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Abstract: We study determinantal random point processes on a compact complex mani-
fold X associated to a Hermitian metric on a line bundle over X and a probability measure
on X . Physically, this setup describes a gas of free fermions on X subject to a U (1)-
gauge field and when X is the Riemann sphere it specializes to various random matrix
ensembles. Our general setup will also include the setting of weighted orthogonal poly-
nomials in C

n, as well as in R
n . It is shown that, in the many particle limit, the empirical

random measures on X converge exponentially towards the deterministic pluripoten-
tial equilibrium measure, defined in terms of the Monge–Ampère operator of complex
pluripotential theory. More precisely, a large deviation principle (LDP) is established
with a good rate functional which coincides with the (normalized) pluricomplex energy
of a measure recently introduced in Berman et al. (Publ Math de l’IHÉS 117, 179–245,
2013). We also express the LDP in terms of the Ray–Singer analytic torsion. This can be
seen as an effective bosonization formula, generalizing the previously known formula
in the Riemann surface case to higher dimensions and the paper is concluded with a
heuristic quantum field theory interpretation of the resulting effective boson–fermion
correspondence.
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1. Introduction

In this paper we study a natural class of determinantal random point processes [39,46]
defined on a compact complex manifold X . These processes are induced by the choice of a
polarization of X , i.e., an ample line bundle L over X (or more generally a big line bundle)
and we will be concerned with their many particle limit. When X is the Riemann sphere
this geometric setup contains the extensively studied (Hermitian, unitary and normal)
random matrix ensembles. Suitable higher dimensional choices of polarized X give rise
to multivariate orthogonal polynomial ensembles, as well as their trigonometric and
spherical counterparts (see Sect. 2). On a general complex manifold the point processes
represent, from a physical point of view, a gas of (chiral/spin polarized) fermions coupled
to a gauge field on X with gauge group U (1) (see Sect. 6).In broad terms the main aim of
this paper is to describe the many particle limit in terms of global pluripotential theory and
relate it to the notion of bosonization (boson–fermion correspondences) in the physics
literature, previously known only in the Riemann surface case [54]. In the companion
paper [9] central limit theorems (CLTs) and universality of correlation functions were
obtained. Here we will be concerned with the large deviation regime, establishing a large
deviation principle (LDP) for the empirical measure of the point process.

Another concrete motivation for the LDP comes from probabilistic methods for lo-
cating nearly optimal nodes for interpolating polynomials of large degree on a given set
K (which may be realized as a subset of a complex manifold X). Such optimal nodes
are commonly defined as configurations of points (x1, . . . , xN ) maximizing the density
of the probability measure 1.4 below [53] (i.e., as configurations of Fekete points on K
[14]).

1.1. An informal introduction to the main results and the relation to Boson–Fermion
correspondences. It may be illuminating to first formulate the main results to be obtained
in an informal manner, stressing the relations to mathematical physics. Consider a gas
of N identical particles on X described by a symmetric probability measure μ(N ) on
X N with density ρ(N )(x1, . . . , xN ) wrt a fixed volume form dV on X . The theory
of large deviations [25] allows one to give a meaning to the statement that μ(N ) is
exponentially concentrated on a deterministic macroscopic measure μeq (often referred
to as the corresponding equilibrium measure) with a rate functional H(μ). The idea
is to think of the large N -limit of the N -particle space X N of configurations of points
(x1, . . . , xN ) (“microstates”) as being approximated by a space of “macrostates”, which
is the space P(X) of all probability measures on X :

X N ∼ P(X),
as N → ∞. This “change of variables” from X N to P(X) is made precise by introducing
the map

δN : X N → P(X), δN (x, . . . , xN ) := 1

N

∑

i

δxi

(which becomes an embedding if we mod out the action of the permutation group SN on
X N ) so that μ(N ) can be pushed forward to define a probability measure (δN )∗μ(N ) on
the space P(X). The exponential concentration referred to above may then be informally
written as the following asymptotic relation (as N → ∞):

(δN )∗
(
ρ(N )(x1, . . . , xN )dV (x1)⊗ · · · ⊗ dV (xN )

)
∼ e−aN H(μ)Dμ, (1.1)
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where Dμ denotes a (formal) background measure on the infinite dimensional space
P(X) and where the sequence of numbers aN is called the speed (or rate), which is
usually a power of N . Exponential concentration around μeq appears when H(μ) ≥ 0
with H(μ) = 0 precisely when μ = μeq. Thus, in physical terms, the rate functional
plays the role of an effective action. It should be stressed that defining a suitable measure
Dμ on P(X) rigorously is notoriously very challenging, but the proper mathematical
definition of the exponential concentration in question, i.e., the corresponding LDP,
makes no reference to any background probability measure on the space P(X) (the
symbolic expression 1.1 should just be seen as a short hand for saying that a suitable
version of the Laplace principle of steepest descent is valid; compare Sect. 4.3).

In the present setting the gas can be represented by spin polarized free fermions
on X coupled to a U (1)—gauge field A on an ample line bundle L → X and we
will write ω = i

2π FA for the corresponding magnetic two-form, normalized so that
[ω] ∈ H2(X, Z). Hence [ω]represents the first Chern class c1(L), normalized so that
it becomes an integral class. The probability density

ρ(N )(x1, . . . xN ) = 1

ZN
‖det�‖2 (x1, . . . , xN )

is the normalized Slater determinant representing the maximally filled N -particle ground
state, i.e., N is the dimension of the space H0(X, L) of all holomorphic sections on X
with values in L . We will consider the limit of increasing field strength, i.e., FA is replaced
by k FA with k → ∞ so that N = Nk = V kn + o(kn) → ∞, where n = dimC X and
V is the positive number c1(L)n/n!, since L is assumed ample. It will be shown that an
LDP of the form 1.1 holds at a speed V kn+1 with a rate functional H(μ) that may be
decomposed as

H(μ) = Eω(μ)− C, (1.2)

where Eω(μ) is the pluricomplex energy of μ recently introduced in [15] and the constant
C = C(K , ω) is the pluricomplex capacity C(K , ω) (see Sect. 3 for the precise relation
between the notation used here and the notation in [15]). In the case of a Riemann
surface, Eω is nothing but the Dirichlet energy of a unit charge distribution μ subject to
the neutralizing exterior charge ω:

Eω(μ) = 1

2

∫

X
dϕμ ∧ dcϕμ, ddcϕμ = μ− ω,

where ddc = i
2π ∂∂̄ (see Sect. 1.6). In higher dimensions Eω(μ) may be expressed

explicitly in terms of the potential ϕμ of μ obtained by solving the highly non-linear
Monge–Ampère equation. We will recall the necessary background from global pluripo-
tential theory in Sect. 3. For the moment we just point out that when μ is a volume form
the existence of a smooth potential ϕμ was shown by Yau [60] in his celebrated solu-
tion of the Calabi conjecture. The functional Eω is highly non-linear when n > 1—for
example, when n = 2, one has

Eω(μ) = 1

2

∫

X
dϕμ ∧ dcϕμ ∧ ω +

1

3

∫

X
dϕμ ∧ dcϕμ ∧ (

ddcϕμ
)

and in general it is of degree n + 1 in the potential ϕμ.
The relation to bosonization appears when using a different normalization of the Slater

determinant so that it becomes (at least formally) the N -point function
〈‖�(x1)‖2 . . .



4 R. J. Berman

‖�(xN )‖2〉 of a fermionic quantum field theory on X defined by the correspond-
ing (massless) Dirac action. Mathematically, this amounts to multiplying ‖det�‖2

(x1, . . . xN ) with the analytic torsion. We will then show that this has the effect of
canceling the constant C in the expression 1.2 for the rate function. In the final section
of the paper we interpret the resulting LDP as an effective bosonization:

〈
‖�(x1)‖2 . . . ‖�(xN )‖2

〉
∼

〈
eiϕ(x1) . . . eiϕ(xN )

〉
, (1.3)

in the large N -limit where the right hand side is expressed in terms of the (formal)
quantum field theory for a bosonic field ϕ with an explicit action, coinciding, up to scal-
ing, with a secondary Bott–Chern class (which in physics terminology is an example
of a “higher-derivative action”). In the physics literature bosonization is a well-known
phenomenon in 1 + 1 real dimensions (i.e., n = 1) [54] and its present higher di-
mensional incarnation appears to be some what surprising (however, see [23,31,50] for
possibly related results). But one explanation, apart from the fact that it only holds effec-
tively/asymptotically, may be the extra condition imposed by the complex/holomorphic
structure when n > 1 : X is a complex manifold and FA is assumed to be a (1, 1)-form,
i.e., it determines a holomorphic structure on the underlying line bundle L .

Before turning to the precise formulation of the geometric setup we emphasize that
we will be considering a more general setting where the volume form dV on X, used
above, is replaced with a suitable measure ν on X supported on a compact set K . One
of the main points of considering this more general setting is that it allows one to treat
totally real situations where X appears as a compactification of the complexification of
K . For example, K may be taken to be the real n-sphere Sn or the n-torus T n .

1.2. The geometric setup. Let L → X be an ample holomorphic line bundle over
a compact complex manifold X of dimension n. We will denote by H0(X, L) the
N -dimensional vector space of all global holomorphic sections of L . Given the geo-
metric data (ν, ‖·‖) consisting of a probability measure ν on X and a continuous Her-
mitian metric ‖·‖ on L one obtains an associated probability measureμ(N ) on the N -fold
product X N defined as

μ(N ) := 1

ZN
‖det�‖2 (x1, . . . xN )ν(x1)⊗ · · · ⊗ ν(xN ), (1.4)

where det� is any holomorphic section of the pulled-back line bundle L�N over X N

representing the complex line 
N H0(X, L) and ZN is the normalizing constant. Con-
cretely, we may write det� as a Slater determinant:

(det�)(x1, . . . , xN ) = det(�i (x j )) (1.5)

for a given basis (�i )
N=1 of H0(X, L). We will denote byω the real (1, 1)-current defined

as i
2π times the curvature current of the fixed metric ‖·‖ on L . The normalization has

been chosen so that [ω] defines an integral cohomology class; the first Chern class c1(L).
The empirical measure of the ensemble above is the following random measure:

(x1, . . . , xN ) �→ δN :=
N∑

i=1

δxi /N (1.6)

which associates to any N -particle configuration (x1, . . . , xN ) the normalized sum
of the delta measures on the corresponding points in X . In probabilistic terms this
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setting hence defines a determinantal random point process on X with N particles
[39,42].

If the corresponding L2-norm on H0(X, L)

‖�‖2
X = 〈�,�〉X :=

∫

X
‖�(x)‖2 dν(x)

is non-degenerate (which will always be the case in this paper) then the probability
measure μ(N ) on X N may be expressed as a determinant of the Bergman kernel of
the Hilbert space (H0(X, L), ‖·‖L2(X)), i.e., the integral kernel of the corresponding
orthogonal projection. But one virtue of the definition 1.4 is that it admits a natural
generalization to β-ensembles, obtained by replacing the power 2 with a general real
positive power β (which plays the role of inverse temperature from the point of view of
statistical mechanics—see Sect. 5 for such generalizations). Replacing L with its k th
tensor power, which we will write in additive notation as kL , yields a sequence of point
processes on X of an increasing number Nk of particles. We will be concerned with
the asymptotic situation when k → ∞. This corresponds to a large N -limit of many
particles, since

Nk := dim H0(X, kL) = V kn + o(kn)

where the constant V is, by definition, the volume of L .
Of course, we can also view point processes above as defined on the support K of

the measure ν. There is also a slight variant of the setting above where K may be taken
as the non-compact sets C

n or R
n (which may be identified with subsets of X := P

n the
complex projective space)—see Sect. 2.3.

1.3. Statement of the main results.

1.3.1. A general large deviation principle. As is well-known, the density of the one-
point correlation measure, i.e., of the expectation E(δNk ) of the empirical measure, is
precisely the normalized point-wise norm of the corresponding Bergman kernel on the
diagonal. In the case when the curvature form ω of the fixed Hermitian metric on L is
smooth and positive and the measure ν is a volume form on X , it then follows from
well-known Bergman kernel asymptotics that

E(δNk ) → 1

V

ωn

n!
weakly as k → ∞ where E denotes the expectation with respect to the determinantal
ensemble (X N , μ(N )) (in fact there is a complete asymptotic expansion in powers of
1/k as first shown by Catlin and Zelditch [64]; see the survey and references therein and
also [29] for a path integral approach). For a curvature form ω which is smooth, but not
necessarily semi-positive, it was shown in [7] that the previous convergence still holds
if the right hand side above is replaced by the pluripotential equilibrium measure μeq
on X associated to ω, which may be written as

μeq = 1D
1

V

ωn

n! ,
where D is a certain compact subset of X . In the case of a Riemann surface (i.e., n = 1) the
set D may be obtained by solving a free boundary value problem for the Laplace operator
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(in the physics literature the set D appears as a limiting Coulomb gas plasma/fluid in
the context of the Quantum Hall effect, as well as an eigenvalue droplet in the normal
random matrix model—see [61] and references therein). For a general dimension n, the
set D is obtained similarly but using the Monge–Ampère operator, which is fully non-
linear (see Sect. 3). For general geometric data (ω, ν), with ν supported on a compact
subset K , the convergence towards the equilibrium measure μeq associated to the pair
(ω, K ) (in the sense of pluripotential theory) was shown to hold very recently in [14]
under very weak regularity assumptions on the measure ν and K (more precisely the
measure ν was assumed to be Bernstein–Markov (B-M) wrt (K , ω); compare Sect. 4.1).

Our first main result shows that the convergence of the empirical measure is in fact
exponential in probability with a rate functional which is the (normalized) pluricomplex
energy of a measure recently introduced in [15]. More precisely, we have the following
LDP for the laws of the normalized empirical measures, i.e. for the push forward of the
probability measure μ(Nk ) on X N to the space P(K ) of all probability measures on K ,
under the map δN (we refer to Sect. 3 for the definition of the various notions appearing
below).

Theorem 1.1. (LDP) Let L → X be an ample line bundle equipped with a fixed con-
tinuous Hermitian metric with curvature current ω and ν a probability measure on a
compact non-pluripolar set K such that ν is strongly Bernstein–Markov with respect to
the set K . Then the laws of the empirical measures of the corresponding determinantal
point process 1.4 satisfy a LDP with a good rate functional H and speed V kn+1(∼ k Nk),

where

H(μ) = Eω(μ)− C,

where Eω(μ) is the pluricomplex energy (defined wrt ω) of the probability measure μ
and C is the constant ensuring that the infimum of H over the space of all probability
measures on K vanishes.

It follows from [22] that the pluripotential equilibrium measure μeq [only depending
on (K , ω)] is the unique minimizer of the rate functional H above (anyway this will
be reproved here in the course of the proof of the previous theorem). It may also be
worth pointing out that the upper bound corresponding to the LDP holds without the
Bernstein–Markov assumption on the measure ν.

In fact, the LDP above will be shown to hold for any line bundle L that is big, which,
by definition, means that Nk is of the order kn , for k large (the proof of this requires a
generalization of the results in Section 5 in [15] to big cohomology classes which should
be of independent interest). Moreover, as will be shown in Sects. 4.8 and 5 , respectively,
the LDP can be adapted to two other general settings:

• The LDP holds for β-ensembles (Sect. 4.8)
• The LDP holds in a setting where K is replaced by a non-compact subset F

The proof in the non-compact setting proceeds by reducing to the previous case
when K is compact. In particular we obtain the following LDP for the Vandermonde
determinant �(Nk) obtained by taken the basis (�i )

Nk=1 in 1.5 to be multinomials in C
n

of total degree at most k. See Sect. 2 for a recap of the relation between the global setup
of a line bundle L → X and the classical setting of orthogonal polynomials in C

n and
Sect. 4.10 (and Corollary 5.4) for a description of the corresponding rate and energy
functionals.
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Corollary 1.2. Let F = R
n (or F = C

n) and let ν be the Euclidean measure on F.
Assume that φ is a continuous function on F with super logarithmic growth at infinity
(see 2.3 ). Then the push-forward �k of the weighted Vandermonde measure

μ̃
(Nk )
φ :=

∣∣∣�(Nk )(z1, . . . ., zNk )

∣∣∣
2

e−kφ(z1) . . . e−kφ(zNk )ν⊗Nk

under the map δNk (formula 1.6) satisfies an LDP at a speed kn+1 and with a good rate
functional, which in the case n = 1 coincides with the weighted logarithmic energy [49].
More generally, the LDP holds (at a speed βkkn+1) when the density of μ̃(Nk )

φ is raised
to a positive power βk as long as βk ≤ C and βkk → ∞.

As another corollary (see Sect. 5.5) we obtain an LDP for ensembles defined by
holomorphic sections vanishing to high order along a given hypersurface in X . Physi-
cally, this allows one to consider situations where the fermion ground-state has a filling
fraction strictly below 1, as in the fractional Quantum Hall effect, which is well-known
in the case when n = 1. We also point out some relations to Laplacian growth [38].

It should be stressed that the assumptions in Theorem 1.1 are very weak and they are
satisfied in geometrically natural situations. For example, the measure ν may be taken
to be defined by integrating against a volume form on a smooth domain K [14]. The
measure ν can also be taken as a volume form on K when the latter is either a smooth
real hypersurface or a smooth real algebraic variety of dimension n (see Sect. 2).

Given a function ϕ on X we denote by

εNk ,λ(ϕ) := Prob

{∣∣∣∣
1

Nk
(ϕ(x1) + · · · + ϕ(xNk ))−

∫

X
μeqϕ

∣∣∣∣ > λ

}
(1.7)

the tail of the linear statistic ϕ(x1) + · · · + ϕ(xNk ).

Corollary 1.3. Let ϕ be a continuous function on X.

• If the support K of the measure ν is not pluripolar, then the tail 1.7 satisfies εk,ε(ϕ) ≤
e−Ck(n+1)

for some positive constant C depending on ϕ and ε.
• In the case when X is a Riemann surface, K = X and the curvature current ω of the

metric on L is semi-positive (so that μeq = ω) the following more precise estimate
holds:

εNk ,λ(ϕ) ≤ 2 exp

(
−N 2

k

(
2Vλ2

‖dϕ‖2
X

(1 + o(1))

))
, (1.8)

where the error term o(1) denotes a sequence tending to zero as k → ∞ (but de-
pending on ϕ).

1.3.2. Analytic torsion and effective bosonization. Now fix a smooth Hermitian metric
h X on the tangent bundle T X and take the measure ν = dV above to be its volume
form (in particular, K = X). We will also assume that the Hermitian metric on L is
smooth—the most interesting case will be when its curvatureω is not semi-positive. The
LDP in Theorem 1.1 may then be reformulated in the following way:
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Theorem 1.4. Let L → X be an ample line bundle over a compact complex manifold
X and equip L and T X with smooth metrics as above. Then the push forward of the
measures

n∏

q=1

(
det�0,q

∂̄,k

)(−1)q+1q ‖det�k‖2 (x1, . . . xNk )dV (x1)⊗ · · · ⊗ dV (xNk ) (1.9)

on X Nk under the map δN where δN is the empirical measure 1.6 satisfy a LDP with the
good rate functional Eω(μ) (the pluricomplex energy wrt ω).

Here�0,q
∂̄,k

denotes the ∂-Laplacians acting on the space of (0, q)-forms with values in
kL and their determinants are defined using zeta-function regularization of the product
of the positive eigenvalues. We also recall that the corresponding product of determinants
appearing in the theorem is, by definition, the Ray–Singer analytic torsion associated to
the kth tensor power of Hermitian line bundle (L , ‖·‖) and the fixed metric on T X [16].

The new input in the previous theorem compared to Theorem 1.1 is the limiting
expression for the scaled logarithms of the Ray–Singer analytic torsions which has the
effect of canceling the normalization constant appearing in the previous rate functional
(see Proposition 4.12). The main reason that we have reformulated the previous LDP in
this new form is that it can be seen as an effective (i.e., asymptotic) generalization to
higher dimensions of the bosonization formula on a Riemann surface, saying that

det�∂̄ ‖det�‖2 (x1, . . . xN ) = CN ,g exp

⎛

⎝

⎛

⎝1

2

∑

i �= j

G(xi , x j ) + r(x1, . . . ., xN )

⎞

⎠

⎞

⎠ ,

(1.10)
where G is the Green function of the Laplacian defined wrt the Arakelov metric ω on X
(when g > 0) [16]. The term r appearing above vanishes for genus g = 0. For g > 0
it may be expressed in terms of the Riemann theta function on the Jacobian torus of
the Riemann surface X . This formula was obtained in [1]; first a heuristic argument
was given in op. cit. using a fermion-boson correspondence ansatz (see also [57]) and
then the formula was rigorously proved using properties of Quillen metrics and complex
algebraic geometry (see the appendix in [1]). Comparing with [1] the present paper thus
proceeds in a reversed manner: first we establish the LDP (and in particular Theorem
1.4) rigorously, and then, in the final section of the paper, a heuristic quantum field theory
interpretation of the result is given.

Finally, we recall that an explicit expression for the factor CN ,g appearing in 6.1 was
determined only very recently [59]. Combining Theorem 1.4 with the exact formula 1.10
shows that both CN ,g and r are negligible in the large N -limit (in particular it follows
that log CN ,g = o(N 2), which is consistent, as it must, with the explicit formula found
in [59]).

1.4. Relations to previous results. In the case when n = 1 and K = R the LDP in
Corollary 1.2 (for βk ≡ β) was first obtained by Ben Arous and Guionnet [3] (see also
Ben Arous and Zeitouni [4] for the case K = C and φ(z) = |z|2). The result in [3]
was formulated in terms of the standard Hermitian random matrix ensemble, building
on previous work by Voiculescu on free probability theory. In particular, these results
imply the convergence of the free energies k−1 N−1

k log
∫
μ̃
(Nk )
φ previously established
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by Johansson [41] when K = R using a large deviation type upper bound (see also
Hedenmalm and Makarov [38] for the case K = C). An elegant potential theoretic
derivation of Johansson’s bound for general Bernstein–Markov measures supported on
C was introduced by Bloom and Levenberg [17] (whose global pluripotential version
also plays an important role in the present paper). The LDP in Theorem 1.1 in the case
when K ⊂ P

1 for K an arbitary non-polar compact set is contained in the analysis in
the recent work [62], where zeroes of random polynomials are considered. In all these
works the starting point is the explicit expression for log ‖det�‖2 (x1, . . . xN ) as a sum
of Green functions G(xi , x j ) of the Laplace operator (which is the simple genus 0 case
of the bosonization formula 1.10) and it is shown that the LDP can be expressed in terms
of the limiting Green energy of a measure μ. If G were bounded, then the LDP would
follow from general asymptotics for Laplace type integrals, but the non-boundedness
leads to highly non-trivial analytic issues. The most subtle point in the proof is the lower
bound, which is handled using a decomposition argument of the measureμ. The method
of proof in the present paper is completely different, as there is no useful analogue of the
Green function when n > 1, which is a reflection of the fact that the Monge–Ampère
operator is fully non-linear.

The present paper is a substantially revised and extended version of the first preprint
that appeared on ArXiv (which only contained Theorem 1.1), see [10]. The main new fea-
tures are that (1) another proof of the LDP is added which uses the general Gärtner–Ellis
theorem, (2) the LDP has been extended to a non-compact setting and to β-ensembles,
and (3) the relation of the LDP to bosonization is explained and explored. Since the first
version of the paper, results equivalent to the LDP in Theorem 1.1 in the case of P

n have
been obtained by Bloom and Levenberg [21]. Their proof of the lower bound in the LDP
is different than the ones in the present paper (but it also uses [13]). Moreover, an alter-
native proof of the LDP in the Riemann surface case is also contained in the arguments
in Zelditch’s [63] paper, which rely on the explicit bosonization formula 1.10.

1.5. Organization.

• Section 2: Here we start by considering concrete examples obtained by specializing
the general setting to get ensembles defined by polynomials on C

n and on complex
as well as real algebraic varieties, including spherical polynomials.

• Section 3: We recall the global pluripotential theory from [15,22] needed to define
and study the rate function of the LDP. In particular, we show that the pluricomplex
may be realized as a Legendre transform (even in the general setting of a big class).

• Section 4: Two proofs of the LDP in Theorem 1.1 are given. The first one involves
the abstract Gärtner–Ellis theorem together with the main results in [13] (which we
also give in the general setting of big line bundles). As for second proof it is based
on the convergence of Fekete points established in [14]. Technically, one advantage
of using the Gärtner–Ellis theorem is that it avoids invoking the variational results
on the Monge–Ampère equation in [15]. We also show (Sect. 4.8) how to deduce
the LDP in the β-deformed setting and in Sect. 1.3.2 we prove Theorem 1.4, which
expresses the LDP in terms of the analytic torsion.

• Section 5: The LDP in the non-compact is formulated and proved, essentially by
reducing to the previous setting. The section is concluded with applications to en-
sembles defined by sections vanishing along a given divisor.

• Section 6: The relations between the LDP and bosonization in quantum field theory
are explored, using some heuristic arguments.
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1.6. Notation. Let L → X be a holomorphic line bundle over a compact complex
manifold X which will mainly be assumed to be ample.1

1.6.1. Metrics on L. We will fix, once and for all, a continuous Hermitian metric ‖·‖ on
L . Its curvature current times the normalization factor i

2π will be denoted by ω. The nor-
malization is made so that [ω] defines an integer cohomology class, i.e., [ω] ∈ H2(X,Z).
The local description of ‖·‖ is as follows: let s be a trivializing local holomorphic section
of L , i.e., s is non-vanishing on a given open set U in X . Then we define the local weight
φ of the metric ‖·‖ by the relation

‖s‖2 = e−φ.

The (normalized) curvature current ω may now be defined by the following expression:

ω = i

2π
∂∂φ := ddcφ

(where we, as usual, have introduced the real operator dc := i(−∂ +∂)/4π to absorb the
factor i

2π ). The point is that, even though the function φ is merely locally well-defined,
the form ω is globally well-defined (as any two local weights differ by log |g|2 for g a
non-vanishing holomorphic function). The current ω is said to be positive if the weight
φ is plurisubharmonic (psh). If φ is smooth this simply means that the Hermitian matrix

ωi j = (
∂2φ
∂zi ∂ z̄ j

) is positive definite (i.e., ω is a Kähler form) and in general it means
that, locally, φ can be written as a decreasing limit of such smooth functions. Finally,
we recall that from the point of view of gauge theory the (non-normalized) curvature
form ∂∂φ is the curvature form FA of the Chern connection on the complex line bundle
L , i.e., the unique connection A on L which is compatible with its given holomorphic
structure and Hermitian metric ‖·‖.

1.6.2. Holomorphic sections of L. We will denote by H0(X, L) the space of all global
holomorphic sections of L . In a local trivialization as above any element� in H0(X, L)
may be represented by a local holomorphic function f, i.e.,

� = f s

The squared point-wise norm ‖�‖2 (x) of �, which is a globally well-defined function
on X , may hence be locally written as

‖�‖2 (x) =
(
| f |2e−φ) (x).

It will sometimes be convenient to take the curvature current ω as our geometric data
associated to the line bundle L . Strictly speaking, it only determines the metric ‖·‖ up
to a multiplicative constant but, for example, the corresponding random point processes
will be independent of this constant.

1 General references for this section are the books [27,34]. See also [1] for the Riemann surface case.
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1.6.3. Metrics and weights vs ω-psh functions. Having fixed a continuous Hermitian
metric ‖·‖ on L with (local) weight φ0 any other metric may be written as

‖·‖2
ϕ := e−ϕ ‖·‖2

for a continuous function ϕ on X, i.e. ϕ ∈ C0(X). In other words, the local weight of
the metric ‖·‖ϕ may be written as φ = ϕ + φ0 and hence its curvature current may be
written as

ddcφ = ω + ddcϕ := ωϕ

This means that we have a correspondence between the space of all (singular) metrics on
L with positive curvature current and the space PSH(X, ω) of all upper-semi continuous
functions ϕ on X such that ϕ+φ0 is locally psh. Note for example, that if� ∈ H0(X, L)
then log ‖�‖2 ∈ PSH(X, ω).

1.6.4. Norms on H0(X, L). Given a compact subset K of X the fixed metric ‖·‖ on L
induces, in the usual way, an L∞-norm on H0(X, L):

‖�‖L∞(K ) := sup
x∈K

‖�(x)‖ .

This is a non-degenerate norm if K is not contained in a analytic subvariety of X and
in particular if K is non-pluripolar, i.e., K is not locally contained in the −∞ set of a
plurisubharmonic function. We will fix a compact non-pluripolar subset K once and for
all.

Similarly, any given finite measure ν on a compact set K induces an L2-norm on
H0(X, L) (which will always be non-degenerate in the present paper):

‖�‖2
L2(K ,ν) :=

∫

X
‖�‖2 dν.

Sometimes we will also use the notation

‖�‖2
L2(ν,e−ϕ) :=

∫

X
‖�‖2

ϕ dν =
∫

X
‖�‖2 e−ϕdν

if ϕ ∈ C0(X) and similarly for L∞-norms. In practice, the measures ν that we will be
concerned with enjoy regularity properties of Bernstein–Markov type (see Sect. 4.1).

1.6.5. Scaling by k. The Hermitian line bundle (L , φ) over X induces, in a functorial
way, Hermitian line bundles over all products of X (and its conjugate X ) and we will
usually keep the notation φ for the corresponding weights. When studying asymptotics
we will replace L by its kth tensor power, written as kL in additive notation. The induced
weights on kL may then be represented as kφ.

1.6.6. Functionals. In Sect. 3 we will introduce primitive of the Monge–Ampère oper-
ator, denoted by E(ϕ), which defines a functional on the space PSH(X, ω). Following
[22] this functional is then used, by a duality construction, to define the pluricomplex
energy Eω(μ) of a measure μ, which thus defines a functional on the space P(X) of all
probability measures on X . It should however be pointed out that our notation differs
from the notation in [22], where the functional E is denoted by E and the functional Eω
by E∗.



12 R. J. Berman

2. Examples: Orthogonal Polynomial Ensembles

2.1. Multivariate polynomial ensembles. Let ν be a measure supported on a compact
subset K of C

n, which up to a trivial scaling, may be assumed to be contained in the
open unit-ball. We next briefly recall how to fit this situation into the previous global
setup of an ample line bundle L → X over a compact complex manifold X . First we
can identify C

n with an affine piece U of the projective space P
n(:= X) as follows. By

definition, P
n is the complex quotient C

n+1 − {0}/C∗, where C
∗ denotes the standard

action ((Z0, . . . , Zn), λ) �→ (λZ0, . . . , λZn) and we write, as usual, (Z0, . . . , Zn) �→
[Z0 : . . . : Zn] for the corresponding projection map from C

n+1 − {0} to P
n . The fibers

of the latter maps are complex lines in C
n+1 , which thus define a line bundle L∗ over

P
n and we denote the dual line bundle L by O(1), which is usually referred to as the

hyperplane line bundle over P
n . By construction the “homogeneous coordinates” Zi

define holomorphic sections of the latter line bundle. In this notation the embedding of
C

n into P
n is given by z �→ [1, z], so that the image of C

n is given by U := {Z0 �= 0}.
Accordingly, the section s := Z0 of O(1) defines a trivialization over C

n
� U, so that

the restriction to U of a metric on O(1) → U gets identified with a weight φ defined on
C

n (as explained in Sect. 1.6). In this way one obtains a correspondence between locally
bounded metrics on O(1) → P

n and functions φ(z) on C
n such that

φ(z) = φ0(z) + O(1) := log+ |z|2 + O(1) (2.1)

where φ0(z) := log+ |z|2 , i.e it is equal to log |z|2 for |z| > 1 and 0 otherwise. Equiva-
lently, fixingω0 := ddc log+ |z|2 ,which extends to a form on P

n with locally continuous
potentials, and letting ϕ = φ − log+ |z|2 hence yields a bijection between all bounded
ϕ ∈ PSH(Pn, ω0) and all φ as above which are psh on C

n (compare [35]). Also, since
we have assumed that the compact set K is contained in the open unit-ball we have that
φ = ϕ on a neighborhood of K and hence

ωϕ := ω + ddcϕ = ddcφ

on a neighborhood of K . Moreover, using the trivialization above, the space H0(Pn, kO
(1)) of all homogenous polynomials �k of total degree k gets identified with the space
of all polynomials pk(z) in z1, . . . , zn on C

n of total degree at most k and the point-wise
norm induced by φ is given by

‖�k‖2 (z) := |pk(z)|2e−kφ(z)

Hence, also fixing a suitable measure ν on K the corresponding L2-norm of ‖�k‖2 (z)
coincides with the weighted L2-norm of the polynomial pk appearing in the theory of
orthogonal polynomials (see for example the appendix in [49]). Note that since K is
compact the classical unweighted theory in C

n may be obtained by taking φ = 0 on K
and then extending φ so that 2.1 holds (for example φ = log+ |z|2 , will do).

Now, as explained in the introduction of the paper, the pair (ν, ‖·‖) defines, for any k,
a determinantal point process on K concretely obtained by taking �(k)i to be a basis for
the space of all polynomials in z1, . . . , zn on C

n of degree at most k. If the basis consists
of multinomials then the corresponding Slater determinant is known as the (multivariate)
Vandermonde determinant:

det�k = �(Nk )(z1, . . . , zNk ) (2.2)
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The conditions in Theorem 1.1 are satisfied if, for example, K is compact domain in C
n

with smooth boundary or its boundary and ν is the measure defined by a volume form
on K (see Sect. 4.1).

More generally, we can replace C
n with an affine algebraic subvariety X0 := {p1(z) =

. . . pm(z) = 0} cut out by polynomials pi on C
n and ν with a measure supported on

a compact subset of X0. Then we let X be the associated projective variety obtained
by taking the Zariski-closure of X0 in P

n and let L be the restriction OX (1) (strictly
speaking we have to assume that X is non-singular, but otherwise one could pass to a
resolution of X and use that the results to be proved hold in the general setting of a
big line bundle L). The Slater determinant is then defined in terms of a given basis in
H0(X, kOX (1)), which for k large may be identified with the vector space spanned by
the restriction to X of all polynomials of degree at most k in C

n . Again the conditions
in Theorem 1.1 are satisfied if K is a bounded domain in X or its boundary and ν is a
measure as above.

2.2. Real examples. It is interesting to apply the previous setup to a completely “real”
setting. For example, we can take the measure ν to be supported on a compact subset K
of R

n . Embedding R
n in C

n and taking a basis of polynomials defined over R, i.e. with
real coefficients, then induces a determinantal point-process on K to which Theorem 1.1
applies if, for example, K is a smooth domain in R

n and ν is taken as the usual Euclidean
(Lebesgue) measure on K (the assumptions in the theorem are indeed satisfied as follows
from the results in [18]). When n = 1 the corresponding ensemble may be realized by
random Hermitian matrices with eigenvalues conditioned to lie in K (a finite union of
intervals) [24].

Similarly, if the polynomials p1, . . . , pm defining the affine algebraic variety X0
above have real coefficients and the corresponding real algebraic variety K := X0 ∩ R

n

is compact then we can take ν to be the measure on X defined by any given volume
form on K ⊂ X . The following two particular cases have been extensively studied in
the literature, in particular in the context of approximation theory, and as we will explain
the Bernstein–Markov properties can be proved directly in these cases.

2.2.1. Spherical polynomials. Let K = Sn be the unit n-sphere in R
n+1 and ν the usual

O(n,R)-invariant probability measure on Sn . We can then let the algebraic variety X0
above be the complex quadric defined by {p(z) = z2

1 + · · · z2
n+1 − 1 = 0} so that its

real points are precisely Sn . Then H0(X,OX (1)) with the Hermitian product induced
by (ν, 0) gets identified with the complexification of the space Hk(Sn) of all spherical
polynomials on the n-sphere Sn of degree at most k equipped with its usual O(n,R)-
invariant scalar product. The corresponding Slater determinant naturally appears in nu-
merical problems as the determinant of the interpolation matrix (see for example [53]
and references therein). From the physics point of view the process represents the ground
state of a gas of free spin-polarized fermions on Sn (which can be seen as a compact
version of the R

n-case studied in [51,52] in connection to sphere packings etc).
It may be illuminating to give the following direct proof of the Bernstein–Markov

property (Sect. 4.1) in this case. From the O(n +1,R)-invariance it follows immediately
that E(δN ) = ν,which equivalently means that the Bergman function [14] is identically
equal to the dimension Nk of Hk(Sn), i.e.

sup
pk∈Hk (Sn)

|pk(z)|2/
∫

Sn
|pk(z)|2dν = Nk
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Since Nk is of the order kn and hence of sub-exponential growth in k we conclude that
(ν, 0) has the BM-property. But then it follows from general principles that it in fact has
the BM-property wrt any continuous function on K := Sn . This was shown by Bloom
in the case when K ⊂ R

n [18] (Thm. 3.2), but the same arguments work in the present
case. Indeed, writing

|pk(z)|2e−kϕ =
∣∣∣∣pk(z)

(
e−ϕ/2)k

∣∣∣∣
2

for a continuous function ϕ on Sn we may extend −ϕ continuously to all of R
n and

then, using the Stone–Weierstrass theorem approximate it uniformly by polynomials on
R

n . Truncating the Taylor expansion of e−ϕ then allows us to approximate e−ϕ with
polynomials pε such that

1 − 2ε ≤ pε/e
−ϕ ≤ 1 + 2ε

Applying the BM-property for (ν, 0) to the polynomial pk(z)pε(z) and rescaling then
proves that (ν, ϕ) also has the BM-property, as desired.

2.2.2. Trigonometric polynomials. We let K := T n be the unit n-torus in R
2n
x,y and

set pi (z, w) = z2
i + w2

i − 1 for i = 1, . . . n in C
2n
z,w so that K ⊂ X ⊂ P

2n . Then
H0(X,OX (1)) with the Hermitian product induced by (ν, 0) gets identified with the
complexification of the space Hk(T n) of all trigonometric polynomials on T n of total
degree at most k (i.e., the corresponding frequencies lie in k times the unit simplex)
equipped with its usual O(2,R)⊗n-invariant scalar product. Similarly, replacing P

2n

with (P2)n gives trigonometric polynomials with frequencies in [0, k]n .

2.3. The case of non-compact subsets of C
n. There is a non-compact variant of the

previous setting when K is assumed to be a merely closed subset of C
n , but where the

continuous weight φ on C
n has super logarithmic growth:

φ(z) ≥ (1 + ε) ln |z|2 , when |z| � 1 (2.3)

In particular φ is not the restriction of a locally bounded metric on O(1) → P
n . In the

case when n = 1 this is the setting of weighted potential theory considered in the book
[49] (see also the appendix in [49] for the case when n > 1). In particular, we may then
take K as all of C

n (or R
n) and ν = dλ as the corresponding Lebesgue measure. For

example, in the case of n = 1 the corresponding ensembles may be realized by random
normal (or Hermitian) random matrices whose eigenvalues are subject to the “confining
potential” φ [24,61]. As shown in Sect. 2.3 the LDP in Theorem 1.1 is still valid in this
non-compact setting.

3. The Monge–Ampere Operator, Energy and Rate Functionals

In this section we will recall the global complex pluripotential theory that is needed to
define and study the rate functional for the LDP. Almost all the material on the complex
Monge–Ampere equation is contained in [15,22] (apart from the results in Sects. 3.4 ,
3.6).
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3.1. The Monge–Ampère operator and the functional Eω(u). Let (X, ω) be a compact
complex manifold equipped with a fixed (1, 1)-currentωwith continuous local potentials
and assume that the class [ω] ∈ H2(X,R) is Kähler. In other words, ω is assumed to be
cohomologous to a Kähler form, i.e. a (1, 1)-form which is smooth and strictly positive
(see Sect. 3.6 for the more general setting of a big class). To simplify the presentation
it will sometimes be convenient to assume that the local potentials of ω are smooth, but
note that we do not assume that ω is semi-positive.

Let us start by recalling the definition of the Monge–Ampère measure MAω(ϕ) in
the case when ϕ is smooth. It is defined by

MAω(ϕ) := (ω + ddcϕ)n

V n! =: (ωϕ)
n

V n!
where the normalization constant V ensures that MAω(ϕ) has total unit charge. For
simplicity we will omit the subscript ω in the definition of MAω.

The Monge–Ampère MA operator may be naturally identified with a one-form on
the vector space C∞(X) by letting

〈
MA|ϕ, v

〉 :=
∫

X
M A(ϕ)v

forϕ, v ∈ C∞(X). As observed by Mabuchi, in the context of Kähler–Einstein geometry,
the one-form MA is closed and hence it has a primitive E (defined up to an additive
constant) on the space C∞(X), i.e.

dE|ϕ = MA(ϕ) (3.1)

We fix the additive constant by requiring E(0) = 0. Sometimes we will use a sub-script
ω to indicate the dependence of E on ω. Integrating Eω along line segments one arrives
at the following well-known formula

Eω(ϕ) := 1

(n + 1)!V
n∑

j=0

∫

X
ϕω j

ϕ ∧ (ω)n− j (3.2)

Conversely, one can simply take this latter formula as the definition of Eω and observe
that the following proposition holds (compare [13,15,22] for a more general singular
setting).

Proposition 3.1. The following holds

• The differential of the functional Eω at a smooth function ϕ is represented by the
measure MA(ϕ), i.e.

d

dt t=0
(Eω(ϕ + tv)) =

∫

X
MA(ϕ)v (3.3)

• Eω is increasing on the space of all smooth ω-psh functions
• Eω is concave on the space of all smooth smooth ω-psh functions [when n = 1 it is

concave on all of C∞(X)].
Note that the first point implies the second one, since the differential of Eω is repre-

sented by a (positive) measure.
Finally, we recall that the functional Eω(ϕ)may also be expressed as secondary Bott–

Chern class. Indeed, comparing formula 3.2 with the notation in [56] gives Eω(ϕ) =
c̃h(h0e−ϕ, h0) where h0 is a fixed metric whose curvature form is equal to ω and
c̃h(h1, h0) is, up to normalization, the secondary Bott–Chern class attached to the first
Chern class of L .
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3.1.1. The singular setting and the space E1(X, ω). The subspace E1(X, ω) of
PSH(X, ω) consisting of all ω-psh functions of finite energy may be defined as fol-
lows (generalizing the classical Dirichlet spaces on Riemann surfaces). First we extend
the functional Eω (formula 3.2) to all ω-psh functions by demanding that it still be
increasing and usc, i.e. we define

Eω(ϕ) := inf
ψ≥ϕ

Eω(ψ) ∈ [−∞,∞[

where ψ ranges over all smooth ω-psh functions such that ψ ≥ ϕ. Next, we let

E1(X, ω) := {ϕ ∈ PSH(X, ω) : Eω(ϕ) > −∞} ,
which is a convex subspace, since Eω is concave. As a consequence of the monotonicity
of Eω(u) and Bedford–Taylor’s fundamental local continuity result for mixed Monge–
Ampère operators one obtains the following proposition (cf. [22], Prop 2.10; note that
Eω = −Eχ for χ(t) = t in the notation in op. cit.)

Proposition 3.2. The functional Eω is upper semi-continuous on PSH(X, ω), concave
and non-decreasing. Moreover, it is continuous wrt decreasing sequences in PSH(X, ω).

For any ϕ ∈ E1(X, ω) the (non-pluripolar) Monge–Ampère measure MA(ϕ) is well-
defined and does not charge any pluripolar sets [22]. We collect the continuity properties
that we will use in the following [22]

Proposition 3.3. Let (ϕ(i)) ⊂ E1(X, ω) be a sequence decreasing to ϕ ∈ E1(X, ω).
Then, as i → ∞,

MA(ϕi ) → MA(ϕ), ϕi MA(ϕi ) → ϕMA(ϕ)

in the weak topology of measures and Eω(ϕ j ) → Eω(ϕ).
Remark 3.4. Here we have, for concreteness, chosen to phrase the definition of the func-
tional Eω on PSH(X, ω) [and the corresponding finite energy space E1(X, ω)] in terms of
its restriction to smooth ω-psh functions (implicitly assuming that ω has smooth poten-
tials), where the classical formula 3.2 makes sense. However, this procedure is limited to
the case when the class [ω] is Kähler, where Demailly’s regularization result [26] may be
applied. Anyway, following [15,22], a direct definition of Eω can be given in the general
setting of a big class [ω] (assuming that ω has continuous local potentials), by replacing
smooth ω-psh functions with ω-psh functions with minimal singularities and classi-
cal wedge products with the Bedford–Taylor product of positive currents with locally
bounded potentials (computed on the Kähler locus of X). An equivalent direct definition
can also be given using the non-pluripolar product of positive currents introduced in
[22] to make sense of the formula 3.2. One then defines E1(X, ω) as the subspace of
all ω-psh functions ϕ with full Monge–Ampère mass (which with our normalizations
means hat MA(ϕ) is a probability measure) such that Eω(ϕ) is finite.

3.2. The pluricomplex energy Eω(μ) and potentials. Following [15] we define, for any
given probability measure μ on X its (pluricomplex) energy by

Eω(μ) := sup
ϕ∈P SH(X,ω)

Eω(ϕ)− 〈ϕ,μ〉 , (3.4)
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where the sup is taken over all ϕ ∈ PSH(X, ω) (sometimes we will omit the subscript ω
and simply write Eω = E). We will denote the subspace of all finite energy probability
measures by

E1(X) := {μ : Eω(μ) < ∞}
(which only depends on the class [ω] and not on the representative ω).

By Propositions 3.3 and Demailly’s approximation theorem it is enough to take the
sup over all Kähler potentials. But one point of working with less regular functions is
that the sup can be attained. Indeed, as recalled in the following theorem

Eω(μ) := Eω(ϕμ)− 〈
ϕμ,μ

〉
(3.5)

for a unique potential ϕμ ∈ E1(X, ω)/R of the measure μ if Eω(μ) < ∞ where

MA(ϕμ) = μ (3.6)

Theorem 3.5. [15] The following is equivalent for a probability measure μ on X:

• Eω(μ) < ∞
• 〈ϕ,μ〉 < ∞ for all ϕ ∈ E1(X, ω)
• μ has a potential ϕμ ∈ E1(X, ω), i.e. Eq. 3.6 holds

Moreover, ϕμ is uniquely determined mod R, i.e. up to an additive constant and can
be characterized as the function maximizing the functional whose sup defines Eω(μ)
(formula 3.4). Even more generally: if ϕ j is an asymptotically maximizing sequence
sequence (normalized so that supX ϕ j = 0), i.e.

lim inf
j→∞ E(ϕ j )− 〈

ϕ j , μ
〉 = Eω(μ)

then ϕ j → ϕμ in L1(X, μ) and E(ϕ j ) → E(ϕ j ).

Remark 3.6. In the proof of the LDP in Sect. 4 we will only use the existence of a
potential ϕμ for a given measure μ of finite energy (and not the uniqueness). As for the
maximization property of ϕμ it will follow from the proof of the LDP, but it is also a
simple consequence of the concavity of the functional Eω on the space E1(X, ω).

The previous theorem was proved in [15] using the variational approach in the more
general setting of a big class [ω]—one crucial ingredient in the proof is the differen-
tiability Theorem 3.7 below. In the case when μ is a volume form Yau’s [60] seminal
theorem furnishes a smooth potential ϕμ, i.e a Kähler potential (using the continuity
method for PDEs and delicate a priori estimates).

3.3. The psh projection P and the equilibrium measure. Given a compact non-pluripolar
set K and an upper semi-continuos function ϕ we first define

(�(K ,ω)ϕ)(x) := (sup {ψ(x) : ψ ∈ PSH(X, ω), ψ ≤ ϕ on K }) (3.7)

We then define PKφ as the upper-semi continuous regularization of the function�(K ,ω)ϕ.
If ϕ is continuous, then P(K ,ω)ϕ is a bounded ω-psh function, which follows from the
assumption that K be non-pluripolar [35]. We also recall that by a classical result of
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Beford-Taylor concerning negligible sets P(K ,ω)ϕ = �(K ,ω)ϕ quasi-everywhere, i.e.
away from a pluripolar subset of X .

Now the pluripotential equilibrium measure of a weighted non-pluripolar set (K , ω)
may be defined as the following measure

μeq := MA(P(K ,ω)0)

supported on X . This is the global version of the original definition given by Siciak in the
context of approximation theory in C

n (see [35] and references there in). An alternative
variational characterization of the equilibrium measure was given very recently in [15],
which will play a prominent role in this paper (see below).

When K = X we will simply write

P(X,ω) = Pω(= P)

Note that if ϕ is usc then �(X,ω)ϕ = P(X,ω)ϕ, using that the function P(X,ω)ϕ is a
contender for the sup defining �(K ,ω)ϕ. Moreover, if ϕ is continuous then so is Pωϕ.
Indeed, the lower semi-continuity of Pωϕ follows from Demailly’s approximation result
which allows us to write Pωϕ as an upper envelope of continuous functions (see [7] for
further regularity results).

One of the main results in [13] is the following differentiability result which will play
a crucial role in the present paper.

Theorem 3.7 (Berman and Boucksom [13]). Let K be a compact non-pluripolar subset
of X. Then the functional Eω ◦ P(K ,ω) is concave and Gateaux differentiable on C0(X).
More precisely,

d(Eω ◦ P(K ,ω))|ϕ = MA(P(K ,ω)ϕ)

It should be emphasized that the differentiability result above is in a sense very sur-
prising (even when ϕ is smooth and K = X) . Indeed, the projection operator P(K ,ω) is
certainly not differentiable. Moreover, the functional Eω ◦ P(K ,ω) is in general not two
times differentiable. From a statistical mechanical point of view the one time differentia-
bility corresponds to an absence of a first order phase transition (see [9]). An important
ingredient in the proof of the previous theorem is the following orthogonality relation:

〈
MA(P(K ,ω)ϕ)), ϕ − P(K ,ω)ϕ

〉 = 0 (3.8)

saying that P(K ,ω)ϕ = ϕ a.e. wrt the measure MA(P(K ,ω)ϕ)

3.4. Further properties of the energy Eω(μ). By the first equality in formula 3.9,
appearing in the following proposition, the pluricomplex energy Eω on can be seen as
the Legendre–Fenchel transform of the functional u �→ −(Eω ◦ P(K ,ω))(−u) (compare
formula 4.9):

Proposition 3.8. The following properties of the energy E(μ) (formula 3.4) hold:

• Assume that E(μ) < ∞. Then the sup defining the energy E(μ) may be taken over
the subset of all continuous ω-psh functions. More generally, if μ is supported on a
non-pluripolar compact set K in X, then

E(μ) := sup
ϕ∈C0(X)

(
E(PKϕ)−

∫

X
ϕμ

)
= sup
ϕ∈C0(X)∩P SH(X,ω)

(
E(PKϕ)−

∫

X
ϕμ

)

(3.9)
• The functional E is lower semi-continuous (lsc) on P(X).
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Proof. (compare the proof of Theorem 5.3 in [15]). Given the set K and ϕ ∈ C0(X) ∩
PSH(X, ω) we note that. by definition, PKϕ ≥ ϕ on X (and PKϕ = ϕ on K ). Hence,
E(PKϕ) − ∫

X ϕμ ≥ E(ϕ) − ∫
X ϕμ and since PKϕ is a candidate for the sup defining

E(μ) this proves the statement when ϕ ranges over continuous ω-psh functions. Next,
if ϕ is merely continuous then we decompose

E(PKϕ)−
∫

X
ϕμ =

(
E(PKϕ)−

∫

X
PKϕμ

)
+

∫

X
(PKϕ − ϕ)μ

Note that PKϕ ≤ ϕ away from a pluripolar set (since PKϕ = �Kϕ quasi-everywhere).
But since E(μ) < ∞ the measure μ does not charge pluripolar sets [15] and hence
setting ψ := PKϕ gives E(ψ) − ∫

X ψμ ≤ E(μ). Finally, writing ψ as a decreasing
limit of elements ψ j ∈ C0(X) ∩ P SH(X, ω) and using the previous case for ϕ = ψ j
finishes the proof of the first point. As for the lower semi-continuity of E it follows
immediately from the fact that E is defined as a sup of continuous functionals. ��

In Sect. 3.6 we will give a different proof of the Legendre transform relation re-
ferred to above, which has the virtue of applying to a general big class. In our second
proof of Theorem 1.1 we will also have use for the following approximation lemma of
independent interest.

Lemma 3.9. Assume that μ is a probability measure supported on a compact set K
such that E(μ) is finite. Let ϕμ be a potential of μ and take a sequence ϕ j in C0(X) ∩
PSH(X, ω) such that ϕ j decreases to ϕμ. Then μ j := MA(P(K ,ω)ϕ j ) → μ and
E(μ j ) → μ.

Proof. First observe that P(K ,ω)ϕ j decreases to P(K ,ω)ϕμ, using that P(K ,ω) is de-
creasing (compare Sect. 3.6). Moreover, by Lemma 3.13 below P(K ,ω)ϕμ = ϕμ and
hence P(K ,ω)ϕ j decreases to ϕμ. But then it follows from Proposition 3.3 that μ j :=
MA(P(K ,ω)ϕ j ) → μ and E(μ j ) → μ. ��
Remark 3.10. The Lemma remains true if ϕ j is merely assumed to be continuous, which
is useful when generalizing Theorem 1.1 to the case when the line bundle L is merely
big (compare Sect. 3.6).

We also recall that a direct computation yields the following explicit expression for
the energy of a measure in terms of the potential ϕμ:

Eω(μ) = 1

V

n−1∑

j=0

1

j + 2

∫
dϕμ ∧ dcϕμ ∧

(
ddcϕμ

) j

j ! ∧ ωn−1− j

(n − 1 − j)! , (3.10)

(where the right hand side may be written as (Iω − Jω)(φμ), in terms of Aubin’s func-
tionals Iω and Jω and where the wedge products should, in general, be interpreted as
non-pluripolar products; compare [15] and references therein). Even though we will not
use this formula in the proofs it will appear in the discussion in Sect. 6. Note when
n = 1Eω is hence a multiple of the classical Dirichlet energy and may also be expressed
as

Eω(μ) = −1

2

∫
Gω(x, y)μ(x)⊗ μ(y) (3.11)

(where we have assumed V = 1 for simplicity), where Gω(x, y) is the Green function de-
fined by dx dc

x Gω(x, y) = δy(x)−ω(x) and the normalization condition
∫

G(x, y)ω(y)
= 0.
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3.5. The rate functional and electrostatic capacity. Given a (weighted) non-pluripolar
compact set K we define the rate functional H(K ,ω) as the normalized energy functional:

H(K ,ω)(μ) := Eω(μ)− C(K , ω) (3.12)

where C(K , ω) is the following constant

C(K , ω) := inf
μ∈M1(K )

Eω(μ) (3.13)

The constant e− n
n+1 C(K ,ω) was called the pluricomplex electrostatic capacity in [15]; it

generalizes the logarithmic capacity in C and Leja’s transfinite diameter in C
n . More-

over, as shown in [15]
C(K , ω) := Eω(P(K ,ω)0) < ∞ (3.14)

and hence the rate functional H(K ,ω), defined above, may also be expressed as

H(K ,ω) = Eω(μ)− Eω(P(K ,ω)0) (3.15)

It is in this latter form that the rate functional will appear in our second proof of the LDP
and as a byproduct of the LDP we will then rederive formula 3.13.

Proposition 3.11. Let K be a non-pluripolar compact subset of X. The functional
H(K ,ω) : P(K ) → [0,∞] is a good rate functional, i.e. it is lower semi-continuous
and proper. It has a unique minimizer which coincides with μeq, the equilibrium mea-
sure of (K , ω), defined in Sect. 3.3.

Proof. First observe that, by definition, the functional H(K ,ω) is lsc iff the functional E
is lsc, which holds by Proposition 3.8. To prove that H(K ,ω) is proper we must prove that
the sublevel sets {H(K ,ω) ≤ C} are compact for any constant C . Since H(K ,ω) is lsc these
sets are closed in P(K ). But by the compactness of P(K ) any closed set is compact.
As for the uniqueness it follows from the differentiability Theorem 3.7 combined with
standard convexity arguments (see [15])—alternatively it will follow from the LDP in
Theorem 1.1). ��

3.6. Complements: the pluricomplex energy as a Legendre transform in the big case.
In this section we will show that the pluricomplex energy Eω may be realized as a
Legendre–Fenchel transform when the class [ω] ∈ H2(X,R) is merely assumed big,
which by definition means that the class contains some Kähler current T, i.e. a positive
current T such that T ≥ ω0 for some smooth and strictly positive form ω0 on X . This
will be needed in order to extend Theorem 1.1 to big (but not necessarily ample) line
bundles; compare Sect. 4.4.1. We recall that the setting of a big class [ω] is the most
general setting for the global pluripotential theory outlined above and we refer to [15,22]
for further references (compare Remark 3.4).

The new difficulty that appears in the case of a general big cohomology class is
that we can no longer approximate a given element in PSH(X, ω) with elements in
PSH(X, ω) ∩ C0(X), as the latter space will in general be empty (in fact, typically, no
element will even be bounded from below!). Anyway, we will show how to bypass this
problem by taking the approximating sequence to consist of functions which are merely
continuous and use the orthogonality relation 3.8.

Proposition 3.12. Let X be a compact complex manifold X with a a big class and [ω]
and K a non-pluripolar compact subset of X. Then
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Eω(μ) = sup
ϕ∈C0(X)

(
Eω ◦ P(K ,ω)(ϕ)−

∫

X
ϕdμ

)

for any probability measureμ supported on K . In other words, Eω(μ) coincides with the
Legendre–Fenchel transform at μ of the functional u �→ −Eω ◦ P(K ,ω)(−u) on C0(X)
(compare formula 4.9).

Proof. First we note that the lower bound is proved exactly as before: since P(K ,ω)(ϕ)
is a contender for the sup defining Eω(μ) we have

Eω(μ) ≥ sup
ϕ∈C0(X)

(
Eω(P(K ,ω)(ϕ))−

∫

X
P(K ,ω)(ϕ)dμ

)

≥ sup
ϕ∈C0(X)

(
Eω(P(K ,ω)(ϕ))−

∫

X
ϕdμ

)
,

using, in the last step, that
P(K ,ω)(ϕ) ≤ ϕ μ− a.e. (3.16)

Indeed, the inequality holds quasi-everywhere on K and since μ is supported on K and
does not charge pluripolar sets (since Eω(μ) < ∞) the inequality 3.16 follows.

Next we turn to the proof of the upper bound. To fix ideas we start with the case when
X = K and write P for the corresponding projection operator P(X,ω). We will denote
by ψ a potential of the measure μ, i.e. the ω-psh function which is uniquely determined
mod R by the property that MA(ψ) = μ [15]. Since ψ is ω-psh and in particular
usc there exists a sequence ϕ j in C0(X) decreasing to ψ . Setting ψ j := P(ϕ j ) then
gives a decreasing sequence of ω-psh function converging to ψ, as follows immediately
from the fact that P is decreasing (indeed, ϕ j ≥ ψ gives P(ϕ j ) ≥ P(ψ) = ψ and
ψ̃ := lim j→∞ P(ϕ j ) ≤ lim j→∞ ϕ j = ψ, forcing ψ̃ = ψ as desired). In particular,

Eω(μ) = Eω(ψ)−
∫

X
ψMA(ψ) = lim

j→∞ Eω(ψ j )−
∫

X
ψ j MA(ψ)

To prove the upper bound in the proposition it will thus be enough to show the following

Claim: lim inf
j→∞

∫

X
(ψ j − ϕ j )MA(ψ) ≥ 0

By the orthogonality relation 3.8 it is equivalent to show that

lim inf
j→∞

∫

X
(ψ j − ϕ j )

(
MA(ψ)− MA(ψ j )

) ≥ 0

To this end we rewrite the previous integral as a sum of three terms

A j + B j + C j =
∫
(ψ j − ψ)

(
MA(ψ)− MA(ψ j )

)
)

+
∫
(ψ − ϕ j )MA(ψ) +

∫
(ϕ j − ψ)MA(ψ j )

First note that A j → 0. Indeed, since ψ j decreases to ψ in E1(X, ω) this follows
immediately from Proposition 3.3 (which also holds in the big case [22]). Next, by the
usual monotone convergence theorem of integration theory we also have that B j → 0.
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Finally since ϕ j ≥ ψ we have C j ≥ 0 for any j,which concludes the proof of the claim
above.

Finally, to we turn to the case of a general compact subset K . First, a simple modifi-
cation of the previous argument gives that ψ j := P(K ,ω)ϕ j decreases to P(K ,ω)ψ . Then
the previous argument can be repeated word for word once we have established that
P(K ,ω)ψ = ψ, which is the content of the following Lemma. ��
Lemma 3.13. Assume that ψ ∈ E1(X, ω) and that μ := M A(ψ) is supported on a
compact subset K of X. Then P(K ,ω)ψ = ψ .

Proof. First observe that P(K ,ω)ψ ≥ ψ (indeed, P(K ,ω)ψ ≥ �(K ,ω)ψ ≥ ψ since ψ is a
contender for the sup defining �(K ,ω)ψ). Moreover, as explained above P(K ,ω)ψ ≤ ψ

a.e. wrt μ(:= M A(ψ)) and hence

Eω(ψ)−
∫

X
ψdμ := E(μ) ≤ Eω(P(K ,ω)(ψ))−

∫

X
P(K ,ω)(ψ)dμ,

but then it follows from the uniqueness of maximizer in Theorem 3.5 (which also holds
in the big case [15]) that P(K ,ω)(ψ) − ψ = c ∈ R. Finally, integrating against μ and
using that P(K ,ω)ψ = ψ a.e. wrt μ concludes the proof. ��
Remark 3.14. The property that PKϕμ = ϕμ for any measure μ of finite energy sup-
ported on a compact set K was used without any explicit proof in the previous version
[10] of the present paper (thanks to Norm Levenberg for pointing this out). When ϕμ
is continuous this property is an immediate consequence of the standard domination
principle saying that ψ ≤ ϕM A(ϕ)− a.e. implies that ψ ≤ ϕ everywhere, if ψ and ϕ
are ω-psh and ϕ is continuous. A proof of the more general domination principle where
ϕ is only assumed to have finite energy, was supplied by Dinew in [21] in the setting of a
Kähler class. It may be worth pointing out that the variational argument used in the proof
of the previous lemma also gives a simple proof of the latter domination principle in the
general setting of a big class (just set μ := MA(ϕ) and apply the variational argument
to max{ϕ,ψ}).

4. The Large Deviation Principle in the Compact Case

In the following we will assume given an ample line bundle L → X over a compact
complex manifold X and a continuous Hermitian metric ‖·‖ on L , whose normalized
curvature current we will denote by ω. We will also assume given a (finite) measure ν on
X satisfying certain (very weak) regularity properties. These are of Bernstein–Markov
type and they are formulated with respect to a compact subset K . In practice the latter
set often appears as the support of ν, but this is not necessary.

4.1. Bernstein–Markov measures. Following [14], we will say that a measure ν is
Bernstein–Markov wrt (K , ω) if, given any positive number ε, there exist Cε such that

sup
x∈K

‖sk‖2 (x) ≤ Cεe
kε

∫

X
‖sk‖2 dν (4.1)

for any element sk of H0(X, kL), where the norms are taken wrt the metric whose
curvature current is ω (in particular, if K is non-pluripolar, then any such measure ν
defines a non-degenerate L2-norm on the spaces H0(X, kL)). Strictly speaking, it may
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be appear more logical to say that ν is Bernstein–Markov wrt (K , ‖·‖) since it is the
metric ‖·‖ which appears in the previous equality. But the point is that since ‖·‖ is
determined by ω up to a multiplicative number it does not matter which metric with
curvature form ω we take.

More generally, we will say that the measure ν is Bernstein–Markov wrt (K , ω, ϕ)
(or simply B-M wrt (K , ϕ) since ω has been fixed) if

sup
x∈K

(‖sk‖2 e−kϕ(x)) ≤ Cεe
kε

∫

X
‖sk‖2 e−kϕdν (4.2)

for a given ϕ ∈ C0(K ) (where, of course, the constant Cε depends on ϕ). The measure
ν is strongly Bernstein–Markov wrt the set K if the previous inequality holds for any
continuous ϕ. Note that this definition is independent of the choice of aω or equivalently
on the choice of a fixed continuous metric ‖·‖ on L , since the logarithm of the quotient
of any two such metrics is a continuous function.

There is also a stronger variant of the latter Bernstein–Markov property defined as
follows: the measure ν is said to be strongly Bernstein–Markov wrt quasi-psh functions
on K if for any ε > 0 there exists Cε > 0 such that

sup
x∈K

epψ ≤ Cεe
pε

∫

X
epψdν (4.3)

for all p > 0 and any function ψ on X which is ω-psh wrt some positive current
ω ∈ c1(L)with continuous potentials. This notion thus only depends on the pair (ν, K ),
once we have fixed the line bundle L . Takingψ(x) := 1

k log ‖sk‖2 (x)−ϕ(x) and p = k
shows that the latter notion of BM-property indeed implies the previous one.

It should be stressed that, in practice, almost all measures ν appearing in geometrically
reasonable situations satisfy the last and strongest notion of Bernstein–Markov property
above. But we will not go further into concrete examples, referring the reader instead to
[14] and references therein.

Remark 4.1. Since we are using the language of ω-psh functions, as opposed to the
reference [14], where psh weights on line bundles are used, it may be helpful to compare
our notation with the notion in op. cit. In fact, a measure ν is strongly B-M wrt quasi-psh
functions on K precisely when it is B-M with respect to the weighted set (K , φ) for
any continuous weight φ on the line bundle L , in the sense of [14]. One virtue of the
definition used here is that it also applies without change to the case when c1(L) is
replaced with a fixed pseudoeffective class in H1,1(X). It may also be illuminating to
compare with the classical terminology in pluripotential theory in C

n (see [18]) where
ν is said to have the B-M-property wrt a compact set K in C

n if ν has the B-M-property
wrt the weighted set (K , 0) (i.e. ω = 0 on K ) in our terminology. The point is that for a
general complex manifolds X there is no canonical choice of form ω for a given set K
which is the reason for the terminology used here.

4.2. Definition of the determinantal probability measure. We start by recalling the def-
inition of the determinantal probability measure given in the introduction of the paper.
Given an ample line bundle L → X with a continuous Hermitian metric ‖·‖ (whose
normalized curvature current is denoted by ω) and a measure ν on X one obtains a
sequence of probability measures μ(Nk ) on X Nk defined as follows. First we set k = 1
and recall that N denotes the dimension of the vector space H0(X, L). Hence, the
top exterior power 
N H0(X, L) is one-dimensional and we fix a a non-zero element
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det� ∈ 
N H0(X, L). We may identify det� with a holomorphic section of L�N over
the N -fold product X N , using the natural embedding


N H0(X, L) ↪→ H0(X, L)⊗N � H0(X N L�N )

Now we may define the probability measure μ(N ) on X N by

μ(N ) := ‖det�‖2

Z ν⊗N

where the point-wise norm is computed the fixed Hermitian metric on L and where the
normalizing constant is the L2-norm of det� induced by the pair (ν, ‖·‖):

Z := ‖det�‖2
L2(X N ,ν⊗N )

By homogeneity μ(N ) is invariant under scaling of ‖·‖ and hence it only depends on
the data (ν, ω). Now the whole sequence μ(Nk ) (and the corresponding normalization
constants Zk) is defined by replacing L with its kth tensor power kL and using the
induced norms. The constant Zk depends multiplicatively on the choice of generator
det�k ∈ 
Nk H0(X, kL) but, by homogeneity, the corresponding probability measure
μ(Nk ) does not.

4.2.1. The free energy functional Fk and reference data. A leading role in the proof of
Theorem 1.1 will be played by the following (free energy type) functional on C0(X):

Fk[ϕ] := − log
∫

X Nk
‖det�k‖2 e−kϕ(dν)⊗Nk (4.4)

Strictly speaking this functional depends on the choice of generator det�k of 
Nk H0

(X, kL), but the point is that differences Fk[ϕ] − Fk[ψ] are independent of the choice
of generator. Let us explain this in more detail. First, fixing a basis �(k)1 , . . . , �

(k)
N

in H0(X, kL) induces a generator det�k which may be expressed as follows, when
evaluated (x1, . . . , xNk ):

(det�k)(x1, . . . , xNk ) = det
(
�
(k)
i (x j )

)
∈ kLx1 ⊗ · · · ⊗ kLxNk

(4.5)

Now changing the basis to �(k)1 , . . . , �
(k)
N we note that det�k = A det�k where A is

the corresponding change of base matrix, which is thus constant over X Nk . In particular,

‖det�k‖2 (x1, . . . , xNk ) = det G ‖det�k‖2 ((x1, . . . , xNk ) Gi j =
〈
�
(k)
i ,�

(k)
j

〉

L2

(4.6)
where the L2-norm on H0(X, kL) is the one for which �(k)i is an orthonormal basis.
To fix a specific generator it will (in particular in Sect. 4.5) be convenient to to fix
some auxiliary “reference data” consisting of a measure ν0, a continuous function ϕ0
and compact set K0 such that ν0 is Bernstein–Markov wrt (K0, ϕ0). We can then take
the base �k,1, . . . , �k,N above to be orthonormal wrt the inner product on H0(X, kL)
induced by (ν0, ϕ0) (i.e. by (ν0, ‖·‖ e−ϕ0). The point is that the corresponding functional
Fk[ϕ] then has, after rescaling, a limit as k → ∞ (if ν has the Bernstein–Markov wrt
(K , ϕ); see Theorem 4.6 below).
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Remark 4.2. In order to compare with the concrete cases studied in Sect. 2, it may be
illuminating to express Zk in terms of the local notation introduced in Sect. 1.6. First we
note that, given a local holomorphic trivialization of L , the section det�k above may be
locally represented by a local holomorphic function fk on X Nk , hence, Zk may, using
local notation, be written as

Zk =
∫

X Nk
|( fk(x1, . . . , xk)|2e−k(φ(x1)+···+φ(xNk )(dν)⊗Nk

where φ is the local weight of the fixed metric ‖·‖ on L (in particular, locallyω = ddcφ).
In the setting of Sect. 2 the function fk thus appears as the corresponding Vandermonde
determinant.

4.3. Definition of a large deviation principle (LDP). Let us recall the general definition
of a LDP due to Donsker and Varadhan (see for example the book [25]):

Definition 4.3. Let P be a Polish space, i.e. a complete separable metric space.

(i) A function H : P →] − ∞,∞] is a rate function iff it is lower semi-continuous. It
is a good rate function if it is also proper.

(i i) A sequence �k of measures on P satisfies a LDP with speed rk and rate function H
iff

lim sup
k→∞

1

rk
log�k(F) ≤ − inf

μ∈F
H(μ)

for any closed subset F of P and

lim inf
k→∞

1

rk
log�k(G) ≥ − inf

μ∈G
H(μ)

for any open subset G of P .

Note that when the measures �k are probability measures the LDP implies that
infμ∈P H(μ) = 0 (just take F = G = P).

Let now P = P(K ) be the space of all probability measures on X which is a Polish
space, where the topology corresponds to the weak convergence of measures.

Given a set F in P(K ) we will, somewhat abusively, write

K N ∩ F := K N ∩ (δN )
−1(F)

where δN denotes the map defined by the empirical measure 1.6.

4.4. Proof of Theorem 1.1 using the Gärtner–Ellis theorem.. We start by recalling one
of the main results in [13] (see Thm A in opus. cit) which may be formulated as follows:

Theorem 4.4 (Berman and Boucksom [13]). Assume that the measureν has the Bernstein–
Markov property wrt (K , ϕ) and (K , ψ). Then the following asymptotics for the func-
tional Fk (formula 4.4) hold:

lim
k→∞

1

k Nk
(Fk[ϕ] − (Fk[ψ]) = FK (ϕ)− FK (ψ),

where FK (ϕ) := E ◦ P(K ,ω).
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Moreover, by Theorem 3.7 (which is Theorem B in [13]) the functional FK is Gateau
differentiable on C0(K ). As will be next explained Theorem 1.1 now follows from an
application of a suitable version of the Gärtner–Ellis theorem. The version we will need
may be formulated as follows (see [25] (Cor. 4.6.14, p. 148) and references therein):

Theorem 4.5 (Abstract Gärtner–Ellis theorem). Let M be a locally convex Hausdorff
topological vector space and �k a sequence of Borel measures on M which is exponen-
tially tight. Assume that there is a sequence of positive numbers rk such that the Laplace
transforms �̂k (see formula 4.7) seen as functionals on the dual M∗, satisfy

1

rk
log �̂k[rku] → 
[u]

for any u in M∗ where the functional 
 is Gateau differentiable on M∗. Then �k
satisfies a LDP with speed rk and with a rate functional H := 
∗ on M, i.e. H is the
Legendre–Fenchel transform of 
 (see formula 4.9)

To apply this theorem to the present setting we let M(= M(K )) be the space of all
signed finite Borel measures on K with its usual weak topology, i.e. μ j → μ iff

〈
u, μ j

〉 :=
∫

X
uμ j →

∫

X
uμ

for all u ∈ C0(K ). As is well-known M is a locally convex Hausdorff topological vector
space and it is the topological dual of the vector space C0(K ). We let �k be the laws of
the empirical measure of the determinant process defined above:

�k := δNk

(
μ(Nk )

)

which are thus supported on the convex subspace P(K ) in M(K ) consisting of all
probability measures. In particular, since K is compact so isP(K ) and hence the tightness
condition on �k is automatically satisfied. The Laplace transform of �k is, by definition
(with our sign convention), the following functional �̂k on the dual M∗ = C0(K ):

�̂k[u] :=
∫

M
d�k(μ)e

〈u,μ〉 (4.7)

Hence, pulling back the integral above to K N allows us to write

− log �̂k[−k Nkϕ] = Fk[ϕ] − Fk[0],
and thus, by Theorem 4.4,

1

k Nk
log �̂k[k Nku] → 
[u] := − (

(E ◦ P(K ,ω))(−u)− Eω(P(K ,ω)0)
)

(4.8)

if ν has the Bernstein–Markov property wrt (K , ϕ). In other words, the convergence
holds for all u if ν has the strong Bernstein–Markov property wrt K , which we have
indeed assumed. All in all this means that we can apply the Gärtner–Ellis theorem above
and deduce that an LDP holds on the space M(K ) with rate functional

H(μ) = 
∗(μ) := sup
u∈C0(K )

(
(u)− 〈u, μ〉) (4.9)

In particular, restricting to the subspace P(K ), setting ϕ = −u and using Proposition
3.8 concludes the proof of Theorem 1.1.
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4.4.1. The case of a big line bundle. Let us briefly point out that Theorem 1.1 remains
true for a general big line bundle L , i.e. a holomorphic line bundle L → X over a
complex manifold such that V := lim supk→∞(dim H0(X, kL)/kn) is strictly positive.
Equivalently, this means that the class c1(L) is big in the sense of Sect. 3.6 (compare
[22] and references therein). To see this first recall that the results in [13] (i.e. Theorem
A and B) invoked in the previous proof where already shown in [13] to hold for any big
line bundle. Hence, the Gärtner–Ellis theorem provides, just as before, a LDP with rate
functional
[u] as in formula 4.8. Finally, as shown in Sect. 3.6 the Legendre transform
of the latter functional still coincides with the pluricomplex energy Eω(μ) in the general
setting of a big class.

4.5. A direct proof of Theorem 1.1 using Fekete points. In this section we will give a
different proof of 1.1, which uses the convergence of Fekete points shown in [14] as a
replacement for the Gärtner–Ellis theorem. The argument will also reveal that the upper
bound in the LDP holds without any Bernstein–Markov assumption on the measure ν.

4.5.1. Preliminaries on asymptotics. In this section we will fix reference data (ν0, K , ϕ0)
as in Sect. 4.2.1 and a generator det�k compatible with this data. We then set

μ̃(Nk ) := ‖det�k‖2 ν⊗N (4.10)

for the corresponding non-normalized measure on X Nk . Given a continuous function ϕ
on X it will also be convenient to use the notationμ(Nk )

kϕ for the determinantal probability

measure on X Nk obtained by replacing the fixed point-wise norms ‖·‖2 by ‖·‖2 e−kϕ(·).
Equivalently, μ(Nk )

kϕ can be written as the “tilted” probability measure

μ
(Nk )
kϕ = 1

Zkϕ
μ(Nk )e−kϕ (4.11)

where ϕ is the corresponding linear statistic ϕ(x1) + · · · + ϕ(xNk ) on X Nk and

Zkϕ =
∫

X Nk
μ(Nk )e−kϕ

Recall that ν is assumed to be strongly Bernstein–Markov with respect to a compact
set K .

First we collect the following results proved in [13,14].

Theorem 4.6. Let K be non-pluripolar subset of X.

• [13] The following convergence holds:

k−(n+1) log ‖det�k‖2
L∞(kϕ,K Nk )

→ −E(PKϕ) + E(PK0ϕ0) (4.12)

(where the norms are computed wrt the metric on L whose curvature current is ω)
and if the measure ν has the Bernstein–Markov property wrt (K , ϕ), then we also
have

k−(n+1) log ‖det�k‖2
L2(kϕ,K Nk ,ν)

→ −E(PKϕ) + E(PK0ϕ0) (4.13)
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• [14] Let (xk) be a sequence of configurations in K (i.e. xk ∈ K Nk ) which are asymp-
totically Fekete, i.e. such that

lim inf
k→∞ k−(n+1) log

(
μ
(Nk )
kϕ (xk)/ν

⊗Nk
)

≥ 0

Then μk := δNk (xk) converges weakly to the equilibrium measure MA(P(K ,ω)ϕ).
• [14] If the measure ν has the Bernstein–Markov property wrt (K , ϕ),

(
Ekϕ(δNk ) :=) ∫

K N−1
μ
(Nk )
kϕ → MA(P(K ,ω)ϕ)

weakly.

In Sect. 4.8 we will repeat the simple argument used in [13] to deduce 4.13 from 4.12
in the previous theorem.

Before continuing, it may be illuminating to compare the previous theorem with the
results in the previous section. First, the convergence in 4.13 is a refinement of Theorem
4.4, using the transformation property 4.6 (in fact, this is the way Theorem 4.4 is proved
in [13]). Next, we also recall that the second point in the previous theorem is obtained
from the first point together with the differentiability Theorem 3.7, using a completely
elementary convex analysis argument.

We will also need a localized version of the last two points in the previous theorem.
To this end, define the following set:

Akϕ :=
{

xk ∈ K Nk : k−(n+1) log
(
μ
(Nk )
kϕ (xk)/ν

⊗Nk
)

≥ −1/k
}

(4.14)

Lemma 4.7. Let ϕ be a continuous function on X. Then

lim inf
k→∞ k−(n+1) log

(∫

Akϕ

‖det�k‖2 dνNk

)
≥ E(PK0ϕ0)− E(PKϕ) +

∫
ϕMA(PKϕ)

Proof. Decomposing the point-wise norm‖det�k‖2 =‖det�k‖2
kϕ ekϕ and using Jensen’s

inequality applied to the convex function et gives

(∫

Ak

‖det�k‖2
kϕ ekϕdνNk

)
≥ Z ′

kϕexp

(∫

Akϕ

‖det�k‖2
kϕ

Z ′
kϕ

kϕdνNk

)

where

Z ′
kϕ :=

(∫

Akϕ

‖det�k‖2
kϕ dνNk

)

Hence, the sequence in the r.h.s in the statement of the lemma is bounded from below
by

k−(n+1) log Zkϕ + k−n

(∫

Akϕ

‖det�k‖2
kϕ

Zkϕ
ϕdνNk

) (
Zkϕ/Z ′

kϕ

)

+k−(n+1) log
(
Z ′

kϕ/Zkϕ

)
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But by the “exponential” decay of the probability measure μ(Nk )
kϕ on the complement of

Akϕ :
Zkϕ/Z ′

kϕ → 1 (4.15)

Indeed,

Z ′
k/Zk =

∫

Ak

μ
(Nk )
kϕ = 1 −

∫

K Nk −Ak

μ
(Nk )
kϕ

and on K Nk − Ak we have, by definition, μ(Nk )
kϕ < e−kn

dνNk proving the convergence
4.15. Finally, using (i i) and (i i i) in Theorem 4.6 combined with the exponentially decay

of μ(Nk )
kϕ (= ‖det�k‖2

kϕ
Zkϕ

) on the complement of Akϕ finishes the proof of the lemma. ��

4.6. Proofs of upper and lower bounds in Theorem 1.1. To simplify the notation we
assume that V = 1 (the general case is obtained by a trivial rescaling). First we will
prove the upper bound of the theorem (without the normalization factor). It does not use
the Bernstein–Markov property of the measure ν. It will be convenient to first establish
the LDP for the non-normalized measures μ̃(Nk ) (formula 4.10).

Proposition 4.8. Assume that ν is a probability measure supported on the compact set
K in X and let F be a closed set in P(K ). Then

lim sup
k→∞

k−(n+1) log

(
‖det�k‖2

L2(ν,K Nk ∩F) ≤ − inf
μ∈F

Eω(μ) + Eω(P(K0,ω)ϕ0

)

Proof. We may assume that K is not pluri-polar; otherwise the right hand side is infinite
[15]. Since ν is a probability measure supported on K we have

(k Nk)
−1 log

(
‖det�k‖2

L2(ν,K Nk ∩F)
)

≤ (k Nk)
−1 log

(
‖det�k‖2

L∞(K Nk ∩F)
)
. (4.16)

Given xk ∈ X N we will write μxk := δN (xk) for the corresponding normalized sum of
Dirac masses. Let xk ∈ K Nk ∩ F be a configuration realizing the sup in the r.h.s. above
and fix a continuous ω-psh function ϕ on X . Then the r.h.s above may be written as

(k Nk)
−1 log

(
‖det�k‖2 (xk)

)
= (k Nk)

−1 log
(
‖det�k‖2

kϕ (xk)
)

+
〈
ϕ,μxk

〉

≤ (k Nk)
−1 log

(
‖det�k‖2

L∞(kϕ,K Nk )

)
+

〈
ϕ,μxk

〉
(4.17)

After passing to a subsequence we may assume, by compactness, that

μxk → μ ∈ F
weakly, since F is closed. In particular, since ϕ is a continuous function on X it follows
that

(k Nk)
−1 log

(
‖det�k‖2

L∞(kϕ,K Nk )

)
+

〈
ϕ,μxk

〉 → Eω(PK0ϕ0)− Eω(PKϕ) +
∫

X
ϕμ,

(4.18)
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using 4.12. Since this holds for any such ϕ combining 4.17 and 4.18 gives, also using
3.9 in Proposition 3.8,

lim sup
k→∞

(k Nk)
−1 log

(
‖det�k‖2 (xk)

)
≤ −Eω(μ) + Eω(PK0ϕ0)) (4.19)

for the chosen subsequence of configurations. Hence, by 4.16

lim sup
k→∞

(k Nk)
−1 log

(
‖det�k‖2

L2(ν,K Nk ∩F)
)

≤ sup
μ∈F

(−Eω(μ)) + Eω(PK0ϕ0))

which finishes the proof of the proposition. ��
Finally, we will prove the following lower bound:

Proposition 4.9. Suppose that the measure ν has the Bernstein–Markov property wrt
the set K in X. Then for any open set G in P(K )

lim inf
k→∞ k−(n+1) log ‖det�k‖2

L2(ν,K Nk ∩G) ≥ − inf
μ∈G

Eω(μ) + Eω(P(K0,ω)ϕ0)

Proof. For a given μ ∈ G we have to prove

lim inf
k→∞ k−(n+1) log ‖det�k‖2

L2(ν,K Nk ∩G) ≥ −Eω(μ) + Eω(P(K0,ω)ϕ0) (4.20)

We may assume that Eω(μ) < ∞ (otherwise the statement is trivially true). But then
Theorem 3.5 gives that there exists ϕμ ∈ E1(X, ω) such that MA(ϕμ) = μ. To fix ideas
we first assume that ϕμ is continuous. Now,

lim inf
k→∞ k−(n+1) log ‖det�k‖2

L2(ν,K Nk ∩G) ≥ lim inf
k→∞ k−(n+1) log ‖det�k‖2

L2(ν,Akϕμ )

≥
(

−E(PKϕμ) +
∫
ϕμMA(PKϕμ)

)
+ Eω(PK0ϕ0)

using lemma 4.7 in the last step. Since, ϕμ is assumed continuous PKϕμ = ϕμ almost
everywhere wrt MA(PKϕμ) (by the orthogonality relation 3.8) and hence the first terms
above equals −E(μ), proving the desired bound. Finally, in the general case when ϕμ is
a general potential of finite energy we take a sequence ϕ j of continuous ω-psh functions
decreasing to ϕμ. By Lemma 3.9

μ j := MA(PKϕ j ) → MA(ϕμ) = μ

in P(K ). In particular, since G is assumed open in P(K ),
μ j ∈ G (4.21)

for j � 1. Next, fix a large index j and consider the set Akϕ j , defined as in formula
4.14. Then for k � 1

Akϕ j ⊂ (δNk )
−1G (4.22)

Indeed, assume for a contradiction that the previous statement is false. Then there is a
sequence (xki

) of configurations xki ∈ K Nk − (δNk )
−1G such that

lim inf
ki

k−(n+1)
i inf

K
Nki

(
log

(
μkiϕ j (xki )/ν

⊗N
))

≥ 0
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But then Theorem 4.6 gives that

μxki
→ μ j

in P(K ), forcing μ j ∈ P(K ) − G, which contradicts 4.21. We may now repeat the
previous argument with ϕμ replaced by ϕ j for j � 1 and instead get the lower bound

(
−E(PKϕ j ) +

∫
ϕ j MA(PKϕ j )

)
+ Eω(PK0ϕ0) = −E(μ j ) + Eω(PK0ϕ0)

Finally, letting j tend to infinity and using the convergence in Lemma 3.9 concludes the
proof in the general case. ��

Finally, note that to obtain the rate functional H(K ,ω) for the LDP wrt the normalized
measures μ(Nk ) we just have to normalize by dividing by Zk which, by the first point in
Theorem 4.6 gives the rate functional

H(K ,ω)(μ) := (Eω(μ))+Eω(PK0ϕ0)− Eω(PK 0)− Eω(PK0ϕ0) = (Eω(μ))− Eω(PK 0)

which coincides with the definition in formula 3.15 of H(K ,ω). This completes the proof
of the theorem.

Remark 4.10. Applying the LDP established above (for the sequence of probability mea-
sures) to F = G = P(K ) gives

log(1) = 0 = inf
μ∈P(K )

(Eω(μ)) + Eω(PK 0)− Eω(PK0ϕ0),

which proves the formula 3.13.

4.7. Proof of Corollary 1.3. Given λ > 0 and u ∈ C0(X) we let Fλ be the set of all
probability measures μ on K such that

∫
X ϕ(μ − μeq) ≥ λ. Since this is a compact

set, not containing μeq, and since the rate functional H(= H(K ,ω)) is good it follows
immediately that infμ∈Fλ H = Cλ > 0 and hence the corollary is a consequence of the
upper bound contained in Theorem 1.1. Next, assuming that n = 1, let us show that
when μeq = ω we have

inf
μ∈Fλ

Eω(μ) = 2λ2

‖dϕ‖2
X

(to simplify the notation we will assume that V = 1). To this end we first note that

E(μ) = −1

2

∫

:X
uμddcuμ = 1

2

∫

:X
duμ ∧ dcuμ := 1

2
(uμ, uμ)

where uμ is satisfies ddcuμ = μ−ω. Since, (·, ·) defines a positive definite inner product
on the Dirichlet space H := {v : dv ∈ L2(X)}/R and since Fλ = {μ = ω + ddcv :
(ϕ, v) ≥ λ} it follows immediately from the Cauchy–Schwartz inequality that E(μ) =

2λ2

‖dϕ‖2
X

. The proof is concluded by noting that (in any dimension) we have when ω ≥ 0

that H(X,ω) = Eω. Indeed, C(X, ω) := infμ∈P(X) Eω(μ) = Eω(P(X,ω)0) = Eω(0) = 0.
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4.8. A Generelized LDP for β-ensembles. Given a weighted measure (ν, ω) and a se-
quence (βk) ⊂ R+ we obtain a sequence of random point process on X , defined by the
following probability measure on X Nk :

μ
(Nk )
βk

:= 1

ZNk ,βk

‖det�k‖βk (ν(x1)⊗ · · · ⊗ ν(xN )

Theorem 4.11. Suppose that βk ≤ C and βkk → ∞ (in particular, βk ≡ β is allowed)
and that the measure ν satisfies the strong B-M-property wrt quasi-psh functions on the
non-pluripolar set K . Then the random point processes above satisfy a LDP with the
same rate functional as in Theorem 1.1, but with the speed βkk Nk.

Proof. We will first show that

FNk ,βk [ϕ] := 1

k Nk

log
∥∥∥det(�k)e

−kϕ
∥∥∥

Lβk (X Nk ,ν⊗Nk )
→ −Eω(P(K ,ω)ϕ) (4.23)

as k → ∞, where we have taken�k to be defined wrt a basis (�i,k)which is orthonormal
wrt the Hermitian metric determined by (ν, ‖·‖). To this end first note that for any ε > 0
there is a constant Cε such that

sup
K Nk

∥∥∥det(�k)e
−kϕ

∥∥∥ ≤ C Nk
ε eεβk k Nk

∥∥∥det(�k)e
−kϕ

∥∥∥
Lβk (X Nk ,ν⊗Nk )

Indeed, this follows immediately from applying the inequality 4.3 Nk times, one time
for each variable of ψ(x1, . . . , xNk ) := 1

k log
∥∥det(�k)e−kϕ

∥∥ and with p = βkk. But
then the first point in Theorem 4.6 gives that

FNk ,βk [ϕ] ≤ 0 − Eω(P(K ,ω)ϕ) + o(1) ≤ FNk ,βk [ϕ] + εβk +
1

βkk
log Cε

which finishes the proof of 4.23. Finally, since

1

βkk Nk
log E(e−βk k(ϕ(x1)+···+))=FNk ,βk [ϕ]−FNk ,βk [0] →−Eω(P(K ,ω)ϕ)+Eω(P(K ,ω)0)

the abstract Gärtner–Ellis theorem gives the desired LDP (alternatively, the direct proof
in Sect. 4.5 can also be used to conclude the proof of the LDP, just as in the case
β = 2). ��

4.9. The LDP in terms of analytic torsion: proof of Theorem 1.4. In this section we
will explain how to deduce Theorem 1.4 from Theorem 1.1. We thus fix a smooth
Hermitian metric on L with curvature form ω (where we recall that the most interesting
case will be when ω is non-negative) and a Hermitian metric h X on T X . It will be
convenient to write

τk := 1

kn+1

n∑

q=1

q(−1)q log det
(
�

0,q
∂̄,k

)

for the corresponding scaled analytic torsions. In fact, since the rate function appearing
in Theorem 1.1 is of the form Eω(μ) − C where C is a constant, Theorem 1.4 is an
immediate consequence of Theorem 1.1 combined with the following
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Proposition 4.12. Let L → X be an ample line bundle equipped with a smooth metric
with curvature form ω and fix a Hermitian metric on T X. Then the scaled limit of the
corresponding analytic torsions for the k th tensor power of L may be expressed as
follows:

lim
k→∞ τk = inf

μ∈P(X)
Eω(μ)

Proof. As shown in [13] in the case when the metric h X on T X is Kähler and in [11] in
the general case

lim
k→∞ τk = V n!(Eω(Pω0)− Eω(0)) = V n!(Eω(Pω0)

(where the factors V n! come from the conventions for the functional E in the present
paper). Hence the desired convergence follows immediately from the identities 3.13 and
3.14 (with K = X). Note that even if X is always Kähler here (i.e. it admits some
Kähler metric) the reason that we need to use [11] is that the Hermitian metric h X is not
assumed to be Kähler. ��

4.10. Remarks on normalizations of rate functionals, energy and Vandermonde deter-
minants. As shown above the LDP wrt the non-normalized measures ‖det�k‖2 ν⊗N

has a rate functional
Ẽω(μ) := Eω(μ)− Eω(P(K0,ω)ϕ0) (4.24)

where the constant Eω(P(K0,ω)ϕ0) is independent (as it must) of the support K of ν. It
follows immediately from the LDP that

Ẽω+ddcϕ(μ) := Ẽω(μ) +
∫

X
ϕμ, (4.25)

which of course could also be proved directly using the explicit expression 4.24. Let
us illustrate this in the case of multivariate polynomials ensembles (Sect. 2). We fix
ω0 such that ω0 = ddcφ0 for φ0 with logarithmic growth at infinity in C

n and such
that φ0 vanishes on a large ball in C

n (more precisely: large enough to contain the
compact subsets of C

n appearing below). We take the reference measure ν0 to be the
invariant probability measure on the unit-torus in C

n and set ϕ0 = 0 (compare the
setup in Sect. 4.2.1). Then the basis (�k,i ) can be taken as monomials and det�k =
�(Nk )(z1, . . . , zNk ) becomes the multivariate Vandermonde determinant (as in Sect. 2).
The LDP in the corresponding weighted setting on a compact subset K in C

n can now
be symbolically written as follows (where μ denotes a probability measure on K ):

∣∣∣�(Nk)(z1, . . . , zNk )

∣∣∣
2

e−k(φ(z1)+··· ) ∼ e− 1
n! kn+1(Ẽ0(μ)+

∫
φμ), (4.26)

where the “normalized energy” (or “non-weighted energy”) Ẽ0(μ) is independent of φ
and K (for example, by the transformation property 4.25). In the classical case when
n = 1 it is not hard to check that Ẽ0(μ) is the classical logarithmic energy of a measureμ:

Ẽ0(μ) = −
∫

C

log |z − w|μ(z)⊗ μ(w) (4.27)
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Indeed, taking ω to vanish on a neighborhood of the support of μ and using the Green
function expression 3.11 shows that Ẽ0(μ) = − ∫

C
log |z − w|μ(z) ⊗ μ(w) + C . To

see that C = 0 we take μ = ω0 to be the invariant measure on S1, i.e. μ = ddcφ0
for φ0 = log+ |z|2 so that Ẽ0(μ) = 0 + C . Since φ0 = 0 on the support of μ = ω0

we can then use the formula 4.24 with ω = ddcφ0 which gives Ẽ0(μ) = Ẽω0(μ) =
Eω0(ω0)−Eω0(P(S1,ω0)

0) = 0−0 using that P(S1,ω0)
0 = 0 (by the maximum principle).

All in all this forces C = 0 showing that 4.27 holds. Hence the rate functional in 3.15 is,
when n = 1, precisely the weighted logarithmic energy of μ (which is the subject of the
book [49]). In physical terms φ hence acts as an exterior potential. In fact, the weighted
energy appearing in the rate functional in 4.26 can be extended to the setting when K is
replaced by a closed non-compact set as explained in the following section.

5. The Large Deviation Principle in the Non-Compact Case

In this section we will obtain a variant of the LDP which applies to non-compact sets F
and in particular to F = R

n or F = C
n .

5.1. Functional analytic setup. In order to formulate the LDP in the case when the
random point process is defined on a non-compact topological space F we need to
specify the topology that we put on the space M(F) of all signed measures. We will
take the standard choice, namely the weak topology generated by the space Cb(F) of
all bounded continuous functions on F . Then the topological dual M(F)∗ of M(F),
i.e. with the space of all linear continuous functions on M(F), may be identified with
Cb(F), using the integration pairing as before [25]. We will apply the Gärtner–Ellis
theorem (Theorem 4.5) in this setting and we hence recall the notion of exponential
tightness (which is vacuous when F is compact): a sequence �k of probability measure
on a space P is exponentially tight (wrt the speed rk) if P may be exhausted by compact
subsets Fα for α > 0 such that lim supk→∞ log(�k(P − Fα)/rk) < −α.

5.2. The setting and statement of the LDP. We will consider the following general
setting. Start with an open set U of X such that X − U is locally pluripolar (in the
applications that we have in mind X − U will even be an analytic subvariety). We will
say that a pair (ν, ϕ) of a measure ν on U and a continuous function ϕ is admissible if

• ϕ → ∞ at infinity in U
• ∫

e−kϕdν < ∞ for k ≥ k0.

We will denote the support of ν in U by F, which is a closed set in U (but possibly
non-compact in X !). In the following we fix a continuous metric ‖·‖ on L → X with
normalized curvature form ω0. Then

μ
(Nk )
kϕ := ‖det�k‖2 e−kϕν⊗N/Zk

is a well-defined probability measure on F Nk for k ≥ k0.
The next theorem gives a LDP which is a variant of Theorem 1.1.

Theorem 5.1. Let (ν, ϕ) be an admissible pair such that (ν, ϕ + u) satisfies the BM-
property 4.2 for any u ∈ Cb(F) and such that that the support F of ν is non-pluripolar.
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Then the laws on P(F) of the probability measure μ(Nk )
kϕ on F Nk satisfy a LDP with

a good rate functional H(= H(F,ω0,ϕ)) and speed V kn+1. On the space P(F) the rate
functional H(μ) is minimized (and vanishes) precisely on the pluripotential equilibrium
measure μeq(= MA(P(K ,ω0)ϕ)). Moreover, the rate functional may be decomposed as

H(μ) = Eω0(μ) +
∫
ϕμ− C (5.1)

where C is the normalizing constant.

Remark 5.2. The reason that we have now denoted the given curvature form by ω0 (and
not ω) is that, in the case F is compact, the role of ω in Theorem 1.1 is in Theorem 5.1
played by ω0 + ddcϕ. The point is that in the present compact setting ‖·‖ e−ϕ does not,
in general, extend to a continuous metric (or even bounded) metric on L over X .

Before starting the proof it will be convenient to make the additional (very weak)
assumption that F be regular in the sense that�(F,ω0)(ϕ+u) ∈ C0(X) if u ∈ C0

b (F) and
hence the operator�(F,ω0) will in the following coincide with its regularization P(F,ω0).
This assumption may be removed by approximation just as in the proof of Theorem A
in [13] (and anyway it is automatically satisfied in the main cases F = R

n or F = C
n

considered below). To simplify the notation we will often omit the subscriptω0 in P(F,ω0)

and Eω0 and simply write PF and E , respectively.

5.3. Start of the proof: localization to a “ball” BR. Let ρ be a given exhaustion function
of U and write BR := {ρ ≤ R} so that BR is sequence of increasing compact sets
covering U . We first note that the support of the equilibrium measure μeq := MA(PFϕ)

is compact in U . Indeed, in general it is contained in the closed set D := {PFϕ ≥ ϕ}
(this is a well-known property of “free envelopes” and follows for example from Prop
1.10 in [13] or rather its proof) and since ϕ → ∞ at infinity in U and PFϕ ≤ C
(using PFϕ ≤ PF∩BRϕ) it follows that D is compact in U . Let us fix a “ball” BR in U
containing the support of μeq.

Lemma 5.3. We have that PF∩BRϕ = PFϕ. Moreover, for any �k ∈ H0(X, kL)

sup
F

‖�k‖2 e−kϕ = sup
F

‖�k‖2 e−k PFϕ (5.2)

and for any ε > 0, there is Cε > 0 such that

(
‖�k‖2 e−kϕ

)
(x) ≤ Cεe

k(PFϕ−ϕ)eεk
∫

‖�k‖2 e−kϕdν (5.3)

Proof. (compare Lemma 2.2 in the appendix of [49]). By definition PF∩BRϕ ≥ PFϕ

and PF∩BRϕ ≤ ϕ on the support of MA(PFϕ). Since this latter set is contained in
D (see above) this means that PF∩BRϕ ≤ PFϕ a.e. wrt MA(PFϕ) and hence the
inequality holds everywhere accord to the domination principle (see [22] for a very
general version of this principle). This shows that PF∩BRϕ = PFϕ. Next, note that
5.2 follows directly from the definition of PF (just as in [13]). To prove 5.3 we set
ψ := 1

k (log(‖�k‖2)(x)/Cεeεk
∫ ‖�k‖2 e−kϕdν) where Cε is chosen so that the BM-

inequality holds wrt K , i.e. so that ψ ≤ ϕ on K . Since ψ is a candidate for the sup
defining PFϕ it follows that ψ ≤ PFϕ on X which finishes the proof. ��
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Let us first prove that the analogue of the first point in Theorem 4.6 holds and in
particular:

k−(n+1) log ‖det�k‖2
L2(kϕ,ν⊗Nk )

→ −Eω0(P(K ,ω0)(ϕ)) + Eω0(P(K0,ω0)ϕ0), (5.4)

To this end we first apply the previous lemma Nk times to�( j)
k (x) ∈ H0(X, kL) defined

as det�k evaluated at (x1, x2, x j−1x, x j , . . . , xNk ) for j = 1, . . . , Nk . This gives

(
‖det�k‖2 e−kϕ

)
(x1, . . . , xN )

≤ C Nk
ε eεNk ke−k((ϕ−PFϕ)(x1,...,xN )

∫

X Nk
‖det�k‖2 e−kϕν⊗Nk (5.5)

Moreover, decomposing kϕ = (k − k0)ϕ + k0ϕ and using PFv ≤ v on the support F of
ν gives

∫

X Nk
‖det�k‖2 e−kϕν⊗Nk

≤ C Nk
ε eεNk k sup

F

(
‖det�k‖2 e

−k PF

((
1− k0

k

)
ϕ
)) (∫

X
e−k0ϕν

)Nk

Using that PF is concave we get PF ((1 − k0
k )ϕ) ≥ ((1 − k0

k )PFϕ + ( k0
k )PF 0 and since

PFϕ and PF 0 are both bounded on X it follows that

∫

X Nk
‖det�k‖2 e−kϕν⊗Nk ≤ C sup

F

(
‖det�k‖2 e−k PFϕ

)
C ′Nk eεNk k (5.6)

Since, by Lemma 5.3 supF ‖det�k‖2 e−kϕ = supF (‖det�k‖2 e−k PFϕ) combining 5.5
and 5.6 (and using that ϕ ≥ PFϕ) gives

k−(n+1) log sup
F

(
‖det�k‖2 e−k PFϕ

)
= k−(n+1) log ‖det�k‖2

L2(kϕ,ν) + o(1) (5.7)

Next, by Lemma 5.3 we have PFϕ = PF∩BRϕ and hence we can apply the second point
in Theorem 4.6 to the function PF∩BRϕ on X and deduce that 5.4 indeed holds (where
we again used that PFϕ = PF∩BRϕ, but now in the rhs in 5.4).

Next, we note that the analogue of Theorem 3.7 holds: the functional u �→ Eω0(P(F,ω0)

(ϕ + u)) is Gateaux differentiable on Cb(F) with differential MA(P(F,ω0)(ϕ + u)). In
other words,

Eω0(P(F,ω0)(ϕ + tu))

dt t=0
=

∫

X
MA(P(F,ω0)ϕ)u

Indeed, since t stays in a bounded set and u is bounded we may, as explained above,
assume the support of MA(P(F,ω0)(ϕ + tu)) is contained in BR giving, just as before,
that P(F,ω0)(ϕ + tu) = P(F∩BR ,ω0)(ϕ + tu) and hence the differentiability follows from
Theorem 3.7.
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5.4. Exponential tightness and application of the Gärtner–Ellis theorem. Given the
previous estimates the proof could be obtained by repeating the arguments in Sect. 4.5.
But for simplicity we will instead apply the Gärtner–Ellis theorem to this non-compact
setting and we will start by verifying the exponential tightness. We let Fα to be the set
of all measures on P(F) such that

∫
(ϕ− PFϕ)μ ≤ 3α. Since ϕ− PFϕ → ∞ at infinity

in U, the set Fα is indeed compact. By definition

�k(P(F)− Fα) =
∫

{ϕ−PFϕ>NF 3α}
(‖det�k‖2 e−kϕ)(x1, . . . , xN )

‖det�k‖2
L2(kϕ,ν⊗Nk )

ν⊗Nk

Now, by 5.5 the density in the previous integral may be estimated from above by
C Nk
ε eεNk ke−k(ϕ−PFϕ) for some fixed small ε > 0 (taken so that ε < α/2). Hence,

decomposing

e−k(ϕ−PFϕ) = e− 1
2 k(ϕ−PFϕ)e− 1

2 k(ϕ−PFϕ) ≤ e− 1
2 k NF 3αe− 1

2 kϕCk

and integrating wrt ν⊗Nk (and using that ϕ is admissible) finishes the proof of the
exponential tightness.

All in all this means that we may apply the Gärtner–Ellis Theorem 4.5 as before and
obtain an LDP with a rate functional expressed as a Legendre transform

H(μ) :=
(

sup
Cb(F)

Eω0(P(F,ω0)(ϕ + u))−
∫

uμ

)
− C (5.8)

Properties of the rate functional. The existence, uniqueness and form of the minimizer
of the rate functional H follows exactly as in the proof of Proposition 3.11. The fact
that H is good is a well-known consequence of the LDP and the exponential tightness
obtained above (see Lemma 1.2.18 in [25]). But it could also be proved directly from
the decomposition 5.9, to whose proof we now turn. We first rewrite the first bracket
in 5.8 as

(
sup

ϕ′∈{ϕ}+Cb(F)
(Eω0(P(F,ω0)(ϕ

′)−
∫
ϕ′μ)

)
+

∫
ϕμ

Next we have, just as in the proof of Proposition 3.1 that

Eω0(P(F,ω0)(ϕ
′))−

∫
ϕ′μ ≤ Eω0(P(F,ω0)(ϕ

′)−
∫

P(F,ω0)(ϕ
′)μ ≤ Eω0(μ)

as P(F,ω0)ϕ
′ is a candidate for the sup defining Eω0(μ). As for the lower bound we take

ϕ′
j smooth functions on X increasing to the unbounded function ϕ′. Then P(F,ω0)(ϕ

′
j ) ≤

P(F,ω0)(ϕ
′) and hence

Eω0

(
P(F,ω0)(ϕ

′
j )

)
−

∫
ϕ′

jμ ≤ Eω0

(
P(F,ω0)(ϕ

′)
) −

∫
P(F,ω0)(ϕ

′)μ + ε j

where ε j → 0 by the monotone convergence theorem of integration theory. Noting that
P(F,ω0)(ϕ

′
j ) = P(F̄,ω0)

(ϕ′
j ) (since by assumption F̄ − F is locally pluripolar in X; see

[35]) we can apply Proposition 3.1 to deduce that

Eω0(μ) = sup
ϕ′∈{ϕ}+Cb(F)

(
Eω0(P(F,ω0)(ϕ

′))−
∫
ϕ′μ

)
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finishing the proof of the decomposition formula 5.1. Note that since ϕ is bounded from
below it then follows that H(μ) < ∞ iff Eω0(μ) < ∞ and

∫
ϕμ < ∞.

Corollary 5.4. Let F = R
n (or F = C

n) and let ν be the Euclidean measure on F.
Assume that φ is a function on F with super logarithmic growth at infinity. Then the
push-forward �k of the Vandermonde measure

μ̃(Nk ) :=
∣∣∣�(Nk )

∣∣∣
2

e−kφν⊗Nk

under the map δNk (formula 1.6) satisfies a LDP with a good rate functional

Ẽφ(μ) = Ẽ0(μ) +
∫
φμ (5.9)

with Ẽ0 independent of φ and F. The rate functional has a unique minimizer, coinciding
with the pluripotential equilibrium measure μeq := MA(PFφ).

Proof. Let (X, L , ω0) := (Pn,O(1), ω0) as in the beginning of Sect. 2 and write ϕ =
φ − log+ |z|2 := φ − φ0 on U := C

n . Then we have ‖·‖2 e−kϕ = | · |2e−kφ . To see that
the BM-property is satisfied we first note that replacing F with F ∩ BR for an ordinary
ball of radius R the pair (ν, ϕ) has the BM-property wrt F ∩ BR for any ϕ ∈ C0(F) (and
hence for ϕ + u as above), as is well-known [18]. Next we will apply the arguments in
the proof of Lemma 5.3: fixing ϕ and definingψ as in that lemma hence givesψ ≤ ϕ on
BR and in particular ψ ≤ ϕ on the support of MA(PFϕ) if R � 1. But then it follows
from the domination principle that ψ ≤ PFϕ on all of X and hence the inequality 5.3
holds (even when restricting ν to BR). Since, PFϕ ≤ ϕ on all of X this finishes the
proof of the BM-property wrt F . Hence we may apply the previous theorem to obtain an
LDP with a rate functional of the form 5.1 for some constant C . Finally, we may simply
define Ẽ0(μ) := Eω0(μ)− ∫

φ0μ− C so that formula 5.9 holds, as desired. ��
When n = 1 the functional Ẽ0(μ) in 5.9 can still be written in the classical form

4.27, even if μ does not have compact support in C(= U ). This follows for example
from the latter case by using the following lemma valid in any dimension:

Lemma 5.5. Let μ be a measure such that E(μ) < ∞ and write μR := 1BRμ/
∫

X μR,
where BR is a sequence of sets such that 1BRμ → μ. Then Eω0(μR) → Eω0(μ) as
R → ∞.

Proof. Let ϕμR be the potential of the probability measure μR normalized so that
supX ϕμR = 0. Now by the variational property of ϕμR we have

E(ϕμR )−
∫
ϕμRμ ≥

(
E(ϕμ)−

∫
ϕμμ

)
+ δR

∫
ϕμRμ

where δR → 0. Moreover, by Prop 3.4 in [15] the following estimate holds (using that
μ has finite energy): | ∫ ϕμRμ| ≤ C |E(ϕμR )|1/2. Hence, the inequality above forces
−E(ϕμR ) ≤ C and as consequence ϕμR is an asymptotic maximizer in the sense of
Theorem 3.5. Hence, the latter theorem gives E(ϕμR ) → E(ϕμ) and

∫
ϕμRμ → ∫

ϕμμ.
Using that μR = 1BRμ(1 + δR) ≤ Cμ and dominated convergence hence finally gives
E(μR) → E(μ). ��
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5.5. Applications to sections vanishing along a given hypersurface and Laplacian growth.
Let Z by a smooth hypersurface in X . Let Hk Z be the subspace of H0(X, kL) consisting
of all sections vanishing to order k along Z . Then any continuous Hermitian metric ‖·‖
(with curvature form ω) and a volume form ν on X induce by restriction, an inner prod-
uct on the subspace Hk Z (that will be non-degenerate under the assumptions below).
Hence, we can associate a sequence of determinantal point-processes to the correspond-
ing sequence of Hilbert spaces. We will assume that the line bundle L −O(Z) is ample,
where (O(Z), sZ ) is the line bundle with a holomorphic section sZ cutting out Z , i.e.
Z = {sz = 0} (using, as before, additive notation for tensor products of line bundles).

Corollary 5.6. The laws of the normalized empirical measure of the determinantal point
process associated to Hk Z satisfy a LDP on X − Z with a good rate functional whose
unique minimizer is compactly supported on X − Z.

Proof. The map �k �→ �k/sZ establishes a unitary isomorphism between the Hilbert
space Hk Z above and the vector space (H0(X, k(L − O(Z))) with the inner product
induced by the volume form ν and the (non-continuous) metric ‖̇‖ elog |sZ | on the line
bundle L − O(Z) over X (the metric blows up along Z). Since, ν satisfies the BM-
property wrt any domain in X (as is proved just as in the proof of the previous corollary)
the LDP follows from the previous theorem applied to the line bundle L − O(Z) and
the set U . ��

In fact, the previous LDP holds for much more general measures ν. For example we
can take ν = f dVX where f is continuous and positive on X − Z . Then we just have to
assume that the corresponding inner products on Hk are finite for k � 1. Moreover, the
assumption that L −O(Z) be ample can be relaxed to assuming that L −O(Z) is big as
in Sect. 4.4.1. But even in the ample case the point is really that the previous corollary
can be adapted to the setting where Z is replaced with by an effective R-divisor with
simple normal crossings:

Z := t1 Z1 + · · · tm Zm

where ti ≥ 0 if we let Hk be defined by taking the vanishing order on Zi to be the
round-down of kti . In particular, if L is ample then so is L − O(Z) for ti sufficiently
small (and rational, so that the ampleness makes sense). For example, when Z = t1 Z1
and sZ1 is a section of L then we can take t1 ∈ [0, 1[ so that t1 = 0 corresponds to the
situation in the previous sections where Hk Z is the full Hilbert space H0(X, kL) and as
t1 → 1 the scaled dimension of Hk Z tends to zero. Hence, physically t1 plays the role of
the “filling fraction” familiar from the Quantum Hall effect when n = 1 (where X is the
Riemann sphere P

1 and Z1 is the point at infinity). This latter case has also been studied
extensively from the point of view of Laplacian growth (for example in connection to
the Hele-Shaw flow); see [38,61] and references therein. Here we just briefly point out
the relation to Laplacian growth on a Riemann surface of arbitrary genus:

Proposition 5.7. Fix a point Z on a compact Riemann surface (X, ω) equipped with a
real two-form ω such that

∫
X ω = 1. For t ∈]0, 1[ the equilibrium measure associated

to (X, ω, t Z) (i.e. the minimizer appearing in 5.6) may be written as

μt := 1Dtω, (5.10)

for a closed set Dt . The right derivative of μt exists and its value at t = t0 coincides
with the “non-weighted” equilibrium measure of the compact subset Dt0 of X − Z (see
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the proof for the precise meaning of this term). In particular, if Dt0 is a domain with
piecewise smooth boundary, then this latter measure is supported on ∂Dt0 and its density
is the normal derivative of the Green function of Dt0 with a pole at Z.

Proof. The regularity statement can be deduced from the general C1.1-regularity result
of envelopes in [7]. Next, it will be convenient to switch to the weight notation, i.e., we
let ω be the curvature form for a weight φ on a line bundle of degree one (see Sect. 1.6)
and we write φt for the upper envelope of all psh weights χt on L such that χt ≤ φ

on X and χt ≤ t log |s|2 + Cχt for some constant Cχt . We let Dt be the closed subset
where χt = φ. Then μt is the curvature current of φt , i.e., μt = ddcφt . Moreover, it
follows immediately from the definition that φt+h ≤ φt if h > 0 and that t �→ φt is
concave in t . Accordingly, Dt+h ⊂ Dt and by concavity the right derivative φ̇t is thus a
decreasing limit of psh weights on L and hence it exists and is itself a psh weight on L .
Moreover, by definition, the right derivative of μt is equal to ddcφ̇t . To see the relation
to Green functions we note that on U := X − Z we get a well-defined function by setting
ut := φt − log |s|2 and we denote by gt its right derivative. It follows from the previous
discussion that gt is a psh function on U such that gt = 0 on Dt , ddcgt = 0 in the exterior
and gt has a logarithmic pole at infinity in U in the sense that in a fixed local holomorphic
coordinate z centered at Z we have that gt − log |s|2 is bounded (since by definition
log |s|2 − C ≤ φ̇t ≤ log |s|2 + C). By construction dμt/dt = 1U ddcgt which we call
the “non-weighted” equilibrium measure of the compact subset Dt0 of U . Finally, in the
regular case we can use Stokes theorem to get dμt/dt|t=t0 = ddcgt0 = [∂Dt0 ] ∧ dcgt0
which gives the required normal derivative on the boundary. ��

In other words the proposition says (in the regular case) that the one-parameter fam-
ily of domains defined by the supports of the equilibrium measures μt are decreasing
in t and their evolution is driven by the normal derivative of the corresponding Green
functions, which is the definition of Laplacian growth. It would be interesting to know if
an analogous theory of “Monge–Ampère growth” can be developed in the higher dimen-
sional case where Z is a submanifold cut out by a holomorphic section s of a line bundle
L . For example, it seems natural to conjecture that in the general higher dimensional
case the right derivative of the corresponding weighted equilibrium measures μt still
exists (at least under suitable regularity assumptions) and is equal to the corresponding
non-weighted equilibrium measure of the set Dt . The problem with extending the previ-
ous proof to higher dimensions is that it is no longer a priori clear that φ̇t is a psh weight.
Interestingly, in another direction it was recently shown in [48] that, in any dimension,
the partial Legendre transform in t of the corresponding equilibrium potentials defines
a weak geodesic ray in the (closure) of the space of all Kähler potentials on L , equipped
with the Mabuchi metric.

6. Relation to Bosonization and Effective Field Theories

We will conclude with a heuristic discussion about some relations to the notion of
bosonization (or fermion–boson correspondence) in the physics literature (see [54]). We
will compare the present setting with the one in the paper [1] which concerns the case
of a Riemann surface X (but see also [57]). Another useful reference on field theory
linking mathematical and physical terminology is [32]. As established in [1] (see also
[57]) there is a correspondence between a certain theory of fermions� on one hand and
bosons ϕ on the other, on a Riemann surface X . In the present context � is a complex
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spinor coupled to the line bundle L and ϕ is a smooth function on X . The main ingredient
in the correspondence is the equality

〈
‖�(x1)‖2 . . . ‖�(xN )‖2

〉
=

〈
eiϕ(x1) . . . eiϕ(xN )

〉
, (6.1)

(see formula 4.4 in [1]) where the brackets denote integration against (formal) functional
integral measures of the form D�D�̄e−SFerm(�,�̄) and Dϕe−Sbose(ϕ), respectively. The
fermionic action SFerm has a standard form (see below) and the problem is to find a
bosonic action Sbose so that the ansatz 6.1 above holds.

Comparing with the geometric setup in the present paper we will, in this section,
consider the case when the compact set K is all of X and equip L with a smooth metric
with (normalized) curvature form ω, that will however not be assumed to be positive.
We will also fix an Hermitian metric on X with volume form dV . In the previous
terminology we will hence consider the determinantal point process associated to the
weighted measure (dV, ω) on X .

Let us now explain how the LDP in Theorem 1.1 (and in particular its variant in
Theorem 1.4 ) can be interpreted as an asymptotic/effective version of the boson–fermion
correspondence on a complex manifold of arbitrary dimension n with the choice

Sbose(ϕ) = − 1

(−i)n−1 E−iω(ϕ), (6.2)

where it will, in this section, be convenient to remove the normalization factor V from
the definition 3.2 of the functional Eω and simply set

Eω(ϕ) = 1

(n + 1)!
n∑

j=0

∫

X
ϕω j

ϕ ∧ (ω)n− j ,

where we recall that ωϕ := ω + ddcϕ(= ω + i
2π ∂∂̄ϕ). With this normalization the

following n + 1-homogeneity holds:

Ecω(cψ) = cn+1Eω(ψ). (6.3)

In particular, when n = 1 we get

Sbose(ϕ) = −E−iω(ϕ) = 1

2

∫

X
dϕ ∧ dcϕ + i

∫

X
ϕω

which in the notation of [1] corresponds precisely to the decomposition

Sbose(ϕ) = S1 + S2

given in [1], in the case when X has genus zero. In the higher genus case soliton type
terms are added in [1] to the action, which describe the topological sector of the bosonic
theory. This is related to the fact that the field ϕ should really be assumed to be circle
valued (i.e. its values are only well-defined up to integer periods). But as explained in [1]
one may assume that ϕ is single-valued when dealing with the non-topological sector—
compare the discussion in connection to formula 3.19 in [1] (anyway the topological
sector can be shown to give a lower order contribution in the large k limit studied below).
See also the discussion in Sect. 2.2.1 of [12] for a more precise comparison with the
normalization conventions used in [1].
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To make the connection with the LDP we will, as before, consider the limit when
L is replaced by the large tensor power kL . Since, Nk ∼ kn this is also the limit of
many particles and the asymptotic boson-correspondence will hence give a bosonic field
theory description of a collective theory of fermions. As explained in the introduction
of the paper we will consider “clouds” of points (x1, . . . , xN ) that can be described
by a “macro state”, i.e. a limiting continuous distribution, or more precisely a measure
μ = ρdV on X :

1

Nk

Nk∑

i=1

δxi ≈ μ (6.4)

in a suitable smeared out sense.

6.1. The fermionic side. First recall the representation of the Slater determinant 4.5
(expressed in an orthonormal basis wrt to (dV, ω)) as a functional integral over Grassman
(anti-commuting) fields (compare formula 4.5 in [1]):

‖(det�)(x1, . . . , xN )‖2 = CN

∫
D�D�̄e−Sferm(�,�̄) ‖�(x1)‖2 . . . ‖�(x1)‖2, (6.5)

integrating of over all complex (Dirac) spinors �, i.e. over all smooth sections of the
exterior algebra 
0,∗(T ∗

X)⊗ L . Here Sferm(�, �̄) is the fermionic action

Sferm(�, �̄) =
∫

X
〈DA�,�〉 dV,

expressed in terms of the Dirac operator DA on
0,∗(T ∗
X)⊗ L induced by the complex

structure on X and L and coupled to the gauge field/connection A whose curvature is
−i2πω and to the Hermitian metric on X with volume form dV . Concretely, we have
DA = ∂ + ∂

∗
expressed in terms of the adjoint of the ∂-operator. For the Riemann

surface case see [1]. This latter case, i.e. when n = 1, is special since Sferm(�, �̄) is
then independent of the choice of Hermitian metric on X (i.e. the action is conformally
invariant). Indeed, decomposing � = �0 +�1 gives

Sferm(�, �̄) = i
∫

X
∂�0 ∧�1 +�0 ∧ ∂�1,

where the integrand is naturally a (1, 1)-form and may hence be integrated over X (to
simplify the formula we have assumed that L is trivial above—in general one also has
to use the metric on L or equivalently couple ∂ to the gauge field A). The integer N
appearing in 6.5 is the dimension of the space of zero-modes of DA on
0,∗(T ∗

X)⊗ L
which coincides with H0(X, L) since we have assumed that L is ample (more precisely,
this will be true once we replace L with kL for k sufficiently large due to Kodaira
vanishing in positive degrees). Moreover, the constant CN in 6.5 is the inverse of the
Ray–Singer analytic torsion of the complex 
0,∗(T ∗

X) ⊗ L (compare Sect. 1.3.2), if
we use zeta function regularization of the corresponding formal determinants.

Now applying the LDP in Theorem 1.4 for the Slater determinants multiplied by the
analytic torsion and using 6.5 and 6.4 hence gives

〈
‖�(x1)‖2 . . . ‖�(xN )‖2

〉
∼ e−k Nk Eω(μ).
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6.2. The bosonic side. We will use an argument involving analytic continuation in a real
parameter t (which will be set to −i in the end). To this end we consider the path integral

∫
Dϕe−St (ϕ)etϕ(x1) . . . etϕ(xN ), −St (ϕ) = t−(n−1)Etω(ϕ).

Next, we will show that, in the limit when L gets replaced with kL and ω with kω we
have ∫

Dϕe−St (ϕ)etϕ(x1) . . . etϕ(xN ) ∼ et2kn+1 Eω(μ). (6.6)

Accepting this for the moment we see that the effective bosonization explained above
follows by invoking analytic continuation and setting t = −i .

To see how the asymptotics above come about first note that we get the following
exponent in the integral, after setting ϕ = kψ :

t−(n−1)Etkω(kψ)− tk(ψ(x1) + · · ·ψ(xN )).

Using the n + 1-homogeneity 6.3 the previous expression may be written as

k(n+1)
(

t−(n−1)Etω(ψ)− t
1

kn (ψ(x1) + · · ·ψ(xN ))

)

and hence, using 6.4, it can be approximated by

k(n+1)
(

t−(n−1)Etω(ψ)− t
∫

X
ψμ

)
.

Now we get
∫

Dϕe−St (ϕ)etϕ(x1) . . . etϕ(xN ) ∼ ekn+1 supψ
(
t−(n−1)Etω(ψ)−t

∫
X ψμ

)
.

Denote by ψt a function where the sup is above is attained. Since it is a stationary point
we get the equation

t−(n−1) 1

n!
(
tω + ddcψt

)n+1 = tμ ⇔ 1

n!
(
tω + ddcψt

)n+1 = tnμ

(see the variational properties in Proposition 3.1). Hence a solution is obtained by setting
ψt = tψμ where ψμ is a potential for μ (solving the equation for t = 1). Finally, since

(
t−(n−1)Etω(tψμ)− t

∫

X
(tψμ)μ

)
= t2(Eω(ψμ)−

∫

X
ψμμ) = t2 Eω(μ)

(using the homogeneity 6.3 for c = t in the first step and the formula 3.5 for Eω(μ).
This proves the asymptotics 6.6 up to a subtle point that was neglected in the previous
argument: when n > 1 the function ψt may not be a maximizer even though it is a
stationary point. Equivalently, this means that the potential ϕμ of μ may not maximize
the functional

ϕ �→ Eω(ϕ)−
∫

X
ϕμ
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over the whole space C∞(X). By Theorem 3.5 it is a maximizer on the subspace Hω of
C∞(X) where ωϕ ≥ 0, but it is known that the functional above is not even bounded
from above on the whole space C∞(X). Coming back to the original variable ϕ this
problem could have been circumvented by restricting the integration to all ϕ such that
ddcϕ ≥ −ktω. This can be seen as a regularization similar to frequency cut-offs usually
used in quantum field theory. Alternatively, one could expect that there is a choice of
action

Sbos = − 1

(−i)n−1 E−iω + S′,

where the term S′ has the effect of localizing the integral to the subspace Hω/k in the
large k limit and that S′ will be lower order in k and hence negligible on the space Hω/k .
It would be very interesting to find a model (when n > 1) where such a mechanism
could be analyzed.

6.3. Consistency with the central limit theorem. Instead of going further into the subtle
points raised above we will just observe that the choice of bosonic action 6.2 is consistent
with the CLT proved in [9]. We will consider the case when the curvature form ω is
strictly positive. Then the CLT referred to above says, in physical terms, that the (suitably
scaled) fluctuations of the empirical measure 1.6 converge to a random measure/charge-
distribution for a statistical Coulomb gas ensemble described by the Boltzmann weight

e−Ẽ(ν)Dv,

where ν(= ρdV ) is a signed measure (i.e. a difference of two positive measures) such
that

∫
X ν = 0 and

Ẽ(ν) = −1

2

∫

X
(�uν)uνdV

(
= 1

2
‖duν‖2

X

)
, ν = �uν,

where � is the Laplacian taken wrt a Riemannian metric g on X and dV is the volume
form of g. Equivalently, the Green potential uν is a massless boson field on X (i.e.,
a Gaussian free field in mathematical terms). Using Fourier transforms (see [9] and
references therein) the precise mathematical meaning of the convergence is

∫

X N
dV (x1) . . . dV (xN )ρ

(N )(x1, . . . , xN )e
1

ak
i(u(x1)+···+u(xN )) → e− 1

2 ‖du‖2
X , (6.7)

where ρ(N ) is the Slater determinant appearing above and ak = k(n−1)/2. To obtain the
latter convergence from the previous bosonization ansatz we approximate the lhs above
by

CNk

∫
Dμe

kn
ak

i
∫

u
(
μ− ωn

n!
)

DϕeSbose,k (ϕ)+kni
∫
ϕμ. (6.8)

Note that when k = 1 we may expand

Sbose,1(ϕ) = − 1

(−i)n−1 E−iω(ϕ) = −i
∫

X
ϕ
ωn

n! − 1

2

∫

X
dϕ ∧ dcϕ ∧ ωn−1

(n − 1)! + · · · ,
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where the dots indicate a sum of n − 1 terms of the form

1

2

∫

X
dϕ ∧ dcϕ ∧ (ddcϕ) j ∧ ωn− j , j ≥ 1

which hence is of order ≥3 in ϕ (some of the coefficients will be imaginary). In the limit
when we are changing L by kL and ω by kω we write ϕ = kψ as before, so that

Sbose,k(ϕ) = kn+1Sbose,1(ψ)

and hence the exponent in the ϕ integral in 6.8 may be written as

kn+1
(

i
∫
ψ

(
μ− ωn

n!
)

− 1

2
‖dψ‖2

X + · · ·
)
.

Les us now make the following change of variables:

μ = ωn

n! +
1

k(n+1)/2
ν, ψ = 1

k(n+1)/2
v.

Then the previous expression may be written as

i
∫
vν − 1

2
‖dv‖2

X + O(k−1)

and hence the integral over Dϕ may be approximated by a Gaussian integral over v
which, as usual, may be evaluated as

e− 1
2 ‖duν‖2

X

All in all this means that the integral 6.8 may be approximated by
∫

Dνe
i
∫

uν
e− 1

2 ‖dvν‖2
X

and performing the Gaussian integration again finally gives the end result e− 1
2 ‖du‖2

X ,

thus confirming 6.7.
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