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Abstract: For the Schrödinger map equation ut = u×�u in R
2+1, with values in S2, we

prove for any ν > 1 the existence of equivariant finite time blow up solutions of the form
u(x, t) = φ(λ(t)x) + ζ(x, t), where φ is a lowest energy steady state, λ(t) = t−1/2−ν

and ζ(t) is arbitrary small in Ḣ1 ∩ Ḣ2.

1. Introduction

1.1. Setting of the problem and statement of the result. In this paper we consider the
Schrödinger flow for maps from R

2 to S2:

ut = u × �u, x = (x1, x2) ∈ R
2, t ∈ R,

u|t=0 = u0,
(1.1)

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ S2 ⊂ R
3.

Equation (1.1) conserves the energy

E(u) = 1

2

∫
R2

dx |∇u|2. (1.2)

The problem is critical in the sense that both (1.1) and (1.2) are invariant with respect
to the scaling u(x, t) → u(λx, λ2t), λ ∈ R+.

To a finite energy map u : R
2 → S2 one can associate the degree:

deg(u) = 1

4π

∫
R2

dxux1 · Juux2 ,

where Ju is defined by

Juv = u × v, v ∈ R
3.
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It follows from (1.2) that
E(u) ≥ 4π | deg(u)|. (1.3)

This inequality is saturated by the harmonic maps φm , m ∈ Z
+:

φm(x) = emθ R Qm(r), Qm = (hm
1 , 0, hm

3 ) ∈ S2,

hm
1 (r) = 2rm

r2m + 1
, hm

3 (r) = r2m − 1

r2m + 1
.

(1.4)

Here (r, θ) are polar coordinates in R
2: x1 + i x2 = eiθr , and R is the generator of the

horizontal rotations:

R =
⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ ,

or equivalently

Ru = k × u, k = (0, 0, 1).

One has

deg φm = m, E(φm) = 4πm.

Up to the symmetries φm are the only energy minimizers in their homotopy class.
Since φ1 will play a central role in the analysis developed in this paper, we set φ = φ1,

Q = Q1, h1 = h1
1, h3 = h1

3.
The local/global well-posedness of (1.1) has been extensively studied in past years.

Local existence for smooth initial data goes back to [18], see also [14]. The case of small
data of low regularity was studied in several works, the definite result being obtained by
Bejenaru et al. in [3], where the global existence and scattering was proved for general
Ḣ1 small initial data. Global existence for equivariant small energy initial data was
proved earlier in [6] (by m-equivariant map u : R

2 → S2 ⊂ R
3, m ∈ Z

+ one means a
map of the form u(x) = emθ Rv(r), where v : R+ → S2 ⊂ R

3, m-equivariance being
preserved by the Schrödinger flow (1.1)). In the radial case m = 0, the global existence
for H2 data was established by Gustafson and Koo [11]. Very recently, Bejenaru et al.
[4] proved global existence and scattering for equivariant data with energy less than
4π . The dynamics of m-equivariant Schrödinger maps with initial data close to φm was
studied by Gustafson et al. [9,10,12] and later by Bejenaru and Tataru [5] in the case
m = 1. The stability/instability results of these works strongly suggest a possibility
of regularity breakdown in solutions of (1.1) via concentration of the lowest energy
harmonic map φ. For a closely related model of wave maps this type of regularity
breakdown was proved by Kriger et al. [13] and by Raphael and Rodnianski [17]. These
authors showed the existence of 1- equivariant blow up solutions close to φ(λ(t)x) with

λ(t) ∼ e
√| ln(T ∗−t)|

T ∗−t as t → T ∗ [17], and with λ(t) ∼ 1
(T ∗−t)1+ν as t → T ∗ where ν > 1/2

can be chosen arbitrarily [13] (here T ∗ is the blow up time). While the blow up dynamics
exhibited in [17] is stable (in some strong topology), the continuum of blow up solutions
constructed by Kriger et al. is believed to be non-generic. Recently, the results of [17]
were generalized to the case of Schrödinger map equation (1.1) by Merle et al. in [15]
where they proved the existence of 1-equivariant blow up solutions of (1.1) close to

φ(λ(t)x) with λ(t) ∼ (ln(T ∗−t))2

T ∗−t .
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Our objective in this paper is to show that (1.1) also admits 1-equivariant Kriger–
Schlag–Tataru type blow up solutions that correspond to certain initial data of the form

u0 = φ + ζ0,

where ζ0 is 1-equivariant and can be chosen arbitrarily small in Ḣ1∩Ḣ3. Let us recall (see
[5,9,10,12]) that such initial data result in unique local solutions of the same regularity,
and as long as the solution exists it stays Ḣ1 close to a two parameter family of 1-
equivariant harmonic maps φα,λ , α ∈ R/2πZ, λ ∈ R+ generated from φ by rotations
and scaling:

φα,λ(r, θ) = eαRφ(λr, θ).

The following theorem is the main result of this paper.

Theorem 1.1. For any ν > 1, α0 ∈ R, and any δ > 0 sufficiently small there exist t0 > 0
and a 1-equivariant solution u ∈ C((0, t0], Ḣ1 ∩ Ḣ3) of (1.1) of the form:

u(x, t) = eα(t)Rφ(λ(t)x) + ζ(x, t), (1.5)

where
λ(t) = t−1/2−ν, α(t) = α0 ln t, (1.6)

‖ζ(t)‖Ḣ1∩Ḣ2 ≤ δ, ‖ζ(t)‖Ḣ3 ≤ Cν,α0 t−1, ∀t ∈ (0, t0]. (1.7)

Furthermore, as t → 0, ζ(t) → ζ ∗ in Ḣ1 ∩ Ḣ2 with ζ ∗ ∈ H1+2ν−.

Remark 1.2. In fact, using the arguments developed in this paper one can show that the
same result remains valid with Ḣ3 replaced by Ḣ1+2s for any 1 ≤ s < ν.

1.2. Strategy of the proof. The proof of Theorem 1.1 contains two main steps. The first
step is a construction of approximate solutions u(N ) that have the form (1.5), (1.6), (1.7),
and solve (1.1) up to an arbitrarily high order error O(t N ), very much in the spirit of the
work of Kriger et al. [13].

The second step is to build the exact solution by solving the problem for the small
remainder forward in time with zero initial data at t = 0. The control of remainder is
achieved by means of suitable energy type estimates, see Sect. 3 for the details. The
assumption ν > 1 ensures that the approximate solutions that we have constructed,
belong to Ḣ1 ∩ Ḣ3, which allows us to work on the level of the H3 well-posedness
theory.

2. Approximate Solutions

2.1. Preliminaries. We consider (1.1) under the 1-equivariance assumption

u(x, t) = eθ Rv(r, t), v = (v1, v2, v3) ∈ S2 ⊂ R
3. (2.1)

Restricted to the 1-equivariant functions (1.1) takes the form

vt = v × (�v +
R2

r2 v), (2.2)

the energy being given by

E(u) = π

∫ ∞

0
drr(|vr |2 +

v2
1 + v2

2

r2 ).
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Q = (h1, 0, h3) is a stationary solution of (2.2) and one has the relations

∂r h1 = −h1h3

r
, ∂r h3 = h2

1

r
, (2.3)

�Q +
R2

r2 Q = κ(r)Q, κ(r) = −2h2
1

r2 . (2.4)

The goal of the present section is to prove the following result.

Proposition 2.1. For any δ > 0 sufficiently small and any N sufficiently large there
exists an approximate solution u(N ) : R

2 × R
∗
+ → S2 of (1.1) such that the following

holds.

(i) u(N ) is a C∞ 1-equivariant profile of the form: u(N ) = eα(t)R(φ(λ(t)x) +
χ(N )(λ(t)x, t)), where χ(N )(y, t) = eθ R Z (N )(ρ, t), ρ = |y|, verifies

‖∂ρ Z (N )(t)‖L2(ρdρ), ‖ρ−1 Z (N )(t)‖L2(ρdρ), ‖ρ∂ρ Z (N )(t)‖∞ ≤ Cδ2ν, (2.5)

‖ρ−l∂k
ρ Z (N )(t)‖L2(ρdρ) ≤ Cδ2ν−1t1/2+ν, k + l = 2, (2.6)

‖ρ−l∂k
ρ Z (N )(t)‖L2(ρdρ) ≤ Ct2ν, k + l = 3, (2.7)

‖∂ρ Z (N )(t)‖∞, ‖ρ−1 Z (N )(t)‖∞ ≤ Cδ2ν−1tν, (2.8)

‖ρ−l∂k
ρ Z (N )(t)‖∞ ≤ Ct2ν, 2 ≤ l + k ≤ 3, (2.9)

for any 0 < t ≤ T (N , δ) with some T (N , δ) > 0. The constants C here and below
are independent of N and δ.
In addition, one has

‖χ(N )(t)‖Ẇ 4,∞ + ‖〈y〉−1χ(N )(t)‖Ẇ 5,∞ ≤ Ct2ν, (2.10)

and 〈x〉2(ν−1)∇4u(N )(t), 〈x〉2(ν−1)∇2u(N )
t (t) ∈ L∞(R2).

Furthermore, there exists ζ ∗
N ∈ Ḣ1 ∩ Ḣ1+2ν− such that as t → 0,

eα(t)Rχ(N )(λ(t)·, t) → ζ ∗
N in Ḣ1 ∩ Ḣ2.

(ii) The corresponding error r (N ) = −u(N )
t + u(N ) × �u(N ) verifies

‖r (N )(t)‖H3 +‖∂t r
(N )(t)‖H1 +‖〈x〉r (N )(t)‖L2 ≤ t N , 0 < t ≤T (δ, N ). (2.11)

Remarks. 1. Note that estimates (2.5), (2.6) imply:

‖u(N )(t) − eα(t)Rφ(λ(t)·)‖Ḣ1∩Ḣ2 ≤ δ2ν−1, ∀t ∈ (0, T (N , δ)]. (2.12)

2. It follows from our construction that χ(N )(t) ∈ Ḣ1+2s for any s < ν with the estimate
‖χ(N )(t)‖Ḣ1+2s (R2) ≤ C(t2ν + t s(1+2ν)δ2ν−2s).

3. The remainder r (N ) verifies in fact, for any m, l, k,

‖〈x〉l∂m
t r (N )(t)‖Hk ≤ Cl,m,k t N−Cl,m,k ,

provided N ≥ Cl,m,k .
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We will give the proof of Proposition 2.1 in the case of ν irrational only, which allows
us to slightly simplify the presentation. The extension to ν rational is straightforward.

To construct an arbitrarily good approximate solution we analyze separately the three
regions that correspond to three different space scales: the inner region with the scale
rλ(t) � 1, the self-similar region where r = O(t1/2), and finally the remote region
where r = O(1). The inner region is the region where the blowup concentrates. In this
region the solution will be constructed as a perturbation of the profile eα(t)R Q(λ(t)r).
The self-similar and remote regions are the regions where the solution is close to k and
is described essentially by the corresponding linearized equation. In the self-similar re-
gion the profile of the solution will be determined uniquely by the matching conditions
coming out of the inner region, while in the remote region the profile remains essen-
tially a free parameter of the construction, only the limiting behavior at the origin is
prescribed by the matching process, see Sects. 2.3 and 2.4 for the details, see also [1,2]
for some closely related considerations in the context of the critical harmonic map heat
flow.

2.2. Inner region rλ(t) � 1. We start by considering the inner region 0 ≤ rλ(t) ≤
10t−ν+ε1 , where 0 < ε1 < ν to be fixed later. Writing v(r, t) as

v(r, t) = eα(t)R V (λ(t)r, t), V = (V1, V2, V3),

we get from (2.2)

t1+2νVt + α0t2ν RV − t2ν(ν +
1

2
)ρVρ = V × (�V +

R2

ρ2 V ), ρ = λ(t)r. (2.13)

We look for a solution of (2.13) as a perturbation of the harmonic map profile Q(ρ).
Write

V = Q + Z ,

and further decompose Z as

Z(ρ, t) = z1(ρ, t) f1(ρ) + z2(ρ, t) f2(ρ) + γ (ρ, t)Q(ρ),

where f1, f2 is the orthonormal frame on TQ S2 given by

f1(ρ) =
⎛
⎝ h3(ρ)

0
−h1(ρ)

⎞
⎠ f2(ρ) =

⎛
⎝ 0

1
0

⎞
⎠ .

One has

γ =
√

1 − |z|2 − 1 = O(|z|2), z = z1 + i z2.

Note also the relations

∂ρ Q = −h1

ρ
f1, ∂ρ f1 = h1

ρ
Q, f2 = Q × f1,

� f1 +
R2

ρ2 f1 = − 1

ρ2 f1 − 2h3h1

ρ2 Q.
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We now rewrite (2.13) in terms of z. One has

RV = −h3z2 f1 + (h3z1 + h1(1 + γ )) f2 − h1z2 Q,

ρ∂ρV = (ρ∂ρz1 − h1(1 + γ )) f1 + ρ∂ρz2 f2 + (h1z1 + ρ∂ργ )Q.
(2.14)

We next compute the nonlinear term V × (�V + R2

ρ2 V ). In the basis { f1, f2, Q}, the

expression �V + R2

ρ2 V can be written as follows:

�V +
R2

ρ2 V = [�z1 − z1

ρ2 − 2
h1

ρ
γρ

]
f1 +

[�z2 − z2

ρ2

]
f2

+
[�γ + κ(ρ)(1 + γ ) + 2

h1

ρ
∂ρz1 − 2

h1h3

ρ2 z1
]
Q,

which gives

V ×(�V +
R2

ρ2 V )=[
(1+γ )Lz2+F1(z)

]
f1−

[
(1+γ )Lz1+F2(z)

]
f2+F3(z)Q, (2.15)

where

L = −� +
1 − 2h2

1

ρ2 ,

F1(z) = z2(�γ − 2
h1h3

ρ2 z1 + 2
h1

ρ
∂ρz1),

F2(z) = z1(�γ − 2
h1h3

ρ2 z1 + 2
h1

ρ
∂ρz1) +

2h1

ρ
(1 + γ )γρ

F3(z) = z1�z2 − z2�z1 +
2h1

ρ
z2γρ.

(2.16)

Projecting (2.13) onto span{ f1, f2} and taking into account (2.14), (2.15), (2.16), we
get the following reformulation of (2.13):

i t1+2νzt − α0t2νh3z − i(
1

2
+ ν)t2νρzρ = Lz + F(z) + dt2νh1,

d = α0 − i(
1

2
+ ν), (2.17)

F(z) = γ Lz + z(�γ +
2h1

ρ
∂ρz1 − 2h1h3z1

ρ2 ) +
2h1

ρ
(1 + γ )γρ + dt2νγ h1.

Note that F is at least quadratic in z.
We look for a solution of (2.17) as a power expansion in t2ν :

z(ρ, t) =
∑
k≥1

t2νk zk(ρ). (2.18)

Substituting (2.18) into (2.17) we get the following recurrent system for zk, k ≥ 1:

Lz1 = −dh1, (2.19)

Lzk = Fk, k ≥ 2, (2.20)
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where Fk depends on z j , j = 1, . . . , k −1 only. We subject (2.19), (2.20) to zero initial
conditions at ρ = 0:

zk(0) = ∂ρzk(0) = 0. (2.21)

Lemma 2.2. System (2.19), (2.20), (2.21) has a unique solution (zk)k≥1, with zk ∈
C∞(R+) for all k ≥ 1. In addition, one has:

(i) zk has an odd Taylor expansion at 0 that starts at order 2k + 1;
(ii) as ρ → ∞, zk has the following asymptotic expansion

zk(ρ) =
2k∑

l=0

∑
j≤k−(l−1)/2

ck
j,lρ

2 j−1(ln ρ)l , (2.22)

with some constants ck
j,l . The asymptotic expansion (2.22) can be differentiated any

number of times with respect to ρ.

Proof. First note that the equation L f = 0 has two explicit solutions: h1(ρ) and h2(ρ) =
ρ4+4ρ2 ln ρ−1

ρ(ρ2+1)
.

Consider the case k = 1:

Lz1 = −dh1,

z1(0) = ∂ρz1(0) = 0.

One has

z1(ρ) = −d

4

∫ ρ

0
dss(h1(ρ)h2(s) − h1(s)h2(ρ))h1(s)

= − dρ

(1 + ρ2)

∫ ρ

0
ds

s(s4 + 4s2 ln s − 1)

(1 + s2)2 +
d(ρ4 + 4ρ2 ln ρ − 1)

ρ(ρ2 + 1)

∫ ρ

0
ds

s3

(1 + s2)2

(2.23)

Since h1 is a C∞ function that has an odd Taylor expansion at ρ = 0 with a linear
leading term, one can easily write an odd Taylor series for z1 with a cubic leading term,
which proves (i) for k = 1.

The asymptotic behavior of z1 at infinity can be obtained directly from the represen-
tation (2.23). As claimed, one has

z1(ρ) = c1
1,0ρ + c1

1,1ρ ln ρ +
∑
j≤0

∑
l=0,1,2

c1
j,lρ

2 j−1(ln ρ)l ,

with c1
1,0 = −c1

1,1 = −d.

Consider k > 1. Assume that z j , j ≤ k − 1, verify (i) and (ii). Then, using (2.17),
one can easily check that Fk is an odd C∞ function vanishing at ρ = 0 at order 2k − 1,
with the following asymptotic expansion as ρ → ∞:

Fk =
k−1∑
j=1

2k−2 j−1∑
l=0

αk
j,lρ

2 j−1(ln ρ)l +
2k−2∑
l=0

αk
0,lρ

−1(ln ρ)l

+
2k−1∑
l=0

αk
−1,lρ

−3(ln ρ)l +
∑
j≤−2

2k∑
l=0

αk
j,lρ

2 j−1(ln ρ)l .
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As a consequence, zk(ρ) = 1
4

∫ ρ

0 dss(h1(ρ)h2(s)−h1(s)h2(ρ))Fk(s) is a C∞ function
with an odd Taylor series at zero starting at order 2k + 1 and as ρ → ∞,

zk(ρ) =
2k∑

l=0

∑
j≤k−(l−1)/2

ck
j,l(ln ρ)lρ2 j−1,

as required. This concludes the proof of Lemma 2.2. ��
Returning to v we get a formal solution of (2.2) of the form

v(r, t) = eα(t)R V (λ(t)r, t), V (ρ, t) = Q +
∑
k≥1

t2νk Zk(ρ), (2.24)

Zk = (Zk
1, Zk

2, Zk
3), where Zk

i , i = 1, 2, are smooth odd functions of ρ vanishing at 0
at order 2k + 1, and Zk

3 is an even function vanishing at zero at order 2k + 2. As ρ → ∞,
one has

Zk
i (ρ) =

2k∑
l=0

∑
j≤k−(l−1)/2

ck,i
j,l (ln ρ)lρ2 j−1, i = 1, 2,

Zk
3(ρ) =

2k∑
l=0

∑
j≤k+1−l/2

ck,3
j,l (ln ρ)lρ2 j−2,

(2.25)

with some real coefficients ck,i
j,l verifying

ck,3
k+1,0 = 0, ∀k ≥ 1.

The asymptotic expansions (2.25) can be differentiated any number of times with respect
to ρ.

Note that in the limit ρ → ∞, y ≡ r t−1/2 → 0, expansion (2.24), (2.25), rewritten
in terms of y, give at least formally

Vi (λ(t)r, t) =
∑
j≥0

tν(2 j+1)

2 j+1∑
l=0

(ln y − ν ln t)l V j,l
i (y), i = 1, 2,

V3(λ(t)r, t) = 1 +
∑
j≥1

t2ν j
2 j∑

l=0

(ln y − ν ln t)l V j,l
3 (y),

V j,l
i (y) =

∑
k≥− j+l/2

ck+ j,i
k,l y2k−1, i = 1, 2,

V j,l
3 (y) =

∑
k≥− j+l/2

ck+ j,3
k+1,l y2k,

(2.26)

where the coefficients ck,i
j,l with k �= 0 are defined by (2.25) and c0,i

j,0 come from the
expansion of Q as ρ → ∞:

h1(ρ) =
∑
j≤0

c0,1
j,0ρ2 j−1, h3(ρ) = 1 +

∑
j≤0

c0,3
j,0ρ2 j−2, c0,2

j,0 = 0.
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The role of y-expansion (2.26) will become clear in the next subsection where we will
use it to perform the transition from the inner region to the self-similar region.

For N ≥ 2 define

z(N )
in =

N∑
k=1

t2νk zk, z(N )
in = z(N )

in,1 + i z(N )
in,2.

Then z(N )
in solves (2.17) up to the error X N = −i t1+2ν∂t z

(N )
in + α0t2νh3z(N )

in + i( 1
2 +

ν)t2νρ∂ρz(N )
in + dt2νh1 + Lz(N )

in + F(z(N )
in ). Using the fact that zk are defined recursively

it is not difficult to check that the error X N verifies

|ρ−l∂k
ρ∂m

t X N | ≤ Ck,l,mt2νN−m〈ρ〉2N−1−l−k ln(2 + ρ), (2.27)

for any k, m ∈ N, 0 ≤ l ≤ (2N + 1 − k)+, 0 ≤ ρ ≤ 10t−ν+ε1 , 0 < t ≤ T (N ), with
some T (N ) > 0.

Set

γ
(N )
in =

√
1 − |z(N )

in |2 − 1,

Z (N )
in = z(N )

in,1 f1 + z(N )
in,2 f2 + γ

(N )
in Q,

V (N )
in = Q + Z (N )

in ∈ S2.

Then V (N )
in solves

t1+2ν∂t V
(N )
in +α0t2ν RV (N )

in −t2ν(ν +
1

2
)ρ∂ρV (N )

in =V (N )
in ×(�ρV (N )

in +
R2

ρ2 V (N )
in )+R(N )

in ,

(2.28)

with R(N )
in = im X N f1 − re X N f2 + im(X̄ N z(N ))

1+γ (N ) Q admitting the same estimate as X N .

Note also that it follows from our analysis that for 0 ≤ ρ ≤ 10t−ν+ε1 , 0 < t ≤ T (N ) ,

|ρ−l∂k
ρ Z (N )

in | ≤ Ck,l t
2ν〈ρ〉1−l−k ln(2 + ρ), k ∈ N, l ≤ (3 − k)+. (2.29)

As a consequence, we obtain the following result.

Lemma 2.3. There exists T (N ) > 0 such that for any 0 < t ≤ T (N ) the following
holds.

(i) The profile Z (N )
in (ρ, t) verifies

‖∂ρ Z (N )
in (t)‖L2(ρdρ,0≤ρ≤10t−ν+ε1 ) ≤ Ctν, (2.30)

‖ρ−1 Z (N )
in (t)‖L2(ρdρ,0≤ρ≤10t−ν+ε1 ) ≤ Ctν, (2.31)

‖Z (N )
in (t)‖L∞(0≤ρ≤10t−ν+ε1 ) + ‖ρ∂ρ Z (N )

in (t)‖L∞(0≤ρ≤10t−ν+ε1 ) ≤ Ctν, (2.32)

‖ρ−l∂k
ρ Z (N )

in (t)‖L2(ρdρ,0≤ρ≤10t−ν+ε1 ) ≤ Ct2ν(1 + | ln t |), k + l = 2, (2.33)

‖ρ−l∂k
ρ Z (N )

in (t)‖L2(ρdρ,0≤ρ≤10t−ν+ε1 ) ≤ Ct2ν, k + l ≥ 3, l ≤ (3 − k)+, (2.34)

‖∂ρ Z (N )
in (t)‖L∞(0≤ρ≤10t−ν+ε1 ) + ‖ρ−1 Z (N )

in (t)‖L∞(0≤ρ≤10t−ν+ε1 ) ≤ Ct2ν(1 + | ln t |),
(2.35)

‖ρ−l∂k
ρ Z (N )

in (t)‖L∞(0≤ρ≤10t−ν+ε1 ) ≤ Ct2ν, 2 ≤ l + k, l ≤ (3 − k)+. (2.36)



78 G. Perelman

(ii) The error R(N )
in admits the estimates

‖ρ−l∂k
ρR(N )

in (t)‖L2(ρdρ,0≤ρ≤10t−ν+ε1 ) ≤ t Nε1, 0 ≤ l + k ≤ 3,

‖ρ−l∂k
ρ∂tR(N )

in (t)‖L2(ρdρ,0≤ρ≤10t−ν+ε1 ) ≤ t Nε1, 0 ≤ k + l ≤ 1,
(2.37)

provided N > ε−1
1 .

2.3. Self-similar region rt−1/2 � 1. We next consider the self-similar region 1
10 tε1 ≤

r t−1/2 ≤ 10t−ε2 , where 0 < ε2 < 1/2 to be fixed later. In this region we expect the
solution to be close to k. In this regime it will be convenient to use the stereographic
representation of (2.2):

(v1, v2, v3) = v → w = v1 + iv2

1 + v3
∈ C ∪ {∞}.

Equation (2.2) is equivalent to

iwt = −�w + r−2w + G(w, w̄, wr ), G(w, w̄, wr ) = 2w̄

1 + |w|2 (w2
r − r−2w2).

(2.38)

Slightly more generally, if w(r, t) is a solution of

iwt = −�w + r−2w + G(w, w̄, wr ) + A, (2.39)

then v = ( 2 re w
1+|w|2 , 2 im w

1+|w|2 ,
1−|w|2
1+|w|2 ) ∈ S2 solves

vt = v × (�v +
R2

r2 v) + A, (2.40)

with A = (A1,A2,A3) given by

A1 + iA2 = −2i
A + w2 Ā

(1 + |w|2)2 , A3 = 4 im(w Ā)

(1 + |w|2)2 .

Consider (2.38). Write w as

w(r, t) = eiα(t)W (y, t), y = r t−1/2.

Then (2.38) becomes

i tWt − α0W = LW + G(W, W̄ , Wy), (2.41)

where

L = −� + y−2 + i
1

2
y∂y .

Note that as y → 0, (2.26) gives the following expansion:

W (y, t) =
∑
j≥0

2 j+1∑
l=0

∑
i≥− j+l/2

α( j, i, l)tν(2 j+1)(ln y − ν ln t)l y2i−1, (2.42)
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where the coefficientsα( j, i, l) can be expressed explicitly in terms of ck,i ′
j ′,l ′ , 1 ≤ k ≤ j+i ,

j ′ ≤ i , 0 ≤ l ′ ≤ l. This suggests the following ansatz for W :

W (y, t) =
∑
j≥0

2 j+1∑
l=0

tν(2 j+1)(ln y − ν ln t)l W j,l(y). (2.43)

Substituting (2.43) into (2.41) one gets the following recurrent system for W j,l , 0 ≤ l ≤
2 j + 1, j ≥ 0:

{
(L − μ0)W0,1 = 0,

(L − μ0)W0,0 = −i(1/2 + ν)W0,1 + 2y−1∂y W0,1,
(2.44)

⎧⎪⎨
⎪⎩

(L − μ j )W j,2 j+1 = G j,2 j+1,

(L − μ j )W j,2 j = G j,2 j − i(2 j + 1)(1/2 + ν)W j,2 j+1 + 2(2 j + 1)y−1∂y W j,2 j+1,

(L − μ j )W j,l = G j,l − i(l + 1)(1/2 + ν)W j,l+1
+2(l + 1)y−1∂y W j,l+1 + (l + 1)(l + 2)y−2W j,l+2, 0 ≤ l ≤ 2 j − 1.

(2.45)

Here μ j = −α0 + iν(2 j + 1), and G j,l is the contribution of the nonlinear term
G(W, W̄ , Wr ), that depends only on Wi,n, i ≤ j − 1:

G(W, W̄ , Wr ) = −
∑
j≥1

2 j+1∑
l=0

t (2 j+1)ν(ln y − ν ln t)lG j,l(y),

G j,l(y) = G j,l(y; Wi,n, 0 ≤ n ≤ 2i + 1, 0 ≤ i ≤ j − 1).

One has

Lemma 2.4. Given coefficients a j , b j , j ≥ 0, there exists a unique solution of (2.44),
(2.45), W j,l ∈ C∞(R∗

+), 0 ≤ l ≤ 2 j + 1, j ≥ 0, such that as y → 0, W j,l has the
following asymptotic expansion

W j,l(y) =
∑

i≥− j+l/2

d j,l
i y2i−1, (2.46)

with
d j,1

1 = a j , d j,0
1 = b j . (2.47)

The asymptotic expansion (2.46) can be differentiated any number of times with respect
to y.

Proof. First note that equation (L−μ j ) f = 0 has a basis of solutions {e1
j , e2

j } such that

(i) e1
j is a C∞ odd function, e1

j (y) = y + O(y3) as y → 0;

(ii) e2
j ∈ C∞(R∗

+) and admits the representation:

e2
j (y) = y−1 + κ j e

1
j (y) ln y + ẽ2

j (y), κ j = − i

4
− μ j

2
,

where ẽ2
j is a C∞ odd function, ẽ2

j (y) = O(y3) as y → 0.
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Consider (2.44). From (L − μ0)W0,1 = 0 and (2.46), (2.47), we get

W0,1 = a0e1
0.

Consider the equation for W0,0:

(L − μ0)W0,0 = −i(1/2 + ν)W0,1 + 2y−1∂y W0,1.

The right hand side has the form: 2a0 y−1 + a C∞ odd function. Therefore, the equation
has a unique solution W 0

0,0 of the form

W 0
0,0(y) = d0 y−1 + W̃ 0

0,0(y),

where d0 = a0
k j

and W̃ 0
0,0 is a C∞ odd function, W̃ 0

0,0(y) = O(y3) as y → 0. Together
with (2.46), (2.47), this gives:

W0,0 = W 0
0,0 + b0e1

0.

Consider the case j ≥ 1. We have

(L − μ j )W j,l = F j,l , 0 ≤ l ≤ 2 j + 1, (2.48)

where

F j,2 j+1 = G j,2 j+1,

F j,2 j = G j,2 j − i(2 j + 1)(1/2 + ν)W j,2 j+1 + 2(2 j + 1)y−1∂y W j,2 j+1,

F j,l = G j,l − i(l + 1)(1/2 + ν)W j,l+1

+ 2(l + 1)y−1∂y W j,l+1 + (l + 1)(l + 2)y−2W j,l+2, 0 ≤ l ≤ 2 j − 1.

(2.49)

The resolution of (2.48) is based on the following ODE lemma whose proof is left to
the reader.

Lemma 2.5. Let F be a C∞(R∗
+) function of the form

F(y) =
0∑

j=k

Fj y2 j−1 + F̃(y),

where F̃ is a C∞ odd function and k ≤ −1. Then there exists a unique constant A such
that the equation (L−μ j )u = F + Ay−3 has a solution u ∈ C∞(R∗

+) with the following
behavior as y → 0:

u(y) =
∑

j≥k+1

u j y2 j−1, u1 = 0.
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More precisely, we proceed as follows. Assume that Wi,n , 0 ≤ n ≤ 2i + 1, i ≤ j − 1
has the prescribed behavior (2.46), (2.47). Then it is not difficult to check that G j,l admit
the following expansion as y → 0:

G j,2 j+1(y) =
∑
i≥1

gi
j,2 j+1 y2i−1,

G j,2 j (y) =
∑
i≥0

gi
j,2 j y2i−1,

G j,l(y) =
∑

i≥− j+l/2−1

gi
j,l y2i−1, l ≤ 2 j − 1.

(2.50)

Consider W j,2 j+1. From (L − μ j )W j,2 j+1 = G j,2 j+1 we get

W j,2 j+1 = W 0
j,2 j+1 + c0e1

j , (2.51)

where W 0
j,2 j+1 is a unique C∞ odd solution of (L − μ j ) f = G j,2 j+1 that satisfies

W 0
j,2 j+1(y) = O(y3) as y → 0. The constant c0 remains undetermined at this stage.

Consider F j,2 j . It has the form: (g0
j,2 j + 2(2 j + 1)c0)y−1 + a C∞ odd function.

Therefore, for W j,2 j we obtain

W j,2 j = W 0
j,2 j + c1e1

j , (2.52)

where W 0
j,2 j is a unique solution of (L − μ j ) f = F j,2 j , that satisfies as y → 0,

W 0
j,2 j = d1 y−1 + O(y3), d1 = g0

j,2 j + 2(2 j + 1)c0

2k j
. (2.53)

Similarly to c0, the constant c1 is arbitrary here.
Consider F j,2 j−1. It follows from (2.49), (2.50), (2.51), (2.52), (2.53) that

F j,2 j−1 = (g−1
j,2 j−1 − 4 jd1)y−3 + const y−1 + an C∞ odd function.

The equation (L − μ j )W j,2 j−1 = F j,2 j−1 has a solution of form (2.46) iff

g−1
j,2 j−1 − 4 jd1 = 0,

which gives

c0 = k j g j,2 j−1−1 − 2 jg0
j,2 j

4 j (2 j + 1)
.

With this choice of c0 one gets

W j,2 j−1 = W 0
j,2 j−1 + c2e1

j ,

where W 0
j,2 j−1 is a unique solution of (L − μ j ) f = F j,2 j−1, that satisfies as y → 0,

W 0
j,2 j−1 = const y−1 + O(y3).
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Continuing the procedure one successively finds W j,2 j−2, . . . , W j,0 in the form
W j,2 j+1−k = W 0

j,2 j+1−k + cke1
j , k ≤ 2 j + 1, where W 0

j,2 j+1−k is an unique solution
of (L − μ j ) f = F j,2 j+1−k , that as y → 0 has an asymptotic expansion of the form

(2.46) with vanishing coefficients d j,l
1 . The constant ck , k ≤ 2 j − 1, is determined

uniquely by the solvability condition of the equation for W j,2 j−k−1 (see lemma 2.5).
Finally, c2 j+1, c2 j+2 are given by (2.47):

c2 j+1 = a j , c2 j+2 = b j .

��
We denote by W ss

j,l(y), 0 ≤ l ≤ 2 j + 1, j ≥ 0, the solution of (2.44), (2.45) given by
Lemma 2.4 with a j = α( j, 1, 1), b j = α( j, 1, 0), see (2.42). Since expansion (2.42)
is a solution of (2.41), the uniqueness part of Lemma 2.4 ensures that

W ss
j,l(y) =

∑
i≥− j+l/2

α( j, i, l)y2i−1, as y → 0. (2.54)

We next study the behavior of W ss
j,l , 0 ≤ l ≤ 2 j + 1, j ≥ 0, at infinity. One has

Lemma 2.6. Given coefficients a j,l , b j,l , 0 ≤ l ≤ 2 j + 1, j ≥ 0, there exists a unique
solution of (2.44), (2.45) of the following form.

W0,l = W 0
0,l + W 1

0,l , l = 0, 1, (2.55)

W j,l = W 0
j,l + W 1

j,l + W 2
j,l , 0 ≤ l ≤ 2 j + 1, j ≥ 1, (2.56)

where (W i
j,l) 0≤l≤2 j+1

j≥1
, i = 0, 1, are two solutions of (2.44), (2.45) that, as y → ∞, have

the following asymptotic expansion

2 j+1∑
l=0

(ln y − ν ln t)l W i,
j,l(y) =

2 j+1∑
l=0

(ln y + (−1)i ln t/2)l Ŵ i
j,l(y), i = 0, 1,

Ŵ 0
j,l(y) = y2iα0+2ν(2 j+1)

∑
k≥0

ŵ
j,l,0
k y−2k,

Ŵ 1
j,l(y) = eiy2/4 y−2iα0−2−2ν(2 j+1)

∑
k≥0

ŵ
j,l,−1
k y−2k,

(2.57)

with

ŵ
j,l,0
0 = a j,l , ŵ

j,l,−1
0 = b j,l . (2.58)

Finally, the interaction part W 2
j,l can be written as

W 2
j,l(y) =

∑
− j−1≤m≤ j

e−imy2/4 y2iα0(2m+1)W j,l,m(y), (2.59)
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where W j,l,m have the following asymptotic expansion as y → ∞:

W j,l,m(y) =
∑

k≥m+2

∑
m− j≤i≤ j−m

j−m−i∈2Z

2 j+1−l∑
s=0

w
j,l,m
k,i,s y2ν(2i+1)−2k(ln y)s, m ≥ 1,

W j,l,m(y) =
∑

k≥−m

∑
− j−m−2≤i≤ j+m

j−m−i∈2Z

2 j+1−l∑
s=0

w
j,l,m
k,i,s y2ν(2i+1)−2k(ln y)s, m ≤ −2,

W j,l,0(y) =
∑
k≥1

∑
− j≤i≤ j−2

j−i∈2Z

2 j+1−l∑
s=0

w
j,l,0
k,i,s y2ν(2i+1)−2k(ln y)s,

W j,l,−1(y) =
∑
k≥1

∑
− j+1≤i≤ j−1

j−i+1∈2Z

2 j+1−l∑
s=0

w
j,l,−1
k,i,s y2ν(2i+1)−2k(ln y)s .

(2.60)

The asymptotic expansion (2.57), (2.60) can be differentiated any number of times with
respect to y.

Any solution of (2.44), (2.45) has form (2.55), (2.56), (2.57), (2.59), (2.60).

Proof. First note that equation (L − μ j ) f = 0 has a basis of solutions { f 1
j , f 2

j } with
the following behavior at infinity:

f 1
j (y) = y2iα0+2ν(2 j+1)

∑
k≥0

f k
j,1 y−2k, f 2

j (y) = eiy2/4 y−2iα0−2ν(2 j+1)−2
∑
k≥0

f k
j,2 y−2k,

f 0
j,1 = f 0

j,2 = 1. As a consequence, the homogeneous system

(L − μ j )g2 j+1 = 0,

(L − μ j )g2 j = −i(2 j + 1)(1/2 + ν)g2 j+1 + 2(2 j + 1)y−1∂y g2 j+1,

(L − μ j )gl = −i(l + 1)(1/2 + ν)gl+1

+ 2(l + 1)y−1∂y gl+1 + (l + 1)(l + 2)y−2gl+2, 0 ≤ l ≤ 2 j − 1.

(2.61)

has a basis of solutions {gi,m
j } i=1,2,

m=0,...,2 j+1
,

gi,m
j = (gi,m

j,0 , . . . , gi,m
j,2 j+1), 0 ≤ m ≤ 2 j + 1, i = 1, 2,

defined by

2 j+1∑
l=0

(ln y − ν ln t)l gi,m
j,l (y) =

2 j+1∑
l=0

(ln y + (−1)i−1 ln t/2)lξ
i,m
j,l (y), (2.62)

where (ξ
i,m
j,l )l=0,...,2 j+1 is the unique solution of

(L − μ j )ξ2 j+1 = 0,

(L − μ j )ξ2 j = −i(2 j + 1)(i − 1)ξ2 j+1 + 2(2 j + 1)y−1∂yξ2 j+1,

(L − μ j )ξl = −i(l + 1)(i − 1)ξl+1 + 2(l + 1)y−1∂yξl+1

+ (l + 1)(l + 2)y−2ξl+2, 0 ≤ l ≤ 2 j − 1,

(2.63)
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verifying

ξ
i,m
j,l (y) = 0, l > 2 j + 1 − m,

ξ
i,m
j,2 j+1−m(y) = f i

j (y),

ξ
1,m
j,l (y) = y2iα0+2ν(2 j+1)

∑
k≥2 j+1−l−m

ξ1
l,k y−2k, y → +∞,

ξ
2,m
j,l (y) = eiy2/4 y−2iα0−2ν(2 j+1)−2

∑
k≥2 j+1−l−m

ξ2
l,k y−2k y → +∞.

(2.64)

Consider W0,l , l = 0, 1. We have

(L − μ0)W0,1 = 0,

(L − μ0)W0,0 = −i(1/2 + ν)W0,1 + 2y−1∂y W0,1,

which gives

W0,l(y) =
∑
i=1,2,
m=0,1

Ai,m gi,m
0,l (y), l = 0, 1,

with some constants Ai,m , i = 1, 2, m = 0, 1. It follows from(2.62), (2.64) that W0,l ,
l = 0, 1 have the form (2.55), (2.57) with ŵ

j,l,0
0 = A1,1−l , ŵ

j,l,−1
0 = A2,1−l , l = 0, 1,

which together with (2.58) gives A1,m = a0,1−m , A2,m = b0,1−m , m = 0, 1.
We next consider j ≥ 1. Assume that Wi,n , 0 ≤ n ≤ 2i + 1, i ≤ j − 1 has the

prescribed behavior (2.56), (2.57),(2.59), (2.60). Then it is not difficult to check that G j,l
has the form

G j,l(y) =
∑

− j−1≤m≤ j

e−imy2/4 y2iα0(2m+1)Gm
j,l(y), (2.65)

where Gm
j,l , m = 0,−1, are given by

Gm
j,l(y) = Gm,0

j,l (y) + Gm,1
j,l (y), m = 0,−1,

G0,0
j,l (y) = G j,l(y; W 0

i,n, 0 ≤ n ≤ 2i + 1, 0 ≤ i ≤ j − 1),

eiy2/4G−1,0
j,l (y) = G j,l(y; W 1

i,n, 0 ≤ n ≤ 2i + 1, 0 ≤ i ≤ j − 1),

(2.66)

and admit the following asymptotic expansions and as y → ∞:

G0,0
j,l (y) =

∑
k≥1

2 j+1−l∑
s=0

T j,l,0
k, j,s y2ν(2 j+1)−2k(ln y)s,

G0,1
j,l (y) =

∑
k≥2

∑
− j≤i≤ j−2

j−i∈2Z

2 j+1−l∑
s=0

T j,l,0
k,i,s y2ν(2i+1)−2k(ln y)s,

(2.67)
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G−1,0
j,l (y) =

∑
k≥2

2 j+1−l∑
s=0

T j,l,−1
k,− j−1,s y−2ν(2 j+1)−2k(ln y)s,

G−1,1
j,l (y) =

∑
k≥1

∑
− j+1≤i≤ j−1

j−i+1∈2Z

2 j+1−l∑
s=0

T j,l,−1
k,i,s y2ν(2i+1)−2k(ln y)s .

(2.68)

Finally, Gm
j,l , m �= 0,−1, have the following behavior as y → ∞

Gm
j,l(y) =

∑
k≥m+1

∑
m− j≤i≤ j−m

j−m−i∈2Z

2 j+1−l∑
s=0

T j,l,m
k,i,s y2ν(2i+1)−2k(ln y)s, m ≥ 1,

Gm
j,l(y) =

∑
k≥|m|−1

∑
− j−m−2≤i≤ j+m

j+m−i∈Z

2 j+1−l∑
s=0

T j,l,m
k,i,s y2ν(2i+1)−2k(ln y)s, m ≤ −2.

(2.69)

Therefore, integrating (2.45), one gets

W j,l = W̃ j,l +
∑
i=1,2

m=0,...,2 j+1

Ai,mgi,m
j,l ,

W̃ j,l(y) =
∑

− j−1≤m≤ j

e−imy2/4 y2iα0(2m+1)W̃ m
j,l(y),

(2.70)

where e−imy2/4 y2iα0(2m+1)W̃ m
j,l is a unique solution of (2.45) with G j,l replaced by

e−imy2/4 y2iα0(2m+1)Gm
j,l(y), that has the following behavior as y → +∞:

W̃ m
j,l(y) =

∑
k≥m+2

∑
m− j≤i≤ j−m

j−m−i∈2Z

2 j+1−l∑
s=0

w̃
j,l,m
k,i,s y2ν(2i+1)−2k(ln y)s, m ≥ 1,

W̃ m
j,l(y) =

∑
k≥−m

∑
− j−m−2≤i≤ j+m

j−m−i∈2Z

2 j+1−l∑
s=0

w̃
j,l,m
k,i,s y2ν(2i+1)−2k(ln y)s, m ≤ −2.

(2.71)

Finally for m = 0,−1 one has:

W̃ 0
j,l(y) = W̃ 0,0

j,l (y) + W̃ 0,1
j,l (y),

W̃ −1
j,l (y) = W̃ −1,0

j,l (y) + W̃ −1,1
j,l (y),

(2.72)
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where W̃ 0,i
j,l and eiy2/4 y−2iα0 W̃ −1,i

j,l are solutions of (2.45) with G j,l replaced by G0,i
j,l

and y−2iα0 eiy2/4G−1,i
j,l respectively, with the following asymptotics as y → ∞:

W̃ 0,0
j,l (y) =

∑
k≥1

2 j+1−l∑
s=0

w̃
j,l,0
k, j,s y2ν(2 j+1)−2k(ln y)s,

W̃ 0,1
j,l (y) =

∑
k≥1

∑
− j≤i≤ j−2

j−i∈2Z

2 j+1−l∑
s=0

w̃
j,l,0
k,i,s y2ν(2i+1)−2k(ln y)s,

W̃ −1,0
j,l (y) =

∑
k≥2

2 j+1−l∑
s=0

w̃
j,l,−1
k,− j−1,s y−2ν(2 j+1)−2k(ln y)s,

W̃ −1,1
j,l (y) =

∑
k≥1

∑
− j+1≤i≤ j−1

j−i∈2Z

2 j+1−l∑
s=0

w̃
j,l,−1
k,i,s y2ν(2i+1)−2k(ln y)s .

(2.73)

Clearly, W 0
j,l = W̃ 0,0

j,l +
∑2 j+1

m=0 A1,mg1,m
j,l , and W 1

j,l = e−imy2/4W̃ −1,0
j,l +

∑2 j+1
m=0 A2,mg2,m

j,l

are solutions of (2.45) with G j,l replaced by G0,0
j,l = G j,l(W 0

i,n, i ≤ j − 1) and

eiy2/4G−1,0
j,l = G j,l(W 1

i,n, i ≤ j − 1) respectively. As a consequence, W i
j,l , i = 0, 1,

0 ≤ l ≤ 2 j + 1, have the form (2.57) with ŵ
j,l,i
0 = A1−i

2 j+1−l , i = 0,−1, l =
0, . . . , 2 j + 1, which together with (2.58) gives A1,m = a j,2 j+1−m , A2,m = b j,2 j+1−m ,
m = 0, . . . , 2 j + 1. ��

Let W (N )
in (y, t) be the the stereographic representation of V (N )

in (t−ν y, t) =
(V (N )

in,1 (t−ν y, t), V (N )
in,2 (t−ν y, t), V (N )

in,3 (t−ν y, t)):

W (N )
in (y, t) = V (N )

in,1 (t−ν y, t) + iV (N )
in,2 (t−ν y, t)

1 + V (N )
in,3 (t−ν y, t)

.

For N ≥ 2 define

W (N )
ss (y, t) =

N∑
j=0

2 j+1∑
l=0

tν(2 j+1)(ln ρ)l W ss
j,l(y),

A(N )
ss = −i t∂t W

(N )
ss + α0W (N )

ss + LW (N )
ss + G(W (N )

ss , W̄ (N )
ss , ∂y W (N )

ss ),

V (N )
ss (ρ, t) = ( 2 re W (N )

ss

1 + |W (N )
ss |2

,
2 im W (N )

ss

1 + |W (N )
ss |2

,
1 − |W (N )

ss |2
1 + |W (N )

ss |2
), ρ = t−ν y,

Z (N )
ss (ρ, t) = V (N )

ss (ρ, t) − Q(ρ).

Fix ε1 = ν
2 . Then, as a direct consequence of the previous analysis, we obtain the

following result.
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Lemma 2.7. For 0 < t ≤ T (N ) the following holds.

(i) For any k, l,and 1
10 tε1 ≤ y ≤ 10tε1 , one has

|y−l∂k
y∂ i

t (W (N )
ss − W (N )

in )| ≤ Ck,l,i t
ν(N+1− l+k

2 )−i , i = 0, 1. (2.74)

(ii) The profile Z (N )
ss verifies

‖∂ρ Z (N )
ss (t)‖L2(ρdρ, 1

10 t−ν+ε1≤ρ≤10t−ν−ε2 ) ≤ Ctη, (2.75)

‖ρ−1 Z (N )
ss (t)‖L2(ρdρ, 1

10 t−ν+ε1≤ρ≤10t−ν−ε2 ) ≤ Ctη, (2.76)

‖Z (N )
ss (t)‖L∞( 1

10 t−ν+ε1≤ρ≤10t−ν−ε2 ) ≤ Ctη, (2.77)

‖ρ∂ρ Z (N )
ss (t)‖L∞( 1

10 t−ν+ε1≤ρ≤10t−ν−ε2 ) ≤ Ctη, (2.78)

‖ρ−l∂k
ρ Z (N )

ss (t)‖L2(ρdρ, 1
10 t−ν+ε1≤ρ≤10t−ν−ε2 ) ≤ Ctν+ 1

2 +η, k + l = 2, (2.79)

‖ρ−l∂k
ρ Z (N )

in (t)‖L2(ρdρ, 1
10 t−ν+ε1≤ρ≤10t−ν−ε2 ) ≤ Ct2ν, k + l ≥ 3, (2.80)

‖ρ−l∂k
ρ Z (N )

ss (t)‖L∞( 1
10 t−ν+ε1≤ρ≤10t−ν−ε2 ) ≤ Ctν+η, k + l = 1, (2.81)

‖ρ−l∂k
ρ Z (N )

ss (t)‖L∞( 1
10 t−ν+ε1≤ρ≤10t−ν−ε2 ) ≤ Ct2ν, 2 ≤ l + k. (2.82)

Here and below η stands for small positive constants depending on ν and ε2, that
may change from line to line.

(iii) The error A(N )
ss admits the estimate

‖y−l∂k
y∂ i

t A(N )
ss (t)‖L2(ydy, 1

10 tε1≤y≤10t−ε2 ) ≤ tνN (1−2ε2)−i , 0 ≤ l + k ≤ 4, i = 0, 1.

(2.83)

2.4. Remote region r ∼ 1. We next consider the remote region t−ε2 ≤ r t−1/2. Consider
the formal solution

∑
j≥0

∑2 j+1
l=0 tν(2 j+1)(ln y − ν ln t)l W ss

j,l(y) constructed in the pre-
vious subsection. By Lemma 2.6, it has form (2.55), (2.56), (2.57), (2.59), (2.60), with
some coefficients ŵ

j,l,i
k , w

j,l,m
k,i,s . Note that in the limit y → ∞, r → 0, the main order

terms of the expansion
∑

j≥0
∑2 j+1

l=0 tν(2 j+1)+iα0(ln y − ν ln t)l W ss
j,l(t

−1/2r) are given
by

∑
j≥0

2 j+1∑
l=0

tν(2 j+1)+iα0(ln y − ν ln t)l W ss
j,l(t

−1/2r)

∼
∑
k≥0

tk

r2k

∑
j≥0

2 j+1∑
l=0

ŵ
j,l,0
k (ln r)lr2iα0+2ν(2 j+1)

+
e

ir2
4t

t

∑
k≥0

tk

r2k

∑
j≥0

2 j+1∑
l=0

ŵ
j,l,−1
k

(r

t

)−2iα0−2ν(2 j+1)−2 (
ln

(r

t

))l
, (2.84)
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which means that in the region t−ε2 ≤ r t−1/2 we have to look for the solution of (2.38)
as a perturbation of the time independent profile

∑
j≥0

2 j+1∑
l=0

β0( j, l)(ln r)lr2ν(2 j+1),

with β0( j, l) = ŵ
j,l,0
0 .

Let θ ∈ C∞
0 (R), θ(ξ) =

{
1, |ξ | ≤ 1,

0, |ξ | ≥ 2.
For N ≥ 2, and δ > 0 we define

f0(r) ≡ f (N )
0 (r) = θ(δ−1r)

N∑
j=0

2 j+1∑
l=0

β0( j, l)(ln r)lr2iα0+2ν(2 j+1).

Note that eiθ f0 ∈ H1+2ν− and

‖eiθ f0‖Ḣ s ≤ Cδ1+2ν−s, ∀ 0 ≤ s < 1 + 2ν. (2.85)

Write w(r, t) = f0(r) + χ(r, t). Then χ solves

iχt = −�χ + r−2χ + V0∂rχ + V1χ + V2χ̄ + N + D0,

V0 = 4 f̄0∂r f0

1 + | f0|2 , V1 = −2| f0|2(2 + | f0|2)
r2(1 + | f0|2)2 − 2 f̄ 2

0 (∂r f0)
2

(1 + | f0|2)2 ,

V2 = 2(r2(∂r f0)
2 − f 2

0 )

r2(1 + | f0|2)2 ,

D0 = (−� + r−2) f0 + G( f0, f̄0, ∂r f0).

(2.86)

Finally, N contains the terms that are at least quadratic in χ and it has the form

N = N0(χ, χ̄) + χr N1(χ, χ̄) + χ2
r N2(χ, χ̄),

N0(χ, χ̄) = G( f0 + χ, f̄0 + χ̄ , ∂r f0) − G( f0, f̄0, ∂r f0) − V1χ − V2χ̄ ,

N1(χ, χ̄) = 4∂r f0( f̄0 + χ̄)

1 + | f0 + χ |2 − V0,

N2(χ, χ̄) = 2( f̄0 + χ̄ )

1 + | f0 + χ |2 .

(2.87)

Accordingly to (2.55), (2.56), (2.57), (2.59), (2.60), we look for χ as

χ(r, t) =
∑
q≥0
k≥1

t2νq+k
∑

− min{k,q}≤m≤min{(k−2)+,q}
q−m∈2Z

q∑
s=0

e−im�(ln r − ln t)s gk,q,m,s(r),

(2.88)
where

� = r2

4t
+ 2α0 ln t + ϕ(r),

with ϕ to be chosen later.
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Substituting this ansatz to the expressions −iχt −�χ + r−2χ + V0∂rχ + V1χ + V2χ̄ ,
N , we get

−iχt + �χ − r−2χ + V0∂rχ + V1χ + V2χ̄

=
∑
q≥0
k≥2

t2νq+k−2
∑

− min{k,q}≤m≤min{(k−2)+,q}
q−m∈2Z

q∑
s=0

e−im�(ln r − ln t)s�lin
k,q,m,s,

N0(χ, χ̄) =
∑
q≥0
k≥4

t2νq+k−2
∑

− min{k,q}≤m≤min{(k−2)+,q}
q−m∈2Z

q∑
s=0

e−im�(ln r − ln t)s�
nl,0
k,q,m,s,

χr N1(χ, χ̄) =
∑
q≥0
k≥3

t2νq+k−2
∑

− min{k,q}≤m≤min{(k−2)+,q}
q−m∈2Z

q∑
s=0

e−im�(ln r − ln t)s�
nl,1
k,q,m,s,

(χr )
2 N2(χ, χ̄) =

∑
q≥0
k≥2

t2νq+k−2
∑

− min{k,q}≤m≤min{(k−2)+,q}
q−m∈2Z

q∑
s=0

e−im�(ln r − ln t)s�
nl,2
k,q,m,s,

Here

�lin
k,q,m,s = m(m + 1)r2

4
gk,q,m,s + �

lin,1
k,q,m,s + �

lin,2
k,q,m,s, (2.89)

with �
lin,1
k,q,m,s and �

lin,2
k,q,m,s depending respectively on gk−1,q,m,s′ , s′ = s, s + 1 and

gk−2,q,m,s′ , s′ = s, s + 1, s + 2 only:

�
lin,1
k,q,m,s = −i(2νq + k − 1 − m − 2imα0)gk−1,q,m,s + i(m + 1)(s + 1)gk−1,q,m,s+1

+imr(∂r − imϕ′(r) − 1

2
V0(r))gk−1,q,m,s, (2.90)

�
lin,2
k,q,m,s = −eimϕ�(e−imϕgk−2,q,m,s) − 2(s + 1)

r
eimϕ∂r (e

−imϕgk−2,q,m,s+1)

− (s + 1)(s + 2)

r2 gk−2,q,m,s+2 + V0eimϕ∂r (e
−imϕgk−2,q,m,s)

+(r−2 + V1)gk−2,q,m,s + V2 ḡk−2,q,−m,s . (2.91)

Here and below we use the convention gk,q,m,s = 0 if (k, q, m, s) /∈ �, where

� = {k ≥ 1, q ≥ 0, 0 ≤ s ≤ q, q − m ∈ 2Z,− min{k, q} ≤ m ≤ min{k − 1, q}}.

The nonlinear terms �
nl,i
k,q,m,s , i = 0, 1, depend only on gk′,q ′,m′,s′ with k′ ≤ k −2. More

precisely,

�
nl,0
k,q,m,s = �

nl,0
k,q,m,s(r; gk′,q ′,m′,s′ , k′ ≤ k − 3),

�
nl,1
k,q,m,s = �

nl,1
k,q,m,s(r; gk′,q ′,m′,s′ , k′ ≤ k − 2).
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Finally, �
nl,2
k,q,m,s has the following structure

�
nl,2
2,q,m,s = −δm,−2

r2 f̄0

2(1 + | f0|2)
∑

q1+q2=q
s1+s2=s

g1,q1,−1,s1 g1,q2,−1,s2 ,

�
nl,2
k,q,m,s = �

nl,2,0
k,q,m,s + �̃

nl,2
k,q,m,s, k ≥ 3,

�
nl,2,0
k,q,m,s = (m + 1)r2 f̄0

1 + | f0|2
∑

q1+q2=q
s1+s2=s

g1,q1,−1,s1 gk−1,q2,m+1,s2 ,

(2.92)

with �̃
nl,2
k,q,m,s depending on gk′,q ′,m′,s′ , k′ ≤ k − 2 only:

�̃
nl,2
k,q,m,s = (r; gk′,q ′,m′,s′ , k′ ≤ k − 2).

Note that

�
nl,2,0
k,q,−1,s = 0, ∀k, q, s.

Equation (2.86) is equivalent to

{
�lin

2,0,0,0 + D0 = 0,

�lin
k,q,m,s + �nl

k,q,m,s = 0, (k, q, m, s) ∈ �, (k, q, m, s) �= (2, 0, 0, 0),
(2.93)

Here �nl
k,q,m,s = �

nl,0
k,q,m,s + �

nl,1
k,q,m,s + �

nl,2
k,q,m,s .

We view (2.93) as a recurrent system with respect to k ≥ 1 of the form

⎧⎪⎨
⎪⎩

�lin
2,0,0,0 + D0 = 0,

�lin
2,2 j,0,s = 0, ( j, s) �= (0, 0),

�lin
2,2 j+1,1,s = 0,

(2.94)

and {
�lin

k+1,q,m,s + �nl
k+1,q,m,s = 0, m = 0, 1

�lin
k,q,m,s + �nl

k,q,m,s = 0, m �= 0, 1
, k ≥ 2. (2.95)

Consider (2.94). Choosing ϕ as

ϕ(r) = −i
∫ r

0
ds

f̄0(s)∂s f0(s) − f0(s)∂s f̄0(s)

1 + | f0(s)|2 , (2.96)

we can rewrite (2.94) in the following form

⎧⎨
⎩

(4ν j + 1)g1,2 j,0,s − (s + 1)g1,2 j,0,s+1 = 0, ( j, s) �= (0, 0),

g1,0,0,0 = −i D0,

r∂r g1,2 j+1,−1,s + (2ν(2 j + 1) + 2 + 2iα0 − r(ln(1 + | f0|2))′)g1,2 j+1,−1,s = 0.

(2.97)
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Accordingly to (2.84), we solve this system as follows:

g1,2 j,0,s = 0, ( j, s) �= (0, 0),

g1,0,0,0 = −i D0,

g1,2 j+1,−1,s = β1( j, s)(1 + | f0|2)r−2iα0−2ν(2 j+1)−2, 0 ≤ s ≤ 2 j + 1, 0 ≤ j ≤ N ,

g1,2 j+1,−1,s = 0, j > N ,

(2.98)

where β1( j, s) = ŵ
j,l,−1
0 .

Consider (2.95). We will solve it with the “zero boundary conditions” at zero. To
formulate the result we need to introduce some notations. For m ∈ Z, we denote by Am
the space of continuous functions a : R+ → C such that

(i) a ∈ C∞(R∗
+), supp a ⊂ {r ≤ 2δ};

(ii) for 0 ≤ r < δ, a has an absolutely convergent expansion of the form

a(r) =
∑

n≥K (m)
n−m−1∈2Z

n∑
l=0

αn,l(ln r)lr2νn,

where K (m) = m + 1 if m ≥ 0, and K (m) = |m| − 1 if m ≤ −1. For k ≥ 1 we
define Bk as the space of continuous functions b : R+ → C such that

(i) b ∈ C∞(R∗
+);

(ii) for 0 ≤ r < δ, b has an absolutely convergent expansion of the form

b(r) =
∞∑

n=0

2n∑
l=0

βn,lr
4νn(ln r)l ,

(iii) for r ≥ 2δ, b is a polynome of degree k − 1.

Finally, we set B0
k = {b ∈ Bk, b(0) = 0}.

Clearly, for any m, k, one has r∂rAm ⊂ Am , r∂rBk ⊂ Bk , BkAm ⊂ Am . Note also
that

f0 ∈ r2iα0A0, ϕ ∈ B0
1, g1,0,0,0 ∈ r2iα0−2A0,

g1,2 j+1,−1,s ∈ r−2iα0−2ν(2 j+1)−2B1, 0 ≤ s ≤ 2 j + 1.

Furthermore, one checks easily that if for all (k, q, m, s) ∈ �, gk,q,m,s ∈
r2iα0(1+2m)−2νq−2kAm if m �= −1 and gk,q,−1,s ∈ r−2iα0−2νq−2kBk , then

�
lin,i
k,q,m,s, �

nl, j
k,q,m,s, �̃

nl,2
k,q,m,s ∈ r2iα0(1+2m)−2νq−2(k−1)Am, m �= −1,

�
lin,2
k,q,−1,s, �

nl, j
k,q,−1,s, �̃

nl,2
k,q,−1,s ∈ r−2iα0−2νq−2(k−1)Bk−2,

(2.99)

i = 1, 2, j = 0, 1, 2.
Consider (2.95). Using (2.89), (2.90), (2.91), (2.92), (2.96), one can rewrite it as⎧⎪⎨
⎪⎩

1
4 m(m + 1)r2gk,q,m,s = Bk,q,m,s, m �= 0,−1,

r∂r gk,q,m,s +
(

2νq + k + 1 + 2iα0 − r( f̄0∂r f0+ f0∂r f̄0)

1+| f0|2
)

gk,q,−1,s = Ck,q,−1,s,

(2νq + k)gk,q,0,s − (s + 1)gk,q,0,s+1 = Ck,q,0,s + Dk,q,s,
(2.100)
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where Bk,q,m,s , Ck,q,m,s depend on gk′,q ′,m′,s′ , k′ ≤ k − 1 only:

Bk,q,m,s = Bk,q,m,s(r; gk′,q ′,m′,s′ , k′ ≤ k − 1), m �= 0,−1,

Ck,q,m,s = Ck,q,m,s(r; gk′,q ′,m′,s′ , k′ ≤ k − 1), m = 0,−1,

and have the following form

Bk,q,m,s = −�
lin,1
k,q,m,s − �

lin,2
k,q,m,s − �nl

k,q,m,s, m �= 0,−1

Ck,q,m,s = −i�lin,2
k+1,q,m,s − i�̃nl

k+1,q,m,s, m = 0,−1.
(2.101)

Finally Dk,q,s depend only on gk,q,1,s and is given by

Dk,q,s = −i�nl,2,0
k+1,q,0,s = −i

r2 f̄0

1 + | f0|2
∑

q1+q2=q
s1+s2=s

g1,q1,−1,s1 gk,q2,1,s2 . (2.102)

Note that D2,q,s = 0.

Remark 2.8. It is not difficult to check that if

gk,q,m,s = 0, ∀q > (2N + 1)(2k − 2), m �= 0, 1,

gk,q,m,s = 0, ∀q > (2N + 1)(2k − 1), m = 0, 1,

then

Bk,q,m,s = 0, ∀q > (2N + 1)(2k − 2), m �= 0, 1,

Ck,q,m,s = 0, ∀q > (2N + 1)(2k − 1), m = 0, 1,

Dk,q,s = 0, ∀q > (2N + 1)(2k − 1).

We are now in position to prove the following result.

Lemma 2.9. There exists a unique solution (gk,q,m,s) (k,q,m,s)∈�
k≥2

of (2.100) verifying

gk,q,m,s ∈ r2iα0(2m+1)−2νq−2kAm, m �= −1,

gk,q,−1,s ∈ r−2iα0−2νq−2kBk .
(2.103)

In addition, one has

gk,q,m,s = 0, ∀q > (2N + 1)(2k − 2), m �= 0, 1,

gk,q,m,s = 0, ∀q > (2N + 1)(2k − 1), m = 0, 1,
(2.104)

Proof. For k = 2 (2.100), (2.101), (2.92) give

1

2
r2g2,2 j,−2,s = B2,2 j,−2,s, 0 ≤ s ≤ 2 j, 1 ≤ j, (2.105)

r∂r g2,2 j+1,−1,s +

(
2ν(2 j + 1) + 3 + 2iα0 − r( f̄0∂r f0 + f0∂r f̄0)

1 + | f0|2
)

g2,2 j+1,−1,s

= C2,2 j+1,−1,s, 0 ≤ s ≤ 2 j + 1, 0 ≤ j, (2.106)

(4ν j + 2)g2,2 j,0,s − (s + 1)g2,2 j,0,s+1 = C2,2 j,0,s, 0 ≤ s ≤ 2 j, 0 ≤ j. (2.107)
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Recall that B2,q,m,s , C2,q,m,s depend only on g1,q ′,m′,s′ and therefore, are known by now.
By (2.99), (2.101) and Remark 2.8 they verify

B2,q,−2,s ∈ r−6iα0−2νq−2A−2, m �= 0,−1

C2,q,0,s ∈ r2iα0−2νq−4A0, C2,q,−1,s ∈ r−2iα0−2νq−4B1,

B2,q,−2,s = 0, q > 2(2N + 1),

C2,q,m,s = 0, q > 3(2N + 1), m = 0, 1.

Therefore, we get from (2.105), (2.106),

g2,2 j,−2,s = 2

r2 B2,2 j,−2,s ∈ r−6iα0−4ν j−4A−2, 0 ≤ s ≤ 2 j, 1 ≤ j,

g2,2 j,0,2 j = 1

4 jν + 2
C2,2 j,0,2 j ∈ r2iα0−4ν j−4A0, 0 ≤ j,

g2,2 j,0,s = 1

4 jν + 2
C2,2 j,0,s +

s + 1

4 jν + 2
g2,2 j,0,s+1 ∈ r2iα0−4ν j−4A0, 0 ≤ s ≤ 2 j,

g2,2 j,−2,s = 0, j > 2N + 1,

g2,2 j,0,s = 0, j ≥ 3N + 2, (2.108)

Consider (2.107). Write

g2,2 j+1,−1,s = r−2iα0−3−2ν(2 j+1)(1 + | f0|2)ĝ2,2 j+1,−1,s .

Then ĝ2,2 j+1,−1,s solves

∂r ĝ2,2 j+1,−1,s = r−2Ĉ2,2 j+1,−1,s, (2.109)

where

Ĉ2,2 j+1,−1,s = r2iα0+4+2ν(2 j+1)(1 + | f0|2)−1C2,2 j+1,−1,s .

Since C2,2 j+1,−1,s ∈ r−2iα0−2ν(2 j+1)−4B1, we have:

(i) for 0 ≤ r < δ, Ĉ2,2 j+1,−1,s admits an absolutely convergent expansion of the form

Ĉ2,2 j+1,−1,s =
∞∑

n=0

2n∑
l=0

βn,lr
4νn(ln r)l ,

(ii) for r ≥ 2δ, Ĉ2,2 j+1,−1,s is a constant.
Clearly, there exists a unique solution ĝ2,2 j+1,−1,s of (2.109) such that ĝ2,2 j+1,−1,s ∈
r−1B2. It is given by

ĝ2,2 j+1,−1,s(r) =
∫ r

0
dρρ−2(Ĉ2,2 j+1,−1,s(ρ) − β0,0) − β0,0r−1,

0 ≤ s ≤ 2 j + 1, 0 ≤ j.

Finally, since C2,q,−1,s = 0 for q > 3(2N + 1), one has

g2,2 j+1,−1,s = 0, j > 3N + 1.
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We next proceed by induction. Suppose we have solved (2.100) with k = 2, . . . , l−1,
l ≥ 3, and have found (gk,q,m,s) (k,q,m,s)∈�

2≤k≤l−1
verifying (2.103) and (2.104). Consider k = l.

From the first line in (2.100) we have:

1

4
m(m + 1)r2gl,q,m,s = Bl,q,m,s, m �= 0,−1,

where Bl,q,m,s are known by now and, by (2.99), (2.101) and Remark 2.8, satisfy

Bl,q,m,s ∈ r2iα0(2m+1)−2νq−2(l−1)Am,

Bl,q,m,s = 0, q > 2(2N + 1)(2l − 2).

As a consequence, one obtains for m �= 0,−1:

gl,q,m,s = 4

m(m + 1)r2 Bl,q,m,s ∈ r2iα0(2m+1)−2νq−2lAm,

gl,q,m,s = 0, q > 2(2N + 1)(2l − 2).

(2.110)

We next consider the equations for gl,2 j,0,s :

(4ν j +l)gl,2 j,0,s −(s +1)gl,2 j,0,s+1 = Cl,2 j,0,s + Dl,2 j,s, 0 ≤ s ≤ 2 j, 0 ≤ j. (2.111)

The right hand side Cl,2 j,0,s + Dl,2 j,s depends only on gl,q1,1,s1 and gk,q2,m2,s2 , k ≤ l −1,
and by (2.99), (2.101), (2.110) and Remark 2.8, satisfies

Cl,2 j,0,s + Dl,2 j,s ∈ r2iα0−4ν j−2lA0,

Cl,2 j,0,s + Dl,2 j,s = 0, j > (2N + 1)(2l − 1).

Therefore, the solution of (2.111) verifies

gl,2 j,0,s ∈ r2iα0−4ν j−2lA0, 0 ≤ s ≤ 2 j, 0 ≤ j,

gl,2 j,0,s = 0, j > (2N + 1)(2l − 1).

Finally for gl,2 j+1,−1,s , 0 ≤ s ≤ 2 j + 1, 0 ≤ j we have

r∂r gl,2 j+1,m,s +

(
2ν(2 j + 1) + l + 1 + 2iα0 − r( f̄0∂r f0 + f0∂r f̄0)

1 + | f0|2
)

gl,2 j+1,−1,s

= Cl,2 j+1,−1,s, (2.112)

with Cl,2 j+1,−1,s ∈ r−2iα0−2ν(2 j+1)−2lBl−1 such that

Cl,2 j+1,−1,s = 0, 2 j + 1 > (2N + 1)(2l − 1). (2.113)

Equation (2.112) has a unique solution gl,2 j+1,−1,s verifying gl,2 j+1,−1,s ∈
r−2iα0−2ν(2 j+1)−2lBl , which is given by

gl,2 j+1,−1,s = r−2iα0−2ν(2 j+1)−l−1(1 + | f0|2)ĝl,2 j+1,−1,s,

ĝl,2 j+1,−1,s =
∫ r

0
dρρ−l(Ĉl,2 j+1,−1,s −

∑
0≤n≤ l−1

4ν

2n∑
p=0

βn,pρ
4νn(ln ρ)p)

−
∫ ∞

r
dρρ−l

∑
0≤n≤ l−1

4ν

2n∑
p=0

βn,pρ
4νn(ln ρ)p,
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where

Ĉl,2 j+1,−1,s = r2iα0+2ν(2 j+1)+2l(1 + | f0|2)−1Cl,2 j+1,−1,s,

Ĉl,2 j+1,−1,s =
∞∑

n=0

2n∑
p=0

βn,prn(ln r)p, r < δ.

By (2.113),

gl,2 j+1,−1,s = 0, 2 j + 1 > (2N + 1)(2l − 1).

Let us define

w(N )
rem(r, t) = f0(r) +

∑
(k,q,m,s)∈�, k≤N

tk+2νqe−im�(ln r − ln t)s gk,q,m,s(r),

A(N )
rem = −i∂tw

(N )
rem − �w(N )

rem + r−2w(N )
rem + G(w(N )

rem , w̄(N )
rem , ∂rw

(N )
rem)

W (N )
rem (y, t) = e−iα(t)w(N )

rem(r t−1/2, t).

As a direct consequence of the previous analysis we get:

Lemma 2.10. There exists T (N , δ) > 0 such that for 0 < t ≤ T (N , δ) the following
holds.

(i) For any 0 ≤ l, k ≤ 4, i = 0, 1 and 1
10 t−ε2 ≤ y ≤ 10t−ε2 , one has

|y−l∂k
y∂

i
t (W (N )

ss − W (N )
rem )| ≤ tν(1−2ε2)N + tε2 N , (2.114)

provided N is sufficiently large (depending on ε2).
(ii) The profile w

(N )
rem(r, t) verifies

‖r−l∂k
r (w(N )

rem(t) − f0)‖L2(rdr,r≥ 1
10 t1/2−ε2 ) ≤ Ctη, 0 ≤ k + l ≤ 3, (2.115)

‖r∂rw
(N )
rem(t)‖L∞(r≥ 1

10 t1/2−ε2 ) ≤ Cδ2ν, (2.116)

‖r−l∂k
r w(N )

rem(t)‖L∞(r≥ 1
10 t1/2−ε2 ) ≤ C(δ2ν−k−l + tν−(k+l)/2+η), 0 ≤ k + l ≤ 4,

(2.117)

‖r−l−1∂k
r w(N )

rem(t)‖L∞(r≥ 1
10 t1/2−ε2 ) ≤ C(δ2ν−6 + tν−3+η), k + l = 5 (2.118)

(iii) The error A(N )
rem(r, t) admits the estimate

‖r−l∂k
r ∂ i

t A(N )
rem(t)‖L2(rdr,r≥ 1

10 t1/2−ε2 ) ≤ tε2 N , 0 ≤ l + k ≤ 3, i = 0, 1, (2.119)

provided N is sufficiently large.
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2.4.1. Proof of Proposition 2.1. We are now in position to finish the proof of Proposition
2.1. Fix ε2 verifying 0 < ε2 < 1

2 . For N ≥ 2, define

Ŵ (N )
ex (ρ, t) = θ(tν−ε1ρ)W (N )

in (tνρ, t) + (1 − θ(tν−ε1ρ))θ(tν+ε2ρ)W (N )
ss (tνρ, t)

+ (1 − θ(tν+ε2ρ))e−iα(t)w(N )
rem(tν+1/2ρ, t),

V (N )
ex (ρ, t) = ( 2 re Ŵ (N )

ex

1 + |Ŵ (N )
ex |2

,
2 im Ŵ (N )

ex

1 + |Ŵ (N )
ex |2

,
1 − |Ŵ (N )

ex |2
1 + |Ŵ (N )

ex |2
).

Clearly, V (N )
ex (ρ, t) is well defined for ρ is sufficiently large, and for ρ < t−ν+ε1

V (N )
ex (ρ, t) coincides with V (N )

in (ρ, t). Therefore, setting

V (N )(ρ, t) =
{

V (N )
in (ρ, t), ρ ≤ 1

2 t−ν+ε1 ,

V (N )
ex (ρ, t) ρ ≥ 1

2 t−ν+ε1 .

u(N )(x, t) = e(α(t)+θ)R V (N )(λ(t)|x |, t),

we get a C∞ 1- equivariant profile u(N ) : R
2 × R

∗
+ → S2 that, by Lemmas 2.3 (i), 2.7

(ii), 2.10 (ii), for any N ≥ 2 verifies part (i) of Proposition 2.1, ζ ∗
N being given by

ζ ∗
N (x) = eθ R ζ̂ ∗

N (|x |), ζ̂ ∗
N = ( 2 re f0

1 + | f0|2 ,
2 im f0

1 + | f0|2 ,
1 − | f0|2
1 + | f0|2 ).

By Lemmas 2.3 (ii), 2.7 (i), (iii) and 2.10 (i), (iii), for N sufficiently large the error
r (N ) = −u(N )

t + u(N ) × �u(N ) satisfies

‖r (N )(t)‖H3 + ‖∂t r
(N )(t)‖H1 + ‖〈x〉r (N )(t)‖L2 ≤ tηN , t ≤ T (N , δ),

with some η = η(ν, ε2) > 0. Re-denoting N = N
η

we obtain a family of approximate

solutions u(N )(t) verifying Proposition 2.1.

3. Proof of the Theorem

3.1. Main proposition. The proof of Theorem 1.1 will be achieved by compactness argu-
ments that rely on the following result. Let u(N ), T = T (N , δ) be as in Proposition 2.1.
Consider the Cauchy problem

ut = u × �u, t ≥ t1,

u|t=t1 = u(N )(t1),
(3.1)

with 0 < t1 < T .
One has

Proposition 3.1. For N sufficiently large there exists 0 < t0 < T such that for any
t1 ∈ (0, t0) the solution u(t) of (3.1) verifies:

(i) u − u(N ) is in C([t1, t0], H3) and

‖u(t) − u(N )(t)‖H3 ≤ t N/2, ∀t1 ≤ t ≤ t0. (3.2)
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(ii) Furthermore, 〈x〉(u(t) − u(N )(t)) ∈ L2 and

‖〈x〉(u(t) − u(N )(t))‖L2 ≤ t N/2, ∀t1 ≤ t ≤ t0. (3.3)

Proof. The proof is by a bootstrap argument. Write

u(N )(x, t) = eα(t)RU (N )(λ(t)x, t), r (N )(x, t) = λ2(t)eα(t)R R(N )(λ(t)x, t)

u(x, t) = eα(t)RU (λ(t)x, t), U (y, t) = U (N )(y, t) + S(y, t),

U (N )(y, t) = φ(y) + χ(N )(y, t).

Then S(t) solves

t1+2ν St +α0t2ν RS − (ν +
1

2
)y ·∇S = S ×�U (N ) + U (N ) ×�S + S ×�S + R(N )(t).

(3.4)
Assume that

‖S‖L∞(R2) ≤ δ1, (3.5)

with δ1 sufficiently small. Note that since S is 1-equivariant and

(φ, S) + (χ(N ), S) + |S|2 = 0 (3.6)

where ‖χ(N )‖L∞(R2) ≤ Cδ2ν (see (2.5)), the bootstrap assumption (3.5) implies

‖S‖L∞(R2) ≤ C‖∇S‖L2(R2). (3.7)

3.1.1. Energy control. We will first derive a bootstrap control of the energy norm:

J1(t) =
∫

R2
dy(|∇S|2 + κ(ρ)|S|2), ρ = |y|.

It follows from (3.4) that

t1+2ν d

dt

∫
dy|∇S|2 = −2

∫
dy(S × �U (N ),�S) + 2

∫
dy

(∇ R(N ),∇S), (3.8)

t1+2ν d

dt

∫
dyκ(ρ)|S|2 = −(

1

2
+ ν)t2ν

∫
dy(2κ + ρκ ′)(S, S)

+2
∫

dyκ(U (N ) × �S, S) + 2
∫

dyκ(R(N ), S). (3.9)

Recall that U (N ) = φ + χ(N ), with φ solving �φ = κφ, which means that

(S × �φ,�S) − κ(φ × �S, S) = 0.

Therefore, combining (3.8), (3.9), we get

t1+2ν d

dt
J1(t) = E1 + E2 + E3 + E4,
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where

E1 = −2
∫

dy(S × �χ(N ),�S),

E2 = 2
∫

dyκ(χ(N ) × �S, S),

E3 = −(
1

2
+ ν)t2ν

∫
dy(2κ + ρκ ′)(S, S),

E4 = 2
∫

dy
[
(∇ R(N ),∇S) + κ(R(N ), S)

]
.

From Proposition 2.1 we have

|E j | ≤ Ct2ν‖S‖2
H1 , j = 1, . . . , 3,

|E4| ≤ Ct N+ν+1/2‖∇S‖L2 .

Combining these inequalities we obtain

∣∣ d

dt
J1(t)

∣∣ ≤ Ct−1‖S‖2
H1 + Ct2N−2ν. (3.10)

3.1.2. Control of the L2 norm. Consider J0(t) = ∫
R2 dy|S|2. We have

t1+2ν d

dt
J0(t) = E5 + E6 + E7,

E5 = 2
∫

dy(U (N ) × �S, S),

E6 = −2(1 + 2ν)t2ν J0(t),

E7 = 2
∫

dy(R(N ), S).

Consider E5. Decomposing U (N ) and S in the basis f1, f2, Q:

U (N )(y, t) = eθ R((1 + z(N )
3 (ρ, t))Q(ρ) + z(N )

1 (ρ, t) f1(ρ) + z(N )
2 (ρ, t) f2(ρ)),

S(y, t) = eθ R(ζ1(ρ, t) f1(ρ) + ζ2(ρ, t) f2(ρ) + ζ3(ρ, t)Q(ρ)),

one can rewrite E5 as follows.

E5 = E8 + E9 + E10,

E8 = −4
∫

R+

dρρ
h1

ρ
ζ2∂ρζ3,

E9 = −2
∫

R+

dρρ(∂ρz(N ) × ∂ρζ, ζ ), z(N ) = (z(N )
1 , z(N )

2 , z(N )
3 ), ζ = (ζ1, ζ2, ζ3),

E10 = 2
∫

R+

dρρ(z(N ) × l, ζ ),

where

l = (− 1

ρ2 ζ1 − 2h1

ρ
∂ρζ3,− 1

ρ2 ζ2, κ(ρ)ζ3 +
2h1

ρ
∂ρζ1 − 2h1h3

ρ2 ∂ρζ1).



Blow Up Dynamics for Equivariant Critical Schrödinger Maps 99

Clearly,

|l| ≤ Cρ−2(|ζ | + |∂ρζ |).

Therefore,

|E10| ≤ Ct2ν‖S‖2
H1 . (3.11)

Consider E8. It follows from

2(ζ, k + z(N )) + |ζ |2 = 0, (3.12)

that

|∂ρζ3| ≤ C(|∂ρz(N )||ζ | + |z(N )||∂ρζ | + |∂ρζ ||ζ |).

As a consequence,

|E8| ≤ C
[
t2ν‖S‖2

H1 + ‖∇S‖3
L2

]
. (3.13)

Consider E9. Denote e0 = k + z(N ) and write ζ = ζ⊥ + μe0, μ = (ζ, e0). It follows
from (3.12) that

|μ| ≤ C |ζ |2,
|μρ | ≤ C |ζ ||∂ρζ |.

Therefore, E9 can be written as

E9 = −2
∫

R+

dρρ(∂ρζ⊥ × ζ⊥, ∂ρe0) + O(‖S‖2
H1‖∇S‖L2). (3.14)

Let e1, e2 be a smooth orthonormal basis of the tangent space Te0 S2 that verifies e2 =
e0 × e1. Then the expression (∂ρζ⊥ × ζ⊥, ∂ρe0) can be written as follows:

(∂ρζ⊥ × ζ⊥, ∂ρe0) = (ζ⊥, ∂ρe0)
[
(ζ⊥, e2)(∂ρe0, e1) − (ζ⊥, e1)(∂ρe0, e2)

]
,

which leads to the estimate

∣∣∣∣
∫

R+

dρρ(∂ρζ⊥ × ζ⊥, ∂ρe0)

∣∣∣∣ ≤ C‖∂ρz(N )‖2
L∞ J0(t) ≤ Ct2ν J0(t). (3.15)

Combining (3.11), (3.13), (3.14), (3.15) we obtain

∣∣ d

dt
J0(t)

∣∣ ≤ C
[
t−1‖S‖2

H1 + t−1−2ν‖S‖2
H1‖∇S‖L2 + t2N−2ν

]
. (3.16)
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3.1.3. Control of the weighted L2 norm. Using (3.4) to compute the derivative d
dt ‖yS(t)‖2

L2 ,
we obtain

t1+2ν d

dt
‖|y|S(t)‖2

L2 = − 4
∫

dyyi (U
(N ) × ∂i S, S)

− 2
∫

dy|y|2(∂iU
(N ) × ∂i S, S)

− 2(1 + 2ν)t2ν‖|y|S(t)‖2
L2 + 2

∫
dy|y|2(R(N ), S).

Here and below ∂ j stands for ∂y j , the summation over the repeated indexes being as-
sumed.

As a consequence, we get

∣∣∣∣ d

dt
‖|y|S(t)‖2

L2

∣∣∣∣ ≤ C

t

[
‖|y|S(t)‖2

L2 + t−4ν‖S‖2
H1 + t2N−4ν

]
. (3.17)

3.1.4. Control of the higher regularity. In addition to (3.5), assume that

‖S(t)‖H3 + ‖|y|S(t)‖L2 ≤ t2N/5. (3.18)

We will control Ḣ3 norm of the solution by means of ‖∇St‖L2 . More precisely, consider
the functional

J3(t) = t2+4ν

∫
dx |∇st (x, t)|2 + t1+2ν

∫
dxκ(t−1/2−νx)|st (x, t)|2,

where s(x, t) is defined by

s(x, t) = eα(t)R S(λ(t)x, t).

Write st (x, t) = eα(t)Rλ2(t)g(λ(t)x, t). In terms of g, J3 can be written as J3(t) =∫
dy|∇g(y, t)|2 +

∫
dyκ(ρ)|g(y, t)|2. Let us compute the derivative d

dt J3(t). Clearly,
g(y, t) solves

t1+2νgt + α0t2ν Rg − (ν +
1

2
)t2ν(2 + y · ∇)g

= (S + U (N )) × �g + g × (�U (N ) + �S)

+(U (N ) × �U (N ) − R(N )) × �S

+S × �(U (N ) × �U (N ) − R(N )) + t2+4νr (N )
t . (3.19)

Therefore, we get

t1+2ν d

dt
J3(t) = (2 + 4ν)t2ν‖∇g‖2

L2 + (
1

2
+ ν)t2ν

∫
(2κ − ρκ ′)|g|2dy

+E1 + E2 + E3 + E4 + E5, (3.20)
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where

E1 = − 2
∫

dy(g × �χ(N ),�g) + 2
∫

dyκ(χ(N ) × �g, g),

E2 = − 2
∫

dy((U (N ) × �U (N ) − R(N )) × �S,�g)

+ 2
∫

dy(�(U (N ) × �U (N ) − R(N )) × S,�g)

+ 2
∫

dyκ((U (N ) × �U (N ) − R(N )) × �S, g)

− 2
∫

dyκ(�(U (N ) × �U (N ) − R(N )) × S, g),

E3 = − 2
∫

dy(g × �S,�g),

E4 = 2
∫

dyκ(S × �g, g),

E5 = − 2t2+4ν

∫
dy(rt ,�g) + 2t2+4ν

∫
dyκ(rt , g).

The terms E j , j = 1, 4, 5 can be estimated as follows.

|E1| ≤ Ct2ν‖g‖2
H1 ,

|E4| ≤ C‖g‖2
H1‖S‖H3 ≤ Ct2ν‖g‖2

H1,

|E5| ≤ C(t2ν‖g‖2
H1 + t2N+3+4ν),

(3.21)

provided N is sufficiently large and t ≤ t0 with some t0 = t0(N ) > 0.
For E2 we have

|E2| ≤ C(‖�χ(N )‖W 2,∞ + ‖R(N )‖H3)‖g‖H1‖S‖H3

+ C‖〈y〉−1∇�2χ(N )‖L∞‖∇g‖L2‖〈y〉S‖L2 .

As a consequence,

|E2| ≤ Ct2ν(‖g‖H1‖S‖H3 + ‖∇g‖L2‖〈y〉S‖L2). (3.22)

Note that since
g = (U (N ) + S) × �S + S × �U (N ) + R(N ), (3.23)

the bootstrap assumption (3.18) implies

‖g‖L2 ≤ C(‖S‖H2 + ‖R(N )‖L2),

‖∇g‖L2 ≤ C(‖S‖H3 + ‖∇ R(N )‖L2).
(3.24)

Therefore, (3.21), (3.22) can be rewritten as

|E1| + |E2| + |E4| + |E5| ≤ Ct2ν[‖S‖2
H3 + (‖S‖H3 + t N+1+2ν)‖〈y〉S‖L2 ]

+Ct2N+1+4ν. (3.25)



102 G. Perelman

Consider E3. One has

g × �S = (U (N ) + S,�S)�S − |�S|2(U (N ) + S)

+ (S × �U (N ) + R(N )) × �S,

�g = (U (N ) + S) × �2S + Y,

Y = 2(∂ jU
(N ) + ∂ j S) × �∂ j S + S × �2U (N )

+ 2∂ j S × �∂ jU
(N ) + �R(N ).

(3.26)

Therefore, one can write E3 as E3 = E6 + E7 + E8, where

E6 = − 2
∫

dy(U (N ) + S,�S)(�S,�g),

E7 = 2
∫

dy|�S|2(U (N ) + S,�g) = 2
∫

dy|�S|2(U (N ) + S, Y ),

E8 = − 2
∫

dy((S × �U (N ) + R(N )) × �S,�g).

For E6 we have:

E6 = 2
∫

dy[(�U (N ), S) + 2(∂ jU
(N ), ∂ j S) + (∂ j S, ∂ j S)](�S,�g)

= − 2
∫

dy[(�U (N ), S) + 2(∂ jU
(N ), ∂ j S) + (∂ j S, ∂ j S)](�∂k S, ∂k g)

− 2
∫

dy(�S, ∂k g)∂k[(�U (N ), S) + 2(∂ jU
(N ), ∂ j S) + (∂ j S, ∂ j S)].

As a consequence, one obtains:

|E6| ≤ C‖S‖2
H3‖g‖H1 ≤ Ct2ν‖S‖2

H3 . (3.27)

Consider E7. From (3.26) we have

‖Y‖L2 ≤ C(‖S‖H3 + t N ).

Therefore, we obtain:
|E7| ≤ Ct2ν‖S‖2

H3 . (3.28)

Finally, E8 can be estimated as follows

|E8| ≤ C‖g‖H1(‖S‖2
H3 + t N ‖S‖H3) ≤ Ct2ν‖S‖2

H3 + Ct3N . (3.29)

Combining (3.27), (3.29), (3.28) we get

|E3| ≤ C(t2ν‖S‖2
H3 + t3N ), (3.30)

which together with (3.25) gives
∣∣∣∣ d

dt
J3(t)

∣∣∣∣ ≤ C

t

[
‖S‖2

H3 + (‖S‖H3 + t N+1+2ν)‖|y|S‖L2)
]

+ Ct2N+2ν. (3.31)
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3.1.5. Proof of Proposition 3.1. To prove the proposition it is sufficient to show that
(3.5), (3.18) implies (3.2), (3.3).

Under the bootstrap assumption (3.18), (3.10), (3.16) become

∣∣ d

dt
J1(t)

∣∣ +
∣∣ d

dt
J0(t)

∣∣ ≤ Ct−1‖S‖2
H1 + Ct2N−2ν, ∀t ≤ t0, (3.32)

provided N is sufficiently large, t0 sufficiently small.
Note that for c0 > 0 sufficiently large one has ‖S‖2

H1 ≤ J1 + c0 J0. Therefore,
denoting J (t) = J1(t) + c0 J0(t) one can rewrite (3.32) as

∣∣ d

dt
J (t)

∣∣ ≤ Ct−1 J (t) + Ct2N−2ν. (3.33)

Integrating this inequality with zero initial condition at t1 one gets

J (t) ≤ C

N
t2N+1−2ν, ∀t ∈ [t1, t0], (3.34)

provided N is sufficiently large. As a consequence, we obtain

‖S‖2
H1 ≤ C

N
t2N+1−2ν, ∀t ∈ [t1, t0]. (3.35)

Consider ‖|y|S(t)‖L2 . From (3.17), (3.35) we have
∣∣∣∣ d

dt
‖|y|S(t)‖2

L2

∣∣∣∣ ≤ C

t

[
‖|y|S(t)‖2

L2 + t2N+1−6ν
]
. (3.36)

Integrating this inequality and assuming that N is sufficiently large, we get

‖|y|S(t)‖2
L2 ≤ C

N
t2N+1−6ν, ∀t ∈ [t1, t0], (3.37)

which gives in particular,

‖|x |s(t)‖2
L2 ≤ t N/2, ∀t ∈ [t1, t0]. (3.38)

We next consider ‖∇�s(t)‖L2(R2). It follows from (3.23), (3.18) that for any j = 1, 2

‖∂ j g − (U (N ) + S) × �∂ j S‖L2 ≤ C(‖S‖H2(R2) + t N+1+2ν). (3.39)

Note also that since |U (N ) + S| = 1, we have

|(U (N ) + S) × �∂ j S|2 = |�∂ j S|2 − (U (N ) + S,�∂ j S)2,

(U (N ) + S,�∂ j S) = − (�U (N ) + �S, ∂ j S) − �(∂ jU
(N ), S)

− 2(∂kU (N ) + ∂k S, ∂2
jk S),

which together with (3.18) gives

‖�∂ j S‖2
L2 − ‖(U (N ) + S) × �∂ j S‖2

L2 ≤ C‖S‖2
H2 . (3.40)
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Consider the functional J̃3(t) = J3(t)+c1 J0(t). It follows from (3.24), (3.39), (3.40)
that for c1 > 0 sufficiently large we have

c2‖S‖2
H3 − Ct2N+1+2ν ≤ J̃3(t) ≤ C(‖S‖2

H3 + t2N+1+2ν), (3.41)

with some c2 > 0.
From (3.31), (3.32), (3.37) one gets

∣∣ d

dt
J̃3(t)

∣∣ ≤ C
[
t−1(‖S‖2

H3(R2)
+ ‖|y|S‖2

L2(R2)
) + t2N−2ν

]

≤ Ct−1 J̃3(t) + Ct2N−6ν.

(3.42)

Integrating this inequality between t1 and t and observing that J̃3(t1) =
t2+4ν
1

∫
dx |∇r (N )(x, t1)|2+t1+2ν

1

∫
dxκ(t−1/2+νx)|r (N )(x, t1)|2, and therefore, | J̃3(t1)| ≤

Ct2N+1+2ν
1 , we obtain

J̃3(t) ≤ Ct2N+1−6ν, ∀t ∈ [t1, t0].
Combining this inequality with (3.41), one gets

‖S‖2
H3(R2)

≤ Ct2N+1−6ν, ∀t ∈ [t1, t0],
which implies that

‖s‖H3(R2) ≤ t N/2, ∀t ∈ [t1, t0].
This concludes the proof of Proposition 3.1.

3.2. Proof of the theorem. The proof of the theorem is now straightforward. Fix N such
that Proposition 3.1 holds. Take a sequence (t j ), 0 < t j < t0, t j → 0 as j → ∞. Let
u j (x, t) be the solution of

∂t u j = u j × �u j , t ≥ t j ,

u j |t=t j = u(N )(t j ).
(3.43)

By Proposition 3.1, for any j , u j − u(N ) ∈ C([t j , t0], H3) and satisfies

‖u j (t) − u(N )(t)‖H3 + ‖〈x〉(u j (t) − u(N )(t))‖L2 ≤ 2t N/2, ∀t ∈ [t j , t0]. (3.44)

This implies in particular, that the sequence u j (t0) − u(N )(t0) is compact in H2 and
therefore after passing to a subsequence we can assume that u j (t0)−u(N )(t0) converges
in H2 to some 1-equivariant function w ∈ H3, with ‖w‖H3 ≤ δ2ν , |u(N )(t0) + w| = 1.

Consider the Cauchy problem

ut = u × �u, t ≤ t0,

u|t=t0 = u(N )(t0) + w.
(3.45)

By the local well-posedness, (3.45) admits a unique solution u ∈ C((t∗, t0], Ḣ1 ∩
Ḣ3) with some 0 ≤ t∗ < t0. By H1 continuity of the flow (see [10]), u j → u in
C((t∗, t0], Ḣ1), which together with (3.44) gives

‖u(t) − u(N )(t)‖H3 ≤ 2t N/2, ∀t ∈ (t∗, t0]. (3.46)

This implies that t∗ = 0 and combined with Proposition 2.1 gives the result stated in
Theorem 1.1.
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