Blow Up Dynamics for Equivariant Critical Schrödinger Maps

Galina Perelman

LAMA, UMR CNRS 8050, Université Paris-Est Créteil, 61, avenue du Général de Gaulle, 94010 Créteil Cedex, France. E-mail: galina.perelman@u-pec.fr

Received: 12 March 2013 / Accepted: 13 June 2013 Published online: 26 February 2014 - © Springer-Verlag Berlin Heidelberg 2014

Abstract: For the Schrödinger map equation $u_t = u \times \Delta u$ in \mathbb{R}^{2+1} , with values in S^2 , we prove for any $\nu > 1$ the existence of equivariant finite time blow up solutions of the form $u(x,t) = \phi(\lambda(t)x) + \zeta(x,t)$, where ϕ is a lowest energy steady state, $\lambda(t) = t^{-1/2-\nu}$ and $\zeta(t)$ is arbitrary small in $\dot{H}^1 \cap \dot{H}^2$.

1. Introduction

1.1. Setting of the problem and statement of the result. In this paper we consider the Schrödinger flow for maps from \mathbb{R}^2 to S^2 :

$$u_t = u \times \Delta u, \quad x = (x_1, x_2) \in \mathbb{R}^2, \ t \in \mathbb{R},$$

 $u|_{t=0} = u_0,$ (1.1)

where $u(x, t) = (u_1(x, t), u_2(x, t), u_3(x, t)) \in S^2 \subset \mathbb{R}^3$.

Equation (1.1) conserves the energy

$$E(u) = \frac{1}{2} \int_{\mathbb{R}^2} dx |\nabla u|^2.$$
 (1.2)

The problem is critical in the sense that both (1.1) and (1.2) are invariant with respect to the scaling $u(x, t) \to u(\lambda x, \lambda^2 t), \lambda \in \mathbb{R}_+$. To a finite energy map $u : \mathbb{R}^2 \to S^2$ one can associate the degree:

$$\deg(u) = \frac{1}{4\pi} \int_{\mathbb{R}^2} dx u_{x_1} \cdot J_u u_{x_2},$$

where J_u is defined by

$$J_u v = u \times v, \quad v \in \mathbb{R}^3.$$

It follows from (1.2) that

$$E(u) \ge 4\pi |\deg(u)|. \tag{1.3}$$

This inequality is saturated by the harmonic maps $\phi_m, m \in \mathbb{Z}^+$:

$$\phi_m(x) = e^{m\theta R} Q^m(r), \quad Q^m = (h_1^m, 0, h_3^m) \in S^2,$$

$$h_1^m(r) = \frac{2r^m}{r^{2m} + 1}, \quad h_3^m(r) = \frac{r^{2m} - 1}{r^{2m} + 1}.$$
(1.4)

Here (r, θ) are polar coordinates in \mathbb{R}^2 : $x_1 + ix_2 = e^{i\theta}r$, and *R* is the generator of the horizontal rotations:

$$R = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

or equivalently

$$Ru = \mathbf{k} \times u, \quad \mathbf{k} = (0, 0, 1).$$

One has

$$\deg \phi_m = m, \quad E(\phi_m) = 4\pi m.$$

Up to the symmetries ϕ_m are the only energy minimizers in their homotopy class.

Since ϕ_1 will play a central role in the analysis developed in this paper, we set $\phi = \phi_1$, $Q = Q_1$, $h_1 = h_1^1$, $h_3 = h_3^1$.

The local/global well-posedness of (1.1) has been extensively studied in past years. Local existence for smooth initial data goes back to [18], see also [14]. The case of small data of low regularity was studied in several works, the definite result being obtained by Bejenaru et al. in [3], where the global existence and scattering was proved for general \dot{H}^{1} small initial data. Global existence for equivariant small energy initial data was proved earlier in [6] (by *m*-equivariant map $u: \mathbb{R}^2 \to S^2 \subset \mathbb{R}^3$, $m \in \mathbb{Z}^+$ one means a map of the form $u(x) = e^{m\theta R} v(r)$, where $v : \mathbb{R}_+ \to S^2 \subset \mathbb{R}^3$, *m*-equivariance being preserved by the Schrödinger flow (1.1)). In the radial case m = 0, the global existence for H^2 data was established by Gustafson and Koo [11]. Very recently, Bejenaru et al. [4] proved global existence and scattering for equivariant data with energy less than 4π . The dynamics of *m*-equivariant Schrödinger maps with initial data close to ϕ_m was studied by Gustafson et al. [9,10,12] and later by Bejenaru and Tataru [5] in the case m = 1. The stability/instability results of these works strongly suggest a possibility of regularity breakdown in solutions of (1.1) via concentration of the lowest energy harmonic map ϕ . For a closely related model of wave maps this type of regularity breakdown was proved by Kriger et al. [13] and by Raphael and Rodnianski [17]. These authors showed the existence of 1- equivariant blow up solutions close to $\phi(\lambda(t)x)$ with $\lambda(t) \sim \frac{e^{\sqrt{|\ln(T^*-t)|}}}{T^*-t} \text{ as } t \to T^* \text{ [17], and with } \lambda(t) \sim \frac{1}{(T^*-t)^{1+\nu}} \text{ as } t \to T^* \text{ where } \nu > 1/2$ can be chosen arbitrarily [13] (here T^* is the blow up time). While the blow up dynamics exhibited in [17] is stable (in some strong topology), the continuum of blow up solutions constructed by Kriger et al. is believed to be non-generic. Recently, the results of [17] were generalized to the case of Schrödinger map equation (1.1) by Merle et al. in [15] where they proved the existence of 1-equivariant blow up solutions of (1.1) close to $\phi(\lambda(t)x)$ with $\lambda(t) \sim \frac{(\ln(T^*-t))^2}{T^*-t}$.

Our objective in this paper is to show that (1.1) also admits 1-equivariant Kriger–Schlag–Tataru type blow up solutions that correspond to certain initial data of the form

$$u_0 = \phi + \zeta_0,$$

where ζ_0 is 1-equivariant and can be chosen arbitrarily small in $\dot{H}^1 \cap \dot{H}^3$. Let us recall (see [5,9,10,12]) that such initial data result in unique local solutions of the same regularity, and as long as the solution exists it stays \dot{H}^1 close to a two parameter family of 1-equivariant harmonic maps $\phi^{\alpha,\lambda}$, $\alpha \in \mathbb{R}/2\pi\mathbb{Z}$, $\lambda \in \mathbb{R}_+$ generated from ϕ by rotations and scaling:

$$\phi^{\alpha,\lambda}(r,\theta) = e^{\alpha R} \phi(\lambda r,\theta).$$

The following theorem is the main result of this paper.

Theorem 1.1. For any v > 1, $\alpha_0 \in \mathbb{R}$, and any $\delta > 0$ sufficiently small there exist $t_0 > 0$ and a 1-equivariant solution $u \in C((0, t_0], \dot{H}^1 \cap \dot{H}^3)$ of (1.1) of the form:

$$u(x,t) = e^{\alpha(t)R}\phi(\lambda(t)x) + \zeta(x,t), \qquad (1.5)$$

where

$$\lambda(t) = t^{-1/2-\nu}, \quad \alpha(t) = \alpha_0 \ln t,$$
 (1.6)

$$\|\zeta(t)\|_{\dot{H}^{1}\cap\dot{H}^{2}} \leq \delta, \quad \|\zeta(t)\|_{\dot{H}^{3}} \leq C_{\nu,\alpha_{0}}t^{-1}, \quad \forall t \in (0, t_{0}].$$
(1.7)

Furthermore, as $t \to 0$, $\zeta(t) \to \zeta^*$ in $\dot{H}^1 \cap \dot{H}^2$ with $\zeta^* \in H^{1+2\nu-}$.

Remark 1.2. In fact, using the arguments developed in this paper one can show that the same result remains valid with \dot{H}^3 replaced by \dot{H}^{1+2s} for any $1 \le s < v$.

1.2. Strategy of the proof. The proof of Theorem 1.1 contains two main steps. The first step is a construction of approximate solutions $u^{(N)}$ that have the form (1.5), (1.6), (1.7), and solve (1.1) up to an arbitrarily high order error $O(t^N)$, very much in the spirit of the work of Kriger et al. [13].

The second step is to build the exact solution by solving the problem for the small remainder forward in time with zero initial data at t = 0. The control of remainder is achieved by means of suitable energy type estimates, see Sect. 3 for the details. The assumption $\nu > 1$ ensures that the approximate solutions that we have constructed, belong to $\dot{H}^1 \cap \dot{H}^3$, which allows us to work on the level of the H^3 well-posedness theory.

2. Approximate Solutions

2.1. Preliminaries. We consider (1.1) under the 1-equivariance assumption

$$u(x,t) = e^{\theta R} v(r,t), \quad v = (v_1, v_2, v_3) \in S^2 \subset \mathbb{R}^3.$$
 (2.1)

Restricted to the 1-equivariant functions (1.1) takes the form

$$v_t = v \times (\Delta v + \frac{R^2}{r^2}v), \qquad (2.2)$$

the energy being given by

$$E(u) = \pi \int_0^\infty dr r(|v_r|^2 + \frac{v_1^2 + v_2^2}{r^2}).$$

 $Q = (h_1, 0, h_3)$ is a stationary solution of (2.2) and one has the relations

$$\partial_r h_1 = -\frac{h_1 h_3}{r}, \quad \partial_r h_3 = \frac{h_1^2}{r},$$
 (2.3)

$$\Delta Q + \frac{R^2}{r^2} Q = \kappa(r) Q, \quad \kappa(r) = -\frac{2h_1^2}{r^2}.$$
 (2.4)

The goal of the present section is to prove the following result.

Proposition 2.1. For any $\delta > 0$ sufficiently small and any N sufficiently large there exists an approximate solution $u^{(N)} : \mathbb{R}^2 \times \mathbb{R}^*_+ \to S^2$ of (1.1) such that the following holds.

(i) $u^{(N)}$ is a C^{∞} 1-equivariant profile of the form: $u^{(N)} = e^{\alpha(t)R}(\phi(\lambda(t)x) + \chi^{(N)}(\lambda(t)x, t))$, where $\chi^{(N)}(y, t) = e^{\theta R} Z^{(N)}(\rho, t)$, $\rho = |y|$, verifies

$$\|\partial_{\rho} Z^{(N)}(t)\|_{L^{2}(\rho d\rho)}, \|\rho^{-1} Z^{(N)}(t)\|_{L^{2}(\rho d\rho)}, \|\rho\partial_{\rho} Z^{(N)}(t)\|_{\infty} \le C\delta^{2\nu},$$
(2.5)

$$\|\rho^{-l}\partial_{\rho}^{k}Z^{(N)}(t)\|_{L^{2}(\rho d\rho)} \le C\delta^{2\nu-1}t^{1/2+\nu}, \quad k+l=2,$$
(2.6)

$$\|\rho^{-l}\partial_{\rho}^{k}Z^{(N)}(t)\|_{L^{2}(\rho d\rho)} \le Ct^{2\nu}, \quad k+l=3,$$
(2.7)

$$\|\partial_{\rho} Z^{(N)}(t)\|_{\infty}, \|\rho^{-1} Z^{(N)}(t)\|_{\infty} \le C \delta^{2\nu - 1} t^{\nu},$$
(2.8)

$$\|\rho^{-l}\partial_{\rho}^{k}Z^{(N)}(t)\|_{\infty} \le Ct^{2\nu}, \quad 2 \le l+k \le 3,$$
(2.9)

for any $0 < t \le T(N, \delta)$ with some $T(N, \delta) > 0$. The constants C here and below are independent of N and δ . In addition, one has

$$\|\chi^{(N)}(t)\|_{\dot{W}^{4,\infty}} + \|\langle y \rangle^{-1} \chi^{(N)}(t)\|_{\dot{W}^{5,\infty}} \le Ct^{2\nu},$$
(2.10)

and $\langle x \rangle^{2(\nu-1)} \nabla^4 u^{(N)}(t), \langle x \rangle^{2(\nu-1)} \nabla^2 u_t^{(N)}(t) \in L^{\infty}(\mathbb{R}^2).$ Furthermore, there exists $\zeta_N^* \in \dot{H}^1 \cap \dot{H}^{1+2\nu-}$ such that as $t \to 0$,

$$e^{\alpha(t)R}\chi^{(N)}(\lambda(t)\cdot,t) \to \zeta_N^* \text{ in } \dot{H}^1 \cap \dot{H}^2.$$

(ii) The corresponding error $r^{(N)} = -u_t^{(N)} + u^{(N)} \times \Delta u^{(N)}$ verifies

$$\|r^{(N)}(t)\|_{H^3} + \|\partial_t r^{(N)}(t)\|_{H^1} + \|\langle x \rangle r^{(N)}(t)\|_{L^2} \le t^N, \quad 0 < t \le T(\delta, N).$$
(2.11)

Remarks. 1. Note that estimates (2.5), (2.6) imply:

$$\|u^{(N)}(t) - e^{\alpha(t)R}\phi(\lambda(t)\cdot)\|_{\dot{H}^1 \cap \dot{H}^2} \le \delta^{2\nu-1}, \quad \forall t \in (0, T(N, \delta)].$$
(2.12)

- 2. It follows from our construction that $\chi^{(N)}(t) \in \dot{H}^{1+2s}$ for any $s < \nu$ with the estimate $\|\chi^{(N)}(t)\|_{\dot{H}^{1+2s}(\mathbb{R}^2)} \leq C(t^{2\nu} + t^{s(1+2\nu)}\delta^{2\nu-2s}).$
- 3. The remainder $r^{(N)}$ verifies in fact, for any m, l, k,

$$\|\langle x\rangle^l \partial_t^m r^{(N)}(t)\|_{H^k} \leq C_{l,m,k} t^{N-C_{l,m,k}},$$

provided $N \ge C_{l,m,k}$.

We will give the proof of Proposition 2.1 in the case of ν irrational only, which allows us to slightly simplify the presentation. The extension to ν rational is straightforward.

To construct an arbitrarily good approximate solution we analyze separately the three regions that correspond to three different space scales: the inner region with the scale $r\lambda(t) \leq 1$, the self-similar region where $r = O(t^{1/2})$, and finally the remote region where r = O(1). The inner region is the region where the blowup concentrates. In this region the solution will be constructed as a perturbation of the profile $e^{\alpha(t)R}Q(\lambda(t)r)$. The self-similar and remote regions are the regions where the solution is close to **k** and is described essentially by the corresponding linearized equation. In the self-similar region the profile of the solution will be determined uniquely by the matching conditions coming out of the inner region, while in the remote region the profile remains essentially a free parameter of the construction, only the limiting behavior at the origin is prescribed by the matching process, see Sects. 2.3 and 2.4 for the details, see also [1,2] for some closely related considerations in the context of the critical harmonic map heat flow.

2.2. Inner region $r\lambda(t) \leq 1$. We start by considering the inner region $0 \leq r\lambda(t) \leq 10t^{-\nu+\varepsilon_1}$, where $0 < \varepsilon_1 < \nu$ to be fixed later. Writing v(r, t) as

$$v(r, t) = e^{\alpha(t)K} V(\lambda(t)r, t), \quad V = (V_1, V_2, V_3),$$

(.) **n**

we get from (2.2)

$$t^{1+2\nu}V_t + \alpha_0 t^{2\nu} RV - t^{2\nu} (\nu + \frac{1}{2})\rho V_\rho = V \times (\Delta V + \frac{R^2}{\rho^2} V), \quad \rho = \lambda(t)r.$$
(2.13)

We look for a solution of (2.13) as a perturbation of the harmonic map profile $Q(\rho)$. Write

$$V = Q + Z$$
,

and further decompose Z as

$$Z(\rho, t) = z_1(\rho, t) f_1(\rho) + z_2(\rho, t) f_2(\rho) + \gamma(\rho, t) Q(\rho),$$

where f_1 , f_2 is the orthonormal frame on $T_O S^2$ given by

$$f_1(\rho) = \begin{pmatrix} h_3(\rho) \\ 0 \\ -h_1(\rho) \end{pmatrix} \quad f_2(\rho) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

One has

$$\gamma = \sqrt{1 - |z|^2} - 1 = O(|z|^2), \quad z = z_1 + iz_2.$$

Note also the relations

$$\partial_{\rho}Q = -\frac{h_1}{\rho}f_1, \quad \partial_{\rho}f_1 = \frac{h_1}{\rho}Q, \quad f_2 = Q \times f_1,$$
$$\Delta f_1 + \frac{R^2}{\rho^2}f_1 = -\frac{1}{\rho^2}f_1 - \frac{2h_3h_1}{\rho^2}Q.$$

We now rewrite (2.13) in terms of z. One has

$$RV = -h_3 z_2 f_1 + (h_3 z_1 + h_1 (1 + \gamma)) f_2 - h_1 z_2 Q,$$

$$\rho \partial_\rho V = (\rho \partial_\rho z_1 - h_1 (1 + \gamma)) f_1 + \rho \partial_\rho z_2 f_2 + (h_1 z_1 + \rho \partial_\rho \gamma) Q.$$
(2.14)

We next compute the nonlinear term $V \times (\triangle V + \frac{R^2}{\rho^2}V)$. In the basis $\{f_1, f_2, Q\}$, the expression $\triangle V + \frac{R^2}{\rho^2}V$ can be written as follows:

$$\Delta V + \frac{R^2}{\rho^2} V = \left[\Delta z_1 - \frac{z_1}{\rho^2} - 2\frac{h_1}{\rho} \gamma_\rho \right] f_1 + \left[\Delta z_2 - \frac{z_2}{\rho^2} \right] f_2 + \left[\Delta \gamma + \kappa(\rho)(1+\gamma) + 2\frac{h_1}{\rho} \partial_\rho z_1 - 2\frac{h_1 h_3}{\rho^2} z_1 \right] Q,$$

which gives

$$V \times (\Delta V + \frac{R^2}{\rho^2} V) = \left[(1+\gamma)Lz_2 + F_1(z) \right] f_1 - \left[(1+\gamma)Lz_1 + F_2(z) \right] f_2 + F_3(z)Q, \quad (2.15)$$

where

$$L = -\Delta + \frac{1 - 2h_1^2}{\rho^2},$$

$$F_1(z) = z_2(\Delta \gamma - 2\frac{h_1h_3}{\rho^2}z_1 + 2\frac{h_1}{\rho}\partial_\rho z_1),$$

$$F_2(z) = z_1(\Delta \gamma - 2\frac{h_1h_3}{\rho^2}z_1 + 2\frac{h_1}{\rho}\partial_\rho z_1) + \frac{2h_1}{\rho}(1 + \gamma)\gamma_\rho$$

$$F_3(z) = z_1\Delta z_2 - z_2\Delta z_1 + \frac{2h_1}{\rho}z_2\gamma_\rho.$$

(2.16)

Projecting (2.13) onto span{ f_1, f_2 } and taking into account (2.14), (2.15), (2.16), we get the following reformulation of (2.13):

$$it^{1+2\nu}z_t - \alpha_0 t^{2\nu}h_3 z - i(\frac{1}{2} + \nu)t^{2\nu}\rho z_\rho = Lz + F(z) + dt^{2\nu}h_1,$$

$$d = \alpha_0 - i(\frac{1}{2} + \nu),$$
(2.17)

$$F(z) = \gamma Lz + z(\Delta \gamma + \frac{2h_1}{\rho}\partial_\rho z_1 - \frac{2h_1h_3z_1}{\rho^2}) + \frac{2h_1}{\rho}(1 + \gamma)\gamma_\rho + dt^{2\nu}\gamma h_1.$$

Note that
$$F$$
 is at least quadratic in z .

We look for a solution of (2.17) as a power expansion in $t^{2\nu}$:

$$z(\rho, t) = \sum_{k \ge 1} t^{2\nu k} z^k(\rho).$$
(2.18)

Substituting (2.18) into (2.17) we get the following recurrent system for z^k , $k \ge 1$:

$$Lz^1 = -dh_1, (2.19)$$

$$Lz^k = \mathcal{F}_k, \quad k \ge 2, \tag{2.20}$$

where \mathcal{F}_k depends on z^j , j = 1, ..., k-1 only. We subject (2.19), (2.20) to zero initial conditions at $\rho = 0$:

$$z^{k}(0) = \partial_{\rho} z^{k}(0) = 0.$$
 (2.21)

Lemma 2.2. System (2.19), (2.20), (2.21) has a unique solution $(z^k)_{k\geq 1}$, with $z^k \in C^{\infty}(\mathbb{R}_+)$ for all $k \geq 1$. In addition, one has:

(i) z^k has an odd Taylor expansion at 0 that starts at order 2k + 1;

(ii) as $\rho \to \infty$, z^k has the following asymptotic expansion

$$z^{k}(\rho) = \sum_{l=0}^{2k} \sum_{j \le k - (l-1)/2} c_{j,l}^{k} \rho^{2j-1} (\ln \rho)^{l}, \qquad (2.22)$$

with some constants $c_{j,l}^k$. The asymptotic expansion (2.22) can be differentiated any number of times with respect to ρ .

Proof. First note that the equation Lf = 0 has two explicit solutions: $h_1(\rho)$ and $h_2(\rho) = \frac{\rho^4 + 4\rho^2 \ln \rho - 1}{\rho(\rho^2 + 1)}$.

Consider the case k = 1:

$$Lz^{1} = -dh_{1},$$
$$z^{1}(0) = \partial_{\rho}z^{1}(0) = 0.$$

One has

$$z^{1}(\rho) = -\frac{d}{4} \int_{0}^{\rho} dss(h_{1}(\rho)h_{2}(s) - h_{1}(s)h_{2}(\rho))h_{1}(s)$$

= $-\frac{d\rho}{(1+\rho^{2})} \int_{0}^{\rho} ds \frac{s(s^{4} + 4s^{2}\ln s - 1)}{(1+s^{2})^{2}} + \frac{d(\rho^{4} + 4\rho^{2}\ln \rho - 1)}{\rho(\rho^{2} + 1)} \int_{0}^{\rho} ds \frac{s^{3}}{(1+s^{2})^{2}}$
(2.23)

Since h_1 is a C^{∞} function that has an odd Taylor expansion at $\rho = 0$ with a linear leading term, one can easily write an odd Taylor series for z^1 with a cubic leading term, which proves (i) for k = 1.

The asymptotic behavior of z^1 at infinity can be obtained directly from the representation (2.23). As claimed, one has

$$z^{1}(\rho) = c^{1}_{1,0}\rho + c^{1}_{1,1}\rho \ln \rho + \sum_{j \le 0} \sum_{l=0,1,2} c^{1}_{j,l}\rho^{2j-1}(\ln \rho)^{l},$$

with $c_{1,0}^1 = -c_{1,1}^1 = -d$.

Consider k > 1. Assume that z^j , $j \le k - 1$, verify (i) and (ii). Then, using (2.17), one can easily check that \mathcal{F}_k is an odd C^{∞} function vanishing at $\rho = 0$ at order 2k - 1, with the following asymptotic expansion as $\rho \to \infty$:

$$\mathcal{F}_{k} = \sum_{j=1}^{k-1} \sum_{l=0}^{2k-2j-1} \alpha_{j,l}^{k} \rho^{2j-1} (\ln \rho)^{l} + \sum_{l=0}^{2k-2} \alpha_{0,l}^{k} \rho^{-1} (\ln \rho)^{l} + \sum_{l=0}^{2k-1} \alpha_{-1,l}^{k} \rho^{-3} (\ln \rho)^{l} + \sum_{j \le -2} \sum_{l=0}^{2k} \alpha_{j,l}^{k} \rho^{2j-1} (\ln \rho)^{l}$$

As a consequence, $z^k(\rho) = \frac{1}{4} \int_0^{\rho} dss(h_1(\rho)h_2(s) - h_1(s)h_2(\rho))\mathcal{F}_k(s)$ is a C^{∞} function with an odd Taylor series at zero starting at order 2k + 1 and as $\rho \to \infty$,

$$z^{k}(\rho) = \sum_{l=0}^{2k} \sum_{j \le k - (l-1)/2} c_{j,l}^{k} (\ln \rho)^{l} \rho^{2j-1},$$

as required. This concludes the proof of Lemma 2.2. \Box

Returning to v we get a formal solution of (2.2) of the form

$$v(r,t) = e^{\alpha(t)R} V(\lambda(t)r,t), \quad V(\rho,t) = Q + \sum_{k \ge 1} t^{2\nu k} Z^k(\rho),$$
(2.24)

 $Z^k = (Z_1^k, Z_2^k, Z_3^k)$, where Z_i^k , i = 1, 2, are smooth odd functions of ρ vanishing at 0 at order 2k + 1, and Z_3^k is an even function vanishing at zero at order 2k + 2. As $\rho \to \infty$, one has

$$Z_{i}^{k}(\rho) = \sum_{l=0}^{2k} \sum_{j \le k - (l-1)/2} c_{j,l}^{k,i} (\ln \rho)^{l} \rho^{2j-1}, \quad i = 1, 2,$$

$$Z_{3}^{k}(\rho) = \sum_{l=0}^{2k} \sum_{j \le k+1 - l/2} c_{j,l}^{k,3} (\ln \rho)^{l} \rho^{2j-2},$$
(2.25)

with some real coefficients $c_{j,l}^{k,i}$ verifying

$$c_{k+1,0}^{k,3} = 0, \quad \forall k \ge 1.$$

The asymptotic expansions (2.25) can be differentiated any number of times with respect to ρ .

Note that in the limit $\rho \to \infty$, $y \equiv rt^{-1/2} \to 0$, expansion (2.24), (2.25), rewritten in terms of y, give at least formally

$$\begin{aligned} V_{i}(\lambda(t)r,t) &= \sum_{j\geq 0} t^{\nu(2j+1)} \sum_{l=0}^{2j+1} (\ln y - \nu \ln t)^{l} V_{i}^{j,l}(y), \quad i = 1, 2, \\ V_{3}(\lambda(t)r,t) &= 1 + \sum_{j\geq 1} t^{2\nu j} \sum_{l=0}^{2j} (\ln y - \nu \ln t)^{l} V_{3}^{j,l}(y), \\ V_{i}^{j,l}(y) &= \sum_{k\geq -j+l/2} c_{k,l}^{k+j,i} y^{2k-1}, \quad i = 1, 2, \\ V_{3}^{j,l}(y) &= \sum_{k\geq -j+l/2} c_{k+1,l}^{k+j,3} y^{2k}, \end{aligned}$$

$$(2.26)$$

where the coefficients $c_{j,l}^{k,i}$ with $k \neq 0$ are defined by (2.25) and $c_{j,0}^{0,i}$ come from the expansion of Q as $\rho \rightarrow \infty$:

$$h_1(\rho) = \sum_{j \le 0} c_{j,0}^{0,1} \rho^{2j-1}, \quad h_3(\rho) = 1 + \sum_{j \le 0} c_{j,0}^{0,3} \rho^{2j-2}, \quad c_{j,0}^{0,2} = 0$$

3.7

The role of y-expansion (2.26) will become clear in the next subsection where we will use it to perform the transition from the inner region to the self-similar region.

For $N \ge 2$ define

$$z_{\text{in}}^{(N)} = \sum_{k=1}^{N} t^{2\nu k} z^k, \quad z_{\text{in}}^{(N)} = z_{in,1}^{(N)} + i z_{in,2}^{(N)}$$

Then $z_{in}^{(N)}$ solves (2.17) up to the error $X_N = -it^{1+2\nu}\partial_t z_{in}^{(N)} + \alpha_0 t^{2\nu} h_3 z_{in}^{(N)} + i(\frac{1}{2} + \nu)t^{2\nu}\rho\partial_\rho z_{in}^{(N)} + dt^{2\nu}h_1 + Lz_{in}^{(N)} + F(z_{in}^{(N)})$. Using the fact that z^k are defined recursively it is not difficult to check that the error X_N verifies

$$|\rho^{-l}\partial_{\rho}^{k}\partial_{t}^{m}X_{N}| \le C_{k,l,m}t^{2\nu N-m}\langle\rho\rangle^{2N-1-l-k}\ln(2+\rho),$$
(2.27)

for any $k, m \in \mathbb{N}$, $0 \le l \le (2N + 1 - k)_+$, $0 \le \rho \le 10t^{-\nu+\varepsilon_1}$, $0 < t \le T(N)$, with some T(N) > 0.

Set

$$\begin{split} \gamma_{\rm in}^{(N)} &= \sqrt{1 - |z_{\rm in}^{(N)}|^2} - 1, \\ Z_{\rm in}^{(N)} &= z_{in,1}^{(N)} f_1 + z_{in,2}^{(N)} f_2 + \gamma_{\rm in}^{(N)} Q, \\ V_{\rm in}^{(N)} &= Q + Z_{\rm in}^{(N)} \in S^2. \end{split}$$

Then $V_{in}^{(N)}$ solves

$$t^{1+2\nu}\partial_{t}V_{\rm in}^{(N)} + \alpha_{0}t^{2\nu}RV_{\rm in}^{(N)} - t^{2\nu}(\nu + \frac{1}{2})\rho\partial_{\rho}V_{\rm in}^{(N)} = V_{\rm in}^{(N)} \times (\Delta_{\rho}V_{\rm in}^{(N)} + \frac{R^{2}}{\rho^{2}}V_{\rm in}^{(N)}) + \mathcal{R}_{\rm in}^{(N)},$$
(2.28)

with $\mathcal{R}_{in}^{(N)} = \operatorname{im} X_N f_1 - \operatorname{re} X_N f_2 + \frac{\operatorname{im}(\bar{X}_N z^{(N)})}{1+\gamma^{(N)}} Q$ admitting the same estimate as X_N . Note also that it follows from our analysis that for $0 \le \rho \le 10t^{-\nu+\varepsilon_1}$, $0 < t \le T(N)$,

$$|\rho^{-l}\partial_{\rho}^{k}Z_{\rm in}^{(N)}| \le C_{k,l}t^{2\nu}\langle\rho\rangle^{1-l-k}\ln(2+\rho), \quad k\in\mathbb{N}, \quad l\le(3-k)_{+}.$$
(2.29)

As a consequence, we obtain the following result.

Lemma 2.3. There exists T(N) > 0 such that for any $0 < t \le T(N)$ the following holds.

(i) The profile $Z_{in}^{(N)}(\rho, t)$ verifies

$$\|\partial_{\rho} Z_{\text{in}}^{(N)}(t)\|_{L^{2}(\rho d\rho, 0 \le \rho \le 10t^{-\nu+\varepsilon_{1}})} \le Ct^{\nu},$$
(2.30)

$$\|\rho^{-1}Z_{\rm in}^{(N)}(t)\|_{L^2(\rho d\rho, 0 \le \rho \le 10t^{-\nu+\varepsilon_1})} \le Ct^{\nu},\tag{2.31}$$

$$\|Z_{\text{in}}^{(N)}(t)\|_{L^{\infty}(0 \le \rho \le 10t^{-\nu+\varepsilon_1})} + \|\rho\partial_{\rho}Z_{\text{in}}^{(N)}(t)\|_{L^{\infty}(0 \le \rho \le 10t^{-\nu+\varepsilon_1})} \le Ct^{\nu},$$
(2.32)

$$\|\rho^{-l}\partial_{\rho}^{k}Z_{\text{in}}^{(N)}(t)\|_{L^{2}(\rho d\rho, 0 \le \rho \le 10t^{-\nu+\varepsilon_{1}})} \le Ct^{2\nu}(1+|\ln t|), \quad k+l=2,$$

$$(2.33)$$

$$\|\rho^{-l}\partial_{\rho}^{k}Z_{\text{in}}^{(N)}(t)\|_{L^{2}(\rho d\rho, 0 \le \rho \le 10t^{-\nu+\varepsilon_{1}})} \le Ct^{2\nu}, \quad k+l \ge 3, \ l \le (3-k)_{+}, \tag{2.34}$$

$$\|\partial_{\rho} Z_{\text{in}}^{(\nu)}(t)\|_{L^{\infty}(0 \le \rho \le 10t^{-\nu+\varepsilon_{1}})} + \|\rho^{-1} Z_{\text{in}}^{(\nu)}(t)\|_{L^{\infty}(0 \le \rho \le 10t^{-\nu+\varepsilon_{1}})} \le Ct^{2\nu}(1+|\ln t|),$$
(2.35)

$$\|\rho^{-l}\partial_{\rho}^{k}Z_{\rm in}^{(N)}(t)\|_{L^{\infty}(0\le \rho\le 10t^{-\nu+\varepsilon_{1}})} \le Ct^{2\nu}, \quad 2\le l+k, \ l\le (3-k)_{+}.$$
(2.36)

(ii) The error $\mathcal{R}_{in}^{(N)}$ admits the estimates

$$\begin{aligned} \|\rho^{-l}\partial_{\rho}^{k}\mathcal{R}_{\text{in}}^{(N)}(t)\|_{L^{2}(\rho d\rho, 0\leq \rho\leq 10t^{-\nu+\varepsilon_{1}})} &\leq t^{N\varepsilon_{1}}, \quad 0\leq l+k\leq 3, \\ \|\rho^{-l}\partial_{\rho}^{k}\partial_{t}\mathcal{R}_{\text{in}}^{(N)}(t)\|_{L^{2}(\rho d\rho, 0\leq \rho\leq 10t^{-\nu+\varepsilon_{1}})} &\leq t^{N\varepsilon_{1}}, \quad 0\leq k+l\leq 1, \end{aligned}$$
provided $N > \varepsilon_{1}^{-1}.$

2.3. Self-similar region $rt^{-1/2} \leq 1$. We next consider the self-similar region $\frac{1}{10}t^{\varepsilon_1} \leq rt^{-1/2} \leq 10t^{-\varepsilon_2}$, where $0 < \varepsilon_2 < 1/2$ to be fixed later. In this region we expect the solution to be close to **k**. In this regime it will be convenient to use the stereographic representation of (2.2):

$$(v_1, v_2, v_3) = v \to w = \frac{v_1 + iv_2}{1 + v_3} \in \mathbb{C} \cup \{\infty\}.$$

Equation (2.2) is equivalent to

$$iw_t = -\Delta w + r^{-2}w + G(w, \bar{w}, w_r), \quad G(w, \bar{w}, w_r) = \frac{2\bar{w}}{1 + |w|^2}(w_r^2 - r^{-2}w^2).$$

(2.38)

Slightly more generally, if w(r, t) is a solution of

$$iw_t = -\Delta w + r^{-2}w + G(w, \bar{w}, w_r) + A,$$
 (2.39)

then $v = \left(\frac{2 \operatorname{re} w}{1+|w|^2}, \frac{2 \operatorname{im} w}{1+|w|^2}, \frac{1-|w|^2}{1+|w|^2}\right) \in S^2$ solves

$$v_t = v \times (\Delta v + \frac{R^2}{r^2}v) + \mathcal{A}, \qquad (2.40)$$

with $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3)$ given by

$$\mathcal{A}_1 + i\mathcal{A}_2 = -2i\frac{A+w^2\bar{A}}{(1+|w|^2)^2}, \quad \mathcal{A}_3 = \frac{4\operatorname{im}(w\bar{A})}{(1+|w|^2)^2}.$$

Consider (2.38). Write w as

$$w(r, t) = e^{i\alpha(t)}W(y, t), \quad y = rt^{-1/2}.$$

Then (2.38) becomes

$$it W_t - \alpha_0 W = \mathcal{L}W + G(W, W, W_y), \qquad (2.41)$$

where

$$\mathcal{L} = -\Delta + y^{-2} + i\frac{1}{2}y\partial_y.$$

Note that as $y \rightarrow 0$, (2.26) gives the following expansion:

$$W(y,t) = \sum_{j\geq 0} \sum_{l=0}^{2j+1} \sum_{i\geq -j+l/2} \alpha(j,i,l) t^{\nu(2j+1)} (\ln y - \nu \ln t)^l y^{2i-1},$$
(2.42)

where the coefficients $\alpha(j, i, l)$ can be expressed explicitly in terms of $c_{i'l'}^{k,i'}$, $1 \le k \le j+i$, $j' \leq i, 0 \leq l' \leq l$. This suggests the following ansatz for *W*:

$$W(y,t) = \sum_{j\geq 0} \sum_{l=0}^{2j+1} t^{\nu(2j+1)} (\ln y - \nu \ln t)^l W_{j,l}(y).$$
(2.43)

Substituting (2.43) into (2.41) one gets the following recurrent system for $W_{i,l}$, $0 \le l \le 1$ $2j + 1, j \ge 0$:

$$\begin{cases} (\mathcal{L} - \mu_0) W_{0,1} = 0, \\ (\mathcal{L} - \mu_0) W_{0,0} = -i(1/2 + \nu) W_{0,1} + 2y^{-1} \partial_y W_{0,1}, \end{cases}$$

$$\begin{cases} (\mathcal{L} - \mu_j) W_{j,2j+1} = \mathcal{G}_{j,2j+1}, \\ (\mathcal{L} - \mu_j) W_{j,2j} = \mathcal{G}_{j,2j} - i(2j+1)(1/2 + \nu) W_{j,2j+1} + 2(2j+1)y^{-1} \partial_y W_{j,2j+1}, \\ (\mathcal{L} - \mu_j) W_{j,l} = \mathcal{G}_{j,l} - i(l+1)(1/2 + \nu) W_{j,l+1} \\ + 2(l+1)y^{-1} \partial_y W_{j,l+1} + (l+1)(l+2)y^{-2} W_{j,l+2}, \quad 0 \le l \le 2j-1. \end{cases}$$

$$(2.44)$$

Here $\mu_i = -\alpha_0 + i\nu(2j + 1)$, and $\mathcal{G}_{j,l}$ is the contribution of the nonlinear term $G(W, \overline{W}, W_r)$, that depends only on $W_{i,n}$, $i \leq j - 1$:

$$G(W, \bar{W}, W_r) = -\sum_{j \ge 1} \sum_{l=0}^{2j+1} t^{(2j+1)\nu} (\ln y - \nu \ln t)^l \mathcal{G}_{j,l}(y),$$

$$\mathcal{G}_{j,l}(y) = \mathcal{G}_{j,l}(y; W_{i,n}, 0 \le n \le 2i+1, 0 \le i \le j-1).$$

One has

Lemma 2.4. Given coefficients a_j , b_j , $j \ge 0$, there exists a unique solution of (2.44), (2.45), $W_{j,l} \in C^{\infty}(\mathbb{R}^*_+), 0 \le l \le 2j + 1, j \ge 0$, such that as $y \to 0$, $W_{j,l}$ has the following asymptotic expansion

$$W_{j,l}(y) = \sum_{i \ge -j+l/2} d_i^{j,l} y^{2i-1}, \qquad (2.46)$$

with

$$d_1^{j,1} = a_j, \quad d_1^{j,0} = b_j.$$
 (2.47)

The asymptotic expansion (2.46) can be differentiated any number of times with respect to y.

Proof. First note that equation $(\mathcal{L} - \mu_j)f = 0$ has a basis of solutions $\{e_i^1, e_i^2\}$ such that (i) e¹_j is a C[∞] odd function, e¹_j(y) = y + O(y³) as y → 0;
(ii) e²_j ∈ C[∞](ℝ^{*}₊) and admits the representation:

$$e_j^2(y) = y^{-1} + \kappa_j e_j^1(y) \ln y + \tilde{e}_j^2(y), \quad \kappa_j = -\frac{i}{4} - \frac{\mu_j}{2},$$

where \tilde{e}_i^2 is a C^{∞} odd function, $\tilde{e}_i^2(y) = O(y^3)$ as $y \to 0$.

Consider (2.44). From $(\mathcal{L} - \mu_0)W_{0,1} = 0$ and (2.46), (2.47), we get

$$W_{0,1} = a_0 e_0^1.$$

Consider the equation for $W_{0,0}$:

$$(\mathcal{L} - \mu_0)W_{0,0} = -i(1/2 + \nu)W_{0,1} + 2y^{-1}\partial_y W_{0,1}.$$

The right hand side has the form: $2a_0y^{-1} + a C^{\infty}$ odd function. Therefore, the equation has a unique solution $W_{0,0}^0$ of the form

$$W_{0,0}^{0}(y) = d_0 y^{-1} + \tilde{W}_{0,0}^{0}(y),$$

where $d_0 = \frac{a_0}{k_j}$ and $\tilde{W}_{0,0}^0$ is a C^{∞} odd function, $\tilde{W}_{0,0}^0(y) = O(y^3)$ as $y \to 0$. Together with (2.46), (2.47), this gives:

$$W_{0,0} = W_{0,0}^0 + b_0 e_0^1$$

Consider the case $j \ge 1$. We have

$$(\mathcal{L} - \mu_j)W_{j,l} = \mathcal{F}_{j,l}, \quad 0 \le l \le 2j + 1,$$
 (2.48)

where

$$\begin{aligned} \mathcal{F}_{j,2j+1} &= \mathcal{G}_{j,2j+1}, \\ \mathcal{F}_{j,2j} &= \mathcal{G}_{j,2j} - i(2j+1)(1/2+\nu)W_{j,2j+1} + 2(2j+1)y^{-1}\partial_y W_{j,2j+1}, \\ \mathcal{F}_{j,l} &= \mathcal{G}_{j,l} - i(l+1)(1/2+\nu)W_{j,l+1} \\ &+ 2(l+1)y^{-1}\partial_y W_{j,l+1} + (l+1)(l+2)y^{-2}W_{j,l+2}, \quad 0 \le l \le 2j-1. \end{aligned}$$

$$(2.49)$$

The resolution of (2.48) is based on the following ODE lemma whose proof is left to the reader.

Lemma 2.5. Let *F* be a $C^{\infty}(\mathbb{R}^*_{+})$ function of the form

$$F(y) = \sum_{j=k}^{0} F_j y^{2j-1} + \tilde{F}(y),$$

where \tilde{F} is a C^{∞} odd function and $k \leq -1$. Then there exists a unique constant A such that the equation $(\mathcal{L} - \mu_j)u = F + Ay^{-3}$ has a solution $u \in C^{\infty}(\mathbb{R}^*_+)$ with the following behavior as $y \to 0$:

$$u(y) = \sum_{j \ge k+1} u_j y^{2j-1}, \ u_1 = 0.$$

More precisely, we proceed as follows. Assume that $W_{i,n}$, $0 \le n \le 2i + 1$, $i \le j - 1$ has the prescribed behavior (2.46), (2.47). Then it is not difficult to check that $\mathcal{G}_{j,l}$ admit the following expansion as $y \to 0$:

$$\mathcal{G}_{j,2j+1}(y) = \sum_{i\geq 1} g_{j,2j+1}^{i} y^{2i-1},$$

$$\mathcal{G}_{j,2j}(y) = \sum_{i\geq 0} g_{j,2j}^{i} y^{2i-1},$$

$$\mathcal{G}_{j,l}(y) = \sum_{i\geq -j+l/2-1} g_{j,l}^{i} y^{2i-1}, \quad l \leq 2j-1.$$
(2.50)

Consider $W_{j,2j+1}$. From $(\mathcal{L} - \mu_j)W_{j,2j+1} = \mathcal{G}_{j,2j+1}$ we get

$$W_{j,2j+1} = W_{j,2j+1}^0 + c_0 e_j^1, (2.51)$$

where $W_{j,2j+1}^0$ is a unique C^∞ odd solution of $(\mathcal{L} - \mu_j)f = \mathcal{G}_{j,2j+1}$ that satisfies $W_{j,2j+1}^0(y) = O(y^3)$ as $y \to 0$. The constant c_0 remains undetermined at this stage.

Consider $\mathcal{F}_{j,2j}$. It has the form: $(g_{j,2j}^0 + 2(2j+1)c_0)y^{-1} + a C^{\infty}$ odd function. Therefore, for $W_{j,2j}$ we obtain

$$W_{j,2j} = W_{j,2j}^0 + c_1 e_j^1, (2.52)$$

where $W_{j,2j}^0$ is a unique solution of $(\mathcal{L} - \mu_j)f = \mathcal{F}_{j,2j}$, that satisfies as $y \to 0$,

$$W_{j,2j}^0 = d_1 y^{-1} + O(y^3), \quad d_1 = \frac{g_{j,2j}^0 + 2(2j+1)c_0}{2k_j}.$$
 (2.53)

Similarly to c_0 , the constant c_1 is arbitrary here.

Consider $\mathcal{F}_{j,2j-1}$. It follows from (2.49), (2.50), (2.51), (2.52), (2.53) that

$$\mathcal{F}_{j,2j-1} = (g_{j,2j-1}^{-1} - 4jd_1)y^{-3} + const y^{-1} + an C^{\infty}$$
 odd function.

The equation $(\mathcal{L} - \mu_j)W_{j,2j-1} = \mathcal{F}_{j,2j-1}$ has a solution of form (2.46) iff

$$g_{j,2j-1}^{-1} - 4jd_1 = 0,$$

which gives

$$c_0 = \frac{k_j g_{j,2j-1} - 1 - 2j g_{j,2j}^0}{4j(2j+1)}.$$

With this choice of c_0 one gets

$$W_{j,2j-1} = W_{j,2j-1}^0 + c_2 e_j^1,$$

where $W_{j,2j-1}^0$ is a unique solution of $(\mathcal{L} - \mu_j)f = \mathcal{F}_{j,2j-1}$, that satisfies as $y \to 0$,

$$W_{j,2j-1}^0 = const y^{-1} + O(y^3).$$

Continuing the procedure one successively finds $W_{j,2j-2}, \ldots, W_{j,0}$ in the form $W_{j,2j+1-k} = W_{j,2j+1-k}^0 + c_k e_j^1$, $k \le 2j + 1$, where $W_{j,2j+1-k}^0$ is an unique solution of $(\mathcal{L} - \mu_j)f = \mathcal{F}_{j,2j+1-k}$, that as $y \to 0$ has an asymptotic expansion of the form (2.46) with vanishing coefficients $d_1^{j,l}$. The constant c_k , $k \le 2j - 1$, is determined uniquely by the solvability condition of the equation for $W_{j,2j-k-1}$ (see lemma 2.5). Finally, c_{2j+1}, c_{2j+2} are given by (2.47):

$$c_{2j+1} = a_j, \quad c_{2j+2} = b_j.$$

We denote by $W_{j,l}^{ss}(y)$, $0 \le l \le 2j + 1$, $j \ge 0$, the solution of (2.44), (2.45) given by Lemma 2.4 with $a_j = \alpha(j, 1, 1)$, $b_j = \alpha(j, 1, 0)$, see (2.42). Since expansion (2.42) is a solution of (2.41), the uniqueness part of Lemma 2.4 ensures that

$$W_{j,l}^{ss}(y) = \sum_{i \ge -j+l/2} \alpha(j,i,l) y^{2i-1}, \text{ as } y \to 0.$$
 (2.54)

We next study the behavior of $W_{i,l}^{ss}$, $0 \le l \le 2j + 1$, $j \ge 0$, at infinity. One has

Lemma 2.6. Given coefficients $a_{j,l}$, $b_{j,l}$, $0 \le l \le 2j + 1$, $j \ge 0$, there exists a unique solution of (2.44), (2.45) of the following form.

$$W_{0,l} = W_{0,l}^0 + W_{0,l}^1, \quad l = 0, 1,$$
(2.55)

$$W_{j,l} = W_{j,l}^0 + W_{j,l}^1 + W_{j,l}^2, \quad 0 \le l \le 2j+1, \ j \ge 1,$$
(2.56)

where $(W_{j,l}^i)_{\substack{0 \le l \le 2j+1, \ j \ge 1}}$, i = 0, 1, are two solutions of (2.44), (2.45) that, as $y \to \infty$, have the following asymptotic expansion

$$\sum_{l=0}^{2j+1} (\ln y - \nu \ln t)^{l} W_{j,l}^{i}(y) = \sum_{l=0}^{2j+1} (\ln y + (-1)^{i} \ln t/2)^{l} \hat{W}_{j,l}^{i}(y), \quad i = 0, 1,$$

$$\hat{W}_{j,l}^{0}(y) = y^{2i\alpha_{0}+2\nu(2j+1)} \sum_{k \ge 0} \hat{w}_{k}^{j,l,0} y^{-2k},$$

$$\hat{W}_{j,l}^{1}(y) = e^{iy^{2}/4} y^{-2i\alpha_{0}-2-2\nu(2j+1)} \sum_{k \ge 0} \hat{w}_{k}^{j,l,-1} y^{-2k},$$

(2.57)

with

$$\hat{w}_0^{j,l,0} = a_{j,l}, \quad \hat{w}_0^{j,l,-1} = b_{j,l}.$$
 (2.58)

Finally, the interaction part $W_{j,l}^2$ can be written as

$$W_{j,l}^2(y) = \sum_{-j-1 \le m \le j} e^{-imy^2/4} y^{2i\alpha_0(2m+1)} W_{j,l,m}(y),$$
(2.59)

where $W_{j,l,m}$ have the following asymptotic expansion as $y \to \infty$:

$$\begin{split} W_{j,l,m}(y) &= \sum_{k \ge m+2} \sum_{\substack{m-j \le i \le j-m \\ j-m-i \in 2\mathbb{Z}}} \sum_{s=0}^{2j+1-l} w_{k,i,s}^{j,l,m} y^{2\nu(2i+1)-2k} (\ln y)^{s}, \quad m \ge 1, \\ W_{j,l,m}(y) &= \sum_{k \ge -m} \sum_{\substack{-j-m-2 \le i \le j+m \\ j-m-i \in 2\mathbb{Z}}} \sum_{s=0}^{2j+1-l} w_{k,i,s}^{j,l,m} y^{2\nu(2i+1)-2k} (\ln y)^{s}, \quad m \le -2, \\ W_{j,l,0}(y) &= \sum_{k \ge 1} \sum_{\substack{-j \le i \le j-2 \\ j-i \in 2\mathbb{Z}}} \sum_{s=0}^{2j+1-l} w_{k,i,s}^{j,l,0} y^{2\nu(2i+1)-2k} (\ln y)^{s}, \\ W_{j,l,-1}(y) &= \sum_{k \ge 1} \sum_{\substack{-j+1 \le i \le j-1 \\ j-i \in 2\mathbb{Z}}} \sum_{s=0}^{2j+1-l} w_{k,i,s}^{j,l,-1} y^{2\nu(2i+1)-2k} (\ln y)^{s}. \end{split}$$
(2.60)

The asymptotic expansion (2.57), (2.60) can be differentiated any number of times with respect to y.

Any solution of (2.44), (2.45) has form (2.55), (2.56), (2.57), (2.59), (2.60).

Proof. First note that equation $(\mathcal{L} - \mu_j)f = 0$ has a basis of solutions $\{f_j^1, f_j^2\}$ with the following behavior at infinity:

$$f_j^1(y) = y^{2i\alpha_0 + 2\nu(2j+1)} \sum_{k \ge 0} f_{j,1}^k y^{-2k}, \quad f_j^2(y) = e^{iy^2/4} y^{-2i\alpha_0 - 2\nu(2j+1) - 2} \sum_{k \ge 0} f_{j,2}^k y^{-2k},$$

 $f_{j,1}^0 = f_{j,2}^0 = 1$. As a consequence, the homogeneous system

$$\begin{aligned} (\mathcal{L} - \mu_j)g_{2j+1} &= 0, \\ (\mathcal{L} - \mu_j)g_{2j} &= -i(2j+1)(1/2+\nu)g_{2j+1} + 2(2j+1)y^{-1}\partial_y g_{2j+1}, \\ (\mathcal{L} - \mu_j)g_l &= -i(l+1)(1/2+\nu)g_{l+1} \\ &+ 2(l+1)y^{-1}\partial_y g_{l+1} + (l+1)(l+2)y^{-2}g_{l+2}, \quad 0 \le l \le 2j-1. \end{aligned}$$

$$(2.61)$$

has a basis of solutions $\{\mathbf{g}_{j}^{i,m}\}_{\substack{i=1,2,\\m=0,\dots,2j+1}},$

$$\mathbf{g}_{j}^{i,m} = (g_{j,0}^{i,m}, \dots, g_{j,2j+1}^{i,m}), \quad 0 \le m \le 2j+1, \ i = 1, 2,$$

defined by

$$\sum_{l=0}^{2j+1} (\ln y - \nu \ln t)^l g_{j,l}^{i,m}(y) = \sum_{l=0}^{2j+1} (\ln y + (-1)^{i-1} \ln t/2)^l \xi_{j,l}^{i,m}(y), \qquad (2.62)$$

where $(\xi_{j,l}^{i,m})_{l=0,\dots,2j+1}$ is the unique solution of

$$\begin{aligned} (\mathcal{L} - \mu_j)\xi_{2j+1} &= 0, \\ (\mathcal{L} - \mu_j)\xi_{2j} &= -i(2j+1)(i-1)\xi_{2j+1} + 2(2j+1)y^{-1}\partial_y\xi_{2j+1}, \\ (\mathcal{L} - \mu_j)\xi_l &= -i(l+1)(i-1)\xi_{l+1} + 2(l+1)y^{-1}\partial_y\xi_{l+1} \\ &+ (l+1)(l+2)y^{-2}\xi_{l+2}, \quad 0 \le l \le 2j-1, \end{aligned}$$
(2.63)

verifying

$$\begin{aligned} \xi_{j,l}^{l,m}(y) &= 0, \quad l > 2j + 1 - m, \\ \xi_{j,2j+1-m}^{i,m}(y) &= f_j^i(y), \\ \xi_{j,l}^{1,m}(y) &= y^{2i\alpha_0 + 2\nu(2j+1)} \sum_{k \ge 2j+1-l-m} \xi_{l,k}^1 y^{-2k}, \quad y \to +\infty, \\ \xi_{j,l}^{2,m}(y) &= e^{iy^2/4} y^{-2i\alpha_0 - 2\nu(2j+1) - 2} \sum_{k \ge 2j+1-l-m} \xi_{l,k}^2 y^{-2k} \quad y \to +\infty. \end{aligned}$$

$$(2.64)$$

Consider $W_{0,l}$, l = 0, 1. We have

$$(\mathcal{L} - \mu_0) W_{0,1} = 0,$$

$$(\mathcal{L} - \mu_0) W_{0,0} = -i(1/2 + \nu) W_{0,1} + 2y^{-1} \partial_y W_{0,1},$$

which gives

$$W_{0,l}(y) = \sum_{\substack{i=1,2,\\m=0,1}} A_{i,m} g_{0,l}^{i,m}(y), \quad l = 0, 1,$$

with some constants $A_{i,m}$, i = 1, 2, m = 0, 1. It follows from(2.62), (2.64) that $W_{0,l}$, l = 0, 1 have the form (2.55), (2.57) with $\hat{w}_0^{j,l,0} = A_{1,1-l}$, $\hat{w}_0^{j,l,-1} = A_{2,1-l}$, l = 0, 1, which together with (2.58) gives $A_{1,m} = a_{0,1-m}$, $A_{2,m} = b_{0,1-m}$, m = 0, 1. We next consider $j \ge 1$. Assume that $W_{i,n}$, $0 \le n \le 2i + 1$, $i \le j - 1$ has the

We next consider $j \ge 1$. Assume that $W_{i,n}$, $0 \le n \le 2i + 1$, $i \le j - 1$ has the prescribed behavior (2.56), (2.57), (2.59), (2.60). Then it is not difficult to check that $\mathcal{G}_{j,l}$ has the form

$$\mathcal{G}_{j,l}(y) = \sum_{-j-1 \le m \le j} e^{-imy^2/4} y^{2i\alpha_0(2m+1)} \mathcal{G}_{j,l}^m(y),$$
(2.65)

where $\mathcal{G}_{j,l}^m$, m = 0, -1, are given by

$$\mathcal{G}_{j,l}^{m}(y) = \mathcal{G}_{j,l}^{m,0}(y) + \mathcal{G}_{j,l}^{m,1}(y), \quad m = 0, -1,$$

$$\mathcal{G}_{j,l}^{0,0}(y) = \mathcal{G}_{j,l}(y; W_{i,n}^{0}, 0 \le n \le 2i + 1, 0 \le i \le j - 1),$$

$$e^{iy^{2}/4} \mathcal{G}_{j,l}^{-1,0}(y) = \mathcal{G}_{j,l}(y; W_{i,n}^{1}, 0 \le n \le 2i + 1, 0 \le i \le j - 1),$$

(2.66)

and admit the following asymptotic expansions and as $y \to \infty$:

$$\mathcal{G}_{j,l}^{0,0}(y) = \sum_{k\geq 1} \sum_{s=0}^{2j+1-l} T_{k,j,s}^{j,l,0} y^{2\nu(2j+1)-2k} (\ln y)^s,$$

$$\mathcal{G}_{j,l}^{0,1}(y) = \sum_{k\geq 2} \sum_{\substack{-j\leq i\leq j-2\\ j-i\in\mathbb{Z}\mathbb{Z}}} \sum_{s=0}^{2j+1-l} T_{k,i,s}^{j,l,0} y^{2\nu(2i+1)-2k} (\ln y)^s,$$

(2.67)

$$\mathcal{G}_{j,l}^{-1,0}(y) = \sum_{k\geq 2} \sum_{s=0}^{2j+1-l} T_{k,-j-1,s}^{j,l,-1} y^{-2\nu(2j+1)-2k} (\ln y)^s,$$

$$\mathcal{G}_{j,l}^{-1,1}(y) = \sum_{k\geq 1} \sum_{\substack{-j+1\leq i\leq j-1\\ j-i+1\leq 2\mathbb{Z}}} \sum_{s=0}^{2j+1-l} T_{k,i,s}^{j,l,-1} y^{2\nu(2i+1)-2k} (\ln y)^s.$$
(2.68)

Finally, $\mathcal{G}_{j,l}^m, m \neq 0, -1$, have the following behavior as $y \to \infty$

$$\mathcal{G}_{j,l}^{m}(y) = \sum_{k \ge m+1} \sum_{\substack{m-j \le i \le j-m \\ j-m-i \in \mathbb{Z}}} \sum_{s=0}^{2j+1-l} T_{k,i,s}^{j,l,m} y^{2\nu(2i+1)-2k} (\ln y)^{s}, \quad m \ge 1,$$

$$\mathcal{G}_{j,l}^{m}(y) = \sum_{k \ge |m|-1} \sum_{\substack{-j-m-2 \le i \le j+m \\ j+m-i \in \mathbb{Z}}} \sum_{s=0}^{2j+1-l} T_{k,i,s}^{j,l,m} y^{2\nu(2i+1)-2k} (\ln y)^{s}, \quad m \le -2.$$
(2.69)

Therefore, integrating (2.45), one gets

$$W_{j,l} = \tilde{W}_{j,l} + \sum_{\substack{i=1,2\\m=0,\dots,2j+1\\m=0}} A_{i,m} \mathbf{g}_{j,l}^{i,m},$$

$$\tilde{W}_{j,l}(y) = \sum_{-j-1 \le m \le j} e^{-imy^2/4} y^{2i\alpha_0(2m+1)} \tilde{W}_{j,l}^m(y),$$
(2.70)

where $e^{-imy^2/4}y^{2i\alpha_0(2m+1)}\tilde{W}_{j,l}^m$ is a unique solution of (2.45) with $\mathcal{G}_{j,l}$ replaced by $e^{-imy^2/4}y^{2i\alpha_0(2m+1)}\mathcal{G}_{j,l}^m(y)$, that has the following behavior as $y \to +\infty$:

$$\widetilde{W}_{j,l}^{m}(y) = \sum_{k \ge m+2} \sum_{\substack{m-j \le i \le j-m \\ j-m-i \in 2\mathbb{Z}}} \sum_{s=0}^{2j+1-l} \widetilde{w}_{k,i,s}^{j,l,m} y^{2\nu(2i+1)-2k} (\ln y)^{s}, \quad m \ge 1,$$

$$\widetilde{W}_{j,l}^{m}(y) = \sum_{k \ge -m} \sum_{\substack{-j-m-2 \le i \le j+m \\ j-m-i \in 2\mathbb{Z}}} \sum_{s=0}^{2j+1-l} \widetilde{w}_{k,i,s}^{j,l,m} y^{2\nu(2i+1)-2k} (\ln y)^{s}, \quad m \le -2.$$
(2.71)

Finally for m = 0, -1 one has:

$$\begin{split} \tilde{W}_{j,l}^{0}(y) &= \tilde{W}_{j,l}^{0,0}(y) + \tilde{W}_{j,l}^{0,1}(y), \\ \tilde{W}_{j,l}^{-1}(y) &= \tilde{W}_{j,l}^{-1,0}(y) + \tilde{W}_{j,l}^{-1,1}(y), \end{split}$$
(2.72)

where $\tilde{W}_{j,l}^{0,i}$ and $e^{iy^2/4}y^{-2i\alpha_0}\tilde{W}_{j,l}^{-1,i}$ are solutions of (2.45) with $\mathcal{G}_{j,l}$ replaced by $\mathcal{G}_{j,l}^{0,i}$ and $y^{-2i\alpha_0}e^{iy^2/4}\mathcal{G}_{j,l}^{-1,i}$ respectively, with the following asymptotics as $y \to \infty$:

$$\begin{split} \tilde{W}_{j,l}^{0,0}(y) &= \sum_{k\geq 1} \sum_{s=0}^{2j+1-l} \tilde{w}_{k,j,s}^{j,l,0} y^{2\nu(2j+1)-2k} (\ln y)^{s}, \\ \tilde{W}_{j,l}^{0,1}(y) &= \sum_{k\geq 1} \sum_{\substack{-j\leq i\leq j-2\\ j-i\in\mathbb{Z}\mathbb{Z}}} \sum_{s=0}^{2j+1-l} \tilde{w}_{k,i,s}^{j,l,0} y^{2\nu(2i+1)-2k} (\ln y)^{s}, \\ \tilde{W}_{j,l}^{-1,0}(y) &= \sum_{k\geq 2} \sum_{s=0}^{2j+1-l} \tilde{w}_{k,-j-1,s}^{j,l,-1} y^{-2\nu(2j+1)-2k} (\ln y)^{s}, \\ \tilde{W}_{j,l}^{-1,1}(y) &= \sum_{k\geq 1} \sum_{\substack{-j+1\leq i\leq j-1\\ j-i\in\mathbb{Z}}} \sum_{s=0}^{2j+1-l} \tilde{w}_{k,i,s}^{j,l,-1} y^{2\nu(2i+1)-2k} (\ln y)^{s}. \end{split}$$
(2.73)

Clearly, $W_{j,l}^0 = \tilde{W}_{j,l}^{0,0} + \sum_{m=0}^{2j+1} A_{1,m} \mathbf{g}_{j,l}^{1,m}$, and $W_{j,l}^1 = e^{-imy^2/4} \tilde{W}_{j,l}^{-1,0} + \sum_{m=0}^{2j+1} A_{2,m} \mathbf{g}_{j,l}^{2,m}$ are solutions of (2.45) with $\mathcal{G}_{j,l}$ replaced by $\mathcal{G}_{j,l}^{0,0} = \mathcal{G}_{j,l}(W_{i,n}^0, i \leq j - 1)$ and $e^{iy^2/4} \mathcal{G}_{j,l}^{-1,0} = \mathcal{G}_{j,l}(W_{i,n}^1, i \leq j - 1)$ respectively. As a consequence, $W_{j,l}^i, i = 0, 1, 0 \leq l \leq 2j + 1$, have the form (2.57) with $\hat{w}_0^{j,l,i} = A_{2j+1-l}^{1-i}, i = 0, -1, l = 0, \dots, 2j + 1$, which together with (2.58) gives $A_{1,m} = a_{j,2j+1-m}, A_{2,m} = b_{j,2j+1-m}, m = 0, \dots, 2j + 1$. \Box

Let $W_{in}^{(N)}(y,t)$ be the the stereographic representation of $V_{in}^{(N)}(t^{-\nu}y,t) = (V_{in,1}^{(N)}(t^{-\nu}y,t), V_{in,2}^{(N)}(t^{-\nu}y,t), V_{in,3}^{(N)}(t^{-\nu}y,t))$:

$$W_{\rm in}^{(N)}(y,t) = \frac{V_{in,1}^{(N)}(t^{-\nu}y,t) + iV_{in,2}^{(N)}(t^{-\nu}y,t)}{1 + V_{in,3}^{(N)}(t^{-\nu}y,t)}.$$

For $N \ge 2$ define

$$\begin{split} W_{ss}^{(N)}(y,t) &= \sum_{j=0}^{N} \sum_{l=0}^{2j+1} t^{\nu(2j+1)} (\ln \rho)^{l} W_{j,l}^{ss}(y), \\ A_{ss}^{(N)} &= -it \partial_{t} W_{ss}^{(N)} + \alpha_{0} W_{ss}^{(N)} + \mathcal{L} W_{ss}^{(N)} + G(W_{ss}^{(N)}, \bar{W}_{ss}^{(N)}, \partial_{y} W_{ss}^{(N)}), \\ V_{ss}^{(N)}(\rho,t) &= \left(\frac{2 \operatorname{re} W_{ss}^{(N)}}{1 + |W_{ss}^{(N)}|^{2}}, \frac{2 \operatorname{im} W_{ss}^{(N)}}{1 + |W_{ss}^{(N)}|^{2}}, \frac{1 - |W_{ss}^{(N)}|^{2}}{1 + |W_{ss}^{(N)}|^{2}}\right), \quad \rho = t^{-\nu} y, \\ Z_{ss}^{(N)}(\rho,t) &= V_{ss}^{(N)}(\rho,t) - Q(\rho). \end{split}$$

Fix $\varepsilon_1 = \frac{\nu}{2}$. Then, as a direct consequence of the previous analysis, we obtain the following result.

Lemma 2.7. For 0 < t < T(N) the following holds.

(i) For any k, l, and $\frac{1}{10}t^{\varepsilon_1} \le y \le 10t^{\varepsilon_1}$, one has

$$|y^{-l}\partial_{y}^{k}\partial_{t}^{i}(W_{ss}^{(N)} - W_{in}^{(N)})| \le C_{k,l,i}t^{\nu(N+1-\frac{l+k}{2})-i}, \quad i = 0, 1.$$
(2.74)

(ii) The profile $Z_{ss}^{(N)}$ verifies

$$\|\partial_{\rho} Z_{ss}^{(N)}(t)\|_{L^{2}(\rho d\rho, \frac{1}{10}t^{-\nu+\varepsilon_{1}} \le \rho \le 10t^{-\nu-\varepsilon_{2}})} \le Ct^{\eta},$$
(2.75)

$$\|\rho^{-1}Z_{ss}^{(N)}(t)\|_{L^{2}(\rho d\rho, \frac{1}{10}t^{-\nu+\varepsilon_{1}} \le \rho \le 10t^{-\nu-\varepsilon_{2}})} \le Ct^{\eta},$$

$$\|\rho^{-1}Z_{ss}^{(N)}(t)\|_{L^{2}(\rho d\rho, \frac{1}{10}t^{-\nu+\varepsilon_{1}} \le \rho \le 10t^{-\nu-\varepsilon_{2}})} \le Ct^{\eta},$$
(2.76)

$$\|Z_{ss}^{(N)}(t)\|_{L^{\infty}(\frac{1}{10}t^{-\nu+\varepsilon_{1}} \le \rho \le 10t^{-\nu-\varepsilon_{2}})} \le Ct^{\eta},$$
(2.77)

$$\|\rho \partial_{\rho} Z_{ss}^{(N)}(t)\|_{L^{\infty}(\frac{1}{10}t^{-\nu+\varepsilon_{1}} \le \rho \le 10t^{-\nu-\varepsilon_{2}})} \le Ct^{\eta},$$
(2.78)

$$\|\rho^{-l}\partial_{\rho}^{k}Z_{ss}^{(N)}(t)\|_{L^{2}(\rho d\rho,\frac{1}{10}t^{-\nu+\varepsilon_{1}}\leq\rho\leq10t^{-\nu-\varepsilon_{2}})}\leq Ct^{\nu+\frac{1}{2}+\eta}, \quad k+l=2,$$
(2.79)

$$\|\rho^{-l}\partial_{\rho}^{k}Z_{\text{in}}^{(N)}(t)\|_{L^{2}(\rho d\rho, \frac{1}{10}t^{-\nu+\varepsilon_{1}} \le \rho \le 10t^{-\nu-\varepsilon_{2}})} \le Ct^{2\nu}, \quad k+l \ge 3,$$

$$(2.80)$$

$$\|\rho^{-l}\partial_{\rho}^{k}Z_{ss}^{(N)}(t)\|_{L^{\infty}(\frac{1}{10}t^{-\nu+\varepsilon_{1}}\leq\rho\leq10t^{-\nu-\varepsilon_{2}})}\leq Ct^{\nu+\eta}, \quad k+l=1,$$
(2.81)

$$\|\rho^{-l}\partial_{\rho}^{k}Z_{ss}^{(N)}(t)\|_{L^{\infty}(\frac{1}{10}t^{-\nu+\varepsilon_{1}}\leq\rho\leq10t^{-\nu-\varepsilon_{2}})}\leq Ct^{2\nu}, \quad 2\leq l+k.$$
(2.82)

Here and below η stands for small positive constants depending on v and ε_2 , that may change from line to line.

(iii) The error $A_{ss}^{(N)}$ admits the estimate

$$\|y^{-l}\partial_{y}^{k}\partial_{l}^{i}A_{ss}^{(N)}(t)\|_{L^{2}(ydy,\frac{1}{10}t^{\varepsilon_{1}} \le y \le 10t^{-\varepsilon_{2}})} \le t^{\nu N(1-2\varepsilon_{2})-i}, \quad 0 \le l+k \le 4, \quad i = 0, 1.$$
(2.83)

2.4. Remote region $r \sim 1$. We next consider the remote region $t^{-\varepsilon_2} \leq rt^{-1/2}$. Consider the formal solution $\sum_{j\geq 0} \sum_{l=0}^{2j+1} t^{\nu(2j+1)} (\ln y - \nu \ln t)^l W_{j,l}^{ss}(y)$ constructed in the previous subsection. By Lemma 2.6, it has form (2.55), (2.56), (2.57), (2.59), (2.60), with some coefficients $\hat{w}_{k}^{j,l,i}$, $w_{k,i,s}^{j,l,m}$. Note that in the limit $y \to \infty$, $r \to 0$, the main order terms of the expansion $\sum_{j\geq 0}^{2j+1} \sum_{l=0}^{2j+1} t^{\nu(2j+1)+i\alpha_0} (\ln y - \nu \ln t)^l W_{j,l}^{ss}(t^{-1/2}r)$ are given by

$$\sum_{j\geq 0} \sum_{l=0}^{2j+1} t^{\nu(2j+1)+i\alpha_0} (\ln y - \nu \ln t)^l W_{j,l}^{ss}(t^{-1/2}r)$$

$$\sim \sum_{k\geq 0} \frac{t^k}{r^{2k}} \sum_{j\geq 0} \sum_{l=0}^{2j+1} \hat{w}_k^{j,l,0} (\ln r)^l r^{2i\alpha_0+2\nu(2j+1)}$$

$$+ \frac{e^{\frac{ir^2}{4t}}}{t} \sum_{k\geq 0} \frac{t^k}{r^{2k}} \sum_{j\geq 0} \sum_{l=0}^{2j+1} \hat{w}_k^{j,l,-1} \left(\frac{r}{t}\right)^{-2i\alpha_0-2\nu(2j+1)-2} \left(\ln\left(\frac{r}{t}\right)\right)^l, \quad (2.84)$$

which means that in the region $t^{-\varepsilon_2} \le rt^{-1/2}$ we have to look for the solution of (2.38) as a perturbation of the time independent profile

$$\sum_{j\geq 0} \sum_{l=0}^{2j+1} \beta_0(j,l) (\ln r)^l r^{2\nu(2j+1)},$$

with $\beta_0(j, l) = \hat{w}_0^{j,l,0}$.

Let
$$\theta \in C_0^{\infty}(\mathbb{R}), \theta(\xi) = \begin{cases} 1, & |\xi| \le 1, \\ 0, & |\xi| \ge 2. \end{cases}$$
 For $N \ge 2$, and $\delta > 0$ we define

$$f_0(r) \equiv f_0^{(N)}(r) = \theta(\delta^{-1}r) \sum_{j=0}^N \sum_{l=0}^{2j+1} \beta_0(j,l) (\ln r)^l r^{2i\alpha_0 + 2\nu(2j+1)}.$$

Note that $e^{i\theta} f_0 \in H^{1+2\nu-}$ and

$$\|e^{i\theta} f_0\|_{\dot{H}^s} \le C\delta^{1+2\nu-s}, \quad \forall 0 \le s < 1+2\nu.$$
(2.85)

Write $w(r, t) = f_0(r) + \chi(r, t)$. Then χ solves

$$i\chi_{t} = -\Delta\chi + r^{-2}\chi + \mathcal{V}_{0}\partial_{r}\chi + \mathcal{V}_{1}\chi + \mathcal{V}_{2}\bar{\chi} + \mathcal{N} + \mathcal{D}_{0},$$

$$\mathcal{V}_{0} = \frac{4\bar{f}_{0}\partial_{r}f_{0}}{1 + |f_{0}|^{2}}, \quad \mathcal{V}_{1} = -\frac{2|f_{0}|^{2}(2 + |f_{0}|^{2})}{r^{2}(1 + |f_{0}|^{2})^{2}} - \frac{2\bar{f}_{0}^{2}(\partial_{r}f_{0})^{2}}{(1 + |f_{0}|^{2})^{2}},$$

$$\mathcal{V}_{2} = \frac{2(r^{2}(\partial_{r}f_{0})^{2} - f_{0}^{2})}{r^{2}(1 + |f_{0}|^{2})^{2}},$$

$$\mathcal{D}_{0} = (-\Delta + r^{-2})f_{0} + G(f_{0}, \bar{f}_{0}, \partial_{r}f_{0}).$$
(2.86)

Finally, ${\cal N}$ contains the terms that are at least quadratic in χ and it has the form

$$\mathcal{N} = N_0(\chi, \bar{\chi}) + \chi_r N_1(\chi, \bar{\chi}) + \chi_r^2 N_2(\chi, \bar{\chi}),$$

$$N_0(\chi, \bar{\chi}) = G(f_0 + \chi, \bar{f}_0 + \bar{\chi}, \partial_r f_0) - G(f_0, \bar{f}_0, \partial_r f_0) - \mathcal{V}_1 \chi - \mathcal{V}_2 \bar{\chi},$$

$$N_1(\chi, \bar{\chi}) = \frac{4\partial_r f_0(\bar{f}_0 + \bar{\chi})}{1 + |f_0 + \chi|^2} - \mathcal{V}_0,$$

$$N_2(\chi, \bar{\chi}) = \frac{2(\bar{f}_0 + \bar{\chi})}{1 + |f_0 + \chi|^2}.$$
(2.87)

_

Accordingly to (2.55), (2.56), (2.57), (2.59), (2.60), we look for χ as

$$\chi(r,t) = \sum_{\substack{q \ge 0\\k \ge 1}} t^{2\nu q + k} \sum_{\substack{-\min\{k,q\} \le m \le \min\{(k-2)+,q\}\\q-m \in 2\mathbb{Z}}} \sum_{s=0}^{q} e^{-im\Phi} (\ln r - \ln t)^{s} g_{k,q,m,s}(r),$$
(2.88)

where

$$\Phi = \frac{r^2}{4t} + 2\alpha_0 \ln t + \varphi(r),$$

with φ to be chosen later.

Substituting this ansatz to the expressions $-i\chi_t - \Delta \chi + r^{-2}\chi + \mathcal{V}_0\partial_r\chi + \mathcal{V}_1\chi + \mathcal{V}_2\bar{\chi}$, *N*, we get

$$-i\chi_{t} + \Delta\chi - r^{-2}\chi + \mathcal{V}_{0}\partial_{r}\chi + \mathcal{V}_{1}\chi + \mathcal{V}_{2}\bar{\chi}$$

$$= \sum_{\substack{q \ge 0\\k \ge 2}} t^{2\nu q+k-2} \sum_{\substack{-\min\{k,q\} \le m \le \min\{(k-2)+,q\}\\q-m \in \mathbb{Z}\mathbb{Z}}} \sum_{s=0}^{q} e^{-im\Phi} (\ln r - \ln t)^{s} \Psi_{k,q,m,s}^{lin},$$

$$N_{0}(\chi, \bar{\chi}) = \sum_{\substack{q \ge 0\\k \ge 4}} t^{2\nu q+k-2} \sum_{\substack{-\min\{k,q\} \le m \le \min\{(k-2)+,q\}\\q-m \in \mathbb{Z}\mathbb{Z}}} \sum_{s=0}^{q} e^{-im\Phi} (\ln r - \ln t)^{s} \Psi_{k,q,m,s}^{nl,0},$$

$$\chi_{r} N_{1}(\chi, \bar{\chi}) = \sum_{\substack{q \ge 0\\k \ge 3}} t^{2\nu q+k-2} \sum_{\substack{-\min\{k,q\} \le m \le \min\{(k-2)+,q\}\\q-m \in \mathbb{Z}\mathbb{Z}}} \sum_{s=0}^{q} e^{-im\Phi} (\ln r - \ln t)^{s} \Psi_{k,q,m,s}^{nl,1},$$

$$(\chi_{r})^{2} N_{2}(\chi, \bar{\chi}) = \sum_{\substack{q \ge 0\\k \ge 2}} t^{2\nu q+k-2} \sum_{\substack{-\min\{k,q\} \le m \le \min\{(k-2)+,q\}\\q-m \in \mathbb{Z}\mathbb{Z}}} \sum_{s=0}^{q} e^{-im\Phi} (\ln r - \ln t)^{s} \Psi_{k,q,m,s}^{nl,2},$$

Here

$$\Psi_{k,q,m,s}^{lin} = \frac{m(m+1)r^2}{4}g_{k,q,m,s} + \Psi_{k,q,m,s}^{lin,1} + \Psi_{k,q,m,s}^{lin,2},$$
(2.89)

with $\Psi_{k,q,m,s}^{lin,1}$ and $\Psi_{k,q,m,s}^{lin,2}$ depending respectively on $g_{k-1,q,m,s'}$, s' = s, s+1 and $g_{k-2,q,m,s'}$, s' = s, s+1, s+2 only:

$$\Psi_{k,q,m,s}^{lin,1} = -i(2\nu q + k - 1 - m - 2im\alpha_0)g_{k-1,q,m,s} + i(m+1)(s+1)g_{k-1,q,m,s+1} +imr(\partial_r - im\varphi'(r) - \frac{1}{2}\mathcal{V}_0(r))g_{k-1,q,m,s},$$
(2.90)

$$\Psi_{k,q,m,s}^{lin,2} = -e^{im\varphi} \Delta(e^{-im\varphi}g_{k-2,q,m,s}) - \frac{2(s+1)}{r} e^{im\varphi}\partial_r (e^{-im\varphi}g_{k-2,q,m,s+1}) - \frac{(s+1)(s+2)}{r^2}g_{k-2,q,m,s+2} + \mathcal{V}_0 e^{im\varphi}\partial_r (e^{-im\varphi}g_{k-2,q,m,s}) + (r^{-2} + \mathcal{V}_1)g_{k-2,q,m,s} + \mathcal{V}_2\bar{g}_{k-2,q,-m,s}.$$
(2.91)

Here and below we use the convention $g_{k,q,m,s} = 0$ if $(k, q, m, s) \notin \Omega$, where

$$\Omega = \{k \ge 1, q \ge 0, 0 \le s \le q, q - m \in 2\mathbb{Z}, -\min\{k, q\} \le m \le \min\{k - 1, q\}\}.$$

The nonlinear terms $\Psi_{k,q,m,s}^{nl,i}$, i = 0, 1, depend only on $g_{k',q',m',s'}$ with $k' \le k - 2$. More precisely,

$$\begin{split} \Psi^{nl,0}_{k,q,m,s} &= \Psi^{nl,0}_{k,q,m,s}(r;g_{k',q',m',s'},\,k' \le k-3), \\ \Psi^{nl,1}_{k,q,m,s} &= \Psi^{nl,1}_{k,q,m,s}(r;g_{k',q',m',s'},\,k' \le k-2). \end{split}$$

Finally, $\Psi_{k,q,m,s}^{nl,2}$ has the following structure

$$\Psi_{2,q,m,s}^{nl,2} = -\delta_{m,-2} \frac{r^2 \bar{f_0}}{2(1+|f_0|^2)} \sum_{\substack{q_1+q_2=q\\s_1+s_2=s}} g_{1,q_1,-1,s_1} g_{1,q_2,-1,s_2},$$

$$\Psi_{k,q,m,s}^{nl,2} = \Psi_{k,q,m,s}^{nl,2,0} + \tilde{\Psi}_{k,q,m,s}^{nl,2}, \quad k \ge 3,$$

$$\Psi_{k,q,m,s}^{nl,2,0} = \frac{(m+1)r^2 \bar{f_0}}{1+|f_0|^2} \sum_{\substack{q_1+q_2=q\\s_1+s_2=s}} g_{1,q_1,-1,s_1} g_{k-1,q_2,m+1,s_2},$$
(2.92)

with $\tilde{\Psi}_{k,q,m,s}^{nl,2}$ depending on $g_{k',q',m',s'}$, $k' \leq k-2$ only:

$$\tilde{\Psi}_{k,q,m,s}^{nl,2} = (r; g_{k',q',m',s'}, k' \le k-2).$$

Note that

$$\Psi_{k,q,-1,s}^{nl,2,0} = 0, \quad \forall k,q,s.$$

Equation (2.86) is equivalent to

$$\begin{cases} \Psi_{2,0,0,0}^{lin} + \mathcal{D}_0 = 0, \\ \Psi_{k,q,m,s}^{lin} + \Psi_{k,q,m,s}^{nl} = 0, \quad (k,q,m,s) \in \Omega, \ (k,q,m,s) \neq (2,0,0,0), \end{cases}$$
(2.93)

Here $\Psi_{k,q,m,s}^{nl} = \Psi_{k,q,m,s}^{nl,0} + \Psi_{k,q,m,s}^{nl,1} + \Psi_{k,q,m,s}^{nl,2}$. We view (2.93) as a recurrent system with respect to $k \ge 1$ of the form

$$\begin{cases} \Psi_{2,0,0,0}^{lin} + \mathcal{D}_0 = 0, \\ \Psi_{2,2,j,0,s}^{lin} = 0, \quad (j,s) \neq (0,0), \\ \Psi_{2,2,j+1,1,s}^{lin} = 0, \end{cases}$$
(2.94)

and

$$\begin{bmatrix} \Psi_{k+1,q,m,s}^{lin} + \Psi_{k+1,q,m,s}^{nl} = 0, & m = 0, 1\\ \Psi_{k,q,m,s}^{lin} + \Psi_{k,q,m,s}^{nl} = 0, & m \neq 0, 1 \end{bmatrix}, \quad k \ge 2.$$
(2.95)

Consider (2.94). Choosing φ as

$$\varphi(r) = -i \int_0^r ds \, \frac{\bar{f}_0(s)\partial_s f_0(s) - f_0(s)\partial_s \bar{f}_0(s)}{1 + |f_0(s)|^2}, \tag{2.96}$$

we can rewrite (2.94) in the following form

$$\begin{array}{l} (4\nu j+1)g_{1,2j,0,s}-(s+1)g_{1,2j,0,s+1}=0, \quad (j,s)\neq (0,0),\\ g_{1,0,0,0}=-iD_0,\\ r\partial_r g_{1,2j+1,-1,s}+(2\nu(2j+1)+2+2i\alpha_0-r(\ln(1+|f_0|^2))')g_{1,2j+1,-1,s}=0.\\ (2.97) \end{array}$$

Accordingly to (2.84), we solve this system as follows:

$$g_{1,2j,0,s} = 0, \quad (j,s) \neq (0,0),$$

$$g_{1,0,0,0} = -iD_0,$$

$$g_{1,2j+1,-1,s} = \beta_1(j,s)(1+|f_0|^2)r^{-2i\alpha_0-2\nu(2j+1)-2}, \quad 0 \le s \le 2j+1, \quad 0 \le j \le N,$$

$$g_{1,2j+1,-1,s} = 0, \quad j > N,$$

(2.98)

where $\beta_1(j, s) = \hat{w}_0^{j, l, -1}$.

Consider (2.95). We will solve it with the "zero boundary conditions" at zero. To formulate the result we need to introduce some notations. For $m \in \mathbb{Z}$, we denote by \mathcal{A}_m the space of continuous functions $a : \mathbb{R}_+ \to \mathbb{C}$ such that

- (i) $a \in C^{\infty}(\mathbb{R}^*)$, supp $a \subset \{r \leq 2\delta\}$;
- (ii) for $0 \le r < \delta$, *a* has an absolutely convergent expansion of the form

$$a(r) = \sum_{\substack{n \ge K(m) \\ n-m-1 \in 2\mathbb{Z}}} \sum_{l=0}^{n} \alpha_{n,l} (\ln r)^{l} r^{2\nu n},$$

where K(m) = m + 1 if $m \ge 0$, and K(m) = |m| - 1 if $m \le -1$. For $k \ge 1$ we define \mathcal{B}_k as the space of continuous functions $b : \mathbb{R}_+ \to \mathbb{C}$ such that

- (i) $b \in C^{\infty}(\mathbb{R}^*)$;
- (ii) for $0 \le r < \delta$, b has an absolutely convergent expansion of the form

$$b(r) = \sum_{n=0}^{\infty} \sum_{l=0}^{2n} \beta_{n,l} r^{4\nu n} (\ln r)^l,$$

(iii) for $r \ge 2\delta$, b is a polynome of degree k - 1.

Finally, we set $\mathcal{B}_k^0 = \{b \in \mathcal{B}_k, b(0) = 0\}$. Clearly, for any *m*, *k*, one has $r \partial_r \mathcal{A}_m \subset \mathcal{A}_m, r \partial_r \mathcal{B}_k \subset \mathcal{B}_k, \mathcal{B}_k \mathcal{A}_m \subset \mathcal{A}_m$. Note also that

$$f_0 \in r^{2i\alpha_0} \mathcal{A}_0, \quad \varphi \in \mathcal{B}_1^0, \quad g_{1,0,0,0} \in r^{2i\alpha_0 - 2} \mathcal{A}_0, \\ g_{1,2j+1,-1,s} \in r^{-2i\alpha_0 - 2\nu(2j+1) - 2} \mathcal{B}_1, \quad 0 \le s \le 2j+1$$

Furthermore, one checks easily that if for all $(k, q, m, s) \in \Omega$, $g_{k,q,m,s} \in$ $r^{2i\alpha_0(1+2m)-2\nu q-2k}\mathcal{A}_m$ if $m \neq -1$ and $g_{k,q,-1,s} \in r^{-2i\alpha_0-2\nu q-2k}\mathcal{B}_k$, then

$$\Psi_{k,q,m,s}^{lin,i}, \Psi_{k,q,m,s}^{nl,j}, \tilde{\Psi}_{k,q,m,s}^{nl,2} \in r^{2i\alpha_0(1+2m)-2\nu q-2(k-1)} \mathcal{A}_m, \quad m \neq -1,$$

$$\Psi_{k,q,-1,s}^{lin,2}, \Psi_{k,q,-1,s}^{nl,j}, \tilde{\Psi}_{k,q,-1,s}^{nl,2} \in r^{-2i\alpha_0-2\nu q-2(k-1)} \mathcal{B}_{k-2},$$
(2.99)

i = 1, 2, j = 0, 1, 2.

Consider (2.95). Using (2.89), (2.90), (2.91), (2.92), (2.96), one can rewrite it as

$$\frac{1}{4}m(m+1)r^{2}g_{k,q,m,s} = B_{k,q,m,s}, \quad m \neq 0, -1, r\partial_{r}g_{k,q,m,s} + \left(2\nu q + k + 1 + 2i\alpha_{0} - \frac{r(\bar{f_{0}}\partial_{r}f_{0} + f_{0}\partial_{r}\bar{f_{0}})}{1 + |f_{0}|^{2}}\right)g_{k,q,-1,s} = C_{k,q,-1,s}, (2\nu q + k)g_{k,q,0,s} - (s+1)g_{k,q,0,s+1} = C_{k,q,0,s} + D_{k,q,s},$$

$$(2.100)$$

where $B_{k,q,m,s}$, $C_{k,q,m,s}$ depend on $g_{k',q',m',s'}$, $k' \leq k - 1$ only:

$$B_{k,q,m,s} = B_{k,q,m,s}(r; g_{k',q',m',s'}, k' \le k - 1), \quad m \ne 0, -1,$$

$$C_{k,q,m,s} = C_{k,q,m,s}(r; g_{k',q',m',s'}, k' \le k - 1), \quad m = 0, -1,$$

and have the following form

$$B_{k,q,m,s} = -\Psi_{k,q,m,s}^{lin,1} - \Psi_{k,q,m,s}^{lin,2} - \Psi_{k,q,m,s}^{nl}, \quad m \neq 0, -1$$

$$C_{k,q,m,s} = -i\Psi_{k+1,q,m,s}^{lin,2} - i\tilde{\Psi}_{k+1,q,m,s}^{nl}, \quad m = 0, -1.$$
(2.101)

Finally $D_{k,q,s}$ depend only on $g_{k,q,1,s}$ and is given by

$$D_{k,q,s} = -i\Psi_{k+1,q,0,s}^{nl,2,0} = -i\frac{r^2\bar{f}_0}{1+|f_0|^2}\sum_{\substack{q_1+q_2=q\\s_1+s_2=s}}g_{1,q_1,-1,s_1}g_{k,q_2,1,s_2}.$$
 (2.102)

Note that $D_{2,q,s} = 0$.

Remark 2.8. It is not difficult to check that if

$$g_{k,q,m,s} = 0, \quad \forall q > (2N+1)(2k-2), \quad m \neq 0, 1,$$

 $g_{k,q,m,s} = 0, \quad \forall q > (2N+1)(2k-1), \quad m = 0, 1,$

then

$$\begin{split} & B_{k,q,m,s} = 0, \quad \forall q > (2N+1)(2k-2), \ m \neq 0, 1, \\ & C_{k,q,m,s} = 0, \quad \forall q > (2N+1)(2k-1), \ m = 0, 1, \\ & D_{k,q,s} = 0, \quad \forall q > (2N+1)(2k-1). \end{split}$$

We are now in position to prove the following result.

Lemma 2.9. There exists a unique solution $(g_{k,q,m,s})_{\substack{(k,q,m,s) \in \Omega \\ k \geq 2}}$ of (2.100) verifying

$$g_{k,q,m,s} \in r^{2i\alpha_0(2m+1)-2\nu q-2k} \mathcal{A}_m, \quad m \neq -1, g_{k,q,-1,s} \in r^{-2i\alpha_0-2\nu q-2k} \mathcal{B}_k.$$
(2.103)

In addition, one has

$$g_{k,q,m,s} = 0, \quad \forall q > (2N+1)(2k-2), \quad m \neq 0, 1, g_{k,q,m,s} = 0, \quad \forall q > (2N+1)(2k-1), \quad m = 0, 1,$$
(2.104)

Proof. For k = 2 (2.100), (2.101), (2.92) give

$$\frac{1}{2}r^{2}g_{2,2j,-2,s} = B_{2,2j,-2,s}, \quad 0 \le s \le 2j, \ 1 \le j, \quad (2.105)$$

$$r\partial_{r}g_{2,2j+1,-1,s} + \left(2\nu(2j+1) + 3 + 2i\alpha_{0} - \frac{r(\bar{f}_{0}\partial_{r}f_{0} + f_{0}\partial_{r}\bar{f}_{0})}{1 + |f_{0}|^{2}}\right)g_{2,2j+1,-1,s}$$

$$= C_{2,2j+1,-1,s}, \quad 0 \le s \le 2j+1, \ 0 \le j, \quad (2.106)$$

$$(4\nu j + 2)g_{2,2j,0,s} - (s+1)g_{2,2j,0,s+1} = C_{2,2j,0,s}, \quad 0 \le s \le 2j, \ 0 \le j. \quad (2.107)$$

Recall that $B_{2,q,m,s}$, $C_{2,q,m,s}$ depend only on $g_{1,q',m',s'}$ and therefore, are known by now. By (2.99), (2.101) and Remark 2.8 they verify

$$B_{2,q,-2,s} \in r^{-6i\alpha_0 - 2\nu q - 2} \mathcal{A}_{-2}, \quad m \neq 0, -1$$

$$C_{2,q,0,s} \in r^{2i\alpha_0 - 2\nu q - 4} \mathcal{A}_0, \quad C_{2,q,-1,s} \in r^{-2i\alpha_0 - 2\nu q - 4} \mathcal{B}_1,$$

$$B_{2,q,-2,s} = 0, \quad q > 2(2N+1),$$

$$C_{2,q,m,s} = 0, \quad q > 3(2N+1), \quad m = 0, 1.$$

Therefore, we get from (2.105), (2.106),

$$g_{2,2j,-2,s} = \frac{2}{r^2} B_{2,2j,-2,s} \in r^{-6i\alpha_0 - 4\nu j - 4} \mathcal{A}_{-2}, \quad 0 \le s \le 2j, \ 1 \le j,$$

$$g_{2,2j,0,2j} = \frac{1}{4j\nu + 2} C_{2,2j,0,2j} \in r^{2i\alpha_0 - 4\nu j - 4} \mathcal{A}_0, \ 0 \le j,$$

$$g_{2,2j,0,s} = \frac{1}{4j\nu + 2} C_{2,2j,0,s} + \frac{s+1}{4j\nu + 2} g_{2,2j,0,s+1} \in r^{2i\alpha_0 - 4\nu j - 4} \mathcal{A}_0, \ 0 \le s \le 2j,$$

$$g_{2,2j,-2,s} = 0, \quad j > 2N + 1,$$

$$g_{2,2j,0,s} = 0, \quad j \ge 3N + 2,$$

$$(2.108)$$

Consider (2.107). Write

$$g_{2,2j+1,-1,s} = r^{-2i\alpha_0 - 3 - 2\nu(2j+1)} (1 + |f_0|^2) \hat{g}_{2,2j+1,-1,s}.$$

Then $\hat{g}_{2,2i+1,-1,s}$ solves

$$\partial_r \hat{g}_{2,2j+1,-1,s} = r^{-2} \hat{C}_{2,2j+1,-1,s},$$
 (2.109)

where

$$\hat{C}_{2,2j+1,-1,s} = r^{2i\alpha_0 + 4 + 2\nu(2j+1)} (1 + |f_0|^2)^{-1} C_{2,2j+1,-1,s}$$

Since $C_{2,2j+1,-1,s} \in r^{-2i\alpha_0 - 2\nu(2j+1) - 4} \mathcal{B}_1$, we have:

(i) for $0 \le r < \delta$, $\hat{C}_{2,2j+1,-1,s}$ admits an absolutely convergent expansion of the form

$$\hat{C}_{2,2j+1,-1,s} = \sum_{n=0}^{\infty} \sum_{l=0}^{2n} \beta_{n,l} r^{4\nu n} (\ln r)^l,$$

(ii) for $r \ge 2\delta$, $\hat{C}_{2,2j+1,-1,s}$ is a constant. Clearly, there exists a unique solution $\hat{g}_{2,2j+1,-1,s}$ of (2.109) such that $\hat{g}_{2,2j+1,-1,s} \in$ $r^{-1}\mathcal{B}_2$. It is given by

$$\hat{g}_{2,2j+1,-1,s}(r) = \int_0^r d\rho \rho^{-2} (\hat{C}_{2,2j+1,-1,s}(\rho) - \beta_{0,0}) - \beta_{0,0} r^{-1}, 0 \le s \le 2j+1, \ 0 \le j.$$

Finally, since $C_{2,q,-1,s} = 0$ for q > 3(2N + 1), one has

$$g_{2,2j+1,-1,s} = 0, \quad j > 3N+1$$

We next proceed by induction. Suppose we have solved (2.100) with k = 2, ..., l-1, $l \ge 3$, and have found $(g_{k,q,m,s})_{\substack{(k,q,m,s) \in \Omega \\ 2 \le k \le l-1}}$ verifying (2.103) and (2.104). Consider k = l. From the first line in (2.100) we have:

$$\frac{1}{4}m(m+1)r^2g_{l,q,m,s} = B_{l,q,m,s}, \quad m \neq 0, -1,$$

where $B_{l,q,m,s}$ are known by now and, by (2.99), (2.101) and Remark 2.8, satisfy

$$B_{l,q,m,s} \in r^{2i\alpha_0(2m+1)-2\nu q-2(l-1)}\mathcal{A}_m, B_{l,q,m,s} = 0, \quad q > 2(2N+1)(2l-2).$$

As a consequence, one obtains for $m \neq 0, -1$:

$$g_{l,q,m,s} = \frac{4}{m(m+1)r^2} B_{l,q,m,s} \in r^{2i\alpha_0(2m+1)-2\nu q-2l} \mathcal{A}_m,$$

$$g_{l,q,m,s} = 0, \quad q > 2(2N+1)(2l-2).$$
(2.110)

We next consider the equations for $g_{l,2i,0,s}$:

$$(4\nu_j + l)g_{l,2j,0,s} - (s+1)g_{l,2j,0,s+1} = C_{l,2j,0,s} + D_{l,2j,s}, \quad 0 \le s \le 2j, \ 0 \le j. \ (2.111)$$

The right hand side $C_{l,2j,0,s} + D_{l,2j,s}$ depends only on $g_{l,q_1,1,s_1}$ and g_{k,q_2,m_2,s_2} , $k \le l-1$, and by (2.99), (2.101), (2.110) and Remark 2.8, satisfies

$$C_{l,2j,0,s} + D_{l,2j,s} \in r^{2i\alpha_0 - 4\nu_j - 2l} \mathcal{A}_0,$$

$$C_{l,2j,0,s} + D_{l,2j,s} = 0, \quad j > (2N+1)(2l-1).$$

Therefore, the solution of (2.111) verifies

$$g_{l,2j,0,s} \in r^{2i\alpha_0 - 4\nu j - 2l} \mathcal{A}_0, \quad 0 \le s \le 2j, \ 0 \le j, g_{l,2j,0,s} = 0, \quad j > (2N+1)(2l-1).$$

Finally for $g_{l,2j+1,-1,s}, 0 \le s \le 2j + 1, 0 \le j$ we have

$$r\partial_r g_{l,2j+1,m,s} + \left(2\nu(2j+1) + l + 1 + 2i\alpha_0 - \frac{r(\bar{f}_0\partial_r f_0 + f_0\partial_r \bar{f}_0)}{1 + |f_0|^2}\right)g_{l,2j+1,-1,s}$$

$$= C_{l,2j+1,-1,s},$$
(2.112)

with $C_{l,2j+1,-1,s} \in r^{-2i\alpha_0 - 2\nu(2j+1) - 2l} \mathcal{B}_{l-1}$ such that

$$C_{l,2j+1,-1,s} = 0, \quad 2j+1 > (2N+1)(2l-1).$$
 (2.113)

Equation (2.112) has a unique solution $g_{l,2j+1,-1,s}$ verifying $g_{l,2j+1,-1,s} \in r^{-2i\alpha_0-2\nu(2j+1)-2l}\mathcal{B}_l$, which is given by

$$g_{l,2j+1,-1,s} = r^{-2i\alpha_0 - 2\nu(2j+1) - l - 1} (1 + |f_0|^2) \hat{g}_{l,2j+1,-1,s},$$
$$\hat{g}_{l,2j+1,-1,s} = \int_0^r d\rho \rho^{-l} \left(\hat{C}_{l,2j+1,-1,s} - \sum_{0 \le n \le \frac{l-1}{4\nu}} \sum_{p=0}^{2n} \beta_{n,p} \rho^{4\nu n} (\ln \rho)^p \right)$$
$$- \int_r^\infty d\rho \rho^{-l} \sum_{0 \le n \le \frac{l-1}{4\nu}} \sum_{p=0}^{2n} \beta_{n,p} \rho^{4\nu n} (\ln \rho)^p,$$

where

$$\hat{C}_{l,2j+1,-1,s} = r^{2i\alpha_0+2\nu(2j+1)+2l} (1+|f_0|^2)^{-1} C_{l,2j+1,-1,s},$$
$$\hat{C}_{l,2j+1,-1,s} = \sum_{n=0}^{\infty} \sum_{p=0}^{2n} \beta_{n,p} r^n (\ln r)^p, \quad r < \delta.$$

By (2.113),

$$g_{l,2j+1,-1,s} = 0, \quad 2j+1 > (2N+1)(2l-1).$$

Let us define

$$w_{\text{rem}}^{(N)}(r,t) = f_0(r) + \sum_{\substack{(k,q,m,s)\in\Omega, \ k\leq N}} t^{k+2\nu q} e^{-im\Phi} (\ln r - \ln t)^s g_{k,q,m,s}(r),$$

$$A_{\text{rem}}^{(N)} = -i\partial_t w_{\text{rem}}^{(N)} - \Delta w_{\text{rem}}^{(N)} + r^{-2} w_{\text{rem}}^{(N)} + G(w_{\text{rem}}^{(N)}, \bar{w}_{\text{rem}}^{(N)}, \partial_r w_{\text{rem}}^{(N)})$$

$$W_{\text{rem}}^{(N)}(y,t) = e^{-i\alpha(t)} w_{\text{rem}}^{(N)}(rt^{-1/2}, t).$$

As a direct consequence of the previous analysis we get:

Lemma 2.10. There exists $T(N, \delta) > 0$ such that for $0 < t \le T(N, \delta)$ the following holds.

(i) For any $0 \le l, k \le 4$, i = 0, 1 and $\frac{1}{10}t^{-\varepsilon_2} \le y \le 10t^{-\varepsilon_2}$, one has

$$|y^{-l}\partial_{y}^{k}\partial_{t}^{i}(W_{ss}^{(N)} - W_{\text{rem}}^{(N)})| \le t^{\nu(1-2\varepsilon_{2})N} + t^{\varepsilon_{2}N},$$
(2.114)

provided N is sufficiently large (depending on ε_2). (ii) The profile $w_{\text{rem}}^{(N)}(r, t)$ verifies

$$\|r^{-l}\partial_r^k(w_{\rm rem}^{(N)}(t) - f_0)\|_{L^2(rdr, r \ge \frac{1}{10}t^{1/2-\varepsilon_2})} \le Ct^{\eta}, \quad 0 \le k+l \le 3,$$
(2.115)

$$\|r\partial_r w_{\rm rem}^{(N)}(t)\|_{L^{\infty}(r \ge \frac{1}{10}t^{1/2-\varepsilon_2})} \le C\delta^{2\nu},\tag{2.116}$$

$$\|r^{-l}\partial_r^k w_{\rm rem}^{(N)}(t)\|_{L^{\infty}(r \ge \frac{1}{10}t^{1/2-\varepsilon_2})} \le C(\delta^{2\nu-k-l} + t^{\nu-(k+l)/2+\eta}), \quad 0 \le k+l \le 4,$$
(2.117)

$$\|r^{-l-1}\partial_r^k w_{\text{rem}}^{(N)}(t)\|_{L^{\infty}(r \ge \frac{1}{10}t^{1/2-\varepsilon_2})} \le C(\delta^{2\nu-6} + t^{\nu-3+\eta}), \quad k+l = 5$$
(2.118)

(iii) The error $A_{\text{rem}}^{(N)}(r, t)$ admits the estimate

$$\|r^{-l}\partial_r^k\partial_t^i A_{\rm rem}^{(N)}(t)\|_{L^2(rdr,r\ge\frac{1}{10}t^{1/2-\varepsilon_2})} \le t^{\varepsilon_2 N}, \quad 0 \le l+k \le 3, \ i=0,1, \quad (2.119)$$

provided N is sufficiently large.

2.4.1. Proof of Proposition 2.1. We are now in position to finish the proof of Proposition 2.1. Fix ε_2 verifying $0 < \varepsilon_2 < \frac{1}{2}$. For $N \ge 2$, define

$$\begin{split} \hat{W}_{\text{ex}}^{(N)}(\rho,t) &= \theta(t^{\nu-\varepsilon_1}\rho)W_{\text{in}}^{(N)}(t^{\nu}\rho,t) + (1-\theta(t^{\nu-\varepsilon_1}\rho))\theta(t^{\nu+\varepsilon_2}\rho)W_{ss}^{(N)}(t^{\nu}\rho,t) \\ &+ (1-\theta(t^{\nu+\varepsilon_2}\rho))e^{-i\alpha(t)}w_{\text{rem}}^{(N)}(t^{\nu+1/2}\rho,t), \\ V_{\text{ex}}^{(N)}(\rho,t) &= \Big(\frac{2\operatorname{re}\hat{W}_{\text{ex}}^{(N)}}{1+|\hat{W}_{\text{ex}}^{(N)}|^2}, \frac{2\operatorname{im}\hat{W}_{\text{ex}}^{(N)}}{1+|\hat{W}_{\text{ex}}^{(N)}|^2}, \frac{1-|\hat{W}_{\text{ex}}^{(N)}|^2}{1+|\hat{W}_{\text{ex}}^{(N)}|^2}\Big). \end{split}$$

Clearly, $V_{\text{ex}}^{(N)}(\rho, t)$ is well defined for ρ is sufficiently large, and for $\rho < t^{-\nu+\varepsilon_1} V_{\text{ex}}^{(N)}(\rho, t)$ coincides with $V_{\text{in}}^{(N)}(\rho, t)$. Therefore, setting

$$V^{(N)}(\rho, t) = \begin{cases} V_{\text{in}}^{(N)}(\rho, t), & \rho \leq \frac{1}{2}t^{-\nu+\varepsilon_1}, \\ V_{\text{ex}}^{(N)}(\rho, t) & \rho \geq \frac{1}{2}t^{-\nu+\varepsilon_1}. \end{cases}$$
$$u^{(N)}(x, t) = e^{(\alpha(t)+\theta)R}V^{(N)}(\lambda(t)|x|, t),$$

we get a C^{∞} 1- equivariant profile $u^{(N)} : \mathbb{R}^2 \times \mathbb{R}^*_+ \to S^2$ that, by Lemmas 2.3 (i), 2.7 (ii), 2.10 (ii), for any $N \ge 2$ verifies part (i) of Proposition 2.1, ζ_N^* being given by

$$\zeta_N^*(x) = e^{\theta R} \hat{\zeta}_N^*(|x|), \quad \hat{\zeta}_N^* = \left(\frac{2\operatorname{re} f_0}{1+|f_0|^2}, \frac{2\operatorname{im} f_0}{1+|f_0|^2}, \frac{1-|f_0|^2}{1+|f_0|^2}\right).$$

By Lemmas 2.3 (ii), 2.7 (i), (iii) and 2.10 (i), (iii), for N sufficiently large the error $r^{(N)} = -u_t^{(N)} + u^{(N)} \times \Delta u^{(N)}$ satisfies

$$\|r^{(N)}(t)\|_{H^3} + \|\partial_t r^{(N)}(t)\|_{H^1} + \|\langle x \rangle r^{(N)}(t)\|_{L^2} \le t^{\eta N}, \quad t \le T(N, \delta),$$

with some $\eta = \eta(\nu, \varepsilon_2) > 0$. Re-denoting $N = \frac{N}{\eta}$ we obtain a family of approximate solutions $u^{(N)}(t)$ verifying Proposition 2.1.

3. Proof of the Theorem

3.1. *Main proposition*. The proof of Theorem 1.1 will be achieved by compactness arguments that rely on the following result. Let $u^{(N)}$, $T = T(N, \delta)$ be as in Proposition 2.1. Consider the Cauchy problem

$$u_t = u \times \Delta u, \quad t \ge t_1,$$

 $u_{|t=t_1|} = u^{(N)}(t_1),$ (3.1)

with $0 < t_1 < T$. One has

Proposition 3.1. For N sufficiently large there exists $0 < t_0 < T$ such that for any $t_1 \in (0, t_0)$ the solution u(t) of (3.1) verifies:

(i) $u - u^{(N)}$ is in $C([t_1, t_0], H^3)$ and

$$\|u(t) - u^{(N)}(t)\|_{H^3} \le t^{N/2}, \quad \forall t_1 \le t \le t_0.$$
(3.2)

Blow Up Dynamics for Equivariant Critical Schrödinger Maps

(ii) Furthermore, $\langle x \rangle (u(t) - u^{(N)}(t)) \in L^2$ and

$$\|\langle x \rangle (u(t) - u^{(N)}(t))\|_{L^2} \le t^{N/2}, \quad \forall t_1 \le t \le t_0.$$
(3.3)

Proof. The proof is by a bootstrap argument. Write

$$\begin{split} u^{(N)}(x,t) &= e^{\alpha(t)R} U^{(N)}(\lambda(t)x,t), \quad r^{(N)}(x,t) = \lambda^2(t) e^{\alpha(t)R} R^{(N)}(\lambda(t)x,t) \\ u(x,t) &= e^{\alpha(t)R} U(\lambda(t)x,t), \quad U(y,t) = U^{(N)}(y,t) + S(y,t), \\ U^{(N)}(y,t) &= \phi(y) + \chi^{(N)}(y,t). \end{split}$$

Then S(t) solves

$$t^{1+2\nu}S_t + \alpha_0 t^{2\nu}RS - (\nu + \frac{1}{2})y \cdot \nabla S = S \times \Delta U^{(N)} + U^{(N)} \times \Delta S + S \times \Delta S + R^{(N)}(t).$$
(3.4)

Assume that

$$\|S\|_{L^{\infty}(\mathbb{R}^2)} \le \delta_1, \tag{3.5}$$

with δ_1 sufficiently small. Note that since S is 1-equivariant and

$$(\phi, S) + (\chi^{(N)}, S) + |S|^2 = 0$$
(3.6)

where $\|\chi^{(N)}\|_{L^{\infty}(\mathbb{R}^2)} \leq C\delta^{2\nu}$ (see (2.5)), the bootstrap assumption (3.5) implies

$$\|S\|_{L^{\infty}(\mathbb{R}^2)} \le C \|\nabla S\|_{L^2(\mathbb{R}^2)}.$$
(3.7)

3.1.1. Energy control. We will first derive a bootstrap control of the energy norm:

$$J_1(t) = \int_{\mathbb{R}^2} dy (|\nabla S|^2 + \kappa(\rho)|S|^2), \quad \rho = |y|.$$

It follows from (3.4) that

$$t^{1+2\nu}\frac{d}{dt}\int dy|\nabla S|^2 = -2\int dy(S\times\Delta U^{(N)},\Delta S) + 2\int dy(\nabla R^{(N)},\nabla S),\quad(3.8)$$

$$t^{1+2\nu} \frac{d}{dt} \int dy \kappa(\rho) |S|^2 = -(\frac{1}{2} + \nu) t^{2\nu} \int dy (2\kappa + \rho \kappa') (S, S) +2 \int dy \kappa (U^{(N)} \times \Delta S, S) + 2 \int dy \kappa (R^{(N)}, S).$$
(3.9)

Recall that $U^{(N)} = \phi + \chi^{(N)}$, with ϕ solving $\Delta \phi = \kappa \phi$, which means that

$$(S \times \Delta \phi, \Delta S) - \kappa (\phi \times \Delta S, S) = 0.$$

Therefore, combining (3.8), (3.9), we get

$$t^{1+2\nu}\frac{d}{dt}J_1(t) = \mathcal{E}_1 + \mathcal{E}_2 + \mathcal{E}_3 + \mathcal{E}_4,$$

where

$$\begin{split} \mathcal{E}_1 &= -2 \int dy (S \times \Delta \chi^{(N)}, \Delta S), \\ \mathcal{E}_2 &= 2 \int dy \kappa (\chi^{(N)} \times \Delta S, S), \\ \mathcal{E}_3 &= -(\frac{1}{2} + \nu) t^{2\nu} \int dy (2\kappa + \rho \kappa') (S, S), \\ \mathcal{E}_4 &= 2 \int dy \big[(\nabla R^{(N)}, \nabla S) + \kappa (R^{(N)}, S) \big]. \end{split}$$

From Proposition 2.1 we have

$$\begin{aligned} |\mathcal{E}_j| &\leq C t^{2\nu} \|S\|_{H^1}^2, \quad j = 1, \dots, 3, \\ |\mathcal{E}_4| &\leq C t^{N+\nu+1/2} \|\nabla S\|_{L^2}. \end{aligned}$$

Combining these inequalities we obtain

$$\left|\frac{d}{dt}J_{1}(t)\right| \leq Ct^{-1} \|S\|_{H^{1}}^{2} + Ct^{2N-2\nu}.$$
(3.10)

3.1.2. Control of the L^2 norm. Consider $J_0(t) = \int_{\mathbb{R}^2} dy |S|^2$. We have

$$t^{1+2\nu} \frac{d}{dt} J_0(t) = \mathcal{E}_5 + \mathcal{E}_6 + \mathcal{E}_7,$$

$$\mathcal{E}_5 = 2 \int dy (U^{(N)} \times \Delta S, S),$$

$$\mathcal{E}_6 = -2(1+2\nu)t^{2\nu} J_0(t),$$

$$\mathcal{E}_7 = 2 \int dy (R^{(N)}, S).$$

Consider \mathcal{E}_5 . Decomposing $U^{(N)}$ and S in the basis f_1, f_2, Q :

$$U^{(N)}(y,t) = e^{\theta R} ((1+z_3^{(N)}(\rho,t))Q(\rho) + z_1^{(N)}(\rho,t)f_1(\rho) + z_2^{(N)}(\rho,t)f_2(\rho)),$$

$$S(y,t) = e^{\theta R} (\zeta_1(\rho,t)f_1(\rho) + \zeta_2(\rho,t)f_2(\rho) + \zeta_3(\rho,t)Q(\rho)),$$

one can rewrite \mathcal{E}_5 as follows.

$$\begin{split} \mathcal{E}_{5} &= \mathcal{E}_{8} + \mathcal{E}_{9} + \mathcal{E}_{10}, \\ \mathcal{E}_{8} &= -4 \int_{\mathbb{R}_{+}} d\rho \rho \frac{h_{1}}{\rho} \zeta_{2} \partial_{\rho} \zeta_{3}, \\ \mathcal{E}_{9} &= -2 \int_{\mathbb{R}_{+}} d\rho \rho (\partial_{\rho} z^{(N)} \times \partial_{\rho} \zeta, \zeta), \quad z^{(N)} = (z_{1}^{(N)}, z_{2}^{(N)}, z_{3}^{(N)}), \, \zeta = (\zeta_{1}, \zeta_{2}, \zeta_{3}), \\ \mathcal{E}_{10} &= 2 \int_{\mathbb{R}_{+}} d\rho \rho (z^{(N)} \times l, \zeta), \end{split}$$

where

$$l = (-\frac{1}{\rho^2}\zeta_1 - \frac{2h_1}{\rho}\partial_{\rho}\zeta_3, -\frac{1}{\rho^2}\zeta_2, \kappa(\rho)\zeta_3 + \frac{2h_1}{\rho}\partial_{\rho}\zeta_1 - \frac{2h_1h_3}{\rho^2}\partial_{\rho}\zeta_1).$$

Clearly,

$$|l| \le C\rho^{-2}(|\zeta| + |\partial_{\rho}\zeta|).$$

Therefore,

$$|\mathcal{E}_{10}| \le Ct^{2\nu} \|S\|_{H^1}^2. \tag{3.11}$$

Consider \mathcal{E}_8 . It follows from

$$2(\zeta, \mathbf{k} + z^{(N)}) + |\zeta|^2 = 0, \qquad (3.12)$$

that

$$|\partial_{\rho}\zeta_{3}| \leq C(|\partial_{\rho}z^{(N)}||\zeta| + |z^{(N)}||\partial_{\rho}\zeta| + |\partial_{\rho}\zeta||\zeta|).$$

As a consequence,

$$|\mathcal{E}_8| \le C \Big[t^{2\nu} \|S\|_{H^1}^2 + \|\nabla S\|_{L^2}^3 \Big].$$
(3.13)

Consider \mathcal{E}_9 . Denote $e_0 = \mathbf{k} + z^{(N)}$ and write $\zeta = \zeta^{\perp} + \mu e_0$, $\mu = (\zeta, e_0)$. It follows from (3.12) that

$$\begin{aligned} |\mu| &\leq C |\zeta|^2, \\ |\mu_{\rho}| &\leq C |\zeta| |\partial_{\rho} \zeta|. \end{aligned}$$

Therefore, \mathcal{E}_9 can be written as

$$\mathcal{E}_9 = -2 \int_{\mathbb{R}_+} d\rho \rho(\partial_\rho \zeta^\perp \times \zeta^\perp, \partial_\rho e_0) + O(\|S\|_{H^1}^2 \|\nabla S\|_{L^2}).$$
(3.14)

Let e_1 , e_2 be a smooth orthonormal basis of the tangent space $T_{e_0}S^2$ that verifies $e_2 = e_0 \times e_1$. Then the expression $(\partial_\rho \zeta^{\perp} \times \zeta^{\perp}, \partial_\rho e_0)$ can be written as follows:

$$(\partial_{\rho}\zeta^{\perp}\times\zeta^{\perp},\partial_{\rho}e_{0})=(\zeta^{\perp},\partial_{\rho}e_{0})\left[(\zeta^{\perp},e_{2})(\partial_{\rho}e_{0},e_{1})-(\zeta^{\perp},e_{1})(\partial_{\rho}e_{0},e_{2})\right],$$

which leads to the estimate

$$\left| \int_{\mathbb{R}_+} d\rho \rho(\partial_\rho \zeta^\perp \times \zeta^\perp, \partial_\rho e_0) \right| \le C \|\partial_\rho z^{(N)}\|_{L^\infty}^2 J_0(t) \le C t^{2\nu} J_0(t).$$
(3.15)

Combining (3.11), (3.13), (3.14), (3.15) we obtain

$$\left|\frac{d}{dt}J_{0}(t)\right| \leq C\left[t^{-1}\|S\|_{H^{1}}^{2} + t^{-1-2\nu}\|S\|_{H^{1}}^{2}\|\nabla S\|_{L^{2}} + t^{2N-2\nu}\right].$$
(3.16)

3.1.3. Control of the weighted L^2 norm. Using (3.4) to compute the derivative $\frac{d}{dt} ||yS(t)||_{L^2}^2$, we obtain

$$\begin{split} t^{1+2\nu} \frac{d}{dt} \||y|S(t)\|_{L^2}^2 &= -4 \int dy y_i (U^{(N)} \times \partial_i S, S) \\ &- 2 \int dy |y|^2 (\partial_i U^{(N)} \times \partial_i S, S) \\ &- 2(1+2\nu) t^{2\nu} \||y|S(t)\|_{L^2}^2 + 2 \int dy |y|^2 (R^{(N)}, S). \end{split}$$

Here and below ∂_j stands for ∂_{y_j} , the summation over the repeated indexes being assumed.

As a consequence, we get

$$\left|\frac{d}{dt}\||y|S(t)\|_{L^{2}}^{2}\right| \leq \frac{C}{t} \left[\||y|S(t)\|_{L^{2}}^{2} + t^{-4\nu}\|S\|_{H^{1}}^{2} + t^{2N-4\nu}\right].$$
(3.17)

3.1.4. Control of the higher regularity. In addition to (3.5), assume that

$$\|S(t)\|_{H^3} + \||y|S(t)\|_{L^2} \le t^{2N/5}.$$
(3.18)

We will control \dot{H}^3 norm of the solution by means of $\|\nabla S_t\|_{L^2}$. More precisely, consider the functional

$$J_{3}(t) = t^{2+4\nu} \int dx |\nabla s_{t}(x,t)|^{2} + t^{1+2\nu} \int dx \kappa (t^{-1/2-\nu}x) |s_{t}(x,t)|^{2},$$

where s(x, t) is defined by

$$s(x, t) = e^{\alpha(t)R} S(\lambda(t)x, t).$$

Write $s_t(x,t) = e^{\alpha(t)R}\lambda^2(t)g(\lambda(t)x,t)$. In terms of g, J_3 can be written as $J_3(t) = \int dy |\nabla g(y,t)|^2 + \int dy \kappa(\rho) |g(y,t)|^2$. Let us compute the derivative $\frac{d}{dt}J_3(t)$. Clearly, g(y,t) solves

$$t^{1+2\nu}g_t + \alpha_0 t^{2\nu}Rg - (\nu + \frac{1}{2})t^{2\nu}(2 + y \cdot \nabla)g$$

= $(S + U^{(N)}) \times \Delta g + g \times (\Delta U^{(N)} + \Delta S)$
+ $(U^{(N)} \times \Delta U^{(N)} - R^{(N)}) \times \Delta S$
+ $S \times \Delta (U^{(N)} \times \Delta U^{(N)} - R^{(N)}) + t^{2+4\nu}r_t^{(N)}.$ (3.19)

Therefore, we get

$$t^{1+2\nu} \frac{d}{dt} J_3(t) = (2+4\nu)t^{2\nu} \|\nabla g\|_{L^2}^2 + (\frac{1}{2}+\nu)t^{2\nu} \int (2\kappa - \rho\kappa')|g|^2 dy$$

+E_1 + E_2 + E_3 + E_4 + E_5, (3.20)

where

$$\begin{split} E_1 &= -2 \int dy(g \times \Delta \chi^{(N)}, \Delta g) + 2 \int dy\kappa(\chi^{(N)} \times \Delta g, g), \\ E_2 &= -2 \int dy((U^{(N)} \times \Delta U^{(N)} - R^{(N)}) \times \Delta S, \Delta g) \\ &+ 2 \int dy(\Delta (U^{(N)} \times \Delta U^{(N)} - R^{(N)}) \times S, \Delta g) \\ &+ 2 \int dy\kappa((U^{(N)} \times \Delta U^{(N)} - R^{(N)}) \times \Delta S, g) \\ &- 2 \int dy\kappa(\Delta (U^{(N)} \times \Delta U^{(N)} - R^{(N)}) \times S, g), \\ E_3 &= -2 \int dy(g \times \Delta S, \Delta g), \\ E_4 &= 2 \int dy\kappa(S \times \Delta g, g), \\ E_5 &= -2t^{2+4\nu} \int dy(r_t, \Delta g) + 2t^{2+4\nu} \int dy\kappa(r_t, g). \end{split}$$

The terms E_j , j = 1, 4, 5 can be estimated as follows.

$$\begin{aligned} |E_1| &\leq Ct^{2\nu} \|g\|_{H^1}^2, \\ |E_4| &\leq C \|g\|_{H^1}^2 \|S\|_{H^3} \leq Ct^{2\nu} \|g\|_{H^1}^2, \\ |E_5| &\leq C(t^{2\nu} \|g\|_{H^1}^2 + t^{2N+3+4\nu}), \end{aligned}$$
(3.21)

provided N is sufficiently large and $t \le t_0$ with some $t_0 = t_0(N) > 0$. For E_2 we have

$$|E_{2}| \leq C(\|\Delta\chi^{(N)}\|_{W^{2,\infty}} + \|R^{(N)}\|_{H^{3}})\|g\|_{H^{1}}\|S\|_{H^{3}} + C\|\langle y \rangle^{-1} \nabla\Delta^{2}\chi^{(N)}\|_{L^{\infty}}\|\nabla g\|_{L^{2}}\|\langle y \rangle S\|_{L^{2}}.$$

As a consequence,

$$|E_2| \le Ct^{2\nu} (\|g\|_{H^1} \|S\|_{H^3} + \|\nabla g\|_{L^2} \|\langle y \rangle S\|_{L^2}).$$
(3.22)

Note that since

$$g = (U^{(N)} + S) \times \Delta S + S \times \Delta U^{(N)} + R^{(N)}, \qquad (3.23)$$

the bootstrap assumption (3.18) implies

$$\|g\|_{L^{2}} \leq C(\|S\|_{H^{2}} + \|R^{(N)}\|_{L^{2}}),$$

$$\|\nabla g\|_{L^{2}} \leq C(\|S\|_{H^{3}} + \|\nabla R^{(N)}\|_{L^{2}}).$$

(3.24)

Therefore, (3.21), (3.22) can be rewritten as

$$|E_1| + |E_2| + |E_4| + |E_5| \le Ct^{2\nu} [\|S\|_{H^3}^2 + (\|S\|_{H^3} + t^{N+1+2\nu}) \|\langle y \rangle S\|_{L^2}] + Ct^{2N+1+4\nu}.$$
(3.25)

Consider E_3 . One has

$$g \times \Delta S = (U^{(N)} + S, \Delta S)\Delta S - |\Delta S|^{2}(U^{(N)} + S) + (S \times \Delta U^{(N)} + R^{(N)}) \times \Delta S,$$

$$\Delta g = (U^{(N)} + S) \times \Delta^{2}S + Y,$$

$$Y = 2(\partial_{j}U^{(N)} + \partial_{j}S) \times \Delta \partial_{j}S + S \times \Delta^{2}U^{(N)} + 2\partial_{j}S \times \Delta \partial_{j}U^{(N)} + \Delta R^{(N)}.$$

(3.26)

Therefore, one can write E_3 as $E_3 = E_6 + E_7 + E_8$, where

$$\begin{split} E_6 &= -2 \int dy (U^{(N)} + S, \Delta S) (\Delta S, \Delta g), \\ E_7 &= 2 \int dy |\Delta S|^2 (U^{(N)} + S, \Delta g) = 2 \int dy |\Delta S|^2 (U^{(N)} + S, Y), \\ E_8 &= -2 \int dy ((S \times \Delta U^{(N)} + R^{(N)}) \times \Delta S, \Delta g). \end{split}$$

For E_6 we have:

$$E_{6} = 2 \int dy [(\Delta U^{(N)}, S) + 2(\partial_{j} U^{(N)}, \partial_{j} S) + (\partial_{j} S, \partial_{j} S)](\Delta S, \Delta g)$$

$$= -2 \int dy [(\Delta U^{(N)}, S) + 2(\partial_{j} U^{(N)}, \partial_{j} S) + (\partial_{j} S, \partial_{j} S)](\Delta \partial_{k} S, \partial_{k} g)$$

$$-2 \int dy (\Delta S, \partial_{k} g) \partial_{k} [(\Delta U^{(N)}, S) + 2(\partial_{j} U^{(N)}, \partial_{j} S) + (\partial_{j} S, \partial_{j} S)].$$

As a consequence, one obtains:

$$|E_6| \le C \|S\|_{H^3}^2 \|g\|_{H^1} \le C t^{2\nu} \|S\|_{H^3}^2.$$
(3.27)

Consider E_7 . From (3.26) we have

$$\|Y\|_{L^2} \le C(\|S\|_{H^3} + t^N).$$

Therefore, we obtain:

$$|E_7| \le Ct^{2\nu} \|S\|_{H^3}^2.$$
(3.28)

Finally, E_8 can be estimated as follows

$$|E_8| \le C \|g\|_{H^1} (\|S\|_{H^3}^2 + t^N \|S\|_{H^3}) \le C t^{2\nu} \|S\|_{H^3}^2 + C t^{3N}.$$
(3.29)

Combining (3.27), (3.29), (3.28) we get

$$|E_3| \le C(t^{2\nu} ||S||_{H^3}^2 + t^{3N}), \qquad (3.30)$$

which together with (3.25) gives

$$\left|\frac{d}{dt}J_{3}(t)\right| \leq \frac{C}{t} \left[\|S\|_{H^{3}}^{2} + (\|S\|_{H^{3}} + t^{N+1+2\nu})\||y|S\|_{L^{2}}) \right] + Ct^{2N+2\nu}.$$
 (3.31)

3.1.5. Proof of Proposition 3.1. To prove the proposition it is sufficient to show that (3.5), (3.18) implies (3.2), (3.3).

Under the bootstrap assumption (3.18), (3.10), (3.16) become

$$\left|\frac{d}{dt}J_{1}(t)\right| + \left|\frac{d}{dt}J_{0}(t)\right| \le Ct^{-1} \|S\|_{H^{1}}^{2} + Ct^{2N-2\nu}, \quad \forall t \le t_{0},$$
(3.32)

provided N is sufficiently large, t_0 sufficiently small.

Note that for $c_0 > 0$ sufficiently large one has $||S||_{H^1}^2 \le J_1 + c_0 J_0$. Therefore, denoting $J(t) = J_1(t) + c_0 J_0(t)$ one can rewrite (3.32) as

$$\left|\frac{d}{dt}J(t)\right| \le Ct^{-1}J(t) + Ct^{2N-2\nu}.$$
(3.33)

Integrating this inequality with zero initial condition at t_1 one gets

$$J(t) \le \frac{C}{N} t^{2N+1-2\nu}, \quad \forall t \in [t_1, t_0],$$
(3.34)

provided N is sufficiently large. As a consequence, we obtain

$$\|S\|_{H^1}^2 \le \frac{C}{N} t^{2N+1-2\nu}, \quad \forall t \in [t_1, t_0].$$
(3.35)

Consider $|||y|S(t)||_{L^2}$. From (3.17), (3.35) we have

$$\left|\frac{d}{dt}\||y|S(t)\|_{L^2}^2\right| \le \frac{C}{t} \left[\||y|S(t)\|_{L^2}^2 + t^{2N+1-6\nu}\right].$$
(3.36)

Integrating this inequality and assuming that N is sufficiently large, we get

$$\||y|S(t)\|_{L^2}^2 \le \frac{C}{N} t^{2N+1-6\nu}, \quad \forall t \in [t_1, t_0],$$
(3.37)

which gives in particular,

$$\||x|s(t)\|_{L^2}^2 \le t^{N/2}, \quad \forall t \in [t_1, t_0].$$
 (3.38)

We next consider $\|\nabla \Delta s(t)\|_{L^2(\mathbb{R}^2)}$. It follows from (3.23), (3.18) that for any j = 1, 2

$$\|\partial_j g - (U^{(N)} + S) \times \Delta \partial_j S\|_{L^2} \le C(\|S\|_{H^2(\mathbb{R}^2)} + t^{N+1+2\nu}).$$
(3.39)

Note also that since $|U^{(N)} + S| = 1$, we have

$$\begin{split} |(U^{(N)} + S) \times \Delta \partial_j S|^2 &= |\Delta \partial_j S|^2 - (U^{(N)} + S, \Delta \partial_j S)^2, \\ (U^{(N)} + S, \Delta \partial_j S) &= -(\Delta U^{(N)} + \Delta S, \partial_j S) - \Delta (\partial_j U^{(N)}, S) \\ &- 2(\partial_k U^{(N)} + \partial_k S, \partial_{ik}^2 S), \end{split}$$

which together with (3.18) gives

$$\|\Delta \partial_j S\|_{L^2}^2 - \|(U^{(N)} + S) \times \Delta \partial_j S\|_{L^2}^2 \le C \|S\|_{H^2}^2.$$
(3.40)

Consider the functional $\tilde{J}_3(t) = J_3(t) + c_1 J_0(t)$. It follows from (3.24), (3.39), (3.40) that for $c_1 > 0$ sufficiently large we have

$$c_2 \|S\|_{H^3}^2 - Ct^{2N+1+2\nu} \le \tilde{J}_3(t) \le C(\|S\|_{H^3}^2 + t^{2N+1+2\nu}),$$
(3.41)

with some $c_2 > 0$.

From (3.31), (3.32), (3.37) one gets

$$\left|\frac{d}{dt}\tilde{J}_{3}(t)\right| \leq C\left[t^{-1}(\|S\|_{H^{3}(\mathbb{R}^{2})}^{2} + \||y|S\|_{L^{2}(\mathbb{R}^{2})}^{2}) + t^{2N-2\nu}\right]$$

$$\leq Ct^{-1}\tilde{J}_{3}(t) + Ct^{2N-6\nu}.$$
(3.42)

Integrating this inequality between t_1 and t and observing that $\tilde{J}_3(t_1) = t_1^{2+4\nu} \int dx |\nabla r^{(N)}(x, t_1)|^2 + t_1^{1+2\nu} \int dx \kappa (t^{-1/2+\nu}x) |r^{(N)}(x, t_1)|^2$, and therefore, $|\tilde{J}_3(t_1)| \leq Ct_1^{2N+1+2\nu}$, we obtain

$$\tilde{J}_3(t) \le Ct^{2N+1-6\nu}, \quad \forall t \in [t_1, t_0].$$

Combining this inequality with (3.41), one gets

$$\|S\|_{H^3(\mathbb{R}^2)}^2 \le Ct^{2N+1-6\nu}, \quad \forall t \in [t_1, t_0],$$

which implies that

$$||s||_{H^3(\mathbb{R}^2)} \le t^{N/2}, \quad \forall t \in [t_1, t_0].$$

This concludes the proof of Proposition 3.1.

3.2. Proof of the theorem. The proof of the theorem is now straightforward. Fix N such that Proposition 3.1 holds. Take a sequence (t^j) , $0 < t^j < t_0$, $t^j \to 0$ as $j \to \infty$. Let $u_j(x, t)$ be the solution of

$$\partial_t u_j = u_j \times \Delta u_j, \quad t \ge t^J,$$

$$u_j|_{t=t^j} = u^{(N)}(t^j).$$
(3.43)

By Proposition 3.1, for any $j, u_j - u^{(N)} \in C([t^j, t_0], H^3)$ and satisfies

$$\|u_{j}(t) - u^{(N)}(t)\|_{H^{3}} + \|\langle x \rangle (u_{j}(t) - u^{(N)}(t))\|_{L^{2}} \le 2t^{N/2}, \quad \forall t \in [t^{j}, t_{0}].$$
(3.44)

This implies in particular, that the sequence $u_j(t_0) - u^{(N)}(t_0)$ is compact in H^2 and therefore after passing to a subsequence we can assume that $u_j(t_0) - u^{(N)}(t_0)$ converges in H^2 to some 1-equivariant function $w \in H^3$, with $||w||_{H^3} \le \delta^{2\nu}$, $|u^{(N)}(t_0) + w| = 1$.

Consider the Cauchy problem

$$u_t = u \times \Delta u, \quad t \le t_0, u_{|t=t_0|} = u^{(N)}(t_0) + w.$$
(3.45)

By the local well-posedness, (3.45) admits a unique solution $u \in C((t^*, t_0], \dot{H}^1 \cap \dot{H}^3)$ with some $0 \leq t^* < t_0$. By H^1 continuity of the flow (see [10]), $u_j \to u$ in $C((t^*, t_0], \dot{H}^1)$, which together with (3.44) gives

$$\|u(t) - u^{(N)}(t)\|_{H^3} \le 2t^{N/2}, \quad \forall t \in (t^*, t_0].$$
 (3.46)

This implies that $t^* = 0$ and combined with Proposition 2.1 gives the result stated in Theorem 1.1.

References

- Angenent, S., Hulshof, J.: Singularities at t = in equivariant harmonic map flow, Contemp. Math., vol. 367, Geometric Evolution Equations, vol. 115. Amer. Math. Soc., Providence (2005)
- 2. Van den Bergh, J., Hulshof, J., King, J.: Formal asymptotics of bubbling in the harmonic map heat flow. SIAM J. Appl. Math. **63**(05), 1682–1717
- 3. Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Global Schrödinger maps in dimension *d* ≥ 2: small data in the initial sobolev spaces. Ann. Math. **173**, 1443–1506 (2011)
- Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Equivariant Schrödinger maps in two spatial dimensions. arXiv:1112.6122v1
- Bejenaru, I., Tataru, D.: Near soliton evolution for equivariant Schrödinger Maps in two spatial dimensions. Mem. Am. Math. Soc. 228(1069) (2013). arXiv:1009.1608
- Chang, N.-H., Shatah, J., Uhlenbeck, K.: Schrödinger maps. Commun. Pure Appl. Math. 53(5), 590– 602 (2000)
- Grillakis, M., Stefanopoulos, V.: Lagrangian formulation, energy estimates and the Schrödinger map prolem. Commun. PDE 27, 1845–1877 (2002)
- Grotowski, J., Shatah, J.: Geometric evolution equations in critical dimensions. Calc. Var. Partial Differ. Equ. 30(4), 499–512 (2007)
- Gustafson, S., Kang, K., Tsai, T.P.: Schrödinger flow near harmonic maps. Commun. Pure Appl. Math. 60(4), 463–499 (2007)
- Gustafson, S., Kang, K., Tsai, T.-P.: Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math. J. 145(3), 537–583 (2008)
- 11. Gustafson, S., Koo, E.: Global well-posedness for 2D radial Schrödinger maps into the sphere. arXiv:1105.5659
- Gustafson, S., Nakanishi, K., Tsai, T.-P.: Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on R2. Commun. Math. Phys. 300(1), 205–242 (2010)
- Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171(3), 543615 (2008)
- McGahagan, H.: An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ. 32, 37540 (2007)
- Merle, F., Raphaël, P., Rodnianski, I.: Blow up dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math. 193(2), 249–365 (2013). arXiv:1106.0912
- 16. Nahmod, A., Stefanov, A., Uhlenbeck, K.: On Schrödinger maps. CPAM 56, 114–151 (2003)
- Raphal, P., Rodnianksi, I.: Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang Mills problems. Publ. Math. Inst. Hautes Etudes Sci. 115(1), 1–122 (2012)
- Sulem, P.L., Sulem, C., Bardos, C.: On the continuous limit for a system of continuous spins. Commun. Math. Phys. 107(3), 431–454 (1986)
- Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(4), 558–581 (1985)

Communicated by W. Schlag