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Abstract: As in the classical case of Lévy processes on a group, Lévy processes on
a Voiculescu dual group are constructed from conditionally positive functionals. It is
essential for this construction that Schoenberg correspondence holds for dual groups:
The exponential of a conditionally positive functional is a convolution semigroup of
states.

1. Introduction

The original result by Schoenberg [Sch38] says that the Schur exponentials (etai j )i j , t ∈
R+, of a complex n×n-matrix A = (ai j )i j are positive semi-definite iff A is conditionally
positive semi-definite, i.e. iff A∗ = A and

n∑

i, j=1

z̄i z j ai j ≥ 0

for all complex numbers z1, . . . , zn with z1+· · ·+zn = 0. There are many other examples
of Schoenberg correspondence between conditional positivity and positive semigroups.
Another elementary example is the correspondence between semigroups Pt = et Q of
stochastic matrices and their generator Q-matrix which has to have non-negative off-
diagonal entries and row sums equal to 0.

If Xt : � → G, t ∈ R+, is a Lévy process on a topological group G (that is a G-valued
stochastic processes with independent stationary increments) then the distributions μt
of Xt form a convolution semigroup of probability measures on G, i.e. μs � μt = μs+t ,
where the convolution product is defined by (μ1�μ2)( f ) = ∫

G

∫
G f (xy)μ1(dx)μ2(dy)

for probability measuresμ, ν and bounded continuous functions f on G. Ifμt is weakly
continuous, one can define the generator of the convolution semigroup on an appropriate
∗-algebra of functions on G. This leads to the Lévy–Khintchine formula in the case
of G = R

d , or, more generally, to Hunt’s formula if G is a Lie group. Again the
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generator ψ is conditionally positive, in the sense that ψ is hermitian and ψ( f ) ≥ 0
for functions f ≥ 0 vanishing at the unit element of G; see [Hun56,vW65]. In the
case when G is a locally compact abelian group or a compact group, one can choose as
space of functions on G the ∗-algebra formed by the coefficient functions of continuous
irreducible representations of G. This coefficient algebra B is a Hopf ∗-algebra, and
convolution semigroups of states on G are precisely given by the conditionally positive
linear functionals on the coefficient algebra where conditionally positive now means
hermitian and

ψ( f ) ≥ 0 for f ≥ 0, f ∈ kern δ.

The functional δ is the counit of the coefficient algebra B and convolution of linear
functionals ϕ1 and ϕ2 on B is given by

ϕ1 � ϕ2 = (ϕ1 ⊗ ϕ2) ◦�, (1.1)

where � is the comultiplication of B.
We describe the mechanism of constructing Lévy processes. Starting from a con-

ditionally positive linear functional ψ on B, we obtain a convolution semigroup ϕt of
linear functionals on B as the convolution exponentials etψ

� of ψ . Now it is impor-
tant that Schoenberg correspondence holds which means that ϕt are positive so that
the convolution semigroup consists of states which again are in 1-1-correspondence to
probability measures on G. The convolution semigroup defines a projective system of
finite-dimensional distributions which by Kolmogorov’s theorem allows to construct a
Lévy process on G whose convolution semigroup is given by ϕt . This establishes, up
to stochastic equivalence of stochastic processes, a 1-1-correspondence between condi-
tionally positive linear functionals on the coefficient algebra of G and Lévy processes
on G.

The Hopf ∗-algebras arising from locally compact abelian or compact groups are
algebras of functions and as such are commutative. If one generalizes to arbitrary Hopf ∗-
algebras (for instance, compact quantum groups), a notion of noncommutative (quantum)
Lévy processes has been introduced; see [Sch93]. These quantum Lévy processes are
again given by conditionally positive linear functionals, now on the Hopf ∗-algebra B
where conditionally positive now means hermitian and

ψ(b∗b) ≥ 0 for b ∈ kern δ. (1.2)

The increments of quantum Lévy processes on Hopf ∗-algebras are independent in the
sense of noncommutative tensor independence where two sub-algebras are called tensor
independent if they commute and if expectations factorize.

The tensor product of linear functionals is closely related to the classical notion of
stochastic independence. Two random variables X1 : � → G1, X2 : � → G2 are
independent if their joint distribution is the tensor product of the marginal distributions,
that is if

P(X1,X2) = PX1 ⊗ PX2 . (1.3)

Identify the underlying probability measure P with its expectation E(F) = ∫
FdP, F ∈

L∞(�), which is a positive normalized linear functional on the ∗-algebra L∞(�). If
we think of PX1 and PX2 as their expectations EX1 and EX2 on the ∗-algebras L∞(G1)

and L∞(G2) of bounded measurable functions on G1 and on G2 respectively, and of
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the joint distribution as the expectation E(X1,X2) on the tensor product L∞(G1 × G2) =
L∞(G1)⊗ L∞(G2), then (1.3) becomes

E(X1,X2) = EX1 ⊗ EX2 . (1.4)

Define the ∗-algebra homomorphisms j1 : L∞(G1) → L∞(�) and L∞(G2) →
L∞(�) by j1( f1) = f1 ◦ X1 and j2( f2) = f2 ◦ X2 and introduce the ∗-algebra homo-
morphism

j1 ⊗ j2 : L∞(G1)⊗ L∞(G2) → L∞(�)

by

( j1 ⊗ j2)( f1 ⊗ f2) = j1( f1) j2( f2).

Then E ◦ ( j1 ⊗ j2) is the joint distribution of X1 and X2, and (1.4) reads

E ◦ ( j1 ⊗ j2) = (E ◦ j1)⊗ (E ◦ j2). (1.5)

It is remarkable that in a noncommutative world there is more than one possibility
for a notion of independence. One of these notions, called tensor independence, as was
pointed out above is closely related to classical independence and is the noncommutative
independence chosen for Lévy processes on Hopf ∗-algebras. In his papers on the broad-
ening of spectral lines [vW73] von Waldenfels used another notion of independence,
in some respect the most simple, which now is called Boolean independence, because
Boolean lattices appear when moments are calculated from their cumulants. Boolean
independence also appears as the free product function on the free product of groups in
[Boz86].

A central role is played by free independence or freeness which was introduced
by Voiculescu [Voi85]. Muraki showed that under certain natural axioms there are ex-
actly five notions of noncommutative independence ([Mur02,Mur03], see also [Spe97,
BGS02]), namely tensor, Boolean, free and monotonic and anti-monotonic indepen-
dence.

The joint distribution of two classical random variables lives on the tensor prod-
uct which is the commutative algebra ‘freely’ generated by the algebras L∞(G1) and
L∞(G2). In the noncommutative case the tensor product of algebras has to be replaced
by the free product of algebras. The classification result of Muraki classifies the ‘nat-
ural’ products of linear functionals which assign to each pair of algebras (B1,B2)

and linear functionals (ϕ1, ϕ2), ϕ1 : B1 → C, ϕ2 : B2 → C a linear functional
ϕ1 	 ϕ2 : B1 
 B2 → C. The product 	 replaces the tensor product of (1.4) of the
classical case. If we understand by a noncommutative (quantum) probability space a
∗-algebra A equipped with a state E : A → C and by a quantum random variable on a
∗-algebra B over a quantum probability space (A,E) a homomorphism j : B → A of
∗-algebras, two random variables j1 : B1 → A and j2 : B2 → A are called independent
(with respect to an independence given by a Muraki natural product 	) if

E ◦ ( j1 
 j2) = (E ◦ j1)	 (E ◦ j2) (1.6)

which precisely is the noncommutative version of (1.5).
In this paper, general quantum Lévy processes are considered, the independence of

increments coming from one of the five notions of independence of Muraki’s classifi-
cation. To treat the general independence case, Hopf ∗-algebras have to be replaced by
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their ‘free’ counterparts where tensor products of algebras are replaced by free products
of algebras. Such objects appeared already in work of Voiculescu [Voi87] and had been
called ‘dual groups’ . We will call ‘dual semigroup’ a ∗-algebra B equipped with a co-
multiplication� which is a ∗-algebra homomorphism from B to the free product B 
 B
of B with itself such that coassociativity and the counit property hold. If there is also an
antipode we will speak of (algebraic) dual groups.

Suppose that (B,�) is a dual semigroup. In addition let there be given a (fixed) natural
product 	 with its associated notion of noncommutative independence; see [Mur03,
BGS02]. We define the convolution product of two linear functionals ϕ1, ϕ2 on B by

ϕ1 � ϕ2 = (ϕ1 	 ϕ2) ◦� (1.7)

in complete analogy to the tensor case (1.1). Quantum Lévy processes on the dual semi-
group B are again determined by convolution semigroups of states on B. Convolution
exponentials eψ� of linear functionals ψ on B can be defined as before (see Sect. 3).
Schoenberg correspondence (Theorem 3.1) says that the (point-wise) continuous con-
volution semigroups ϕt of states on B are precisely given by ϕt = etψ

� with ψ the
(point-wise) derivative of ϕt and ψ conditionally positive.

In Sect. 4 we start from a conditionally positive linear functional ψ on a dual semi-
group B. Using Schoenberg correspondence, we associate with it a convolution semi-
group of states on B. By an inductive limit procedure we then construct a quantum Lévy
process on B with convolution semigroup given by ϕt = etψ

� .

2. Preliminaries

Algebras will be over the complex numbers and will assumed to be associative. A ∗-
algebra is an algebra A with an involution ∗, i.e. an anti-linear map a �→ a∗ on A
such that (ab)∗ = b∗a∗ and (a∗)∗ = a. A unital algebra is an algebra such that there
exists an element 1 (called the unit element) in A with a 1 = a = 1 a. A (counital)
coalgebra is a triplet (C,�, δ) consisting of a (complex) vector space C and linear
mappings � : C → C ⊗ C and δ : C → C such that (�⊗ id) ◦� = (id ⊗�) ◦� and
(δ ⊗ id) ◦� = id = (id ⊗ δ) ◦�, where for vector spaces V and W we write V ⊗ W
for the vector space tensor product. Either C is the trivial vector space or there exists
an element e ∈ C with δe = 1. In the latter case C = Ce ⊕ C0 with C0 = kern δ, and
for c ∈ C, c0 = c − δ(c)e, we have �c − (δ(c)e ⊗ e + e ⊗ c0 + c0 ⊗ e) ∈ C0 ⊗ C0. In
particular, �e = e ⊗ e + B, B ∈ C0 ⊗ C0, and �c = e ⊗ c + c ⊗ e + B, B ∈ C0 ⊗ C0,
for c ∈ C0.

A bialgebra is a coalgebra (B̃, �̃, δ), where B̃ is a unital algebra such that �̃, δ are
algebra homomorphisms. If we put B = kern δ, then �̃B ⊂ B ⊕ B ⊕ (B ⊗ B) =:
B ⊗0 B, and the pair (B,�),� = �̃�B : B → B ⊗0 B consists of an algebra B and a
‘comultiplication’ � such that

(�⊗0 id) ◦� = (id ⊗0 �) ◦� (2.1)

and

(0 ⊗0 id) ◦� = id = (id ⊗0 0) ◦�. (2.2)

This shows that a bialgebra equivalently can be defined to be a pair (B,�) consisting of
an algebra B and an algebra homomorphism� : B → B ⊗0 B such that (2.1) and (2.2)
hold.
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For an index set I �= ∅, we put

A(I ) = {(ε1, . . . , εn) | n ∈ N, εl ∈ I, l = 1, . . . , n, εl �= εl+1, l = 1, . . . , n − 1}.
For a family (Ai )i∈I of algebras and ε = (ε1, . . . , εn) ∈ A(I ) we denote by Aε the
algebraic tensor product Aε = Aε1 ⊗ . . . ⊗ Aεn of the algebras Aε1 , . . . ,Aεn . Define
the free product

⊔
i∈I Ai of the family (Ai )i∈I as the vector space direct sum

⊔

i∈I

Ai =
⊕

ε∈A(I )

Aε

with multiplication given by

(a1 ⊗ . . .⊗ an) (b1 ⊗ . . .⊗ bm)

=
{

a1 ⊗ . . .⊗ an ⊗ b1 ⊗ . . .⊗ bm if εn �= γ1
a1 ⊗ . . .⊗ an−1 ⊗ (anb1)⊗ b2 ⊗ . . .⊗ bm if εn = γ1

for n,m ∈ N, ε = (ε1, . . . , εn) ∈ A(I ), γ = (γ1, . . . , γm) ∈ A(I ) and a1 ⊗ . . .⊗ an ∈
Aε, b1 ⊗ . . .⊗ bm ∈ Aγ . For example, if I = {1, 2},

A1 
 A2 = A1 ⊕ A2 ⊕ (A1 ⊗ A2)⊕ (A2 ⊗ A1)⊕ . . . .

The free product is the co-product in the category of algebras, i.e. given two algebra
homomorphisms j1 : B1 → A and j2 : B2 → A with the same target A, there is a
unique algebra homomorphism j1 
 j2 : B1 
 B2 → A such that j1/2 = ( j1 
 j2) ◦ i1/2,
where i1, i2 denote the natural embeddings of B1,B2 into B1 
 B2. We frequently write
j1 
 j2 for (i1 ◦ j1) 
 (i2 ◦ j2) : B1 
 B2 → A1 
 A2 for algebra homomorphisms
j1/2 : B1/2 → A1/2. The free product A1 
1 A2 of unital algebras A1,A2 is obtained
from A1
A2 by dividing by the ideal generated by 1A1 −1A2 . Then 
1 is the co-product
in the category of unital algebras.

We follow [Fra06] and define (stochastic) independence in the language of category
theory. Let (C,�, i) be a tensor category with injections, i.e. (C,�) is a tensor category
such that for each pair C1,C2 of objects there exists a pair iC1 , iC2 of morphisms iC1 :
C1 → C1�C2, iC2 : C2 → C1�C2, such that for any pair j1 : C1 → D1, j2 : C2 → D2
of morphisms we have

( j1� j2) ◦ iC1 = iD1 ◦ j1,

( j1� j2) ◦ iC2 = iD2 ◦ j2.

Then two morphisms j1 : C1 → C, j2 : C2 → C with the same target are called
independent if there exists a morphism j : C1�C2 → C such that j1 = j ◦ iC1 and
j2 = j ◦ iC2 . For example, consider the category formed by ‘dual probability spaces’
that is by pairs (C, ϕ) with C a commutative von-Neumann algebra and ϕ a normal
state on C . This is a tensor category with injections if we choose the von-Neumann
algebra tensor product with the tensor product of states and the natural injections. The
morphisms from (C, ϕ) to (D, θ) are the von-Neumann algebra homomorphisms j with
ϕ = θ ◦ j , that is they are precisely the random variables. Two random variables are
stochastically independent in the classical sense iff they are independent in the above
sense of categories with injections.

Since we will stay in an algebraic framework, we consider tensor products in the
category formed by pairs (B, ϕ), where B is an algebra and ϕ : B → C is a linear
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functional on B. There is a type of tensor product with injections in this category given
by

(B1, ϕ1)�(B2, ϕ2) = (B1 
 B2, ϕ1 	 ϕ2),

where ϕ1 	 ϕ2 is a linear functional on the free product B1 
 B2 of algebras such that
the product 	 satisfies the axioms

(ϕ1 	 ϕ2) ◦ i1/2 = ϕ1/2, (A1)

(ϕ1 	 ϕ2)	 ϕ3 = ϕ1 	 (ϕ2 	 ϕ3), (A2)

(ϕ1 ◦ j1)	 (ϕ2 ◦ j2) = (ϕ1 	 ϕ2) ◦ ( j1 
 j2). (A3)

Consider the additional axioms

(ϕ1 	 ϕ2)(b1b2) = (ϕ1 	 ϕ2)(b2b1) = ϕ1(b1)ϕ2(b2) (A4)

for all b1 ∈ B1, b2 ∈ B2, and

ϕ1 	 ϕ2 = ϕ2 	 ϕ1. (A5)

Muraki [Mur02,Mur03] showed that there are exactly five products satisfying (A1)–
(A4), the tensor product, the free product [Voi85], the Boolean product [vW73], and
the monotonic and anti-monotonic products [Mur97,Mur01,Lu97]. It was shown in
[Spe97,BGS02] that the tensor, the free and the Boolean products are the only three
products satisfying (A1)–(A5). An independence coming from a product with (A1)–
(A3) will be called a 	-independence.

A linear functional ϕ on a ∗-algebra A is called hermitian if ϕ(a∗) = ϕ(a) for all
a ∈ A. We call ϕ conditionally positive if ϕ is hermitian and if ϕ(a∗a) ≥ 0 for all a ∈ A.
In this paper, we call ϕ a state if we have ϕ̃(a∗a) ≥ 0 for all a ∈ Ã, where ϕ̃ : Ã → C

is the normalized linear extension of ϕ to Ã = C1 ⊕A. A state is conditionally positive
whereas the converse is not always true. For example, on the ∗-algebra of complex
polynomials in one self-adjoint indeterminate x , with constant part equal to 0 the linear
functional ψ with ψ(xn) = δ2,n is conditionally positive but not a state. The point-wise
limit of states is a state. If I is a two-sided ∗-ideal of the ∗-algebra A, then for a state ϕ
on A which vanishes on I we have that ϕ̂, ϕ̂(a + I) = ϕ(a), is a state on A/I.

We say that a 	-independence is positive if for two ∗-algebras A1 and A2 and states
ϕ1 and ϕ2 on A1 and A2 respectively, the product ϕ1 	 ϕ2 is a state. Another notion of
states is the following. Call ϕ a strong state if min{λ ∈ C |ϕλ(a∗a) ≥ 0 ∀a ∈ Ã} = 1,
where ϕλ is the extension of ϕ to C1 ⊕ A with ϕλ(1) = λ. Then a strong state is a state,
and the converse is false in general. We say that a 	-independence is strongly positive if
the product of two strong states is a strong state. Then each positive 	-independence is
strongly positive. This holds because ϕ1 and ϕ2 are the restrictions of ϕ1 	ϕ2 to A1 and
A2. It is well-known that Muraki’s five notions of independence are positive. In fact,

Proposition 2.1. The only positive 	-independences are Muraki’s five. In particular, a
	-independence is strongly positive iff it is positive.

Proof. It follows from [BGS02], Lem. 1, that there are ‘universal’ complex constants
q1, q2 such that (ϕ1	ϕ2)(c1c2) = q1 ϕ1(c1)ϕ2(c2) and (ϕ1	ϕ2)(c2c1) = q2 ϕ1(c1)ϕ2(c2)

for c1 ∈ B1, c2 ∈ B2.
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We show that a strongly positive 	-independence must be one of Muraki’s five. Take
B1 = B2 = C[x] andϕ(xn) = 1, n ∈ N. Thenϕ is a strong state. If 	 is strongly positive
ϕ 	 ϕ must be a state. With C[x] 
 C[x] = C〈x, y〉, we must have (ϕ 	 ϕ)(xy) = q1
and ϕ 	 ϕ(yx) = q2. We have

0 ≤ (ϕ 	 ϕ)
(
(λ1 + αx + βy)∗(λ1 + αx + βy)

)

for all λ, α, β ∈ C and the matrix
⎛

⎝
1 1 1
1 1 q1
1 q2 1

⎞

⎠

must be positive semi-definite which forces q1 = q2 = 1. It follows that a strongly
positive 	-independence satisfies (A4) so that Muraki’s result can be applied. �


A dual semigroup is a pair (B,�) consisting of a ∗-algebra B and a ∗-algebra homo-
morphism � : B → B 
 B such that

(�
 id) ◦� = (id 
�) ◦�
and

(0 
 id) ◦� = id = (id 
 0) ◦�;
cf. [Zha91,Voi87] and [BGS05]. Put B̃ = C1 ⊕ B, �̃ : B̃ → B̃ 
1 B̃ = C1 ⊕ B 

B, �̃�B = �, �̃1 = 1, δ : B̃ → C, δ�B = 0, δ1 = 1. Then the triplet (B̃, �̃, δ)
satisfies

(�̃
 1id) ◦ �̃ = (id 
 1�̃) ◦ �̃, (2.3)

(δ 
 1id) ◦ �̃ = id = (id 
 1δ) ◦ �̃. (2.4)

Conversely, given a triplet (B̃, �̃, δ) such that B̃ is a unital ∗-algebra and �̃ : B̃ → B̃ 
1
B̃, δ : B̃ → C are unital ∗-algebra homomorphisms with (2.3) and (2.4), it can be shown
that the pair (kern δ, �̃�kern δ) is a dual semigroup; see [BGS05]. A dual semigroup is
called a dual group if there is an endomorphism S on B such that (S 
 id) ◦� = 0 =
(id 
 S) ◦�.

Let C and D be two categories and let F be a functor from C to D. For an object D
in D a universal pair or arrow [ML98] from D to F is a pair (C, i) with C an object
in C and i a morphism i : D → F(C) such that the following universal property
is fulfilled. For each object A in C and morphism k : D → F(A) there is a unique
morphism j : C → A such that k = F( j) ◦ i . In the case when C is the category of
algebras, D is the category of vector spaces, and F is the forgetful functor, a universal
pair from a vector space V to F can be realized as the tensor algebra over V which
is the vector space direct sum of the vector space tensor powers V⊗n of V . This is an
algebra with multiplication (v1 ⊗ . . . vn)(w1 ⊗ . . .⊗wm) = v1 ⊗ . . .⊗ vn ⊗w1 ⊗ . . .⊗
wm, v1, . . . , vn, w1, . . . , wm ∈ V . The morphism iV is given by the natural embedding.
The unique morphism j associated with a morphism k is denoted by T (k). Similarly, the
tensor ∗-algebra T (V) over a ∗-vector space V , that is a vector space V equipped with an
anti-linear self-inverse map v �→ v∗, is the universal pair from V to the forgetful functor
from the category of ∗-algebras to the category of ∗-vector spaces. The involution of
T (V) is given by (v1 ⊗ . . .⊗ vn)

∗ = v∗
n ⊗ . . .⊗ v∗

1 .
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Now let C be the category of commutative algebras and let D again be the category
of vector spaces with the forgetful functor from C to D. The universal pair is denoted
by (S(V), iV ), and a realization of S(V) is the symmetric tensor algebra over V which is
the quotient of T (V) by the ideal generated by v⊗w−w⊗ v, v,w ∈ V . We frequently
write v1 ⊗s . . . ⊗s vn for the equivalence class of v1 ⊗ . . . ⊗ vn . Of course, there is
also the symmetric tensor ∗-algebra over a ∗-vector space V . If {vi | i ∈ I } is a (self-
adjoint) vector space basis of V , then S(V) can be identified with the polynomial algebra
C[xi ; i ∈ I ].

It follows from [BGS02], Lem. 2.1, that if 	 satisfies (A3) there are linear maps

σB1,B2 : B1 
 B2 → S(B1)⊗ S(B2) ∼= S(B1 ⊕ B2)

such that

ϕ1 	 ϕ2 = (S(ϕ1)⊗ S(ϕ2)) ◦ σB1,B2 .

By Theorem 3.4 of [BGS05], for a fixed 	-independence and a dual semigroup (B,�),
we can form the commutative ∗-bialgebra (S(B), S(σ ◦�)), where we put σ = σB,B.
Thus a 	-independence gives rise to a functor from the category of dual semigroups to
the category of commutative ∗-bialgebras. Now put, for a fixed 	-independence,

ϕ1 � ϕ2 = (ϕ1 	 ϕ2) ◦� (2.5)

for linear functionals ϕ1 and ϕ2 on a dual semigroup B. Then (see [BGS02])

S(ϕ1 � ϕ2) = S(ϕ1) � S(ϕ2), (2.6)

where the second convolution product is with respect to the comultiplication S(σ ◦�).

3. Schoenberg Correspondence

The intersection of two coalgebras is again a coalgebra so that the sub-coalgebra gener-
ated by a subset of a coalgebra is well-defined. The fundamental theorem of coalgebras
(see e.g. [DNR01]) says that the sub-coalgebra generated by a single element (and thus
by a finite number of elements) is finite-dimensional. It follows that a coalgebra is the
inductive limit of its finite-dimensional sub-coalgebras. For a linear functional ψ on a
coalgebra C define the linear map Tψ on C by Tψ = (id ⊗ ψ) ◦ �. Then T is a unital
algebra homomorphism from the convolution algebra formed by linear functionals on C
to the algebra of linear operators on C and L �→ δ ◦ L is the left inverse of T . Moreover,
Tψ leaves invariant all sub-coalgebras of C. Denote by eTψ the inductive limit of the
(matrix) exponentials of the restrictions of Tψ to finite-dimensional sub-colagebras. Put
exp�ψ := δ ◦ eTψ . It follows that the series

∞∑

n=0

ψ�n

n! (c) (3.1)

converges for all c ∈ C and that this limit equals exp�ψ . We have

exp�(ψ1 + ψ2) = (exp�ψ1) � (exp�ψ2)

if ψ1 � ψ2 = ψ2 � ψ1 and

(exp�ψ)(c) = lim
n→∞(δ +

ψ

n
)�n(c).

More generally, [SV08,SSV10].
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Lemma 3.1. Let ψ be a linear functional on a coalgebra C. Suppose that Rn, n ∈ N,
are linear functionals on C such that for each b ∈ C there is a constant Cb ∈ R+ with

|Rn(b)| ≤ 1

n2 Cb ∀n ∈ N. (3.2)

Then

(δ +
ψ

n
+ Rn)

�n

converges to exp�ψ point-wise.

Proof. By the fundamental theorem of coalgebras we can assume that C is finite-
dimensional. Then with some norm || || on C,

||TRn || = ||(id ⊗ Rn) ◦�||
≤ ||id ⊗ Rn|| ||�||
= ||Rn|| ||�||.

Choose a vector space basis {b1, . . . , bk} of C. Then for α1, . . . , αn ∈ C,

|Rn(α1b1 + · · · + αkbk)|
≤ max

1≤ j≤k
|Rn(b j )| (|α1| + · · · + |αk |)

≤ 1

n2 ( max
1≤ j≤k

Cb j )(|α1| + · · · + |αk |),

which implies ||TRn || ≤ 1
n2 C for some constant C . Now

(id +
Tψ
n

+ TRn )
n → eTψ ,

and thus

(δ +
ψ

n
+ Rn)

�n → eψ.

�

A family (ϕt )t∈R+ of linear functionals on a coalgebra C is called a continuous con-
volution semigroup (CCSG) if ϕs+t = ϕs � ϕt , ϕ0 = δ, and ϕt → δ point-wise for
t → 0+. For a CCSG the operators Tϕt form a semigroup of linear operators on C.
Using the fundamental theorem of coalgebras and a well-known result for continuous
semigroups of matrices, we obtain that limt→0+

1
t (ϕt − δ) exists point-wise and that we

have exp�(tψ) = ϕt for the limiting functional ψ . It follows that the CCSGs are exactly
given by the convolution exponentials exp�(tψ).

Now letψ be a linear functional on a dual semigroupB. Moreover, fix a	-independence,
and put D(ψ)(B) = d

d t S(t ψ)(B)|t=0 for B ∈ S(B). We define exp�ψ point-wise by
(exp�D(ψ)) ◦ iB. Then exp�(tψ), t ≥ 0, form a CCSG of linear functionals on B with
the convolution product now given by (2.5); see [BGS02]. We have [SV08]
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Lemma 3.2. Let ψ be a linear functional on a dual semigroup B. Suppose that Rn, n ∈
N, are linear functionals on B such that for each b ∈ B there is a constant Cb ∈ R+ with

|Rn(b)| ≤ 1

n2 Cb ∀n ∈ N.

Then

(
ψ

n
+ Rn)

�n

converges to exp�ψ point-wise.

Proof. By (2.6) we have

S((
ψ

n
+ Rn)

�n) = S(
ψ

n
+ Rn)

�n

and

(
ψ

n
+ Rn)

�n = S((
ψ

n
+ Rn)

�n)�B

= S(
ψ

n
+ Rn)

�n�B.

Moreover, exp�ψ = exp�D(ψ)�B. We will prove that

S(
ψ

n
+ Rn)

�n → exp�D(ψ).

For b1, . . . , bk ∈ B, k ≥ 1,

S(
ψ

n
+ Rn)(b1 ⊗s . . .⊗s bk)

= (
ψ

n
+ Rn)(b1) . . . (

ψ

n
+ Rn)(bk)

=
∑

A⊂{1,...,k}

1

n# A

∏

j∈A

ψ(b j )
∏

j /∈A

Rn(b j )

= Rn(b1) . . . Rn(bk) +
1

n

(
ψ(b1)Rn(b2) . . . Rn(bk)

+ Rn(b1)ψ(b2)Rn(b3) . . . Rn(bk) + · · · + Rn(b1) . . . Rn(bk−1)ψ(bk)
)

+
1

n2 Tn(b1 ⊗s . . .⊗s bk)

with |Tn(b1 ⊗s . . . ⊗s bk)| ≤ D1 for all n ∈ N for some constant D1 ∈ R+. Also
|Rn(b1) . . . Rn(bk)| ≤ 1

n2 D2 for all n ∈ N for some D2 ∈ R+, and for a suitable
constant D3,

|ψ(b1)Rn(b2) . . . Rn(bk) + Rn(b1)ψ(b2)Rn(b3) . . . Rn(bk) + · · ·
+ Rn(b1) . . . Rn(bk−1)ψ(bk)| ≤ 1

n2 D3
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if k ≥ 2 so that

S(
ψ

n
+ Rn)(b1 ⊗s . . .⊗s bk) ≤ 1

n2 D

if k ≥ 2 for some D ∈ R+. For k = 1 we have S(ψn + Rn)(b) = ψ
n (b)+ Rn(b). Moreover,

S(ψn + Rn)(1) = 1. It follows that

S(
ψ

n
+ Rn) = S(0) +

1

n
D(ψ) + R̃n

with R̃n : S(B) → C linear, R̃n(1) = 0, and |R̃n(x)| ≤ 1
n2 C̃x for all n ∈ N for a suitable

constant C̃x . By Lemma 3.1,

S(
ψ

n
+ Rn) = (

S(0) +
1

n
D(ψ) + R̃n

)�n −→ exp�D(ψ)

point-wise. �

We say that Schoenberg correspondence holds on a dual semigroup B if the convolu-

tion exponential exp�ψ is a state for each conditionally positive linear functionalψ on B
and for each positive 	-independence. Then Schoenberg correspondence holds on B iff
the CCSG of states (with respect to a positive 	-independence) on B are exactly given by
exp�(tψ) with ψ conditionally positive. We will show that Schoenberg correspondence
holds on all dual semigroups (Theorem 3.1).

Let (B,�) and (C,�) be two dual semigroups and let κ : C → B be a ∗-algebra
homomorphism. For a linear functional ψ on B we put

γt = exp�(tψ)

ϕt = exp�(t (ψ ◦ κ))
for t ∈ R+.

Proposition 3.1.

(γt/n ◦ κ)�n → ϕt

point-wise for all t ∈ R+.

Proof. We can assume that t = 1. We will show that there are linear functionals Rn :
C → B and constants Cb ∈ R+, b ∈ C, such that

(γ1/n ◦ κ)(b) = 1

n
(ψ ◦ κ)(b) + Rn(b)

with

|Rn(b)| ≤ 1

n2 Cb

for all n ∈ N. An application of Lemma 3.2 will then prove the proposition.
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We have

(γ1/n ◦ κ)(b) = γ1/n(κ(b))

= (
exp�

1

n
D(ψ)

)
(κ(b))

= 1

n
D(ψ)(κ(b)) +

1

2n2 D(ψ)�2(κ(b))

+
1

3!n3 D(ψ)�3(κ(b)) + · · ·

= 1

n
ψ(κ(b)) +

1

n2 Rn(b)

with |Rn(b)| ≤ Cb for all n ∈ N for a suitable constant Cb. �

Proposition 3.2. Suppose that Schoenberg correspondence holds on B. Then for a condi-
tionally positive linear functionalψ on B, we have that, given a positive 	-independence,
ϕt = exp�(t (ψ ◦ κ)) is a CCSG of states on C.

Proof. We fix a positive 	-independence. If Schoenberg correspondence holds on B,
then γt/n are states on B. This implies that γt/n ◦κ are states on C which by the positivity
of the independence gives that (γt/n ◦ κ)�n are states on C. By Proposition 3.1 ϕt is
the point-wise limit of (γt/n ◦ κ)�n . Since the point-wise limit of states is a state, the
proposition follows. �


Letψ be a conditionally positive linear functional on a ∗-algebra A. We form the left
ideal Nψ = {a ∈ A |ψ(ba) = 0 ∀b ∈ A}. The quotient space D = A/Nψ is an inner
product space with inner product 〈η(a), η(b)〉 = ψ(a∗b), where η : A → D denotes
the canonical map. Moreover, ρ(a)η(b) = η(ab) defines a ∗-representation of A on
D, i.e. a ∗-algebra homomorphism from A to the ∗-algebra L(D) of adjointable linear
operators on D; see [Fra06,Sch93]. We have

Proposition 3.3. If (ai )i∈I is a set of generators of the algebra A, the maps ρ, η and ψ
are determined by their values on the ai .

Since a ∗-vector space V generates the tensor ∗-algebra T (V), we have that conditionally
positive linear functionals are given by an inner product space D, a ∗-map ρ : V →
L(D), a linear map η : V → D, and a hermitian linear functional ψ : V → C; cf.
[Sch91,Fra06].

Clearly, a linear functional on a ∗-algebra A is a state if it is the expectation of a
quantum random variable. Consider the case of tensor independence. It is well known that
the Gelfand–Naimark–Segal (GNS) representation π of ϕ = exp�ψ,ψ a conditionally
positive linear functional on T (V), is given by

π(v) = A∗(η(v)) +�(ρ(v)) + A(η(v∗)) + ψ(v)id,

v ∈ V , where A∗,�, A are the creation, preservation and annihilation operators on Bose
Fock space over the completion H of the inner product space D, i.e.

ϕ(v1 ⊗ . . .⊗ vn) = E(π(v1) . . . π(vn)),

where expectation is taken in the vacuum state of the Fock space, see e.g. [Sch91]. It
follows that ϕ is a state. The analogous result holds in the free case if the, Bose Fock
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space is replaced by the full Fock space and A∗,�, A are the free creation, preservation
and annihilation operators; see for example [GSS92]. In the remaining three cases of
independences we can apply the reduction theory of Franz [Fra06] to realize the GNS
of ϕ on a Bose Fock space. We have

Proposition 3.4. Schoenberg correspondence holds on tensor ∗-algebras.

We will apply Proposition 3.2 to the following situation. The tensor ∗-algebra T (B) of
a dual semigroup B (viewed as a ∗-vector space) carries another dual group structure
than that given by the primitive comultiplication b �→ i1(b) + i2(b). The second dual
semigroup structure is given by extending the map

(iB 
 iB) ◦� : B → T (B) 
 T (B),

with iB : B → T (B) the natural embedding, to a homomorphism

T (�) : T (B) → T (B) 
 T (B).

We denote by M : T (B) → B the multiplication map T (id).

Proposition 3.5. We have for linear functionals ϕ1, ϕ2, ψ on a dual semigroup B
(a)

(ϕ1 ◦ M) �T (�) (ϕ2 ◦ M) = (ϕ1 �� ϕ2) ◦ M,

(b)

exp�T (�)(ψ ◦ M) = (exp��ψ) ◦ M,

(c) the linear functional exp�T (�)(ψ ◦ M) vanishes on the two-sided ∗-ideal kern M.

Proof. From (A1)

(ϕ1 ◦ M)	 (ϕ2 ◦ M) = (ϕ1 	 ϕ2) ◦ (M 
 M).

Since (M 
 M) ◦ T (�) = � ◦ M , part (a) follows. (b) is a consequence of (a) and 3.2
for Rn = 0. (c) follows from (b). �


Theorem 3.1. Schoenberg correspondence holds for all dual semigroups.

Proof. For a positive 	-independence and a conditionally positive linear functional ψ
on a dual semigroup (E,�) we have that ψ ◦ M is conditionally positive on the tensor
∗-algebra T (E). Now apply Proposition 3.2 to C = (T (E), T (�)),B = T (E) with the
primitive comultiplication, and κ = id. By Proposition 3.4, Schoenberg correspondence
holds on B. By Proposition 3.2 this means that Schoenberg correspondence holds on C.
Thus exp�(ψ ◦ M) is a state on C. But, using (c) of Proposition 3.5 and the fact that
T (E)/ ker M = E , it follows that exp�ψ is a state on E . �
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4. Quantum Lévy Processes

A quantum Lévy process (QLP) on a dual semigroup with respect to a positive 	-
independence (over a quantum probability space (A,E)) is a family of quantum random
variables jst : B → A, 0 ≤ s ≤ t , such that

( jrs 
 jst ) ◦� = jr t for all 0 ≤ r ≤ s ≤ t, (4.1)

jt1,t2 , . . . , jtn ,tn+1 are independent for all n ∈ N, 0 ≤ t1 ≤ · · · ≤ tn+1, (4.2)

E ◦ jst only depends on t − s, (4.3)

lim
t→0+

(E ◦ j0t )(b) = 0 for all b ∈ B. (4.4)

Property (4.1) is the increment property, (4.2) expresses the independence of incre-
ments with respect to the underlying 	-independence, (4.3) reflects the stationarity of
increments, and (4.4) is a condition of weak continuity.

Let I ⊂ R+ be a compact interval or equal to R+. Denote by M the set

M = {σ ⊂ I | 1 < #σ < ∞}
of finite subsets of I with the inclusion of sets as partial ordering. We write σ =
{t1 < · · · < tn+1} for a set σ = {t1, . . . , tn+1} ∈ M, t1 < · · · < tn+1. Define the nth

comultiplication � : B → B
n, n ∈ N0, of a dual semigroup (B,�) recursively by

�0 = 0; �n+1 = (�n 
 id) ◦�.
For {s < t} ∈ M we denote by Bst a copy of B and by ιst : B → Bst the identification
map. Put Bσ = ⊔n

l=1 Btl ,tl+1 and let

f{t1,tn+1},σ : Bt1,tn+1 → Bσ
be the mapping

(ιt1,t2 
 . . . 
 ιtn ,tn+1) ◦�n ◦ ι−1
t1,tn+1

.

Moreover, for σ = {t1 < · · · < tn+1} and τ ⊃ σ ,

τ = {t1 = t11 < · · · < t1,m1 < t1,m1+1 = t2 = t21 < · · · < · · · t2,m2 < t2,m2+1

= t3 < · · · < tn−1,mn−1+1 = tn = tn1 < · · · < tn,mn < tn,mn+1 = tn+1},
we define fστ : Bσ → Bτ by

fστ = f{t1,t2},{t11,...,t1,m1+1} 
 . . . 
 f{tn ,tn+1},{tn1,...,tn,mn +1}.
For τ = {t1 < · · · < tn+1} and σ = {tk < · · · < tl}, k, l ∈ {1, . . . , n + 1} we put
fστ : Bσ → Bτ equal to the natural embedding. For the general case τ ⊃ σ when
σ = {s1 < · · · < sm+1} with s1 = tk, sm+1 = tl for k, l ∈ {1, . . . , n + 1} we put

fστ = f{tk<···<tl },τ ◦ fσ,{tk<···<tl }.

Let ψ be conditionally positive on B. By Schoenberg correspondence, ϕt = etψ
� form a

convolution semigroup of states on B. For σ = {t1 < · · · < tn+1} ∈ M we put

ϕσ = (ϕt2−t1 	 . . .	 ϕtn+1−tn ) ◦ (ι−1
t1,t2 
 . . . 
 ι−1

tn ,tn+1
)

to obtain a state on Bσ . The family (Bσ , ϕgs, fστ ) is an inductive system in the category
formed by pairs (B, ϕ) where, B is a ∗-algebra and ϕ a state on B. It is not difficult to
see that inductive limits exist in this category. Let (A,E, fσ ) be the inductive limit of
the above inductive system. Then A is a ∗-algebra, E a state on A and fσ : Bσ → A
are ∗-algebra homomorphisms such that E ◦ fσ = ϕσ and fτ ◦ fστ = fσ .
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Theorem 4.1.

jst = f{s,t} ◦ ιst : B → A, s < t

defines a QLP on B whose convolution semigroup of states is given by ϕt = etψ
� .

Proof. We have

jrs � jst = ( jrs 
 jst ) ◦�
= f{r,s,t} ◦ ( f{r,s},{r,s,t} � f{r,t},{r,s,t}) ◦�
= f{r,s,t} ◦ f{r,t},{r,s,t}
= jr t .

Next

E( jt1,t2 
 . . . 
 jtn ,tn+1) = E ◦ j{t1,...,tn+1}
= ϕ{t1,...,tn+1}
= ϕt2−t1 	 . . .	 ϕtn+1−tn

= (E ◦ jt1,t2)	 . . .	 (E ◦ jtn ,tn+1),

which gives the independence of increments. Since E ◦ jst = ϕt−s , stationarity of
increments holds, too. Weak continuity follows from the continuity of ϕt . We have that
jst is a QLP. Its convolution semigroup clearly is given by ϕt . �

Example 1. A classical time-indexed stochastic process on the group Ud of unitary d×d-
matrices is a process Ut , t ≥ 0, of unitary operators on the Hilbert space C

d ⊗L2(�). The
process Ut is a Lévy process if the ∗-algebras Ast ⊂ L∞(�) ⊂ B(L2(�)), 0 ≤ s ≤ t ,
generated by the entries (Ust )kl , k, l = 1, . . . , d, are independent for disjoint intervals,
where we write Ust for the increment U−1

s Ut ∈ B(Cd ⊗ L2(�)) ∼= Md(B(L2(�)).
This means

E(a1 · · · an) = E(a1) · · · E(an)

for ai ∈ Ati ,ti+1, i = 1, . . . , n, t1 < · · · < tn+1. Here E(a) = ∫
�

a dP = 〈ξ, a ξ 〉, ξ the
constant function equal to 1. Moreover, the expectation restricted to Ast only depends
on t − s, and Ut converges to the identity in the sense that

〈ξ, (U (∗)
st )k1,l1 · · · (U (∗)

st )kn ,lnξ 〉 → δk1,l1 · · · δkn ,ln (4.5)

for t ↓ s. Since Ast ⊂ L∞(�) for all 0 ≤ s ≤ t , the algebras Ati ,ti+1 commute. We
pass to the noncommutative case (cf. [vW84]) by considering processes Ut of unitary,
on a Hilbert space C

d ⊗ H, H a Hilbert space, with expectation given by a unit vector
ξ in H. The algebras Ast are defined as before, independence is in the state given by ξ
in the sense of a fixed noncommutative independence. Stationarity of increments is still
defined by (4.5).

Let K[d] be the Kreîn dual of the compact group Ud that is the Hopf ∗-algebra
generated by commuting indeterminates xkl and x∗

kl with relations x∗x = 1 in matrix
form where x = (xkl)kl and x∗ = (x∗

kl)kl . The comultiplication is given by�x = x ⊗ x ,
the counit by δx = 1. Lévy processes on Ud and QLPs on K[d] are in 1-1-correspondence
via jst (xkl) = (Ust )kl . Denote by K〈d〉 the dual group generated by non-commuting
indeterminates, again given by the entries of x and x∗ with relations x∗x = 1 = xx∗ and
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with comultipication defined in the same manner as in the commutative case. Notice that
now� is a map from K〈d〉 to K〈d〉
1K〈d〉 that is we consider K〈d〉 as a unital dual group.
For example,�xkl = ∑d

n=1 ι1(xkn)ι2(xnl). The antipode is the ∗-algebra automorphism
given by Sxkl = x∗

lk . Noncommutative unitary Lévy processes as described above and
QLPs on K〈d〉 are the same objects, again via jst (xkl) = (Ust )kl .

Letψ be a conditionally positive hermitian linear functional on K〈d〉 and let (D, ρ, η)
be as in Sect. 3. Denote by H the completion of D. Since the xkl generate K〈d〉 as a
∗-algebra, ρ is determined by the unitary operator W = ρ(xkl)kl on C

d ⊗ H . Moreover,

0 = η(

d∑

n=1

x∗
nk xnl) =

d∑

n=1

(W ∗
nkη(xnl) + η(xnk)δnl)

and η(x∗
kl) = −∑d

n=1 W ∗
nlη(xnk). It follows from Proposition 3.3 that the QLP with

generator ψ is determined by W , the matrix L ∈ Md(H), Lkl = η(xkl), and the matrix
G ∈ Md(C),Gkl = ψ(xkl). Conversely, each such triplet (W, L ,G) defines a condition-
ally positive hermitian linear functionalψ on K〈d〉 by Proposition 3.3. We described the
QLPs on K〈d〉 by triplets (W, L ,G) consisting of a unitary W on C

d ⊗ H , a d×d-matrix
L with entries in H , and a scalar d × d-matrix G.

Example 2. Let Fn denote the free group with n ∈ N generators g1, . . . , gn . The group
algebra CFn of Fn is a dual group with g∗ = g−1,� : CFn → CFn 
1 CFn,�gi =
ι1(gi )ι2(gi ), δgi = 1. A QLP on Fn (that is on CFn) is given by a vector (U (1)

t , . . . . . . ,

U (n)
t ) of unitary operators U (i)

t , i = 1, . . . , n, t ∈ R+, on a Hilbert space H such that the
∗-algebras Ast ⊂ B(H) generated by the operators (U (i)

s )−1U (i)
t are independent for

disjoint intervals in a state on B(H) given by a unit vector in H. Stationarity of increments
and continuity are defined as in the case of K〈d〉. We find that conditionally positive
hermitian linear functionals, and thus QLPs, on CFn are given by triplets (W, L ,G)
consisting of a vector W = (W (1), . . . ,W (n)) of unitary operators on a Hilbert space
H , a vector L = (L(1), . . . , L(n)) of elements of H and G ∈ C

n .
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