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Abstract: We show that the complex cohomologies of Bott, Chern, and Aeppli and the
symplectic cohomologies of Tseng and Yau arise in the context of type II string theory.
Specifically, they can be used to count a subset of scalar moduli fields in Minkowski
compactification with RR fluxes in the presence of either O5/D5 or O6/D6 brane
sources, respectively. Further, we introduce a new set of cohomologies within the gener-
alized complex geometry framework which interpolate between these known complex
and symplectic cohomologies. The generalized complex cohomologies play the analo-
gous role for counting massless fields for a general supersymmetric Minkowski type II
compactification with Ramond–Ramond flux.

1. Introduction

A basic and important question for supersymmetric flux compactification in string theory
is to determine the number of scalar massless fields, or equivalently moduli fields, for
a generic background solution. Except for special flux solutions where the underlying
manifold is Calabi–Yau or dual to one that is Calabi–Yau,1 there is at present no known
systematic way to count scalar moduli fields when the solution manifold is non-Kähler.
Geometrically, the procedure to understand the scalar moduli starts with the linearized
variation of the supersymmetry equations of supergravity. In the Calabi–Yau case, the
physically distinct solutions of the linearized equations can be nicely parametrized by the
Dolbeault harmonic forms and counted by the associated Hodge numbers (see e.g. [7]).
In the general non-Kähler case, the linearized supersymmetric equations were written
down in [2] for the heterotic case and in [21] for the type II case. However, the system
of linearized equations for a general flux background is sufficiently complicated that it
is challenging to find a straightforward interpretation of the full solution space.

In this paper, we take a modest step and ask whether there exists a subset of the
linearized solution space that is more tractable and easier to characterize. We focus on

1 In this paper, Calabi–Yau refers to the existence of a Kähler Calabi–Yau metric.
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Minkowski M3,1 × X6 supersymmetric solutions of type II strings and its linearized
system of equations. Imposing some simplifying conditions on the linearized system,
we show that indeed a subspace of the linearized solution space can be parametrized
by harmonic elements of certain cohomologies of differential forms. In the type IIB
case with O5/D5 brane sources, the internal compact manifold X6 is complex and
we find that the complex cohomologies introduced by Bott and Chern [3], and Aeppli
[1], can be used to count a subset of the massless deformations. These cohomologies
are isomorphic to the Dolbeault cohomology on a Kähler manifold. However, for a
general complex non-Kähler manifold, especially when the ∂∂̄-lemma does not hold,
Bott–Chern and Aeppli cohomologies can have different dimensions as compared to the
Dolbeault cohomology and encode different complex invariants. Separately, in the type
IIA case with O6/D6 brane sources, which requires that X6 be a symplectic manifold,
the cohomologies of interest turn out to be two that were recently introduced by Tseng
and Yau [22,23]. And in the more general supersymmetric type II string background
with orientifold and D-brane sources, the supersymmetric equations stipulate that X6 is
generalized complex [8,9]. Hence, “generalizing” the complex cohomologies of Bott–
Chern and Aeppli and the symplectic cohomologies of Tseng–Yau, we are led to two
new generalized complex cohomologies that interpolate between them. The generalized
complex cohomologies can be used to count a subset of massless fields in a general type
II Minkowski background with Ramond–Ramond fluxes.

2. Supersymmetry Equations and Cohomology

This work on cohomology of type II strings can be motivated in part by noting certain
similarities between the Maxwell equations and the type II Minkowski N = 1 super-
gravity equations, as written in the generalized complex form by Grana et al. [9] and
Tomasiello [21]. As the solution space of the Maxwell equations is intrinsically linked
with the de Rham cohomology, one can ask whether any cohomology is suggested by the
supersymmetric type II equations. Of course, the type II equations are gravitational in
nature and highly non-linear and a priori one should not expect any simple cohomology
to come out of them. But it turns out that if we are willing to impose certain constraints
on the solution space of the type II equations, then the type II differential system can be
studied in an analogous manner with that of the Maxwell equations.

Let us begin by first recalling one connection of the Maxwell equations with the
de Rham cohomology. The Maxwell equations on some four-manifold (X4, g) has the
simple form:

d F = 0 (2.1)

d ∗ F = ρe (2.2)

where F is the curvature two-form of a U (1) bundle, ρe is the Poincaré dual three-
current of a configuration of electric source particles. (An electric particle maps out a
one-dimensional worldline in X4 so its Poincaré dual is a three-current.) In this setting,
if we want to consider the moduli space of solutions for F in a fixed charge configuration
(i.e. with ρe fixed), then the variation of F → F + δF implies that δF satisfies

d δF = 0, d∗ δF = 0, (2.3)

which are the harmonic conditions of the de Rham class H2(X4) . Hence, the solution
space of F with δρe fixed (i.e. δρe = 0) is parametrized by de Rham harmonic two-forms,
H2(X4) .



Generalized Cohomologies and Supersymmetry 877

The type II supergravity equations of our focus are those that arise from imposing
N = 1 supersymmetry on M3,1 × X6 —the product of Minkowski spacetime and a
compact six-dimensional manifold—with the conformally warped metric

ds2 = e2 f ds2
M3,1 + ds2

X6 ,

with e2 f being the conformal factor. The supersymmetric equations can be written simply
in the generalized complex geometry framework [9,21]. Below, instead of jumping
directly into the generalized complex equations, we shall build up our intuition by first
examining the special case in type IIB theory where solutions on X6 have the more
familiar SU (3) structure and are complex. Then we shall turn to the symplectic solutions
in type IIA theory also with an SU (3) structure. With the special cases worked out, we
will finally turn to the most general solutions with RR-flux which have an SU (3)×SU (3)

structure and are generalized complex.

2.1. Complex cohomology in type IIB supergravity solutions with O5-brane. Type IIB
superysmmetric solutions with O5/D5-brane sources are required to be complex. Such
solutions have an SU (3) structure which is encoded in the hermitian (1, 1)-form ω and
a non-where vanishing decomposable (3, 0)-form � on X6. The SU (3) data (�,ω)

satisfy the algebraic conditions:

ω ∧ � = 0, (2.4)

i � ∧ �̄ = 8 e2 f ω3

3! . (2.5)

Moreover, they satisfy the following differential conditions:

d� = 0, (2.6)

d(ω2/2) = 0, (2.7)

ddc(e−2 f ω) = ρB, (2.8)

where the differential operator dc = i (∂̄ − ∂) (hence, ddc = 2i ∂∂̄) and ρB is the
Poincaré dual four-current of holomorphic submanifolds (of complex codimension two)
which the orientifold five-branes and/or D5-branes wrap around. The above system of
equations modulo a conformal rescaling is just a special case of the general system of
equations written in [21]. In this form, the system contains only geometrical quantities
(�,ω, ρB) plus the conformal factor e−2 f . Though non-trivial background solutions of
this differential system do have a non-zero three-form flux F3, this flux form has been
implicitly solved by imposing supersymmetry:

F3 = dc(e−2 f ω).

Indeed, the last Eq. (2.8) is simply the magnetic source equation d F3 = ρB .
Having presented the equations in the above form, we can quickly see a resemblance

to the Maxwell equations, in particular for (2.7)–(2.8). Using the relation ω = ∗(ω2/2) ,
where the Hodge star is defined with respect to the compatible metric defined by ω,
Eqs. (2.7)–(2.8) can be re-written as

d(ω2/2) = 0 (2.9)

ddc[e−2 f ∗ (ω2/2)] = ρB (2.10)
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which (up to the conformal factor e−2 f ) has the form of Maxwell’s equations (2.1)–(2.2),
identifying F2 ∼ ω2/2, d∗ ∼ ddc∗, and ρe ∼ ρB .

Let us now study the local solution space by considering a linearized deformation of
this type IIB system of equations on a fixed complex manifold (specifically keeping �

fixed). We would like here to mirror the analysis of the Maxwell case, so we will keep
the source current fixed (i.e. δρB = 0). Additionally, we will impose the constraint that
the conformal factor does not vary (i.e. δ f = 0). This is a useful simplifying condition
as e−2 f not only appears in (2.10) but is also dependent on ω through (2.5). Performing
a linearized variation ω → ω + δω in (2.5), we see that δ f = 0 (and δ� = 0) imposes

ω2 ∧ δω = 0

which is the condition that δω is a primitive form.2 Coupled with the variation of (2.4)
which gives the condition

� ∧ δω = 0,

we can conclude that the linearized variation δω must be a primitive (1,1)-form if we
impose δ� = δρB = δ f = 0 on the above type IIB system.

With the specified constraints, the linearized deformation of the type II system effec-
tively reduces down to just deforming the hermitian form ω by a primitive (1,1)-form
in Eqs. (2.7)–(2.8). Now, the Hodge star of a primitive (1,1)-form δω has a simple
expression and can be written as (see e.g. [14])

δω = − ∗ (ω ∧ δω) = − ∗ δ(ω2/2). (2.11)

Thus, the linearized deformed Eqs. (2.7)–(2.8) gives us the conditions for δ(ω2/2)

d δ(ω2/2) = 0, ddc e−2 f ∗ δ(ω2/2) = 0. (2.12)

The conditions in (2.12) are similar to that of the Maxwell case in (2.3). In fact,
if we multiply the second equation of (2.12) on the left by e2 f ∗, then it becomes
(ddc) ∗′ δ(ω2/2) = 0 , where the adjoint operator (ddc)∗′ is defined with respect to
a conformally weighted inner product. This close similarity with the Maxwell case then
begs the question whether there is a cohomology whose harmonic forms are d- and
(ddc)∗-closed. Indeed, these are precisely the conditions for the harmonic forms of the
so-called Bott-Chern cohomology [1,3],

H p,q
BC (X) = {Ap,q ∈ Ap,q | d Ap,q = 0}

ddc Ap−1,q−1

where Ap,q is the space of (p, q)-forms. Thus, having imposed the conditions δ� =
δρB = δ f = 0, we find that the linearized deformation δ(ω2/2) = ω ∧ δω, is parame-
trized by

δ(ω2/2) ∈ H2,2
BC (X) ∩ (ω ∧ P2)

where P2 denotes the space of primitive 2-forms.
Alternatively, we can use (2.11) to re-write the conditions of (2.12) directly in terms

of δω. This gives

d ∗ δω = 0, ddc e−2 f δω = 0. (2.13)

2 In dimension d = 2n, a differential k-form Bk with k ≤ n is called primitive if ωn−k+1 ∧ Bk = 0 .
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After rescaling δω → e2 f δω, (2.13) becomes a condition for a two-form that is ddc-
and d∗-closed. Such exactly match the harmonic conditions of the Aeppli cohomology
[1]

H p,q
A (X) = {Ap,q ∈ Ap,q | ddc Ap,q = 0}

∂ Ap−1,q + ∂̄ Ap,q−1
.

Hence, an alternative way of parametrizing the deformation is

δω ∈ H1,1
A (X) ∩ P2.

And not surprisingly, it is possible to show that the harmonic forms of Bott–Chern and
Aeppli cohomology are dual to each other, explicitly by the operation of the Hodge star
operator (see e.g. [20]).

2.2. Symplectic cohomology in type IIA supergravity solutions with O6-brane. Let us
turn now to consider type IIA solutions with only O6/D6-branes sources. The geometry
on X6 is symplectic with an SU (3) structure. Again, the SU (3) geometrical data (ω,�)

satisfy the algebraic conditions:

ω ∧ � = 0, (2.14)

8
ω3

3! = i e2 f � ∧ �̄. (2.15)

Note here that the conformal factor e2 f in (2.15) is defined to be the inverse of that of
the IIB complex system (2.5). As for the symplectic differential equations, they take the
form

d ω = 0, (2.16)

d Re � = 0, (2.17)

dd� (e−2 f Im �) = ρA, (2.18)

where d� = d� − �d is the symplectic adjoint operator,3 ρA is the source term that
is sourced by O6- and D6-branes wrapping special Lagrangian subspaces. The RR-flux
involved is the two-form F2 which by supersymmetry is solved to be

F2 = d�
(

e−2 f Im �
)

.

Again, the above equations up to a rescaling are just a special case of the general equations
in [21]. Further, if we note the relation, Im � = ∗Re � , then (2.17)–(2.18) can be
re-expressed as

d Re � = 0

dd� e−2 f ∗ (Re �) = ρA

which motivate the comparison with the Maxwell equations (2.1)–(2.2).

3 The operation � is defined as the interior product with ω−1 . Specifically, acting on a differential form
A, � A = 1

2 (ω−1)i j i∂xi i∂
x j A ; hence, � is an operation that lowers the degree of differential forms by two.
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We perform now a linearized variational analysis parallel to the IIB complex case in
the previous subsection. Treating the above Eqs. (2.14)–(2.18) as a symplectic system, we
shall consider the linearized deformation of the almost complex structure � → � + δ�

while imposing the following analogous conditions: (i) the symplectic structure fixed,
δω = 0 ; (ii) the source current fixed, δρA = 0 ; (iii) the conformal factor fixed, δ f = 0 .

The variation of the first algebraic condition (2.14) with δω = 0 gives

ω ∧ δ� = 0,

which implies that δ� is a primitive form. The linearized variation of the second condition
(2.15) gives

δ� ∧ �̄ = 0,

thus further constraining δ� to be a primitive (2,1)-form.4 Now for δ� that is a primitive
(2,1)-form, we have

Im δ� = 1

2i

(
δ� − δ�̄

) = −1

2
∗ (

δ� + δ�̄
) = − ∗ Re δ�. (2.19)

Hence, the linearized deformation of (2.17)–(2.18) with the imposed constraints give
the conditions

d Re δ� = 0, dd�e−2 f ∗ Re δ� = 0. (2.20)

Multiplying the second equations by e2 f ∗, (2.20) become the requirement that Re δ�

is both d- and (dd�)∗′-closed, which are the harmonic conditions (of a conformally
weighted inner product) of a primitive symplectic cohomology introduced by Tseng and
Yau [22,23]

P Hk
d+d�(X) = {Bk ∈ Pk | d Bk = 0}

dd�Pk
.

So infinitesimally, we have that imposing δω = δρA = δ f = 0,

Re δ� ∈ PH3
d+d� ∩ Re A2,1.

with respect to the conformally weighted metric.
Alternatively, we can translate the result for Re δ� into that for Im δ�. Using (2.19),

Eq. (2.20) can be equivalently expressed as

dd�e−2 f Im δ� = 0, d ∗ Im δ� = 0. (2.21)

Up to a rescaling, this is just the harmonic condition for the dual primitive symplectic
cohomology [22,23]5

P Hk
dd�(X) = {Bk ∈ Pk | dd� Bk = 0}

∂+Pk−1 + ∂−Pk+1 .

4 In infinitesimally deforming the almost complex structure represented by � , δ� only has at most (3, 0)
and (2, 1) components.

5 (∂+, ∂−) are linear differential operators defined on symplectic spaces [23]. Acting on primitive forms,
∂± : Pk → Pk±1 and are defined simply as the projection of the exterior derivative operator onto the two
primitive components. Specifically, the action of d on a primitive k-form Bk ∈ Pk has only two terms under
standard Lefschetz decomposition: d Bk = B0

k+1 + ω ∧ B1
k−1 , where B0 and B1 are also primitive forms.

Hence, ∂+ Bk = B0
k+1 and ∂− B = B1

k−1 .
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Hence, we have

Im δ� ∈ PH3
dd� ∩ Im A2,1.

Let us add that since the O6/D6-branes wrap special Lagrangians subspaces which are
defined by both � and ω, the imposition of δρA = 0 in general might give an additional
obstruction for the δ� variation. An analogous obstruction does not arise in the complex
case since a holomorphic submanifold is defined with respect to the complex structure
only.

2.3. Generalized cohomology for general type II supersymmetric supergravity solutions.
Let us now turn to the general case of Minkowski compactification with RR flux in type
II supergravity. The background geometry on X6 was found in [8] to have the generalized
complex structure introduced by Hitchin [4,11,12].6 With an SU (3)×SU (3) structure on
T X ⊕T X∗ , X6 has a pair of compatible almost generalized complex structures (J1,J2)

of which J1 is integrable while J2’s integrability fails when RR fluxes are present. The
supersymmetry equations can be expressed concisely in terms of the associated pure
spinors (�1,�2) [9,21]. The compatible pure spinors are related by

‖�1‖2 = e2 f ‖�2‖2. (2.22)

and satisfy the following differential conditions on X6:

d�1 = 0, (2.23)

d Re �2 = 0, (2.24)

ddJ1 (e−2 f Im �2) = ρ. (2.25)

Here, the norm ‖�‖2 is defined as the top form of the Mukai pairing
(
� ∧ λ(�̄)

)
top = −i‖�‖2 vol, (2.26)

where λ is an involutive operator whose action on a k-form is defined to be

λ(Ak) = (−1)k(k−1)/2 Ak .

For a generalized complex structure J , dJ is the operator defined by

dJ = J −1 d J .

In the complex case, dJ = dc, while dJ = d� in the symplectic case. (We give a
comparison of the generalized objects and their expression in the IIB complex system
and the IIA symplectic system in Table 1.) ρ is the Poincarè dual of “generalized cal-
ibrated” submanifolds which the branes wrap [15,19]. The RR flux, F , is dictated by
supersymmetry to be

F = dJ1(e−2 f Im �2)

and implicitly appears in the above equations, specifically in (2.25), as the magnetic
source equation d F = ρ .

6 Since there are now a number of expositions on generalized complex geometry (including some oriented
for physicists, e.g. [10,16,24]), we refer the reader to the literature for background and standard notations.
Our conventions in this subsection mostly follow [21]. The difference in some signs and scale factors with
other conventions in the literature does not factor in the identification of the cohomologies.
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Table 1. A comparison of the pure spinors, differential operators, and cohomologies between the generalized
complex, complex, and symplectic cases

Generalized complex IIB complex IIA symplectic
�1 �3,0 ei ω

�2 ei ω �3,0

dJ1 dc d�

ker d

im ddJ1

ker d

im ddc
ker d

im dd�

ker ddJ1

im ∂J1 + im ∂̄J1

ker ddc

im ∂ + im ∂̄

ker dd�

im ∂+ + im ∂−
The cohomologies defined on the space of J1-eigen-forms Uk

J1
(generalized complex), (p, q)-forms Ap,q

(complex), and primitive forms Pk (symplectic)

We now consider the linearized deformation of the above system generalizing the
analyses of the two previous subsections. The general linearized equations were worked
out by Tomasiello in [21]. Here we will perform a linearized variation of the almost
generalized complex structure �2 → �2 + δ�2 subjected to the following conditions:
(i) keeping the integrable almost generalized complex structure represented by �1 fixed,
i.e. δ�1 = 0: (ii) keeping the source current fixed, i.e. δρ = 0; (iii) keeping fixed the
conformal factor, δ f = 0.

To begin, with two compatible almost generalized complex structures, δ�2 can be
decomposed into eigen-forms of (J1,J2). The corresponding eigenvalues are imaginary
and we will denote them by (i k1, i k2) where in six real dimensions, −3 ≤ k1, k2 ≤ 3.
In particular, �1 is a (3i, 0) and �2 is a (0, 3i) eigen-form. We shall label the k-th
eigen-forms of J1 and J2, respectively, by Uk

J1
and Uk

J2
. That the two structures are

compatible implies δ�2 must be a zero eigen-form under J1 (see e.g. [21]). On the other
hand, δ�1 = δ f = 0, implies from (2.23) that δ�2 ∧ λ(�̄2) vanishes. But since �̄2 is a
(0,−3i) eigen-form and as an infinitesimal variation, δ�2 ∈ U 3

J2
⊕ U 1

J2
, we therefore

find that δ�2 must be an (0, i) eigen-form.
With a positive metric defined by the two compatible generalized structures (J1,J2),

we shall use it to define the Hodge star operator and take the inner product to be

(U1, U2) =
∫

X6
e−2 f (

U1 ∧ ∗Ū2
)

top (2.27)

where U1 and U2 are generally sums of differential forms, or more precisely, spinors
in C L(6, 6). Though the (i k1, i k2) eigen-forms are not eigen-forms of the Hodge star
operator, they are eigen-forms of ∗λ . In particular, acting on the (0, i) eigen-form, δ�2,
∗λ(δ�2) = −iδ�2 . Hence, we have

Im δ�2 = 1

2i

(
δ�2 − δ�̄2

) = ∗λ
1

2

(
δ�2 + δ�̄2

) = ∗λ (Re δ�2). (2.28)

Thus, the variation of the generalized complex system with our stated constraints reduces
to

d Re δ�2 = 0, ddJ1 e−2 f ∗ λ (Re δ�2) = 0, (2.29)

or alternatively,

ddJ1 e−2 f Im δ�2 = 0, d ∗ λ (Im δ�2) = 0. (2.30)
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These conditions which are harmonic type lead us to introduce the following two gen-
eralized complex cohomologies

Hk
∂J +∂̄J

(X) = {U k ∈ Uk
J |d U k = 0}

ddJ Uk
J

,

and

Hk
ddJ (X) = {U k ∈ Uk

J |ddJ U k
J = 0}

∂J Uk−1
J + ∂̄J Uk+1

J
.

with J a generalized complex structure. In the above, we have used the decomposition
of d = ∂J + ∂̄J which follows from d : Uk

J → Uk+1
J +Uk−1

J when J is integrable [11].
These two cohomologies are natural extension of their complex and symplectic coun-
terparts described in the previous subsections when situated in the generalized complex
framework. Just like in [20,22], their harmonic eigen-forms can be described as the so-
lutions of fourth-order self-adjoint differential operators, D4

∂J +∂̄J
and D4

ddJ . Showing

that these fourth-order operators are elliptic then demonstrate that the cohomologies are
finite-dimensional.7

Thus, with the imposed conditions δ�1 = δρ = δ f = 0 and with (2.29)–(2.30), we
find that the linearized deformation of Re δ�2, or alternatively Im δ�2, can be parame-
trized by harmonic eigen-forms with a definite action on λ (e.g. λ(Re δ�2) = +Re δ�2
or λ(Re δ�2) = −Re δ�2 )8 such that

Re δ�2 ∈ H0
∂J1 +∂̄J1

(X) ∩ Re U1
J2

,

or

Im δ�2 ∈ H0
ddJ1

(X) ∩ Im U1
J2

.

Let us add that in general, the requirement of δρ = 0 can give obstructions to the above
δ�2 deformations.

3. Concluding Remarks

The purpose of this paper has been twofold: (1) to show that the complex cohomologies
of Bott–Chern and Aeppli, and the symplectic cohomologies of Tseng and Yau have
application to counting massless modes in type II flux compactifications; (2) to extend the
complex and symplectic cohomologies result within the generalized complex framework
of type II theory which naturally lead us to two new generalized complex cohomologies.

It should be clear that the cohomologies we have emphasized here differ from the
more standard cohomologies (e.g. de Rham cohomology) when the ddJ -lemma (the
generalized complex generalization of the ddc-lemma of complex geometry) fails to
hold. This lemma is of course not a requirement of supersymmetry. In fact, many sim-
ple type II N = 1 supersymmetric flux backgrounds [10] are built from nil-manifolds,

7 Following the work of [22], the extension of the complex and symplectic cohomologies to the generalized
complex case has also been independently written down by Cavalcanti and Gualtieri [6].

8 The choice of the sign under the action of λ is affected by the type of orientifold sources that are present,
see e.g. [18, Appendix D].
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which are generalized complex and also generically do not satisfy the ddJ -lemma [4,5].
For such backgrounds, it is possible to explicitly calculate the different cohomologies
and see the differences in their dimensions. For instance, explicit calculations of the
cohomologies for a complex nil-manifold may be found in [20] and for a symplectic
nil-manifold in [23].

As mentioned, the motivation of this work comes from the Maxwell equations. Be-
sides its relation to the space of Maxwell solutions, the de Rham cohomology also
plays a role as the relative cohomology of the source current, ρe. Indeed, one can ask
given the N = 1 supersymmetric equations, what cohomology describes the currents of
the supersymmetric branes. The equations naturally suggest the relative versions of the
cohomologies we have highlighted here.

The presence of branes sources present another subtlety which we have ignored.
Because branes are represented by singular currents in the equations, all geometrical
quantities necessarily becomes singular on the support of the branes. The type of co-
homologies characterizing the moduli should rigorously be those with compact support
and vanishing along the branes. Such an approach has been discussed in [13].

As mentioned, the equations above are general and hold for any supersymmetric
configurations of branes and RR fluxes. We have however ignored the NSNS fluxes, or
the H3 field. In type II string theory without NSNS branes, d H = 0, and the modification
to the above generalized complex equations is simply replacing d with dH = d − H∧
[9]. The generalized complex cohomologies we have introduced can thus incorporate a
non-zero H -flux by using dH operators instead of the exterior derivative d.

Finally, the analysis in this paper is at the level of linearized infinitesimal variation.
We have not delved into important issues such as obstructions to integrability, orien-
tifold projections and open-string massless modes related to the branes. Some of these
issues have been explored in [17,21] and especially [18] which made use of additionally
physical consistency arguments related to four dimensional low-energy effective field
theory. Providing a full accounting of all the massless moduli from geometry will neces-
sitate a deeper understanding of non-Kähler geometry than what is currently available.
In this paper, we have given yet another example that the mathematical tools involved
in non-Kähler flux compactifications, in particular here cohomologies, are generally not
identical to those in Kähler geometry and Calabi-Yau compactifications. As geometries
that are non-Kähler are much more diverse and flexible than that of Kähler Calabi-Yau,
one expects that more refined tools will be required to characterize them. Developing
them will certainly help us gain deeper insights into vast regions of the still mysterious
landscape of supersymmetric flux vacua.
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