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Abstract: For the Schrodinger map equation u; = u x Au in R?*!, with values in S2, we
prove for any v > 1 the existence of equivariant finite time blow up solutions of the form
u(x,t) = ¢(A(t)x) + ¢(x,t), where ¢ is a lowest energy steady state, A(t) = 12
and ¢ (¢) is arbitrary small in H! N H2.

1. Introduction

1.1. Setting of the problem and statement of the result. In this paper we consider the
Schrédinger flow for maps from R? to S

Uy =u X Au, x=(x1,x2)eR2, teR,

(1.1)
uli=0 = uo,
where u(x, 1) = (u1(x, ), ua(x, 1), u3(x, 1)) € S c R3.
Equation (1.1) conserves the energy
1 2
E(w) = - dx|Vul-. (1.2)
2 Jr2

The problem is critical in the sense that both (1.1) and (1.2) are invariant with respect
to the scaling u(x, 1) — u(ix, A%1), 1 € R,.
To a finite energy map u : R?> — $2 one can associate the degree:

1
deg(u) = E‘/Rz dxuxl . JMuX27

where J, is defined by

Juv =u x v, v e R,
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It follows from (1.2) that
E(u) > 4| deg(u)|. (1.3)

This inequality is saturated by the harmonic maps ¢,,, m € Z™:

bm(x) = "R (), Q" =}, 0.hF) € S°,

2r™ r2m—1 (1.4)
hi () = r2m 41’ h3 () = r2m 41’
Here (r, ) are polar coordinates in R2: x| +ixp = €'?

horizontal rotations:

r, and R is the generator of the

1
R =

S = O

0
0

(NN}

or equivalently
Ru=kxu, k=1(0,0,1).
One has
deg o, =m, E(¢m) =4mm.

Up to the symmetries ¢,, are the only energy minimizers in their homotopy class.

Since ¢ will play a central role in the analysis developed in this paper, we set ¢ = ¢y,
0= Q1. hy =hl, h3=hl.

The local/global well-posedness of (1.1) has been extensively studied in past years.
Local existence for smooth initial data goes back to [18], see also [14]. The case of small
data of low regularity was studied in several works, the definite result being obtained by
Bejenaru et al. in [3], where the global existence and scattering was proved for general
H' small initial data. Global existence for equivariant small energy initial data was
proved earlier in [6] (by m-equivariant map u : R?> — S?> ¢ R3, m € Z* one means a
map of the form u(x) = ¢™Ru(r), where v : R, — S? C R3, m-equivariance being
preserved by the Schrodinger flow (1.1)). In the radial case m = 0, the global existence
for H? data was established by Gustafson and Koo [11]. Very recently, Bejenaru et al.
[4] proved global existence and scattering for equivariant data with energy less than
47 . The dynamics of m-equivariant Schrédinger maps with initial data close to ¢, was
studied by Gustafson et al. [9,10,12] and later by Bejenaru and Tataru [5] in the case
m = 1. The stability/instability results of these works strongly suggest a possibility
of regularity breakdown in solutions of (1.1) via concentration of the lowest energy
harmonic map ¢. For a closely related model of wave maps this type of regularity
breakdown was proved by Kriger et al. [13] and by Raphael and Rodnianski [17]. These
authors showed the existence of 1- equivariant blow up solutions close to ¢ (A(¢)x) with

w(t) ~ T g — T [17], and with A(1) ~ -
can be chosen arbitrarily [13] (here 7* is the blow up time). While the blow up dynamics
exhibited in [17] is stable (in some strong topology), the continuum of blow up solutions
constructed by Kriger et al. is believed to be non-generic. Recently, the results of [17]
were generalized to the case of Schrodinger map equation (1.1) by Merle et al. in [15]

where they proved the existence of 1-equivariant blow up solutions of (1.1) close to
* 2
¢ (M (1)x) with A(r) ~ T7=0)

ast — T* wherev > 1/2
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Our objective in this paper is to show that (1.1) also admits 1-equivariant Kriger—
Schlag-Tataru type blow up solutions that correspond to certain initial data of the form

uo = ¢ + o,

where £ is 1-equivariant and can be chosen arbitrarily smallin H' N H?3. Let us recall (see
[5,9,10,12]) that such initial data result in unique local solutions of the same regularity,
and as long as the solution exists it stays H' close to a two parameter family of 1-
equivariant harmonic maps ¢** , « € R/27Z, A € R, generated from ¢ by rotations
and scaling:

%" (r, 0) = Ry (ar, 0).
The following theorem is the main result of this paper.

Theorem 1.1. Foranyv > 1, oy € R, and any § > 0 sufficiently small there exist t) > 0
and a I-equivariant solution u € C((0, to], H' N H3) of (1.1) of the form:

ux, 1) = “ORp L ()x) + ¢ (x, 1), (1.5)

where
A =t777 a(r) = aplnt, (1.6)
N ging2 8, IEOlgs < Coapt™ ', Vit € (0,10]. (1.7)

Furthermore, ast — 0, £(t) — ¢* in H' N H? with £* € H'*?V~.

Remark 1.2. In fact, using the arguments developed in this paper one can show that the
same result remains valid with H> replaced by H'*> forany 1 <s < v.

1.2. Strategy of the proof. The proof of Theorem 1.1 contains two main steps. The first
step is a construction of approximate solutions V) that have the form (1.5), (1.6), (1.7),
and solve (1.1) up to an arbitrarily high order error O (+"V), very much in the spirit of the
work of Kriger et al. [13].

The second step is to build the exact solution by solving the problem for the small
remainder forward in time with zero initial data at + = 0. The control of remainder is
achieved by means of suitable energy type estimates, see Sect. 3 for the details. The
assumption v > 1 ensures that the approximate solutions that we have constructed,
belong to H' N H3, which allows us to work on the level of the H> well-posedness
theory.

2. Approximate Solutions

2.1. Preliminaries. We consider (1.1) under the 1-equivariance assumption

u(x, 1) = Ru@r, 1), v=(vi,v2,v3) € 5% CR. (2.1)
Restricted to the 1-equivariant functions (1.1) takes the form
R2
v =v X (Av+ —2v), (2.2)
r

the energy being given by

R 2 v%+v%
E(u) =mn drr(|vy| +—).
0 r
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Q = (h1, 0, h3) is a stationary solution of (2.2) and one has the relations

hih h2
Ohy = ——2 Bhy =L, (2.3)
r r
R? 2n?
AQ+r—2Q=K(r)Q, x(r):—r—z. 2.4)

The goal of the present section is to prove the following result.

Proposition 2.1. For any § > 0 sufficiently small and any N sufficiently large there
exists an approximate solution u™) : R? x R} — S? of (1.1) such that the following
holds.

Q) u™) is a C*® I-equivariant profile of the form: u™) = e*OR(p(r(r)x) +
XM Ou0)x, 1)), where x M (y, 1) = "RZMN (p, 1), p = ||, verifies

18, Z™ Ol 22000y 107 ZN Ol 12papys 109, ZN D)oo < C8Z, (2.5)

o3 Z™N Dl 12(papy = CE 1V, kvl =2, (2.6)
o' ZN D)l L20papy < C1P, k+1=3, 2.7)
19,2 @) llow, 107 2™ (D)l < €871, (2.8)
o~y Z™ D)oo < €17, 2 <14k <3, (2.9)

forany 0 <t < T(N, ) with some T (N, ) > 0. The constants C here and below
are independent of N and 6.
In addition, one has

XM Ol + 1) AV Ol < C1, (2.10)

and (x)20"DV4H M (1), (x)20-Dv2, N (1) € Lo R2).
Furthermore, there exists {3, € H' N H"™"2Y= such that as t — 0,

ORI (1), 1) — ¢ in H' N H?,

N 4 u™ 5 Ay verifies

(ii) The corresponding error r™) = —ul(
lF ™ @ s 18D Ol H ) r P Ol 2 < 1Y, 0 <1 <T@ N). (@211

Remarks. 1. Note that estimates (2.5), (2.6) imply:
lu™ @) — RO 1ng2 < 8771, ¥e € (0, T(N, ). (2.12)

2. It follows from our construction that x My e H'™*2 for any s < v with the estimate
”X(N) (l‘) ||H'+25(R2) < C(Z‘ZU + ts(1+2v)82v—2s).

3. The remainder r ") verifies in fact, for any m, [, k,
1) 8" r ™ () | g < Cpom st N~k

provided N > Cy .-
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We will give the proof of Proposition 2.1 in the case of v irrational only, which allows
us to slightly simplify the presentation. The extension to v rational is straightforward.

To construct an arbitrarily good approximate solution we analyze separately the three
regions that correspond to three different space scales: the inner region with the scale
ra(t) < 1, the self-similar region where r = O(¢!/?), and finally the remote region
where r = O(1). The inner region is the region where the blowup concentrates. In this
region the solution will be constructed as a perturbation of the profile WX Q(A(t)r).
The self-similar and remote regions are the regions where the solution is close to k and
is described essentially by the corresponding linearized equation. In the self-similar re-
gion the profile of the solution will be determined uniquely by the matching conditions
coming out of the inner region, while in the remote region the profile remains essen-
tially a free parameter of the construction, only the limiting behavior at the origin is
prescribed by the matching process, see Sects. 2.3 and 2.4 for the details, see also [1,2]
for some closely related considerations in the context of the critical harmonic map heat
flow.

2.2. Inner region ra(t) < 1. We start by considering the inner region 0 < ri(¢) <
10 ~V*é1 where 0 < €] < v to be fixed later. Writing v(r, t) as

v(r, 1) = DRV (L (t)r, 1), V= (V1, Va, V3),

we get from (2.2)

1 R?
2V, 4 gt RV — 12V (v + z)pr =Vx(AV+—=V), p=r@0r. (2.13)
0

We look for a solution of (2.13) as a perturbation of the harmonic map profile Q(p).
Write

V=0+2Z,
and further decompose Z as

Z(p,t) = z1(p, 1) f1(p) + z2(p, 1) f2(p) + Y (0, 1) O(p),

where fi, f> is the orthonormal frame on Tg $2 given by

h3(p) 0
filp) = 0 Hp)=|1
—h1(p) 0

One has
y=v1—|zl—1=0(z). z=2z +izn.
Note also the relations
hy hi
0,0 = —;fl’ pf1 = ?Q, =0 x fi,

R? 1 2h3hy
R A )
P P p
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We now rewrite (2.13) in terms of z. One has

RV = —h3za fi+ (hzzi+hi(1+y)) o — hz220,

2.14
3,V = (pdp21 — hi(L+9)) i + piyz2 fo + (i1 + pdpy) 0. 19

We next compute the nonlinear term V x (AV + ﬁ—:V). In the basis {f1, f2, Q}, the

. 2 .
expression AV + ,1;_2 V can be written as follows:

R? 21 hy 2
AV + ?V =[Az — I —Zpr]fl +[2z — ;]fz

h hihs
+Ay +x(@) A +y) +2- 7921 = 27m]Q,
which gives
R2
VX(AV+?V)=[(1+J/)LZ2+F1 @]Ai-[+y)Lz1+F2(2)] fa+F3(2) O, (2.15)
where
1—2n?
pr
hih3 hy
Fi(z) = z2(Ay — 2721 + 273/)11),

L=—-A+

2.16
h1h3 h] 2hl ( )
F(2) = z1(Ay — 2711 + 2?3;%1) + 7(1 +¥)Yp

2hy
F3(z) = 21820 — 220071 + 7Z2yp~

Projecting (2.13) onto span{ f1, f>} and taking into account (2.14), (2.15), (2.16), we
get the following reformulation of (2.13):

1
itz — aot® hayz — i(E + v)tz"pzp = Lz+ F(z) +dt*"hy,
1
d=a0—i(§+l)), 2.17)
2h 2hihzzy . 2k 2
F(z):yLz+z(Ay+78pz] — pe )+_,0 (I+y)yp,+dt="yh.

Note that F is at least quadratic in z.
We look for a solution of (2.17) as a power expansion in #%":

2(p. 1) =D 17K (p). (2.18)

k>1
Substituting (2.18) into (2.17) we get the following recurrent system for zX, k > 1:

Lz' = —dh, (2.19)
L' =F, k>2, (2.20)
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where F; depends on 7/, j=1,...,k—1only. We subject (2.19), (2.20) to zero initial
conditions at p = 0:
(0) = 9,75(0) = 0. (2.21)

Lemma 2.2. System (2.19), (2.20), (2.21) has a unique solution (z*);=1, with z* €
C®(Ry) for all k > 1. In addition, one has:

() z* has an odd Taylor expansion at 0 that starts at order 2k + 1;
(i) as p — 00, zX has the following asymptotic expansion

2k
Hoy=2, D e ), (2.22)
1=0 j<k—(—1)/2
with some constants clj‘. ;- The asymptotic expansion (2.22) can be differentiated any
number of times with respect to p.
Proof. Firstnote that the equation L f = 0 has two explicit solutions: i1 (p) and k2 (p) =
p*+4p%1n p—1
p(p2+1)
Consider the case k = 1:

Lz' = —dh,

Z1(0) = 9,21 (0) = 0.
One has

d [P
p) = _Z/o dss(hi(p)ha(s) — hi(s)h2(p))h1(s)

dp /p s(s*+4s2Ins —1) d(p*+4p%lnp—1) [P $3
— ds K
(1+0%) Jo (1+52)? p(p?+1) 0o (1+52)?
(2.23)

Since hj is a C* function that has an odd Taylor expansion at p = 0 with a linear
leading term, one can easily write an odd Taylor series for z! with a cubic leading term,
which proves (i) for k = 1.

The asymptotic behavior of z! at infinity can be obtained directly from the represen-
tation (2.23). As claimed, one has

) =ciop+eliplnp+ D D chpPnp),
i<01=0,1,2

with C%,o = —c}’l =—d.

Consider k > 1. Assume that 7/, Jj <k — 1, verify (i) and (ii). Then, using (2.17),
one can easily check that F is an odd C*° function vanishing at p = 0 at order 2k — 1,
with the following asymptotic expansion as p — 00:

k—12k=2j—1 2k—2
Fe=2, 2, o tnp) + 3 g0 (np)
j=1 =0 1=0
2k—1 2k

+ 2 ek e p) 4 37 > e Y np).
=0

j<-21=0
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As a consequence, z%(p) = le fop dss(h1(p)ha(s) —h1(s)ha(p))Fi(s) is a C* function
with an odd Taylor series at zero starting at order 2k + 1 and as p — 00,

2k
Foy=> D ianppt

1=0 j<k—(-1)/2
as required. This concludes the proof of Lemma 2.2. O
Returning to v we get a formal solution of (2.2) of the form
v ) =RV @r D, Vet =0+ P74, (2.24)

k>1

zZk = (Zk, Z’z‘, Z]3‘), where Zl{‘, i = 1,2, are smooth odd functions of p vanishing at O
at order 2k + 1, and Z§ is an even function vanishing at zero at order 2k +2. As p — 00,
one has

2k
ZEpy=2. > dimpp¥Tl =12,

1=0 j<k—(I—1)/2

2k
k,3 j—
Zipy =2, Y, cinp)p¥

1=0 j<k+1—1/2

(2.25)

with some real coefficients c];l’ verifying

ko =0, Vk=1.

The asymptotic expansions (2.25) can be differentiated any number of times with respect
to p.

Note that in the limit p — 00, y = rt=12 5 0, expansion (2.24), (2.25), rewritten
in terms of y, give at least formally

2j+1
Vir =D " 3 any —vinn) v (), i =1.2,
>0 1=0

2j )
Vi) =1+ > 29> (iny —vinn)' v (),

j=1 =0 (2.26)
il k+ji 2k— .
Vi = > gyl =12,
k>—j+1/2
Ji.l k+j,3 2k
Vit (y) = z Cre1,1Y s
k>—j+l/2

where the coefficients c';ll with £k # 0 are defined by (2.25) and c% come from the
expansion of Q as p — oo:

0,1 2j— 0,3 2j— 0,2
hi(p) =D ciop™ ™ ha(p) =1+ o2 g =0.
Jj=0 j<0
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The role of y-expansion (2.26) will become clear in the next subsection where we will
use it to perform the transition from the inner region to the self-similar region.
For N > 2 define

(N) 2vk _k (N) (N) (N)
ztv ’ _Zml+lztn2

Then z(N) solves (2.17) up to the error Xy = —it“z”afzi(,iv) + aotz"hgzi(riv) + i(% +

v)tzvpapz(N) +dt®hy + LZ(N) + F(z (N)) Using the fact that z¥ are defined recursively
it is not difficult to check that the error X verifies

lp ok X < Cramt™™ " (0)*N K In2 + p), (2.27)
forany k,m e N, 0 <I < 2N+1—k);,0 < p < 10t7*1, 0 <t < T(N), with

N / N

Set
N N N N
Z~( =2 )f1+z,(n)2f2+7/i§1 '0,

znl

vV =0+2zV e s

Then Vile) solves
R2
28,V +aor RV =12 (0 + < )papv“*’) Vel s (0, ViV + V(N))+Rl(év),

(2.28)

with Rl(év ) = imX Nfi—reXyfr+ % Q admitting the same estimate as X y.

Note also that it follows from our analysis that for 0 < p < 10:7"**1,0 < ¢t < T(N),
o8 Z 1 < Cut™ (0) K In@+p), keN, 1<B-ki  (229)
As a consequence, we obtain the following result.

Lemma 2.3. There exists T(N) > 0 such that for any 0 < t < T(N) the following
holds.

(i) The profile ZXN (p, 1) verifies

195 ZE Ol 12 pap 02 p<10i-v01) < C1Y, (2.30)
o' Z2 Ol 2pdp 02 p<ionveet) < Ct 231)
IZ Ol L0z ptorveery + 108 Z80 Ol Lo o< p<ior—r+ery < Ct”, (2.32)
o' 95 ZE ON 2 pap.0<p<iorvery < CEV(L+ [ Int]), k+1=2, (2.33)

o 95 ZE Ol 2 pap.o<p<iorreny < C1¥0 k+123,1< (B —ky  (2.34)

N — N
19, ZE Ol Loz pztorreery + 107 ZE O Loz pziorreery < Cr2(1+ | Int)),
(2.35)

o35 ZN Ol o0z perorviery < C1%, 2 <l+k, 1< (3 — k) (2.36)
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(ii) The error Rl(év ) admits the estimates

— N
o AR O 2 pap 02 p<ron-veey < 1V, 0 <1+k <3, 037
_ N :
Lo~ 958, R (D1l 2 pap.0<p<toviery < V1, 0 <k+1 <1,

provided N > 81_1.

2.3. Self-similar region rt~'/> < 1. We next consider the self-similar region 11_0,61 <

rt=1/2 < 10r7%2, where 0 < &5 < 1/2 to be fixed later. In this region we expect the
solution to be close to k. In this regime it will be convenient to use the stereographic
representation of (2.2):

v +ivy

(v, v2,v3) =v —> w= e CU{oo}.
+ v3
Equation (2.2) is equivalent to
. -2 - - 2w 2 -2.2
iw, =—-Aw+r “w+Gw,w,w,), Gw,w, w)=——-(w,—r “w).
1+ |wl?
(2.38)
Slightly more generally, if w(r, t) is a solution of
iw, = —Aw+r 2w+ G(w, W, wy) + A, (2.39)
_ (2 2i 1—|wl|? 2
then v = (1:50“"2, 1+‘T‘1‘U’|‘§, 1+|:;}|2) € S? solves
R2
v =v X (Av+ —v)+ A, (2.40)
r
with A = (A, Az, A3) given by
A+w?A 4im(wA)
A +idy = -2i————, =——.
PR T e T T )
Consider (2.38). Write w as
wir, ) =Wy, 0, y=ri7'2
Then (2.38) becomes
itW, —agW = LW + G(W, W, Wy), (2.41)
where
1
L=—-A+y? +i§y8y.
Note that as y — 0, (2.26) gives the following expansion:
2j+1
Wy.n=> > > a(iD" @V (ny —vinn/y*~!, (2.42)

j=0 1=0 i>—j+1/2



Blow Up Dynamics for Equivariant Critical Schrodinger Maps 79

where the coefficients «(j, i, ) can be expressed explicitly in terms of c];;il/,, 1 <k < j+i,
j' <i,0 <’ <I.This suggests the following ansatz for W:

2j+1

Wy, 1) = Z Z "D (Iny —vint) W (). (2.43)
j=0 1=0

Substituting (2.43) into (2.41) one gets the following recurrent system for W; ;,0 <[ <
2j+1, j=0:

(L = pno)Wo,1 =0, (2.44)
(L — po)Wo,0 = —i(1/2+v)Wo,1 +2y 'y Wo 1, '
(L= W21 =Gjoj+,
(L—pj)Wj2j=Gjoj—iQ2j+D(1/2+ )W 201 +22j + Dy 1oy W) /41,
(L=pupWji =G —il+DA/2+v)W; 141
20+ Dy W + A+ DI +2)y 2 W2, 0<1<2j—1.
(2.45)

Here u; = —ao +iv(2j + 1), and G;; is the contribution of the nonlinear term
G(W, W, W,), that depends onlyon W; ,,, i < j — L:

2j+1

GW, W, W,)==> > 1**(ny —vinn)G;,(y),
j>11=0

Gt =G (; Wi, 0<n<2i+1,0<i=<j—1).
One has

Lemma 2.4. Given coefficients a j» bj, j = 0, there exists a unique solution of (2.44),
(2.45), Wj; € C®[RY), 0 <1 <2j+1, j >0, such that as y — 0, W;; has the
following asymptotic expansion

.
Wiy =D dly* (2.46)

i>—jH /2

with _ ‘
dl' =aj, dl’ =b;. (2.47)

The asymptotic expansion (2.46) can be differentiated any number of times with respect
to y.

Proof. First note that equation (£ — ;) f = 0 has a basis of solutions {e}., e?} such that
@ e; is a C™ odd function, e}(y) =y+0(asy— 0;
2

(i) e ;€ C*°(R}) and admits the representation:

1

where é% is a C* odd function, é?(y) =0@(3asy—0.
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Consider (2.44). From (£ — po)Wo,1 = 0 and (2.46), (2.47), we get
Wo1 = aoe(l).
Consider the equation for Wy o:

(L — uo)Woo = —i(1/2+v)Wo 1 +2y~ 9, Wo 1.

The right hand side has the form: 2a¢y~!

has a unique solution Wé) o of the form

+ a C* odd function. Therefore, the equation

Woo(») = doy™" + Wg (),

where dy = Z—;’ and W(()),o is a C* odd function, W&O(y) = 0(y*) as y — 0. Together
with (2.46), (2.47), this gives:

Wo.0 = Wg o + boep.
Consider the case j > 1. We have
(L—pupWji=Fji, 0<1=<2j+1, (2.48)
where

Finje1 =Gj2j+1,
Fjoj=Gjoj —iQ2j+D(1/2+ )W +2Q2j + Dy~ oy Wjaju.
Fii=Gj1—id+DA/2+v)W; 14
120+ D)y Wi + U+ DA +2)y 2 W, 0<1<2j—1.

(2.49)

The resolution of (2.48) is based on the following ODE lemma whose proof is left to
the reader.

Lemma 2.5. Let F be a C*°(RY) function of the form

0
F() =D Fiy’ ' +F(y),
j=k

where F is a C* odd function and k < —1. Then there exists a unique constant A such
that the equation (L —pj)u = F + Ay =3 has a solution u € C>®(RY) with the following
behavior as y — 0:

u() = > uiy? = ur=o.
Jj=k+1
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More precisely, we proceed as follows. Assume that W; ,, 0 <n <2i+1,i < j—1
has the prescribed behavior (2.46), (2.47). Then it is not difficult to check that G; ; admit
the following expansion as y — 0:

' 2i—1
Gjo2j+1(y) = Zg},zjﬂy =

i>1
1 2i—1
gj,2j()’)zzg;',2jyl ) (2.50)
i>0
G =D gy 1<2j-1
i>—j+l/2-1

Consider W; 2j41. From (£ — uj)Wjoje1 = Gj2j41 We get

Wiaje1 = Wjy . +coe), (2.51)

where W£2j+1 is a unique C* odd solution of (£ — ;) f = G ;41 that satisfies
WJQ 241 (y) = O(y3) as y — 0. The constant ¢y remains undetermined at this stage.

Consider Fj ;. It has the form: (g(/),Zi +22j + I)C()))F1 + a C* odd function.
Therefore, for W; »; we obtain o

Wjaj =Wy, +cie], (2.52)
where WJ(')zj is a unique solution of (£ — ;) f = Fj 2, that satisfies as y — 0,

892, +22j + Deo
B 2k '

WPy =diy '+ 007, d (2.53)

J

Similarly to cp, the constant c; is arbitrary here.
Consider Fj 7; 1. It follows from (2.49), (2.50), (2.51), (2.52), (2.53) that

’%

Fjoj-1= (gj_éjfl —4jdy)y " +const y_l

+an C* odd function.

The equation (£ — u;)W; 21 = Fj 21 has a solution of form (2.46) iff
8;5/_1 —4jd; =0,

which gives

o — kjgj,zj_l—l — 2jg?’2j
0= 42+ 1)

With this choice of ¢y one gets
W:n: — “70 c el
Ji2j=1 = Wj2j-1 2€5,

where WﬁZj—l is a unique solution of (£ — u;) f = Fj2;—1, that satisfies as y — 0,

W/(‘),Zj—l = const y '+ 0(y*).
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Continuing the procedure one successively finds W;2; 2,..., W;o in the form

Wiojr1—k = W£2j+1—k + cke}, k < 2j + 1, where W22j+1_k is an unique solution
of (L —uj)f = Fj2j+1—k, that as y — 0 has an asymptotic expansion of the form

(2.46) with vanishing coefficients dlj ‘1. The constant ¢k, k < 2j — 1, is determined
uniquely by the solvability condition of the equation for W; ;1 (see lemma 2.5).
Finally, ¢341, c2j+2 are given by (2.47):

Cji1 =aj, 254 =bj.

O

We denote by W;,‘Yl (y),0 <1 <2j+1,j >0, the solution of (2.44), (2.45) given by
Lemma 2.4 witha; = a(j,1,1), b; = a(j, 1,0), see (2.42). Since expansion (2.42)
is a solution of (2.41), the uniqueness part of Lemma 2.4 ensures that

W = D a(i. Dyl asy— 0. (2.54)
i>—j+/2

We next study the behavior of W;i, 0<1<2j+1,j >0, atinfinity. One has

Lemma 2.6. Given coefficients ajj, bj;, 0 <1 < 2j+1, j > 0, there exists a unique
solution of (2.44), (2.45) of the following form.

Woi =W, + Wy, 1=0,1, (2.55)

Wig=W)+W) +W}, 0<1<2j+1, j=1, (2.56)

where (W]i- Doziz2jir, i = 0, 1, are two solutions of (2.44), (2.45) that, as y — o0, have
. =4

the following asymptotic expansion

2j+1 2j+1

Dy —vine) Wiy = D (ny+ (=D Ine/2)' Wi, (y). i=0.1,
=0 [=0

1 i j A0 —
W;)’l()’) — y21a0+2v(2./+1) Zwlﬂ y 2k’ 2.57)
k>0
7 iy? /4, —2icg—2—2v(2j ~ =1
le,l(y) — o /4y 2iap—2—2v(2j+1) Zw]i y 2k’
k>0
with
~ J,1,0 ~jd,—1
wé =aj,, w(]) =bj,. (2.58)

Finally, the interaction part sz ; can be written as

. 2 .
W)= D e imiydelm (), (2.59)

—j—1=m<j
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where W; |, have the following asymptotic expansion as 'y — 00:

2j+1-1

Wiitm(y) = Z Z Z w]lm W21y > 1,

k>m+2 m—j<i<j-m =0
j—m—i€2Z

2j+1—1

I
Wiim(y) = z Z Z w,i My2v@ED=2kn ) om < =2,

—m —/—m 2<i<j+m
Jj—m—i€2Z

2j+1—1 (2.60)

1,0
Wj,l,()(y) — Z Z Z w]i 2v(21+1) 2k(1n y)s

k>1 —j<i<j-2 =0

Jj—ie2Z
2j+1—1
JiL=1_2vQi+1)—2k
Wi = > > wii ey,
k>1 —j+l<i<j—1  §=0
j—i+le2Z

The asymptotic expansion (2.57), (2.60) can be differentiated any number of times with
respect to y.
Any solution of (2.44), (2.45) has form (2.55), (2.56), (2.57), (2.59), (2.60).

Proof. First note that equation (£ — ;) f = 0 has a basis of solutions { f j], f /.2} with
the following behavior at infinity:

1 2iap+2v(2j+1 k =2k 2 iy? /4 —2icn—2v(2j+1)—2 k =2k
Fi(y) = oo OISl v [ () = e Ay RRDT2 Sy,
k=0 k>0

f](.)1 = fj(‘)z = 1. As a consequence, the homogeneous system

(L—uj)g2jr1 =0,

(L — p)ga; = —i(2j + 1)(1/2+v)gaje1 +22j + 1)y dy82j41. 2.61)

(L—ppg=—i+1D)A/2+v)gi41
+20+ D)y g + U+ DU +2)y g, 0<I1<2j—1.
has a basis of solutions {gi?m} =12,
T m=0,...2j+1

ll’n

= (0. g ), 0=m<2j+1, i=1.2,

defined by
2j+1 2j+1
D ny —vint) g () = D (ny+ (=D Ine/2) €N (), (2.62)
=0 =0

where (Ej’.’?l)lzo’_“,z j+1 is the unique solution of

(L—njp)éj =0,
(L= pjEy = =i+ 1) — Dzjer +22j + Dy~ dy&ajut,
(L — & = =i+ 1) — D1 +20+ Dy~ 9,8
+(+ DI +2)y %2, 0<1<2j—1,

(2.63)
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verifying

ET D=0, 1>2j+1—m
E ) = 1),

) 2iop+2v(2j+1 1 =2k
Ej’[ (y) — y Loy v( J ) Z Sl,ky , y — +OO,
k>2j+1—1—m

2, ) 9oy — i _ _
Ej,lm(y) — o /4y 2iag—2v(2j+1)—-2 Z 512,1{)’ 2k y — +00.

k>2j+1—l—m
Consider Wy, I =0, 1. We have

(L — pno)Wo,1 =0,
(L — po)Wo,o = —i(1/2+v)Wo 1 +2y '8, Wo 1,

which gives

Wo () = D Aimgey (), 1=0,1,

i=1,2,
m=0,1

G. Perelman

(2.64)

with some constants A; ,,, i = 1,2, m = 0, 1. It follows from(2. 62) (2.64) that Wy g,
I = 0, 1 have the form (2.55), (2.57) with ¥ A” = A1, wg’ =Ax14,1=0,1,

which together with (2.58) gives Ay, = 00,1 —ms A2.m =bo1—m,m =0, 1.

We next consider j > 1. Assume that W; ,, 0 < n < 2i+1,i < j — 1 has the
prescribed behavior (2.56), (2.57),(2.59), (2.60). Then it is not difficult to check that G ; ;

has the form

G = > e mr/AyHelmgn ()

—j—1l=m<j

where G, m = 0, —1, are given by

i

g =31+ ;. m=0,-1,
Q?,’zo(y) Gy W), 0<n<2i+1,0<i<j—1),
G0 = G W, 0= n <20+ 1.0 i < j - ),

nLn’
and admit the following asymptotic expansions and as y — 00:

2j+1-1
i,1,0 20(2j+1)—2
Gl ;m=>" > Ty iy,
k>1 s=0
2j+1-1

O 1 1,0
i (y) Z Z Z kjl ; 2v(2i+1)— 2k(1n y)S

k>2 —j=i=j-2 5=0
j—i€2Z

(2.65)

(2.66)

(2.67)
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2j+1-1
Q;,I’O(y)=z Z T’i;_l Ly —2u(2,,+1)—2k(1ny)s’
k>2 s=0
2j+1—1 (2.68)
(y) Z Z Z lesl 20Q2i+1)— Zk(]ny)s‘
k>1 —j+l<i<j—1 §=0
j—i+le2Z

Finally, g;?f,, m # 0, —1, have the following behavior as y — oo

2j+1-1

0, i _
gnm= > > DT TRy > 1,

k>m+1 m—j<i<j-m  $=0
j-m—i€2,

2j+1-1 (2.69)

1,
gnm= > > Z:WJ"MM””mwﬁ m<—2.

k>|m|—1 —j—-m=2<i<j+m =0
JjHm—i€Z

Therefore, integrating (2.45), one gets

Wii=Wj+ z Aj mgl]r,"
=0, ..2j+1 2 (2.70)
Wj,l(y) — Z e~ imy /4y21a0(2m+1)W;r}l(y)’

—j—l<m<j

where e—imy2/4y2i“0(2m+l)ﬁ/j’.fll is a unique solution of (2.45) with G;; replaced by

e’imy2/4y2i°‘0(2m+l)g;?fl(y), that has the following behavior as y — +00:

2j+1-1

5 -, 1) —
er",ll(y)z Z Z Z Jl;"y2v(21+l) 2k(1ny)s’ m> 1,

k>m+2 m—j<isj—m  s=0
j—m—i€2Z

2j+1-1 @2.71)

~ - l . _
wrom=> > Z By D=2k A ) m < 2.

k>—m —j—m—2<i<j+m
j—m—i€2Z

Finally for m = 0, —1 one has:

W%w=WWw+W,m
W, o) = w00 + W "),

(2.72)
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where WJ(.)”; and e’/ 4y—2ia W;ll’i are solutions of (2.45) with G;; replaced by Q?l'

i iv2/4a—1,i . . . .
and y 2@y /4G ; ll” respectively, with the following asymptotics as y — o0:

2j+1—1
=0,0 - j,1,0 i+1)— !
Wj,l (y) = Z Z wi’j’sy2v(2/+1) Zk(lny)v,
k>1 s=0
+1—
=0 - j.1,0 i+1)— ‘
Wj,}l(y) _ Z Z z /l 2Qi+D=2k (1 s
k>1 f/<t<2/Z2 s=0
j—i€
2j+1-1 (2.73)
- - jl—1 Cou(2it])—
lo(y) Z Z ] 7]7 2v(2]+1) 2k(1ny)5’
k=2 s=0
2j+1-1
- 1
ijll,l(y) Z z Z YDk (1 s
k>1 —j+l=i=j-1 §=0
j—ie2z
Clearly, W9, = W+ 30750 AL gl and W), = e~ /4W_10+22]+1A ey
are solutions of (2.45) with G;; replaced by Q. = G (W ln, i < j—1) and
eiyz/“g?" =G (W zn’ i < j — 1) respectively. As a consequence, W »1=01
0 < [ < 2j+ 1, have the form (2.57) with &)"" = Ayt i =0,-1,1 =
0,...,2j+ 1, which together with (2.58) gives Alym =a;2j+1-m> Aom = bj2j41-m,

m=0,...,2j+1. O

Let Wi(nN)(y,t) be the the stereographic representation of Vile)(t’”y,t) =
(VA Gy, 0, Ve (™ y, 0, Vi vy, 1):

in,1 in,3

) lffvl)(t Yy, t)+lV( @Yy, t)
Win (yat) (N)
L+ V(v y. 1)
For N > 2 define
N 2j+1
W (1) =D @ (n p) Wi (),
j=0 1=0

AN = —itd W + aoW ) + LW + GWD, W o, W),
2re WY 2im w1 — (wVP?
LWV 2 1+ w2 e w0
Z3W .ty = Vi (o, 1) = Q(p).

p=t"y,

ViV (o, 1) = (

Fix e; = 5. Then, as a direct consequence of the previous analysis, we obtain the
following result.
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Lemma 2.7. For 0 < t < T (N) the following holds.

(i) For any k, l,and %tal <y < 10¢t°!, one has
y kol W — W) < G VP =0, 1 2.74)

(ii) The profile Z §§V) verifies

18, Z (t)IILz(pdp Lo <p<ior-e) < C1, (2.75)

||p*‘z<N Ol 2(pap, i1 <piors—r2y < €175 (2.76)

1Z5 Ol o 1001 <pzior-r2y < €17, 2.77)

lpd, Z )l Lo (e <p<iorr-ey = C1, (2.78)

107 9 ZW O 2 i, 1 et <prormiay < CEFE, kvl =2, (2.79)
1005 Z80 Ol 2, 1 oot <ptnr-say < C k4123, (2.80)
107" 952 Ol oo 1 v <ptorveay < C1 kit T =1, (2.81)
107 IR ZE Ol o1 vse1 <peiorveay < C1P0 2 <1 +k. (2.82)

Here and below n stands for small positive constants depending on v and &;, that
may change from line to line.

(iii) The error A§§V) admits the estimate

”yflak Ag{gV)(t)HLz(ydy,flol‘gl5)’510f782) =< tVN(I*ZSZ)*i’ 0<I+k<4, i=0,1.
(2.83)

2.4. Remote regionr ~ 1. We'next consider the remote region 1 ~%2 < rt~1/2 Consider
the formal solution 3 ;- 212:’ 81 @+ D(ny —vint) W13 (y) constructed in the pre-
vious subsection. By Lemma 2.6, it has form (2.55), (2.56), (2.57), (2.59), (2.60), with

some coefficients w] b w,i f;" Note that in the limit y — oo, r — 0, the main order

terms of the expansion ijo leigl v @i+Dieo (1 y — yn t)lW;‘Yl (t='2r) are given
by

2j+1

Z Z P CIHD¥ (1 y oy In g Wjj(t_l/zr)
j>0 1=0
2j+1

~ Z s Z Z w’ A O(IH r)l 2icg+2v(2j+1)

k>0 j=0 =0
2j+1

e 4t Z 72k Z Z o ( ) B (ln (;))l (2.84)

k=0"  j=0 1=0
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which means that in the region 1 =2 < rt~1/2 we have to look for the solution of (2.38)
as a perturbation of the time independent profile

2j+1

Z Z Bo(j, D(Anr) r2Ei+h

j>0 1=0

with Bo(j. 1) = wy".
I 1§ =<1

Let9 € CSO(R),Q(E) = [ o H> 2’ For N > 2, and § > 0 we define

N 2j+1

fory= £V =067 D" D" fol, Dy pieor @D,

j=0 1=0
Note that ¢'? fy € H'*>~ and
e’ foll s < €825, Y0 <s < 1+2v. (2.85)
Write w(r, t) = fo(r) + x(r, t). Then x solves

ixe = —Ax +r2x +Vodyx + Vix + Vox + N + Dy,

Yy = Hodefo ) 2HP@+ AP 2/ fo)?
R (VD R T Vo e
2 2_ g2 (2.86)
y, = 2@ — 1)

r2(1+ | fol2)?
Do = (—A+r7 ) fo+ G(fo, fo, dr fo)-

Finally, A/ contains the terms that are at least quadratic in x and it has the form

N = No(x, ) + % Ni(x, 30 + x2 N2 (x, %),
No(x, X) = G(fo+x, fo+ X, 9 fo) — G(fo, fo, 9 fo) = Vix — Vax,

49, fo(fo+ x
N 7 = 2S00y, (2.87)
L+1{fo+xl
. 2(fo+ %)
No(x, X) = —————.
L+ fo+xI?
Accordingly to (2.55), (2.56), (2.57), (2.59), (2.60), we look for x as
q
NGO EDWatas > D e nr —nt) grgms (1),
q=0 —min{k,g}<m<min{(k—2)+,q} s=0
k>1 q—me27
(2.88)
where
2

;
O =— +2aplnr+ ,
7 T2 @(r)

with ¢ to be chosen later.
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Substituting this ansatz to the expressions —i x; — Ax + r‘zx +Voor x +Vix +Vax,
N, we get

—ixe+ Ax —r 2+ Vodex + Vix + ok

q
2vg+k—2 —im® Sy li
= v > > e ™ nr —no)* W

q=0 —min{k,q}<m<min{(k—2)+,q} s=0
k=2 q—me27
q
=N 2vg+k—2 —im® sy, 0
o, 1) = X D W
q=0 —min{k,g}<m<min{(k—2)+,q} s=0
k>4 q—me27
q
= 2vg+k—2 —im® nl,1
XrN1 (X, X) = Zt v Z ze o (lnr_lnt)s"pk,q,m,s’
q=0 —min{k,g}<m<min{(k—2)+,q} s=0
k=3 g—me2Z.
q
P Na(x ) = D 12k > > e nr —lnny wpt?
q=0 —min{k,q}<m=<min{(k—2)+.q} s=0
k>2 q—me27
Here
2
lin _ m(m + l)r lin,1 lin,2
Yegms = 4 8kgums ¥ Wi g ms t Vi gimso (2.89)

with W,i”;lm and \IJIIJZ%“ depending respectively on gx_1 g ms,s = s,5 + 1 and

8k=2,g.m,s'’» S =$,5+1,5+2only:

bl _jQug+k — 1 —m —2imag)gk—1.gms+i(m+1)(s + 1)g_1.gmss1

k,q,m,s
. . 1
+imr (8, —img'(r) — EVO(r))gk—l,q,m,s’ (2.90)
i ; _; 2(s+1) .
\Ill[cl;lfns = =" A(e lm(pgk—Z,q,m,s) ————e'"¥9, (e lmwgk—Z,q,m,sH)
s+D(s+2) . w

_r—28k72,q,m,s+2 + Voelmwar (e lm(pgkflq,m,s)
+r 2+ V)8 2.g.ms + VaBk-2.4.-m.s- 291)

Here and below we use the convention gi 4 m,s = 0if (k, g, m,s) ¢ @, where

Q=1{k>1,¢>0,0<s<q,q—me€2Z —minfk,q} <m < minfk — 1, g}}.

The nonlinear terms \IJ,':lq’m s»1 =0, 1,depend only on g 4 s s With k' < k—2.More
precisely,

nl,0 nl 0

k.q.m,s — kqms(r 8k'.q".m’ s> k' <k-3),

nl,1 _ nll
‘l’k,q,m,s_ kqms(r gk,qmb’k<k 2)
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Finally, \Ilefm ; has the following structure
.
T fo Z 81,g1,—1,5181,q2,—1
2,q,m,s — m,— .q1,—1,5181,q2,— 1,52
& 2(1+1fol?) Pt
S1+.Y2:S
nl,2 _ gy nl.2,0 ¥ nl,2
lI/k,q,m,s - \yk,q,m,s + \Ijk,q,m,s’ k = 3’
5
P20 _ (m+1)r=fo Z e g 1
k,g,m,s — q1,— 1, s16k—1,q2,m+1,52>
o 1+|f0|2 q1+92=9
.Y1+.Y2:.Y

with \i-’,?l[}zm , depending on gy 4 m s, k" <k —2only:
T K <k—2)
k,q,m,s = }“’ gk’,q’,m’,s’v = .
Note that

nl2,0
‘-Ilk’qq_l’x—O, Vk,q,s.

Equation (2.86) is equivalent to

\plin + \l_,nl

\I/él;'(l)yo’o +Dy =0,
k,q,m,s k,q,m,s

=0, (k,q,m,s)e, (k,q,m,s)#(2,0,0,0),

nl _ g0 nl,1 nl,2
Here Wi s = Vi gms ¥ Wigms ¥ Vi gms:

We view (2.93) as a recurrent system with respect to k > 1 of the form

\I‘él;g,o’o +Dy =0,
W05 =0, (J,s) # (0,0,

lin _
\Ij2,2j+1,l,s =0,
and
lin nl _ —
LIJk+1,q,m,x + \Ilk+1,q,m,s =0, m=0,1 k>2
lin nl _ ’ = &
\I/k,q,m,s + \Ilk,q,m,s =0, m#0,1

Consider (2.94). Choosing ¢ as

o(r) = —i / 15 1065)3s fo(s) = fo()ds fos)
0 L+ 1fo(s)? ’

we can rewrite (2.94) in the following form

Avj+1Dgi2j0s — +1Dgi2j0511 =0, (J,5) #(0,0),
81,0,0,0 = —i Do,

G. Perelman

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

rorg12j41,—1,s + (Qu(2j + 1) + 2+ 2iag — r(In(l + | foI*))g1,2j+1,-1.5 = 0.

(2.97)
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Accordingly to (2.84), we solve this system as follows:

81.2j.0s =0, (j,s) #(0,0),
81,0,0,0 = —i Do,
812j41—1s = P10, )L+ | fol)yr 2072 CFD=2 0 <5 <2j+1, 0<j <N,
g12j+1,-1,s =0, j>N,
(2.98)

where B1(j, s) = ﬁ)é’l’_l.
Consider (2.95). We will solve it with the “zero boundary conditions” at zero. To
formulate the result we need to introduce some notations. For m € Z, we denote by A,,

the space of continuous functions a : Ry — C such that

(i) a € C®°(RY), suppa C {r <28};
(ii) for 0 <r < 8, a has an absolutely convergent expansion of the form

n

a(r) = Z Zan,l(lnr)lrz"”,

n=K@m) =0
n—m—1e2Z

where K(m) = m+1ifm > 0,and K(m) = |m| — 1if m < —1. Fork > 1 we
define By as the space of continuous functions b : R, — C such that

(i) b e CP(RY);

(i) for 0 <r < 4, b has an absolutely convergent expansion of the form

oo 2n

br) =D Buar™"(nr),

n=0 1=0
(iii) for r > 24, b is a polynome of degree k — 1.

Finally, we set BY = {b € By, b(0) = 0}.
Clearly, for any m, k, one has rd, A,, C Ay, ro, By C B, Bx Ay C Ap,. Note also
that

foerf®Ay, ¢eB), gio00e€r? A,
81,2j+1,—1,s € prAe0=2CAD=2E )< < 27+ 1.

Furthermore, one checks easily that if for all (k,q,m,s) € K, grgms €
r2ia0(l+2m)72vq72kAm if m 75 —1 and Skg—1.s = r72ia072vq72k8k’ then

lin,i nl,j T.nl,2 2iag(142m)—2vqg—2(k—1)

\Ilk,q,m,s’ \I/k,q,m,s’ "Ilk,q,m,s er Ap, m # -1, (2.99)

lin,2 nl,j = nl,2 —2iag—2vg—2(k—1) ’
\Ilk,q,—l,s’ \I/k,q,—l,s’ qjk,q,—l,s er Bk—Z’

i=1,2 j=012.

Consider (2.95). Using (2.89), (2.90), (2.91), (2.92), (2.96), one can rewrite it as

lem(m + l)rzgk,q,m,s = Bk,q,m,s, m 7% 0, -1, B
rargk,q,m,s + (2Vq +k+1+2iay— W) 8k,q,—1,s = Ck,q,—l,m
(2Vq +k)gk,q,0,s —(s+ 1)gk,q,0,s+l = Ck,q,O,s + Dk,q,s»

(2.100)
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where B g m,s» Ck,q.m,s depend on g/ oy ¢, k' < k — 1 only:

/

Bk,q,m,s = Bk,q,m,s (r; 8k .q’,m’ s kK <k—-1), m#0,-1,
’

Ck,q,m,s = Ck,q,m,s(”? 8k .q’m’ s kK<k—-1), m=0,-1,

and have the following form

_ lin,1 lin,2 nl

Bk,q,m,s - _lyk,q-,m,s - \Dk,q,m,s - \pk,q,m,s’ m # 0, —1
L lin? .=l _

Ck,‘]»mvs - _l\pk+l,q,m,s - l\pk+l,q,m,s’ m =0, -1

Finally Dy 4 s depend only on gk 4,1, and is given by

5 =
. qynl,2,0 . o
Dy q.s = _l\pk+1’q’0’s = _l—l B E 81.q1,—1,518k.q2,1,52- (2.102)
+l T,
Sptsp=s

Note that D3 4 5 = 0.
Remark 2.8. 1t is not difficult to check that if

Segums =0, Yg > QN+ 12k —2), m #0,1,
8kqms =0, Yg>Q2N+1)2k—-1), m=0,1,

then

Bk,q,m,s = 0, VC] > (2N + 1)(2k — 2), m 7& O, 1,
Crgms =0, Yg>Q2N+1)(2k—1), m=0,1,
Dipg4s =0, Vqg>@2N+1)2k—1).

We are now in position to prove the following result.

Lemma 2.9. There exists a unique solution (8k,q.m,s) k.amsee of (2.100) verifying
k=2

Skgm.s € r2ia0(2m+l)—2vq—2kAm m ;ﬁ 1

Shg—1.s € r—2[050—2vq—2k6k.
In addition, one has
8k,q,m,s = 0, Vq>Q2N+1)2k—-2), m #0,1,
8kgums =0, Yg>Q2N+1)2k—-1), m=0,1,
Proof. Fork = 2 (2.100), (2.101), (2.92) give
1 . .
5"282,2j,—2,s =Brjj 2y 0=<s5=<2j 1<}, (2.105)
. . r(fodr fo + fodr fo)
rorg22j+1,—1,s + (21)(2] +1) +3+2iag — - 3 - 82,2j+1,—1,s
1+ fol
=Cr2js1,-15, 0=<s=<2j+1, 0=/, (2.106)

(2.101)

(2.103)

(2.104)

(4vj+2)g22j05s — (s+1)g2j0s5+1 =C22j05s, 0=<s=<2j, 0<j. (2.107)
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Recall that By g m,s, C2,4,m,s depend only on g1 4 ;v ¢ and therefore, are known by now.
By (2.99), (2.101) and Remark 2.8 they verify

Byy g er SOOI A 5 m £ 0, —1
C2,q,0,s c r2i0{0—2vq—4A0, C2,q,—1,s c r—2ia0—2uq_461,
Byg—25=0, ¢>22N+1),
Crgms=0, ¢g>32N+1), m=0,1.
Therefore, we get from (2.105), (2.106),

2

822j,-2,5 = erz,z,j,—z,s er b=t g, 0<s<2j, 1<,
1 . .
. - Chhi e r21(x0—4v1—4A L 0<j,
82,27,0,2j 4].]) 12 2,2j,0,2j 0 =J
1 s+1 Y )
e = —C . - S Grla0_4vj_4./4,0<s<2',
82,27,0,s 4].]) ) 2,27,0,s 4jv n 282,2/,0,A+1 0 =85§=4)
82.2j,-25s=0, j>2N+1,
82.2j0s =0, j>3N+2, (2.108)

Consider (2.107). Write

€22j41, 1.5 = r HOTITCID 4 £ 82041 1.5
Then £22j+1,—1,5 solves

0r82,2j41,—1,5 = V_262,2j+1,—1,sa (2.109)

where

Cojit,—1, = r2O0 QD (4| £ Co 01
Since Cp2j41,—1.5 € r~ 290 =2v2*D=4R3, 'we have:
(1) forO<r <3, 6‘272 j+1,—1,s admits an absolutely convergent expansion of the form

oo 2n

A 4 I
Caojerrs = D D Buar(inr),

n=0 (=0
>i1) forr > 26, CA‘z,sz,_l,s is a constant.
Clearly, there exists a unique solution g2 241, 1,5 of (2.109) such that g2 241, 1.5 €
r~1B,. It is given by
' 2, A 1
82.2j+1,-1,5(r) = / dpp " (Ca2j41,~1,5(p) — Po,o) — Po,or
0
0<s<2j+1, 0<j.

Finally, since C3 4 —1,s = 0 for g > 3(2N + 1), one has

8.2j+1,-15s =0, j>3N+1
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We next proceed by induction. Suppose we have solved (2.100) withk =2, ...,[—1,
[ > 3, and have found (g,¢,m,s) (t.q.msee verifying (2.103) and (2.104). Consider k = .
2<k<I—1

From the first line in (2.100) we have:
1
Zm(m + l)rzgl,q,m,s = Bl,q,m,xv m#0,—1,

where Bj 4,5 are known by now and, by (2.99), (2.101) and Remark 2.8, satisfy

By gm.s € r2ia0(2m+1)72vq72(171)Am

Bigms =0, g>2QN+1(@2l-2).
As a consequence, one obtains for m # 0, —1:
4
m(m + 1)r?
8lgms=0, g>2Q2N+1)Q2l-2).

2ia0(2m+1)—2vq—21A
1 s

8l,q,m,s = Bl,q,m,s er

(2.110)
We next consider the equations for g72.0,s:
@vj+Degi2j0s—(+Dg2j0s5+1 = Cr2j0s+Di2js, 0=<s=<2j, 0<j. (2.111)

The right hand side C; 20,5 +D; 2j,s depends only on g; 4, 1,5, and gk g5.m»,55, kK < 1—1,
and by (2.99), (2.101), (2.110) and Remark 2.8, satisfies

Ciaj0.s+ Dinjs € rHoo=+i=2l o,
Cinjos+Di2js=0, j>Q@N+1)2l—-1).
Therefore, the solution of (2.111) verifies

81.2j.0.5 € PAO0THITA Ay 0 <5 <2j, 0< ],
82,05 =0, j>QCN+DQl-1.

Finally for g/ 2j41,-1,5,0 <s <2j+1,0 < j we have

r(fod, fo + fodr fo) _
1+ |f0|2 1,2j+1,—1,s
= Ci2j+1,~1.s (2.112)

70,81 2j+1,m,s + (2v(2j +1)+1+1+2iag —

with Cy2j41,-1,5 € r—2ia0—2v(2j+1)—216171 such that
Ci2j+1,-15s =0, 2j+1>QCN+D@2I-1). (2.113)

Equation (2.112) has a unique solution g;2j+1,—1,s verifying g;2j+1,-15 €
p2ie0=2vQj+D=2IB, ‘\which is given by

Diag—20(2j+1)—I—1 205
Q12j1—1,5 =1 HOTCIEDTTN Q| £ 80011

r 2n
81.2j+1,~1,s =/ dpp™ (Crajmr 15— D D Bupp™"(np)?)
0

-1 p=
0<n<1 p=0

00 2n
-~ / dpp™ D D Bupp™(Inp)?,
:

OSnsl;—vl p=0
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where
Crojst 1,5 = 2ot CIEDR2A | 01271 C 01 21,
oo 2n
Croju—ts = D D Bapr"(nr)?, r <s.
n=0 p=0
By (2.113),

g2j+1,-1s =0, 2j+1>Q2QN+1)Q2[—-1).

Let us define

w0 = fory+ D TP nr —Int) g g s (1),
(k,q,m,s)e, k<N
N N N -2 (N N N N
Al('en)l = —i0 w( nz Awr(errz +r wlgenz + G(wlgenz’ r(errz7 Or wlgenz)
WM (y, 1) = e @Oy g =12 ),

As a direct consequence of the previous analysis we get:

Lemma 2.10. There exists T(N,8) > 0 such that for 0 < t < T(N, 8) the following
holds.

() Forany0 <1,k <4,i =0, 1 and %t’gz <y < 10t7%2, one has
ly ool (W — wilih| < ev (172N 4 ge2N (2.114)

provided N is suﬁ‘iciently large (depending on &;).
(i1) The profile wrem (r t) verifies

I iR O = f)l 2 ars 1oy < €10 0 <k+1<3, (2.115)
13 wiid (Dl oo 1 1202 < caZV, (2.116)

Il lak r(évni(t)||L°°(r> [12-e) < < C(52v7kfl +lvf(k+l)/2+7l)7 0<k+l<4,
2.117)
I o w & Ol oot 1200y < CEP 7O, ktl=5  (2.118)

rem

(iii) The error AEQQ (r, t) admits the estimate

Ir—ako! A(N)(t)||L2(rd”> ey <12V 0<I+k<3,i=0,1, (2.119)

rem

provided N is sufficiently large.
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2.4.1. Proof of Proposition 2.1. We are now in position to finish the proof of Proposition
2.1. Fix & verifying 0 < &2 < % For N > 2, define

W (. 1) = 0" )W (1 p 1) + (1= 0" )02 )W (1 p. 1)

+ (1 _ e(tv+82p))e—i0l(t)w1€é\r/g (tv+l/2,0, t),
2reWer!  2imWe) 1 |Wex 2

A~ N 9 A N b A N -
L+ WSR2 1+ W12 1+ W)

Vi (p, 1) = (

Clearly, Ve(,fv )(,o, t) is well defined for p is sufficiently large, and for p < ¢~ V*!
Ve(,fv ) (p, t) coincides with Vi;N) (p, t). Therefore, setting

N _
VWV (1) = v ])v(/), 1, p < gt
Vel (o, 1) p = Simveen,

uM(x, 1) = @Ry G x), 1),

we get a C*° 1- equivariant profile u™¥) : R? x R* — §? that, by Lemmas 2.3 (i), 2.7
(ii), 2.10 (ii), for any N > 2 verifies part (i) of Proposition 2.1, ¢}, being given by

2re fo  2im fo 1—|fol?
L+ fol2” 1+1fol" 1+1fol*™

By Lemmas 2.3 (ii), 2.7 (i), (iii) and 2.10 (i), (iii), for N sufficiently large the error
r) = —qu) +u™ x Au) satisfies

gh) = eReg(xD, &y =(

M @l s + 18N Ol g1 + 1x)r M @12 <™, t < T(N,8),

with some n = n(v, &2) > 0. Re-denoting N = % we obtain a family of approximate
solutions u™)(¢) verifying Proposition 2.1.

3. Proof of the Theorem

3.1. Main proposition. The proof of Theorem 1.1 will be achieved by compactness argu-
ments that rely on the following result. Let u™), T = T'(N, 8) be as in Proposition 2.1.
Consider the Cauchy problem

Uy =u X Au, t=>ty, 3.1
Ult=t) = (N)(tl)s .

withO <t < T.
One has

Proposition 3.1. For N sufficiently large there exists 0 < ty < T such that for any
11 € (0, ty) the solution u(t) of (3.1) verifies:

A u —u™ isin C(t1,10], H) and

lu(@) —u™ @) gz < V2, Vo <t <. (3.2)
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(i) Furthermore, (x)(u(t) — u™M@)) e L? and
Iy (@) —u™ @)l < N2 vo <t <. (33)
Proof. The proof is by a bootstrap argument. Write

uMx, ) = ORuMauinx, 1), r™N(x, 1) =220 e*PRRM (u(0)x, 1)
uCx, 1) = ORUGx, 1), Uy, t)=UMN(y, 1)+ S, 1),
UMy, 1) =¢) +x™M,1).

Then S(t) solves

1
12V, +agt>’ RS — (v+5)y VS =S x AUN 1 UM x AS+S x AS+RM(1).

(3.4)
Assume that
I1S1oor2y < 81, (3.5)
with §; sufficiently small. Note that since S is 1-equivariant and
@ )+ x™M, 9 +1SP=0 (3.6)
where ||X(N) ||LOO(R2) < C8§%' (see (2.5)), the bootstrap assumption (3.5) implies
IS w2y = CIVSIL2R2)- (3.7

3.1.1. Energy control. We will first derive a bootstrap control of the energy norm:

10 =/Rz dy(VSP + k(ISP p=Iyl.
It follows from (3.4) that

d
t1+2”E/dy|VS|2 = —Z/dy(S X AU(N),AS)+2/dy(VR(N),VS), (3.8)

d 1
tl‘tz"E/dy/c(/o)lSl2 = —(z +v)t2”/dy(2/<+plc/)(5, S)

+2/dy/<(U(N> x AS, S)+2/dy/c(R(N),S). (3.9)

Recall that UN) = ¢ + x ), with ¢ solving A¢ = k¢, which means that
(S x Ap, AS) —k(p x AS,S) =0.
Therefore, combining (3.8), (3.9), we get

d

1+2v
t
dt

Jit) =E1+E +E3+ &y,
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where

& = —Z/dy(S x AxMAS),
& = 2/dy/<(x<N> x AS, S),
1
& =G+ / dy(Qx + pic’) (S, S).

&y = 2/dy[(VR<N>, VS) +k (RN, ).

From Proposition 2.1 we have

Ejl < C IS5, j=1,....3,
|Ea] < CEVVH2|V S o

Combining these inequalities we obtain

d _ _
|EJ1(t)| < Ct S5, + CPN T, (3.10)

3.1.2. Control of the L* norm. Consider Jo(t) = fRZ dy|S|?. We have
o 2 Tl =&+ &+ &7,
& = 2/dy(U<N> x AS, S),
E6 = —2(1+ 201" Jo (1),
& = 2/dy(R<N>, S).

Consider &. Decomposing U ™) and § in the basis f1, f>, O

UMy, 1) =R+ 0, 1)000) + 2 (0, 1) fi(0) + 25 (0, 1) f2(0)),
Sy, 1) = "R (&i(p, 1) fi(p) + 22(p, 1) f2(p) + &3(p, ) Q(P)),

one can rewrite &5 as follows.

Es = E + &g+ &0,
h

£ = —4/ dop™ 020,13,
R, P

59:_2/IR dpp@,z™ x 8,2,0), 2™ =™, 2V M), ¢ = (@1, &, ¢3),

E10 = 2/ dop ™ x 1,7),
Ry

where

2h 2h 2h1h3
= ——51 - 7‘%(3, 252, k(p)3 + 73,051

p{I)
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Clearly,
1] < Cp (1] + 18, ).
Therefore,
€10l < CEV(IS13,,. G.11)
Consider &g. It follows from
26, k+z2™M) + ¢ =0, (3.12)

that
19,831 < C(13,z2™M1121 + 12N 118,81+ 18,¢112]).

As a consequence,

€8 < C[2IISII%, + IVSI13]- (3.13)

Consider &. Denote eg = k + z™ and write { = ¢ + peg, 1 = (¢, eo). It follows
from (3.12) that

lul < Clg)?,
ol < ClE110,¢].
Therefore, £ can be written as
_ il 1 2
& = —2/R dpp (9,5~ x ¢, dpeo) + OIS IVSIL2). (3.14)

Let e, e2 be a smooth orthonormal basis of the tangent space T, $2 that verifies e =
ep x e1. Then the expression (8,)4“l x ¢+, dpep) can be written as follows:

095 % £5, 0pe0) = (G, Bpe0) [ (4 ) Bpe0, e1) = G, en)@pen. e
which leads to the estimate

< Cl18,z™M 12 0 Jo (1) < C1?" Jo(2). (3.15)

‘/R dpp(3p¢T x ¢, 8,e0)
Combining (3.11), (3.13), (3.14), (3.15) we obtain

d _ 1 _
| 0@ sc[r HISIZ + e 2SI IV S 2 + Y 2”]. (3.16)
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3.1.3. Control of the weighted L* norm. Using (3.4) to compute the derivative % yS@)||?

L2
we obtain
1420 4 2 (N)
t EIIIyIS(t)IILz =—4 [ dyy;(U" x9$,5)
—2/dy|y|2(aiu“v> X 9;5, S)
=201+ 20" [[Iy[SD)7, + 2/dy|y|2<R<N>, 9).
Here and below 9; stands for Byj, the summation over the repeated indexes being as-
sumed.
As a consequence, we get
d 2 9 2, —dvpe2 L 2N—4v 1
dtIIIyIS(I)IILz = HyIS@I7 2+ ISy +1 . (3.17)
3.1.4. Control of the higher regularity. In addition to (3.5), assume that
ISE N s + MyIS@ 2 < 25, (3.18)

We will control H? norm of the solution by means of |V S;|| ;2. More precisely, consider
the functional

J3(t) = t2+4“/dx|Vs,(x,z)|2+t‘+2”/dx/c(f‘/zfvxns,(x,z)|2,

where s(x, ) is defined by
s(x, 1) = *ORS((n)x, 1).

Write s;(x, 1) = e*DR22(1)g(A(t)x, 1). In terms of g, J3 can be written as J3(1) =
[dy|Vg(y, t)> + [ dyk(p)lg(y,t)|*. Let us compute the derivative %J3(t). Clearly,
g(y, t) solves

1+2v

1
Ve +apr?Rg — (v + 5)12”(2 +y-V)g

=S +UM) x Ag+g x (AUN + AS)
+( UM x AU — RNy x AS
+8 x AUN x AUN) — RNy 4 2440, (V). (3.19)

Therefore, we get

d 1
t1+2vEJ3(t) =@ +4v)t2U|IVg||iz + (5 + )1 /(2/( — pK)|gl*dy
+E1+ Ey+ E3+ E4+ Es, (3.20)
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where
Bi==2 [dyex ax ™. 8942 [ awic™ x dg. o).
E)=— 2/dy((U<N> x AUN) — Ry 5 AS, Ag)
+2/dy(A(U<N> x AUNM — RNy x 8 Ag)
+2/dyK((U(N) x AUN) — RNy % AS, g)

— Z/dyK(A(U(N) x AUNM — RV x 5. ¢),

E3 =— 2/dy(g X AS, Ag),
Eq4 :2/dyK(S X Ag, g),

Es = — 21> / dy(rs, Ag) + 267+ / dyk(re, g).
The terms E;, j = 1,4, 5 can be estimated as follows.

|E1| < Cr*lIgll3,1,
|Esl < Cligl3, ISl s < Ct*ligl3 (3.21)

2 2 2N+3+4
|Es| < C™ gl +277 ),

provided N is sufficiently large and ¢ < #y with some 79 = fo(N) > 0.
For E> we have

1E2l <CUAXMlyw2ee + IRM [ go) gl g 1] g3
+ClIl) VALY M e Vgl 2 1(0) Sl 2

Asa consequence,

|E2l < Cr"(llgll g1 1Sl s + 1Vl 2 140D Sl 2).- (3.22)

Note that since
g=UM+8) x AS+Sx AUN + RN, (3.23)

the bootstrap assumption (3.18) implies

ligllz2 < CUISH g2 + IRM]I,2),

) (3.24)
IVglip2 = CUISIEs + IVRY [ 12).
Therefore, (3.21), (3.22) can be rewritten as

|Er| + |Ea| + |Es| + | Es| < CE2[S135 + (ISl s + V2 1(0) S 2]
+C 2N+ (3.25)
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Consider E3. One has

gx AS= UM +8 ASHAS — |ASPUN +5)
+ (S x AUM + Ry x AS,
Ag = UM +8) x A2S+7,
Y =20,UM +9;8) x A3; S+ x A*UN
+28;8 x AJ;UN) + ARW).

Therefore, one can write E3 as E3 = Eg + E7 + Eg, where
Ee = — 2/dy(U<N> +5,AS)(AS, Ag),
E; zz/dy|AS|2(U<N> +S,Ag) :2/dy|AS|2(U(N)+S, Y),
Eg = — 2/dy((S x AUN + Ry % AS, Ag).
For Eg we have:
Es =2/dy[(AU(N), $)+2@; UM 9;8) +(3;S,8;S)I(AS, Ag)

- _2/dy[(AU(N>,S)+2(ajU<N>,ajS)+(ajs, 3 H1(AS, )

- Z/dy(AS, H)H[AUN ) +23;,UN,3;5) + (3;5,3;)].

As a consequence, one obtains:
|Esl < ClISIZs gl < CrVIISIs.
Consider E7. From (3.26) we have
1Ylz2 < CAUSIgs +t™).

Therefore, we obtain:
|E7| < Cr||S|13,s.

Finally, Eg can be estimated as follows
|Eg| < Cligllm (IS5 + V1S 53) < CE2|IS|I3,5 + CN.
Combining (3.27), (3.29), (3.28) we get
|E3| < Ca™ IS5, + 1Y),

which together with (3.25) gives

C
< = [ISIs + (IS + 123182 ] + €2,

dJ(t)
dt 3

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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3.1.5. Proof of Proposition 3.1. To prove the proposition it is sufficient to show that
(3.5), (3.18) implies (3.2), (3.3).
Under the bootstrap assumption (3.18), (3.10), (3.16) become

d d
—Ji(t —Jo)| <t S|, + C*N T Vi < 1, 3.32
| O]+ h®)] = N < 1 (3.32)

provided N is sufficiently large, #y sufficiently small.
Note that for ¢p > O sufficiently large one has || S ||%11 < Ji + coJo. Therefore,
denoting J () = J1(t) + coJo(t) one can rewrite (3.32) as

|%J(t)| <ctr Iy + N, (3.33)
Integrating this inequality with zero initial condition at ¢; one gets

J(1) < %ﬂN“—Z“, vt € (11, 1], (3.34)
provided N is sufficiently large. As a consequence, we obtain

C
1S3, < NﬂN“—?“, vt € [t1, to]. (3.35)

Consider ||[y[S(#)]| ;2. From (3.17), (3.35) we have

d C _
‘mesmniz = = [Iyis@nz, + 201 (3.36)

Integrating this inequality and assuming that N is sufficiently large, we get
VSO = SN0 vi e ), (3.37)
which gives in particular,
lxls@)72 <72, Vi e, ). (3.38)
We next consider ||V As (1) 12(r2)- It follows from (3.23), (3.18) that for any j = 1, 2
18, — (W™ +8) x A3;Sl2 < CUIS |2y + 1), (3.39)
Note also that since |UN) + S| = 1, we have

(UM +8) x A3;S|* =|Ad;S|> — (UM +5, Ad;9)%,
(UM +5,A8;8) =— (AUNM + AS,9;5) — A@; UM, 5)
=20 UN) + .S, 0%.9),

which together with (3.18) gives

188; 8117, = 1U™ +8) x Ad;S|7> < CIISIFe- (3.40)
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Consider the functional f3 (t) = J3(t)+c1 Jo(¢). It follows from (3.24), (3.39), (3.40)
that for ¢; > O sufficiently large we have

ellS3s — CENRY < J5(1) < C(IIS|13,5 + 12V 1Y), (3.41)

with some ¢; > 0.
From (3.31), (3.32), (3.37) one gets

d J. - _
| O] = C [ USIs ey + MYISI 2 ga)) + 12V |

< Ct  J5(t) + CPN OV,

(3.42)

Integrating this inequality between #; and ¢ and observing that J3(r;) =
7 [ dx|VrN) (e, 1) 2467 [ dxie (712 x)1r N (x, 11)]2, and therefore, | J3(11)] <
CtIN*1*2v " we obtain

J(t) < CeANH= vt e 1y, 10).
Combining this inequality with (3.41), one gets

IS1133 g2y < CEPNTITO Vi€ [, 1ol

which implies that

sl g3 (R2y < N2 Vi e [n, o).

This concludes the proof of Proposition 3.1.

3.2. Proof of the theorem. The proof of the theorem is now straightforward. Fix N such
that Proposition 3.1 holds. Take a sequence (¢/),0 < t/ < g, t/ — 0 as j — oo. Let
uj(x, t) be the solution of

. . J
Ouj =uj X Auj, t=>t/,

WM (1, (3.43)

Wjli=ri
By Proposition 3.1, for any j, u; — u™ ¢ C([tj, tol, H3) and satisfies
i (2) = u™ @)l g3 + 14x) @ () = u™ @)l 2 < 2V2, Ve et/ 1] (3.44)

This implies in particular, that the sequence u () — u™ (t9) is compact in H? and
therefore after passing to a subsequence we can assume that u  (fo) — u™ (1) converges
in H? to some 1-equivariant function w € H?3, with |[w| 53 < 62", [u™) (1) + w| = 1.
Consider the Cauchy problem
Uy =ux Au, t =<t,

(3.45)
Ulr=ty = ”(N)(IO) +w.

By the local well-posedness, (3.45) admits a unique solution u € C ((t*, 101, H'N
H3) with some 0 < 7* < 1. By H! continuity of the flow (see [10]), u; — u in
C((t*, to], H'), which together with (3.44) gives

lu(t) —u™ (@) s < 26N, Vi e (1%, 10). (3.46)

This implies that * = 0 and combined with Proposition 2.1 gives the result stated in
Theorem 1.1.
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