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Abstract: We analyze in full mathematical rigor the most general quartically perturbed
invariant probability measure for a random tensor. Using a version of the Loop Vertex
Expansion (which we call the mixed expansion) we show that the cumulants write as
explicit series in 1/N plus bounded rest terms. The mixed expansion recasts the problem
of determining the subleading corrections in 1/N into a simple combinatorial problem
of counting trees decorated by a finite number of loop edges.

As an aside, we use the mixed expansion to show that the (divergent) perturbative
expansion of the tensor models is Borel summable and to prove that the cumulants
respect an uniform scaling bound. In particular the quartically perturbed measures fall,
in the N → ∞ limit, in the universality class of Gaussian tensor models.

1. Introduction

Tensor models [1] generalize matrix models [2,3] to higher dimensions and provide
the analytical tool for the study of random geometries in three and more dimensions.
Matrix models are probability distributions for random matrices and their moments
can be evaluated via a perturbative expansion in ribbon Feynman graphs representing
surfaces [3]. A crucial tool in matrix models is the 1/N expansion discovered by ’t
Hooft [4]. The perturbative series of matrix models can be reorganized as a series in
1/N (where N is the size of the matrix) indexed by the genus. At leading order only
planar graphs [5] contribute and a matrix model undergoes a phase transition to a theory
of random continuum surfaces when the coupling constant is tuned to some critical
value [6,7].

However many questions concerning the 1/N expansion of matrix models remain
unanswered. First and foremost the 1/N expansion seems inherently a perturbative tool:
in order to perform it, one first performs the expansion in the coupling. The perturbative
series is not summable hence it is not clear if the subsequent steps are mathematically
meaningful. Furthermore, matrix models are defined for a fixed sign of the coupling
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constant (say positive) for which the perturbation is stable. However, the phase transition
to continuum surfaces takes place when tuning the coupling constant to a negative critical
value. This tuning is meaningful after restricting to the leading order planar series (which
is absolutely convergent for both signs of the coupling constant), but what, if any, is the
meaning of this tuning to criticality beyond perturbation theory? Can one actually reach
this phase transition by an analytic continuation starting from a matrix model? These
questions have not yet been satisfactorily answered.

Matrix models have been generalized in higher dimensions to tensor models and
group field theories [8–15]. They encode models of random geometries relevant for
quantum gravity. However, progress has been slow (beyond model building) in higher
dimensions mainly due to the lack of a 1/N expansion for tensor models.

This has changed with the advent of the 1/N expansion, initially for the colored
[16,17] models, and subsequently for all invariant tensor models [18]. Indeed the pertur-
bative series of tensor models supports a 1/N expansion [19–23] indexed by the degree,
a positive integer which plays in higher dimensions the role of the genus.1 The leading
order melonic [24,25] graphs triangulate the D-dimensional sphere in any dimension
[19–21] and, like their two dimensional counterparts, tensor models undergo a phase
transition to a theory of continuous random spaces when tuning to criticality. These
results led to significant progress in the understanding of random geometries in higher
dimensions [26–38] and the related critical phenomena. Tensor models have been gen-
eralized to renormalizable (and generically asymptotically free) tensor field theories,
[39–46] leading to the formulation of the “tensor track” approach to quantum gravity
[47,48].

Tensor models have been shown to exhibit a powerful universality property [49]: all
invariant models respecting a uniform bound on the cumulants become Gaussian in the
N → ∞ limit, but the covariance of the limiting Gaussian is a non trivial function of
the parameters of the model.

The same questions concerning the status of the 1/N for matrix models can also be
formulated for tensor models. Can one give a meaning to the 1/N expansion beyond
perturbation theory? Can one reach the phase transition point by analytic continuation?
This paper answers the first question and establishes the 1/N expansion in the con-
structive field theory sense [50]. In order to achieve this result we consider the most
general tensor model with a relevant quartic interaction.2 We generalize to tensors the
Loop Vertex Expansion (LVE) [51,52] initially introduced for matrices.3 and analyze it
in detail. The LVE expresses any cumulant as an absolutely convergent series indexed
by trees. In this series the coupling constant λ appears in two places: first as an overall
factor for each tree and second in the contribution of each tree. This allows, for instance,
to prove that, like in matrix models, the perturbative series of tensor models is Borel
summable in λ uniformly in N .

However, in the case of tensors the LVE is much more powerful. Although rather
involved at first sight, this formulation has two important advantages. First, in the contri-
bution of each tree, the coupling constant always appears rescaled as λ/N D−1 where D is
the rank of the tensor. Performing a Taylor expansion in λ/N D−1 one proves that the rest
term is suppressed in powers of |λ|/N D−2. We call this expansion the mixed expansion.
The mixed expansion provides the 1/N expansion of the model beyond perturbation

1 Unlike the genus, the degree is not a topological invariant.
2 Other quartic interactions can be added but are suppressed in 1/N .
3 The LVE has already been used in the literature [53] in a related context.
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theory: although shifted from N D−1 to N D−2, the scaling with N suppresses the rest
term as long as D ≥ 3. This does not hold for the case of matrices, D = 2. Second,
at each order in 1/N , one must sum the series indexed by trees and this can be done
explicitly. Somewhat surprisingly, the mixed expansion turns out to be the appropriate
computational tool for the study of the 1/N series. It reorganizes the corrections in
1/N in terms of trees with a finite number of loop edges, and counting such trees is a
straightforward combinatorial problem.

The critical behavior of each order in 1/N is governed order by order by the divergence
of the series indexed by trees. In particular this proves that all terms will diverge for the
same critical constant. The mixed expansion (more precisely the 1/N expansion derived
from it) is an explicit perturbation in 1/N around the leading order theory of trees with
no loop edges. The leading order (melonic) theory acts effectively as a new “vacuum”
around which the subleading terms in 1/N act as perturbations.

Beyond providing a tool to analyze order by order the subleading behavior in 1/N
of the tensor models and an avenue towards establishing their double scaling limits, the
present study is a needed step in order to analytically continue the cumulants to the
critical constant of the phase transition to the continuum theory.

The situation is more subtle for matrix models. The rest terms in the mixed expansion
are not suppressed in powers of 1/N . In order to obtain a non perturbative definition of
the 1/N series for matrices one needs to refine further the mixed expansion introduced in
the present paper. We believe that an in depth study of the corrections in 1/N in the case
of tensors will provide the guide towards obtaining the non perturbative 1/N expansion
for matrices.

We emphasize that the techniques of this paper rely heavily on the LVE formalism:
some familiarity with [51,52] would greatly benefit the reader.

This paper is organized as follows. Section 2 is an introductory section. In it we
present in some detail the framework of tensor models, we briefly recall the notion of
Borel summability and we introduce at length the various notions used in the sequel.
In Sect. 3 we introduce the most general model with a relevant quartic perturbation,
and we state and comment on our main theorems. Section 4 contains the proofs of our
results.

2. Prerequisites

In this section we present the general setting of random tensor models and introduce the
various notions and notations we will use in the sequel.

2.1. Generalities on tensor models. We start by a brief overview of the general frame-
work of invariant tensor models presented in detail in [18,49]. This allows us to introduce
some relevant notions and notations and to state the universality theorem for random
tensors. Later on we will prove that the quartically perturbed measure we deal with in
this paper indeed obeys the universality theorem.

We consider rank D covariant tensors Tn1...nD , with n1, n2, . . . nD ∈ {1, . . . N }.
having no symmetry under permutation of their indices. The tensors transform under
the external tensor product of D fundamental representations of the unitary group U (N )

(that is the unitary group acts independently on each index). The complex conjugate
tensor, T̄n1...nD is a rank D contravariant tensor. A tensor and its complex conjugate can
be seen as collections of N D complex numbers supplemented by the requirement of
covariance under base change.
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Fig. 1. D-colored graphs representing trace invariants

Ta1...aD =
∑

n1...nD

Ua1n1 . . . VaDnD Tn1...nD ,

T̄ā1...āD =
∑

n̄1...n̄D

Ūā1n̄1 . . . V̄āDn̄D T̄n̄1...n̄D ,
(1)

where the indices of the complex conjugated tensor are denoted conventionally with a
bar. We emphasize that the unitary operators U, . . . V are all independent.4 We denote
�n the D-tuple of integers (n1, . . . nD), and we take D ≥ 3.

Any invariant polynomial in the tensor entries can be expressed in terms of the trace
invariants built by contracting in all possible ways pairs of covariant and contravariant
indices in a product of tensor entries (see [54,55] for a direct proof relying on averaging
over the unitary group). The trace invariants are one to one with closed D-colored graphs.

Definition 1. A bipartite closed D-colored graph is a graph B = (
V(B), E(B)

)
with

vertex set V(B) and edge set E(B) such that:

• V(B) is bipartite, i.e. the vertex set writes as V(B) = A(B) ∪ Ā(B), such that
∀l ∈ E(B), then l = (v, v̄) with v ∈ A(B) and v̄ ∈ Ā(B). Their cardinalities satisfy
|V(B)| = 2|A(B)| = 2|Ā(B)|. We call v ∈ A(B) the white vertices and v̄ ∈ Ā(B)

the black vertices of B.
• The edge set is partitioned into D subsets E(B) = ⋃D

i=1 E i (B), where E i (B) = {li =
(v, v̄)} is the subset of edges with color i .

• All vertices are D-valent with all edges incident to a given vertex having distinct
colors.

The graph associated to an invariant (see Fig. 1 for some examples) is obtained as
follows. We represent every Tn1...nD (respectively T̄n̄1...n̄D ) by a white vertex v (respec-
tively a black vertex v̄). The position of an index becomes a color: n1 has color 1, n2 has
color 2 and so on. We represent by an edge the contraction of an index ni on Tn1...nD

with an index n̄i of T̄n̄1...n̄D . The edges li = (v, v̄) ∈ E i (B) inherit the color i of the
indices and always connect a white and a black vertex.

The trace invariant associated to B is

TrB(T, T̄) =
∑

n,n̄

δB
nn̄

∏

v,v̄∈V(B)

T�nv
T̄�̄nv̄

, δB
nn̄ =

D∏

i=1

∏

li =(v,v̄)∈E i (B)

δni
v n̄i

v̄
. (2)

The trace invariant associated to B factors over its connected components. We call
the invariant connected if B is connected. We denote k(B) the number of white (or black)

4 One can consider more generally tensors transforming under the external tensor product of fundamental
representations of unitary groups of different sizes U (N1) �U (N2) � · · · �U (ND) with Ni 	= N j .
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vertices of the graph B and C(B) the number of connected components of B, which we
labelBρ . Colored graphs are dual to D-dimensional abstract simplicial pseudo-manifolds
[16,17,56,57].

A random tensor is a collection of N D complex random variables whose joint dis-
tribution is encoded in the cumulants (connected moments) of k entries T and k̄ entries
T̄, κ2k[T�n1, T̄�̄n1̄

. . . T�̄nk
, T̄�̄nk̄

]. We consider only even distributions, that is the cumulants

are nontrivial only if k = k̄.

Definition 2. The probability distribution μN of the N D complex random variables T�n
is called trace invariant if its cumulants are linear combinations of trace invariant
operators,

κ2k[T�n1, T̄�̄n1̄
. . . T�̄nk

, T̄�̄nk̄
] =

∑

B, k(B)=k

K(B, μN )

C(B)∏

ρ=1

δ
Bρ

nn̄ , (3)

where the sum runs over all the D-colored graphs B with 2k vertices.

There exists a unique D-colored graph with 2 vertices (it has D edges connecting all
the two vertices), called the D-dipole and denoted B(2). We are interested in the large N
behavior of a trace invariant probability measure. In order for such a limit to exist, the
cumulants must scale with N . We denote the rescaled cumulants

K(B, μN )

N−2(D−1)k(B)+D−C(B)
≡ K (B, N ), (4)

and we call K (B(2), N ) the covariance of the distribution.

Definition 3. We say that the trace invariant probability distribution is properly uni-
formly bounded at large N if

lim
N→∞ K (B(2), N ) = K (B(2)) < ∞,

K (B, N ) ≤ K (B), ∀B 	= B(2) and N large enough. (5)

The scaling in Eqs. (4) and (5) is the only scaling leading to a large N limit. This
is a nontrivial statement and the reader should consult [49] for detailed explanations on
this point. The simplest example of a probability distribution for random tensors is the
normalized Gaussian distribution of covariance σ 2

e−N D−1 1
σ2

∑
�n,�̄n T�nδ�n �̄nT̄�̄n

∏

�n

(N D−1

σ 2

dT�ndT̄�n
2π ı

)
, (6)

characterized by the expectations of the connected trace invariants

〈
TrB(T, T̄)

〉

σ 2
=
∫ (∏

�n

N D−1

σ 2

dT�ndT̄�n
2π ı

)
e−N D−1 1

σ2
∑

�n �̄n T�nδ�n �̄nT̄�̄n TrB(T, T̄). (7)

The moments of the Gaussian distribution are rather non trivial and have been studied
in [49]. For any connected graph B with 2k(B) vertices there exist two non-negative
integers, �(B) and R(B) such that

lim
N→∞ N−1+�(B)

〈
TrB(T, T̄)

〉

σ 2
= σ 2k(B) R(B). (8)
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The normalization in Eq. (6) is the only normalization which ensures that the convergence
order is positive and, more importantly, for all B, there exists an infinite family of
invariants (graphs B′) such that �(B) = �(B′). Again, this is a nontrivial statement and
the reader should consult [49] for more details.

Definition 4. A random tensor T distributed with the probability measure μN converges
in distribution to the distributional limit of a Gaussian tensor model of covariance σ 2

if, for any connected trace invariant B,

lim
N→∞ N−1+�(B)μN

[
TrB(T, T̄)

]
= σ 2k(B) R(B). (9)

The universality theorem for tensor models is [49]

Theorem 1 (Universality). Let N D random variables T�n whose joint distribution is
trace invariant and properly uniformly bounded of covariance K (B(2), N ). Then, in the
large N limit, the tensor T�n converges in distribution to a Gaussian tensor of covariance
K (B(2)) = limN→∞ K (B(2), N ).

2.2. Borel summability. The perturbative expansion of tensor models (and of quantum
field theories in general) is not summable. The root of the problem is that one usually
performs an expansion in some coupling constant λ around λ = 0. However the interac-
tion is stable for λ > 0 but unstable for λ < 0. The partition function and the cumulants
are analytic in some domain in the complex plane outside the negative real axis. Hence
λ = 0 belongs to the boundary of the analyticity domain of the cumulants. A Taylor
expansion around a point belonging to the boundary of analyticity domain of some func-
tion is not absolutely convergent. However, in some cases, such Taylor expansions turn
out to be Borel summable.

It is by now a classical result that the perturbation series of the φ4 model in three
and four dimensions5 is indeed Borel summable [58,59]. When dealing with genuine
quantum field theories (like in [58,59]) one needs to take into account the renormalization
group flow. Although the random tensors we deal with in this paper do not exhibit a
flow, establishing Borel summability in our case is rather involved, because tensors have
many indices and the large factors of N are hidden in the sums over these indices. It is
then necessary to use a constructive expansion in which these sums are organized and
controlled appropriately. The techniques of [58,59] must be combined with the ones we
introduce below in order to tackle tensor field theories like the ones of [39,45].

To establish Borel summability for random tensors we will use in this paper the
following classical result.

Theorem 2 (Nevanlinna-Sokal, [60]). A function f (λ, N ) with λ ∈ C and N ∈ R+ is
said to be Borel summable in λ uniformly in N if

• f (λ, N ) is analytic in a disk λ−1 > R−1 with R ∈ R+ independent of N .
• f (λ, N ) admits a Taylor expansion at the origin

f (λ, N ) =
r−1∑

k=0

fN ,kλ
k + RN ,r (λ), |RN ,r (λ)| ≤ Kσ r r !|λ|r , (10)

for some constants K and σ independent of N .

5 With a fixed UV cutoff for the second case, which is needed in order to control the Landau ghost.
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R

Fig. 2. A Borel disk

If f (λ, N ) is Borel summable in λ uniformly in N then B(t, N ) = ∑∞
k=0

1
k! fN ,k tk

is an analytic function for |t | < σ−1 which admits an analytic continuation in the strip
{z| |�z| < σ−1} such that |B(t, N )| ≤ Bet/R for some constant B independent of N
and f (λ, N ) is represented by the absolutely convergent integral

f (λ, N ) = 1

λ

∫ ∞

0
dt B(t, N )e− t

λ . (11)

That is the Taylor expansion of f (λ, N ) at the origin is Borel summable, and f (λ, N )

is its Borel sum. The important thing about Borel summability is that it provides a
uniqueness criterion: if a divergent series is the Taylor expansion of a Borel summable
function f (λ, N ) at λ = 0, then f (λ, N ) is the unique Borel summable function whose
Taylor series is the original series.

The set {λ|λ−1 > R−1, R ∈ R+} is a disk (which we call a Borel disk) in the
complex plane centered at R

2 and of radius R
2 (hence tangent to the imaginary axis, see

Fig. 2) as, denoting λ = R
2 + aeıγ ,

λ−1 > R−1 ⇔ R2

4
> a. (12)

2.3. Decorated trees. All our results rely on expansions indexed by various kinds of trees
which we describe at length in this section. We will denote �σ a D-tuple of permutations
over k elements, �σ = (σ1, . . . σD).

Unrooted plane trees with colored, oriented edges and marked vertices T �
n,ι. An

unrooted plane tree is a tree with a cyclic ordering (say clockwise) of the edges at every
vertex. We denote the total number of vertices of the tree by n and label them 1, 2, . . . n.
The edges (i, j) of the tree are oriented either from i to j or from j to i and have a
color c ∈ {1, 2 . . . D}. Plane trees with marked vertices ι = {i1, . . . ik} are obtained by
selecting a preferred starting point of the cyclic ordering at the vertices i1, . . . ik . The
starting point is represented as a mark (or cilium) on the vertex.6 We denote such a tree
T �

n,ι with ι = {i1, . . . ik} and we denote the abstract tree associated to T �
n,ι by Tn . Note

that several plane trees are associated to the same abstract tree, and a vertex can have at
most one cilium. An example is presented in Fig. 3.

All the notions we introduce in the sequel refer to a fixed plane tree T �
n,ι. To simplify

notations we consider this dependence implicit.

6 Such trees are sometimes called ciliated plane trees.
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Fig. 3. A ciliated plane tree with colored edges

Every plane tree has an associated contour walk (Harris walk or Dyck path) consisting
in the ordered list of vertices encountered when walking clockwise around the tree
starting from some position. We identify a tree with its contour walk. Whenever the
walk encounters a cilium, the walk steps twice (first a step to the cilium and then a
step from the cilium). We signal the presence of a cilium by a semicolon (rather than a
comma) separating the two entries in the walk. The contour walk of the tree in Fig. 3 is
therefore

(1, 2, 3, 4, 3, 5; 5, 6, 5, 7, 5, 3, 8, 3; 3, 2, 9, 10, 9, 11, 9; 9, 2, 12, 13, 12, 14, 12;
12, 2, 15, 2, 16, 2).

The contour walk ofT �
n,ι has 2n−2+k steps, that is entries, denoted q = 1, 2, . . . 2n−2+k.

The walk in the previous example has 34 steps. We denote the vertex corresponding to
the step q by i(q). The contour walk is cyclic.

For every tree T �
n,ι we consider its connected subgraphs having all the vertices of T �

n,ι

but only the edges of color c of T �
n,ι (see Fig. 3). Each such subgraph is comprised of

several plane trees which we denote f c. We call them faces of color c of T �
n,ι. The walk

of T �
n,ι induces a contour walk for each of its faces f c obtained by selecting only the

(ordered set of) steps q( f c) at which the contour walk of T �
n,ι encounters a vertex of f c.

For instance, the face of color 1 with vertices 1, 2, 15 has an induced contour walk f 1 =
(1, 2, 2, 2, 2, 15, 2, 2) consisting in the steps q( f 1) = {1, 2, 16, 23, 30, 31, 32, 34}.
Note that the walk of T �

n,ι can leave and re-intersect several times f c (in the previous
example it leaves f 1 after the step 2 and re-intersects it at the step 16). We partition the
faces into two subsets:
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• The faces f c having no cilium. We call them the internal faces of color c of T �
n,ι.

For the tree in Fig. 3, f 1 = (1, 2, 2, 2, 2, 15, 2, 2) or f 1 = (4) are examples of
internal faces of color 1.

• The faces f c having at least a cilium. We call them the external faces of color c
of T �

n,ι. Say the vertices ik1 . . . ikd are the ciliated vertices of f c properly ordered,
that is f c = (. . . ik1; ik1 . . . ik2; ik2 . . . ikd ; ikd . . . ). We can further subdivide f c

into the walks f c;ik1→ik2 , f c;ik2 →ik3 up to f
c;ikd →ik1 .7 We call these walks the

external strands of T �
n,ι. For the example of 3, the external face of color 1

f 1 = (3, 3, 5; 5, 6, 5, 7, 5, 3, 3; 3) subdivides into the external strands of color 1
f 1;3→5 = (3, 3, 3, 5) and f 1;5→3 = (5, 6, 5, 7, 5, 3, 3). The strands are comprised
of the (ordered) entries separated by semicolons in the walks of the faces. Every
strand f c;i→i ′ has an induced contour walk, made of the steps q( f c;i→i ′).

Any vertex belongs to exactly D faces, either internal or external, one for each color.
The cilia are identified as the encounters of semicolons (separating the same label) in
the contour walk of the tree. We denote q1 . . . qk the positions of the cilia in the contour
walk of the tree T �

n,ι (that is i(ql) precedes a semicolon and i(ql) = i(ql + 1)). Thus q1 is
the step at which the first cilium is encountered, q2 the step at which the second cilium
is encountered an so on. All the faces f c to which the ciliated vertices i(ql) belong are
external.

The external faces and strands of color c can be encoded by a permutation ξc over
1, . . . k. The encoding goes as follows. Consider the ciliated vertex i(q1). It belongs to
the external face f c of color c. Starting from i(q1), the first ciliated vertex (which is of
course unique), we encounter in the contour walk of f c is of the form i(ql) for some l
(as it is one of the ciliated vertices of T �

n,ι). We set ξc(1) = l. We repeat the procedure for
q2 and so on and obtain a permutation ξc over 1, . . . k. For the example in Fig. 3 we have
q1 = 6, q2 = 14, q3 = 21, q4 = 28 (and i(q1) = 5, i(q2) = 3, i(q3) = 9, i(q4) = 12).
The permutations ξc write in cycle decomposition as ξ1 = (1, 2)(3)(4), ξ2 = (1)(2, 4)(3)

and ξ3 = (1)(2)(3)(4). The external faces of color c correspond to the cycles of ξc

f c =
(

i(ql) . . . i(qξc(l)); i(qξc(l)) . . . i(qξ2
c (l));

i(qξ2
c (l)) . . . i(q

ξd−1
c (l)); i(q

ξd−1
c (l)) . . . i(ql)

)
, ξd

c (l) = l, (13)

and the strands write as

f c;i(ql )→i(qξc(l)) =
(

i(ql) . . . i(qξc(l))
)
,

f
c;i(qξc(l))→i(q

ξ2
c (l)

) =
(

i(qξc(l)) . . . i(qξ2
c (l))

)
, . . .

(14)

Consider for instance the example of 3 and ξ1 = (1, 2)(3)(4). The external faces and
strands of color 1 are

f 1 = (3, 3, 5; 5, 6, 5, 7, 5, 3, 3; 3) ⇒ f 1;3→5 = (3, 3, 3, 5),

f 1;5→3 = (5, 6, 5, 7, 5, 3, 3)

f 1 = (9, 9, 11, 9; 9) ⇒ f 1;9→9 = (9, 9, 9, 11, 9)

f 1 = (12, 12, 12; 12) ⇒ f 1;12→12 = (12, 12, 12, 12).

(15)

7 Where we use the cyclicity of the walk to rearrange the last list in the appropriate order.
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Fig. 4. A ciliated plane tree with external edges

We denote the set of all internal faces of T �
n,ι by F int(T �

n,ι), the set of all external
strands of T �

n,ι by Sext(T �
n,ι), and the set of all faces of T �

n,ι by F(T �
n,ι).

A tree can be built by adding one by one edges connecting univalent vertices. At
every step of this procedure the total number of faces of a tree increases by D − 1
(every vertex connected by an edge of color c will bring a new face for every color
c′ 	= c), and taking into account that the tree with a unique vertex has D faces, we
obtain

|F(T �
n,ι)| = D + (n − 1)(D − 1) = |F int(T �

n,ι)| +
D∑

c=1

C(ξc), (16)

where C(ξc) denotes the number of cycles of the permutation ξc.

Plane trees with external edges. A notion closely related to ciliated plane trees is the
one of trees with external edges. For every c, we add to the tree dashed oriented edges
of color c connecting pairs of cilia such that every cilium has exactly an incoming and
an outgoing dashed edge (we allow an edge to be incoming and outgoing on the same
cilium). We call the dashed edges external edges. We present in Fig. 4 an example of a
tree decorated by external edges (we represented the external edges of color c decorating
the faces of color c).
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The external edges of color c can be encoded by a permutation τc over k elements.
The outgoing external edge of color c on the cilium on the vertex i(q1) is an incoming
external edge on some other cilium, say the one on the vertex i(ql). We set τc(1) = l,
and repeat the procedure for all the cilia.

The example in Fig. 3 corresponds to the permutations with cycle decomposition
τ1 = (2)(1, 3, 4), τ2 = (2)(1, 4, 3) and τ3 = (1, 2)(3, 4) (recall that q1 = 6, q2 =
14, q3 = 21, q4 = 28 and i(q1) = 5, i(q2) = 3, i(q3) = 9, i(q4) = 12).

We denote the tree decorated by external edges T �
n,ι,�τ , with �τ = (τ1, . . . τD). The

external edges recombine the external strands of T �
n,ι into external faces of T �

n,ι,�τ . They
are defined as follows.

Starting from the external faces f c of T �
n,ι,

f c =
(

i(ql) . . . i(qξc(l)); i(qξc(l)) . . . i(qξ2
c (l));

i(qξ2
c (l)) . . . i(q

ξd−1
c (l)); i(q

ξd−1
c (l)) . . . i(ql)

)
, ξd

c (l) = l, (17)

with strands

f c;i(ql )→i(qξc(l)) =
(

i(ql) . . . i(qξc(l))
)
, (18)

we build the external faces of T �
n,ι,�τ indexed by the cycles of τcξc

f c(T �
n,ι,�τ ) =

(
i(ql) . . . i(qξc(l)); i(qτcξc(l)) . . . i(qξcτcξc(l));
i(qτcξcτcξc(l)) . . . i(qξc(τcξc)d−1(l))

)
, (τcξc)

d(l) = l. (19)

Consider for instance the example of 4. Recall that we have ξ1 = (1, 2)(3)(4), τ1 =
(2)(1, 3, 4) and

f 1;3→5 = (3, 3, 3, 5), f 1;5→3 = (5, 6, 5, 7, 5, 3, 3),

f 1;9→9 = (9, 9, 9, 11, 9), f 1;12→12 = (12, 12, 12, 12).
(20)

We have τ1ξ1 = (1, 2, 3, 4) and the associated external face of T �
n,ι,�τ is

f c(T �
n,ι,�τ ) = (5, 6, 5, 7, 5, 3, 3; 3, 3, 3, 5; 9, 9, 9, 11, 9; 12, 12, 12, 12) (21)

The internal faces of Tn,ι,�τ are the internal faces of Tn,ι and we denote F(Tn,ι,�τ ) the set
of all the faces, internal and external, of Tn,ι,�τ . We have

|F(T �
n,ι,�τ )| = |F int(T �

n,ι)| +
∑

c

C(τcξc)

= D + (n − 1)(D − 1) −
D∑

c=1

C(ξc) +
∑

c

C(τcξc). (22)

Plane trees with external edges and loop edges. The last type of decorated trees we
will use is trees with loop edges. We add to the plane tree with external edges T �

n,ι,�τ 2s
new cilia located on the vertices j1, j1′ , j2, j2′ up to js, js′ . The new cilia are allowed to
be located anywhere on the tree, including on one of the vertices in ι. We assign to these
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Fig. 5. A ciliated plane tree with external edges and loop edges

new cilia a color such that j1 and j1′ have both color c1, j2 and j2′ have both color c2
an do on. We connect the cilia on j1 and j1′ by a dashed edge of color c1 and so on. We
call these new edges loop edges. The loop edges are not oriented. We denote the graph
thus obtained T �

n,ι,�τ ,L with L = {( j1, j1′), ( j2, j2′), . . . ( js, js′)}. We present in Fig. 5,
in the upper left corner, a plane tree with two loop edges: one of color c1 = 3 and one of
color c2 = 1 with j1 = 2, j1′ = 2, j2 = 2, j2′ = 3. The loop edges have no orientation.

The presence of the loop edge has several consequences. First, the walk around the
tree is modified by the presence of the new cilia. For the example in Fig. 5, in the presence
of the loop edge, the walk writes

(1, 2 ; 2 ; 2, 3, 4, 3 ; 3, 5; 5, 6, 5, 7, 5, 3, 8, 3; 3, 2, 9, 10, 9, 11, 9;
9, 2, 12, 13, 12, 14, 12; 12, 2 ; 2, 15, 2, 16, 2). (23)

where we boxed the semicolons representing the new cilia (a new cilium transforms
i, into i; i in the walk). Furthermore the presence of a loop edge modifies the faces.
Consider the cilia on jp and jp′ . They can either

• belong to two distinct faces of color cp,

f
cp
1 = (. . . jp; jp . . . ) and f

cp
2 = (. . . jp′ ; jp′ . . . ). (24)

Then the two faces are merged into the face f cp = (. . . jp; jp′ . . . jp′ ; jp . . . ).
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• belong to a unique face of color cp. Then f cp = (. . . jp; jp . . . jp′ ; jp′ . . . ) splits
into two faces ( jp . . . jp′) and ( jp′ . . . jp).

More precisely, the tree decorated by loop edges T �
n,ι,�τ ,L is the tree with external

edges T �
n,ι′,�τ ′ obtained by adding the 2s new cilia on j1, j1′ , j2, j2′ , . . . js, js′ (hence

ι′ = ι ∪ { j1, j ′1, j2, j ′2, . . . js, j ′s}) and connecting by external edges

• jp with itself (and jp′ with itself) by a pair of external edges of opposite orientations
for every color c 	= cp.

• jp with jp′ by two external edges (one for each orientation) of color cp.

The permutation �ξ ′ and �τ ′ associated toT �
n,ι′,�τ ′ can easily be identified: for the example

of Fig. 5 we have

q1 = 2, q2 = 3, q3 = 7, q4 = 9, q5 = 17, q6 = 24, q7 = 31, q8 = 33

ξ ′
1 = (1, 2, 8)(3, 4, 5)(6)(7)

ξ ′
2 = (1, 2, 3, 5, 7, 8)(4)(6)

ξ ′
3 = (1, 2, 6, 8)(3, 5)(4)(7)

τ ′
1 = (1)(2, 3)(4, 6, 7)(5)(8)

τ ′
2 = (1)(2)(3)(4, 7, 6)(5)(8)

τ ′
3 = (1, 8)(2)(3)(4, 5)(6, 7).

(25)

However, writing them requires a bit of care as the presence of the new cilia shifts the
steps in the contour walk. It is best to present T �

n,ι′,�τ ′ in two stages. The cilia of T �
n,ι′ are

either cilia of T �
n,ι or they are among the 2s new cilia. The step ql corresponding to the

l’th cilium encountered in the walk around T �
n,ι becomes the step q ′

m(l) corresponding to

the m(l)’th cilium in the walk around T �
n,ι′ . The other steps, denoted q ′

t (p) and q ′
t (p′) in

the walk around T �
n,ι′ corresponding to the new cilia jp and jp′ . It follows that the steps

q ′
r corresponding to cilia in the walk around T �

n,ι′ are partitioned into three categories:
r = m(l) for some l, r = t (p) for some p or r = t (p′) for some p′.

For the example of Fig. 5 we have

m(1) = 4, m(2) = 5, m(3) = 6, m(4) = 7,

t (1) = 1, t (1′) = 8, t (2) = 2, t (2′) = 3. (26)

Step 1. The presence of new cilia modifies the cycle decomposition of ξ ′
c. A cycle of ξc

of the form (. . . lξc(l) . . . ) becomes (. . . m(l) . . . t (p) . . . t (q ′) . . . ξc(m(l)) . . . ), where
t (p) and t (q ′) denote the (ordered list of) new cilia inserted on the face corresponding
to the cycle of ξc (for example the cycle (3, 4, 5) in ξ ′

1 which comes from the cycle (1, 2)

in ξ1). Note that if jp and jq ′ are inserted on some internal face of T �
n,ι then they will

form a cycle . . . t (p) . . . t (q ′) . . . in the permutation ξ ′
c having no corespondent in ξc

(for example the cycle (1, 2, 8) in ξ ′
1). We reconnect the new cilia with trivial external

edges

τ̃c(r) =

⎧
⎪⎨

⎪⎩

m(τc(l)) if r = m(l)
t (p) if r = t (p)

t (p′) if r = t (p′)
. (27)



986 R. Gurau

We thus obtain an intermediate tree with external edges T �
n,ι′,�̃τ . The permutations τ̃c

acquire extra cycles of length 1 with respect to τc. As a function of the cycle structure
of ξ ′

c, one can at most convert internal faces of color c into external faces of colors c, (if
ξ ′

c has more cycles than ξc) but the total number of faces does not change

|F(T �
n,ι′,�̃τ )| = |F(T �

n,ι,�τ )|. (28)

Step 2. We convert the permutation τ̃c into the permutations τ ′
c defined as

τ ′
c(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m(τc(l)) if r = m(l) for some l(τ ′
1(4) = 6)

t (p′) if r = t (p) for some p and c = cp(τ
′
1(2) = 3)

t (p) if r = t (p′) for some p′ and c = cp(τ
′
1(3) = 2)

t (p) if r = t (p) for some p and c 	= cp(τ
′
2(2) = 2)

t (p′) if r = t (p′) for some p′ and c 	= cp(τ
′
2(3) = 3)

. (29)

We now obtain the tree with external edges T �
n,ι′,�τ ′ corresponding to the tree with

loop edges T �
n,ι,�τ ,L. For every loop edge of color c, two cycles of length one in τ̃c are

merged into a cycle of length two of τ ′
c.

On the other hand, for any permutation ξ , if τ ′ is obtained from τ̃ by merging two
cycles of length 1 into a cycle of length two,

C(τ ′ξ ′) ≤ C(τ̃ ξ ) + 1, (30)

hence
∑

c

C(τ ′
cξ

′
c) ≤

∑

c

C(τ̃cξ
′
c) + s ⇒ |F(T �

n,ι,�τ ,L)| ≤ |F(T �
n,ι,�τ )| + s

⇒ |F(T �
n,ι,�τ ,L)| ≤ D + (n − 1)(D − 1) −

D∑

c=1

C(ξc) +
∑

c

C(τcξc) + s, (31)

where F(T �
n,ι,�τ ,L) is the set of all the faces of Tn,ι,�τ ,L.

We will associate to each step q in the contour walk of a tree (or of a tree with external
edges, or of a tree with external and loop edges) a positive real parameter αq .

2.4. Interpolated Gaussian measure. Consider an abstract tree Tn with n vertices labeled
1, 2, . . . n. To every vertex 1, 2, . . . n we associate D matrices (one for each color) of
size N × N . We denote the matrices associated to the vertex i by σ (i)1 , σ (i)2 , . . . σ (i)D .
We associate to every edge of the tree (i, j) ∈ Tn a positive real variable ui j . To every
couple of vertices k and l we associate the function

wkk(Tn, u) = 1 wkl(Tn, u) = inf
(i, j)∈Pk→l (Tn)

ui j , (32)

with Pk→l(Tn) the unique path in the tree Tn joining the vertices k and l. We denote
μwi j (Tn ,u)1⊗D (σ ) the normalized Gaussian measure of covariance

∫
dμwi j (Tn ,u)1⊗D (σ ) σ

(k)c
ab (σ (l)c′ †)b′a′

=
∫

dμwi j (Tn ,u)1⊗D (σ ) σ
(k)c
ab σ̄

(l)c′
a′b′ = wkl(Tn, u) δaa′δbb′δcc′

. (33)
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The existence and uniqueness of this measure follows form the positivity of the
real symmetric matrix wi j (Tn, u) [61,62]. We include here a short discussion of this
point.

We consider a fixed set of parameters u. We denote the edges of the tree by � =
(i, j) ∈ Tn and we order them �1, . . . �n−1 according to the value of the u parameters,
0 ≤ u�1 ≤ u�2 ≤ · · · ≤ u�n−1 ≤ 1. We define Bq the partition of the set of vertices
into blocks connected by the highest q edges �n−1, . . . �n−q . By convention B0 is the
trivial partition into n sets {i},∀i . The partition B1 has n − 1 sets, one is {in−1, jn−1}
with �n−1 = (in−1, jn−1), and the remaining n − 2 sets are {i}, i 	= in−1, jn−1. The
final partition Bn−1 has a unique set {i,∀i}. We label the sets in the partition Bq by
Bq,(μ), μ = 1, . . . n − q.

For each q we define a n × n matrix Mq

Mq
i j =

{
1 i, j ∈ Bq,(μ) for some μ

0 i ∈ Bq,(μ1), j ∈ Bq,(μ2) μ1 	= μ2
. (34)

Each matrix Mq
i j is positive and wi j (Tn, u) is the convex combination with positive

weights

wi j (Tn, u) = (1 − u�n−1)M0
i j +

n−2∑

q=1

(u�q+1 − u�q )Mq
i j + u�1 Mn−1

i j , (35)

hence positive.
A tree Tn decorated by s extra edges L = {( jp, jp′), p = 1 . . . s} (which we call

loop edges) forms a graph G. In the sequel we will encounter the following expression

∫ 1

0

( ∏

(i, j)∈Tn

dui j
) s∏

p=1

w
jp jp′ (Tn, u). (36)

This integral can be evaluated explicitly [61] and yields the percentage of Hepp sectors
of G in which Tn is dominant.

We label the lines of G by fixed labels l1, . . . ln−1+s . A Hepp sector is an ordering
σ of the edges of G, lσ(1) ≤ · · · ≤ lσ(n−1+s). The dominant tree in a Hepp sector σ is
obtained by collecting one by one the lowest lines in the ordering which do not form
loops. That is, defining F (r)

F (1) = lσ(1),

F (r+1) = F (r) ∪ lσ(k), σ (k) = inf
∀�∈F(r),�≤l

σ(k′)
F (r)∪lσ(k′) has no cycles

σ(k′), (37)

the dominant tree is F (n−1). The integral in Eq. (36) can be rewritten by introducing a
new variable v for every edge in G\Tn as
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫ 1

0

( ∏

(a,b)∈G\Tn

dvab
)

χTn ,G(u, v),

χTn ,G(u, v)=
{

1, ∀l = (a, b)∈G\Tn,∀� ∈ Pa→b(Tn) we have u� ≤ vl

0, otherwise
, (38)
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Fig. 6. Graph associated to a D-tuple of permutations

with Pa→b(Tn) the path in Tn from a to b. In a given sector the function χTn ,G is either
zero or one, hence the integral is zero for the sectors in which Tn is not dominant and
[(n − 1 + s)!]−1 in the sectors in which it is.

2.5. The graph of D permutations over k elements. Any D-tuple �σ can be represented
as a D colored graph B�σ with labelled vertices. We draw k black vertices labeled 1̄, . . . k̄
and k white vertices labeled 1, . . . k and we connect the vertex l̄ to the vertex σc(l) by an
edge of color c oriented from l̄ to σc(l), see Fig. 6. Conversely, to every colored graph B
with 2k vertices labelled 1, . . . k, 1̄, . . . k̄ we associate a unique D-tuple of permutations
�σ(B) encoding the connectivity of its edges.

2.6. The Weingarten function. The Weingarten function introduced in [54,55] arises
naturally when one considers integrals over the unitary group, namely

∫

U (N )

[dU ]
k∏

j=1

Un j p j U
†
p′

j n′
j

=
∑

σ,τ

δn1n′
σ(1)

. . . δnk n′
σ(k)

δp1 p′
τ (1)

. . . δpk p′
τ (k)

Wg(N , σ τ−1), (39)

where the sum runs over all the permutations σ and τ of k elements and the Weingarten
function is

Wg(N , τ ) = 1

k!2
∑

π

χπ(1)2χπ(τ)

sπ,N (1)
, (40)

where the sum runs over the partitions π of N , χπ is the character of the symmetric
group corresponding to π and sπ,N (x) is the Schur function of the unitary group (hence
sπ,N (1) is the dimension of the irreducible representation of U (N ) associated with π ).
We will in particular use the following properties of the Weingarten function [54,55]

Wg(N , (1)) = 1

N
,

lim
N→∞ N 2k−C(σ )Wg(N , σ ) =

C(σ )∏

s=1

(−1)|Cs (σ )|−1 1

|Cs(σ )|
(

2|Cs(σ )| − 2

|Cs(σ )| − 1

)
,

(41)

where C(σ ) denotes the number of cycles of the permutation σ and |Cs(σ )| denotes the
length of the s’th cycle. It follows that for N large enough we have

|Wg(N , σ )| <
1

N 2k−C(σ )
22k, (42)

and we will always assume in this paper that N is large enough such that this bound is
respected.
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Fig. 7. The graphs of the quartic perturbation terms

3. The Quartically Perturbed Gaussian Measure

Our starting point is the quartically perturbed Gaussian tensor measure

dμ(4) = 1

Z(λ, N )

(∏

�n
N D−1 dT�ndT̄�n

2π ı

)
e−N D−1 S(4)(T,T̄),

S(4)(T, T̄)=
∑

�n
T�nδ�n �̄nT̄�̄n +λ

D∑

i=1

∑

nn̄

T�nT̄ �̄mT �mT̄�̄n δni m̄i δmi n̄i

∏

j 	=i

δn j n̄ j δm j m̄ j ,

(43)

with Z(λ, N ) some normalization constant. The quartic perturbation corresponds to a
sum of invariants whose graphs are represented in Fig. 7.

One can in principle consider more general quartic perturbations (in the associated
graphs the vertices share q and D − q lines respectively with q > 1) however such
perturbations are suppressed in powers of 1/N . The generating function of the moments
of μ(4) is

Z(J, J̄ ; λ, N ) =
∫ (∏

�n
N D−1 dT�ndT̄�n

2π ı

)
e−N D−1 S(4)(T,T̄)+

∑
�̄n T̄�̄n J�̄n+

∑
�n Tn J̄n , (44)

and the generating function of the cumulants is W (J, J̄ ; λ, N ) = ln Z(J, J̄ ; λ, N ),

κ
(
T�n1 , T̄�̄n1

, . . . T�nk , T̄�̄nk

) = ∂(2k)

∂ J̄�n1∂ J�̄n1
. . . ∂ J̄�nk ∂ J�̄nk

W (J, J̄ ; λ, N )

∣∣∣
J= J̄=0

. (45)

Our first result concerns the constructive expansion of W (J, J̄ ; λ, N ).

Theorem 3 (Constructive Expansion 1). The generating function of the cumulants of
μ(4) in Eq. (43) writes as a sum over plane trees T �

n,ι

W (J, J̄ ; λ, N ) =
∑

n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

T(T �
n,ι), (46)



990 R. Gurau

where the contribution of a tree is

T(T �
n,ι) =

∫ 1

0

( ∏

(i, j)∈Tn

dui j
)∫

dμwi j (Tn ,u)1⊗D (σ )

∫ ( 2n−2+k∏

q=1

dαq

)
e−∑2n−2+k

q=1 αq

×
∏

f c∈F int(T �
n,ι )

Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
] ∑

{pc
l ,nc

l }

k∏

l=1

J̄p1
l ,...pD

l
Jn1

l ,...nD
l

×
∏

f c;i(ql )→i(qξc(l))∈Sext(T �
n,ι )

[ →∏

q∈q( f c;i(ql )→i(qξc(l)))

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]

pc
l nc

ξc(l)

,

where we used the notations of Sect. 2.3 and → means that the products are ordered.

This expansion is the generalization to tensor models of the constructive Loop Vertex
Expansion (LVE) introduced in [51] for matrix models. Note that our expansion looks
somewhat different from the LVE of [51], notably the step parameters αp have no
equivalent in the initial formulation. The usual LVE is recovered from 3 by restricting
to trees having no ciliated vertices. In this case the integrals over αp can be computed
explicitly and one recovers the formulation in terms of resolvents of [51].

As a consequence of the (LVE) we can derive an expansion for the cumulants of our
measure.

Theorem 4 (Constructive Expansion 2). The cumulants of the measure μ(4) in Eq. (43)
are trace invariants

κ
(
T �p1 , T̄�n1 , . . . T �pk , T̄�nk

) =
∑

B, k(B)=k

K(B, μ
(4)
N )

C(B)∏

ρ=1

δ
Bρ

nn̄ , (47)

where the sum runs over D-colored graphs with 2k vertices labelled 1, . . . k, 1̄, . . . k̄ and
admit an expansion as a sum over plane trees with external edges Tn,ι,�τ

K(B, μ
(4)
N ) =

∑

n≥k

1

n! (−λ)n−1 1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
TE(T �

n,ι,�τ ), (48)

where the contribution of a tree with external edges is

TE(T �
n,ι,�τ ) = k!

( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

)) ∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

×
∫ ( 2n−2+k∏

q=1

dαq

)
e−∑2n−2+k

q=1 αq
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]
.

The main advantage of the constructive expansion of the cumulants is that, unlike the
perturbative expansion in λ, it leads to a series which is absolutely convergent uniformly
in N .
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Theorem 5 (Absolute Convergence). The series in Eq. (48) is absolutely convergent for
λ ∈ R, λ ∈ [0, 2−3 D−1). Moreover, the cumulants are bounded by

|K(B, μ
(4)
N )| ≤ N D−2k(D−1)−C(B)|λ|k−1 K (B), (49)

for some constant K (B) independent of N (and independent of λ for |λ| small enough).

The scaling bound of Eq. (49) coincides with the proper uniform bound of definition 3.
However we can not yet conclude that μ(4) is properly uniformly bounded. Indeed, in
order to conclude this, one still needs to prove that the second cumulant converges when
N → ∞. We will show this later in this paper.

The domain of convergence 0 ≤ λ < 2−3 D−1 is optimal. We will see below that the
leading order in 1/N , the “melonic” sector yields a series whose radius of convergence
is exactly 2−3 D−1. It is not surprising that the full non perturbative expression diverges
when one reaches the radius of convergence of the leading order.

The series (48) computes the cumulants for real, positive (and small) coupling con-
stant. The cumulants can be analytically continued to some domain in the complex
plane.

Corollary 1. The cumulants K(B, μ
(4)
N ) can be analytically continued for λ = |λ|eıϕ

with ϕ ∈ (−π, π) and |λ| <
(
cos ϕ

2

)22−3 D−1. In this domain they are represented by
the absolutely convergent series

K(B, μ
(4)
N ) =

∑

n≥k

1

n! (−λ)n−1 1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
TE(T �

n,ι,�τ ),

TE(T �
n,ι,�τ ) = k!

( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

)) ∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

×
∫ ( 2n−2+k∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√ |λ|
N D−1 (σ i(q)c −σ i(q)c†)

]
. (50)

We have thus a well defined expression for the cumulants in a heart-shaped domain
(see Fig. 8 below where we represented by a dashed circle the circle of radius 2−3 D−1).
As expected, λ = 0 is a point belonging to the boundary of this analyticity domain.

The interplay between the non perturbative LVE expansions presented so far and the
1/N expansion is captured by the following theorem. Consider the rescaled cumulants,
which according to Eq. (48) write as

K (B, N ) = N−D+2k(D−1)+C(B)K(B, μ
(4)
N )

=
∑

n≥k

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
T E (T �

n,ι,�τ ), (51)
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Fig. 8. Domain of convergence

where the rescaled contribution of each tree with external edges T �
n,ι,�τ is

T E (T �
n,ι,�τ ) = N−D+2k(D−1)+C(B)−(k+n−1)(D−1) k!

( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

))

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

×
∫ ( 2n−2+k∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√ |λ|
N D−1 (σ i(q)c −σ i(q)c†)

]
. (52)

Theorem 6 (The Mixed Expansion). The contribution of a tree with external edges T �
n,ι

admits an expansion in terms of trees with external edges and loop edges T �
n,ι,�τ ,L

T E (T �
n,ι,�τ ) =

s−1∑

q=0

T (q)(T �
n,ι,�τ ) + R(s)(T �

n,ι,�τ ),

T (q)(T �
n,ι,�τ ) =

∑

L,|L|=q

∑

c1...cq

T E L ,(q)(T �
n,ι,�τ ,L)

(53)

where L runs over all possible ways to decorate T �
n,ι,�τ with q loop edges ( j1, j1′), ( j2, j2′)

up to ( jq , jq ′) and c1, . . . cq run over the possible colorings of the loop edges and the
contribution of a tree with external edges and loop edges is

T E L ,(q)(T �
n,ι,�τ ,L) = 1

q!
(
− λ

N D−1

)q
k!
( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

))

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) s∏

p=1

w
jp jp′ (Tn, u)

×N−D+2k(D−1)+C(B)−(k+n−1)(D−1)+|F(T �
n,ι,�τ ,L)|

, (54)



The 1/N Expansion of Tensor Models Beyond Perturbation Theory 993

while the rest term is

R(s)(T �
n,ι,�τ ) =

∫ 1

0
dt (1 − t)s−1

[
N−D+2k(D−1)+C(B)−(k+n−1)(D−1)

× 1

(s − 1)!
(
− λ

N D−1

)s
k!
( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

)) ∑

L,|L|=s

∑

c1...cs

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) s∏

p=1

w jp j ′p (Tn, u)

∫
dμwi j (Tn ,u)1⊗D (σ )

×
∫ ∞

0

( 2n−2+k+2s∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k+2s

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ ,L)

Tr
[ →∏

q∈q( f c)

e
−αq

√
t
√ |λ|

N D−1 (σ i(q)c −σ i(q)c†)
]]

. (55)

Furthermore the terms in the mixed expansion admit the bounds

∣∣T (q)(T �
n,ι,�τ )

∣∣ ≤ |λ|q
N q(D−2)

(k!22Dk Dq)
(2n + 2q + k − 3)!

q!(2n + k − 3)!
|R(s)(T �

n,ι,�τ )| ≤ 1
(
cos ϕ

2

)2n+2s+k−2

|λ|s
N s(D−2)

(k!22Dk Ds)
(2n + 2s + k − 3)!

(s − 1)!(2n + k − 3)! .
(56)

We call this expansion the mixed expansion because it is at the same time an expansion
in λ and an expansion in 1/N . More precisely, being an expansion in λ

N D−2 , one can use
it to establish the Borel summability of the cumulants or, alternatively, one can use it to
establish the 1

N expansion of the cumulants at all orders.

Theorem 7 (Borel summability). The rescaled cumulants

K (B, N ) ≡ N−D+2k(D−1)+C(B)K(B, μ
(4)
N ), (57)

are Borel summable in λ uniformly in N.

A crucial point is that, as we are interested in the large N regime, both the convergence
of the constructive expansion in its analyticity domain and the Borel summability around
λ = 0 are uniform in N .

Theorem 8 (The 1/N expansion of the cumulants). Using the mixed expansion, the
rescaled cumulants of μ(4) write as

K (B, N ) =
∑

n≥k

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ

s−1∑

q=0

∑

L,|L|=q

∑

c1...cq

T E L ,(q)(T �
n,ι,�τ ,L)

+R(s)
N (B, λ), (58)
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and for |λ| < 5−22−1 D−1
(
cos ϕ

2

)2
the rest term admits the bound

|R(s)
N (B, λ)| ≤ Kσ ss! 1

N s(D−2)

|λ|s+k−1

(
cos ϕ

2

)2s+3k−1 . (59)

for some constants K and σ .

One can now use the 1/N expansion as follows: the terms up to order N−s(D−2) are
indexed by trees with at most s loop edges. Such corrections can be evaluated order by
order. In particular all corrections at fixed order in 1/N will reach criticality when the
sum over n becomes critical, i.e., all terms in the 1/N expansion will diverge for the
same critical constant.

The factorial bound in Eq. (59) suggests that the cumulants are Borel summable in
1/N . This is most likely the case, however the attentive reader will notice that we did not
yet establish analyticity of the cumulants in 1/N . This is difficult, because, besides the
explicit occurrences of N , we also must take into account that N is the size of the matrices
σ

(i)
c . In order to establish analyticity in 1/N one needs to find a better representation

of the cumulants in which N appears exclusively as a parameter. We postpone this to
future work.

Before we conclude this paper we present as an example the leading order behaviour
of the two point cumulant. A number of simplifications arise in this case : k = 1,
Wg

(
N , (1)

) = 1
N , C(B �(1)

) = 1. Using the 1/N expansion up to order s = 1 we get

K (B(2), N ) =
∑

n≥k

1

n! (−λ)n−1
n∑

i1=1

∑

T �
n,{i1}

T E L ,(0)(T �
n,{i1}, �(1),∅) + R(1)

N (B(2), λ),

T E L ,(0)(T �
n,{i1}, �(1),∅) = 1

N D
N

−D+2(D−1)+1−(1+n−1)(D−1)+|F(T �
n,ι, �(1),∅)|

, (60)

R(1)
N (B(2), λ) ≤ 1

N D−2 K
|λ|

(
cos ϕ

2

)4 .

The leading order behavior can be resummed, as

|F(T �
n,ι, �(1),∅)| = D + (n − 1)(D − 1) ⇒ T E L ,(0)(T �

n,{i1}, �(1),∅) = 1, (61)

and the sum over trees can be computed explicitly (we do this for arbitrary trees in
Eq. (78) below),

K (B(2), N ) =
∑

n≥k

(−2Dλ)n−1 (2n − 2)!
(n − 1)!n! +

1

N D−2 K
|λ|

(
cos ϕ

2

)4 . (62)

Corollary 2 (The large N limit). For |λ|(
cos ϕ

2

)2 small enough

lim
N→∞ K (B(2), N ) = −1 +

√
1 + 8Dλ

4Dλ
. (63)

In particular this coupled with the uniform bound in Theorem 5 proves that the
measure μ(4) is properly uniformly bounded, hence according to Theorem 1, becomes
Gaussian in the large N limit.
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4. Proofs

Before going to the core of the proofs of the various theorems in the text we establish a
number of results we will use recurrently in the sequel.

4.1. Technical prerequisites. The main inequality on permutations. Recall that C(σ )

denotes the number of cycles of the permutation σ and C(B�σ ) denotes the number of
connected components of the graphs associated to the D-tuple of permutations �σ .

Lemma 1. Let �ξ and �σ and �τ be three D-tuples of permutations over k elements such
that �ξ are permutations encoding the external faces of a tree. We have the bound

∑

c

C(τcσ
−1
c ) −

∑

c

C(ξc) +
∑

c

C(τcξc) ≤ (D + 1)k − C(B�σ ). (64)

This bound is a trivial consequence of the following two propositions.

Proposition 1. Let ξ and σ be any two fixed permutations over k elements, and let τ be
any permutation over k elements. Then

C(τσ−1) + C(τξ) ≤ C(ξ−1σ−1) + k. (65)

Proof. The bound is saturated if τξ is the identity permutation.
Consider then the sum C(τσ−1) + C(τξ) and suppose that τξ is not the identity

permutation. The cycle structure of the permutation τξ can be easily read of by drawing
the graph of the two permutations ξ−1, τ (where we reverse the orientation of the edges
representing the permutation ξ−1), see Fig. 9: a moment of reflection reveals that the
number of cycles of τξ is the number of connected components of the graph as the τξ

jumps from a white vertex to the next white vertex following the arrows.
If τξ is not the identity, then there exists p such that ξ(p) 	= τ−1(p) (and τ(ξ(p)) 	=

p). We compare C(τσ−1) + C(τξ) with C(τ ′σ−1) + C(τ ′ξ), with τ ′ defined as

τ ′(q) =

⎧
⎪⎨

⎪⎩

τ(q) ∀q 	= τ−1(p), ξ(p)

τ ′(τ−1(p)
) = τ

(
ξ(p)

)

τ ′(ξ(p)
) = p

. (66)

The graph of the permutations ξ−1, τ ′ is represented in Fig. 10. By substituting τ with
τ ′ we created a new connected component, C(τ ′ξ) = C(τξ) + 1. Representing now
the graph of the permutations σ, τ and σ, τ ′, we see that replacing τ by τ ′ amounts

Fig. 9. Graph associated to ξ−1, τ
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Fig. 10. Graph associated to ξ−1, τ ′

Fig. 11. Ciliated vertex and the associated vertices of B�σ

to permuting the endpoints of the edges representing the τ permutation originating in
τ−1(p) and ξ(p), hence the number of cycles of τσ−1 can not decrease by more than
1. Thus

C(τσ−1) + C(τξ) ≤ C(τ ′σ−1) + C(τ ′ξ). (67)

Iterating, we find that the maximum is achieved for τ such that τ
(
ξ(p)

) = p for all p.
��

Proposition 2. Let �ξ and �σ be two D-tuples of permutations (with D ≥ 2) such that �ξ
are permutations encoding the external faces of a tree. Then

∑

c

C(σcξc) −
∑

c

C(ξc) + C(Bσ ) ≤ k. (68)

Proof. For every cilium l we draw a black and white vertex and represent the graph B�σ
associated to the permutation �σ , see Fig. 11.

Consider the tree with associated permutations �ξ . As the univalent vertices with no
cilia of the tree have no bearing over the permutations �ξ we can eliminate them. Consider
a ciliated univalent vertex l in the tree, and say that the line touching it has color c. It
follows that we are in one of the two cases

{
case I ξc(l) 	= l, ξc1(l) = l ∀c1 	= c,
case II ξc(l) = l, ξc1(l) = l ∀c1 	= c.

(69)

The permutations �σ fall in one of the following three categories
⎧
⎪⎨

⎪⎩

case 1 σc(l) 	= l, ∀c,
case 2 σci (l) = l, i = 1 . . . q < D, σc j (l) 	= l {ci } ∪ {c j } = {1, . . . D},
case 3 σc(l) = l, ∀c.

(70)
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We build the graph obtained by eliminating the ciliated vertex l in the tree (by cutting
the tree line touching it) and deleting the vertices l and l̄ in B�σ and reconnecting the σ

lines respecting the colors (see Fig. 11 on the right). The new graph is characterized by
permutations �ξ ′ and �σ ′ over {1, . . . k}\{l}

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

case I ξ ′
c(p) = ξc(p),∀p 	= ξ−1

c (l), ξ ′
c

(
ξ−1

c (l)
) = ξc(l)

ξ ′
c1

(p) = ξc1(p),∀p 	= l
case II ξc(p) = ξc(p),∀p 	= l

ξ ′
c1

(p) = ξc1(p),∀p 	= l

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

case 1 σ ′
c(p) = σc(p),∀p 	= σ−1

c (l), σ ′
c

(
σ−1

c (l)
) = σc(l)

case 2 σ ′
c j

(p) = σc j (p),∀p 	= σ−1
c j

(l), σ ′
c j

(
σ−1

c j
(l)
) = σc j (l)

σ ′
ci
(p) = σci (p),∀p 	= l

case 3 σ ′
c(p) = σc(p),∀p 	= l

. (71)

Consider now the graph of two permutations ξ−1
c , σc. The permutations (ξ ′

c)
−1, σ ′

c cor-
respond to the graph whose vertices l and l̄ have been deleted and whose edges have
been reconnected coherently. The number of cycles changes as

• if σc(l) 	= l, and ξc(l) 	= l then C(σcξc) ≤ C(σ ′
cξ

′
c) + 1,

• if σc(l) 	= l, and ξc(l) = l then C(σcξc) = C(σ ′
cξ

′
c),• if σc(l) = l, and ξc(l) 	= l then C(σcξc) = C(σ ′

cξ
′
c),• if σc(l) = l and ξc(l) = l then C(σcξc) = C(σ ′

cξ
′
c) + 1.

Finally, the number of connected components of B�σ changes as

• case 1, B�σ ≤ B�σ ′ + 1,
• case 2, B�σ = B�σ ′ ,
• case 3, B�σ = B�σ ′ + 1.

As a function of the case we are into, we then have

I 1 :
∑

c

C(σcξc) ≤
∑

c

C(σ ′
cξ

′
c) + 1,

∑

c

C(ξc) =
∑

c

C(ξ ′
c) + D − 1, C(B�σ ) ≤ C(B�σ ′) + 1,

I I 1 :
∑

c

C(σcξc) =
∑

c

C(σ ′
cξ

′
c),

∑

c

C(ξc) =
∑

c

C(ξ ′
c) + D, C(B�σ ) ≤ C(B�σ ′) + 1,

I 2 :
∑

c

C(σcξc) ≤
∑

c

C(σ ′
cξ

′
c) + q + 1,

∑

c

C(ξc) =
∑

c

C(ξ ′
c) + D − 1, C(B�σ ) = C(B�σ ′),

I I 2 :
∑

c

C(σcξc) =
∑

c

C(σ ′
cξ

′
c) + q,

∑

c

C(ξc) =
∑

c

C(ξ ′
c) + D, C(B�σ ) = C(B�σ ′),
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I 3 :
∑

c

C(σcξc) =
∑

c

C(σ ′
cξ

′
c)) + D − 1,

∑

c

C(ξc) =
∑

c

C(ξ ′
c) + D − 1, C(B�σ ) = C(B�σ ′) + 1,

I I 3 :
∑

c

C(σcξc) =
∑

c

C(σ ′
cξ

′
c) + D,

∑

c

C(ξc) =
∑

c

C(ξ ′
c) + D, C(B�σ ) = C(B�σ ′) + 1. (72)

In all cases
∑

c

C(ξcσ
−1
c )−

∑

c

C(ξc)+C(Bσ )≤
∑

c

C(ξ ′
c(σ

′
c)

−1)−
∑

c

C(ξ ′
c)+C(B�σ ′)+1, (73)

and the bound can be attained only for I 3, I I 3, I 2 with q = D − 1, or I 1 if D = 2. We
iterate the procedure, taking into account that after eliminating the univalent vertex l of
the tree one might need to eliminate some new univalent vertices with no cilia (as the
latter have no bearing on the permutations �ξ ′). Iterating up to permutations of 1 element
ξc = σc = (1) ∀c, we get

∑

c

C(ξcσ
−1
c ) −

∑

c

C(ξc) + C(Bσ ) ≤ (k − 1) + 1. (74)

��
Evaluating derivatives. We will repeatedly use in the sequel the following result.

Lemma 2. For any N × N matrices F and G and any function H(α1, α2) we have
∫ ∞

0
dα1dα2 H(α1, α2)

∑

p1n1 p2n2

Fn1 p1 Gn2 p2

×
∑

ab

∂

∂σ
(i)c
ab

[
e
−α1

√
λ

N D−1 (σ (i)c −σ (i)c†)
]

p1n1

× ∂

∂σ
( j)c†
ba

[
e
−α2

√
λ

N D−1 (σ ( j)c −σ ( j)c†)
]

p2n2

= − λ

N D−1

∫ ∞

0
dβ1dγ1dβ2dγ2 H(β1 + γ1, β2 + γ2)

×Tr

[
Fe

−β1

√
λ

N D−1 (σ (i)c −σ (i)c†)
e
−γ2

√
λ

N D−1 (σ ( j)c −σ ( j)c†)

Ge
−β2

√
λ

N D−1 (σ ( j)c −σ ( j)c†)
e
−γ1

√
λ

N D−1 (σ (i)c −σ (i)c†)
]
. (75)

Proof. Expanding the exponentials and evaluating the derivatives the integral writes

=
∫ ∞

0
dα1dα2 H(α1, α2)

∑

p1n1 p2n2

Fn1 p1 Gn2 p2

∑

ab

[ ∑

u1,v1≥0

(−α1)
u1+v1+1

(u1 + v1 + 1)!
√

λ

N D−1

u1+v1+1
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[
(σ (i)c − σ (i)c†)u1

]

p1a

[
(σ (i)c − σ (i)c†)v1

]

bn1

]

[ ∑

u2,v2≥0

(−α2)
u2+v2+1

(u2 + v2 + 1)! (−1)

√
λ

N D−1

u2+v2+1

[
(σ ( j)c − σ ( j)c†)u2

]

p2b

[
(σ ( j)c − σ ( j)c†)v2

]

an2

]
. (76)

Using 1
(u1+v1+1)! = ∫ 1

0 dx1
(1−x1)

u1

u1!
x

v1
1

v1! this rewrites as

− λ

N D−1

∫ ∞

0
dα1dα2 H(α1, α2)

∫ 1

0
α1dx1α2dx2

∑

p1n1 p2n2

Fn1 p1 Gn2 p2

∑

u1,v1,u2,v2≥0

[−α1(1 − x1)]u1

u1!
[−α1x1]v1

v1!
[−α2(1 − x2)]u2

u2!
[−α2x2]v2

v2!
√

λ

N D−1

u1+v1+u2+v2[
(σ (i)c − σ (i)c†)u1(σ ( j)c − σ ( j)c†)v2

]

p1n2[
(σ ( j)c − σ ( j)c†)u2(σ (i)c − σ (i)c†)v1

]

p2n1
, (77)

and changing variables to β1 = α1(1− x1), γ1 = α1x1 and similarly for 2 and summing
over u1, v1, u2, v2 the lemma follows ��
Combinatorial countings. We count the number of plane trees with n vertices, k ciliated
vertices i1, . . . ik and colored oriented edges. Every combinatorial tree Tn with degrees
of the vertices d1, . . . dn , has (2D)n−1di1 ! . . . dik !

∏
i 	=ik

(di − 1)! associated plane trees
with colored oriented edges and marked vertices T �

n,ι, corresponding to the two possible
orientations of the edges, the D possible colorings of every edge and the permutations
of all but one of the halfedges touching each vertex (plus a choice dir of where to place
the cilium on the marked vertices). The number of combinatorial trees with assigned
degrees d1, . . . dn is (n−2)!

(d1−1)!...(dn−1)! and we get

(∑

T �
n,ι

1
)

n,ι fixed

= (2D)n−1
n∑

d1,...dn=1∑
di =2n−2

(n − 2)!
(d1 − 1)! . . . (dn − 1)!di1 ! . . . dik !

∏

i 	=ik

(dik − 1)!

= (2D)n−1(n − 2)!
n∑

d1,...dn=1∑
di =2n−2

di1 . . . dik = (2D)n−1 (2n + k − 3)!
(n + k − 1)! , (78)

as the sums over di yield the coefficient of the term of degree x2n−2 in the expansion of

[
x
( 1

1 − x

)′]k xn−k

(1 − x)n−k
= xn

(1 − x)n+k
= xn

∑

p

(
n + k + p − 1

p

)
x p. (79)
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For every tree T �
n,ι one has k!D trees with external edges T �

n,ι,�τ ,
(∑

�τ
1
)∣∣∣

T �
n,ι fixed

= k!D. (80)

The number of plane trees decorated by loop edges is counted as follows. The walk
around T �

n,ι has 2n − 2 + k steps. The insertion of s loop edges consists in the choice of
2s positions to insert new cilia. One can insert a new cilium at every step of the walk.
However, with every insertion of a cilium the walk acquires a new step, hence one has

[2(n − 1)+k][2(n−1)+k+1] . . . [2(n−1)+k+2s − 1]= (2n + 2s + k − 3)!
(2n + k − 3)! , (81)

ways to connect the 2s loop edges on T �
n,ι. Furthermore for each choice, one has Ds

possible colorings of the loop edges, hence
( ∑

L,|L|=s

∑

c1,...cs

1
)∣∣∣

Tn,ι,�τ fixed
= Ds (2n + 2s + k − 3)!

(2n + k − 3)! . (82)

Finally,

1

n!
n∑

i1,i2 ...,ik=1
id 	=id′

1 = 1

(n − k)! . (83)

Computing the logarithm of a Gaussian integral. The logarithm of a Gaussian integral
can be computed using the universal Brydges–Kennedy–Abdesselam–Rivasseau forest
formula [62] and a replica trick.

Lemma 3. Let X be a complex vector of components X1, . . . X N and let I be the
Gaussian integral of covariance C defined as

I =
∫

dμC (X) eV (X̄ ,X),

∫
dμC (X) Xa X̄b̄ = Cab̄. (84)

Then

ln I =
∑

n≥0

1

n!
∑

Tn

∫ 1

0

( ∏

(i, j)∈Tn

dui j
)
;
∫

dμwi j (Tn ,u)C (X (i))

×
[ ∏

(i, j)∈Tn

(∑

ab̄

∂

∂ X (i)
a

Cab̄
∂

∂ X̄ ( j)
b̄

+
∑

ab̄

∂

∂ X ( j)
a

Cab̄
∂

∂ X̄ (i)
b̄

)]

×
n∏

i=1

V (X̄ (i), X (i)), (85)

where Tn runs over all the combinatorial trees with n vertices labelled 1, 2 up to n,
(i, j) denotes the tree edge connecting the vertices i and j , the parameters wi j (Tn, u)

are defined as

wi i (Tn, u) = 1, wi j (Tn, u) = inf
(k,l)∈Pi→ j (Tn)

ukl , (86)
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where Pi→ j (Tn) denotes the unique path in the tree Tn joining i and j and the interpo-
lated Gaussian measure dμwi j (Tn ,u)C (X (i)) is

∫
dμwi j (Tn ,u)C (X (i)) X (i)

a X̄ ( j)
b̄

= wi j (Tn, u)Cab̄. (87)

Proof. We Taylor expand in V (X, X̄) to get

I =
∫

dμC (X) eV (X̄ ,X) =
∫

dμC (X)
∑

n≥0

1

n! V (X̄ , X)n . (88)

The term of degree n can be rewritten as a Gaussian integral over n replicas X (1), X (2)

up to X (n) with degenerate covariance between the replicas C (i, j)
ab̄

= Cab̄,

I =
∑

n≥0

1

n!
∫

dμ
C(i, j)

ab̄

(X (i))

n∏

i=1

V (X̄ (i), X (i)). (89)

Each term in this expansion is a function of parameters xi j = x ji , evaluated for xi j = 1,
corresponding to a Gaussian measure with covariance

C (i,i)
ab̄

= Cab̄, C (i, j)
ab̄

= xi j Cab̄, i 	= j. (90)

Consider n vertices labeled 1, 2 . . . n and a function f depending on n(n−1)
2 edge vari-

ables xi j with i 	= j . The universal Brydges–Kennedy–Abdesselam–Rivasseau forest
formula [62] states that

f (1, . . . 1) =
∑

Fn

∫ 1

0

( ∏

(i, j)∈Fn

dui j
) (

∂ |E(Fn)| f∏
(i, j)∈Fn

∂xi j

)∣∣∣∣
xkl=wkl (Fn ,u)

,

wkl(Fn, u
) = inf

(i, j)∈Pk→l (Fn)
ui j ,

(91)

where Fn runs over all the forests built over the n sites, |E(Fn)| denotes the number of
edges in the forest, Pk→l(Fn) is the unique path in Fn joining the vertices k and l, and
the infimum is set to zero if k and l do not belong to the same tree in the forest. In order
to apply the BKAR formula to the term of degree n we evaluate

∂ |E(Fn)|
∏

(i, j)∈Fn
∂xi j

[∫
dμxi j Cab̄

(X (i))

n∏

i=1

V (X̄ (i), X (i))
]

= ∂ |E(Fn)|
∏

(i, j)∈Fn
∂xi j

[
e

∑
a,b,i

∂

∂ X(i)
a

Cab̄
∂

∂ X̄(i)
b̄

+
∑

a,b,i 	= j xi j ∂

∂ X(i)
a

Cab̄
∂

∂ X̄
( j)
b̄

n∏

i=1

V (X̄ (i), X (i))
]∣∣∣∣

X (i)=X̄ (i)=0

= e

∑
a,b,i

∂

∂ X(i)
a

Cab̄
∂

∂ X̄(i)
b̄

+
∑

a,b,i 	= j xi j ∂

∂ X(i)
a

Cab̄
∂

∂ X̄
( j)
b̄
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×
[ ∏

(i, j)∈Fn

(∑

ab̄

∂

∂ X (i)
a

Cab̄
∂

∂ X̄ ( j)
b̄

+
∑

ab̄

∂

∂ X ( j)
a

Cab̄
∂

∂ X̄ (i)
b̄

)]

n∏

i=1

V (X̄ (i), X (i))

∣∣∣∣
X (i),X̄ (i)=0

=
∫

dμxi j Cab̄
(X (i))

[ ∏

(i, j)∈Fn

(∑

ab̄

∂

∂ X (i)
a

Cab̄
∂

∂ X̄ ( j)
b̄

+
∑

ab̄

∂

∂ X ( j)
a

Cab̄
∂

∂ X̄ (i)
b̄

)]

n∏

i=1

V (X̄ (i), X (i)), (92)

where we have taken into account that xi j = x ji . Thus

I =
∑

n≥0

1

n!
∑

Fn

∫ 1

0

( ∏

(i, j)∈Fn

dui j
) ∫

dμwi j (Fn ,u)Cab̄
(X (i))

×
[ ∏

(i, j)∈Fn

(∑

ab̄

∂

∂ X (i)
a

Cab̄
∂

∂ X̄ ( j)
b̄

+
∑

ab̄

∂

∂ X ( j)
a

Cab̄
∂

∂ X̄ (i)
b̄

)]

n∏

i=1

V (X̄ (i), X (i)). (93)

The lemma follows by noticing that the Gaussian integral factors over the trees in the
forest and recalling that the logarithm of a function which is a sum over forests of
contributions factored over the trees is the sum over trees of the tree contribution. ��

The most important feature of the BKAR formula is that the matrix wi j (Tn, u) is
positive [62]. The Gaussian measure is thus well defined and the expectation of any
function of X, X̄ is bounded by its supremum.

4.2. Proofs of the theorems. In the reminder of this section we present the proofs of the
theorems enunciated in the text.

4.2.1. Proof of the first constructive expansion Theorem 3. The Loop Vertex Expansion
of W (J, J̄ ; λ, N ) in Eq. (46) is obtained by combining the Hubbard Stratonovich inter-
mediate field representation and the BKAR formula. We will sometimes drop the bar
over the indices of T̄.

Step 1: Hubbard Stratonovich intermediate field representation. For any complex num-
bers Z1 and Z2, e−Z1 Z2 can be represented as a Gaussian integral

∫
dz̄dz

2ıπ
e−zz̄−zZ1+z̄ Z2

z=x+ı y������
z̄=x−ı y

∫
dxdy

π
e−x2−y2−x(Z1−Z2)−ı y(Z1+Z2)

= e
(Z1−Z2)2

4 − (Z1+Z2)2

4 = e−Z1 Z2 . (94)
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It follows that a term in the quartic perturbation of the measure in Eq. (43) can be
represented using N × N integration variables σ c

ab as

e−N D−1λ
∑

T�nT̄ �̄mT �m T̄�̄n δncm̄c δmcn̄c
∏

c′ 	=c δ
nc′ n̄c′ δmc′ m̄c′

= e−N D−1λ
∑

δncm̄c δmcn̄c
(∑

T�nT̄�̄n
∏

c′ 	=c δ
nc′ n̄c′

)(∑
T̄ �̄mT �m

∏
c′ 	=c δ

mc′ m̄c′
)

=
∫ (∏

ab

dσ c
abdσ̄ c

ab

2π ı

)
e−∑

ab σ c
ab σ̄ c

ab

e−√
λN

D−1
2

∑(
T�nT̄�̄n

∏
c′ 	=c δ

nc′ n̄c′
)
σ c

ncn̄c +
√

λN
D−1

2
∑(

T̄ �̄mT �m
∏

c′ 	=c δ
mc′ m̄c′

)
σ̄ c

m̄cmc . (95)

The new integration variables σ c
ab form D matrices of size N ×N , known as intermediate

fields. Denoting 1 the identity matrix of size N × N we write more compactly

e−N D−1λ
∑D

c=1
∑

nn̄ T�nT̄ �̄mT �m T̄�̄n δncm̄c δmcn̄c
∏

c′ 	=c δ
nc′ n̄c′ δmc′ m̄c′

=
∫ (∏

cab

dσ c
abdσ̄ c

ab

2π ı

)
e
−tr(σ cσ c†)−N D−1

√
λ

N D−1
∑

T�n
(
∑

c 1⊗c−1⊗(σ c−σ c†)⊗1⊗D−c

)
T̄�̄n

,

(96)

thus Z(J, J̄ ; λ, N ) becomes

Z(J, J̄ ; λ, N ) =
∫ (∏

N D−1 dT�ndT̄�n
2π ı

)(∏ dσ c
abdσ̄ c

ab

2π ı

)
e−∑

c tr(σ cσ c†)

×e
−N D−1 ∑

T�n
(

1⊗D+
√

λ

N D−1
∑

c 1⊗c−1⊗(σ c−σ c†)⊗1⊗D−c

)
T̄�̄n+

∑
T̄�̄n J�̄n+

∑
T�n J̄�n

. (97)

As σ − σ † is anti hermitian the operator R(σ ) =
[
1⊗D +

√
λ

N D−1

∑
c 1⊗c−1 ⊗ (σ c −

σ c†) ⊗ 1⊗D−c
]−1

, which we call the resolvent, is well defined. The intermediate field

representation renders the integration over TT̄ Gaussian, thus

Z(J, J̄ ; λ, N ) =
∫ (∏

c;ab

dσ c
abdσ̄ c

ab

2π ı

)
e
−∑

c trσ cσ c†+tr ln
(

R(σ )
)

+ 1
N D−1 〈 J̄ |R(σ )|J 〉

, (98)

where 〈 J̄ |R(σ )|J 〉 = ∑
�n, �m J̄�n R(σ )�n �m J �m .

Step 2: Extracting the logarithm. Using lemma 3 the generating function of the connected
moments W (J, J̄ ; λ, N ) is

W (J, J̄ ; λ, N ) =
∑

n≥1

1

n!
∑

Tn

∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

×
[ ∏

(i, j)∈Tn

D∑

c=1

(∑

ab

∂

∂σ
(i)c
ab

∂

∂σ
( j)c†
ba

+
∑

ab

∂

∂σ
( j)c
ab

∂

∂σ
(i)c†
ba

)]

×
n∏

i=1

{
tr ln

[
R(σ (i))

]
+

1

N D−1 〈 J̄ |R(σ (i))|J 〉
}
, (99)
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where the interpolated Gaussian measure writes formally as

dμwi j (Tn ,u)1⊗D (σ )

= e

∑D
c=1

(
∑

i
∑

ab

[
∂

∂σ
(i)c
ab

∂

∂σ
(i)c†
ba

+ ∂

∂σ
(i)c
ab

∂

∂σ
(i)c†
ba

]
+
∑

i< j xi j ∑
ab

[
∂

∂σ
(i)c
ab

∂

∂σ
( j)c†
ba

+ ∂

∂σ
( j)c
ab

∂

∂σ
(i)c†
ba

])

.

(100)

Expanding the product over i , we get

W (J, J̄ ; λ, N ) =
∑

n≥1

1

n!
∑

Tn

∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ (i)c )

×
[ ∏

(i, j)∈Tn

D∑

c=1

(∑

ab

∂

∂σ
(i)c
ab

∂

∂σ
( j)c†
ba

+
∑

ab

∂

∂σ
( j)c
ab

∂

∂σ
(i)c†
ba

)]

×
n∑

k=0

1

k!
1

N k(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

〈 J̄ |R(σ (i1))|J 〉 . . . 〈 J̄ |R(σ (ik ))|J 〉
n∏

i=1
i 	=i1,...ik

tr ln
[
R(σ (i))

]
.

(101)

We need to evaluate the action of the derivative operators on the product resolvents. This
is done in Lemma 4 below. For each combinatorial tree Tn one obtains a sum over all the
plane trees T �

n,ι with colored oriented edges compatible with it, and indexing the sum by
these plane trees we get

W (J, J̄ ; λ, N ) =
∑

n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

∫ ( 2n−2+k∏

q=1

dαq

)
e−∑2n−2+k

q=1 αq

∏

f c∈F int(T �
n,ι )

Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]∑

pn

k∏

l=1

J̄p1
l ,...pD

l
Jn1

l ,...nD
l

∏

f c;i(ql )→i(qξc(l))∈Sext(T �
n,ι )

[ →∏

q∈q( f c;i(ql )→i(qξc(l)))

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]

pc
l nc

ξc(l)

,

(102)

which proves the theorem. ��
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Lemma 4. The contribution of a tree Tn with marked vertices i1, . . . ik is

[ ∏

(i, j)∈Tn

D∑

c=1

(∑

ab

∂

∂σ
(i)c
ab

∂

∂σ
( j)c†
ba

+
∑

ab

∂

∂σ
( j)c
ab

∂

∂σ
(i)c†
ba

)]

× 〈 J̄ |R(σ (i1))|J 〉 . . . 〈 J̄ |R(σ (ik ))|J 〉
n∏

i=1
i 	=i1,...ik

tr ln
[
R(σ (i))

]

= (−λ)n−1

N (n−1)(D−1)

∑

T �
n,ι

∫ ( 2n−2+k∏

q=1

dαq

)
e−∑2n−2+k

q=1 αq

∏

f c∈F int(T �
n,ι )

Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]∑

pn

k∏

l=1

J̄p1
l ,...pD

l
Jn1

l ,...nD
l

∏

f c;i(ql )→i(qξc(l))∈Sext(T �
n,ι )

[ →∏

q∈q( f c;i(ql )→i(qξc(l)))

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]

pc
l nc

ξc(l)

, (103)

where the sum runs over all the plane trees with colored oriented edges and ciliated
vertices i1, . . . ik which reduce to the combinatorial tree Tn.

Proof. We orient the edge (i, j) of the tree from i to j for the term ∂σ(i)∂σ ( j)† . Taking
into account the sum over c we obtain the sum over trees with colored, oriented edges.
In order to compute the contribution of each such tree we need to evaluate the action of
the derivative operators on the product of traces.

We set M(σ (i)) = [R(σ (i))]−1 = 1⊗D +
√

λ
N D−1

∑D
c=1 1⊗c−1 ⊗ (σ (i)c − σ (i)c†) ⊗

1⊗D−c and we represent the resolvents with the help of a new parameter

R(σ (i)) =
∫ ∞

0
dα e−α

D⊗

c=1

e
−α

√
λ

N D−1 (σ (i)c −σ (i)c†)
. (104)

Note that, denoting Mp̂q̂ the minor of M with the line p and column q deleted, we have
∂

∂m pq
tr ln M = ∂

∂m pq
ln det M = 1

det M
∂

∂m pq
det M = 1

det M (−1)p+q Mp̂q̂ = [M−1]qp,
hence the derivatives of the vertices are

∂

∂σ
(i)c
ab

tr ln
[
R(σ (i))

] = − ∂

∂σ
(i)c
ab

tr ln M(σ (i)) = −
∑

�n �p

∂m �n �p
∂σ

(i)c
ab

∂

∂m �n �p
tr ln M(σ (i))

= −
√

λ

N D−1

∑

�n �p

(
δncaδpcb

∏

c′ 	=c

δnc′ pc′
)

R(σ (i)) �p�n

= −
√

λ

N D−1

∫ ∞

0
dα e−α

[
e
−α

√
λ

N D−1 (σ (i)c −σ (i)c†)
]

ab

×
∏

c′ 	=c

Tr
[
e
−α

√
λ

N D−1 (σ
(i)c′ −σ

(i)c′ †
)
]
,
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∂

∂σ
(i)c†
ba

tr ln
[
R(σ (i))

]

=
√

λ

N D−1

∫ ∞

0
dα e−α

[
e
−α

√
λ

N D−1 (σ (i)c −σ (i)c†)
]

ba

×
∏

c′ 	=c

Tr
[
e
−α

√
λ

N D−1 (σ
(i)c′ −σ

(i)c′ †
)
]
. (105)

It follows that a tree made of one line of color c connecting two non ciliated vertices i
and j will yield a contribution

(−λ)

N D−1

∫ ∞

0
dα1dα2 e−α1−α2 Tr

[
e
−α1

√
λ

N D−1 (σ (i)c −σ (i)c†)
e
−α2

√
λ

N D−1 (σ ( j)c −σ ( j)c†)
]

×
∏

c′ 	=c

Tr
[
e
−α1

√
λ

N D−1 (σ
(i)c′ −σ

(i)c′ †
)
] ∏

c′ 	=c

Tr
[
e
−α2

√
λ

N D−1 (σ
( j)c′ −σ

( j)c′ †
)
]
, (106)

which reproduces the Eq. (103) for the tree with two vertices labelled i and j connected
by one line. Note that this tree has 2D −2 internal faces of colors c′ 	= c and one internal
face of color c. On the other hand, a ciliated vertex writes as

〈 J̄ |R(σ (i1))|J 〉 =
∫ ∞

0
dα e−α

∑

pn

D∏

c=1

[
e
−α

√
λ

N D−1 (σ (i1)c −σ (i1)c†)
]

pcnc
J̄ �p J�n, (107)

reproducing Eq. (103) for the tree with a unique ciliated vertex i1.
The proof proceeds by induction on the number of vertices. Note that any tree can

be obtained by adding one by one its edges. At each step two trees are joined by the
new edges. As the lemma holds for the initial trees (as they have less vertices), when
evaluating the derivative with respect to σ (i) and σ ( j)† one obtains a sum over terms,
one for each occurrence of σ (i) and σ ( j)†, i.e. a sum over all possible ways to join the
two plane trees together into a plane tree with n vertices. Lemma 2 shows that the right
hand side of Eq. (103) is reproduced. ��

4.2.2. Proof of the second constructive expansion Theorem 4. We add D fictitious inte-
gral over the unitary group U (N ), i.e. we write

W (J, J̄ ; λ, N ) =
∫

U (N )

[dU 1] . . .

∫
[dU D] W (J, J̄ ; λ, N ), (108)

which of course holds as
∫

U (N )
[dU ] = 1. Now, for all fixed U c, we perform the change

of variables of Jacobian 1, σ (i)c → U c†σ (i)cU c. in Eq. (102). The Gaussian measure is
invariant under this change of variables, hence

W (J, J̄ ; λ, N ) =
∑

n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

∫ ( 2n−2+k∏

q=1

dαq

)
e−∑2n−2+k

q=1 αq
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×
∏

f c∈F int(T �
n,ι )

Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]

×
∑

pn,uv

k∏

l=1

(
J̄p1

l ,...pD
l

Jn1
l ,...nD

l

D∏

c=1

U c†
pc

l uc(ql )
U c

vc(qξc(l))n
c
ξc(l)

)

×
∏

f c;i(ql )→i(qξc(l))∈Sext(T �
n,ι )

[ →∏

q∈q( f c;i(ql )→i(qξc(l)))

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]

uc(ql )v
c(qξc(l))

,

(109)

where the indices uc(ql) and vc(qξc(l)) are summed. The integral over the unitary group
of a product of matrix elements is, according to Eq. (39) (see [54,55] for details)

∫

U (N )

[dU c]
k∏

l=1

U c
vc(qξc(l))n

c
ξc(l)

U c†
pc

l uc(ql )

=
∑

σc,τc

Wg(N , τcσ
−1
c )

k∏

l=1

δvc(qξc(l))uc(qτc(l))δnc
ξc(l) pc

σc(l)

=
∑

σc,τc

Wg(N , τcσ
−1
c )

k∏

l=1

δvc(ql )uc(qτc(l))δnc
l pc

σc(l)
, (110)

where σc and τc run over all the permutations of k elements (and in the second line we
shifted both σc and τc by the permutation ξ−1

c ). We obtain

W (J, J̄ ; λ, N ) =
∑

n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

∫ ( 2n−2+k∏

q=1

dαq

)
e−∑2n−2+k

q=1 αq

×
∑

�σ ,�τ

( D∏

c=1

Wg(N , τcσ
−1
c )

)

×
∏

f c∈F int(T �
n,ι )

Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]

×
∑

pn,uv

( k∏

l=1

D∏

c=1

δvc(ql )uc(qτc(l))

) k∏

l=1

(
J̄p1

l ,...pD
l

Jn1
l ,...nD

l

D∏

c=1

δnc
l pc

σc(l)

)

×
∏

f c;i(ql )→i(qξc(l))∈Sext(T �
n,ι )

[ →∏

q∈q( f c;i(ql )→i(qξc(l)))

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]

uc(ql )v
c(qξc(l))

.

(111)
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The external sources group into trace invariants: each permutation �σ is one to one with
a D-colored graph B�σ with 2k labelled vertices. The external strands recompose along
the faces of the plane tree with external edges T �

n,ι,�τ to yield

W (J, J̄ ; λ, N ) =
∑

n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

×
∑

�σ,�τ

( D∏

c=1

Wg(N , τcσ
−1
c )

)
TrB�σ (J, J̄ )

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

∫ ( 2n−2+k∏

q=1

dαq

)
e−∑2n−2+k

q=1 αq

×
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]
. (112)

It follows that the cumulants of the measure μ(4) are sums over graphs B

κ
(
T �p1 , T̄�n1 , . . . T �pk , T̄�nk

) = ∂(2k)

∂ J̄ �p1∂ J�n1 . . . ∂ J̄ �pk ∂ J�nk

W (J, J̄ ; λ, N )

∣∣∣
J= J̄=0

=
∑

B, k(B)=k

K(B, μ
(4)
N )

C(B)∏

ρ=1

δ
Bρ

nn̄ , (113)

where, denoting the (unique) permutation �σ associated to the D-colored graph B with
labelled vertices by �σ(B), we have

K(B, μ
(4)
N ) =

∑

n≥k

1

n! (−λ)n−1 1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ

×k!
( D∏

c=1

Wg(N , τcσ
−1
c (B))

) ∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

×
∫ ( 2n−2+k∏

q=1

dαq

)
e−∑2n−2+k

q=1 αq
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]
,

(114)

and Theorem 4 holds. ��

4.2.3. Proof of the absolute convergence Theorem 5. The operator σ i(q)c −σ i(q)c† is an

anti-Hermitian operator hence, denoting ||·|| the operator norm,
∣∣∣
∣∣∣e−αq

√
λ

N D−1 (σ i(q)c−
σ i(q)c†)

∣∣∣
∣∣∣ ≤ 1 and
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∣∣∣Tr
[ →∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
]∣∣∣ ≤ N

∣∣∣
∣∣∣

→∏

q∈q( f c)

e
−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
∣∣∣
∣∣∣

≤ N
→∏

q∈q( f c)

∣∣∣
∣∣∣e−αq

√
λ

N D−1 (σ i(q)c −σ i(q)c†)
∣∣∣
∣∣∣ ≤ N . (115)

The integrals over αq and ui j are bounded by 1 as well as the Gaussian integral (as
μwi j (Tn ,u)1⊗D (σ ) is normalized and positive). The Weingarten function is bounded, from

Eq. (41), by Wg(N , τcσ
−1
c (B)) ≤ 22k

N 2k−C(τcσ
−1
c (B))

and we get a bound

|K(B, μ
(4)
N )| ≤

∑

n≥k

1

n! |λ|n−1 1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ

×k!22Dk N−2Dk+
∑

c C(τcσ
−1
c (B))+

∣∣F(T �
n,ι,�τ )

∣∣
(116)

The total scaling with N is therefore, using Eq. (22),

−(k + n − 1)(D − 1) − 2Dk +
∑

c

C(τcσ
−1
c (B))

+D + (n − 1)(D − 1) −
∑

c

C(ξc) +
∑

c

C(τcξc)

= D − 2Dk − k(D − 1) +
∑

c

C(τcσ
−1
c (B)) −

∑

c

C(ξc) +
∑

c

C(τcξc), (117)

which is bounded from Lemma 1 by

D − 2Dk − k(D − 1) + (D + 1)k − C(B�σ ) = D − 2(D − 1)k − C(B�σ ). (118)

Using the bounds in Eqs. (78) and (83) we get

|K(B, μ
(4)
N )| ≤ N D−2(D−1)k−C(B�σ )k!D+122Dk

∑

n≥k

|λ|n−1(2D)n−1 (2n + k − 3)!
(n − k)!(n + k − 1)! . (119)

A (not tight) bound on the combinatorial factor is

(2n + k − 3)!
(n − k)!(n + k − 1)! ≤ (2n + k − 3)k−2 (2n − 1)!

(n − k)!(n + k − 1)! ≤ (3n)k−222n, (120)

and we get

|K(B, μ
(4)
N )| ≤ N D−2k(D−1)−C(B)k!D+122Dk3k−2

∑

n≥k

nk−2|8Dλ|n−1. (121)

The series is absolutely convergent for |λ| < 2−3 D−1 and the cumulants are bounded
by

|K(B, μ
(4)
N )| ≤ N D−2k(D−1)−C(B)|λ|k−1 K (B), (122)

for some constant K (B) independent of N (and independent of λ for |λ| small
enough). ��
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4.2.4. Proof of Corollary 1. Consider first the simpler problem of proving the function
of a complex variable z = reıϕ defined as

f (z) =
∫ ∞

0
e−ı ϕ

2 dα e−αe−ı ϕ
2 −ıαr1/2x (123)

is analytic for ϕ ∈ (−π, π). First it is easy to see that f is bounded as | f (z)| < 1
cos ϕ

2
<

∞. Second, f respects the Cauchy–Riemann equations

r
∂

∂r
f (z) =

∫ ∞

0
dα e−ı ϕ

2 e−αe−ı ϕ
2 1

2
α

d

dα
e−ıαr1/2x

=
∫ ∞

0
dα e−ı ϕ

2
1

2

d

dα

(
αe−αe−ı ϕ

2
)

e−ıαr1/2x

=
∫ ∞

0
dα e−ı ϕ

2
1

2

(
e−αe−ı ϕ

2 −αe−ı ϕ
2 e−αe−ı ϕ

2
)

e−ıαr1/2x = ı
∂

∂ϕ
f, (124)

hence it is analytic. For our case similar partial integration with respect to α shows that
each function

TE(T �
n,ι,�τ ) = k!

( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

)) ∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

×
∫ ( 2n−2+k∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√ |λ|
N D−1 (σ i(q)c −σ i(q)c†)

]
, (125)

respects the Cauchy–Riemann equations and, being bounded, is analytic in λ. It follows
that the full cumulant

K(B, μ
(4)
N ) =

∑

n≥k

1

n! (−λ)n−1 1

N (k+n−1)(D−1)

n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
TE(T �

n,ι,�τ ), (126)

which is a sum of products of analytic functions, is analytic whenever the sum over n
converges. Reproducing step by step the proof of Theorem 5 but taking into account
that the integrals over α are bounded by 1

cos ϕ
2

instead of 1, we obtain that the series in

Eq. (126) is absolutely convergent for

|λ| <
(
cos

ϕ

2

)22−3 D−1. (127)

��
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4.2.5. Proof of the mixed expansion Theorem 6. Consider the contribution of a tree with
external edges

T E (T �
n,ι,�τ ) = N−D+2k(D−1)+C(B)−(k+n−1)(D−1) k!

( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

))

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )

×
∫ ( 2n−2+k∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√ |λ|
N D−1 (σ i(q)c −σ i(q)c†)

]
. (128)

We use a Taylor expansion

f (
√|λ|eı ϕ

2 ) =
s−1∑

q=0

1

q!
[ dq

dtq
f (
√

t |λ|eı ϕ
2 )
]

t=0

+
1

(s − 1)!
∫ 1

0
(1 − t)s−1 ds

dts

(
f (
√

t |λ|eı ϕ
2 )
)

dt. (129)

We must evaluate the derivative with respect to t acting on T E (T �
n,ι,�τ ). In each operator√|λ| multiplies a difference σ − σ † and the derivative with respect to t acting on an

exponential computes to

d

dt

∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√
t
√ |λ|

N D−1 (σ i(q)c −σ i(q)c†)
]

=
∑

f c∈F(T �
n,ι,�τ )

∏

f c′ ∈F(T �
n,ι,�τ ), f c′ 	= f c

Tr
[ →∏

q∈q( f c)

e
−αq

√
t
√ |λ|

N D−1 (σ i(q)c −σ i(q)c†)
]

×
∑

q∈q( f c)

1

2t

∑

ab

(
σ

i(q)c
ab

∂

∂σ
i(q)c
ab

+ σ
i(q)c†
ba

∂

∂σ
i(q)c†
ba

)

×Tr
[ →∏

q∈q( f c)

e
−αq

√
t
√ |λ|

N D−1 (σ i(q)c −σ i(q)c†)
]

=
n∑

i=1

D∑

c=1

1

2t

∑

ab

(
σ

(i)c
ab

∂

∂σ
(i)c
ab

+ σ
(i)c†
ba

∂

∂σ
(i)c†
ba

)

×
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq

√
t
√ |λ|

N D−1 (σ i(q)c −σ i(q)c†)
]
, (130)
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Integrating by parts the Gaussian integral we get

d

dt

∫
dμwi j (Tn ,u)1⊗D (σ )

∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq t

√ |λ|
N D−1 (σ i(q)c −σ i(q)c†)

]

=
∫

dμwi j (Tn ,u)1⊗D (σ )

×
[ n∑

i, j=1

wi j (Tn, u)

D∑

c=1

1

2t

∑

ab

(
∂

∂σ
( j)c†
ba

∂

∂σ
(i)c
ab

+
∂

∂σ
( j)c
ab

∂

∂σ
(i)c†
ba

)]

×
∏

f c∈F(T �
n,ι,�τ )

Tr
[ →∏

q∈q( f c)

e
−αq t

√ |λ|
N D−1 (σ i(q)c −σ i(q)c†)

]
. (131)

The action of the derivatives on a product of traces has been evaluated in Lemma 4. The
sums over i, j and c yields a sum over all the possible ways to add a colored loop edge
to the tree T �

n,ι,�τ . The two new auxiliary parameters β1 and γ1 (which we relabel as two

supplementary α parameters) don’t have any e−ı ϕ
2 in the measure, hence we need to

explicitly add them. Thus we get

∑

j1 j ′1,c

1

2t

(
− t |λ|eıϕ

N D−1

)
2w j1 j ′1(Tn, u)

∫
dμwi j (Tn ,u)1⊗D (σ )

×
∫ ( 2n−2+k+2∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k+2

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ ,{ j1 j ′1})

Tr
[ →∏

q∈q( f c)

e
−αq

√ |λ|
N D−1 (σ i(q)c −σ i(q)c†)

]
. (132)

Note that both derivative terms lead to the same contribution (the loop edge does not
have any orientation) hence

d

dt
T E (T �

n,ι,�τ ) = N−D+2k(D−1)+C(B)−(k+n−1)(D−1) k!
( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

))

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )
∑

L={( j1 j,′1)};c1

(
− λ

N D−1

)
w j1 j ′1(Tn, u)

×
∫ ( 2n−2+k+2∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k+2

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ ,L)

Tr
[ →∏

q∈q( f c)

e
−αq

√
t
√ |λ|

N D−1 (σ i(q)c −σ i(q)c†)
]
, (133)
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and the derivative of order s is

ds

dts
T E (T �

n,ι,�τ ) = N−D+2k(D−1)+C(B)−(k+n−1)(D−1) k!
( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

))

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) ∫

dμwi j (Tn ,u)1⊗D (σ )
∑

L;c1...cs

(
− λ

N D−1

)s s∏

p=1

w jp j ′p (Tn, u)

×
∫ ∞

0

( 2n−2+k+2s∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k+2s

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ ,L)

Tr
[ →∏

q∈q( f c)

e
−αq

√
t
√ |λ|

N D−1 (σ i(q)c −σ i(q)c†)
]
, (134)

where L ≡ {( j1, j ′1), . . . ( js, j ′s)} runs over all the possible ways to decorate T �
n,ι,�τ with

unoriented loop edges L and c1, . . . cs run over the possible colorings of the 2s loop
edges. Taking into account that the Gaussian measures are normalized we evaluate

[ dq

dtq
T E (T �

n,ι,�τ )
]

t=0
= N−D+2k(D−1)+C(B)−(k+n−1)(D−1) k!

( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

))

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
)(

− λ

N D−1

)q ∑

L;c1...cq

s∏

p=1

w jp j ′p (Tn, u)N |F(T �
n,ι,�τ ,L)|

=
(
− λ

N D−1

)q
k!
( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

)) ∑

L,c1...cq

∫ 1

0

( ∏

(i, j)∈Tn

dui j
) s∏

p=1

w jp j ′p (Tn, u)

N−D+2k(D−1)+C(B)−(k+n−1)(D−1)+|F(T �
n,ι,�τ ,L)|

, (135)

which yields the terms T (q)(T �
n,ι,�τ ) and T E L ,(q)(T �

n,ι,�τ ,L) in Theorem 6. The rest term
is

R(s)(T �
n,ι,�τ ) = 1

(s − 1)!
∫ 1

0
dt (1 − t)s−1

[
N−D+2k(D−1)+C(B)−(k+n−1)(D−1)

×k!
( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

)) ∑

L;c1...cs

(
− λ

N D−1

)s

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) s∏

p=1

w jp j ′p (Tn, u)

∫
dμwi j (Tn ,u)1⊗D (σ )

×
∫ ∞

0

( 2n−2+k+2s∏

q=1

e−ı ϕ
2 dαq

)
e−∑2n−2+k+2s

q=1 e−ı ϕ
2 αq

×
∏

f c∈F(T �
n,ι,�τ ,L)

Tr
[ →∏

q∈q( f c)

e
−αq

√
t
√ |λ|

N D−1 (σ i(q)c −σ i(q)c†)
]]

, (136)
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which establishes the mixed expansion. Concerning the bounds, we first bound the term
T (q)(T �

n,ι,�τ )

T (q)(T �
n,ι,�τ ) =

∑

L,c1...cq

1

q!
[(

− λ

N D−1

)q
k!
( D∏

c=1

Wg
(
N , τcσ

−1
c (B)

))

×
∫ 1

0

( ∏

(i, j)∈Tn

dui j
) s∏

p=1

w jp j ′p (Tn, u)N−D+2k(D−1)+C(B)−(k+n−1)(D−1)+|F(T �
n,ι,�τ ,L)|

]
.

(137)

We bound the product of Weingarten functions by 22Dk N−2Dk+C(τcσ
−1
c (B)). The integrals

over ui j are bounded by 1, hence

∣∣T (q)(T �
n,ι,�τ )

∣∣ ≤ 1

q!
|λ|q

N (D−1)q
k!22Dk

∑

L,c1...cq

×N−D+2k(D−1)+C(B)−2Dk+C(τcσ
−1
c (B))−(k+n−1)(D−1)+|F(T �

n,ι,�τ ,L)|
. (138)

By Eq. (31) we find that the scaling with N is bounded by

−D+2k(D − 1)+C(B) − 2Dk+C(τcσ
−1
c (B))−(k + n − 1)(D − 1)

+D+(n−1)(D−1)−
∑

c

C(ξc)+
∑

c

C(τcξc)+q−q(D − 1)≤−q(D − 2), (139)

where we used Lemma 1. Thus

∣∣T (q)(T �
n,ι,�τ )

∣∣ ≤ |λ|q
N q(D−2)

k!22Dk Dq (2n + 2q + k − 3)!
q!(2n + k − 3)! . (140)

For the rest term, R(s)(T �
n,ι,�τ ) we use similar bounds and taking into account that the

integrals over α are bounded by 1
cos ϕ

2
and the integral over t is bounded by 1 we find

|R(s)(T �
n,ι,�τ )| ≤ 1

(
cos ϕ

2

)2n+2s+k−2

|λ|s
N s(D−2)

k!22Dk Ds (2n + 2s + k − 3)!
(s − 1)!(2n + k − 3)! . (141)

��

4.2.6. Proof of the Borel summability Theorem 7. We now show that the rescaled cumu-
lants

K (B, N ) = N−D+2k(D−1)+C(B)K(B, μ
(4)
N )

=
∑

n≥k

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
T E (T �

n,ι,�τ ), (142)

are Borel summable in λ uniformly in N . First, the Corollary 1 ensures that the series
(51) is absolutely convergent for |λ| <

(
cos ϕ

2

)22−3 D−1, hence it certainly is absolutely
convergent in a Borel disk of fixed radius.
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Second, using the mixed expansion theorem we write

K (B, N ) =
∑

n≥k

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ

[s−1∑

q=1

T (q)(T �
n,ι,�τ ) + R(s)(T �

n,ι,�τ )
]
. (143)

We perform a Taylor expansion of K (B, N ) in λ up to order r > k. All the terms
corresponding to trees with n ≥ r + 1 are in the reminder, hence for them we use the
mixed expansion for s = 0. For the terms corresponding to trees with n < r + 1 we use
the mixed expansion up to order s = r − (n − 1). The explicit terms T (q)(T �

n,ι,�τ ) yield
a series in λ which is nothing but the Taylor expansion of the rescaled cumulant. The
reminder term of the Taylor expansion of K (B, N ) writes as

RN ,r (B, λ) =
r∑

n=k

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
R(r+1−n)(T �

n,ι,�τ )

+
∑

n≥r+1

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
R(0)(T �

n,ι,�τ ). (144)

The terms with n ≥ r + 1 then admit a bound

∣∣∣
∑

n≥r+1

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
R(0)(T �

n,ι,�τ )
∣∣∣

≤
∑

n≥r+1

|λ|n−1(2D)n−1 (2n + k − 3)!
(n − k)!(n + k − 1)!

1
(
cos ϕ

2

)2n−2+k
k!D+122Dk

≤ k!D+122Dk
∑

n≥r+1

|λ|n−1(2D)n−1 1
(
cos ϕ

2

)2n−2+k
(3n)k−222n

≤ K
(
cos ϕ

2

)k

( |λ|
(
cos ϕ

2

)2

)r
, (145)

for some constant K and |λ| < 2−3 D−1
(
cos ϕ

2

)2. The terms with r ≤ n admit a bound

∣∣∣
r∑

n=k

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

R(r+1−n)(T �
n,ι,�τ )

∣∣∣

≤
r∑

n=k

|λ|n−1(2D)n−1 (2n + k − 3)!
(n − k)!(n + k − 1)!

1
(
cos ϕ

2

)2n−2+k+2(r+1−n)
|λ|r+1−n N−(r+1−n)(D−2)k!D+122Dk

×Dr+1−n [2n + k + 2(r + 1 − n) − 3]!
(r − n)![2n + k − 3]! (146)
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Taking into account that

(2n + k − 3)!
(n − k)!(n + k − 1)! < 32n+k−1k! < 33r k!

(2r + k − 1)!
(r − n)![2n + k − 3]! < 32r+k−1(r − n + 2)! < 33r (r + 1)!

(147)

these terms are bounded by

|λ|r
(
cos ϕ

2

)2r+k
k!D+222Dk Dr 36r (r + 1)!2r (148)

Overall we thus derive a bound

RN ,r (B, λ) ≤ K
|λ|r

(
cos ϕ

2

)2r+k
σ r r !, (149)

for some constants K and σ which proves the Theorem 7. ��

4.2.7. Proof of the 1/N expansion Theorem 8. Using the mixed expansion up to order s
for every T �

n,ι,�τ leads to the rest term

R(s)
N (B, λ) =

∑

n≥k

1

n! (−λ)n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ
R(s)(T �

n,ι,�τ ), (150)

hence using the bound on R(s)(T �
n,ι,�τ ) we get

|R(s)
N (B, λ)| ≤

∑

n≥k

1

n! |λ|n−1
n∑

i1,i2 ...,ik=1
id 	=id′

∑

T �
n,ι

∑

�τ

× 1
(
cos ϕ

2

)2n+2s+k−2

|λ|s
N s(D−2)

(k!22Dk Ds)
(2n + 2s + k − 3)!

(s − 1)!(2n + k − 3)! . (151)

By the combinatorial countings Eq. (78) we get

|R(s)
N (B, λ)| ≤ 1

N s(D−2)
(k!D+122Dk Ds)

1
(
cos ϕ

2

)k

∑

n≥k

( |λ|
(
cos ϕ

2

)2

)s+n−1

×(2D)n−1 (2n + k − 3)!
(n − k)!(n + k − 1)!

(2n + 2s + k − 3)!
(s − 1)!(2n + k − 3)! , (152)

that is, denoting K and σ two constants depending only on k,

|R(s)
N (B, λ)| ≤ 1

N s(D−2)
Kσ s |λ|s+k−1

(
cos ϕ

2

)2s+3k−1

×
∑

q≥0

( |2Dλ|
(
cos ϕ

2

)2

)q (2q + 2s + 3k − 3)!
(s − 1)!q!(q + 2k − 1)! . (153)
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A non optimal bound on the combinatorial factor is

(2q + 2s + 3k − 3)!
(s − 1)!q!(q + 2k − 1)! ≤ (s + 1)!k!52q+2s+3k−3, (154)

and, as the sum over q converges absolutely for |λ| < 5−22−1 D−1
(
cos ϕ

2

)2, we get

|R(s)
N (B, λ)| ≤ Kσ ss! 1

N s(D−2)

|λ|s+k−1

(
cos ϕ

2

)2s+3k−1 . (155)

for some constants K and σ . ��
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