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Abstract: We identify the Givental formula for the ancestor formal Gromov–Witten
potential with a version of the topological recursion procedure for a collection of isolated
local germs of the spectral curve. As an application we prove a conjecture of Norbury
and Scott on the reconstruction of the stationary sector of the Gromov–Witten potential
of CP1 via a particular spectral curve.
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1. Introduction

1.1. Givental theory. Givental theory [17–19] is one of the most important tools in
the study of Gromov–Witten invariants of target varieties and general cohomological
field theories that allows, in particular, to obtain explicit relations between the partition
functions of different theories, reconstruct higher genera correlators from the genus 0
data, and to establish general properties of semi-simple theories.

The core of the theory is Givental’s formula that gives a formal Gromov–Witten
potential associated to a calibrated semi-simple Frobenius structure. Teleman [33] proves
that the formal Gromov–Witten potential associated to the calibrated Frobenius structure
of a target variety with semi-simple quantum cohomology coincides with the actual
Gromov–Witten potential in all genera.

Roughly speaking, to a calibrated Frobenius structure of dimension r with a chosen
semi-simple point t one can associate two r × r matrix series, St (ζ

−1) and Rt (ζ ), and
r × r matrices�t and�t (the latter one is diagonal), such that for a certain quantization
of these matrices we have the following formula for the corresponding Gromov–Witten
potential:1

Ŝ−1
t �̂t R̂t�̂t Z⊗r

KdV, (1.1)

where by ZKdV we denote the Kontsevich–Witten tau-function of the KdV hierarchy;
that is, the function parametrizing the intersection indices of ψ-classes on the moduli
space of curves.

1.2. Topological recursion theory. The theory developed by Eynard and the second
named author (see [13,15]), is a procedure, called topological recursion, that takes the
following objects as input. First, a particular Riemann surface, which is usually called
the spectral curve. Second, two functions x and y on this surface, and third, a choice of a
bi-differential on this surface, which we will call the two-point function (it has often been
referred to as the Bergman kernel, but since this term has other uses as well, we refrain
from using it in this paper). Occasionally, a particular extra choice of a coordinate on an
open part of the Riemann surface is also made. The output of the topological recursion is
a set of n-formsωg,n , whose expansion in this additional coordinate generates interesting
numbers.

In some cases these numbers are correlators of a matrix model (that was the original
motivation for introducing the topological recursion; it is a natural generalization of the
reconstruction procedure for the correlators of a certain class of matrix models, see,
e.g. [2]), in some other cases they appear to be related to Gromov–Witten theory and to
various intersection numbers on the moduli space of curves.

Note that this topological recursion is unrelated to the topological recursion occurring
in the theory of moduli spaces of curves. Throughout this paper topological recursion
is always understood in the above “matrix model”-related sense. We refer to the whole
corresponding theory as the “topological recursion theory”. We will also sometimes
refer to this side of the story as “the spectral curve side”.

One of the ways to think about the input data of the topological recursion theory is to
say that the (g, n) = (0, 1) part of a partition function in some geometrically motivated
theory determines the spectral curve; the (g, n) = (0, 2) part of a partition function
determines the two-point function, and the rest of the correlators can be reconstructed

1 The formula as appears here is missing one term corresponding to g = 1, n = 0 that we completely
ignore in this paper.
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from these two via topological recursion, in terms of a proper expansion of ωg,n
(see [7]).

The topological recursion theory is often used to reproduce known partition functions,
to extract from them some higher genus correlators which were until then unreachable
and to give new non-trivial relations for the correlators, see e.g. [16].

1.3. Goals of the paper. As we see, there is a lot of similarities in both theories (which
was first noted by Alexandrov et al. in [1–3]). In both cases we have to start with a small
amount of data fixed in genus zero, and in both cases the intersection indices ofψ-classes
on the moduli space of curves are some kind of structure constants of the reconstruction
procedure (in the case of Givental this is just a part of Givental’s formula for the formal
Gromov–Witten potential, and in the case of topological recursion it is recovered locally
in an expansion near a simple critical point of the spectral curve, see [11]).

Moreover, in both cases we have an expansion of the correlators in terms of Feynman
graphs, see [8] on the Givental side and [12,16,21] on the spectral curve side. So, the
natural question is whether we can precisely identify both theories in some setup.

On the Givental side we restrict ourselves to a part of the Givental formula, namely,
R̂�̂Z⊗r

KdV (this expression gives the so-called total ancestor potential, written in the
normalized canonical basis). In some sense, it is the most important part of the Givental
formula since it determines the underlying Frobenius structure, while the rest of the
formula is a linear change of variables (action of the matrix �̂) and a change of calibration
rather than of the Frobenius structure itself (action of the matrix series Ŝ−1). Note that
for a cohomological field theory which does not have quadratic terms in the potential, the
S-action becomes trivial when one takes the origin as the chosen point on the Frobenius
manifold. For Gromov–Witten applications, where quadratic terms do appear, the S-
action is nontrivial, but, together with�-action, it amounts to a linear change of variables.
This still allows for the correspondence below to be established, as long as one makes
a specific choice of coordinates on the topological recursion side. We describe this in
detail in the case of the particular example of CP1, see below.

On the topological recursion side we consider a collection of local germs of a spectral
curve at a finite number of points, with fixed expansions of the coordinate functions x and
y and the two-point function near these points. The result of the topological recursion
are local germs of n-forms ωg,n defined on the products of the given germs of the curve,
which we expand in a particular basis of forms that also depends on the expansions of
the two-point function.

The resulting systems of correlators coincide for consistent choices of the input data
in both theories. We prove this fact, essentially using the graphical interpretation of the
formulas given in [8,12], and provide a dictionary to translate Givental data into local
spectral curve data and vice versa.

Thus, we solve the problem about the mysterious relation between topological recur-
sion and enumerative geometry. Namely, we almost fully complete the program proposed
in the thesis of the second named author [28] (see also [7,29]) aiming at building a map
between a problem of enumerative geometry and the topological recursion setup for
some spectral curve. The only issue which is not addressed in our work is the definition
of a global spectral manifold which will have to be addressed elsewhere in relation with
mirror symmetry and Picard–Lefschetz theory.

As an application we prove the Norbury–Scott conjecture on the stationary sector
of the Gromov–Witten invariants of CP1 ([26]). Namely, we identify the ingredients of
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their formulas with the matrix series R in the Givental formula for CP1 and show that
the expansion of ωg,n that Norbury and Scott propose exactly reproduces the Ŝ−1�̂-part
of the Givental formula for the Gromov–Witten potential of CP1.

1.4. Organization of the paper. The paper assumes some pre-knowledge of both Given-
tal and topological recursion theory; we refer to [15,25,30] as possible sources. In Sect. 2
we recall the Givental theory, and we present the Givental formula as a sum over graphs.
In Sect. 3 we do the same for topological recursion theory. In Sect. 4 we prove the
theorem on identification of the two theories and provide a corresponding dictionary. In
Sect. 5 we show that this identification works for the spectral curve proposed by Norbury
and Scott and the stationary Gromov–Witten theory of CP1.

2. Givental Group Action as a Sum Over Graphs

In this section we review the Givental group action and we remind the reader how it can
be used to write the partition function of an N -dimensional semi-simple cohomological
field theory as an operator acting on the product of N KdV τ -functions. Using this, we
write the partition function for such a cohomological field theory as a sum over decorated
graphs. This is essentially the same as what was done in [8]; in the present paper the
contributions are distributed in a slightly different way over the components of the graph
to make the comparison with the topological recursion.

2.1. Givental group action. We remind the reader of the original formulation, due to
Lee, of the infinitesimal Givental group action in terms of differential operators [22–24].

Consider the space of partition functions for N -dimensional cohomological field
theories

Z = exp

⎛
⎝∑

g≥0

�
g−1Fg

⎞
⎠ (2.1)

in variables vd,i , d ≥ 0, i = 1, . . . , N . There is a fixed scalar product ηi j = δi j
on the vector space V := 〈e1, . . . , eN 〉 of primary fields corresponding to the indices
i = 1, . . . , N . Furthermore, we will denote by e1 the vector in V that plays the role of
the unit.

Later on we will also use the so-called correlators

〈
τd1(ei1)τd2(ei2) · · · τdk (eik )

〉
g

which correspond to the coefficients of formal power series Fg in the following way:

Fg =
∑ 〈

τd1(ei1)τd2(ei2) · · · τdk (eik )
〉
g

|Aut((im, dm)
k
m=1)|

vd1,i1 · · · vdk ,ik , (2.2)

where |Aut((im, dm)
k
m=1)| denotes the number of automorphisms of the collection of

multi-indices (im, dm) and where the sum is such that it includes each monomial
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vd1,i1 · · · vdk ,ik exactly once. Note that in the special case of a Gromov–Witten theory
for some manifold X , these correlators carry the following meaning:

〈
τd1(ei1)τd2(ei2) · · · τdk (eik )

〉
g

=
∑
deg

∫
[Xg,k,deg]

ev∗
1(ei1)ψ

d1
1 ev∗

2(ei2)ψ
d2
2 · · · ev∗

k (eik )ψ
dk
k , (2.3)

where [Xg,k,deg] is the moduli space of degree deg stable maps to X of genus-g curves
with k marked points, evi is the evaluation map at the i th point and ψ correspond to
ψ-classes.

Consider a sequence of operators rl ∈ Hom(V, V ) for l ≥ 1, such that the operators
with odd (resp., even) indices are symmetric (resp., skew-symmetric). Then we denote
by (rl zl)ˆ the following differential operator:

(rl z
l)ˆ := − (rl)

i
1

∂

∂vl+1,i +
∞∑

d=0

vd,i (rl)
j
i

∂

∂vd+l, j

+
�

2

l−1∑
m=0

(−1)m+1(rl)
i, j ∂2

∂vm,i∂vl−1−m, j
. (2.4)

Here the indices i, j ∈ {1, . . . , N } on rl correspond to the basis {e1, . . . , eN } of V , and
the index 1 corresponds to the unit vector e1. When we write rl with two upper-indices
we mean as usual that we raise one of the indices using the scalar product η.

Given such a sequence of operators rl , we define an operator series R(z) in the
following way:

R(z) =
∞∑

l=0

Rl z
l := exp

( ∞∑
l=1

rl z
l

)
. (2.5)

The quantization R̂ of this series is defined by

R̂ = exp

( ∞∑
l=1

(
(−1)lrl z

l
)

ˆ
)
. (2.6)

Givental observed that the action of such operators R̂ on formal power series Z for
which the number of ψ-classes (given by the first index of vd,μ) at any monomial of
degree n is no more than 3g − 3 + n, is well-defined. The main theorem of [9] states that
this action preserves the property that Z is a generating function of the correlators of a
cohomological field theory with target space (V, η) (see also [20,33]).

Remark 2.1. Note that this definition of R̂ differs from the one in [8] by the sign (−1)l .
It is needed here to agree with Givental’s notation in Proposition 2.3, cf. [18, Prop. 7.3].
For the same reason, in order to agree with the conventions of Givental, we label in a
matrix by the upper index the column and by the lower index the row.
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2.2. Givental operator for a Frobenius manifold. Let Z({td,μ}) be the partition function
of some N -dimensional semi-simple conformal cohomological field theory. We recall the
construction (due to Givental [17–19], see also Dubrovin [5]) of an operator series R(z)
as in the previous section whose quantization takes the product of N KdV τ -functions
to Z .

Let F be the restriction of log(Z) to the genus zero part without descendants. Denote
tμ := t0,μ. Then F can be interpreted as a formal Frobenius manifold with metric

ηαβ = ∂3 F

∂t1∂tα∂tβ
(2.7)

and Frobenius algebra structure cγαβ

cαβγ = ∂3 F

∂tα∂tβ∂tγ
. (2.8)

We can assume that ηαβ = δα+β,n+1 and e1 = e1. According to [4] it is always
possible by an appropriate choice of these flat coordinates tμ.

2.2.1. Canonical coordinates. Another set of coordinates is given by the canonical co-
ordinates {ui } which can be found as solutions to Eq. (3.54) from [4], and have the
property that {∂i := ∂/∂ui } forms a basis of canonical idempotents of the Frobenius
algebra product. In these coordinates the metric is diagonal and the unit vector field is
given by e1 = ∂1 + · · · + ∂N .

Define �i := 1/(∂i , ∂i ) to be the inverse of the square of the length of the i th

canonical basis element, and call {∂/∂vi := �
1/2
i ∂/∂ui } the normalized canonical basis

in the tangent space. We denote the coordinates corresponding to this basis by vi , and
the formal variables corresponding to these coordinates by vd,i . They are precisely the
formal variables vd,i appearing in the previous section.

Let U be the matrix of canonical coordinates U = diag(u1, . . . , uN ) and denote by
� the transition matrix from the flat to the normalized canonical bases. That is, denoting
dt = (dt1, . . . , dt N )T and du = (du1, . . . , duN )T, one has

�−1/2du = �dt, (2.9)

where � = diag(�1, . . . ,�N ).

Remark 2.2. Note that� obtained by the definition above depends on the point p of the
Frobenius manifold.

2.2.2. Recursion. Construct an operator series R(z) = ∑
k≥0 Rk zk as in the previous

section in the following way.
Recursively define the off-diagonal entries of Rk in normalized canonical coordinates

by solving the equation
�−1d(�Rk−1) = [dU, Rk], (2.10)

using R0 = I as a base case. Construct the diagonal entries of Rk by integrating the next
equation

�−1d(�Rk) = [dU, Rk+1] (2.11)
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using the fact that the diagonal entries of [dU, Rk+1] are equal to zero. To fix the inte-
gration constant, use the Euler equation

Rk = −(iE dRk)/k, (2.12)

where E =∑ ui∂i is the Euler field (here we use the fact that we started with a conformal
cohomological field theory).

This procedure recursively defines Rk for all k. The following proposition is essen-
tially proved in Givental’s papers [17,18].

Proposition 2.3. Let F be a local N-dimensional Frobenius manifold structure, semi-
simple at the origin, and let (Rk) be the series of operators constructed from this F by
the recursive procedure described above, at the origin. Let � and� be as above, taken
at the origin as well. Then we have the following formula:

F0 = Res
�=0

d� · log �̂ R̂�̂T . (2.13)

Here F0 = F0({td,μ}) is the genus 0 descendant potential of cohomological field theory
associated to F; T is the product of N KdV tau-functions,

T := ZKdV({ud,1}) · · · ZKdV({ud,N });
�̂ replaces the variables of i th KdV τ -function according to ud,i = �

1/2
i vd,i and

replaces � with �i �, while �̂ is the change of variables vd,i = � i
ν td,ν . The unit for the

R-action is given by (�1
1 , . . . , �

N
1 ).

Remark 2.4. In fact, using Teleman’s result in [33], one has a refined version of Eq. (2.13):

Z = �̂ R̂�̂T . (2.14)

Note that it holds for cohomological field theories. In the Gromov–Witten case, when
quadratic terms in the potential cannot be neglected, there appears an additional com-
plication, see the next remark below.

Remark 2.5. Givental’s formula [18] for a Gromov–Witten total descendant potential
[without the (g = 1, n = 0)-term],

Z = Ŝ−1�̂ R̂�̂T , (2.15)

also includes the operator Ŝ, given by

Ŝ = exp

( ∞∑
l=1

(sl z
−l)ˆ
)
, (2.16)

where the operators (sl z−l)ˆ are defined in the following way (see, e.g., [9, Sect. 4.2]):

∞∑
l=1

(sl z
−l)ˆ = −(s1)

μ
1

∂

∂t0,μ +
1

�

∞∑
d=0

(sd+2)1,μ td,μ

+
∞∑

d=0
l=1

(sl)
μ
ν td+l,ν ∂

∂td,μ
+

1

2�

∑
d1,d2
μ2,μ2

(−1)d1(sd1+d2+1)μ1,μ2 td1,μ1 td2,μ2 . (2.17)
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Note that formula (2.16) for the quantization of S differs from the analogous formula
(2.6) for R by a factor of (−1)l in the exponent, which agrees with the definition in
Givental’s papers [17,18].

The matrices sk are defined through the following relation:

S(z) =
∞∑

k=0

Sk z−k = exp

( ∞∑
l=0

sl z
−l

)
, (2.18)

where for S(z), taken at a point p of the Frobenius manifold, we have (see [18]), for any
points a and b of the Frobenius manifold,

(a, b Sp) := (a, b) +
∞∑

k=0

〈τ0(a) exp (τ0(p)) τk(b)〉0 z−1−k . (2.19)

Here on the left-hand side the brackets stand for the scalar product on the tangent space
to the Frobenius manifold at p, and we used an identification of the tangent space with
the whole Frobenius manifold, since in this case the Frobenius manifold is itself a vector
space. If p is the origin, we have just

(a, b S) := (a, b) +
∞∑

k=0

〈τ0(a)τk(b)〉 z−1−k . (2.20)

Note that this S action is defined in the general case when the total descendant genus
0 potential is known. For the case when only a Frobenius potential is specified, the
choice of S is then called a calibration of the Frobenius manifold, see [5,17] for related
details. In the case of cohomological field theory when we disregard quadratic terms,
the S action is trivial if p is taken to be the origin.

It turns out that in most of the relevant cases, e.g. for the Gromov–Witten theory of
CP1 (see Sect. 5.1 below), the only relevant term in Eq. (2.17) is

∞∑
d=0
l=1

(sl)
μ
ν td+l,ν ∂

∂td,μ
,

since (s1)
μ
1 vanishes and all other terms just change the unstable terms in the potential.

This means, that in these cases Ŝ−1 just performs a linear change of formal variables
td,μ in the following way:

td,μ 	→
∞∑

m=d

(Sm−d)
μ
ν tm,ν . (2.21)

2.3. Expressions in terms of graphs. In [8] the action of an operator series as in Eq. (2.6)
is written as a sum over graphs. By Remark 2.4, this allows us to construct the potential
of any semi-simple conformal cohomological field theory as a sum over graphs. Here we
repeat the construction of [8] in a slightly different way that will be more convenient for
the comparison with the topological recursion formalism. Furthermore, we also include
the action of �̂. It is easy to see that the construction is equivalent to that of [8].
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Notation 2.6. Let γ be any graph. By a half-edge we mean either a leaf or an edge
together with a choice of one of the two vertices it is attached to. By V (γ ), E(γ ), H(γ )
and L(γ ) we denote the sets of vertices, edges, half-edges and leaves of γ . For any
vertex v of γ , denote by H(v) the set of half-edges connected to v.

Let �̃ be the set of all connected graphs γ together with a choice of disjoint split-
ting L(γ ) = L∗(γ )

∐
L•(γ ), a labelling of the vertices by pairs (g, i) ∈ Z≥0 ×

{1, . . . , N } and a labelling of the elements of H(γ ) by non-negative integers, such
that the label of a leaf in L• is always greater than one. The elements of L∗(γ ) are called
ordinary leaves, the elements of L• are called dilaton leaves. We denote by � the subset
of all graphs in �̃ that are stable; that is, any vertex labelled (0, i) for some i is of valence
at least three.

For any graph γ denote by g : V (γ ) → Z≥0 and i : V (γ ) → {1, . . . , N } the maps
that associate to any vertex its first and second label respectively, and by k : H(γ ) → Z≥0
the map that associates to any half-edge its label. Denote by v : L(γ ) → V (γ ) the map
that associates to each leaf the corresponding vertex, and by v1, v2 : E(γ ) → V (γ ) and
by h1, h2 : E(γ ) → H(γ ) the maps that associate to an edge the first and second vertex,
and the corresponding half-edges respectively.

Remark 2.7. The labels introduced above are used to keep track of different data for the
trivial cohomological field theory; g is for the genus, i for the primary field in canonical
coordinates and the labelling of the marked half-edges is for the power of ψ-class.

Remark 2.8. As in [8], edges of a graph in � are considered to be oriented (this allows
to define the maps v1 and v2 unambiguously); the final result does not depend on the
orientation.

Let R(z)ij be the components of the operator series R(z) in the normalized canonical
basis as computed in Sect. 2.2.2. To each part of a graph γ ∈ � we assign some
polynomial in formal variables � and vd,i . Here � is used to keep track of the genus,
while the first index of vd,i keeps track of the number ofψ-classes and the second index
keeps track of the normalized canonical coordinate.

2.3.1. Leaves. To each ordinary leaf l ∈ L∗ marked by k attached to a vertex marked
by the pair (g, i), we assign

(L∗)ik(l) := [zk]
⎛
⎝∑

d≥0

(
(R(−z))ijv

d, j zd
)⎞⎠ , (2.22)

which corresponds to the second term in (2.4).
To a dilaton leaf λ ∈ L•(γ ) marked by k attached to a vertex marked by (g, i) we

assign

(L•)ik(λ) := [zk−1]
(
−(R(−z))i1

)
, (2.23)

which corresponds to the first term in (2.4), which is called the dilaton shift.
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2.3.2. Edges. To an edge e connecting a vertex v1 marked by (g1, i1) to a vertex v2
marked by (g2, i2) and with markings k1 and k2 at the corresponding half-edges, we
assign

E i1,i2
k1,k2

(e) := [zk1wk2 ]
(

� · δ
i1i2 −∑s(R(−z))i1

s (R(−w))i2
s

z + w

)
. (2.24)

Note that this does not depend on the choice of ordering of the vertices and that it follows
from the fact that R(z) can be written as R(z) = exp(

∑
rl zl) that the numerator on the

right-hand side is equal to the product of (z +w) with some power series in z and w, so
this definition makes sense.

2.3.3. Vertices. Let v be a vertex marked by (g, i) with n half-edges attached to it (this
includes all ordinary and dilaton leaves and also half-edges that are parts of internal
edges) labelled by k1, . . . , kn . Then we assign to v the following expression:

V(g,i){k1,...,kn}(v) := �
g−1(�i )

1
2 (2g−2+n)

∫
M̄g,n

ψ
k1
1 · · ·ψkn

n . (2.25)

2.3.4. Z as a sum over graphs. It is easy to see that the sum over all graphs in � of
the product of the contributions described above, weighted by the inverse order of the
automorphism group of the graph, is equal to the graph-sum described in [8] (the only
difference is that now we have specialized to the action on the trivial cohomological field
theory, leading to ψ-class integrals (2.25) as vertex contributions). Thus, we recover the
partition function Z of the cohomological field theory we started with as a sum over �:

(R̂�̂T )({vd, j }) =
∑
γ∈�

1

|Aut(γ )|
∏

v∈V (�)

�
g(v)−1(�i(v))

1
2 (2g(v)−2+val(v))

〈 ∏
h∈H(v)

τk(h)

〉

g∏
e∈E(γ )

E i(v1(e)),i(v2(e))
k(h1(e)),k(h2(e))

(e)
∏

l∈L∗(γ )
(L∗)i(v(l))k(l) (l)

∏
λ∈L•(γ )

(L•)i(v(λ))k(λ) (λ). (2.26)

3. Topological Recursion

In this section, we define a local version of the topological recursion and write the
corresponding invariants as a sum over graphs, which allows us to compare it to the
Givental action in the next section.

3.1. Local topological recursion. We define a local version of the topological recursion
in the following way. The term local refers to the fact that the data are all defined locally
around the canonical coordinates without any reference to the possible existence of a
global manifold where these functions can be defined.

Definition 3.1. For N ∈ N
∗, we call times a set of N families of complex numbers{

hi
k

}
k∈N

for i = 1, . . . , N and jumps another set of N × N infinite families of com-

plex numbers
{

Bi, j
k,l

}
(k,l)∈N2

for i, j = 1, . . . , N. We finally define a set of canonical

coordinates {ai }N
i=1 ∈ C

N subject to ai �= a j for i �= j .
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For all i, j ∈ {1, . . . , N }, we define the following set of analytic functions and differential
forms in a neighborhood of 0 ∈ C:

xi (z) := z2 + ai , yi (z) :=
∞∑

k=0

hi
k zk (3.1)

and

Bi, j (z, z′) = δi, j
dz ⊗ dz′

(z − z′)2
+

∞∑
k,l=0

Bi, j
k,l zk z′ldz ⊗ dz′. (3.2)

For 2g − 2 + n > 0, we define the genus g, n-point correlation functions
ω

i1,...,in
g,n (z1, . . . zn) recursively by

ω
i0,i1,...,in
g,n+1 (z0, z1, . . . , zn) :=

N∑
j=1

Res
z→0

∫ z
−z Bi0, j (z0, ·)

2
(
y j (z)− y j (−z)

)
dx j (z)

⎛
⎝ω j, j,i1,...,in

g−1,n+2 (z,−z, z1, . . . , zn) +
∑

A∪B={1,...,n}

g∑
h=0

ω
j,iA
h,|A|+1(z, zA)ω

j,iB
g−h,|B|+1(−z, zB)

⎞
⎠ ,

(3.3)

where for any set A, we denote by zA (resp., iA) the set {zk}k∈A (resp., {ik}k∈A), and
where the base of the recursion is given by

ωi
0,1(z) := 0; ω

i, j
0,2(z, z′) := Bi, j (z, z′). (3.4)

For convenience, in the sequel we denote

K i, j (z, z′) =
∫ z
−z Bi, j (z′, ·)

2(y j (z)− y j (−z))dx j (z)
(3.5)

and
ωg,n(�z) =

∑
�i
ω

�i
g,n(�z), (3.6)

where the length of �z and �i is n.

3.2. Correlation functions and intersection numbers. The correlation functions built by
this topological recursion can actually be written in terms of intersections of ψ classes
on the moduli space of Riemann surfaces. This result is a slight generalization of [11,12]
to the local topological recursion.

3.3. One-branch point case. The link between the topological recursion formalism and
intersection numbers on the moduli space of Riemann surfaces comes from the applica-
tion of this formalism to the Airy curve. This case corresponds to N = 1 and:

x(z) = z2 + a, y(z) = z and B(z, z′) = dz ⊗ dz′

(z − z′)2
. (3.7)

Remark 3.2. Since there is only one branch point in this case, i.e. N = 1, we omit the
superscript indicating which branch point we consider in the notations of this section.
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For further convenience, we introduce two additional parameters by considering the
curve

x(z) = z2 + a, y(z) = αz and B(z, z′) = β
dz ⊗ dz′

(z − z′)2
, (3.8)

the usual Airy curve being α = β = 1. In this case, the topological recursion reads

ωg,n+1(z0, z1, . . . , zn) := Res
z→0

β

2α

dz0

2z dz

1

(z2
0 − z2)⎛

⎝ωg−1,n+2(z,−z, z1, . . . , zn) +
∑

A∪B={1,...,n}

g∑
h=0

ωh,|A|+1(z, zA)ωg−h,|B|+1(−z, zB)

⎞
⎠

(3.9)

and one has

Lemma 3.3. The correlation functions of the Airy curve can be expressed in terms of
intersection numbers:

ωg,n(z1, . . . , zn)

=
(

− β

2α

)2g+n−2

βg+n−1
∑

α1,...,αn≥0

〈
τα1 . . . ταn

〉
g,n

n∏
i=1

(2αi + 1)!!dzi

z2αi +2
i

. (3.10)

This lemma was proved many times by direct computation [10,11,15,34], matching
the topological recursion with the recursive definition of the intersection numbers.

As a side note, the first few correlation functions are

ω0.3(z1, z2, z3) = −β
3

2α

3∏
i=1

dzi

z2
i

, (3.11)

ω0,4(z1, z2, z3, z4) = β5

4α2

4∏
i=1

dzi

z2
i

4∑
i=1

3

z2
i

, (3.12)

ω1,1(z) = −β2

2α

dz

8z4 (3.13)

and

ω1,2(z1, z2) = β4

4α2

dz1 dz2

8z2
1z2

2

(
5

z4
1

+
5

z4
2

+
3

z2
1z2

2

)
. (3.14)

Remark 3.4. It is important to remark that there exist different conventions in the liter-
ature for defining the topological recursion, mainly differing by a change of sign of the
recursion kernel. The latter can be recovered by a change of sign α → −α.

Let us now consider a deformation of the Airy curve which we will refer to as the
KdV curve in the following. It has only one branch point, N = 1, and reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(z) = z2 + ai

y(z) = α

∞∑
k=1

hk zk

B(z, z′) = βBKdV(z, z′) = β dz⊗dz′
(z−z′)2

. (3.15)
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The corresponding correlation functions can also be expressed in terms of intersection
numbers as follows:

Lemma 3.5. The correlation functions of the KdV curve read:

ωg,n(z1, . . . , zn) =
(

− β

2αh1

)2g+n−2

βg+n−1
∞∑

m=0

(−1)m

m!
∑

�α∈N∗m

m∏
k=1

(2αk + 1)!!h2αk +1

h1

∑
�d∈N∗n

n∏
i=1

(2di + 1)!! dzi

z2di +2
i

〈
n∏

j=1

τd j

m∏
k=1

ταk +1

〉

g,n+m

. (3.16)

Proof. Once again the proof can be found in the literature [10,11,14]. However, let us
study a graphical interpretation of this result when considering an arbitrary convention
for the topological recursion. For f (z) an analytic function around z → 0 and {Tk}k∈Z

a set of parameters, one can compute

Res
Z1→0

Res
Z2→0

K (Z1, z)

⎧⎨
⎩

⎛
⎝∑

k≥1

Tk Zk
1

⎞
⎠ d Z1 K (Z2,−Z1) f (Z2) [d Z2]2

−
⎛
⎝∑

k≥1

Tk(−Z1)
k

⎞
⎠ d Z1 K (Z2, Z1) f (Z2) [d Z2]2

⎫⎬
⎭ , (3.17)

where the recursion kernel is the one of the Airy curve, i.e. the one for which hk = 0
for k ≥ 2:

K (z, z0) = β

2αh1

dz0

2z dz

1

(z2
0 − z2)

. (3.18)

One can move the integration contours to get

Res
Z1→0

Res
Z2→0

= Res
Z2→0

Res
Z1→0

+ Res
Z2→0

Res
Z1→Z2

+ Res
Z2→0

Res
Z1→−Z2

. (3.19)

The first term of the right-hand side vanishes since the integrand does not have any
pole at Z1 → 0. Let us now compute one of the other two terms:

Res
Z2→0

Res
Z1→Z2

K (Z1, z)

⎛
⎝∑

k≥1

Tk Zk
1d Z1

⎞
⎠ K (Z2,−Z1) f (Z2) [d Z2]2

= − Res
Z2→0

β

2αh1

d Z2

2Z2
f (Z2)

· Res
Z1→Z2

dz

2Z1

1

(z2 − Z2
1)

β

2αh1

1

(Z2
1 − Z2

2)

⎛
⎝∑

k≥1

Tk Zk
1d Z1

⎞
⎠

= − Res
Z2→0

β

2αh1

d Z2dz

2Z2
f (Z2)

1

(z2 − Z2
2)

β

2αh1

∑
k≥1

Tk

4
Zk−2

2 . (3.20)
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In the same way,

Res
Z2→0

Res
Z1→−Z2

K (Z1, z)

⎛
⎝∑

k≥1

Tk Zk
1d Z1

⎞
⎠ K (Z2,−Z1) f (Z2) [d Z2]2

= − Res
Z2→0

β

2αh1

d Z2dz

2Z2
f (Z2)

1

(z2 − Z2
2)

β

2αh1

∑
k≥1

Tk

4
(−Z2)

k−2. (3.21)

The sum of these two terms reads

Res
Z2→0

Res
Z1→±Z2

K (Z1, z)

⎛
⎝∑

k≥1

Tk Zk
1d Z1

⎞
⎠ K (Z2,−Z1) f (Z2) [d Z2]2 =

= − Res
Z2→0

β

2αh1

d Z2dz

2Z2
f (Z2)

1

(z2 − Z2
2)

β

2αh1

∑
k≥1

T2k

2
(Z2)

2k−2, (3.22)

and finally:

Res
Z1→0

Res
Z2→0

K (Z1, z)

⎧⎨
⎩

⎛
⎝∑

k≥1

Tk Zk
1

⎞
⎠ d Z1 K (Z2,−Z1) f (Z2) [d Z2]2

−
⎛
⎝∑

k≥1

Tk(−Z1)
k

⎞
⎠ d Z1 K (Z2, Z1) f (Z2) [d Z2]2

⎫⎬
⎭

= Res
Z2→0

β

2αh1

d Z2dz

2Z2
f (Z2)

1

(z2 − Z2
2)

(
− β

2αh1

)∑
k≥1

T2k(Z2)
2k−2. (3.23)

On the other hand, plugging in the times hk amounts to computing similar quantities:

Res
z→0

β

2αh1

dz0

2z dz

1

(z2
0 − z2)

1(
1 +

∞∑
k=1

h2k+1
h1

z2k

) f (z) [dz]2

= Res
z→0

β

2αh1

dz0

2z dz

1

(z2
0 − z2)

f (z) [dz]2

·
⎛
⎝1 −

∞∑
k=1

h2k+1

h1
z2k +

[ ∞∑
k=1

h2k+1

h1
z2k

]2

+ · · ·
⎞
⎠ . (3.24)

The first term of this sum is the Airy recursion kernel. The second one is of the shape of
the preceding one with T2k+2 = 2αh2k+1

h1
for k ≥ 1 so that:

− Res
z→0

β

2α

dz0

2z dz

1

(z2
0 − z2)

f (z) [dz]2
∞∑

k=1

h2k+1

h1
z2k

= Res
Z1→0

Res
Z2→0

K (Z1, z0)
{

g(Z1)d Z1 K (Z2,−Z1) f (Z2) [d Z2]2

−g(−Z1)d Z1 K (Z2, Z1) f (Z2) [d Z2]2
}
, (3.25)
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where

g(z) :=
∑
k≥1

2αh2k+1

βh1
z2k+2. (3.26)

This same procedure can be applied to the other terms of the sum. The kth order term
can be written as a sequence of k + 1 residues computed with the Airy recursion kernel
with g(z)dz on one of the outgoing legs. This computation shows that introducing
non-vanishing times amounts to introducing a non-vanishing ω0,1(z) := g(z)dz in the
topological recursion.

It is often useful to represent the topological recursion in a graphical form by repre-
senting the interaction kernel K (z, z0) by an edge oriented from z0 towards a trivalent
vertex labelled by z and the function ω0,2(z1, z2) by a non-oriented edge (see [13] for
more details about this set of graphs). In this form, ωg,n(z1, . . . , zn) is a sum over triva-
lent graphs of genus g with n leaves labelled by the arguments z1, . . . , zn . The preceding
computation shows that the correlation functions of the KdV curve can be obtained from
the correlation functions of the Airy curve by introducing a set of new leaves, called
dilaton leaves, in the definition of the graphs used. A dilaton leaf decorated by a label d
is weighted by

(2d − 1)!! Res
z→0

g(z)
dz

z2d+1 = (2d − 1)!! 2αh2d−1

β
. (3.27)

Plugging this expression into the formula for the Airy correlation functions proves
the result. ��

3.3.1. General case. In this section we give a formula for the correlation function of
the local topological recursion.

Definition 3.6. Let �g,n be the subset of � (see Notation 2.6) consisting of graphs of
genus g′ such that g′ +

∑
v∈V (�) g(v) = g and with n ordinary leaves. Let us also

introduce orderings on the ordinary leaves and denote by �̌g,n the set of all graphs from
�g,n with all possible orderings on the ordinary leaves. For a given graph with a fixed
ordering γ̌ ∈ �̌g,n and for an ordinary leaf of that graph l ∈ L∗(γ̌ ) we denote by m(l)
the index of this particular leaf (then m(l) is an integer from 1 to n such that different
leaves have different values m(l) assigned to them).

Theorem 3.7. The correlation functions can be written as a sum over decorated graphs
whose vertices are weighted by intersection of ψ-classes on Mg,n, edges by the jumps,
ordinary leaves by primitives of B and dilaton leaves by the times.

For 2 − 2g − n < 0, one has

ωg,n(�z) = 1

n!
∑

γ̌∈�̌g,n

∏
v∈V (γ̌ )

(
−2hi(v)

1

)2−2g(v)−val(v)
〈 ∏

h∈H(v)

τk(h)

〉

g(v),val(v)

∏
e∈E(γ̌ )

B̌i(v1(e)),i(v2(e))
k(h1(e)),k(h2(e))

∏
l∈L∗(γ̌ )

N∑
j=1

dξ i(v(l))
k(l) (zm(l), j)

∏
λ∈L•(γ̌ )

ȟi(v(λ))
k(λ) (3.28)
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with

ȟi
k := 2(2k − 1)!!hi

2k−1, (3.29)

dξ i
d(zα, j) := Res

z→0

(2d + 1)!!dz

z2d+2

∫ z

Bi, j (z, zα), (3.30)

B̌i, j
d1,d2

:= Bi, j
2d1,2d2

(2d1 − 1)!! (2d2 − 1)!! (3.31)

and 〈
n∏

i=1

τki

〉

g,n

:=
∫
Mg,n

ψ
k1
1 ψ

k2
2 . . . ψkn

n . (3.32)

Proof. The proof is very similar to the one presented in [12,21]. However, we prefer
to present a completely graphical proof so that the link with the next sections becomes
clear.

We follow the proof of [12]. From the definition, one can write the correlation func-
tions as a sum over graphs with oriented and non-oriented arrows linking trivalent vertices
resulting in the following expression:

ω
�i
g,n(�z) =

∑

G∈Ĝg,n

ω(G) (3.33)

with Ĝg,n the set of genus g trivalent graphs with one root and n − 1 leaves labelled by
the arguments zi and a skeleton tree of oriented edges pointing from the root towards
the leaves weighted by

ω(G) = �∏
v∈V (G)

Res
Zv→0

∏
e∈Eoriented(G)

K i(v1(e)),i(v2(e))(Zv1(e), Zv2(e))

∏
e∈Eunoriented(G)

Bi(v1(e)),i(v2(e))(Zv1(e), Zv2(e)),

where each leaf is considered as a one-valent vertex v and one denotes Zv the variable
zi associated to this leaf in the correlation function, Eoriented(G) is the set of oriented
leaves of G and Eunoriented(G) is the set of unoriented leaves of G (see [13] for further
details). The product of residues �∏

v∈V (G) Res Zv→0 is oriented following the arrows,
i.e. one first computes the residue corresponding to the end of an arrow before the one
associated to its root.

It is useful to remark that, for any edge, oriented or not, one has two types of contri-
butions. Indeed, the functions Bi, j (z, z′) have a singular part

Bi, j
KdV(z, z′) := δi, j

dz ⊗ dz′

(z − z′)2
(3.35)

and a regular part

Bi, j
reg(z, z′) :=

∞∑
k,l=0

Bi, j
k,l zk z′ldz ⊗ dz′ (3.36)

when z → z′:
Bi, j (z, z′) = Bi, j

KdV(z, z′) + Bi, j
reg(z, z′). (3.37)
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In the same way, one has

K i, j (z, z′) = K i, j
KdV(z, z′) + K i, j

reg(z, z′). (3.38)

One can translate this by representing Bi, j
KdV(z, z′) and Bi, j

reg(z, z′)) by dashed and

dotted unoriented edges respectively, while representing K i, j
KdV(z, z′) and K i, j

reg(z, z′)) by
dashed and dotted oriented edges from z to z′. The preceding sum is thus transformed
into a sum over graphs where the edges are dotted or dashed and weighted accordingly.

The dotted edges can be expressed in a slightly different way. Indeed, one has

Bi, j
reg(z, z′) = Res

z1→z
Res

z2→z′ Bi,i
KdV(z, z1)

[∫ z1
∫ z2

Bi, j
reg(z1, z2)

]
B j, j

KdV(z2, z′) (3.39)

and

K i, j
reg(z, z′) = Res

z1→z
Res

z2→±z′ Bi,i
KdV(z, z1)

[∫ z1
∫ z2

Bi, j
reg(z1, z2)

]
K j, j

KdV(z2, z′) (3.40)

by a simple application of the Cauchy formula.
Remember that such an edge comes with integration of its boundary variables, thus,

one typically has to compute

Res
z→0

Res
z′→0

g(z)K i, j
reg(z, z′) f (z′) (3.41)

which reads

Res
z→0

Res
z1→z

Res
z′→0

Res
z2→±z′

(
g(z)Bi,i

KdV(z, z1)

·
[∫ z1

∫ z2

Bi, j
reg(z1, z2)

]
K j, j

KdV(z2, z′) f (z′)
)
. (3.42)

One can move the integration contours around 0 thanks to:

Res
z→0

Res
z1→z

= Res
z1→0

Res
z→0

− Res
z→0

Res
z1→0

(3.43)

and
Res
z′→0

Res
z2→±z′ = Res

z2→0
Res
z′→0

− Res
z′→0

Res
z2→0

. (3.44)

Since, the integrand does not have any pole as z1 → 0 nor z2 → 0, this shows that
(3.41) is equal to

Res
z1→0

Res
z→0

Res
z2→0

(
g(z) Bi,i

KdV(z, z1)

·
[∫ z1

∫ z2

Bi, j
reg(z1, z2)

]
Res
z′→0

K j, j
KdV(z2, z′) f (z′)

)
. (3.45)

In the same way, one gets that

Res
z→0

Res
z′→0

g(z)Bi, j
reg(z, z′) f (z′) (3.46)
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is equal to

Res
z1→0

Res
z→0

Res
z2→0

(
g(z) Bi,i

KdV(z, z1)

·
[∫ z1

∫ z2

Bi, j
reg(z1, z2)

]
Res
z′→0

B j, j
KdV(z2, z′) f (z′)

)
. (3.47)

One can finally proceed in a similar way for re-expressing the weights of the root and
the leaves by writing2

Res
z′→0

K i, j (z, z′) f (z′) = Res
z2→0

[∫ z2

Bi, j (z, z2)

]
Res
z′→0

K j, j
KdV(z2, z′) f (z′) (3.48)

and

Res
z→0

g(z)Bi, j (z, z′) = Res
z1→0

Res
z→0

g(z) Bi,i
KdV(z, z1)

[∫ z1

Bi, j (z1, z′)
]
. (3.49)

As a result, by applying this transformation to each dotted line, any graph is composed
of a set of dashed subgraphs whose vertices have the same label. These dashed subgraphs
are separated by dotted lines. Since each subgraph with label i also includes a root and
leaves, it is a contribution to the correlation functions obtained for the case N = 1,
times hi

k and vanishing jumps Bi,i
k,l = 0. In the sum over graphs, one can thus replace

every sum over such sub-graphs by vertices of corresponding genus weighted by the
correlation function for N = 1, which reads

ω
�i
g,n(�z) =

∑
γ∈�g,n

�(γ ), (3.50)

where

�(γ ) =
∏

v∈V (γ )

∏
h∈H(v)

Res
Zh→0

ω
KdV,i(v)
g(v),val(v)

({Zh}h∈H(v)
)

∏
e∈E(γ )

∫ Zh1(e)
∫ Zh2(e)

Bi(v1(h)),i(v2(h))
reg (Zh1(e), Zh2(e))

∏
h∈L∗(γ )

∫ Zh

Bi, j (Zh, zh), (3.51)

where ωKdV,i
g,n (z1, . . . , zn) is the genus g, n-pointed correlation function obtained from

the topological recursion in the case N = 1 and the initial data:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(z) = z2 + ai

y(z) =
∞∑

k=1

hi
k zk

B(z, z′) = BKdV(z, z′) = dz⊗dz′
(z−z′)2

. (3.52)

2 Remark that, for the roots and leaves, in opposition to the inner edges, the functions are the full ones, not
just the regular part.
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As explained in the preceding section, it can be expressed in terms of intersection num-
bers:

ωKdV,i
g,n (z1, . . . , zn) =

(
−2hi

1

)2−2g−n ∞∑
m=0

(−1)m

m!
∑

�α∈N∗m

m∏
k=1

(2αk + 1)!!hi
2αk +1

hi
1

∑
�d∈N∗n

n∏
i=1

(2di + 1)!! dzi

z2di +2
i

〈
n∏

j=1

τd j

m∏
k=1

ταk +1

〉

g,n+m

(3.53)

which can be made more symmetric under the exchange of the ordinary and dilaton
leaves by writing

ωKdV,i
g,n (z1, . . . , zn) =

∞∑
m=0

(−2h1)
2−2g−n−m 1

m!
∑

�α∈N∗m

m∏
k=1

(2αk − 1)!!2hi
2αk−1

∑
�d∈N∗n

n∏
i=1

(2di + 1)!! dzi

z2di +2
i

〈
n∏

j=1

τd j

m∏
k=1

ταk

〉

g,n+m

. (3.54)

Absorbing the factors of the form

(2d + 1)!!dz

z2d+2 (3.55)

into the corresponding half-edge contribution, the weight of an inner edge becomes

Res
z1→0

Res
z2→0

∫ z1
∫ z2

Bi, j
reg(z1, z2)

(2d1 + 1)!!dz1

z2d1+2
1

(2d2 + 1)!!dz1

z2d2+2
2

(3.56)

which is equal to

B̌i, j
d1,d2

:= Bi, j
2d1,2d2

(2d1 − 1)!! (2d2 − 1)!! (3.57)

while the weight of the ordinary leaves becomes

dξ i
d(zα, j) := Res

z→0

(2d + 1)!!dz

z2d+2

∫ z

Bi, j (z, zα), (3.58)

where one has to consider both the singular and non-singular part of Bi, j (z, zα). Col-
lecting these contributions together proves the theorem. ��

3.4. Change of scales. An important property of the correlation functions built in this
way is their homogeneity property which reads

∀λ ∈ C , ωg,n(�zN |x, λy, B) = λ2−2g−nωg,n(�zN |x, y, B). (3.59)

One can thus get an additional factor λi by replacing hi
k → λi hi

k resulting in a

rescaling of the weight of the vertices by
(
λi(v)

)2−2g(v)−val(v)
.
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3.5. Weights, Laplace transform and recursive definition. It is interesting to note that
the weights of the edges are the coefficients of the Laplace transform of B;

B̌i, j (u, v) :=
∑

(k,l)∈N2

B̌i, j
k,l u−kv−l (3.60)

is equal to

B̌i, j (u, v) = δi, j
uv

u + v
+

√
uveuai +va j

2π

∫
x(z)−ai ∈R+

∫
x(z′)−a j ∈R+

Bi, j (z, z′)e−ux(z)−vx(z′).

(3.61)

In [12], it was proved that, if dx is a meromorphic form defined on a Riemann surface,
B̌i, j (u, v) can be factorized and expressed in terms of some basic functions. Here, we
will consider the converse and build Bi, j

k,l by induction in such a way that there exist a

set of functions
{

fi, j (u)
}N

i, j=1 such that

B̌i, j (u, v) = uv

u + v

(
δi, j −

N∑
k=1

fi,k(u) fk, j (v)

)
. (3.62)

Let us define the coefficients Bi, j
k,l recursively in terms of the initial data Bi, j

k,0 by
imposing that

ξ i
d+1(z, j) := −2

dξ i
d(z, j)

dx [ j](z)
−

b∑
k=1

B̌i,k
d,0 ξ

k
0 (z, j), (3.63)

or, in terms of the Laplace transform

f i
d (u, j) :=

√
u

2
√
π

∫
x(z)−a j ∈R+

e−u(x(z)−a j )dx j (z) ξ i
d(z)

= δi, j (−1)dud −
∑

d ′
B̌i, j

d,d ′u−d ′−1 (3.64)

this reads

f i
d+1(u, j) := −2u f i

d (u, j)−
N∑

k=1

B̌i,k
d,0 f k

0 (u, j). (3.65)

With this definition, one has

B̌i, j (u, v) = uv

u + v

⎛
⎝δi, j −

b∑
k=1

f k
0 (u, i) f k

0 (v, j)

⎞
⎠ . (3.66)
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4. Identification of the Two Theories

In this section we show how to find a local spectral curve corresponding to any semi-
simple conformal Frobenius manifold.

Suppose some local spectral curve is given. For any i ∈ {1, . . . , N } and k ∈ Z≥0
define

W i
k (z) :=

N∑
j=1

d

((
−1

z

d

dz

)k

ξ i
0(z, j)

)
.

Theorem 4.1. Let R be some series of operators on an N-dimensional vector space V
as in Sect. 2. Let Z = R̂�̂T , where T is a product of N KdV τ -functions, be the partition
function of the corresponding semi-simple cohomological field theory.

Define a local spectral curve by the following data:

B̌i, j
p,q := [z pwq ]δ

i j −∑N
s=1 Ri

s(−z)R(−w) j
s

z + w
(4.1)

and

ȟi
k := [zk−1]

(
−R(−z))i1

)
, (4.2)

hi
1 := − 1

2
√
�i
. (4.3)

Let ωg,n be the genus g, n-pointed topological recursion invariant of this spectral curve
and denote by

�({vd,i }) =
⎛
⎝∑

g,d

ωg,d(z1, . . . , zd)

∣∣∣
W i

d (zm )=vd,i
�

g−1

⎞
⎠

their sum after a change of variables W i
k (zm) ↔ vd,i for all m. Then the partition

function of the cohomological field theory and the topological recursion invariants agree
in the following sense:

Z({vd,i }) = exp
(
�({vd,i })

)
. (4.4)

Proof. In Sects. 2 and 3 we have given representations of Z and ωg,n as sums over the
set � (in fact, in the case of ωg,n this set is �̌ rather than �, but after changing the
variables W i

k (zm) ↔ vd,i we can take the sum over orderings and arrive at the sum over
� acquiring an additional factor of n!, which cancels with the corresponding factor in
3.28). We prove the theorem by showing that the contribution of each individual graph
to Z is equal to the contribution to �.

Let γ ∈ � be some graph. Note that on both sides we assign the same weight to
the vertices of γ , namely to a vertex labelled (g, i) with n half-edges attached to it
labelled d1, . . . , dn we associate

(−2hi
1)

2−2g−n 〈τd1 · · · τdn

〉
g,n . (4.5)

Furthermore, by Eq. (4.1), any edge in γ contributes the same to Z and �.
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Let l be an ordinary leaf of γ labelled by k attached to a vertex labelled by (g, i).
We use induction on k to show that the contribution to Z is the same as the contribution
to �.

The contribution of l to Z is given by

Li
k(l) = [zk]

(∑
d

(R(−z))ijv
d, j zd

)
=

k∑
d=0

(−1)k−d(Rk−d)
i
jv

d, j . (4.6)

When k = 0, the contribution of l to � is given by
∑

j

dξ i
0(z j , j) = W i

0. (4.7)

Since (R0)
i
j = δi

j , the contributions to Z and � agree when k = 0.
Now suppose that they agree for some k ∈ Z≥0. That is, suppose that

∑
j

dξ i
k(z

j , j) =
k∑

l=0

(−1)k−l(Rk−l)
i
s W s

l . (4.8)

Then, using Eq. (3.63), the contribution of the leaf to � for the index k + 1 is given by

∑
j

dξ i
k+1(z

j , j) =
∑

j

d

(
−2
∂ξ i

k(z
j , j)

∂x j
−

N∑
t=1

B̌i,t
k,0ξ

t
0(z

j , j)

)

=
∑

j

d

(
− 1

z j

∂

∂z j
ξ i

k(z
j , j)−

n∑
t=1

−(−1)k+1(Rk+1)
i
tξ

t
0(z

j , j)

)

=
k∑

l=0

(−1)l(Rl)
i
t W

t
k+1−l + (−1)k+1(Rk+1)

i
t W

t
0 =

k+1∑
l=0

(−1)l(Rl)
i
t W

t
k+1−l , (4.9)

where we used Eq. (4.1) to write

B̌i,t
k,0 = −(−1)k+1(Rk+1)

i
t . (4.10)

This completes the induction, and since it is clear that the dilaton leaves contribute
the same in both cases, it also completes the proof of the theorem. ��
Remark 4.2. The theorem above deals with the potential of a cohomological field theory
written in terms of formal variables vd,i corresponding to normalized canonical basis.
In order to pass to flat coordinates one can change the variables in the following way:

vd,i = � i
μtd,μ. (4.11)

On the spectral curve side it will correspond to changing the variables W i
k in the following

way:
W i

k = � i
μVμ

k . (4.12)

Thus, the theorem holds in the same form for the potential of cohomological field
theory written in terms of formal variables td,μ, only one should identify td,μ with Vμ

d .
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Remark 4.3. Above we established the correspondence between cohomological field
theories and symplectic invariants of spectral curves. However, as noted in Remark 2.5,
in the case of Gromov–Witten theories we cannot disregard quadratic terms. So, in the
formula for the total descendent potential an additional operator Ŝ appears. In some
cases, again see Remark 2.5, it performs only a linear change of formal variables td,μ

on which the potential depends. Thus, to establish the correspondence in this case, one
has to change the variables W i

k in precisely the same way, and then identify the resulting
variables with td,μ, similar to the case of the previous remark. Occasionally, the changes
of variables performed by �̂ and Ŝ−1 can be a re-expansion of ωg,n in a new coordinate
on the spectral curve. We explain this procedure in detail for the case of CP1 below in
Sect. 5.

Remark 4.4. The system of equations obtained via a Laplace transform from the equa-
tions of Givental for the R-matrix (that is, the so-called equations of deformed flat con-
nection) is studied in detail in [5, Sect. 5]. This gives, in particular, a recipe to reconstruct
the two-point function directly from the Frobenius structure bypassing the reconstruc-
tion of the R-matrix. This also explains why we call the critical values a1, . . . , aN of x
the canonical coordinates.

5. The Norbury–Scott Conjecture

In this section we recall and prove the Norbury–Scott conjecture on the stationary sector
of the Gromov–Witten theory of CP1.

5.1. Gromov–Witten theory of CP1. The Gromov–Witten theory of CP1 is discussed
from the geometric point of view in many sources, see e.g. [27]. Givental proved in [18]
that his formula for the formal Gromov–Witten potential coincides with the geometric
Gromov–Witten potential of CP1, so we discuss it here only from the Givental point of
view, ignoring the geometric background. One can find the same computations in [31,32].

The underlying structure of the Frobenius manifold is determined by the following
solution of the WDVV equation

1

2
(t1)2t2 + et2

, (5.1)

and the scalar product given by (
0 1
1 0

)
. (5.2)

All ingredients of the Givental formula depend on a particular choice of the point on
the Frobenius manifold, and in this case we choose the point (0, 0) in the coordinates
(t1, t2).

We perform a direct computation following the recipe of Givental in [17], see also
Sect. 2.2. As a possible choice of the canonical coordinates, we use

u1 = t1 + 2 exp(t2/2); (5.3)

u2 = t1 − 2 exp(t2/2). (5.4)
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In particular, for t1 = t2 = 0 we have u1 = −u2 = 2. Then,

�−1
1 =

〈
∂

∂u1 ,
∂

∂u1

〉
= exp(−t2/2)

2
; (5.5)

�−1
2 =

〈
∂

∂u2 ,
∂

∂u2

〉
= − exp(−t2/2)

2
, (5.6)

so we can choose the square roots as

�
−1/2
1 = exp(−t2/4)√

2
; (5.7)

�
−1/2
2 = −i exp(−t2/4)√

2
, (5.8)

and for this choice we have the following matrix of transition from the basis given by
(∂/∂t1, ∂/∂t2) to the normalized canonical basis:

� =
⎛
⎝

exp(−t2/4)√
2

−i exp(−t2/4)√
2

exp(t2/4)√
2

i exp(t2/4)√
2

⎞
⎠ . (5.9)

It is the matrix� = � i
α , where α labels the rows and corresponds to the flat basis, while

i labels the columns and corresponds to the normalized canonical basis.
The recipe of reconstruction of the matrix R from [17] gives at the origin the matrix

R(ζ ) =∑∞
k=0 Rkζ

k , where

Rk = (2k − 1)!!(2k − 3)!!
24kk! ·

(−1 (−1)k+12ki
2ki (−1)k+1

)
. (5.10)

The S matrix is given by the derivatives of the deformed flat coordinates, computed
in [6, Ex. 3.7.9] At the origin we have:

S(ζ−1) = I + ζ−1 ·
(

0 0
1 0

)

+
∞∑

k=1

ζ−2k

(k!)2
(

1 − 2k
( 1

1 + · · · 1
k

)
0

0 1

)

+
∞∑

k=1

ζ−2k−1

(k!)2
(

0 −2
( 1

1 + · · · 1
k

)
1

k+1 0

)
. (5.11)

(Note once again that we are using the convention that the matrices are acting on vector
rows, opposite to the standard one).

The unit vector at the origin in the normalized canonical basis is equal to

e = (1, 0) ·
⎛
⎝

1√
2

−i√
2

1√
2

i√
2

⎞
⎠ =

(
1√
2
,

−i√
2

)
. (5.12)
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Therefore, the dilaton leaves [cf. Eq. (2.23)] in the Givental formula for CP1 at the
origin are

(L•)1k+1 = 1√
2

· (−1)k+1 ((2k − 1)!!)2
k!24k

; (5.13)

(L•)2k+1 = i√
2

· ((2k − 1)!!)2
k!24k

(5.14)

for k ≥ 0.

Proposition 5.1. The Gromov–Witten potential of CP1,

ZCP1(�, {t�,1, t�,2}∞�=0), (5.15)

is obtained from R̂�̂Z⊗2
KdV (understood as a sum over graphs in the sense of Sect. 2.3

and written down in the normalized canonical basis, that is, in the variables vd,i , d ≥ 0,
i = 1, 2) via a linear change of variables given by

∞∑
m≥k

(
tm,1, tm,2

)
Skζ

m−k =
∞∑
�=0

(
v�,1, v�,2

)
ζ � ·�−1, (5.16)

and a correction of the unstable terms (that is, (g, n)-correlators with 2g − 2 + n ≤ 0).

Proof. In order to get the Gromov–Witten potential of CP1 as given by the Givental
formula, we have to apply the �̂- and Ŝ−1-action to the expression in terms of graphs
discussed in Sect. 2.3 that corresponds to R̂�̂Z⊗2

KdV. The �̂-action is just a linear change
of variable by definition. The general S-action is discussed in [9, Sect. 4.2]. It is a
combination of a shift of variables that vanishes in our case (indeed, (1, 0)S1 = (0, 0)),
the linear change of variables that we have in the statement of the proposition, and a
correction of unstable terms that is not essential for us. ��

5.2. The Norbury-Scott conjecture. Norbury and Scott [26] propose the following con-
struction. They consider a spectral curve given by{

x = z + 1
z ;

y = log z,
(5.17)

and the standard two-point function

B(z, z′) = dz ⊗ dz′

(z − z′)2
. (5.18)

Via topological recursion they obtain the n-formsωg,n that they consider in the global
variable x , and they conjecture the following theorem (they prove it for g = 0, 1):

Theorem 5.2. For 2g − 2 + n > 0, we have:
n∏

j=1

(
− Res

x j =∞
1

(a j + 1)! x
a j +1
j

)
ωg,n(x1, . . . , xn) = 〈

n∏
j=1

τ2,a j 〉g, (5.19)

where 〈∏n
j=1 τ2,a j 〉g is the corresponding correlator in ZCP1 , that is, the coefficient of

�
g−1∏n

j=1 t2,a j /|Aut (a1, . . . , an)| in log ZCP1 .

In the rest of this section we prove this theorem, identifying all ingredients of the
topological recursion with the corresponding parts of the Givental formula.
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5.3. Proof of the Norbury–Scott conjecture.

5.3.1. Local coordinates near the branch points. We denote the local coordinates by
z1 = √

x − 2 and z2 = √
x + 2. Then we have:

x = z2
1 + 2 near x = 2, z = 1, z1 = 0; (5.20)

x = z2
2 − 2 near x = −2, z = −1, z2 = 0. (5.21)

Therefore,

z = 1 +
z2

1

2
± z1

√
1 +

z2
1

4
; (5.22)

z = −1 +
z2

2

2
± i z2

√
1 − z2

2

4
. (5.23)

In both cases we choose + for ±.

5.3.2. Expansion of y. Recall that y = log z. A direct computation shows:

y =
∫

dz1√
1 +

z2
1
4

; (5.24)

y =
∫ −i dz2√

1 − z2
2
4

. (5.25)

Note that

1√
1 +

z2
1
4

= 1 +
∞∑

k=1

z2k
1 · (−1)k(2k − 1)!!

k!23k
; (5.26)

−i√
1 − z2

2
4

= −i +
∞∑

k=1

z2k
2 · (−i) · (2k − 1)!!

k!23k
. (5.27)

Therefore

y = z1 +
∞∑

k=1

z2k+1
1 · (−1)k(2k − 1)!!

k!23k(2k + 1)
; (5.28)

y = −i z2 +
∞∑

k=1

z2k+1
2 · (−i) · (2k − 1)!!

k!23k(2k + 1)
. (5.29)

Thus the coefficients ȟi
k+1, k ≥ 0, are given by the following formulas:

ȟ1
k+1 = 2 · (−1)k ((2k − 1)!!)2

k!23k
; (5.30)

ȟ2
k+1 = 2 · (−i) · ((2k − 1)!!)2

k!23k
. (5.31)
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5.3.3. Matrix fi, j (w). We use the following definition of the matrix fi j (w)

[cf. Eq. (3.62)]:

fi j (w) = δi j − w B̌[i j](0, w−1), (5.32)

where w = v−1. We use B̃i j
0,l = (Bi j

reg)0,2l(2l − 1)!!, and the following expressions:

B11
reg(0, z1) =

[
dz(z′

1)⊗ dz(z1)

(z(z′
1)− z(z1))2

− dz′
1 ⊗ dz1

(z′
1 − z1)2

]

z′
1=0

, (5.33)

B12
reg(0, z2) =

[
dz(z′

1)⊗ dz(z2)

(z(z′
1)− z(z2))2

]

z′
1=0

, (5.34)

B21
reg(0, z1) =

[
dz(z′

2)⊗ dz(z1)

(z(z′
2)− z(z1))2

]

z′
2=0

, (5.35)

B22
reg(0, z2) =

[
dz(z′

2)⊗ dz(z2)

(z(z′
2)− z(z2))2

− dz′
2 ⊗ dz2

(z′
2 − z2)2

]

z′
2=0

. (5.36)

Therefore,

B11
reg(0, z1) = 1

z2
1

⎛
⎝ 1√

1 +
z2

1
4

− 1

⎞
⎠ , (5.37)

B12
reg(0, z2) = i

4(1 − z2
2
4 )

3/2
, (5.38)

B21
reg(0, z1) = i

4(1 +
z2

1
4 )

3/2
, (5.39)

B22
reg(0, z2) = 1

z2
2

⎛
⎝ 1√

1 − z2
2
4

− 1

⎞
⎠ . (5.40)

So, we have the following expansions:

B11
reg(0, z1) =

∞∑
k=0

z2k
1 · (−1)k+1(2k + 1)!!

(k + 1)!23(k+1)
, (5.41)

B12
reg(0, z2) =

∞∑
k=0

z2k
2 · i(2k + 1)!!

(k)!23k+2 , (5.42)

B21
reg(0, z1) =

∞∑
k=0

z2k
2 · i(−1)k(2k + 1)!!

(k)!23k+2 , (5.43)

B22
reg(0, z2) =

∞∑
k=0

z2k
2 · (2k + 1)!!

(k + 1)!23(k+1)
. (5.44)
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The formulas for fi j (w) are then

f11(w) = 1 +
∞∑

k=1

wk · (−1)k+1(2k − 1)!!(2k − 3)!!
k!23k

, (5.45)

f12(w) =
∞∑

k=1

wk · −i(2k − 1)!!(2k − 3)!!
(k − 1)!23k−1 , (5.46)

f21(w) =
∞∑

k=1

wk · (−1)ki(2k − 1)!!(2k − 3)!!
(k − 1)!23k−1 , (5.47)

f22(w) = 1 +
∞∑

k=1

wk · −(2k − 1)!!(2k − 3)!!
k!23k

. (5.48)

This coincides with the formula for the
∑∞

k=0 Rk2k(−w)k at the point (0, 0).

5.3.4. Comparison of the coefficient of (g, n,m)-vertex. In this section we consider a
vertex of genus g with n attached half-edges or ordinary leaves, and m dilaton leaves,
with an associated intersection number 〈∏n

i=1 τdi

∏m
i=1 τai +1〉g,n+m . There are vertices

of type 1 and type 2, depending on the canonical coordinate that we associate to the
vertex. We compare the coefficients that we associate to these vertices in the Givental
case, using the data from Sect. 5.1 in Formula (2.26), and in the case of local topological
recursion, using the data from Sects. 5.3.1, 5.3.2 and 5.3.3 in Formula (3.28).

The coefficients that we have in Formula (3.28) (at the vertex of the type 1 and 2
resp.) are:

(−2)2−2g−n−m and (2i)2−2g−n−m . (5.49)

Let us compute how these coefficients change if we take into account all the dif-
ferences between R-matrix and the dilaton leaves. For convenience, from now on we
rescale the differential forms on the leaves, W i

a → 2−a W i
a , i = 1, 2, a = 0, 1, 2, . . . .

Observe that this rescaling, the extra factor of 2k in Rk and, in addition, an extra factor
of

√
2 that we have to put by hand on each ordinary leave give us together the extra

factors of

2
∑n

i=1 di 2n/2 and 2
∑n

i=1 di 2n/2. (5.50)

Then the quotient of the contributions of the dilaton leaves gives us extra factors of

2
∑m

i=1(ai +1)2m/2(−1)m and 2
∑m

i=1(ai +1)2m/2(−1)m . (5.51)

Let us assign by hand an extra factor of (−1)2g−2+n to each (g, n,m)-vertex. This way
we get the following coefficients:

2g−1+n/2+m/2 and 2g−1+n/2+m/2i2g−2+n+m . (5.52)

These coefficients are precisely

(
(�1)

1/2
)2g−2+n+m

and
(
(�2)

1/2
)2g−2+n+m

. (5.53)
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Therefore, the coefficient of
∏n̂

k=1 2−dk W ik
dk

in a graph of global genus ĝ with n̂
marked leaves in Formula (3.28) for the set up of Norbury–Scott, multiplied by

2n̂/2(−1)2ĝ−2+n̂ = (−√
2)n̂, (5.54)

is equal to the coefficient of
∏n̂

k=1 tdk ,ik in the same graph in Formula (2.26). This extra
factor will be taken into account via a rescaling of the variables by −√

2.

5.3.5. The �-action. Let us apply the �-operator to the leaves. After comparing the
R-action with the graph expansion given by Formulas (2.26) and (3.28), and taking into
account the extra factor of −√

2, we have the following identification of the marking on
the leaves: ∑

a−b=c

(ta,1, ta,2)Sb =
(

2−cW 1
c , 2−cW 2

c

)
�−1/(−√

2). (5.55)

Here

W 1
0 = dz

(1 − z)2

∣∣∣∣
z=z(z1)

+
dz

(1 − z)2

∣∣∣∣
z=z(z2)

, (5.56)

W 2
0 = i dz

(1 + z)2

∣∣∣∣
z=z(z1)

+
i dz

(1 + z)2

∣∣∣∣
z=z(z2)

, (5.57)

and

2−cW i
c = d

((
− d

dx

)c ∫
W i

0

)
, (5.58)

so we can work in the global coordinate z rather than in the local coordinates z1, z2.
Since

�−1/(−√
2) =

(−1
2

−1
2−i

2
i
2

)
, (5.59)

we have: ∑
a−b=c

(ta,1, ta,2)Sb =
(

U 1
c ,U

2
c

)
, (5.60)

where

U 1
0 = 1

2

(
− dz

(1 − z)2
+

dz

(1 + z)2

)
, (5.61)

U 2
0 = −1

2

(
dz

(1 − z)2
+

dz

(1 + z)2

)
, (5.62)

and

Ui
c = d

((
− d

dx

)c ∫
Ui

0

)
, i = 1, 2; c = 0, 1, 2, . . . . (5.63)
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5.3.6. The S-action. The S-action is just a linear change of variables prescribed by
Eq. (5.60). This means that we replace each Ui

c with a linear combination of times ta, j ,
a ≥ c, where the coefficient of ta,2 (this is the series of variables corresponding to the
stationary sector) is equal to

{
0, if a − c is even;

1
(k+1)·(k!)2 , if a − c = 2k + 1,

(5.64)

for i = 1, and {
1

(k!)2 , if a − c = 2k;
0, if a − c is odd,

(5.65)

for i = 2.
Norbury and Scott make the same kind of a linear change of variables, with the

coefficient of ta,2 in U j
c , j = 1, 2, given by

− Res
x=∞

1

(a + 1)! xa+1U j
c = 1

(a + 1)! Res
z=0

(
z +

1

z

)a+1

U j
c . (5.66)

In order to complete the proof of Theorem 5.2, we have to check two things: (1) that
the Norbury–Scott formula for the contribution depends only on the difference a − c;
(2) that for c = 0 Eq. (5.66) gives exactly the same coefficients as we have in Eqs. (5.64)
and (5.65).

The first thing follows directly from the formula. Indeed,

−
∮

xa+1

(a + 1)!d

((
− d

dx

)c ∫
U j

0

)
=
∮

xa

(a)!
((

− d

dx

)c ∫
U j

0

)
dx

=
∮

xa−c

(a − c)!
(∫

U j
0

)
dx

= −
∮

xa+1−c

(a + 1 − c)! d

(∫
U j

0

)
. (5.67)

In particular, we see that the coefficient is equal to 0 if a < c.
Then, a direct computation shows that

1

(a + 1)! Res
z=0

(
z +

1

z

)a+1

U 1
0

= 1

(a + 1)! Res
z=0

(
z +

1

z

)a+1 1

2

(
− dz

(1 − z)2
+

dz

(1 + z)2

)

= 1

(a + 1)! Res
z=0

(
z +

1

z

)a+1 −2z dz

(1 − z2)2

=
{

0, if a is even;
−2

(2k+2)!
((2k+2

0

)
(k + 1) +

(2k+2
1

)
k + · · · +

(2k+2
k

)
1
)

if a = 2k + 1.

=
{

0, if a is even;
−1

(k+1)(k!)2 if a = 2k + 1,
(5.68)
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and

1

(a + 1)! Res
z=0

(
z +

1

z

)a+1

U 2
0

= 1

(a + 1)! Res
z=0

(
z +

1

z

)a+1 −1

2

(
dz

(1 − z)2
+

dz

(1 + z)2

)

= −1

(a + 1)! Res
z=0

(
z +

1

z

)a+2 z dz

(1 − z2)2

=
{ −1
(2k+1)!

((2k+2
0

) · (k + 1) +
(2k+2

1

) · k + · · · (2k+2
k

) · 1
)

if a = 2k;
0, if a is odd

=
{ −1
(k!)2 if a = 2k;
0, if a is odd.

(5.69)

We see that there is an extra factor of (−1) in all coefficients. This means that the
(g, n)-correlation functions of Norbury–Scott differ from the stationary Gromov–Witten
invariants of CP1 by the factor of (−1)n . But this factor is exactly the difference we
must have because Norbury and Scott are using a different convention of the sign in the
topological recursion, cf. Remark 3.4. This completes the proof of Theorem 5.2.
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