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Abstract: We study first-passage percolation on Z
2, where the edge weights are given by

a translation-ergodic distribution, addressing questions related to existence and coales-
cence of infinite geodesics. Some of these were studied in the late 1990s by C. Newman
and collaborators under strong assumptions on the limiting shape and weight distri-
bution. In this paper we develop a framework for working with distributional limits
of Busemann functions and use it to prove forms of Newman’s results under minimal
assumptions. For instance, we show a form of coalescence of long finite geodesics in any
deterministic direction. We also introduce a purely directional condition which replaces
Newman’s global curvature condition and whose assumption we show implies the exis-
tence of directional geodesics. Without this condition, we prove existence of infinite
geodesics which are directed in sectors. Last, we analyze distributional limits of geo-
desic graphs, proving almost-sure coalescence and nonexistence of infinite backward
paths. This result relates to the conjecture of nonexistence of “bigeodesics.”
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1. Introduction

First-passage percolation (FPP) was introduced by Hammersley and Welsh [22] as a
model for fluid flow through a porous medium. However, it has since developed into
a field of its own, serving for instance as a model for growing interfaces (see [29] and
connections to other models [26]) and competing infections (see [6,11,16,21,23]). For
a survey of recent results, see [15].

We consider FPP on (Z2, E2), the two-dimensional square lattice. P will denote a
probability measure on the space � = R

E2
(satisfying some conditions outlined in the

next section). An element ω ∈ � represents an edge-weight configuration; the passage
time across the edge e is denoted ωe = ω(e). The passage time between two sites x, y
will be called

τ(x, y) = inf
γ :x→y

τ(γ ),

where the infimum is over all (finite) lattice paths from x to y and τ(γ ) =∑e∈γ ωe.

In this paper we study geodesics, (typically self-avoiding) paths in Z
2 which are

everywhere time-minimizing. Precisely, define a finite geodesic from x to y to be a finite
lattice path γ from x to y such that τ(γ ) = τ(x, y). Define an infinite geodesic to be an
infinite path (indexed by either Z or N) such that each finite subpath is a finite geodesic.
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In the mid 90’s, Newman [31] and Licea-Newman [30], along with Wehr [34] and Wehr-
Woo [35] began the rigorous study of infinite geodesics. This was in part motivated by
connections between “bigeodesics” in FPP and ground states of disordered ferromagnetic
spin models [14,32]. The main questions involve existence of infinite geodesics with
asymptotic directions, uniqueness and coalescence of such geodesics, and absence of
bigeodesics. After considerable progress on lattice FPP, Howard and Newman gave an
essentially complete description for a continuum variant, called Euclidean FPP [25].

The main theorems proved to date require heavy assumptions on the model, for
instance strong moment bounds and so-called curvature inequalities (the establishment
of which provides a major open problem in FPP). These are needed to implement versions
of arguments that originated in the paper of Newman and Piza [33]. The main goals of this
paper are to prove versions of the current geodesic theorems under minimal assumptions
necessary to guarantee their validity. Because the methods of Newman and collaborators
involve curvature bounds and concentration inequalities (the latter of which cannot hold
under low moment assumptions), we are forced to develop completely new techniques.

Our analysis centers on Busemann functions, which were used and analyzed in papers
of Hoffman [23,24]. His work was one of the first (along with Garet-Marchand [16])
to assert existence of multiple disjoint infinite geodesics under general assumptions,
finding at least four almost surely. The methods are notable in their ability to extract any
information without knowing the existence of limits for Busemann functions. Indeed,
proving the existence of such limits, corresponding to

lim
n→∞ [τ(x, xn)− τ(y, xn)]

for fixed x, y and a deterministic sequence of vertices (xn) growing to infinity along a
ray, provides a major open problem and appears to be an impediment to further analysis
of geodesics in the model. Incidentally, in an effort to describe the microstructure of
the limiting shape for the model, Newman [31] was able to show that under strong
assumptions, this limit exists in Lebesgue-almost every direction.

One main aim of the present paper is to develop a framework to overcome the existence
of the above limit. We will analyze distributional limits of Busemann functions and relate
these back to the first-passage model. The relationship between Busemann functions and
geodesics will be preserved in the limit and will provide information about directional
geodesics, coalescence, and the structure of geodesic graphs, the latter of which gives
nonexistence of certain types of bigeodesics.

1.1. Main results. We will make one of two main assumptions on the passage time
distribution. These relate to the degree of independence in the model. The first deals
with i.i.d. passage times:

A1 P is a product measure whose common distribution satisfies the criterion of Cox
and Durrett [10]: if e1, . . . , e4 are the four edges touching the origin,

E

[

min
i=1,...,4

ωei

]2

<∞. (1.1)

Furthermore we assume P(ωe = 0) < pc = 1/2, the bond percolation threshold
for Z

2.

Condition (1.1) is implied by, for example, the assumption Eωe <∞.
The other assumption is on distributions that are only translation-invariant. Condition

(d) below deals with the limit shape, which is defined in the next paragraph.
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A2 P is a measure satisfying the conditions of Hoffman [24]:
(a) P is ergodic with respect to translations of Z

2;
(b) P has all the symmetries of Z

2;
(c) Eω2+ε

e <∞ for some ε > 0;
(d) the limit shape for P is bounded.

Some of the conditions here can be weakened. For instance, the 2 + ε moment condition
can be replaced with a condition of a finite Lorentz-type norm; see [7] for details.

In each of these settings, a “shape theorem” has been proved [7,10] for the set of sites
accessible from 0 in time t . For x, y ∈ R

2 we set τ(x, y) = τ(x̃, ỹ), where x̃ and ỹ are
the unique points in Z

2 such that x ∈ x̃ + [−1/2, 1/2)2 and y ∈ ỹ + [−1/2, 1/2)2. For
any t ≥ 0 write B(t) for the set of x in R

2 such that τ(0, x) ≤ t and B(t)/t = {x/t :
x ∈ B(t)}. There exists a deterministic compact convex set B, symmetric about the axes
and with nonempty interior such that for each ε > 0,

P ((1− ε)B ⊆ B(t)/t ⊆ (1 + ε)B for all large t) = 1.

The statement that B has nonempty interior is not explicitly proved in [7] but follows
from the maximal lemma stated there.

1.1.1. Directional results. Our first results deal with asymptotic directions for infinite
geodesics. Much is known about such questions under various strong assumptions (for
instance uniformly positive curvature of B, exponential moments for P; see Sect. 1.1.2
for a more precise discussion). However, under only A1 or A2, very little is known.
After initial results by Häggström-Pemantle [21], Garet-Marchand [16] and Hoffman
[23], it was proved by Hoffman [24] that under A2, there exist at least 4 infinite geodesics
that are pairwise disjoint almost surely. Nothing is known about the directions of the
geodesics; for instance, Hoffman’s results do not rule out the case in which the geodesics
spiral around the origin.

Below we will show that under A1 or A2 there are geodesics that are asymptotically
directed in sectors of aperture no bigger than π/2. Under a certain directional condition
on the boundary of the limit shape (see Corollary 1.2) we show existence of geodesics
with asymptotic direction. To our knowledge, the only work of this type so far [31,
Thm. 2.1] requires a global curvature assumption to show the existence of geodesics in
even one direction.

To describe the results, we endow [0, 2π) with the distance of S1: say that
dist(θ1, θ2) < r if there exists an integer m such that |θ1 − θ2 − 2πm| < r . For
� ⊆ [0, 2π) we say that a path γ = x0, x1, . . . is asymptotically directed in � if for each
ε > 0, arg xk ∈ �ε for all large k, where �ε = {θ : dist(θ, φ) < ε for some φ ∈ �}.
For θ ∈ [0, 2π), write vθ for the unique point of ∂B with argument θ . Recall that a
supporting line L for B at vθ is one that touches B at vθ such that B lies on one side
of L . If θ is an angle such that ∂B is differentiable at vθ (and therefore has a unique
supporting line Lθ (the tangent line) at this point), we define an interval of angles Iθ :

Iθ = {θ ′ : vθ ′ ∈ Lθ }. (1.2)

Theorem 1.1. Assume either A1 or A2. If ∂B is differentiable at vθ , then with probability
one there is an infinite geodesic containing the origin which is asymptotically directed
in Iθ .

The meaning of the theorem is that there is a measurable set A with P(A) = 1
such that if ω ∈ A, there is an infinite geodesic containing the origin in ω which is
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asymptotically directed in Iθ . This also applies to any result we state with the phrases
“with probability one there is an infinite geodesic” or “with probability one there is a
collection of geodesics.”

We now state two corollaries. A point x ∈ ∂B is exposed if there is a supporting line
for B that touches B only at x .

Corollary 1.2. Assume either A1 or A2. Suppose that vθ is an exposed point of differ-
entiability of ∂B. With probability one there exists an infinite geodesic containing the
origin with asymptotic direction θ .

Proof. Apply Theorem 1.1, noting that Iθ = {θ}. 
�
In the next corollary we show that there are infinite geodesics asymptotically directed

in certain sectors. Because the limit shape is convex and compact, it has at least 4 extreme
points. Angles corresponding to the arcs connecting these points can serve as the sectors.

Corollary 1.3. Assume either A1 or A2. Let θ1 �= θ2 be such that vθ1 and vθ2 are extreme
points of B. If � is the set of angles corresponding to some arc of ∂B connecting vθ1

to vθ2 , then with probability one there exists an infinite geodesic containing the origin
which is asymptotically directed in �.

Proof. Choose θ3 ∈ � such that θ1 �= θ3 �= θ2 and B has a unique supporting line
Lθ3 at vθ3 (this is possible since the boundary is differentiable almost everywhere). Let
C be the closed arc of ∂B from vθ1 to vθ2 that contains vθ3 and write D for its open
complementary arc. We claim D ⊆ I c

θ3
. This will prove the corollary after applying

Theorem 1.1 with θ = θ3.
For a contradiction, suppose that Lθ3 intersects D at some point vφ and write S for

the segment of Lθ3 between vθ3 and vφ . Since Lθ3 is a supporting line, the set B lies
entirely on one side of it. On the other hand, since B is convex and vθ3 , vφ ∈ B, S ⊆ B.
Therefore S ⊆ ∂B and must be an arc of the boundary. It follows that one of vθ1 or vθ2

is in the interior of S, contradicting the fact that these are extreme points of B. 
�
Remark 1.4. If P is a product measure with P(ωe = 1) = pc and P(ωe < 1) = 0, where
pc is the critical value for directed percolation, [4, Thm. 1] implies that (1/2, 1/2) is an
exposed point of differentiability of B. Corollary 1.2 then gives a geodesic in the direction
π/4. Though all points of ∂B (for all measures not in the class of Durett-Liggett [12])
should be exposed points of differentiability, this is the only proven example.

Remark 1.5. From [20, Thm. 1.3], for any compact convex set C which is symmetric
about the axes with nonempty interior, there is a measure P satisfying A2 (in fact, with
bounded passage times) which has C as a limit shape. Taking C to be a Euclidean disk
shows that there exist measures for which the corresponding model obeys the statement
of Corollary 1.2 in any deterministic direction θ .

1.1.2. Global results. In this section we use the terminology of Newman [31]. Call θ a
direction of curvature if there is a Euclidean ball Bθ with some center and radius such
that B ⊆ Bθ and ∂ Bθ ∩ B = {vθ }. We say that B has uniformly positive curvature if
each direction is a direction of curvature and there exists M < ∞ such that the radius
of Bθ is bounded by M for all θ .

In [31, Thm. 2.1], Newman has shown that under the assumptions (a) P is a product
measure with Eeβωe <∞ for some β > 0, (b) the limit shape B has uniformly positive
curvature and (c) ωe is a continuous variable, two things are true with probability one.
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1. For each θ ∈ [0, 2π), there is an infinite geodesic with asymptotic direction θ .
2. Every infinite geodesic has an asymptotic direction.

As far as we know, there has been no weakening of these assumptions.
Below we improve on Newman’s theorem. We first reduce the moment assumption

on P to that of A1. Next we extend the theorem to non-i.i.d. measures. Newman’s
proof uses concentration inequalities of Kesten [28] and Alexander [1], which require
exponential moments on the distribution (and certainly independence). So to weaken the
moment assumptions we need to use a completely different method, involving Busemann
functions instead.

To state the theorem, we make slightly stronger hypotheses:

A1′ P satisfies A1 and the common distribution of ωe is continuous.
A2′ P satisfies A2 and P has unique passage times.

The phrase “unique passage times” means that for all paths γ and γ ′ with distinct edge
sets, P(τ (γ ) = τ(γ ′)) = 0.

Theorem 1.6. Assume either A1′ or A2′ and that B has uniformly positive curvature.

1. With P-probability one, for each θ there is an infinite geodesic with direction θ .
2. With P-probability one, every infinite geodesic has a direction.

The same method of proof shows the following.

Corollary 1.7. Assume either A1′ or A2′ and suppose vθ is an exposed point of differ-
entiability of ∂B for all θ . Then the conclusions of Theorem 1.6 hold.

Remark 1.8. The proofs of the above two results only require that the set of extreme
points of B is dense in ∂B. In fact, a similar result holds for a sector in which extreme
points of B are dense in the arc corresponding to this sector.

1.1.3. Coalescence for geodesics. In this section we describe results for coalescence of
infinite geodesics. For this we need some notation. For S ⊆ R

2 define the point-to-set
passage time

τ(x, S) = inf
y∈S

τ(x, y) for x ∈ R
2.

By the subadditivity property τ(x, y) ≤ τ(x, z) + τ(z, y) we find

τ(x, S) ≤ τ(x, y) + τ(y, S) for x, y ∈ R
2. (1.3)

A path γ from a point x ∈ Z
2 to a point in

Ŝ = {y ∈ Z
2 : y + [−1/2, 1/2)2 ∩ S �= ∅} (1.4)

is called a geodesic from x to S if τ(γ ) = τ(x, S). Under assumptions A1 or A2, one
can argue from the shape theorem and boundedness of the limit shape that a geodesic
from x to S exists P-almost surely. However, it need not be unique. In the case, though,
that we assume A1′ or A2′, there is almost surely exactly one geodesic from x to S.
Note that if γ is a geodesic from x to S and y ∈ γ , then the piece of γ from x to y is a
geodesic from x to y and the piece of γ from y to S is a geodesic from y to S.
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The set S gives a directed geodesic graph GS = GS(ω): 〈x, y〉 is an edge of GS if
it is in some geodesic from a point to S and τ(x, S) ≥ τ(y, S) (we will explain more
about this graph in Sect. 2.2). We say that a sequence of directed graphs Gn = (Z2, En)

converges to a directed graph G = (Z2, E) if each edge 〈x, y〉 is in only finitely many
of the symmetric differences En�E . If x and y are vertices of a directed graph G, write
x → y if there is a directed path from x to y in G. Last, we say that two infinite directed
paths � and �′ coalesce if their (edge) symmetric difference is finite.

For the main theorems on coalescence we need an extra assumption in the case
A2′. It allows us to apply “edge modification” arguments. Write ω = (ωe, ω̌), where
ω̌ f = (ω) f �=e.

Definition 1.9. We say that P has the upward finite energy property if for each λ > 0
such that P(ωe ≥ λ) > 0,

P
(
ωe ≥ λ

∣
∣ ω̌
)

> 0 almost surely. (1.5)

Note that if P is a product measure, it has the upward finite energy property.

Theorem 1.10. Assume either A1′ or both A2′ and the upward finite energy property.
Let v ∈ R

2 be any nonzero vector and for β ∈ R define

Lβ(v) = {y ∈ R
2 : y · v = β}.

There exists an event A with P(A) = 1 such that for each ω ∈ A, the following holds.
There exists an (ω-dependent) increasing sequence (αk) of real numbers with αk →∞
such that GLαk (v)(ω)→ G(ω), a directed graph with the following properties.

1. Viewed as an undirected graph, G has no circuits.
2. Each x ∈ Z

2 has out-degree 1 in G.
3. (All geodesics coalesce.) Write�x for the unique infinite path in G from x. If x, y ∈ Z

2

then �x and �y coalesce.
4. (Backward clusters are finite.) For all x ∈ Z

2, the set {y ∈ Z
2 : y → x in G} is

finite.

Our last theorem deals with coalescence and asymptotic directions. Before stating it,
we discuss some previous results. In 1995, Licea and Newman [30] proved that given
θ ∈ [0, 2π), all directional geodesics almost surely coalesce except in some deterministic
(Lebesgue-null) set D ⊆ [0, 2π). Specifically they showed that under the assumptions
(a) P is a product measure whose one-dimensional marginals are continuous with finite
exponential moments and (b) uniformly positive curvature of B,

There exists D ⊆ [0, 2π) with Lebesgue measure zero such that if θ ∈ [0, 2π)\D ,

(1.6)

1. almost surely, there exists a collection of infinite geodesics {γx : x ∈ Z
2} such that

each γx has asymptotic direction θ and for all x, y, the paths γx and γy coalesce,
and

2. almost surely, for each x , there is a unique infinite geodesic containing x with
asymptotic direction θ .

Since [30] it has been an open problem to show that D can be taken to be empty. Zerner
[32, Thm. 1.5] proved that D can be taken to be countable. In a related exactly solvable
model (directed last-passage percolation, using exponential weights on sites), Coupier
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has proved [9, Thm. 1(3)], building on work of Ferrari-Pimentel [13], that D can be
taken to be empty. These results rely on a mapping to the TASEP particle system.

In part 2 of the next theorem, we improve on (1.6) in the general case. The result
reduces the set D to be empty for existence of coalescing geodesics (item 1 above).
It however does not address uniqueness. We reduced the moment condition of [30],
extended to non-i.i.d. measures and replaced the global curvature assumption with a
directional condition. Without this condition, part 3 gives the existence of coalescing
geodesics directed in sectors. For the statement, recall the definition of Iθ in (1.2).

Theorem 1.11. Assume either A1′ or both A2′ and the upward finite energy property.
Let θ ∈ [0, 2π).

1. If ∂B is differentiable at vθ then with probability one there exists a collection {γx :
x ∈ Z

2} of infinite geodesics in ω such that
(a) each x is a vertex of γx ;
(b) each γx is asymptotically directed in Iθ ;
(c) for all x, y ∈ Z

2, γx and γy coalesce and
(d) each x is on γy for only finitely many y.

2. If vθ is an exposed point of differentiability of B then the above geodesics all have
asymptotic direction θ .

3. Suppose θ1 �= θ2 are such that vθ1 and vθ2 are extreme points of B. If � is the set
of angles corresponding to some arc of ∂B connecting vθ1 to vθ2 then the above
geodesics can be taken to be asymptotically directed in �.

Theorems 1.10 and 1.11 follow from a stronger result. In Sects. 5 and 6, we prove
that any subsequential limit μ defined as in Sect. 3.1 is supported on geodesic graphs
with properties 1–4 of Theorem 1.10.

Remark 1.12. The finiteness of backward clusters in the graphs produced in the previous
two theorems (see item 4 of the first and item 1(d) of the second) is related to nonexistence
of bigeodesics. It shows that when constructing infinite geodesics using a certain limiting
procedure, it is impossible for doubly infinite paths to arise.

1.2. Relation to disordered spin models. Questions about geodesics have implications
for the ground states of disordered ferromagnetic spin models. Examples of such sys-
tems include the disordered Ising ferromagnet, a variant of the usual Ising model in
which nearest-neighbor couplings take values according to some (positive) distribution.
Consider the lattice dual to Z

2, defined by

(Z2∗, E2∗ ) = (Z2, E2) +
1

2
(e1 + e2),

and define a “spin configuration” σ = (σx )x∈Z2∗ ∈ {+1,−1}Z2∗ . Let (Jx,y)〈x,y〉∈E2∗ have
joint distribution μ which is ergodic and such that μ(Jx,y > 0) = 1. For any configura-
tion σ and any finite S ⊆ Z

2∗ define the (random) energy functional

HS(σ ) = −
∑

〈x,y〉∈E2∗
x∈S

Jx,yσxσy .

We will call σ a ground state for couplings (Jx,y) if, for each configuration σ̃ such
that σ̃x = σx for all x outside of some finite set, we have

HS(σ ) ≤ HS(σ̃ ) for all finite S ⊆ Z
2∗.
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It is an open problem to describe the set of ground states for this ferromagnetic model. In
particular it is not known how many ground states there are for a given (Jx,y), although
it is conjectured (see, for instance [32]) that there should be only two almost surely.
These two are the constant configurations σ = ±1, which are clearly μ-almost surely
ground states. If any nonconstant ground states σ exist, they cannot have finite regions
of disagreement; that is, there can be no finite S such that σx = +1 for all x ∈ S and
σx = −1 for all y ∈ ∂S or vice-versa (here, ∂S is the set of sites at �1 distance one
from S). Therefore, any nonconstant ground state must have a two-sided (and circuitless)
infinite (original lattice) path of edges dual to bonds 〈x, y〉 such that σx = −σy .

We can push forward μ to a first-passage edge distribution P on edge-weight con-
figurations of Z

2 by defining ωe = Jx,y , where 〈x, y〉 is the edge dual to e. If such a
first-passage configuration had a bigeodesic, then the configuration σ which takes the
value +1 on one side of the bigeodesic and −1 on the other would be a nonconstant
ground state for the associated spin model.

In addition to the conjectures and partial proofs against the existence of bigeodesics in
the first-passage model, there are arguments in the physics literature against the existence
of nonconstant ground states. In particular, it is believed that for distributions μ satisfying
some weak conditions (for example, i.i.d. μ with continuous edge-weight distribution
and finite second moment), there should be almost surely no nonconstant ground states.

If one were to argue against the existence of non-constant ground states, one would try
to rule out the possibility of constructing such states by standard means. From the point of
view of FPP, it is natural to try to construct bigeodesics by taking limits of finite geodesics
to points or lines. In this vein, the results of this paper show that natural constructions of
bigeodesics fail to produce them; that is, one cannot generate nonconstant ground states
by these methods.

1.3. Notation. We denote the standard orthonormal basis vectors for R
2 by e1 and e2.

The translation operators Tei , i = 1, 2 act on a configuration ω as follows:
(
Tei (ω)

)
e′ =

ωe′−ei . Under any of the assumptions laid out above, the measure P is invariant under
these translations. Furthermore the passage times have a certain translation-covariance:
for i = 1, 2,

τ(x, S)(Tei ω) = τ(x − ei , S − ei )(ω), (1.7)

where S − ei = {x − ei : x ∈ S}.
We shall need a function g : R2 → R which describes the limiting shape B. It is the

norm whose closed unit ball is B. There are many ways to define it; for instance one can
use g(x) = inf{λ > 0 : x/λ ∈ B}. It follows from the shape theorem that under A1 or A2,

lim
n→∞ τ(0, nx)/n = g(x) for all x ∈ R

2, P-almost surely.

Furthermore, there is convergence in L1:

lim
n→∞Eτ(0, nx)/n = g(x) for all x ∈ R

2.

In the case of A1 this follows from [10, Lem. 3.2] and under A2 it can be derived from the
shape theorem and [24, Lem. 2.6] (the reader can also see a derivation in the appendix of
[17]). We denote the �1 norm on R

2 by ‖·‖1 and the �2 norm by ‖·‖2. Since the limit shape
is bounded and has nonempty interior, there are constants 0 < C1, C2 <∞ such that

C1‖x‖2 ≤ g(x) ≤ C2‖x‖2 for all x ∈ R
2. (1.8)
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We recall the fact that under A1 or A2,

Eτ(x, y)2 <∞ for all x, y ∈ R
2. (1.9)

This was proved in [10, Lem. 3.1] assuming A1 and in the other case it follows directly
from the fact that Eω2+ε

e <∞ for some ε > 0.
We write x · y for the standard dot product between x and y in R

2.

For the rest of the paper we assume A1 or A2.

1.4. Structure of the paper. In the next section, we give basic properties of Busemann
functions and geodesic graphs. In Sect. 3 we introduce Busemann increment config-
urations and construct probability measures on them. Next we reconstruct Busemann
functions, and in Sect. 4 we prove a shape theorem for the reconstruction. Section 5
begins the study of distributional limits G of geodesic graphs, where we show that all
paths are asymptotically directed in a sector given by the reconstructed Busemann func-
tion. In Sect. 6 we show coalescence of all paths in G. We use all of these tools in Sect. 7
to prove the main results of the paper.

2. Busemann Functions and Geodesic Graphs

In this section we will give basic properties of Busemann functions and geodesic graphs.
These will be carried over through weak limits to a space introduced in the next section.

2.1. Busemann functions. For any S ⊆ R
2 and configuration ω, we define the Busemann

function BS : Z2 × Z
2 → R as

BS(x, y) = τ(x, S)− τ(y, S),

This function measures the discrepancy between travel times from x and y to S. We
list below some basic properties of Busemann functions. One of the most interesting is
the additivity property 1. It is the reason that the asymptotic shape for the Busemann
function is a half space whereas the asymptotic shape for τ is a compact set.

Proposition 2.1. Let S ⊆ R
2. The Busemann function BS satisfies the following prop-

erties P-almost surely for x, y, z ∈ Z
2:

1. (Additivity)

BS(x, y) = BS(x, z) + BS(z, y). (2.1)

2. For i = 1, 2,

BS(x, y)(Tei ω) = BS−ei (x − ei , y − ei )(ω). (2.2)

Therefore the finite-dimensional distributions of BS obey a translation invariance:

(BS(x, y)) =
d

(
BS−ei (x − ei , y − ei )

)
.

3.

|BS(x, y)| ≤ τ(x, y). (2.3)

Proof. The first property follows from the definition. The third is a consequence of
subadditivity (1.3) of τ(y, S). The second item follows from the statement (1.7) for
passage times. 
�
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The last property we need regards the relation between geodesics and Busemann
functions. Though it is simple, it will prove to be important later.

Proposition 2.2. Let S ⊆ R
2 and x ∈ Z

2. If γ is a geodesic from x to S and y is a vertex
of γ then BS(x, y) = τ(x, y).

Proof. Write τγ (x, y) for the passage time along γ between x and y. Since every segment
of a geodesic itself a geodesic, τ(x, S)− τ(y, S) = τγ (x, S)− τγ (y, S) = τγ (x, y) =
τ(x, y). 
�

Using this proposition and additivity of the Busemann function we can relate BS(x, y)

to coalescence. If γx and γy are geodesics from x and y to S (respectively) and they meet
at a vertex z then BS(x, y) = τ(x, z) − τ(y, z). This is a main reason why Busemann
functions are useful for studying coalescence of geodesics.

2.2. Geodesic graphs. For any S ⊆ Z
2 and configuration ω, we denote the set of edges

in all geodesics from a point v ∈ Z
2 to S as GS(v). We regard each geodesic in GS(v) as

a directed path, giving orientation 〈x, y〉 to an edge if τ(x, S) ≥ τ(y, S) (the direction
in which the edge is crossed), and set GS(v) to be the union of these directed edges.
Let GS(ω) be the directed graph induced by the edges in ∪v GS(v). Last, define the
configuration ηS(ω) of directed edges by

ηS(ω)(〈x, y〉) =
{

1 if 〈x, y〉 ∈ GS(v) for some v

0 otherwise
.

For S ⊆ R
2 we define ηS(ω) and GS(ω) using Ŝ as in (1.4).

Proposition 2.3. Let S ⊆ R
2. The graph GS and the collection (ηS) satisfy the following

properties P-almost surely.

1. Every finite directed path is a geodesic. It is a subpath of a geodesic ending in S.
2. If there is a directed path from x to y in GS then BS(x, y) = τ(x, y).
3. For i = 1, 2,

ηS(e)(Tei ω) = ηS−ei (e − ei )(ω). (2.4)

Therefore the finite dimensional distributions of ηS obey a translation invariance:

(ηS(e)) =
d

(ηS−ei (e − ei )).

Proof. The third property follows from translation covariance of passage times (1.7).
The second property follows from the first and Proposition 2.2.

To prove the first, let γ be a directed path in GS and write the edges of γ in order
as e1, . . . , en . Write J ⊆ {1, . . . , n} for the set of k such that the path γk induced by
e1, . . . , ek is a subpath of a geodesic from some vertex to S. We will show that n ∈ J .
By construction of GS , the edge e1 is in a geodesic from some point to S, so 1 ∈ J .
Now suppose that k ∈ J for some k < n; we will show that k + 1 ∈ J . Take σ to be a
geodesic from a point z to S which contains γk as a subpath. Write σ ′ for the portion
of the path from z to the far endpoint vk of ek (the vertex to which ek points). The edge
ek+1 is also in GS so it is in a geodesic from some point to S. If we write σ̂ for the piece
of this geodesic from vk of ek to S, we claim that the concatenation of σ ′ with σ̂ is a
geodesic from z to S. To see this, write τγ̃ for the passage time along a path γ̃ :
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τ(z, S) = τσ (z, vk) + τσ (vk, S) = τσ ′(z, vk) + τσ̂ (vk, S).

The last equality holds since both the segment of σ̂ from vk to S and the segment of σ

from vk to S are geodesics, so they have equal passage time. Hence k + 1 ∈ J and we
are done. 
�

Note that each vertex x /∈ Ŝ has out-degree at least 1 in GS . Furthermore it is possible
to argue using part 1 of the previous proposition and the shape theorem that there are no
infinite directed paths in GS . Since we will not use this result later, we omit the proof.
Once we take limits of measures on such graphs later, infinite paths will appear.

If P has unique passage times, we can say more about the structure of GS .

Proposition 2.4. Assume A1′ or A2′. The following properties hold P-almost surely.

1. Each vertex x /∈ Ŝ has out-degree 1. Here Ŝ is defined as in (1.4).
2. Viewed as an undirected graph, GS has no circuits.

Proof. For the first property note that every vertex x /∈ Ŝ has out-degree at least 1
because there is a geodesic from the vertex to S and the first edge is directed away
from x . Assuming x has out-degree at least 2 then we write e1 and e2 for two such
directed edges. By the previous proposition, there are two geodesics γ1 and γ2 from x
to S such that ei ∈ γi for i = 1, 2. If either of these paths returned to x then there would
exist a finite path with passage time equal to 0. By the ergodic theorem there would
then be infinitely many distinct paths with passage time 0 (with positive probability),
contradicting unique passage times. This implies that γ1 and γ2 have distinct edge sets.
However, they have the same passage time, again contradicting unique passage times.

For the second property suppose that there is a circuit in the undirected version of GS .
Each vertex has out-degree 1, so this is actually a directed circuit and thus a geodesic.
But then it has passage time zero, giving a contradiction as above. 
�

Property 2 implies that GS , viewed as an undirected graph, is a forest. It has more
than one component if and only if Ŝ has size at least 2. We will see later that after taking
limits of measures on these graphs, the number of components will reduce to 1.

3. Busemann Increment Distributions

We are interested in taking limits of measures on Busemann functions and geodesic
graphs. We will choose a one-parameter family of lines Lα = L + αv for v a normal
vector to L and consider the Busemann functions BLα (x, y). The main question is
whether or not the limit

lim
α→∞ BLα (x, y) (3.1)

exists for x, y ∈ Z
2. If one could show this, then one could prove many results about FPP,

for instance, that infinite geodesics with an asymptotic direction always exist. Under an
assumption of uniformly positive curvature of the limit shapeB and exponential moments
for the common distribution of the ωe’s (in the case that P is a product measure) Newman
[31] has shown the existence of this limit for Lebesgue-almost every unit vector v.

We will try to overcome the difficulty of existence of limits (3.1) by enlarging the
space to work with subsequential limits in a systematic way. This technique is inspired
by work [2,3] on ground states of short-range spin glasses.
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3.1. Definition of μ. We begin by assigning a space for our passage times. Let �1 = R
Z

2

be a copy of �. A sample point in �1 we call ω as before. Our goal is to enhance this
space to keep track of Busemann functions and geodesic graphs. We will take limits in a
fixed direction, so for the remainder of this section, let � ∈ ∂B and let g� be any linear
functional on R

2 that takes its maximum on B at � with g� (�) = 1. The nullspace of
g� is then a translate of a supporting line for B at � . For α ∈ R, define

Lα =
{

x ∈ R
2 : g� (x) = α

}
.

For future reference, we note the inequality

for all x ∈ R
2, g� (x) ≤ g(x). (3.2)

It clearly holds if x �= 0. Otherwise since x/g(x) ∈ B, 1 ≥ g� (x/g(x)) = g� (x)/g(x).
Given α ∈ R and ω ∈ �1, write Bα(x, y)(ω) = BLα (x, y)(ω). Define the space

�2 = (R2)Z
2

with the product topology and Borel sigma-algebra and the Busemann
increment configuration Bα(ω) ∈ �2 as

Bα(ω) = ( Bα(v, v + e1), Bα(v, v + e2)
)
v∈Z2 .

We also consider directed graphs of geodesics. These are points in a directed graph
space �3 = {0, 1}E2

, where E2 is the set of oriented edges 〈x, y〉 of Z
2, and we use

the product topology and Borel sigma-algebra. For η ∈ �3, write G = G(η) for the
directed graph induced by the edges e such that η(e) = 1. Using the definition from the
last section, set

ηα(ω) = ηLα (ω) ∈ �3 and Gα(ω) = G(ηα(ω)) for α ∈ R.

Set �̃ = �1×�2×�3, equipped with the product topology and Borel sigma-algebra;

(ω,�, η) = (ω(e), θ1(x), θ2(x), η( f ) : e ∈ E2, x ∈ Z
2, f ∈ E2)

denotes a generic element of the space �̃. Define the map

�α : �1 −→ �̃ by ω �→ (ω, Bα(ω), ηα(ω)). (3.3)

Because�α is measurable, we can use it to push forward the distribution P to a probability
measure μα on �̃. Given the family (μα) and n ∈ N, we define the empirical average

μ∗n (·) := 1

n

∫ n

0
μα (·) dα. (3.4)

To prove that this defines a probability measure, one must show that for each measur-
able A ⊆ �̃, the map α �→ μα(A) is Lebesgue-measurable. The proof is deferred to
Appendix A.

From Bα(x, y) ≤ τ(x, y), the sequence
(
μ∗n
)∞

n=1 is seen to be tight and thus has a
subsequential weak limit μ. We will call the marginal of μ on �2 a Busemann increment
distribution and the marginal on �3 a geodesic graph distribution. It will be important to
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recall the Portmanteau theorem, a basic result about weak convergence. The following
are equivalent if (νk) is a sequence of Borel probability measures on a metric space X :

lim
k→∞ νk → ν weakly,

lim sup
k→∞

νk(A)≤ν(A) if A is closed, (3.5)

lim inf
k→∞ νk(A)≥ν(A) if A is open. (3.6)

(See, for example, [27, Thm. 3.25].) Because �̃ is metrizable, these statements apply.
In this section and the next, we prove general properties about the measure μ and

focus on the marginal on �2. In Sects. 5 and 6 we study the marginal on �3 and in Sect. 7
relate results back to the original FPP model. It is important to remember that μ depends
among other things not only on � , but on the choice of the linear functional g� . We
will suppress mention of � in the notation. Furthermore we will use μ to represent the
measure and also its marginals. For instance, if we write μ(A) for an event A ⊆ �2, we
mean μ(�1 × A ×�3).

3.2. Translation invariance of μ. We will show that μ inherits translation invariance
from P. The natural translations T̃m, m = 1, 2 act on �̃ as follows:

[
T̃m(ω,�, η)

]
(e, x, f ) = (ωe−em , θ1(x − em), θ2(x − em), η( f − em)

)
.

Here, for example, we interpret e − em for the edge e = (y, z) as (y − em, z − em).

Lemma 3.1. For any α ∈ R and m = 1, 2, μα ◦ T̃m = μα+g� (em).

Proof. Let A be a cylinder event for the space �̃ of the form

A = {ωei ∈ Bi , θr j (x j ) ∈ C j , η( fk) = ak : i = 1, . . . , l,

j = 1, . . . , m, k = 1, . . . , n
}
,

where each Bi , C j is a (real) Borel set with ak ∈ {0, 1}, each r j ∈ {1, 2}, and each
ei ∈ E2, x j ∈ Z

2 and fk ∈ E2. We will show that for m = 1, 2,

μα

(
T̃−1

m A
)
= μα+g� (em)(A). (3.7)

Such A generate the sigma-algebra so this will imply the lemma. For m ∈ {1, 2},
T̃−1

m (A) = {ωei−em ∈ Bi , θr j (x j − em) ∈ C j , η( fk − em) = ak
}
.

Rewriting μα(·) = P(�−1
α (·)) and using the definition of �α (3.3),

μα(T̃−1
m (A)) = P

(
ωei−em ∈ Bi , Bα(x j − em, x j − em + er j ) ∈ C j ,

ηα( fk − em)(ω) = ak) .

Note that translation invariance of P allows to shift the translation by em from the
arguments of ω, Bα and ηα to the position of the line Lα . We have equality in distribution:

ωe−em =
d

ωe, Bα(x − em, y − em) =
d

Bβ(x, y) and ηα(e − em) =
d

ηβ(e) ,

where β = α + g� (em). In fact, using the translation covariance statements (1.7), (2.2)
and (2.4), equality of the above sort holds for the joint distribution of the ω’s, Busemann
increments and graph variables appearing in the event A. This proves (3.7). 
�
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Proposition 3.2. μ is invariant under the translations T̃m, m = 1, 2.

Proof. Let f be a continuous function (bounded by D ≥ 0) on the space �̃, and fix
ε > 0. Choose an increasing sequence (nk) such that μ∗nk

→ μ weakly as k →∞. We
can then find k0 such that |μ( f )− μ∗nk

( f )| < ε/3 for k > k0.

By Lemma 3.1, μα ◦ T̃m = μα+g� (em) for m = 1, 2. Therefore
[
μ∗nk
◦ T̃m

]
( f ) = 1

nk

∫ nk +g� (em )

g� (em)

μα ( f ) dα

⇒
∣
∣
∣
[
μ∗nk
◦ T̃m

]
( f )−μ∗nk

( f )

∣
∣
∣≤ 1

nk

∣
∣
∣
∣
∣

∫ g� (em )

0
μα ( f ) dα

∣
∣
∣
∣
∣
+

1

nk

∣
∣
∣
∣
∣

∫ nk +g� (em)

nk

μα ( f ) dα

∣
∣
∣
∣
∣

≤ 2g� (em)D

nk
→ 0 as k →∞.

As T̃m is a continuous on �̃, (μ∗nk
◦ T̃m) converges weakly to μ ◦ T̃m, so there exists

k1 > k0 such that |μ ◦ T̃m( f ) − μ∗nk
◦ T̃m( f )| < ε/3 for all k > k1, and k2 > k1 with

2g� (em)D/nk2 < ε/3. So |μ( f )−μ◦ T̃m( f )| < ε for all ε > 0, giving μ = μ◦ T̃m .

�

3.3. Reconstructed Busemann functions. We wish to reconstruct an “asymptotic Buse-
mann function” f : Z2 → R by summing the Busemann increments of � ∈ �2. That
� is almost surely curl-free allows the construction to proceed independent of the path
we sum over. For this we need some definitions.

Given �∈�2, x ∈Z
2 and z∈Z

2 with ‖z‖1 = 1 we set θ(x, z)=θ(x, z)(�) equal to

θ(x, z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ1(x) z = e1

θ2(x) z = e2

−θ1(x − e1) z = −e1

−θ2(x − e2) z = −e2

.

For any finite lattice path γ we write its vertices in order as x1, . . . , xn and set

f (γ ) = f (γ )(�) =
n−1∑

i=1

θ(xi , xi+1 − xi ).

Lemma 3.3. With μ-probability one, f vanishes on all circuits:

μ ( f (γ ) = 0 for all circuits γ ) = 1.

Proof. Pick a circuit γ and let A ⊆ �̃2 denote the event {� : f (γ ) = 0}. Choose an
increasing sequence (nk) such that μ∗nk

→ μ weakly. For fixed γ , f (γ ) is a continuous
function on �̃, so the event A is closed, giving μ(A) ≥ lim supk μ∗nk

(A) by (3.5).
However, for each α, by additivity of Bα(·, ·) (see (2.1)),

μα(A) = P

(
n∑

i=1

Bα(xi , xi+1) = 0

)

= 1.

Thus μ∗n(A) = 1 for all n and μ(A) = 1. There are countably many γ ’s so we are done.

�
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Using the lemma we may define the reconstructed Busemann function. Fix a deter-
ministic family of finite paths {γx,y}, one for each pair (x, y) ∈ Z

2 and define

f (x, y) = f (x, y)(�) := f (γx,y).

Although we use fixed paths γx,y , this is only to ensure that f is a continuous function on
�̃. Actually, for any � in the μ-probability one set of Lemma 3.3 and vertices x, y ∈ Z

2

we could equivalently define f (x, y) = f (γ ), where γ is any finite lattice path from x
to y. To see that it would then be well-defined (that is, only a function of x, y and the
configuration �) is a standard argument. If we suppose that γ1 and γ2 are finite lattice
paths from x to y and � is given as above, the concatenation of γ1 with γ2 (traversed
in the opposite direction) is a circuit and thus has f -value zero. However, by definition,
this is the difference of f (γ1) and f (γ2) and proves the claim.

We now give some properties about asymptotic Busemann functions that come over
from the original model. The third says that f retains translation covariance. This will
allow us to prove the existence of almost-sure limits using the ergodic theorem in the
next section.

Proposition 3.4. The reconstructed Busemann function satisfies the following properties
for x, y, z ∈ Z

2:

1.

f (x, y) + f (y, z) = f (x, z) μ-almost surely. (3.8)

2. For m = 1, 2

f (x, y)(T̃m�) = f (x − em, y − em)(�) μ-almost surely. (3.9)

3.

f (x, y) : �̃→ R is continuous. (3.10)

4. f is bounded by τ :

| f (x, y)| ≤ τ(x, y)) μ-almost surely. (3.11)

Proof. The first two properties follow from path-independence of f and the third holds
because f is a sum of finitely many Busemann increments, each of which is a continuous
function. We show the fourth property. For x, y ∈ Z

2, the event

{(ω,�) : | f (x, y)(�)| − τ(x, y)(ω) ≤ 0}
is closed because | f (x, y)|−τ(x, y) is continuous. For every α, (2.3) gives |Bα(x, y)| ≤
τ(x, y) with P-probability one, so the above event has μα-probability one. Taking limits
and using (3.5), μ(| f (x, y)(�)| ≤ τ(x, y)(ω)) = 1. 
�

3.4. Expected value of f . In this section we compute Eμ f (0, x) for all x ∈ Z
2. The core

of our proof is a argument from Hoffman [24], which was developed using an averaging
argument due to Garet-Marchand [16]. The presentation we give below is inspired by
that of Gouéré [17, Lem. 2.6]. In fact, the proof shows a stronger statement. Without
need for a subsequence,

Eμ∗n f (0, x)→ g� (x).

Theorem 3.5. For each x ∈ Z
2, Eμ f (0, x) = g� (x).

Proof. We will use an elementary lemma that follows from the shape theorem.
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Lemma 3.6. The following convergence takes place almost surely and in L1(P):

τ(0, Lα)

α
→ 1 as α→∞.

Proof. Since α� ∈ Lα ,

lim sup
α→∞

τ(0, Lα)

α
≤ lim

α→∞
τ(0, α�)

α
= 1.

On the other hand, given ε > 0 and any ω for which the shape theorem holds, we can
find K such that for all x ∈ R

2 with ‖x‖1 ≥ K , τ(0, x) ≥ g(x)(1− ε). So if α is large
enough that all x ∈ Lα have ‖x‖1 ≥ K , then we can use (3.2):

τ(0, Lα) = min
x∈Lα

τ (0, x) ≥ (1− ε) min
x∈Lα

g(x) ≥ (1− ε)α.

Consequently, lim infα→∞ τ(0, Lα)/α ≥ 1, giving almost sure convergence in the
lemma.

For L1 convergence, note 0 ≤ τ(0, Lα)/α ≤ τ(0, α�)/α, so the dominated con-
vergence theorem and L1 convergence of point to point passage times completes the
proof. 
�
For any x ∈ Z

2 and integer n ≥ 1, use the definition of μ∗n to write

Eμ∗n ( f (−x, 0)) = 1

n

[ ∫ n

0
Eτ(−x, Lα) dα −

∫ n

0
Eτ(0, Lα) dα

]

.

Using translation covariance of passage times,
∫ n

0
Eτ(−x, Lα) dα =

∫ n

0
Eτ(0, Lα+g� (x)) dα =

∫ n+g� (x)

g� (x)

Eτ(0, Lα) dα.

Therefore

Eμ∗n ( f (−x, 0)) = 1

n

[∫ n+g� (x)

n
Eτ(0, Lα) dα −

∫ g� (x)

0
Eτ(0, Lα) dα

]

. (3.12)

Choose (nk) to be an increasing sequence such that μ∗nk
→ μ weakly. We claim that

Eμ∗nk
f (−x, 0)→ Eμ f (−x, 0). (3.13)

To prove this, note that for any R > 0, if we define the truncated variable

fR(−x, 0) = sgn f (−x, 0) min{R, | f (−x, 0)|},
then continuity of f on �̃ gives Eμ∗nk

fR(−x, 0) → Eμ fR(−x, 0). To extend this to
(3.13), it suffices to prove that for each ε > 0, there exists R > 0 such that

lim sup
k→∞

Eμ∗nk
| f (−x, 0)|I (| f (−x, 0)| ≥ R) < ε, (3.14)

where I (A) is the indicator of the event A. Because Eμ∗nk
f (−x, 0)2 ≤ Eτ(−x, 0)2 <∞

for all k by (1.9), condition (3.14) follows from the Cauchy–Schwarz inequality. This
proves (3.13).
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Combining (3.12) and (3.13), we obtain the formula

Eμ f (−x, 0) = lim
k→∞

1

nk

∫ nk +g� (x)

nk

Eτ(0, Lα) dα = lim
k→∞

∫ g� (x)

0

Eτ(0, Lα+nk )

nk
dα.

(3.15)

By Lemma 3.6, for each α between 0 and g� (x),

lim
k→∞

Eτ(0, Lα+nk )

nk
= lim

k→∞
Eτ(0, Lα+nk )

α + nk
· α + nk

nk
= 1.

So using Eτ(0, Lα+nk ) ≤ Eτ(0, L2nk ) for large k, we can pass the limit under the integral
in (3.15) to get Eμ f (0, x) = Eμ f (−x, 0) = g� (x). 
�

4. Limits for Reconstructed Busemann Functions

In this section we study the asymptotic behavior of the reconstructed Busemann function
f . We will see that f is asymptotically a projection onto a line and if the boundary of the
limit shape is differentiable at � , we give the explicit form of the hyperplane. Without
this assumption we show that the line is a translate of a supporting line for B at � .

One of the advantages of constructing f from our measure μ is that we can use the
ergodic theorem and translation invariance to show the existence of limits. This gives us
almost as much control on the Busemann function as we would have if we could show
existence of the limit in (3.1). If we knew this, we would not need differentiability at �

to deduce the form of the random hyperplane for f ; we could derive it from ergodicity
and symmetry.

4.1. Radial limits. In this section we will prove the existence of radial limits for f . This
is the first step to deduce a shape theorem, which we will do in the next section. We
extend the definition of f to all of R

2 × R
2 in the usual way: f (x, y), is defined as

f (x̃, ỹ), where x̃ and ỹ are the unique points in Z
2 such that x ∈ x̃ + [−1/2, 1/2)2 and

y ∈ ỹ + [−1/2, 1/2)2.

Proposition 4.1. Let q ∈ Q
2. Then

ρq := lim
n→∞

1

n
f (0, nq) exists μ-almost surely.

Proof. Choose M ∈ N such that Mq ∈ Z
2. We will first show that

lim
n→∞

1

Mn
f (0, nMq) exists μ-almost surely. (4.1)

To do this, we note that since τ(0, Mq) ∈ L2(μ) (from (1.9)), it is also in L1. Using
(3.11), f (0, Mq) ∈ L1(μ) as well. Define the map T̃q on �2 as

[
T̃q�

]
(x) = (θ1(x − Mq), θ2(x − Mq)).

This is a composition of maps T̃m , m = 1, 2, so it is measure-preserving. By (3.8) and
(3.9),
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f (0, nMq)(�) =
n∑

i=1

f ((i − 1)Mq, i Mq)(�) =
n−1∑

i=0

f (0, Mq)(T̃−i
q (�)).

Applying the ergodic theorem finishes the proof of (4.1).
To transform (4.1) into the statement of the proposition we need to “fill in the gaps.”

Choose M as above and for any n pick an ∈ Z such that an M ≤ n < (an + 1)M . Then
∣
∣
∣
∣

f (0, nq)

n
− f (0, an Mq)

an M

∣
∣
∣
∣≤
∣
∣
∣
∣

f (0, an Mq)

an M

∣
∣
∣
∣

∣
∣
∣
∣1−

an M

n

∣
∣
∣
∣+

1

n
| f (0, an Mq)− f (0, nq)| .

The first term on the right converges to 0. To show the same for the second term we use the
fact that f (x, y) ∈ L1(μ,�2) for all x, y ∈ R

2. Indeed, the difference f (0, an Mq) −
f (0, nq) is equal to f (nq, an Mq), which has the same distribution as f (0, (an M−n)q).
For each ε > 0,

∑

n≥1

μ(| f (0, (n − an M)q)| ≥ εn) ≤ 1

ε

M∑

i=1

‖ f (0,−iq)‖L1(μ) <∞.

So only finitely many of the events {| f (0, an Mq)− f (0, nq)| ≥ εn} occur and we are
done. 
�

The last proposition says that for each q there exists a random variable ρq = ρ(q,�)

such that μ-almost surely, the above limit equals ρq . Assume now that we fix � such
that this limit exists for all q ∈ Q

2. We will consider ρq as a function of q. The next
theorem states that ρq represents a random projection onto a vector �.

Theorem 4.2. There exists a random vector � = �(�) such that

μ
(
ρq = � · q for all q ∈ Q

2
)
= 1.

Furthermore � is translation invariant:

�(T̃m�) = �(�) for m = 1, 2.

Proof. We will show that q �→ ρq is a (random) linear map on Q
2. Specifically, writing

an arbitrary q ∈ Q
2 as (q1, q2), we will show that

μ
(
ρq = q1ρe1 + q2ρe2 for all q ∈ Q

2
)
= 1. (4.2)

Then, setting � = (ρe1, ρe2), we will have proved the theorem.
The first step is to show translation invariance of ρq . Given q ∈ Q

2, let M ∈ N be
such that Mq ∈ Z

2. For m = 1, 2, translation covariance implies

| f (0, nMq)(T̃m�)− f (0, nMq)(�)| = | f (−em, nMq − em)(�)− f (0, nMq)(�)|
≤ | f (−em, 0)(�)|+| f (nMq − em, nMq)(�)|.

Furthermore, given δ > 0,
∑

n

μ (| f (nMq − em, nMq)| > δn) ≤
∑

n

μ (| f (0, em)| > δn)

≤ 1

δ
‖ f (0, em)‖L1(μ) <∞.
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Therefore only finitely many of the events {| f (nMq − em, nMq)| > δn} occur and

ρq(T̃m�) = lim
n→∞

f (0, nMq)(T̃m�)

nM
= lim

n→∞
f (0, nMq)(�)

nM
= ρq(�) almost surely.

To complete the proof we show that q �→ ρq is almost surely additive. Over Q,
this suffices to show linearity and thus (4.2). Let q1, q2 ∈ Q

2 and choose M ∈ N with
Mq1, Mq2 ∈ Z

2. By Proposition 4.1, for ε > 0, we can pick N such that if n ≥ N , then
the following hold:

1. μ
(|(1/nM) f (0, nMq1)− ρq1 | > ε/2

)
< ε/2 and

2. μ
(|(1/nM) f (0, nMq2)− ρq1 | > ε/2

)
< ε/2.

Writing T̃−q(�)(x) = �(x + Mq) and using translation invariance of ρq2 ,

f (0, nM(q1 + q2))(�)− nMρq1(�)− nMρq2(�)

= f (0, nMq1)(�)− nMρq1(�) + f (0, nMq2)(T̃
n−q1

�)− nMρq2(T̃
n−q1

�).

So by translation invariance of μ and items 1 and 2 above,

μ(|(1/nM) f (0, nM(q1 + q2))− (ρq1 + ρq2)| > ε)

≤ μ(|(1/nM) f (0, nMq1)− ρq1 | > ε/2)

+ μ(|(1/nM) f (0, nMq2)− ρq2 | > ε/2) < ε.

Thus (1/nM) f (0, nM(q1+q2)) converges in probability to ρq1 +ρq2 . By Proposition 4.1,
this equals ρq1+q2 . 
�

4.2. A shape theorem. We will now upgrade the almost-sure convergence in each rational
direction, from Proposition 4.1, to a sort of shape theorem for the Busemann function
f . The major difference is that, unlike in the usual shape theorem of FPP, the limiting
shape of f is allowed to be random.

Theorem 4.3. For each δ > 0,

μ (| f (0, x)− x · �| < δ‖x‖1 for all x with ‖x‖1 ≥ M and all large M) = 1. (4.3)

As in the proofs of the usual shape theorems, we will need a lemma which allows
us to compare f in different directions. A result showing that with positive probability,
f (0, x) grows at most linearly in ‖x‖ will be sufficient for our purposes. The fourth
item of Proposition 3.4 allows us to derive such a bound by comparison with the usual
passage time τ(0, x).

Lemma 4.4. There exist deterministic K < ∞ and pg > 0 depending only on the
passage time distribution such that

P

⎛

⎜
⎝ sup

x∈Z2

x �=0

τ(0, x)

‖x‖1 ≤ K

⎞

⎟
⎠ = pg > 0.
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Proof. By the first-passage shape theorem, there exists λ <∞ and T, pg > 0 such that

P

(
∀t ≥ T, B(t)/t ⊇ [−λ, λ]2

)
= pg.

(Here we are using (1.8).) Choosing K = T + 2/λ completes the proof. 
�
The development of the shape theorem from this point is similar to that of the usual

first-passage shape theorem for ergodic passage time distributions.
We will say that z ∈ Z

2 is “good” for a given outcome if

sup
x∈Z2

x �=z

τ(z, x)

‖x − z‖1 ≤ K .

Note that P(z is good) = pg > 0 for all z ∈ Z
2.

Lemma 4.5. Let ζ be a nonzero vector with integer coordinates, and let zn = nζ. Let
(nk) denote the increasing sequence of integers such that znk is good. P-almost surely,
(nk) is infinite and limk→∞(nk+1/nk) = 1.

Proof. The ergodic theorem shows that (nk) is a.s. infinite. Let Bi denote the event that
zi is good. By another application of the ergodic theorem,

k

nk
= 1

nk

nk∑

i=1

1Bi −→ pg a.s. (4.4)

Thus,

nk+1

nk
=
( nk+1

k + 1

)( k

nk

)(
k + 1

k

)

−→ 1 a.s.,

since the first and second factors converge to pg and p−1
g by (4.4). 
�

In what follows, we will use the fact that there is a positive density of good sites to show
convergence of f (0, z)/‖z‖1 in all directions. Given the convergence of f (0, nq)/n for
each rational q, we will find enough good sites along lines close to nq to let us to bound
the difference | f (0, nq)− f (0, z)|. To describe this procedure, we need to make several
definitions. Call a vector ζ satisfying the a.s. event of Lemma 4.5 a good direction. We
will extend this definition to ζ ∈ Q

2: such a ζ will be called a good direction if mζ is,
where m is the smallest natural number such that mζ ∈ Z

2.
By countability, there exists a probability one event �′′ on which each ζ ∈ Q

2

is a good direction. For each integer M ≥ 1, let VM =
{

x/M : x ∈ Z
2
}
, and let

V = ∪M≥1VM . Set B = {z ∈ R
2 : z ∈ V, ‖z‖1 = 1} and note that B is dense in the

unit sphere of R
2 (with norm ‖ · ‖1). By Theorem 4.2, we can find a set �̂ ⊆ �2 with

μ(�̂) = 1 such that, for all � ∈ �̂,

lim
n→∞

1

n
f (nz0)(�) = z0 · �(�) for all z0 ∈ B. (4.5)

Proof of Theorem 4.3. Assume that there exist δ > 0 and an event Dδ with μ(Dδ) > 0
such that, for every outcome in Dδ, there are infinitely many vertices x ∈ Z

2 with
| f (x)− x · �| ≥ δ‖x‖1. Then Dδ ∩ �̂ ∩ �′′ is nonempty and so it contains some
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outcome (ω,�, η). We will derive a contradiction by showing that (ω,�, η), by way
of its membership in these three sets, has contradictory properties.

By compactness of the �1 unit ball, we can find a sequence {xn} in Z
2 with ‖xn‖ → ∞

and y ∈ R
2 with ‖y‖1 = 1 such that xn/‖xn‖1 → y and

∣
∣
∣
∣

f (xn)[�]
‖xn‖1 − y · �[�]

∣
∣
∣
∣ >

δ

2
for all n. (4.6)

Let δ′ > 0 be arbitrary (we will ultimately take it to be small). Our first goal is the
approximation of xn by multiples of some element of B. Choose z ∈ B such that
‖z − y‖1 < δ′ and let {nk} denote the increasing sequence of integers such that nk z is
good. (Here if z /∈ Z

2, then z being good means that Mz is good, where Mz was chosen
after Lemma 4.5 to be Z

2. Therefore (nk) would then be of the form (Mlk) for some
increasing sequence lk .) Note that nk+1/nk → 1 by Lemma 4.5 so we are able to choose
a K > 0 such that

nk+1 < (1 + δ′)nk and

∣
∣
∣
∣

f (0, nk z)

nk
− � · z

∣
∣
∣
∣ ≤ δ′ for all k > K . (4.7)

By the triangle inequality, the left-hand side of (4.6) is bounded above by
∣
∣
∣
∣

f (0, xn)

‖xn‖1 −
f (0, nk z)

‖xn‖1
∣
∣
∣
∣ +

∣
∣
∣
∣

f (0, nk z)

‖xn‖1 − f (0, nk z)

nk

∣
∣
∣
∣

+

∣
∣
∣
∣

f (0, nk z)

nk
− � · z

∣
∣
∣
∣ + |� · z − � · y| (4.8)

for arbitrary n and nk . Choose some N0 such that ‖xn − ‖xn‖1 y‖1 ≤ δ′‖xn‖1 for all
n > N0, and note that

‖xn − ‖xn‖1z‖1 ≤ ‖xn − ‖xn‖1 y‖1+‖xn‖1 ‖y − z‖1≤2‖xn‖1δ′ for n > N0. (4.9)

For any n, let k = k(n) be the index such that nk+1 ≥ ‖xn‖1 > nk . If n is so large that
k(n) > K , then ‖ ‖xn‖1z − nk z‖1 < δ′‖xn‖1. Combining this observation with (4.9)
gives

‖xn − nk z‖1 ≤ 3δ′‖xn‖1 for ‖xn‖1 ∈ (nk, nk+1] when k = k(n) > K . (4.10)

For the remainder of the proof, fix any n > N0 such that k = k(n) > K , so that
(4.10) holds. We will now control the terms in (4.8), working our way from right to left.
The rightmost term may be bounded by noting

|� · z − � · y| = |� · (z − y)| ≤ ‖z − y‖2‖�‖2 ≤ δ′‖�‖2.
The second term from the right is bounded above by δ′ by (4.7). To bound the third term
from the right, note that nk < ‖xn‖1 ≤ nk+1, so by (4.7),

∣
∣
∣
∣

f (0, nk z)

‖xn‖1 − f (0, nk z)

nk

∣
∣
∣
∣ =

∣
∣
∣
∣

f (0, nk z)

nk

∣
∣
∣
∣

(

1− nk

‖xn‖1
)

≤ [|� · z| + δ′
]
(

1− 1

1 + δ′

)

.
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It remains to bound the first term of (4.8). To do this, note that by (4.10),

| f (0, xn)− f (0, nk z)| = | f (nk z, xn)| ≤ τ(nk z, xn) ≤ K‖x − nk z‖1 ≤ 3K δ′‖xn‖1.
So

∣
∣
∣
∣

f (0, xn)

‖xn‖1 −
f (0, nk z)

‖xn‖1
∣
∣
∣
∣ ≤ 3K δ′.

Applying our estimates for each term in (4.8) to the left side of (4.6) gives

δ

2
≤ 3K δ′ + (|� · z| + δ′)

(

1− 1

1 + δ′

)

+ δ′ + δ′‖�‖2.

Because this holds for all δ′ > 0, and because the right-hand side goes to zero as δ′ → 0,

we have derived a contradiction and proved the theorem. 
�

4.3. General properties of �. In this short section we study the random vector �. In the
case that ∂B is differentiable at � , the vector � is deterministic and we give the explicit
form.

The main theorem of the section is below. It says that the line

L� := {x ∈ R
2 : � · x = 1}

is μ-almost surely a supporting line for B at � .

Theorem 4.6. With μ-probability one, � ·� = 1 and � · x ≤ 1 for all x ∈ B. Thus L�

is a supporting line for B at � .

This theorem has an important corollary. It follows directly from the fact that there
is a unique supporting line for B at points of differentiability of ∂B.

Corollary 4.7. If ∂B is differentiable at � then

μ
(
� = (g� (e1), g� (e2))

) = 1.

Proof of Theorem 4.6 Using Theorem 3.5, we first find the expected value of � · y
for y ∈ R

2. We simply apply the dominated convergence theorem with the bound
| f (0, my)| ≤ τ(0, my). Letting ym ∈ Z

2 be such that my ∈ ym + [−1/2, 1/2)2,

Eμ(� · y) = lim
m→∞

1

m
Eμ f (0, my) = lim

m→∞ g� (ym/m) = g� (y).

The theorem follows from this statement and

μ (x · � ≤ g(x) for all x ∈ B) = 1. (4.11)

Indeed, assuming this, we have

μ(� ·� ≤ 1) = 1 and Eμ(� ·�) = g� (�) = 1,

giving � ·� = 1 with μ-probability one. To prove (4.11), first take x ∈ Q
2 ∩ B. Then

by (3.11), for all n, f (nx) ≤ τ(nx) with μ-probability one. Dividing by n and taking
limits with Proposition 4.1 and the shape theorem, we get x ·� ≤ g(x). For non-rational
x ∈ B we extend the inequality by almost sure continuity of both sides in x . 
�
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5. Geodesic Graphs

In this section we study the behavior of μ on �3. Given η ∈ �3 recall from Sect. 3.1 the
definition of the geodesic graph G of η as the directed graph induced by the edges e for
which η(e) = 1. In this section we prove a fundamental property about infinite directed
paths in this graph which relates them to the asymptotic Busemann function constructed
from �.

5.1. Basic properties. We begin by showing that properties of ηα from Sect. 2.2 carry
over to η. We use some new notation. We say that y ∈ Z

2 is connected to z ∈ Z
2 in G

(written y → z) if there exists a sequence of vertices y = y0, y1, . . . , yn = z such that
η(〈yk, yk+1〉) = 1 for all k = 0, . . . , n − 1. We say that a path in G is a geodesic (for
the configuration (ω,�, η)) if it is a geodesic in ω.

Proposition 5.1. With μ-probability one, the following statements hold for x, y, z ∈ Z
2.

1. Each directed path in G is a geodesic.
2. If x → y in G then f (x, y) = τ(x, y).
3. If x → z and y → z in G then f (x, y) = τ(x, z)− τ(y, z).
4. There exists an infinite self-avoiding directed path starting at x in G.

Proof. The third item follows directly from the second and additivity of f (from (3.8)).
For the first item, if γ is a deterministic finite directed path, write Aγ for the event that
all edges of γ are edges of G and

Bγ = Ac
γ ∪

(
Aγ ∩ {γ is a geodesic}) .

The event in question equals the intersection over all finite γ ’s of Bγ , so it suffices to
show that for each γ , μ(Bγ ) = 1.

By part 1 of Proposition 2.3, for all α ∈ R the P-probability that all directed paths
in Gα(ω) are geodesics is 1. By pushing forward to �̃, for each α, μα(Bγ ) = 1 and
thus μ∗n(Bγ ) = 1 for all n. Once we show that Bγ is a closed event, we will be done,
as we can then apply (3.5). To show this we note that the event that a given finite path
is a geodesic is a closed event. Indeed, letting γ1 and γ2 be finite paths, the function
τ(γ1) − τ(γ2) is continuous on �̃. Therefore the event {ω ∈ �1 : τ(γ1) ≤ τ(γ2)} is
closed. We then write

{γ1 is a geodesic} =
⋂

γ2

{τ(γ1) ≤ τ(γ2)},

where the intersection is over all finite paths γ2 with the same endpoints as those of
γ1. Thus {γ1 is a geodesic} is closed. Since Aγ depends on finitely many edge variables
η(e), it is closed and its complement is closed. Therefore Bγ is closed and we are done.

For item 2, we write γxy , any path from x to y in G, in order as x = x0, x1, . . . , xn = y
and use additivity of f :

f (x, y) =
n−1∑

i=0

f (xi , xi+1).

For each i , xi → xi+1, and by item 1, γxy is a geodesic. This means that we only need
to show that if x and y are neighbors such that η(〈x, y〉) = 1 then f (x, y) = ω〈x,y〉,
the passage time of the edge between x and y. By part 2 of Proposition 2.3, for each α,
with P-probability one, if ηα(〈x, y〉) = 1 then Bα(x, y) = ω〈x,y〉. By similar reasoning
to that in the last item,
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{η(〈x, y〉) = 0} ∪ ({η(〈x, y〉) = 1} ∩ { f (x, y) = ω〈x,y〉}
)

is closed and since it has μα-probability 1 for all α, it also has μ-probability one.
We now argue for item 4. By translation-invariance we can just prove it for x = 0.

For n ≥ 1 let An ⊆ �3 be the event that there is a self-avoiding directed path starting
at 0 in G that leaves [−n, n]2. We claim that μ(An) = 1 for all n. Taking n →∞ will
prove item 4.

For each α > 0 so large that [−n, n]2 is contained on one side of Lα , let γ be a
geodesic from 0 to Lα . This path is contained in Gα . We may remove loops from γ

so that it is self-avoiding, and still a geodesic. It will also be directed in the correct
way: as we traverse the path from 0, each edge will be directed in the direction we are
traveling. So for all large α > 0, with P-probability one, there is a self-avoiding directed
path starting at 0 in Gα that leaves [−n, n]2. Thus μα(An) = 1 for all large α and
μ∗nk

(An) → 1 as k → ∞. The indicator of An is continuous on �̃, as An depends on
η( f ) for finitely many edges f , so μ(An) = 1. 
�
Proposition 5.2. Assume A1′ or A2′. With μ-probability one, the following statements
hold.

1. Each vertex in Z
2 has out-degree 1 in G. Consequently from each vertex x emanates

exactly one infinite directed path �x .
2. Viewed as an undirected graph, G has no circuits.

Proof. For x ∈ Z
2, let Ax ⊆ �̃ be the event that η(〈x, y〉) = 1 for only one neighbor y of

x . Note that the indicator of Ax is a bounded continuous function, so since μα(Ax ) = 1
for allα such that x is not within Euclidean distance 1 of Lα (from part 1 of Proposition 2.4
– here Ŝ is contained in the set of vertices within distance 1 of Lα) it follows that
μ(Ax ) = 1. For each z that is not a neighbor of x , η(〈x, z〉) = 0 with μα-probability
one for all α. This similarly implies that in G with μ-probability one, there is no edge
between x and such a z.

To prove the second statement, fix any circuit C in Z
2 and let AC be the event that

each edge of C is in G. Because there are no circuits in Gα with P-probability one, we
have μ∗n(AC) = 0 for all n. The indicator of AC is a continuous function on �̃, so we
may take limits and deduce μ(AC) = 0. There are a countable number of circuits, so
we are done. 
�

5.2. Asymptotic directions. Recall the definition L� = {x ∈ R
2 : x · � = 1} for the

vector � = �(�) of Theorem 4.2. Set

J� = {θ : L� touches B in direction θ}. (5.1)

The main theorem of this subsection is as follows.

Theorem 5.3. With μ-probability one, for all x ∈ Z
2, the following holds. Each directed

infinite self-avoiding path in G which starts at x is asymptotically directed in J�.

Proof. We will prove the theorem for x = 0. Assuming we do this, then using translation
invariance of μ and � it will follow for all x .

Let εk = 1/k for k ≥ 1 and δ > 0. We will show that if S0 = {x ∈ Z
2 : 0 → x

in G} then

for each k ≥ 1, μ(arg x ∈ (J�)εk for all but finitely many x ∈ S0) > 1− δ. (5.2)
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Here we write (J�)εk for all angles θ with dist(θ, θ ′) < εk for some θ ′ ∈ J�. The line
L� only touches B in directions in J� so by convexity, vθ · � < 1 for all θ /∈ J�. Since
the set of angles not in (J�)εk is compact in [0, 2π) (using the metric dist), we can find
a random a ∈ (0, 1) with vθ · � < 1− a for all θ /∈ (J�)εk . We can then choose a to be
deterministic such that

μ
(
vθ · � < 1− a for all θ /∈ (J�)εk

)
> 1− δ/3. (5.3)

By the shape theorem there exists M0 such that M ≥ M0 implies

P(τ (0, x) ≥ g(x)(1− a/2) for all x with ‖x‖1 ≥ M) > 1− δ/3.

The marginal of μ on �1 is P so this holds with μ in place of P. By part 2 of Proposi-
tion 5.1,

μ( f (x) ≥ g(x)(1− a/2) for all x with ‖x‖1 ≥ M and 0→ x) > 1− δ/3. (5.4)

Choose C > 0 such that ‖x‖1 ≤ Cg(x) for all x ∈ R
2. This is possible by (1.8). By

Theorem 4.3, there exists M1 ≥ M0 such that M ≥ M1 implies

μ
(
| f (x)− x · �| < a

2C
‖x‖1 for all x with ‖x‖1 ≥ M

)
> 1− δ/3.

This implies that for M ≥ M1,

μ
(
| f (x)− x · �| < a

2
g(x) for all x with ‖x‖1 ≥ M

)
> 1− δ/3. (5.5)

We claim that the intersection of the events in (5.3), (5.4) and (5.5) implies the event
in (5.2). Indeed, take a configuration in the intersection of the three events for some
M ≥ M1. For a contradiction, assume there is an x ∈ S0 with arg x /∈ (J�)εk and
‖x‖1 ≥ M . Then

(x/g(x)) · � < 1− a by (5.3).

However, since the event in (5.4) occurs and ‖x‖1 ≥ M ,

f (0, x) ≥ g(x)(1− a/2).

Last, as the event in (5.5) occurs,

f (0, x) < x · � +
a

2
g(x).

Combining these three inequalities,

g(x)(1− a/2) ≤ x · � + (a/2)g(x) < g(x)(1− a) + (a/2)g(x) ,

or g(x)(1− a/2) < g(x)(1− a/2), a contradiction. This completes the proof. 
�
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6. Coalescence in G

In this section we prove that all directed infinite paths coalesce in G. Recall that under
either A1′ or A2′, for x ∈ Z

2, �x is the unique infinite directed path in G starting at x .

Theorem 6.1. Assume either A1′ or both A2′ and the upward finite energy property.
With μ-probability one, for each x, y ∈ Z

2, the paths �x and �y coalesce.

The proof will be long, so we first explain the main ideas. We apply the technique
of Licea-Newman [30], whose central tool is a Burton-Keane type argument [8]. We
proceed by contradiction, so suppose there are vertices x, y such that �x and �y do
not coalesce. By results of the last section, they cannot even intersect. We show in
Sects. 6.1 and 6.2 that there are many triples of non-intersecting paths �x1, �x2 and �x3

such that �x2 is “shielded” from all other infinite paths in G. To do this, we must use
the information in Theorem 5.3 about asymptotic directions. A contradiction comes in
Sect. 6.3 from translation invariance because when �x2 is shielded, the component of x2

in G has a unique least element in a certain lexicographic-like ordering of Z
2. This is

a different concluding argument than that given in [30], where these shielded paths are
used for a Burton-Keane “lack of space” proof.

We now give the proof. For the entirety we will assume either A1′ or both A2′ and
the upward finite energy property.

6.1. Constructing “building blocks”. Assume for the sake of contradiction that there
are disjoint �x ’s in G. Then for some vertex z0, the event A0(z0) ⊆ �̃ has positive
μ-probability, where

A0(z0) = {�z0 and �0 share no vertices}.
We begin with a geometric lemma. It provides a (random) line such that with probability
one, any path that is asymptotically directed in J� (from (5.1)) intersects this line finitely
often. We will need some notation which is used in the rest of the proof.

Let � ′ be a vector with

arg � ′ ∈ { jπ/4, j = 0, . . . , 7} and ‖� ′‖∞ = 1, (6.1)

where ‖ · ‖∞ is the �∞ norm. (A precise value of j will be fixed shortly.) Define (for
N ∈ N) L ′N = {z ∈ R

2 : � ′ · z = N }. For such an N and for x ∈ Z
2, write x ≺ L ′N

if � ′ · x < N and x � L ′N if � ′ · x > N . The symbols � and � are interpreted in the
obvious way. We use the terms “far side of L ′N ” and “near side of L ′N ” for the sets of
x ∈ R

2 with x � L ′N and x ≺ L ′N , respectively. Note that any lattice path γ intersecting
both sides of L ′N contains a vertex z ∈ L ′N .

Lemma 6.2. There is a measurable choice of � ′ as in (6.1) such that with μ-probability
one, the following holds. For each vertex x and each integer N,

�x ∩ {z ∈ Z
2 : z � L ′N } is finite.

In other words, �x eventually lies on the far side of L ′N for all x and N.

Proof. The limit shape B is convex and compact, so it has an extreme point p. Because
it is symmetric with respect to the rotation R of R

2 by angle π/2, the points pi = Ri p,
i = 1, . . . , 3 are all extreme points of B. J� is an interval of angles corresponding to
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points of contact between B and one of its supporting lines, so it is connected (in the
topology induced by dist) and must lie between (inclusively) arg pi and arg pi+1 for
some i = 0, . . . , 3 (here we identify p4 = p0). Therefore diam J� ≤ π/2 almost surely
and contains at most three elements of the set { jπ/4 : j = 0, . . . , 7} (and they must be
consecutive). Choose five of the remaining elements to be consecutive and label them
j1π/4, . . . , ( j1 + 4)π/4. The interval [ j1π/4, ( j1 + 4)π/4] defines a half-plane H in R

2

and since the distance between this interval and J� is positive (measured with dist), for
all sufficiently small ε > 0, the sector

{x ∈ R
2 : x �= 0 and dist(arg x, φ) < ε for some φ ∈ J�}

is contained in Hc. This implies the statement of the lemma for a (random) � ′ equal to
the normal to H . Since � ′ can be chosen as a measurable function of � (which is clearly
Borel measurable on �̃), we are done. 
�

For the rest of the proof, fix a deterministic � ′ as in (6.1) that satisfies Lemma 6.2
with positive probability on the event A0(z0). (This is possible because there are only
eight choices for � ′.) Let A′0(0, z0) be the intersection of A0(z0) and the event in the
lemma. On A′0(0, z0), �0 and �z0 eventually cease to intersect L ′0. In particular, they
each have a last intersection with L ′0. Since there are only countably many possible
pairs of such last intersections, we see that some pair (y, y′) in L ′0 occurs with positive
probability; that is, μ(A(y, y′)) > 0, where A(y, y′) is defined by the conditions

I. �y ∩ �y′ = ∅;
II. �y intersects L ′0 only at y; �y′ intersects L ′0 only at y′ and

III. �u ∩ L ′N is nonempty and bounded for u = y, y′ and all integers N ≥ 0.

(Note that Condition III follows directly from the preceding lemma because �u con-
tains infinitely many vertices.) By translation invariance, there exists z ∈ L ′0 with
μ(A(0, z)) > 0.

Fix

ς = a nonzero vector with the smallest integer coordinates normal to � ′ (6.2)

(it will be a rotation of either (0,1) or (1,1) by a multiple of π/2). Defining T̃ς : �̃→ �̃

as the translation by ς (that is, T̃ a1
1 ◦ T̃ a2

2 , where ς = a1e1 + a2e2),

1A(0,z) ((ω,�, η)) = 1A(ς,z+ς)

(
T̃ς (ω,�, η)

)
.

Since μ is invariant under the action of T̃ς , the ergodic theorem implies

1

N

N−1∑

j=0

1A( jς,z+ jς) ((ω,�, η))= 1

N

N−1∑

j=0

1A(0,z)

(
T̃ j

ς (ω,�, η)
)
→g(ω,�, η), (6.3)

where g is a function in L1(μ); the convergence is both μ-almost sure and in L1(μ), so∫
g dμ = μ(A(0, z)) > 0. Using this in (6.3) gives infinitely many j with

μ (A(0, z) ∩ A( jς, z + jς)) > 0. (6.4)

We fix j > ‖z‖1 to ensure � jς and �z+ jς are outside the region bounded by L ′0, �0,

and �z .
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What is the significance of the event in (6.4)? When it occurs, we are guaranteed that
there is a line L ′0 and four directed paths remaining on its far side apart from their initial
vertices. We claim that at least three of them never intersect. Indeed, ordering the paths
using the direction of ς , we are guaranteed that the “first two” paths do not intersect
each other, nor do the “last two.” But if the middle two paths ever intersect, they would
merge beyond that point and the three remaining paths could not touch.

For x1, x2 ∈ L ′0, let B(0, x1, x2) be the event that �0, �x1 and �x2 (a) never intersect,
(b) stay on the far side of L ′0 except for their initial vertices and (c) intersect L ′N in a
bounded set for each N ≥ 1. Then the above implies

B(0, z, jς) ∪ B(0, z, z + jς) ⊇ A(0, z) ∩ A( jς, z + jς).

Therefore we may choose x1, x2 ∈ L ′0 such that the portion of L ′0 from 0 to x2 contains
x1 and so that μ(B(0, x1, x2)) > 0. The vertices x1 and x2 are fixed for the rest of the
proof.

6.2. Constructing B ′. Our next step is to refine B(0, x1, x2) to a positive probability
subevent B ′(x∗; N , R) on which no paths �z with z � L ′N (outside of some large
polygon) merge with �x1 . We will need to pull events back from �̃ to �1 to do an edge
modification and this will present a considerable difficulty. Our strategy is reminiscent
of that in [2]. In the first subsection we give several lemmas that we will need. In the
next subsection we will define B ′ and show it has positive probability.

6.2.1. Lemmas for B ′. We wish to construct a barrier of high-weight edges on the near
side of some L ′N . Set

λ+
0 = sup {λ > 0 : P (ωe ∈ [λ,∞)) > 0} .

Because we do not wish to assume λ+
0 = ∞, our barrier will occupy some wide polygon

(in the case that λ+
0 = ∞, many of the complications which we address below can be

neglected; we direct the interested reader to [30]). To control the exit of our directed
paths from the polygon, we will need a lemma about weak angular concentration of
paths:

Lemma 6.3. For x1, x2, and � ′ as above and x ∈ L ′0 such that �x ∩ L ′N �= ∅, define
ζN (x) to be the ς -coordinate of the first intersection of �x with L ′N . That is, this first
intersection may be written uniquely as ζN (x)ς + b� ′ for some number b. Denote

BG(xa, xb, xc) := B(xa, xb, xc) ∩
{

for every ε > 0, |ζN (xa)− ζN (xc)| < εN

for infinitely many N
}
.

Then μ(BG(0, x1, x2) | B(0, x1, x2)) = 1.

Proof. Let

BB(xa, xb, xc, N , ε) = B(xa, xb, xc) ∩ {|ζN (xa)− ζN (xc)| ≥ εN }.
Fix some � greater than the absolute value of the ς -coordinate of x2. Note that the lemma
holds if lim inf N μ(BB(0, x1, x2, N , ε)) = 0 for every ε > 0. So assume for the sake of
contradiction that there are some ε, pB > 0 such that

μ(BB(0, x1, x2, N , ε)) > pB > 0 for all large N ;
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fix some such N > 6�/εpB , and define

B̂(n) = BB(n�ς, n�ς + x1, n�ς + x2, N , ε).

We will look at shifted versions of B̂ and define a function f to count the number of
ζN (y) arising from some shifted version of B̂.

Define fN : Z → {0, 1}, where fN (m) = 1 if there is some n ∈ Z such that B̂(n)

occurs and ζN (n�ς) = m. Finally, set

f̄N (L) = 1

�L + 1

�L∑

m=0

fN (m).

We claim that f̄N (L) must satisfy contradictory inequalities for L large. Denote by C(L)

the set of vertices lying between L ′0 and L ′N with ς -coordinate between 0 and L�.

We first note that, on the event B̂(n) ∩ B̂(n′) for n �= n′, if ζN (n�ς) = m and
ζN (n�ς +x2) = m′, then ζN (n′�ς), ζN (n′�ς +x2) /∈ (m, m′) because n′�ς and n′�ς +x2
are outside of the region bounded by L ′0, �n�ς , �n�ς+x2 . Moreover, |m−m′| ≥ εN .Thus,
by the definition of f, if f (m) = 1 then f (m1) = 0 for all m1 ∈ (m, m + Nε). In
particular, we have the almost sure bound

�L∑

m=0

f (m) ≤ 3 +
�L‖ς‖1

Nε
�⇒ f̄N (L) ≤ 3

Nε
μ− a.s. (6.5)

for all L larger than Nε
�

.

On the other side, note that if ∩2λ
i=1 B̂(ni ) occurs, then planarity ensures that the paths

{�ni �ς } are pairwise disjoint. Now, note that if all these paths of have their starting points
in C(L), then their first intersections with L ′N occur within C(L) or outside. If the latter
occurs, then � must intersect a point of C(L) with ς -coordinate 0 or L . There are at
most cN such points, where cN is an L-independent constant. In particular, we have

�L∑

m=0

fN (m) ≥
[

L∑

n=0

1B̂(n)

]

− cN �⇒ Eμ f̄N (L) ≥ pB

2�
(6.6)

for all L large. Combining (6.5) and (6.6) for L large,

pB

2�
≤ 3

Nε
<

pB

2�
,

a contradiction. 
�
The next lemma is a modification of the usual first-passage shape theorem.

Lemma 6.4. There exists a deterministic c+ < λ+
0 such that, P-a.s.,

lim
M→∞ sup

‖x‖1≥M
τ(0, x)/‖x‖1 < c+.

Proof. Because either A1′ or A2′ hold, E(τe) < λ+
0. For any z ∈ Z

2, choose a deter-
ministic path γz with the number of edges equal to ‖z‖1. For x ∈ Q

2 and n ≥ 1 with
nx ∈ Z

2,

Eτ(0, nx) ≤ Eτ(γnx ) = n‖x‖1Eτe, so g(x) ≤ ‖x‖1Eτe.

This extends to all x ∈ R
2 by continuity, so the shape theorem gives the result. 
�
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We need a lemma to pull events back from �̃ to �1. Fix an increasing sequence (nk)

such that μ∗nk
→ μ weakly.

Lemma 6.5. Let E ⊆ �̃ be open with μ(E) > β. There exists Cβ > 0 and K0 such that
for k ≥ K0, the Lebesgue measure of the set {α ∈ [0, nk] : μα(E) > β/2} is at least
Cβ nk.

Proof. Call the Lebesgue measure of the above set λ. Since E is open, (3.6) allows us
to pick K0 such that if k ≥ K0 then μ∗nk

(E) > β. For such k, we can write

1

nk
(λ + (nk − λ)β/2) ≥ μ∗nk

(E) > β, giving λ >
nkβ

2(1− β/2)
.

Setting Cβ := β(2− β)−1 completes the proof. 
�
The last lemma is based on [2, Lem. 3.4] and will be used in the edge-modification

argument. To push the upward finite energy property forward from �1 to �̃ we need
concrete lower bounds for probabilities of modified events. We write a typical element
of �1 as ω = (ωe, ω̌), where ω̌ = (ω f ) f �=e. We say an event A ⊆ �1 is e-increasing
if, for all (ωe, ω̌) = ω ∈ A and r > 0, (ωe + r, ω̌) ∈ A.

Lemma 6.6. Let λ > 0 be such that P (ωe ≥ λ) > 0. For each ϑ > 0 there exists
C = C(ϑ, λ) > 0 such that for all edges e and all e-increasing events A with P(A) ≥ ϑ ,

P (A, ωe ≥ λ) ≥ C P (A) .

Proof. If P(A, ωe < λ) ≤ (1/2)P(A) then

P(A, ωe ≥ λ) ≥ (1/2)P(A). (6.7)

Otherwise, we assume that

P(A, ωe < λ) ≥ (1/2)P(A). (6.8)

We then need to define an extra random variable. Let ω′e be a variable such that, given
ω̌ from ω ∈ �1, it is an independent copy of the variable ωe. In other words, letting Q

be the joint distribution of (ω, ω′e) on the space �1 × R, for Q-almost every ω̌,

• ω′e and ωe are conditionally independent given ω̌ and
• the distributions Q(ωe ∈ · | ω̌) and Q(ω′e ∈ · | ω̌) are equal.

(This can be defined, for instance, by setting Q(A× B) = ∫A P(ωe ∈ B | ω̌) dP(ω) for
Borel sets A ⊆ �1 and B ⊆ R.)

We now write P(A, ωe ≥ λ) as

Q[(ωe, ω̌) ∈ A, ωe ∈ [λ,∞)] ≥ Q
[
(ωe, ω̌) ∈ A, ωe ∈ [λ,∞), ω′e ∈ [0, λ)

]

= EQ

[
1(ωe,ω̌)∈A 1ωe∈[λ,∞) 1ω′e∈[0,λ)

]

≥ EQ

[
1(ω′e,ω̌)∈A 1ωe∈[λ,∞) 1ω′e∈[0,λ)

]
(6.9)

= EQ

[
1(ω′e,ω̌)∈A 1ω′e∈[0,λ) EQ

(
1ωe∈[λ,∞) | ω̌, ω′e

)]
.

(6.10)

In (6.9), we have used that A is e-increasing. Using conditional independence in (6.10),

P(A, ωe ≥ λ) ≥ EQ

[
1(ω′e,ω̌)∈A 1ω′e∈[0,λ) EQ

(
1ωe∈[λ,∞) | ω̌

)]
. (6.11)
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By the upward finite energy property,

EQ(1ωe∈[λ,∞) | ω̌) = E(1ωe∈[λ,∞) | ω̌) > 0 Q-almost surely,

so choose c > 0 such that

Q
[
EQ(1ωe∈[λ,∞) | ω̌) ≥ c

] ≥ 1− (ϑ/4).

Note that this choice of c depends only on λ and ϑ . By (6.8) and the assumption P(A) ≥
ϑ , the right side is at least 1− (1/2)P(A, ωe < λ), implying

Q
[
(ω′e, ω̌) ∈ A, ω′e ∈ [0, λ), EQ(1ωe∈[λ,∞) | ω̌) ≥ c

] ≥ (1/2)P(A, ωe < λ).

Combining with (6.11), we find P(A, ωe ≥ λ) ≥ (c/2)P(A, ωe < λ). We finish the
proof by writing

P(A) = P(A, ωe < λ) + P(A, ωe ≥ λ)

≤
[

2

c
+ 1

]

P(A, ωe ≥ λ).

Observing this inequality and (6.7), we set C = min{1/2, c/(2 + c))}. 
�

6.2.2. Defining B ′. We begin with the definition of the “barrier event” B ′. For an integer
R > N , let

S(R, N ) = {y ∈ Z
2 : 0 ≤ y ·� ′ ≤ N , |y · ς | ≤ R}.

For any vertex x∗ ∈ S(R, N ) ∩ L ′N , define B ′(x∗; R, N ) by the condition

for all z ∈ Z
2 \ S(R, N ) with z � L ′N , �z ∩ �x∗ = ∅. (6.12)

Proposition 6.7. There exist values of R, N and x∗ such that μ(B ′(x∗; R, N )) > 0.

Our strategy is to pull back cylinder approximations of B(0, x1, x2) to �1 to find
events that depend on G in the vicinity of 0, x1 and x2. We will find a subevent which is
monotone increasing in the weights of edges lying in S(R, N ) between the pulled-back
versions of �0 and �x2 . When we look at the subevent on which all of these weights are
large (“edge modification”), the pullback of �x1 will be unchanged (past S(R, N )), and
no pullback of any �z can intersect it if z � L ′N and z /∈ S(R, N ). We will then choose
x∗ to be a certain point on �x1 ∩ L ′N . The constants N and R will be chosen to guarantee
that the pullback of �x1 is so isolated. Pushing forward the subevent to �̃ will complete
the proof.

Proof. We will first fix some parameters to prepare for the main argument. Recall the
definition of c+ from Lemma 6.4 and let

λ+ := min{λ+
0, 2c+},

and put δ+ := λ+ − c+ > 0 (giving λ+ = 2c+ when λ+
0 = ∞). Choose once and for all

some

ε <
δ+

16λ+ , (6.13)
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such that also

lim sup
‖x‖1→∞

sup
y: ‖y−x‖1≤ε‖x‖1

τ(0, y)

‖x‖1 < λ+ − 7δ+

8
μ-a.s. (6.14)

This follows from Lemma 6.4 because if ‖y‖1 is large, ‖y − x‖1 ≤ ε‖x‖1 gives
τ(0, y)/‖x‖1 ≤ (τ (0, y)/‖y‖1)(1+ε) < c+(1+ε). Fix β > 0 with μ(B(0, x1, x2)) > β.

The majority of the proof will consist of defining a few events in sequence, the second
of which we will pull back to the space �1 to do the edge modification. We will need
to choose further parameters to ensure that each of these events has positive probability.
For an arbitrary outcome in �̃ and N ≥ 0, denote by r0(N ) and r2(N ) the segments of
�0 and �x2 up to their first intersections with L ′N (if they exist) and let wN denote the
midpoint of the segment of L ′N lying between these first intersections. The first event
B◦(R, N , ε) is defined by the conditions (for R, N ≥ 1)

1. �0, �x1 and �x2 never intersect,
2. they stay on the far side of L ′0 except for their initial vertices,
3. �0 and �x2 intersect L ′N and their first intersection points are within �1 distance εN

of each other,
4. for i = 0, 2, τ(ri (N )) < (λ+ − 7δ+/8)‖wN‖1, and
5. �0 and �x2 do not touch any x � L ′N with x /∈ S(R, N ).

See Fig. 1 for a depiction of the event B◦(R, N , ε).
We claim that there exists N0 and R0 such that

μ(B◦(R0, N0, ε)) > 0. (6.15)

Fig. 1. The event B◦(R, N , ε). The solid dots represent the first intersection points of �0 and �x2 with L ′N .

They are within �1 distance εN of each other
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We also need N0 to satisfy a technical requirement. It will be used at the end of the proof:

‖x2‖1 ≤ εN0. (6.16)

To pick N0, first choose N1 > 0 so large that if N ≥ N1 then

P

(

∀z, z′ with ‖z‖1 ≥ N , and
‖z − z′‖1
‖z‖1 ≤ ε,

τ (0, z′)
‖z‖1 <(λ+ − 7δ+

8
)

)

> 1− β/4 ,

(6.17)

and ‖x2‖1 ≤ εN . This is possible by (6.14). Write E0(N ) for the event in (6.17) and
Ex2(N ) for E0(N ) translated so that 0 is mapped to x2. Then P(B(0, x1, x2)∩ E0(N )∩
Ex2(N )) > β/2. By Lemma 6.3, we can then choose N0 ≥ N1 such that

μ(B(0, x1, x2) ∩ E0(N0) ∩ Ex2(N0) ∩ C(0, x2; N0)) > 0, (6.18)

where C(0, x2; N0) is the event that �0 and �x2 intersect L ′N0
and their first intersection

points are within �1 distance εN0 of each other. On the event in (6.18), the endpoints of
the ri (N0)’s are within distance εN0 of wN0 and since they are on L ′N0

, their �1 distance
from 0 or x2 is at least N0. Therefore τ(ri (N0)) < (λ+ − 7δ+/8)‖wN0‖1 for i = 0, 2.
This shows that the intersection of four of the five events in the definition of B◦(R, N0, ε)

occurs with positive probability. For the fifth, recall that on B(0, x1, x2), the paths �0,
�x1 and �x2 contain only finitely many vertices z � L ′N0

. Thus we can choose R0 large
enough (depending on N0) to satisfy Condition 5 and complete the proof of (6.15).

Fix these R = R0 and N = N0 from now on. The next event we define is a cylinder
approximation of the first event. It will be needed to pull back to �1. For M > 0 and
x ∈ Z

2, let �M
x be the finite path formed by starting at x and then passing along out-edges

of G until we first reach a vertex of R
2\(−M, M)2. (Note that by this definition, �M

x =
{x} whenever x /∈ (−M, M)2.) We define B◦M (R, N , ε) with the same conditions as
B◦(R, N , ε), except replacing the paths �(·) by the segments �M

(·). In addition, however,
we impose the restriction that, writing

∂ M = [−M, M]2\(−M, M)2,

we have

�M
y ∩ ∂ M ⊆ {z ∈ R

2 : z � L ′N }, y = 0, x2. (6.19)

Of course, if �M
0 (etc.) does not intersect L ′N , then B◦M does not occur. Then B◦M (R, N , ε)

is open for all M and we claim that

B◦(R, N , ε) = ∪∞M0=1 ∩∞M=M0
B◦M (R, N , ε). (6.20)

Assuming we show this, then there exists some M0 such that μ(∩∞M=M0
B◦M (R, N , ε)) >

0 and so there is some β ′ with

μ(B◦M (R, N , ε)) > β ′ for all M ≥ M0. (6.21)

To prove (6.20), note that the right side is the event that B◦M (R, N , ε) occurs for all
M bigger than some random M0. Suppose that an outcome is in the left side. Then the
paths �0, �x1 and �x2 are disjoint and remain on the far side of L ′0 (except for their first
vertices), so the same is true for each �M

(·) for all M ≥ 1. Also �M
0 and �M

x2
do not touch
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any x � L ′N with x /∈ S(R, N ) for all M ≥ 1. Because �0 and �x2 intersect L ′N , so do
�M

0 and �M
x2

for all M bigger than some random M1. Their first intersection points are
the same as those of �0 and �x2 , so for M ≥ M1, their first intersection points with L ′N
are within �1 distance εN of each other. Further, the passage times of the segments up
to L ′N are strictly bounded above by (λ+ − 7δ+/8)‖wN‖1. Last, because �0 and �x2 do
not touch any x � L ′N with x /∈ S(R, N ), they share only finitely many vertices with
{z ∈ Z

2 : z � L ′N } and so must eventually lie on the far side of L ′N . This allows us to
further increase M1 to an M0 such that if M ≥ M0 then in addition (6.19) holds.

Suppose conversely that the right side of (6.20) occurs. Then for all M bigger than
some random M0, the six events comprising B◦M (R, N , ε) occur. In particular, the paths
�0, �x1 and �x2 are disjoint and stay on the far side of L ′0 except for their first vertices
(parts 1 and 2 of B◦(R, N , ε)). Furthermore �0 and �x2 cannot touch any x � L ′N with
x /∈ S(R, N ) (part 5). For M ≥ M0, the paths �M

0 and �M
x2

intersect L ′N , with their first
intersection points within distance εN of each other (with passage time strictly bounded
above by (λ+−7δ+/8)‖w‖1). These are the same first intersection points as �0 and �x2 ,
so parts 3 and 4 of B◦(R, N , ε) occur.

We now pull the cylinder approximation B◦M (R, N , ε) back to �1 using Lemma 6.5.
Because this is an open event and satisfies (6.21) for M ≥ M0, we can find an M-
dependent number K0 such that if k ≥ K0, then there is a set�M,k of values ofα ∈ [0, nk]
which has Lebesgue measure at least Cβ ′nk , on which μα(B◦M (R, N , ε)) > β ′/2. Pull
back to �1, setting Bα

M := �−1
α (B◦M (R, N , ε)), where �α was defined in (3.3). (Here

we have suppressed mention of R, N , ε in the notation, as they are fixed for the remainder
of the proof.) Then

P(Bα
M ) > β ′/2 for all α ∈ �M,k if M ≥ M0 and k ≥ K0(M). (6.22)

We henceforth restrict to values of M, α and k such that (6.22) holds. In the end of the
proof we will take k →∞ and then M →∞. In particular then we will be thinking of

α � M � N ,

the latter of which is fixed. Some of the remaining definitions will only make sense for
such α, M and N but this does not affect the argument.

Next we define the third of our four events, now working on �1. Let sα
y be the geodesic

from y ∈ Z
2 to Lα (recall this was defined for � and not � ′), and sα

y (M) the path sα
y

up to its first intersection with R
2 \ (−M, M)2. If sα

0 (M) and sα
x2

(M) intersect L ′N then
write rα

i (M), i = 0, 2 for the portions up to the first intersection point. As before, let
wα

N be the midpoint of the segment of L ′N between these two intersection points. Let
Rα

1 (M) be the closed connected subset (in R
2) of {x ∈ R

2 : x � L ′0} with boundary
curves sα

0 (M), sα
x2

(M), L ′0 and ∂ M . Similarly let Rα
2 (M) be the closed connected subset

of Rα
1 (M) with the following boundary curves: the portions of sα

0 (M) and sα
x2

(M) after
their last intersections with L ′N , the segment of L ′N between these intersections and last,
∂ M . Note that when (6.19) holds, Rα

2 (M) is contained in {z ∈ R
2 : z � L ′N }. See Fig. 2

for an illustration of these definitions.
The event B̂α

M ⊆ �1 is then defined by the following conditions:

• sα
0 (M) and sα

x2
(M) intersect L ′0 only once, are disjoint, and do not touch any y � L ′N

with y /∈ S(R, N ),
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Fig. 2. The regions Rα
1 (M) and Rα

2 (M). The left figure shows Rα
1 (M) in green. It has boundary curves L ′0,

∂ M , sα
0 (M) and sα

x2
(M). The right figure shows Rα

2 (M) ⊆ Rα
1 (M) in green. It has boundary curves L ′N ,

∂ M , and the pieces of sα
0 (M) and sα

x2
(M) from their last intersections with L ′N . Note that Rα

2 (M) is contained

in the far side of L ′N by (6.19)

• sα
0 (M) and sα

x2
(M) intersect L ′N and their first intersection points are within �1

distance εN of each other; the paths rα
i (M) satisfy τ(rα

i (M)) < (λ+−7δ+/8)‖wα
N‖1,

for i = 0, 2,
• sα

y (M) ∩ ∂ M ⊆ {z ∈ R
2 : z � L ′N } for y = 0, x2,

• there is a vertex X∗ ∈ L ′N ∩ S(R, N ) such that sα
X∗(M) is disjoint from sα

0 (M) and
sα

x2
(M) but is contained in Rα

2 (M), and
• the portions of sα

0 , sα
X∗ and sα

x2
beyond [−M, M]2 do not contain a vertex of S(R, N ).

We claim there is an M ′0 ≥ M0 such that

P(B̂α
M ) > β ′/4 for all M ≥ M ′0. (6.23)

Verifying this requires us to define an auxiliary event. Let HM ⊆ �1 denote the event
that no geodesic from any point in S(R, N ) returns to S(R, N ) after its first intersection
with ∂ M. Then P(HM ) → 1 as M → ∞. So for any M larger than some M ′0 ≥ M0,
P(HM ) > 1− β ′/4, giving

P(Bα
M ∩ HM ) > β ′/4 for all M ≥ M ′0.

To finish the proof of (6.23) we show that Bα
M ∩ HM ⊆ B̂α

M . Note that the first three
conditions of B̂α

M are immediately implied by Bα
M ; they are the analogues on �1 of

the conditions that make up B◦M (N , R, ε) (each �M
(·) is replaced by sα

(·)(M)). For the
fourth condition, note that when Bα

M occurs, sα
0 (M), sα

x1
(M) and sα

x2
(M) stay on the

far side of L ′0 (aside from their initial vertices) and stop when they touch ∂ M . There-
fore by planarity, sα

x1
(M) is contained in Rα

1 (M). In particular, if we choose X∗ to be
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Fig. 3. Illustration of definitions on B̂α
M . The region U is in blue and is contained in S(R, N ) (not pictured).

It is bounded by curves L ′0, L ′N , rα
0 (M) and rα

2 (M). The path sx∗ begins at the final intersection point of the
dotted path with L ′N

the last intersection point of sα
x1

(M) with L ′N , then sα
X∗(M) is trapped in Rα

2 (M). We
can see this as follows. The last vertex of sα

X∗(M) is clearly in this region because
it must be in Rα

1 (M) ∩ ∂ M and this equals Rα
2 (M) ∩ ∂ M . Proceeding backward

along sα
X∗(M) from this final vertex, the path can only leave Rα

2 (M) if it (a) leaves
[−M, M]2 (b) crosses sα

0 (M) or sα
x2

(M) or (c) crosses L ′N . Because none of these can
happen, the fourth condition holds. As for the fifth, it is implied by HM , so we have
proved (6.23).

Our fourth and final event will fix some random objects to be deterministic so that
we can apply the edge modification lemma. On the event B̂α

M , let U denote the (ran-
dom) closed connected subset of [−M, M]2 with boundary curves L ′0, L ′N , rα

0 (M) and

rα
2 (M). Note that U ⊆ S(R, N ). Furthermore we note that on B̂α

M , U ∩ Rα
2 (M) is

contained in L ′N . This is because Rα
2 (M) ⊆ {z : z � L ′N }, whereas U ⊆ {z : z � L ′N }.

Last, define UE to be the random set of edges with both endpoints in U and which
are not edges in sα

0 (M), sα
x2

(M), L ′0 or L ′N . See Fig. 3 for an illustration of these
definitions.

On B̂α
M , there are at most 264N R possibilities for U and UE and at most 2R choices

for X∗. So there exist some deterministic U ′, U ′E , and x∗ such that, if we define

B̃α
M := B̂α

M ∩ {U = U ′, UE = U ′E } ∩ {X∗ = x∗},
then

P(B̃α
M ) > 2−2−64N Rβ ′/2R for M ≥ M ′0 and α ∈ �M,k . (6.24)

The meaning of the event {X∗ = x∗} is that the deterministic point x∗ satisfies the
conditions in the fourth and fifth items of the description of B̂α

M .
In the rest of the proof we perform the edge modification and push forward to �̃.

To apply Lemma 6.6 we need to verify that B̃α
M is e-increasing for all e ∈ U ′E . For this

purpose, suppose that ω ∈ B̃α
M and that ω′ is another configuration such that ω′e ≥ ωe

for some fixed e ∈ U ′E but ω′f = ω f for all other f �= e. By construction, e is not an
edge of sα

0 (M), sα
x∗(M) or sα

x2
(M) (e /∈ sα

x∗(M) since e is contained in UE , which does
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not meet L ′N , so is not in Rα
2 (M) ⊇ sα

x∗(M)). Furthermore because sα
0 , sα

x∗ and sα
x2

do
not re-enter S(R, N ) after leaving [−M, M]2 and all edges of U ′E have both endpoints
in S(R, N ), e cannot be on these paths either. This means that

sα
y (ω) = sα

y (ω′) for y = 0, x∗, x2 and U (ω) = U (ω′), UE (ω) = UE (ω′).

So the fifth condition of B̂α
M occurs in ω′. The paths sα

y (M) are then equal in ω and ω′,
so conditions 1, the first part of 2, and 3 and 4 hold in ω′. As e is not on any of these
paths, their passage times are the same in ω′. This gives the second part of condition 2
of B̂α

M and shows that B̃α
M is e-increasing.

Now we conclude the proof in a slightly different manner depending on whether or
not λ+

0 is finite; we focus first on the case that λ+
0 < ∞. We will use Lemma 6.6, but

several times in sequence, appending events onto B̂α
M . Precisely we note for reference

that if e1, . . . , e j are edges and a1, . . . , a j ∈ R then

B̂ M
α ∩

[
∩ j

i=1{ωei ≥ ai }
]

is e-increasing for e ∈ U ′E .

Using Lemma 6.6 once for each edge e ∈ U ′E and the upper bound |U ′E | ≤ 32N R, we
can find some constant CN ,R such that, defining

B ′αM := B̃α
M ∩

{∀e ∈ U ′E , ωe ≥ λ+ − δ+/4
}

,

we have

P
(
B ′αM
)

> CN ,R > 0 for all M ≥ M ′0 and α ∈ �M,k when k ≥ K0(M).

(For the first application of the lemma we use ϑ = 2−2−64N Rβ ′/2R, for the second, a
smaller ϑ , and so on.)

We claim that on B ′αM , no z ∈ Z
2 ∩ [−M, M]2 with z � L ′N and z /∈ S(R, N )

has sα
z (M) ∩ sα

x∗(M) �= ∅. We argue by first estimating the passage time between
vertices from L ′0 to L ′N in U ′. For any outcome in B ′αM , given vertices x ∈ U ′ ∩ L ′0 and
y ∈ U ′ ∩ L ′N , there is a path from x to y formed by moving along L ′0 to 0, taking rα

0 to
L ′N , and moving similarly along L ′N to y. This gives

τ(x, y) < (λ+ − 7δ+/8)‖wα
N‖1 + (Nε + ‖x2‖1)λ+. (6.25)

Using the choice of ε from (6.13) and condition (6.16) to bound the right side of (6.25),

τ(x, y) ≤ (λ+ − 3δ+/4)‖wα
N‖1. (6.26)

Suppose now that a point z exists as in the claim. Since sα
0 (M) and sα

x2
(M) do not touch

any y /∈ S(R, N ) with y � L ′N (see item 1 in the definition of B̂α
M ),

Rα
1 (M) ∩ {y : y � L ′N } ⊆ S(R, N ).

This implies z /∈ Rα
1 (M), whereas x∗ ∈ Rα

1 (M). As sα
z (M) cannot touch sα

0 (M) or
sα

x2
(M) (else it would merge with one of them) it would have to enter Rα

1 (M) through
L ′0 and pass through all of U ′ from L ′0 to L ′N , thus taking only edges of U ′E . The portion
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γ ′ of γ from its first intersection with L ′0 to its first intersection with L ′N would then
satisfy

τ(γ ′) ≥ (λ+ − δ+/4
) [‖wα

N‖1 − ‖x2‖1 − Nε
]

≥ (λ+ − δ+/4)‖wα
N‖1 − 2‖wα

N‖1ελ+

≥ (λ+ − 3δ+/8)‖wα
N‖1,

in contradiction with the estimate of (6.26). This establishes the claim.
For the final step in the case that λ+

0 < ∞, note that by the previous claim, the
pushforward, �α(B ′αM ), is a sub-event of B ′M = B ′M (x∗; R, N ), defined exactly as the
event B ′ = B ′(x∗; R, N ) in (6.12) except with �x∗ and �z replaced by the truncated
paths �M

x∗ and �M
z and considering only z ∈ [−M, M]2. Thus

μα(B ′M ) ≥ CN ,R for all M ≥ M ′0, k ≥ K0(M) and α ∈ �M,k ,

with �M,k ⊆ [0, nk] of Lebesgue measure at least Cβ ′nk . As the indicator of B ′M is
continuous,

μ(B ′M ) = lim
k→∞μ∗nk

(B ′M ) ≥ CN ,RCβ ′ .

Last,

μ(B ′) = μ(B ′M for infinitely many M) ≥ CN ,RCβ ′ > 0 ,

completing the proof in the case λ+
0 <∞.

If λ+
0 = ∞, we are no longer guaranteed the estimate (6.26), since the passage time of

a path taking Nε steps along L ′N is not necessarily bounded above by Nελ+. However,
writing Ẽ for the set of edges with an endpoint within �1 distance 1 of U ′ but not in U ′E
and noting

AC := {for all e ∈ Ẽ, τe ≤ C}
satisfies P(AC ) → 1 as C → ∞ independently of k and M , we can choose Cbig such
that

P(B̃α
M ∩ ACbig) > 0

independently of k and M . This event is still monotone increasing in the appropriate edge
variables. In particular, we can modify the edges in U ′E to be each larger than 2Cbig|Ẽ |
and the rest of the proof follows as in the case λ+

0 <∞. 
�

6.3. Deriving a contradiction. Given that the event B ′(x∗; R, N ) of the preceding sec-
tion has positive probability, we now derive a contradiction, proving that all paths in G

must merge. The next lemma is an example of a mass-transport principle. (See [5,18,19]
for a more comprehensive treatment.)

Lemma 6.8. Let m : Z2 × Z
2 → [0,∞) be such that m(x, y) = m(x + z, y + z) for all

x, y, z ∈ Z
2. Then

∀x ∈ Z
2,

∑

y∈Z2

m(x, y) =
∑

y∈Z2

m(y, x).
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Proof. Write
∑

y∈Z2

m(x, y) =
∑

z∈Z2

m(x, x + z) =
∑

z∈Z2

m(x − z, x) =
∑

y∈Z2

m(y, x).


�
Given a realization of G and x ∈ Z

2, order the set

Cx = {y ∈ Z
2 : y → x in G} (6.27)

using a dictionary-type ordering where y precedes y′ if either � ′ · y < � ′ · y′ or if both
� ′ · y = � ′ · y′ and y ·ς < y′ ·ς (where ς was fixed in (6.2)); clearly this defines a total
ordering. If there is a least element y under this ordering, we will call y the progenitor
of x (relative to G). We define the G-dependent function mG on pairs of vertices x, y by

mG(x, y) =
{

1 if y is the progenitor of x
0 otherwise,

and let m(x, y) := Eμ(mG(x, y)). Note that m(x, y) = m(x + z, y + z) by the fact that
G has a translation-invariant distribution.

Since each x can have at most one progenitor,
∑

y∈Z2

m(x, y) ≤ 1 for all x ∈ Z
2. (6.28)

On the other hand, if B ′(x∗; R, N ) occurs, then �z cannot intersect �x∗ if z � L ′N and
z /∈ S(R, N ). Therefore, on this event, there is some vertex y ∈ S(R, N ) which is the
progenitor of infinitely many vertices of �x∗ . In particular,

∑

y∈Z2

m(y, x) = ∞. (6.29)

The contradiction implied by (6.28), (6.29) and Lemma 6.8 gives μ(B ′(x∗; R, N )) = 0.
However this contradicts the previous section and completes the proof of Theorem 6.1.

6.4. Absence of backward infinite paths. In this section, we move on from Theorem 6.1
to show that because all paths in G coalesce, all paths in the “reverse” direction terminate.
That is, recalling the definition of Cx in (6.27),

Theorem 6.9. For each x ∈ Z
2, |Cx | <∞ with μ-probability one.

Remark 6.10. The proof below applies to the following general setting. Suppose ν is
a translation-invariant probability measure on directed subgraphs of Z

2 and there is a
line L ⊆ R

2 such that ν-almost surely (a) each x has exactly one forward path and it is
infinite (b) all forward paths coalesce and (c) each forward infinite path emanating from
a vertex on L intersects it finitely often. Then all backward clusters are finite ν-almost
surely.

We assume that, contrary to the theorem, there exists x ∈ Z
2 with μ(|Cx | = ∞) > 0

for the remainder of this section to derive a contradiction. Using Lemma 6.2, choose
a deterministic � ′ with argument in { jπ/4 : j = 0, . . . , 7} such that with positive
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μ-probability on {|Cx | = ∞}, each �z eventually lies on the far side of each L ′N . Note
that this event is translation-invariant, so by conditioning on it, we may assume that it
occurs with probability 1 (and μ is still translation-invariant).

Claim 6.11. There exist vertices z �= z′ in L ′0 such that

μ
(|Cz | = ∞, |Cz′ | = ∞, �z ∩ L ′0 = {z}, �z′ ∩ L ′0 = {z′}

)
> 0. (6.30)

Proof. By translation-invariance, we may assume that the x with μ(|Cx | = ∞) > 0
satisfies x ≺ L ′0. μ-almost surely, �x has a last intersection with L ′0. There are countably
many choices for such a last intersection, so there exists a vertex z ∈ L ′0 such that

μ
(|Cz| = ∞, �z ∩ L ′0 = {z}

)
> 0.

Translating by ς (chosen from (6.2)), the ergodic theorem gives z, z′ satisfying (6.30).

�

Proof of Theorem 6.9. Given an outcome in the event in (6.30), �z and �z′ almost surely
merge. So there is some random zG ∈ Z

2 which is the first intersection point of �z and
�z′ (“first” in the sense of both the ordering in �z and in the ordering of �z′ ). Again zG

can take only countably many values, and so there is a z0 which occurs with positive
probability; call the intersection of the event in (6.30) with the event {zG = z0} by the
name B.

We now consider the graph G as an undirected graph, in which vertices x and y are
adjacent if 〈x, y〉 or 〈y, x〉 are in G (we abuse notation by using the same symbol for
both the directed and undirected versions of G). We define an encounter point of the
undirected G to be a vertex whose removal splits G into at least three infinite components.
Note that B ⊆ {z0 is an encounter point}; by translation invariance, we see that there is
a uniform ct > 0 such that the probability of any fixed vertex to be an encounter point
is at least ct .

We are now in the setting of Burton-Keane [8]. To briefly synopsize, the number of
points on the boundary of [−M, M]2 must be at least the number of encounter points
within. In particular, the number of encounter points is surely bounded above by 8M . But
since each point within has probability at least ct to be an encounter point, the expected
number of encounter points within [−M, M]2 is at least ct M2. This is a contradiction
for large M. 
�

7. Proofs of Main Theorems

7.1. Proof of Theorem 1.1. Suppose that ∂B is differentiable at vθ = � and construct
the measure μ as in Sect. 3.1. Using the notation of Theorem 5.3, we set

L� = {x ∈ R
2 : x · � = 1}.

From the theorem, we deduce that with μ-probability 1, �0 is asymptotically directed
in J�. But by the assumption of differentiability, J� = Iθ with μ-probability 1 and thus

μ (�0 is asymptotically directed in Iθ ) = 1. (7.1)

By Proposition 5.1, each finite piece of �0 is a geodesic, so �0 is an infinite geodesic.
Define �̂ ⊆ �1 as the set

�̂ = {ω ∈ �1 : μ(�0 is asymptotically directed in Iθ | ω) = 1}.
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The inner probability measure is the regular conditional probability measure. The set �̂

is measurable and because the marginal of μ on �1 is P, it satisfies P(�̂) = 1. Further,
for each ω ∈ �̂ there is an infinite geodesic from 0 which is asymptotically directed in Iθ .

7.2. Proof of Theorem 1.6. In this section we assume either A1′ or A2′. Assume that the
limit shape B has uniformly positive curvature. Then the boundary ∂B cannot contain
any straight line segments. This implies that the extreme points ext (B) are dense in ∂B.
Choose some countable set D ⊆ ext (B) that is dense in ∂B. For any θ1 and θ2 with
0 < dist(θ1, θ2) < π , let I (θ1, θ2) be the set of angles corresponding to the shorter closed
arc of ∂B from vθ1 to vθ2 . By Corollary 1.3, for each θ1, θ2 ∈ D with 0 < dist(θ1, θ2) <

π , with probability one there is an infinite geodesic from 0 asymptotically directed in
I (θ1, θ2). The collection of such sets of angles is countable, so there exists an event
�′ ⊆ �1 such that P(�′) = 1 and for each ω ∈ �′,
1. for each θ1, θ2 ∈ D such that dist(θ1, θ2) < π , there exists an infinite geodesic

containing 0 and asymptotically directed in I (θ1, θ2) and
2. for each x, y ∈ Z

2 there is exactly one geodesic from x to y.

We claim that for each ω ∈ �′, both statements of the theorem hold: for each θ there is an
infinite geodesic with asymptotic direction θ and each infinite geodesic has a direction.

To prove the first statement, let ω ∈ �′ and θ ∈ [0, 2π). For distinct angles θ1 and θ2
such that 0 < dist(θi , θ) < π we write θ1 >θ θ2 if I (θ1, θ) contains θ2. Because D is
dense in ∂B, we can find two sequences (θ1

n ) and (θ2
n ) such that (a) 0 < dist(θ i

n, θ) < π

for all n and i , (b) for i = 1, 2, dist(θ i
n, θ)→ 0 as n→∞ and (c) for each i = 1, 2 and

n, θ
j

n >θ θ
j

n+1. Let vn be the point nvθ and let γn be the geodesic from 0 to vn . Define
γ as any subsequential limit of (γn). By this we mean a path γ such that for each finite
subset E of R

2, the intersection γn ∩ E equals γ ∩ E for all large n. We claim that γ

has asymptotic direction θ .
Let ε > 0 and choose N such that dist(θ, θ

j
N ) < ε for j = 1, 2. Because ω ∈ �′, for

j = 1, 2, we can choose an infinite geodesic γ
j

N containing 0 with asymptotic direction

in I (θ
j
N , θ

j
N+1). Write P for the union of γ 1

N and γ 2
N . This complement of P in R

2

consists of two open connected components (as P cannot contain a circuit). Because
both paths are directed away from θ , exactly one of these two components contains all
but finitely many of the nvθ ’s. Let C1 be the union of P with this component and let C2
be the other component.

Choose N0 so that nvθ ∈ C1 for all n ≥ N0. We claim now that each finite geodesic
γn for n ≥ N0 is contained entirely in C1. If this were not true, γn would contain a vertex
z in C2 and therefore it would cross P to get from z to vn . Then if w is any vertex on
γn ∩ P visited by γn after z, then there would be two different geodesics from 0 to w

and this would contradict unique passage times. Therefore, as γn is contained in C1 for
all large n, so must γ . This implies that γ is asymptotically directed in the set of angles
within distance ε of θ (for each ε > 0) and therefore has asymptotic direction θ .

To prove the second statement choose ω ∈ �′ and let γ be an infinite geodesic. If γ

does not have an asymptotic direction then, writing xn for the nth vertex of γ , we can find
an angle φ ∈ [0, 2π) such that φ is a limit point of {arg xn : n ≥ 1} (under the metric
dist) but (arg xn) does not converge to φ. So there exists a number ε with 0 < ε < π

and a subsequence (xnk ) of (xn) such that for each m, dist(arg xn2m , φ) < ε/2 but
dist(arg xn2m+1 , φ) > ε. By the first part of the theorem we can find infinite geodesics
γ1 and γ2 from 0 such that γ1 has asymptotic direction φ + 3ε/4 and γ2 has asymptotic



Busemann Functions and Infinite Geodesics in Two-Dimensional First-Passage Percolation 959

direction φ − 3ε/4. Now it is clear that if we write P for the union of γ1 and γ2 then γ

must both contain infinitely many vertices of P and infinitely many vertices of Pc. This
again contradicts unique passage times.

Proof of Corollary 1.7. If θ is an exposed point of differentiability then by Corollary 1.2,
with probability one there exists an infinite geodesic from 0 in each rational direction.
Then the proof above goes through with minor modifications. 
�

7.3. Proof of Theorem 1.10. Assume either A1′ or both A2′ and the upward finite energy
property. Let v ∈ R

2 be nonzero and ε > 0. We will prove that the statement of the
theorem holds with probability at least 1 − ε. Choose � ∈ ∂B to be parallel to v and
construct a measure μ as in Sect. 3.1. Let (nk) be an increasing sequence such that
μ∗nk
→ μ weakly.

We will define a double sequence of cylinder events that approximate the events in
the theorem. For m ≤ n, a configuration η ∈ �3 and x, y ∈ [−m, m]2 ∩Z

2, we say that
x is n-connected to y (x →n y) if there exists a directed path from x to y whose vertices
stay in [−n, n]2. We say that x and y are n-connected (x ↔n y) if there is an undirected
path connecting x and y in [−n, n]2. For m ≤ n write Am,n ⊆ �3 for the event that

1. all vertices v ∈ [−m, m]2 have exactly one forward neighbor in G ∩ [−n, n]2,
2. there is no undirected circuit contained in [−m, m]2,
3. for all vertices v,w ∈ [−m, m]2, there exists z ∈ [−n, n]2 such that v →n z and

w→n z, and
4. for all vertices v ∈ [−m, m]2 there is no z ∈ [−n, n]2 \ (−n, n)2 such that z →n v.

We claim that for any m there exists n(m) ≥ m such that μ(Am,n(m)) > 1− ε/4m+2.
To prove this, let �̂ ⊆ �̃ be the event that (a) all vertices have one forward neighbor
in G, (b) G has no undirected circuits, (c) for all x, y ∈ Z

2, �x and �y coalesce, and
(d) |Cx | < ∞ for all x ∈ Z

2. By Proposition 5.2, Theorem 6.1 and Theorem 6.9, the
μ-probability of �̂ is 1. Therefore conditions 1 and 2 above have probability 1 for all
m and n. For any configuration in �̂ and m ≥ 1 we can then choose a random and
finite N (m) ≥ m to be minimal so that conditions 3 and 4 hold for all n ≥ N (m).
Taking n(m) so large that μ(N (m) ≥ n(m)) ≤ ε/4m+1 completes the proof of the
claim.

We now pull Am,n(m) back to �1, using the fact that it is a cylinder event in �3 and
thus its indicator function is continuous. There is an m-dependent number K0(m) such
that if k ≥ K0(m) then μ∗nk

(Am,n(m)) > 1−ε/4m+2. By definition of μ∗nk
in (3.4) and �α

in (3.3), the set �m,k of values of α ∈ [0, nk] such that P(�−1
α (Am,n(m))) > 1− ε/2m+2

has Lebesgue measure at least nk(1− 2−(m+2)).
The next step is to construct a deterministic sequence (am)m≥1 of real numbers such

that

am →∞ and P

(
∩m

j=1�
−1
am

(A j,n( j))
)
≥ 1− ε/2 for all m. (7.2)

We do this by induction on m. For m = 1, let a1 be any number in the set �1,K0(1). By
definition then P(�−1

a1
(A1,n(1))) ≥ 1 − ε/2. Assuming that we have fixed a1, . . . , am ,

we now define am+1. Let k be such that k ≥ max{K0(1), . . . , K0(m + 1)} and nk ≥ 3am
and consider �1,k, . . . , �m+1,k as above. The intersection of these sets has Lebesgue
measure at least 3nk/4 so choose am+1 as any element of the nonempty set (3am/2, nk]∩[∩m+1

i=1 �i,k
]
. For this choice,
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1− P

(
∩m+1

j=1�
−1
am+1

(A j,n( j))
)
≤
∞∑

j=1

ε/2 j+2 = ε/4.

As am+1 ≥ 3am/2, the condition am →∞ holds and we are done proving (7.2).
From (7.2), we deduce P(A) ≥ 1− ε/2, where

A = {∩m
j=1�

−1
am

(A j,n( j)) occurs for infinitely many m}.
We complete the proof by showing that the statement of the theorem holds for any ω ∈ A.
Fix such an ω and a random subsequence (amk ) of (am) such that ω ∈ ∩mk

j=1�
−1
amk

(A j,n( j))

for all k. By extracting a further subsequence, we may assume that GLamk
(�) converges

to some graph G. The event �−1
α (A j,n( j)) is exactly that the graph GLα(�) satisfies the

conditions of A j,n( j) above, so in particular, it has no undirected circuits in [− j, j]2, all
directed paths starting in [− j, j]2 coalesce before leaving [−n( j), n( j)]2, no directed
paths connect [−n( j), n( j)]2\(−n( j), n( j))2 to [− j, j]2, and all vertices in [− j, j]2
have one forward neighbor in [−n( j), n( j)]2. On the subsequence (amk ), the events
�−1

amk
(A1,n(1)) occur for all k, so G must satisfy the conditions of A1,n(1) as well. The

same is true for A j,n( j) for all j , so G satisfies the conditions of the theorem.

7.4. Proof of Theorem 1.11. This theorem follows directly from results of the previous
sections. Assume either A1′ or both A2′ and the upward finite energy property. For the
first part of the theorem, suppose that ∂B is differentiable at vθ . Choose � = vθ and
construct the measure μ as in Sect. 3.1. Given (ω,�, η) ∈ �̃, let G(η) be the geodesic
graph associated to η. By Theorems 5.3, 6.1 and 6.9, with μ-probability one, all directed
paths in G are asymptotically directed in Iθ , they coalesce, and no vertex x has |Cx |
infinite. Call this event A and define

�̂ = {ω ∈ �1 : μ(A | ω) = 1}.
μ(· | ω) is the regular conditional probability measure. �̂ is a measurable set and satisfies
P(�̂) = 1 since the marginal of μ on �1 is P. Further, for each ω ∈ �̂, the theorem
holds.

For the other two parts of the theorem we simply argue as in the proof of Corollaries 1.2
and 1.3. In the former case we just notice that if vθ is also exposed, then Iθ = {θ}. In the
latter case, we find a point vθ on the arc joining vθ1 to vθ2 at which ∂B is differentiable.
The set Iθ contains only angles associated to points on the arc and we are done.
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A. Measurability of α �→ μα(A)

In this section we show that for all Borel measurable A ⊆ �̃, α �→ μα(A) is Lebesgue
measurable. By the monotone class theorem, it suffices to consider the case that A is
a cylinder event; that is, that there exists M > 0 such that A depends only on passage
times ωe, Busemann increments (θ1(v), θ2(v)) and graph variables η( f ) for vertices v in



Busemann Functions and Infinite Geodesics in Two-Dimensional First-Passage Percolation 961

[−M, M]2, and edges e and directed edges f with both endpoints in [−M, M]2. Recall
that for α ∈ R,

L̂α = {x ∈ Z
2 : x + [−1/2, 1/2)2 ∩ Lα �= ∅}

and that passage times to Lα are actually defined to L̂α . We are interested in how this
set changes near [−M, M]2 as we vary α. For this reason, define for each v ∈ Z

2,

C−v = inf{α : v ∈ L̂α} and C+
v = sup{α : v ∈ L̂α}.

It follows that for all v, C−v < C+
v and

v ∈
{

L̂α if α ∈ (C−v , C+
v )

L̂c
α if α ∈ R \ [C−v , C+

v ]
.

Define the set

X = ∪v∈Z2{C−v , C+
v }

and note that X is countable. To prove Lebesgue measurability of α �→ μα(A), we show
that

f (α) := μα(A) is continuous except at α ∈ X. (A.1)

Let α ∈ [0, n] \ X and let ε > 0. For any integer N ≥ M such that [−N , N ]2 intersects
L̂α , let PN be the collection of all lattice paths whose vertices are in [−N , N ]2. Last
define the approximate passage times for x ∈ [−N , N ]2,

τN (x, Lα) = min
x∈γ∈PN

γ∩L̂α �=∅

τ(γ ),

and geodesics G N (x, Lα) to be the minimizing paths. Let G(x, Lα) be the original
geodesic from x to Lα . Using the shape theorem, we can choose N large enough that

P

⎛

⎜
⎝ min

v∈[−M,M]2
w/∈(−N ,N )2

τ(v,w) > max
v∈[−M,M]2

τ(v, Lα)

⎞

⎟
⎠ ≥ 1− ε. (A.2)

For N fixed as above, the condition that α /∈ X implies that we can choose δ > 0 such
that the interval (α − δ, α + δ) is contained in the complement of the finite set

X N = ∪v∈[−N ,N ]2{C−v , C+
v }.

It follows that

for all β with |α − β| < δ, L̂α ∩ [−N , N ]2 = L̂β ∩ [−N , N ]2. (A.3)

Having fixed δ above we now prove that if |β − α| < δ then |μα(A) − μβ(A)| < ε.
Using the definition of �α we can first give an upper bound

|μα(A)− μβ(A)| ≤ P(�−1
α (A)��−1

β (A)), (A.4)
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where � is the symmetric difference operator. Note that the events on the right side are
determined by (a) ωe for e with both endpoints in [−M, M]2, (b) the geodesics G(x, Lα)

and G(x, Lβ) from all points x ∈ [−M, M]2 to the lines Lα and Lβ , and (c) the passage
times of these geodesics. Therefore the right side of (A.4) is bounded above by

P(∃ x ∈ [−M, M]2 such that G(x, Lα) �= G(x, Lβ)).

However if such an x exists then by (A.3), one of two geodesics must exit the box
[−N , N ]2. A subpath of this geodesic must cross from [−M, M]2 to the complement
of (−N , N )2, so the event E(M, N ) in (A.2) cannot occur. Thus

|μα(A)− μβ(A)| ≤ P(E(M, N )c) < ε if |β − α| < δ ,

so f is continuous at α, giving measurability of f .
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