property and the L(0)-conjugation property. So δ̂n
m(�) ∈ Ĉn+1

m−1(V, W )

and δ̂n
m is indeed a map whose image is in Ĉn+1

m−1(V, W ).

In the definition of δ̂n
m above, we require m ∈ Z+ so that each term in the right-hand

sides of the first and second equalities of (4.1) is well defined. However, in the case
n = 2, there is a subspace of Ĉ2

0 (V, W ) containing Ĉ2
m(V, W ) for all m ∈ Z+ such that

δ̂2
m is still defined on this subspace.

Let Ĉ2
1
2
(V, W ) be the subspace of Ĉ2

0 (V, W ) consisting of elements � such that for

v1, v2, v3 ∈ V , w′ ∈ W ′,∑
r∈C

(〈w′, E (1)
W (v1; Pr ((�(v2 ⊗ v3))(z2 − ζ, z3 − ζ )))(z1, ζ )〉

+〈w′, (�(v1 ⊗ Pr ((E (2)
V (v2 ⊗ v3; 1))(z2 − ζ, z3 − ζ ))))(z1, ζ )〉)

and ∑
r∈C

(〈w′, (�(Pr ((E (2)
V (v1 ⊗ v2; 1))(z1 − ζ, z2 − ζ )) ⊗ v3))(ζ, z3)〉

+〈w′, EW ;(1)
W V (Pr ((�(v1 ⊗ v2))(z1 − ζ, z2 − ζ )); v3))(ζ, z3)〉

)
are absolutely convergent in the regions |z1 − ζ | > |z2 − ζ |, |z2 − ζ | > 0 and |ζ − z3| >

|z1 −ζ |, |z2 −ζ | > 0, respectively, and can be analytically extended to rational functions
in z1 and z2 with the only possible poles at z1, z2 = 0 and z1 = z2. Note that here we
do not require the individual series∑

r∈C

(〈w′, E (1)
W (v1; Pr ((�(v2 ⊗ v3))(z2 − ζ, z3 − ζ )))(z1, ζ )〉,

∑
r∈C

〈w′, (�(v1 ⊗ Pr ((E (2)
V (v2 ⊗ v3; 1))(z2 − ζ, z3 − ζ ))))(z1, ζ )〉,

∑
r∈C

〈w′, (�(Pr ((E (2)
V (v1 ⊗ v2; 1))(z1 − ζ, z2 − ζ )) ⊗ v3))(ζ, z3)〉,

∑
r∈C

〈w′, EW ;(1)
W V (Pr ((�(v1 ⊗ v2))(z1 − ζ, z2 − ζ )); v3))(ζ, z3)〉
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to be absolutely convergent. We denote the corresponding rational functions by

R(〈w′, (E (1)
W (v1;�(v2 ⊗ v3))(z1, z2, z3)〉

+〈w′, (�(v1 ⊗ E (2)
V (v2 ⊗ v3; 1)))(z1, z2, z3)〉)

and

R(〈w′, (�(E (2)
V (v1 ⊗ v2; 1)) ⊗ v3))(z1, z2, z3)〉

+〈w′, (EW ;(1)
W V (�(v1 ⊗ v2); v3))(z1, z2, z3)〉).

Clearly, Ĉ2
m(V, W ) ⊂ Ĉ2

1
2
(V, W ) for m ∈ Z+. We define a coboundary operator

δ̂2
1
2

: Ĉ2
1
2
(V, W ) → Ĉ3

0(V, W )

by

〈w′, ((δ̂2
1
2
(�))(v1 ⊗ v2 ⊗ v3))(z1, z2, z3)〉

= R(〈w′, (E (1)
W (v1;�(v2 ⊗ v3))(z1, z2, z3)〉

+ 〈w′, (�(v1 ⊗ E (2)
V (v2 ⊗ v3; 1)))(z1, z2, z3)〉)

− R(〈w′, (�(E (2)
V (v1 ⊗ v2; 1)) ⊗ v3))(z1, z2, z3)〉

+ 〈w′, (EW ;(1)
W V (�(v1 ⊗ v2); v3))(z1, z2, z3)〉)

for w′ ∈ W ′, � ∈ Ĉ2
1
2
(V, W ), v1, v2, v3 ∈ V and (z1, z2, z3) ∈ F3C.

Proposition 4.1. For n ∈ N and m ∈ Z+ + 1, δ̂n+1
m−1 ◦ δ̂n

m = 0. We also have δ̂2
1
2
◦ δ̂1

2 = 0.

Proof. Let � ∈ Ĉn(V, W ). Then

(δ̂n+1
m−1 ◦ δ̂n

m)(�)

= E (1)
W ◦2 (δ̂n

m(�)) +
n+1∑
i=1

(−1)i (δ̂n
m(�)) ◦i ⊗E (2)

V ;1

+ (−1)n+2σn+2,1,...,n+1(E (1)
W ◦2 (δ̂n

m(�)))

= E (1)
W ◦2 (E (1)

W ◦2 �) +
n∑

j=1

(−1) j E (1)
W ◦2 (� ◦ j+1 E (2)

V ;1)

+ (−1)n+1 E (1)
W ◦2 (σn+1,1,...,n(E (1)

W ◦2 �))

− (E (1)
W ◦2 �) ◦1 E (2)

V ;1 +
n+1∑
i=2

(−1)i (E (1)
W ◦2 �) ◦i E (2)

V ;1

+
n+1∑
i=1

(−1)i
i−2∑
j=1

(−1) j (� ◦ j E (2)
V ;1) ◦i E (2)

V ;1
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+
n+1∑
i=2

(−1)i (−1)i−1(� ◦i−1 E (2)
V ;1) ◦i E (2)

V ;1

+
n∑

i=1

(−1)i (−1)i (� ◦i E (2)
V ;1) ◦i E (2)

V ;1

+
n+1∑
i=1

(−1)i
n+1∑

j=i+2

(−1) j−1(� ◦ j E (2)
V ;1) ◦i E (2)

V ;1

+ (−1)n+1
n∑

i=1

(−1)i (σn+1,1,...,n(E (1)
W ◦2 �)) ◦i E (2)

V ;1

+ (σn+1,1,...,n(E (1)
W ◦2 �)) ◦n+1 E (2)

V ;1
+(−1)n+2σn+2,1,...,n+1(E (1)

W ◦2 (E (1)
W ◦2 �))

+ (−1)n+2
n∑

j=1

(−1) jσn+2,1,...,n+1(E (1)
W ◦2 (� ◦ j E (2)

V ;1))

− σn+2,1,...,n+1(E (1)
W ◦2 σn+1,1,...,n(E (1)

W ◦2 �)). (4.2)

We now prove that in the right-hand side of (4.2), (i) the first and the fourth terms, (ii) the
second and the fifth terms, (iii) the third and the twelfth terms, (iv) the sixth and the ninth
term, (v) the seventh and the eighth terms, (vi) the tenth and the thirteenth terms, (vii)
the eleventh and fourteenth terms cancel with each other, and thus the right-hand side of
(4.1) is equal to 0, proving the proposition. In the proofs of these cancellations below, we
actually also have to switch the order of absolutely convergent iterated sums. But just as
in the proof of Proposition 3.10, since all the iterated sums are absolutely convergent to
rational functions, the corresponding multisums are all absolutely convergent and thus
all iterated sums are equal. Because of this general fact, we shall omit the discussion of
the orders of the iterated sums.

(i) The first and the fourth terms: For w′ ∈ W ′, v1, . . . , vn+2 ∈ V and (z1, . . . , zn+2) ∈
Fn+2C, applying the first term to v1 ⊗ · · · ⊗ vn+2, evaluating the result at (z1, . . . , zn+2)

and then pairing the result with w′, we obtain

〈w′, (E(E (1)
W (v1; E(E (1)

W (v2;�(v3 ⊗ · · · ⊗ vn+2))))))(z1, . . . , zn+1)〉
= R(〈w′, (E (1)

W (v1; E(E (1)
W (v2;�(v3 ⊗ · · · ⊗ vn+2)))))(z1, . . . , zn+1)〉)

= R(〈w′, YW (v1, z1)E(E (1)
W (v2;�(v3 ⊗ · · · ⊗ vn+2)))(z1, . . . , zn+1)〉)

= R(〈w′, YW (v1, z1)YW (v2, z2)(�(v3 ⊗ · · · ⊗ vn+2))(z3, . . . , zn+2)〉)
= R(〈w′, YW (YV (v1, z1 − z2)v2, z2)(�(v3 ⊗ · · · ⊗ vn+2))(z3, . . . , zn+2)〉),

(4.3)

where in the last step, we have used the associativity of the module W . On the other
hand, applying the fourth term to v1 ⊗ · · ·⊗ vn+2, evaluating the result at (z1, . . . , zn+2)

and then pairing the result with w′, we obtain
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〈w′,−((E (1)
W ◦2 �)(E (2)

V (v1 ⊗ v2; 1) ⊗ v3 ⊗ · · · ⊗ vn+2))(z1, . . . , zn+2)〉
= −〈w′, (E(E (1)

W (E (2)
V (v1 ⊗ v2; 1);�(v3 ⊗ · · · ⊗ vn+2)))))(z1, . . . , zn+2)〉

= −R(〈w′, (E (1)
W (E (2)

V (v1 ⊗ v2; 1);�(v3 ⊗ · · · ⊗ vn+2)))(z1, . . . , zn+2)〉)
= −R(〈w′, YW (YV (v1, z1 − z2)v2, z2)(�(v3 ⊗ · · · ⊗ vn+2))(z3, . . . , zn+2)〉).

(4.4)

Since the right-hand sides of (4.3) and (4.4) differ only by a sign forw′ ∈ W ′,v1, . . . , vn+2
∈ V and (z1, . . . , zn+2) ∈ Fn+2C, these two terms indeed cancel with each other.

(ii) The second and the fifth terms: By Proposition 3.10, these two terms differ only
by a sign and thus cancel with each other.

(iii) The third and the twelfth terms: Forw′ ∈ W ′,v1, . . . , vn+2 ∈ V and (z1, . . . , zn+2)

∈ Fn+2C, applying the third term to v1⊗· · ·⊗vn+2, evaluating the result at (z1, . . . , zn+2)

and then pairing the result with w′, we obtain

〈w′, (−1)n+1(E(E (1)
W (v1;

σn+1,1,...,n(E(EW (vn+2;�(v2 ⊗ · · · ⊗ vn+1)))))))(z1, . . . , zn+2)〉
= (−1)n+1 R(〈w′, (E (1)

W (v1;
σn+1,1,...,n(E(EW (vn+2;�(v2 ⊗ · · · ⊗ vn+1))))))(z1, . . . , zn+2)〉)

= (−1)n+1 R(〈w′, YW (v1, z1)

·σn+1,1,...,n(E(EW (vn+2;�(v2 ⊗ · · · ⊗ vn+1))))(z2, . . . , zn+2)〉)
= (−1)n+1 R(〈w′, YW (v1, z1)

·(E(EW (vn+2;�(v2 ⊗ · · · ⊗ vn+1))))(zn+2, z2 . . . , zn+1)〉)
= (−1)n+1 R(〈w′, YW (v1, z1)YW (vn+2, zn+2)

·(�(v2 ⊗ · · · ⊗ vn+1))(z2 . . . , zn+1)〉)
= (−1)n+1 R(〈w′, YW (vn+2, zn+2)YW (v1, z1)

·(�(v2 ⊗ · · · ⊗ vn+1))(z2 . . . , zn+1)〉), (4.5)

where in the last step, we have used the commutativity of the module W . On the other
hand, applying the twelfth term to v1 ⊗· · ·⊗vn+2, evaluating the result at (z1, . . . , zn+2)

and then pairing the result with w′, we obtain

〈w′, (−1)n+2σn+2,1,...,n+1(E(E (1)
W (vn+2; E(E (1)

W (v1;
�(v2 ⊗ · · · ⊗ vn+1))))))(z1, . . . , zn+2)〉

= (−1)n+2 R(〈w′, (E (1)
W (vn+2; E(E (1)

W (v1;
�(v2 ⊗ · · · ⊗ vn+1)))))(zn+2, z1, . . . , zn+1)〉)

= (−1)n+2 R(〈w′, YW (vn+2, zn+2)YW (v1, z1)

·(�(v2 ⊗ · · · ⊗ vn+1))(z2, . . . , zn+1)〉). (4.6)

Since the right-hand sides of (4.5) and (4.6) differ only by a sign forw′ ∈ W ′,v1, . . . , vn+2
∈ V and (z1, . . . , zn+2) ∈ Fn+2C, these two terms indeed cancel with each other.

(iv) The sixth and the ninth terms: By Proposition 3.10, when i �= j , we have

(� ◦ j E (2)
V ;1) ◦i E (2)

V ;1 = � ◦ (E (l1)
V ;1 ⊗ · · · ⊗ E (ln)

V ;1),
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where lk = 1 if k �= i, j and lk = 2 if k = i or k = j . Since for any ai j ∈ Cn+2(V, W ),

n+1∑
j=1

j−2∑
i=1

ai j =
n+1∑
i=1

n+1∑
j=i+2

ai j ,

we see that these two terms differ by a sign and thus cancel with each other.
(v) The seventh and the eighth terms: By Proposition 3.10, we have

(� ◦i−1 E (2)
V ;1) ◦i E (2)

V ;1 = � ◦i−1 E (3)
V ;1

for i = 2, . . . , n + 1 and

(� ◦i E (2)
V ;1) ◦i E (2)

V ;1 = � ◦i E (3)
V ;1

for i = 1, . . . , n. Thus these two terms differ by a sign and cancel with each other.
(vi) The tenth and the thirteenth terms: Since i or j are less than or equal to n, by

definition, we have

(σn+1,1,...,n(E (1)
W ◦2 �)) ◦i E (2)

V ;1 = σn+2,1,...,n+1(E (1)
W ◦2 (� ◦i E (2)

V ;1).

Then by Proposition 3.10, these two terms differ by a sign and thus cancel with each
other.

(vii) The eleventh and the fourteenth terms: For w′ ∈ W ′, v1, . . . , vn+2 ∈ V and
(z1, . . . , zn+2) ∈ Fn+2C, applying the eleventh term to v1 ⊗ · · · ⊗ vn+2, evaluating the
result at (z1, . . . , zn+2) and then pairing the result with w′, we obtain

〈w′, ((σn+1,1,...,n(E (1)
W ◦2 �))(v1 ⊗ · · · ⊗ vn

⊗E (2)
V (vn+1 ⊗ vn+2; 1)))(z1, . . . , zn+2)〉

= 〈w′, ((E (1)
W ◦2 �)(E (2)

V (vn+1 ⊗ vn+2; 1)

⊗v1 ⊗ · · · ⊗ vn))(zn+1, zn+2, z1, . . . , zn)〉
= 〈w′, (E(E (1)

W (E (2)
V (vn+1 ⊗ vn+2; 1);

�(v1 ⊗ · · · ⊗ vn))))(zn+1, zn+2, z1, . . . , zn)〉
= R(〈w′, (E (1)

W (E (2)
V (vn+1 ⊗ vn+2; 1);

�(v1 ⊗ · · · ⊗ vn)))(zn+1, zn+2, z1, . . . , zn)〉)
= R(〈w′, YW (YV (vn+1, zn+1 − zn+2)vn+2, zn+2)

·(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉)
= R(〈w′, YW (vn+1, zn+1)YW (vn+2, zn+2)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉)
= R(〈w′, YW (vn+2, zn+2)YW (vn+1, zn+1)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉),

(4.7)

where in the last two steps, we have used the associativity and commutativity of the V -
module W . On the other hand, applying the fourteenth term to v1 ⊗· · ·⊗vn+2, evaluating



302 Y.-Z. Huang

the result at (z1, . . . , zn+2) and then pairing the result with w′, we obtain

〈w′, ((E (1)
W ◦2 σn+1,1,...,n(E (1)

W ◦2 �))(vn+2 ⊗ v1 ⊗
· · · ⊗ vn+1))(zn+2, z1, . . . , zn+1)〉

= −〈w′, (E(E (1)
W (vn+2;

((σn+1,1,...,n(E (1)
W ◦2 �))(v1 ⊗ · · · ⊗ vn+1)))))(zn+2, z1, . . . , zn+1)〉

= −R(〈w′, YW (vn+2, zn+2)

·((σn+1,1,...,n(E (1)
W ◦2 �))(v1 ⊗ · · · ⊗ vn+1))(z1, . . . , zn+1)〉)

= −R(〈w′, YW (vn+2, zn+2)

·((E (1)
W ◦2 �)(vn+1 ⊗ v1 · · · ⊗ vn))(zn+1, z1 . . . , zn)〉)

= −R(〈w′, YW (vn+2, zn+2)

·(E(E (1)
W (vn+1;�(v1 ⊗ · · · ⊗ vn))))(zn+1, z1, . . . , zn)〉)

= −R(〈w′, YW (vn+2, zn+2)YW (vn+1, zn+1)(�(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉).
(4.8)

Since the right-hand sides of (4.7) and (4.8) differ only by a sign forw′ ∈ W ′,v1, . . . , vn+2
∈ V and (z1, . . . , zn+2) ∈ Fn+2C, these two terms indeed cancel with each other.

The second conclusion follows from the first conclusion. In fact since

δ̂1
2(Ĉ1

2(V, W )) ⊂ Ĉ2
1 (V, W ) ⊂ Ĉ2

1
2
(V, W ),

δ̂2
1
2

◦ δ̂1
2 = δ̂2

1 ◦ δ̂1
2 = 0.

�
By Proposition 4.1, we have complexes

0 −→ Ĉ0
m(V, W )

δ̂0
m−→ Ĉ1

m−1(V, W )
δ̂1

m−1−→ · · · δ̂m−1
1−→ Ĉm

0 (V, W ) −→ 0 (4.9)

for m ∈ N and

0 −→ Ĉ0
3 (V, W )

δ̂0
3−→ Ĉ1

2(V, W )
δ̂1

2−→ Ĉ2
1
2
(V, W )

δ̂2
1
2−→ Ĉ3

0(V, W ) −→ 0, (4.10)

where the first and last arrows are the trivial embeddings and projections. But these com-
plexes are not yet the chain complexes for V . We have to consider certain subcomplexes
of these complexes. To define these subcomplexes, we need to use shuffles.

For n ∈ N and 1 ≤ p ≤ n − 1, let Jn;p be the set of elements of Sn which preserve
the order of the first p numbers and the order of the last n − p numbers, that is,

Jn,p = {σ ∈ Sn | σ(1) < · · · < σ(p), σ (p + 1) < · · · < σ(n)}.
Elements of Jn;p are called shuffles. Let J−1

n;p = {σ | σ ∈ Jn;p}. For m, n ∈ N and or

m = 1
2 , n = 2, let Cn

m(V, W ) be the subspace of Ĉn
m(V, W ) consisting of maps � such

that ∑
σ∈J−1

n;p

(−1)|σ |σ(�(vσ(1) ⊗ · · · ⊗ vσ(n))) = 0.
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We also let

Cn∞(V, W ) =
⋂

m∈N

Cn
m(V, W ).

Theorem 4.2. For n ∈ N and m ∈ Z+, δ̂n
m(Cn

m(V, W )) ⊂ Cn+1
m−1(V, W ). Also δ̂2

1
2

(C2
1
2
(V, W )) ⊂ C3

0(V, W ).

Proof. Let � ∈ Cn
m(V, W ). We need to prove δ̂n

m(�) ∈ Cn+1
m−1(V, W ). By definition, we

have ∑
σ∈J−1

n+1;p

(−1)|σ |σ(δ̂n
m(�))

=
∑

σ∈J−1
n+1;p

(−1)|σ |σ(E (1)
W ◦2 �)

+
∑

σ∈J−1
n+1;p

(−1)|σ |
n∑

i=1

(−1)iσ(� ◦i E (2)
V ;1)

+(−1)n+1
∑

σ∈J−1
n+1;p

(−1)|σ |σ(σn+1,1...,n(E (1)
W ◦2 �)). (4.11)

Note that for any σ ∈ J−1
n+1;p, σ(1) is either 1 or p + 1. So the first term in the

right-hand side of (4.11) is equal to∑
σ ∈ J−1

n+1;p
σ(1) = 1

(−1)|σ |σ(E (1)
W ◦2 �) +

∑
σ ∈ J−1

n+1;p
σ(1) = p + 1

(−1)|σ |σ(E (1)
W ◦2 �). (4.12)

The subset {σ ∈ J−1
n+1;p | σ(1) = 1} of Sn+1 is the image of J−1

n;p under the embedding
from Sn to Sn+1 given by mapping an element of Sn to an element of Sn+1 permuting
only the last n numbers. Since � ∈ Cn

m(V, W ), the first term in (4.12) is equal to 0.
Similarly, the subset {σ ∈ J−1

n+1;p | σ(1) = p + 1} of Sn+1 is the image of J−1
n;p under the

embedding from Sn to Sn+1 given by mapping an element of Sn to an element of Sn+1
permuting only the numbers 1, . . . , p, p + 2, . . . , n + 1. So the second term in (4.12) is
also equal to 0. Thus the first term in the right-hand side of (4.11) is equal to 0. Similarly,
with n + 1 and p playing the role of 1 and p + 1 in the argument above, the last term in
the right-hand side of (4.11) is also equal to 0.

The second term in the right-hand side of (4.11) is equal to

p∑
i=1

(−1)i
∑

σ ∈ J−1
n+1;p

1 ≤ σ(i), σ (i + 1) ≤ p

(−1)|σ |σ(� ◦i E (2)
V ;1)

+
p∑

i=1

(−1)i
∑

σ ∈ J−1
n+1;p

p + 1 ≤ σ(i), σ (i + 1) ≤ n

(−1)|σ |σ(� ◦i E (2)
V ;1)
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+
n∑

i=p+1

(−1)i
∑

σ ∈ J−1
n+1;p

1 ≤ σ(i) ≤ p
p + 1 ≤ σ(i + 1) ≤ n

(−1)|σ |σ(� ◦i E (2)
V ;1)

+
n∑

i=p+1

(−1)i
∑

σ ∈ J−1
n+1;p

p + 1 ≤ σ(i) ≤ n
1 ≤ σ(i + 1) ≤ p

(−1)|σ |σ(� ◦i E (2)
V ;1). (4.13)

For σ ∈ J−1
n+1;p, if 1 ≤ σ(i), σ (i + 1) ≤ p or p + 1 ≤ σ(i), σ (i + 1) ≤ n, then

σ(i+1) = σ(i)+1. In these cases, the permutation of the numbers 1, . . . , i−1, i+1, . . . , n
induced from σ−1 is in J−1

n;p−1 or J−1
n;p and every element of J−1

n;p−1 or J−1
n;p is obtained

uniquely in this way. Since � ∈ Cn
m(V, W ), the first two terms in (4.13) are equal to

0. Let σ ∈ J−1
n+1;p satisfying p + 1 ≤ σ(i) ≤ n, 1 ≤ σ(i + 1) ≤ p. Let σi+1,i be

the transposition exchanging i and i + 1. Then τ = σ ◦ σi+1,i is an element of J−1
n+1;p

satisfying 1 ≤ τ(i) ≤ p, p + 1 ≤ τ(i + 1) ≤ n. Moreover, |σ ◦ σi+1,i | = |σ | + 1. Also,
by the commutativity of V ,

(σ ◦ σi+1,i )(� ◦i E (2)
V ;1) = σ(� ◦i E (2)

V ;1).

Thus the third term and the fourth term in (4.13) cancel with each other. The calculations
above show that (4.13) is equal to 0.

Now we have proved that the right-hand side of (4.11) is equal to 0. By (4.11),
δ̂n

m(�) ∈ Cn+1
m−1(V, W ).

Let � ∈ C2
1
2
(V, W ). Note that J3;2 = σ3,1,2(J3;1). To prove δ̂2

1
2
(�) ∈ C3

0(V, W ), we

need only prove ∑
σ∈J−1

3;1

(−1)|σ |σ(δ̂2
1
2
(�)) = 0. (4.14)

By definition, for v1, v2, v3 ∈ V , w′ ∈ W ′, (z1, z2, z3) ∈ F3C and ζ ∈ C such that
(z1 − ζ, z2 − ζ ), (z2 − ζ, z3 − ζ ), (z1 − ζ, z3 − ζ ), (z1, ζ ), (z2, ζ ), (z3, ζ ) ∈ F2C, we
have ∑

σ∈J−1
3;1

(−1)|σ |〈w′, σ (δ̂2
1
2
(�))(v1 ⊗ v2 ⊗ v3))(z1, z2, z3)〉

=
∑

σ∈J−1
3;1

(−1)|σ |〈w′, (δ̂2
1
2
(�))(vσ(1) ⊗ vσ(2) ⊗ vσ(3)))(zσ(1), zσ(2), zσ(3))〉

= 〈w′, (δ̂2
1
2
(�))(v1 ⊗ v2 ⊗ v3))(z1, z2, z3)〉

− 〈w′, (δ̂2
1
2
(�))(v2 ⊗ v1 ⊗ v3))(z2, z1, z3)〉

+〈w′, (δ̂2
1
2
(�))(v2 ⊗ v3 ⊗ v1))(z2, z3, z1)〉

= R(〈w′, (E (1)
W (v1;�(v2 ⊗ v3)))(z1, z2, z3)〉

+ 〈w′, (�(v1 ⊗ (E (2)
V (v2 ⊗ v3; 1)))(z1, z2, z3)〉)
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− R(〈w′, (�(E (2)
V (v1 ⊗ v2; 1) ⊗ v3))(z1, z2, z3)〉

+〈w′, (EW ;(1)
W V (�(v1 ⊗ v2); v3))(z1, z2, z3)〉)

− R(〈w′, (E (1)
W (v2;�(v1 ⊗ v3)))(z1, z2, z3)〉

+ 〈w′, (�(v2 ⊗ E (2)
V (v1 ⊗ v3; 1))(z1, z2, z3)〉)

+ R(〈w′, (�(E (2)
V (v2 ⊗ v1; 1) ⊗ v3))(z1, z2, z3)〉

+〈w′, (EW ;(1)
W V (�(v2 ⊗ v1); v3))(z1, z2, z3)〉)

+R(〈w′, (E (1)
W (v2;�(v3 ⊗ v1)))(z1, z2, z3)〉

+ 〈w′, (�(v2 ⊗ (E (2)
V (v3 ⊗ v1; 1)))(z1, z2, z3)〉)

−R(〈w′, (�(E (2)
V (v2 ⊗ v3; 1) ⊗ v1))(z1, z2, z3)〉

−〈w′, (EW ;(1)
W V (�(v2 ⊗ v3); v1))(z1, z2, z3)〉) (4.15)

Since � ∈ C2
1
2
(V, W ) and E (2)

V ;1 ∈ C2
1
2
(V, V ), we have

(�(u1 ⊗ u2))(ζ1, ζ2) = (�(u2 ⊗ u1))(ζ2, ζ1),

(E (2)
V (u1 ⊗ u2; 1))(ζ1, ζ2) = (E (2)

V (u2 ⊗ u1; 1))(ζ2, ζ1)

for u1, u2 ∈ V and (ζ1, ζ2) ∈ F2C. Also

E (1)
W (u;w) = EW ;(1)

W V (w; u)

for u ∈ V and w ∈ W . From these formulas, we see that the first and sixth terms, the
second and fourth terms and the third and fifth terms in (4.15) cancel with each other,
proving (4.14). �

Let δn
m = δ̂n

m |Cn
m (V,W ) for m ∈ Z+, n ∈ N or m = 1

2 , n = 2. By Theorem 4.2, the
image of δn

m is in Cn+1
m−1(V, W ). So we obtain a linear map

δn
m : Cn

m(V, W ) → Cn+1
m−1(V, W )

for each pair m ∈ Z+, n ∈ N or

δ2
1
2

: C2
1
2
(V, W ) → C3

0(V, W ).

For m ∈ Z+, we have a subcomplex

0 −→ C0
m(V, W )

δ0
m−→ C1

m−1(V, W )
δ1

m−1−→ · · · δm−1
1−→ Cm

0 (V, W ) −→ 0 (4.16)

of the complex (4.9) and also a subcomplex

0 −→ C0
3 (V, W )

δ0
3−→ C1

2(V, W )
δ1

2−→ C2
1
2
(V, W )

δ2
1
2−→ C3

0(V, W ) −→ 0 (4.17)

of the complex (4.10).



306 Y.-Z. Huang

Since Cn∞(V, W ) ⊂ Cn
m(V, W ) for any m ∈ Z+ and Cn

m2
(V, W ) ⊂ Cn

m1
(V, W ), for

m1, m2 ∈ Z+ satisfying m1 ≤ m2, δn
m

∣∣∣∣
Cn∞(V,W )

is independent of m. Let

δn∞ = δn
m

∣∣∣∣
Cn∞(V,W )

: Cn∞(V, W ) → Cn+1∞ (V, W ).

We obtain a complex

0 −→ C0∞(V, W )
δ0∞−→ C1∞(V, W )

δ1∞−→ C2∞(V, W )
δ2∞−→ · · · . (4.18)

Using the complexes (4.16), (4.17) and (4.18), we now introduce the cohomology
spaces of V .

Definition 4.3. For m ∈ Z+ and n ∈ N, we define the nth cohomology Hn
m(V, W ) of V

with coefficient in W and composable with m vertex operators to be

Hn
m(V, W ) = ker δn

m/im δn−1
m+1.

We also define

H2
1
2
(V, W ) = ker δ2

1
2
/im δ1

2

and

Hn∞(V, W ) = ker δn∞/im δn−1∞
for n ∈ N.

For n ∈ N and m1, m2 ∈ Z+, since Cn
m2

(V, W ) ⊂ Cn
m1

(V, W ), we have

δn−1
m2+1(C

n−1
m2+1(V, W )) ⊂ δn−1

m1+1(C
n−1
m2+1(V, W )) ∩ Cn

m2
(V, W ),

ker δn
m2

⊂ ker δn
m1

∩ Cn
m2

(V, W ).

Thus we have an injective linear map fm1m2 : Hn
m2

(V, W ) → Hn
m1

(V, W ) given by

fm1m2(� + ker δn
m2

) = � + ker δn
m1

.

Proposition 4.4. For n ∈ N, (Hn
m(V, W ), fm1m2) is an inverse system. Moreover, their

inverse limits are linearly isomorphic to Hn∞(V, W ) for n ∈ N.

Proof. This follows straightforwardly from the definitions. �
Proposition 4.5. Let V be a grading-restricted vertex algebra and W a generalized
V -module. Then H0

m(V, W ) = W for any m ∈ Z+.

Proof. By definition, for any m ∈ Z+, C0
m(V, W ) = W and δ0

m(C0
m(V, W )) = 0. So

H0
m(V, W ) = C0

m(V, W ) = W . �
We shall discuss the first and second cohomologies in [Hu3].
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