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Abstract: We are interested in the properties and relations of entanglement measures.
Especially, we focus on the squashed entanglement and relative entropy of entanglement,
as well as their analogues and variants.

Our first result is a monogamy-like inequality involving the relative entropy of en-
tanglement and its one-way LOCC variant. The proof is accomplished by exploring the
properties of relative entropy in the context of hypothesis testing via one-way LOCC op-
erations, and by making use of an argument resembling that by Piani on the faithfulness
of regularized relative entropy of entanglement.

Following this, we obtain a commensurate and faithful lower bound for squashed
entanglement, in the form of one-way LOCC relative entropy of entanglement. This
gives a strengthening to the strong subadditivity of von Neumann entropy. Our result
improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys,
306:805–830, 2011), where faithfulness of squashed entanglement was first proved.
Applying Pinsker’s inequality, we are able to recover the trace-distance-type bound,
even with slightly better constant factor. However, the main improvement is that our new
lower bound can be much larger than the old one and it is almost a genuine entanglement
measure.

We evaluate exactly the relative entropy of entanglement under various restricted
measurement classes, for maximally entangled states. Then, by proving asymptotic con-
tinuity, we extend the exact evaluation to their regularized versions for all pure states.
Finally, we consider comparisons and separations between some important entanglement
measures and obtain several new results on these, too.

1. Squashed Entanglement and Other Entanglement Measures

As an important concept in quantum mechanics, entanglement plays a central role
in quantum information processing. It is the resource responsible for the quantum
computational speed-up, quantum communication, quantum cryptography and so on.
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Mathematically, quantum entanglement is the most outstanding non-classical feature of
compound states that cannot be decomposed as statistical mixtures of product states over
subsystems, and has been found to possess a very rich structure. There exist many entan-
glement measures, defined under various motivations and each characterizing some of
its features. The properties and relations of these entanglement measures are very much
desirable for our understanding of entanglement. Despite considerable achievements, a
lot of issues still remain unclear, even in the bipartite case [1].

Among all the existing entanglement measures, squashed entanglement [2–4] is a
particularly interesting one, with many desirable properties. In analogy to the classical
intrinsic information [5], squashed entanglement of a bipartite quantum state ρAB is
defined as

Esq(ρAB) := inf

{
1

2
I (A; B|E)ρ : ρAB E is an extension of ρAB

}
, (1)

where I (A; B|E)ρ is the quantum conditional mutual information of ρAB E ,

I (A; B|E)ρ := S(ρAE ) + S(ρB E )− S(ρAB E )− S(ρE ) (2)

with the von Neumann entropy S(ρ) := − Tr ρ log ρ. Squashed entanglement satisfies
most of the properties that are desired or useful for an entanglement measure. For exam-
ple, it is monotone under LOCC operations, convex and asymptotically continuous as a
function of quantum states, monogamous among one party and other parties, additive on
tensor products and superadditive in general [2,6,7]. Moreover, squashed entanglement
admits an operational interpretation: it is the minimum rate of qubits transmission at
which a quantum state can be redistributed among two parties when arbitrary (quantum)
side information is permitted [8–11].

Quantum relative entropy, given by

D(ρ‖σ) =
{

Tr(ρ(log ρ − log σ)) if supp(ρ) ⊆ supp(σ ),
+∞ otherwise,

measures the distinguishability of two states ρ and σ in the context of asymmetric
hypothesis testing [12,13]. Yet it has found important applications in other aspects of
quantum information theory: The relative entropy of entanglement [14,15] is another
entanglement measure that is of fundamental importance. For the composite system
A ⊗ B, let SEP (A : B) be the set of all separable states, i.e., the states of the form
σAB = ∑

i piσ
A

i ⊗ σ B
i . Relative entropy of entanglement,

Er (ρAB) := min
σAB∈SEP

D(ρ‖σ), (3)

quantifies the amount of entanglement of a state ρAB , by its relative entropy “distance” to
the nearest separable state. Since relative entropy of entanglement is strictly subadditive
[16], it is more meaningful in many circumstances to use its regularization,

E∞
r (ρAB) := lim

n→∞
1

n
Er (ρ

⊗n
AB).

Brandão and Plenio have provided operational interpretations to E∞
r : it quantifies the

optimal rate of transformation between a quantum state and maximally entangled states
under non-entangling operations [17,18], and it is also the best error exponent in quantum
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hypothesis testing where one of the hypotheses is many copies of the state and the other
one is the set of separable states [19].

For each positive operator-valued measurement (POVM) {Mi }i , it can be alternatively
identified with a measurement operation M, which is a completely positive map from
density matrices to probability vectors,

M(ω) =
∑

i

|i〉〈i | Tr(ωMi ).

On the composite system AB, we define some restricted classes of measurements LO,
1-LOCC, LOCC, SEP and PPT. Here LO, 1-LOCC and LOCC are the sets of mea-
surements that can be implemented by means of local operations, local operations and
one-way classical communication, local operations and arbitrary two-way classical com-
munication, respectively; SEP and PPT are the classes of measurements whose POVM
elements are separable or positive-partial-transpose, respectively. Without loss of gener-
ality, we assume that the one-way classical communication in 1-LOCC is always from
A to B.

We see from the definition that squashed entanglement is always non-negative, due to
the strong subadditivity of von Neumann entropy, which states that the quantum condi-
tional mutual information can not be negative [20]. However, until very recently proven
in [21], the faithfulness of squashed entanglement, meaning that a bipartite quantum
state has non-vanishing squashed entanglement if and only if it is entangled, had been
a long-standing open question. Note that the infimum in the definition of Eq. (1) cannot
be replaced by minimum, because no bound on the dimension of the system E is known.
As a result, the evaluation of squashed entanglement becomes very difficult.

The main result of the proof in [21] is the following inequality:

Esq(ρAB) ≥ 1

16 ln 2
min

σAB∈SEP
‖ρAB − σAB‖2

1-LOCC , (4)

where

‖ρAB − σAB‖1-LOCC := sup
M∈1-LOCC

‖M(ρAB)− M(σAB)‖

defines a metric (in fact, a norm) on density operators [22].
The rest of the paper is structured as follows. In Sect. 2 we state our main results.

Then, after considering quantum hypothesis testing under one-way LOCC measurements
and obtaining a key technical lemma in Sect. 3, we prove these results in Sects. 4, 5
and 6, respectively. In Sect. 7, we deal with the comparisons and separations between
entanglement measures and end the paper with a few open questions.

2. Main Results

Before presenting the results, we introduce the variants of relative entropy of entan-
glement, which will be involved intensively later. Piani defined the relative entropy of
entanglement with respect to the set of states G and the restricted class of measurements
M [23], as

E (G)r,M(ρ) := inf
σ∈G

sup
M∈M

D
(
M(ρ)‖M(σ )

)
. (5)
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Using this entanglement measure, he proved that E∞
r is faithful, i.e., E∞

r (ρAB) > 0 if
and only if ρAB is entangled (same result was derived in [19] independently).

In this paper, G is usually the set of separable states SEP. Therefore, we abbreviate
E (SEP)

r,M to Er,M for simplicity.

Monogamy relation for relative entropy of entanglement. One of the most fundamental
properties of entanglement is monogamy: the more a quantum system is entangled with
another, then the less it is entangled with the others. For any entanglement measure f ,
one would expect a quantitative characterization of monogamy of the form

f (ρ1:23) ≥ f (ρ1:2) + f (ρ1:3).

Although this is really the case for squashed entanglement [7], relative entropy of
entanglement—along with many other entanglement measures—does not satisfy such a
strong relation, with the antisymmetric state being a counterexample [24,25].

Here, we propose and prove a properly weakened monogamy inequality for relative
entropy of entanglement, by invoking its one-way LOCC variant.

Theorem 1. For every tripartite quantum state ρAB E , we have

Er (ρB:AE ) ≥ Er,1-LOCC(ρAB) + E∞
r (ρB E ), (6)

and

E∞
r (ρB:AE ) ≥ E∞

r,1-LOCC(ρAB) + E∞
r (ρB E ). (7)

Equation (7) is obtained from Eq. (6) by regularizing both sides, and it becomes
stronger due to the subadditivity of Er and superadditivity of Er,1-LOCC [16,23].

It is worth mentioning that Eq. (6) and Eq. (7) are in the form similar to Piani’s
superadditivity-like relation

Er (ρA1 A2:B1 B2) ≥ Er,M(ρA1 B1) + Er (ρA2 B2),

with M either LOCC or SEP. The difference is that in our result, there is only one
single system B on the left side, while it appears twice on the right side. As a result,
the price we have to pay is degrading the measurement class to 1-LOCC and imposing
a regularization in the second term of the right side, respectively (see Eq. (6)). One the
other hand, our proof needs a new technique (Lemma 5 in the next section), which is
derived in the context of quantum hypothesis testing under the restricted measurement
class 1-LOCC.

Commensurate lower bound for squashed entanglement. We provide in this paper a
commensurate and faithful lower bound for squashed entanglement. Instead of the one-
way LOCC trace distance as in Eq. (4), our result is in the form of one-way LOCC
relative entropy of entanglement, which is more natural and stronger.

Theorem 2. For any quantum state ρAB, we have

Esq(ρAB) ≥ 1

2
E∞

r,1-LOCC(ρAB) ≥ 1

2
Er,1-LOCC(ρAB). (8)
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The core inequality for von Neumann entropy, strong subadditivity, states that for
any tripartite state ρAB E ,

I (A; B|E)ρ ≥ 0.

Recalling the definition of squashed entanglement, Theorem 2 implies

I (A; B|E)ρ ≥ Er,1-LOCC(ρAB),

and hence strengthens the strong subadditivity inequality by relating it to a distance-like
entanglement measure on two of the subsystems.

To see how our result of Theorem 2 improves the lower bound proven in [21], we
explain in more detail as follows. On the one hand, applying Pinsker’s inequality [26],
we are able to recover the trace-distance bound of Eq. (4), even with a slightly better
constant factor:

Esq(ρAB) ≥ 1

4 ln 2
min

σAB∈SEP
‖ρAB − σAB‖2

1-LOCC .

On the other hand, while the trace-distance bound can be at most O(1), our new bound
(8) can be very large. Indeed, Er,1-LOCC is asymptotically normalized, in the sense of
Proposition 4.

Asymptotic continuity. To quantify the resources in quantum protocols in a physically
robust way, entanglement measures are expected to be asymptotically continuous. Piani’s
paper [23] contains the proofs of several properties of E (G)r,M for a certain combination of
G and M. Now we also show asymptotic continuity under very general conditions.

We say that a set S is star-shaped with respect to some x0 ∈ S, if px + (1 − p)x0 ∈ S
for all x ∈ S and 0 ≤ p ≤ 1.

Proposition 3. Let M be any set of measurements, and G be a set of states on a quantum
system with Hilbert space dimension k, containing the maximally mixed state τ and such
that in fact G is star-shaped with respect to τ . Let ρ, ρ′ be two states of the quantum
system with ‖ρ − ρ′‖M ≤ ε ≤ 1

e . Then,

∣∣E (G)r,M(ρ)− E (G)r,M(ρ
′)
∣∣ ≤ 2ε log

6k

ε
.

Evaluation on maximally entangled states and pure states. The entanglement mea-
sure Er,M is difficult to calculate due to the two optimizations in its definition. Here
we conduct the first exact evaluation on maximally entangled states, with M any of
{LO,1-LOCC,LOCC,SEP,PPT}. The basic idea is to make use of the symmetry of

1√
d

∑d
i=1 |i i〉, namely, invariance under unitary operation U ⊗ U . Then, with the help

of asymptotic continuity of Proposition 3, we further obtain their regularized versions
on general pure states.

At first glance, the restricted class of measurements M may make Er,M much smaller
than the normal relative entropy of entanglement. However, in our case we find that they
are almost the same when the local dimension is very large.

Proposition 4. For the rank-d maximally entangled state �d ,

Er,LO(�d) = Er,1-LOCC(�d) = Er,LOCC(�d) = Er,SEP(�d)

= Er,PPT(�d) = log(d + 1)− 1. (9)
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As a corollary, this implies that for the pure state ψAB, the regularized versions are
equal to the entropic pure state entanglement:

E∞
r,LO(ψAB) = E∞

r,1-LOCC(ψAB) = E∞
r,LOCC(ψAB)

= E∞
r,SEP(ψAB) = E∞

r,PPT(ψAB) = S(TrB ψ). (10)

3. Quantum Hypothesis Testing Under One-way LOCC Operations
with Limited Disturbance

In quantum hypothesis testing, we are given many copies of an information source,
which is statistically described by state ρ (the null hypothesis) or σ (the alternative
hypothesis). The task is to decide which state the source is really in. This is achieved
by doing a two outcome measurement {Ln,1− Ln} on n realizations of the source. We
define two types of errors. Type I error is the probability that we falsely conclude that
the state is σ while it is actually ρ, given by αn(Ln) := Tr ρ⊗n(1 − Ln); type II error
instead is the probability that we mistake σ for ρ, given by βn(Ln) := Tr σ⊗n Ln . In an
asymmetric situation, we want to minimize the type II error while only simply requiring
that the type I error converges to 0. The quantum Stein’s lemma states that the maximal
error exponent of type II is the relative entropy D(ρ‖σ) [12,13]: On the one hand, there
exists a test {Ln,1 − Ln} satisfying

αn(Ln) → 0 and − 1

n
logβn(Ln) → D(ρ‖σ).

On the other hand, if a test {Ln,1 − Ln} is such that

lim inf
n→∞ −1

n
logβn(Ln) > D(ρ‖σ),

then αn(Ln) → 1. This also applies to the classical setting, if we replace quantum
states ρ and σ by classical probability distributions and the quantum measurement by a
classical decision function [27].

When ρ and σ are compound quantum states, it is natural to put locality constraints on
the measurements {Ln,1− Ln}. In this case, the problem of quantum hypothesis testing
becomes much more difficult, and solutions are known only in some specific situations
[28,29]. Here, we focus on the family of measurements which are implementable by
means of local operations and one-way classical communication (one-way LOCC). Our
goal is not to derive a single-letter formula for the optimal error exponent; instead, we
are interested in how the disturbance on the quantum states induced by the measurement
is limited, when a certain error exponent of type II is achieved.

Let the null hypothesis and alternative hypothesis be ρ⊗n
AB E and σ⊗n

AB E , respectively.
Let the allowed operations be restricted to one-way LOCC which is performed on systems
An and Bn , with classical communication from Alice’s side (An) to Bob’s side (Bn).
On the one hand, it is easy to see that, for any one-way LOCC measurement MAB→X ,
D (M(ρ)‖M(σ )) is an achievable error exponent of type II. This is because, after doing
the measurement M on each copy of the quantum states, the two states ρ⊗n and σ⊗n are
replaced by classical probability distributions (M(ρ))⊗n and (M(σ ))⊗n . Then applying
Stein’s lemma in the classical setting, we know that there exists a classical decision rule
which can achieve the above-mentioned error figure. Hence, the corresponding quantum
measurement {Ln,1 − Ln} can be constructed from M⊗n and this decision rule. On
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the other hand, when the two kinds of errors are sufficiently small, the one-way LOCC
test {Ln,1 − Ln} can be performed in such a way that the reduced states on system
Bn En , ρ⊗n

B E and σ⊗n
B E , are kept almost undisturbed. This is a consequence of the “gentle

measurement lemma” [30]. Note that, generally speaking, the full states ρ⊗n
AB E and σ⊗n

AB E
will be inevitably disturbed significantly by the measurement, because in the one-way
LOCC procedure, Bob’s choice of measurement is based on the outcome of Alice’s
measurement, and the extracting of such classical information generically has to damage
the states at Alice’s side.

Lemma 5. For any two states ρAB E and σAB E , and any one-way LOCC measurement
MAB→X acting on system AB, with classical communication from A to B, there exists
a sequence of quantum instruments T An Bn→X Bn

n , which are implementable via local
operations and one-way classical communication from An to Bn, such that

lim
n→∞

1

n
D

(
T c

n (ρ
⊗n
AB)‖T c

n (σ
⊗n
AB )

) = D
(
M(ρAB)‖M(σAB)

)
, (11)

lim
n→∞

∥∥∥T q
n ⊗ idEn

(ρ⊗n
AB E )− ρ⊗n

B E

∥∥∥
1

= 0, (12)

where T c
n := TrBn ◦T An Bn→X Bn

n , and T q
n := TrX ◦T An Bn→X Bn

n .

Proof. Let the POVM elements of the measurement M be {R A
k ⊗SB

k,�}k,�, with
∑

k Rk =
1A and

∑
� Sk,� = 1B for all k. Operationally, this means that Alice does a measurement

{Rk}k on system A, then she tells Bob the outcome k, and according to what he receives,
Bob does a measurement {Sk,�}� on the system B. For M⊗n acting on An Bn , we denote
the measurement outcomes (k1k2 . . . kn, �1�2 . . . �n) =: (kn, �n), and the corresponding
measurement elements

⊗n
i=1(R

Ai
ki

⊗ SBi
ki ,�i

) =: Rkn ⊗ Skn ,�n .

For the problem of quantum hypothesis testing with the null hypothesis ρ⊗n
AB E and the

alternative hypothesis σ⊗n
AB E , and the permitted operations are one-way LOCC on parties

An and Bn , we consider the protocol as follows. First, we apply the measurement M to
each copy of the statesρ andσ , resulting in classical probability distributions M⊗n(ρ⊗n)

and M⊗n(σ⊗n). Then, we partition the set {(kn, �n)} of all measurement outcomes into
two disjoint subsets On,Null and On,Alt, and make a classical decision: if the measurement
outcome is in On,Null, we infer that the state is ρ⊗n (null hypothesis); otherwise, it
belongs to On,Alt and we conclude that the state is σ⊗n (alternative hypothesis). In such
a protocol, the two types of errors are

αn =
∑

(kn ,�n)∈On,Alt

Tr ρ⊗n
AB(Rkn ⊗ Skn ,�n ), (13)

βn =
∑

(kn ,�n)∈On,Null

Tr σ⊗n
AB (Rkn ⊗ Skn ,�n ). (14)

By the classical Stein’s lemma [27], there exists a partition {(kn, �n)} = On,Null
.∪ On,Alt

such that

lim
n→∞αn = 0, (15)

lim
n→∞ −1

n
logβn = D(M(ρ)‖M(σ )), (16)
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which leads to

lim
n→∞

1

n
D({1 − αn, αn}‖{βn, 1 − βn}) = D(M(ρ)‖M(σ )). (17)

From now on, we fix such a partition of {(kn, �n)} into On,Null and On,Alt. Let

Qkn ,x :=
√ ∑
�n :(kn ,�n)∈On,x

Skn ,�n , (18)

where the index x can be “Null” or “Alt”. It is obvious that {Qkn ,Null, Qkn ,Alt} forms a
complete set of Kraus operators, i.e. Q†

kn ,Null Qkn ,Null + Q†
kn ,Alt Qkn ,Alt = 1Bn

. We are

now ready for the definition of quantum instrument T An Bn→X Bn

n :

Tn(ωAn Bn ) :=
∑

x=Null,Alt

|x〉〈x |X ⊗
∑
kn

TrAn
(√

Rkn ⊗ Qkn ,x
)
ωAn Bn

(√
Rkn ⊗ Qkn ,x

)
.

(19)

To complete the proof, we will demonstrate that Tn satisfies all the requirements as
advertised. First, it is obvious that Tn can be realized by means of one-way LOCC. Alice
does a measurement {Rkn } on the system An , then she communicates the outcome kn

to Bob; upon receiving kn , Bob does a two-outcome measurement with Kraus operators
{Qkn ,Null, Qkn ,Alt} on the system Bn , at the same time he stores the measurement results
“Null” or “Alt” in the classical register X .

Secondly, we verify Eq. (11). Clearly, we can write

Tn ⊗ idEn
(ρ⊗n

AB E ) =
∑

x

|x〉〈x |X ⊗ ρ̃x
Bn En , (20)

with

ρ̃x
Bn En =

∑
kn

TrAn
(√

Rkn ⊗ Qkn ,x ⊗ 1En )
ρ⊗n

AB E

(√
Rkn ⊗ Qkn ,x ⊗ 1En )

. (21)

Equations (13), (18) and (21) together guarantee that

Tr ρ̃Alt
Bn En = αn and Tr ρ̃Null

Bn En = 1 − αn, (22)

which together with Eq. (20) results in

T c
n (ρ

⊗n
AB) = (1 − αn)|Null〉〈Null|X + αn|Alt〉〈Alt|X . (23)

Similarly, from Eqs. (14), (18) and (19), we derive that

T c
n (σ

⊗n
AB ) = βn|Null〉〈Null|X + (1 − βn)|Alt〉〈Alt|X . (24)

So, Eqs. (17), (23) and (24) imply

lim
n→∞

1

n
D(T c

n (ρ
⊗n
AB)‖T c

n (σ
⊗n
AB )) = D(M(ρAB)‖M(σAB)),

which is exactly Eq. (11).
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Finally, we prove that Tn satisfies Eq. (12). Making use of Eqs. (20) and (22), we
have ∥∥∥T q

n ⊗ idEn
(ρ⊗n

AB E )− ρ⊗n
B E

∥∥∥
1

=
∥∥∥ρ̃Alt

Bn En + ρ̃Null
Bn En − ρ⊗n

B E

∥∥∥
1

≤ αn +
∥∥∥ρ̃Null

Bn En − ρ⊗n
B E

∥∥∥
1
.

(25)

Paying attention to the definition of ρ̃Null
Bn En , namely Eq. (21), we easily check that

ρ̃Null
Bn En = TrK n

√
�ρ̃K n Bn En

√
�, (26)

where ρ̃K n Bn En := TrAn
∑

kn |kn〉〈kn|K n ⊗(√Rknρ⊗n
AB E

√
Rkn ) is a normalized quantum

state, and � := ∑
kn |kn〉〈kn|K n ⊗ Q2

kn ,Null is a POVM element satisfying 0 ≤ � ≤ 1.
As a result,∥∥∥ρ̃Null

Bn En − ρ⊗n
B E

∥∥∥
1

=
∥∥∥TrK n

√
�ρ̃K n Bn En

√
�− TrK n ρ̃K n Bn En

∥∥∥
1

≤
∥∥∥√
�ρ̃K n Bn En

√
�− ρ̃K n Bn En

∥∥∥
1

≤ 2
√

1 − Tr ρ̃K n Bn En�

= 2
√
αn, (27)

where the first line is by Eq. (26) and the fact that TrK n ρ̃K n Bn En = ρ⊗n
B E , the second line

is because of the monotonicity of trace distance under partial trace, the third line makes
use of the gentle measurement lemma [30], and the last line follows from Eqs. (22) and
(26). Eventually, inserting Eq. (27) into Eq. (25), and invoking Eq. (15), we arrive at∥∥∥T q

n ⊗ idEn
(ρ⊗n

AB E )− ρ⊗n
B E

∥∥∥
1

≤ αn + 2
√
αn → 0,

which is precisely Eq. (12). ��

4. Entanglement Monogamy Relation and Commensurate
Lower Bound for Squashed Entanglement

Proof of Theorem 1. As discussed in Sect. 2, it suffices to prove Eq. (6). Let σB:AE be
the nearest separable state to ρB:AE with respect to the measure of relative entropy. That
is to say,

Er (ρB:AE ) = D(ρAB E‖σAB E ) = 1

n
D(ρ⊗n

AB E‖σ⊗n
AB E ). (28)

Let MAB→X be an arbitrary one-way LOCC measurement. Applying Lemma 5 to
ρAB E , σAB E and MAB→X , we know that there exists a sequence of quantum instruments
T An Bn→X Bn

n , which are implementable via local operations and classical communication
from An to Bn , such that

lim
n→∞

1

n
D(T c

n (ρ
⊗n
AB)‖T c

n (σ
⊗n
AB )) = D(M(ρAB)‖M(σAB)), (29)

lim
n→∞

∥∥∥T q
n ⊗ idEn

(ρ⊗n
AB E )− ρ⊗n

B E

∥∥∥
1

= 0, (30)
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whereT c
n := TrBn ◦T An Bn→X Bn

n , andT q
n := TrX ◦T An Bn→X Bn

n . WriteTn⊗idEn
(ρ⊗n

AB E )

= ∑
in

pin |in〉〈in|X ⊗ ρ
in
Bn En and Tn ⊗ idEn

(σ⊗n
AB E ) = ∑

in
qin |in〉〈in|X ⊗ σ

in
Bn En . It is

easy to check that

D(Tn ⊗ idEn
(ρ⊗n

AB E )‖Tn ⊗ idEn
(σ⊗n

AB E ))

= D(T c
n (ρ

⊗n
AB)‖T c

n (σ
⊗n
AB )) +

∑
in

pin D(ρin
Bn En ‖σ in

Bn En )

≥ D(T c
n (ρ

⊗n
AB)‖T c

n (σ
⊗n
AB )) + D(T q

n ⊗ idEn
(ρ⊗n

AB E )‖
∑

in

pinσ
in
Bn En )

≥ D(T c
n (ρ

⊗n
AB)‖T c

n (σ
⊗n
AB )) + Er

(
T q

n ⊗ idEn
(ρ⊗n

AB E )
)
, (31)

where the first line is by direct calculation, the second line follows from convexity
of quantum relative entropy, and for the last line, note that the state

∑
in

pinσ
in
Bn :En is

still separable because of the LOCC feature of Tn . By the Lindblad–Uhlmann theo-
rem [31,32], quantum relative entropy is monotonic under cptp quantum operations. So,
combining Eqs. (28) and (31) results in

Er (ρB:AE ) ≥ 1

n
D(T c

n (ρ
⊗n
AB)‖T c

n (σ
⊗n
AB )) +

1

n
Er

(
T q

n ⊗ idEn
(ρ⊗n

AB E )
)
. (32)

It was proven in [33] that the relative entropy of entanglement satisfies a strong continuity
condition: for two states ρ1 and ρ2 on system AB with ‖ρ1 − ρ2‖1 ≤ 1

e , we have

|Er (ρ1)− Er (ρ2)| ≤ 2(2 + log |A| + log |B|)‖ρ1 − ρ2‖1 + 2η(‖ρ1 − ρ2‖1), (33)

where η(x) = −x log x . Now, letting n → ∞ in Eq. (32), and then making use of
Eqs. (29), (30) and (33), we obtain

Er (ρB:AE ) ≥ lim
n→∞

1

n
D(T c

n (ρ
⊗n
AB)‖T c

n (σ
⊗n
AB )) + lim

n→∞
1

n
Er

(
T q

n ⊗ idEn
(ρ⊗n

AB E )
)

= D(M(ρAB)‖M(σAB)) + E∞
r (ρB E ). (34)

Since M is arbitrary, it follows from Eq. (34) that

Er (ρB:AE ) ≥ sup
M∈1-LOCC

D(M(ρAB)‖M(σAB)) + E∞
r (ρB E )

≥ Er,1-LOCC(ρAB) + E∞
r (ρB E ), (35)

where the second inequality is by the definition of Er,1-LOCC, and we are done. ��
Proof of Theorem 2. It is shown in [21, Lem. 1] that

I (A; B|E)ρ ≥ E∞
r (ρB:AE )− E∞

r (ρB E ). (36)

Equation (7) in Theorem 1, together with Eq. (36), gives us

I (A; B|E)ρ ≥ E∞
r,1-LOCC(ρAB). (37)

Then, recalling the definition of squashed entanglement and by the superadditivity of
Er,1-LOCC [23], we arrive at

Esq(ρAB) ≥ 1

2
E∞

r,1-LOCC(ρAB) ≥ 1

2
Er,1-LOCC(ρAB),

which concludes the proof. ��
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5. Asymptotic Continuity

Proof of Proposition 3. For 0 ≤ x ≤ 1, let Gx := xG + (1 − x)τ , so that G1 = G
and G0 = τ . We follow very closely [33], and start by the observation that because of
Gx ⊂ G and the operator monotonicity of the log function,

E (G)r,M ≤ E (Gx )

r,M ≤ E (G)r,M − log x . (38)

We will later see that x = 1 − ε is a good choice. However, it is clear already that if it is
close to 1, then we reduce our problem to proving asymptotic continuity for Gx , which
has the property that all of its elements are of full rank. In fact, the smallest eigenvalue
of a σ ∈ Gx is ≥ 1−x

k .
Now fix σ ∈ Gx and M ∈ M, and consider

E (σ )r,{M}(ρ) = D
(
M(ρ)‖M(σ )

) =
∑

i

Tr ρMi log
Tr ρMi

Tr σMi
.

Since 0 ≤ Mi ≤ 1, we can write Mi = 3kλi Qi with operators Qi ≥ 0 s.t. Tr Qi = 1
3 ,

and λi ≥ 0,
∑

i λi = 1. Then, 1
3 ≥ Tr σQi ≥ 1−x

3k for all i . We can also rewrite the
above quantity as

E (σ )r,{M}(ρ) = 3k
∑

i

λi Tr ρQi log
Tr ρQi

Tr σQi

= −
∑

i

Tr ρMi log Tr σQi + 3k
∑

i

λi Tr ρQi log Tr ρQi ,

and we will treat the two latter sums separately; call them I(ρ) and II(ρ), respectively.
For the first one,

∣∣I(ρ)− I(ρ′)
∣∣ =

∣∣∣∣∣
∑

i

Tr(ρ − ρ′)Mi log Tr σQi

∣∣∣∣∣
≤

∑
i

log
3k

1 − x

∣∣Tr ρMi − Tr ρ′Mi
∣∣

= log
3k

1 − x
‖ρ − ρ′‖{M} ≤ ε log

3k

ε
.

For the second term, we use the function η(t) = −t log t , which is concave, non-
negative on the unit interval and has the elementary property that for all s, t ≥ 0,
η(s + t) ≤ η(s) + η(t). Furthermore, for 0 ≤ t ≤ 1

e it is monotonically increasing. Now,
II(ρ) = −3k

∑
i λiη(Tr ρQi ), and so

∣∣II(ρ)− II(ρ′)
∣∣ ≤ 3k

∑
i

λi
∣∣η(Tr ρQi )− η(Tr ρ′Qi )

∣∣

≤ 3k
∑

i

λiη
(| Tr(ρ − ρ′)Qi |

)

≤ 3kη

(∑
i

λi | Tr(ρ − ρ′)Qi |
)
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= 3kη

(
1

3k
‖ρ − ρ′‖{M}

)

≤ 3kη
( ε

3k

)
= ε log

3k

ε
,

where in the third line we have used the concavity of η.
Putting these two observations together, we obtain (recall σ ∈ Gx , x = 1 − ε)

∣∣E (σ )r,{M}(ρ)− E (σ )r,{M}(ρ
′)
∣∣ ≤ 2ε log

3k

ε
. (39)

From this, the rest of the argument is pretty standard, all we need to implement is the
maximization over M ∈ M and the minimization over σ ∈ Gx . First, fix σ ∈ Gx ; then,

∣∣E (σ )r,M(ρ)− E (σ )r,M(ρ
′)
∣∣ = ∣∣sup

M
E (σ )r,{M}(ρ)− sup

M′
E (σ )r,{M′}(ρ

′)
∣∣

≤ sup
M∈M

∣∣E (σ )r,{M}(ρ)− E (σ )r,{M}(ρ
′)
∣∣

≤ 2ε log
3k

ε
,

invoking Eq. (39). Similarly,

∣∣E (Gx )

r,M (ρ)− E (Gx )

r,M (ρ′)
∣∣ = ∣∣inf

σ
E (σ )r,M(ρ)− inf

σ ′ E (σ
′)

r,M (ρ
′)
∣∣

≤ sup
σ∈Gx

∣∣E (σ )r,M(ρ)− E (σ )r,M(ρ
′)
∣∣

≤ 2ε log
3k

ε
,

using the relation for fixed σ . From this and Eq. (38), using − log x = − log(1−ε) ≤ 2ε,
the proposition follows. ��

6. Evaluation on Maximally Entangled States and Pure States

Proof of Proposition 4. We show separately Er,LO(�d) ≥ log(d+1)−1 and Er,PPT(�d)

≤ log(d + 1) − 1, which together complete the proof, since by definition, Er,LO ≤
Er,1-LOCC ≤ Er,LOCC ≤ Er,SEP ≤ Er,PPT.

For the former, we need to show that for each separable state there exists an LO
measurement such that the relative entropy of the measurement outcomes is at least
log d+1

2 . In fact, it suffices to employ the U ⊗ U -twirl followed by local measurements
in the computational basis. Although this requires shared randomness, it is easy to see
that derandomization can be done due to the joint convexity of relative entropy. The twirl
leaves �d invariant and transforms the separable state into a separable isotropic state

σ = p�d + (1 − p)
1

d2 1,

where the separability is equivalent to p ≤ 1
d+1 [34]. Now, the measurement of the

maximally entangled state and of σ yield distributions
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P(xy|�d) = 1

d
δxy,

Q(xy|σ) = p

d
δxy +

1 − p

d2 .

From this it is straightforward to calculate the relative entropy

D(P‖Q) =
∑

x

1

d
log

1/d

p/d + (1 − p)/d2

= − log

(
p +

1 − p

d

)
≥ log

d + 1

2
,

and we are done.
For the second (upper) bound, we need to show that there is no better measurement

once we choose an appropriate separable state, which predictably we set

σ = 1

d + 1
�d +

d

d + 1

1

d2 1 = 1

d
�d +

d − 1

d

1

d2 − 1
(1 −�d).

Now our entangled state and the separable candidate are isotropic This means that
whatever PPT measurement we have, i.e. with POVM elements Mi such that M�

i ≥ 0,
the covariant POVM

(
dU (U ⊗U )Mi (U ⊗U )†

)
i,U will achieve the same relative entropy.

Note however that the probabilities Tr ρ(U ⊗ U )Mi (U ⊗ U )† are independent of the
unitary U for isotropic ρ ∈ {�d , σ }, so we get the same relative entropy for the twirled
POVM with operators

M̂i =
∫

dU (U ⊗ U )Mi (U ⊗ U )†,

which are all isotropic: M̂i = αi�d + βi (1 − �d), with αi , βi ≥ 0 and separately
adding up to 1. The PPT condition is βi ≥ 1

d+1αi for all i . Next, the maximum of the
relative entropy will be attained on an extremal measurement from this class, which
restricts (w.l.o.g.) the number of outcomes to two. The only nontrivial POVM with these
properties is composed of the two operators

M̂0 = �d +
1

d + 1
(1 −�d),

M̂1 = d

d + 1
(1 −�d).

For this measurement, the probabilities observed on �d are 1 and 0, respectively; for
the above σ they are 2

d+1 and d−1
d+1 , yielding indeed a relative entropy of log d+1

2 .
Now, we can conclude that E∞

r,M, with M be any of {LO,1-LOCC,LOCC,SEP,
PPT} coincides with the entropic entanglement measure on pure states. This follows
now easily from the asymptotic theory of pure state entanglement and the asymptotic
continuity. To be precise, letψ be a pure state on A⊗B; then there is a sequence of εn → 0

and of LO protocols(!) to convert ψ⊗n into ρ(n) with
∥∥∥�⊗n(E(ψ)−εn)

2 − ρ(n)
∥∥∥

1
≤ εn . By

the monotonicity of Er,M under local operations and for large enough n,
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Er,M(ψ
⊗n) ≥ Er,M

(
ρ(n)

)

≥ Er,M

(
�

⊗n(E(ψ)−εn)
2

)
− 2εn log

6 · 22nE(ψ)

εn

≥ nE(ψ)− O(n)εn − O(1).

Conversely, there are one-way LOCC protocols to convert �⊗n(E(ψ)+εn)
2 into ω(n) with∥∥ψ⊗n − ω(n)

∥∥
1 ≤ εn . Hence, for large enough n,

Er,M(ψ
⊗n) ≤ Er,M

(
ω(n)

)
+ 2εn log

6|A|n|B|n
εn

≤ Er,M

(
�

⊗n(E(ψ)+εn)
2

)
+ 2εn log

6|A|n|B|n
εn

≤ nE(ψ) + O(n)εn + O(1).

Together, we obtain, for M ∈ {1-LOCC,LOCC,SEP,PPT},∣∣∣∣1

n
Er,M(ψ

⊗n)− E(ψ)

∣∣∣∣ ≤ O(εn) + O

(
1

n

)
→ 0,

as n → ∞. For LO the above reasoning does not apply because we need one-way LOCC
operations in the converse (dilution) part. However, as Er,LO ≤ Er,1-LOCC, the lower
bound for the former and the upper bound for the latter suffice. ��

7. Comparisons Between Entanglement Measures

In this section, we consider the relations between entanglement measures. Especially,
we are interested in two classes of them. The first class consists of squashed-like mea-
sures. This includes the squashed entanglement Esq itself, the conditional entanglement
of mutual information EI (ρAB) := 1

2 inf{I (AA′; B B ′)ρ − I (A′; B ′)ρ} with ρAA′ B B′
being an extension of ρAB [35], and the c-squashed entanglement Esq,c(ρAB) :=
1
2 inf{I (A; B|E)ρ}, where the infimum is taken over all the extension state ρAB E of
the form

∑
i piρ

i
AB ⊗ |i〉〈i |E [36]. It is known that these entanglement measures satisfy

the chain of inequalities [37,38]

Ed ≤ Kd ≤ Esq ≤ EI ≤ E∞
sq,c ≤ Ec,

where Ed is the distillable entanglement, Kd is the distillable key and Ec the entangle-
ment cost.

The other class contains the relative entropy of entanglement Er and its relatives
Er,↔(ρAB) := Er,LOCC(ρAB) and Er,→(ρAB) := sup{Er,1-LOCC(�(ρAB)) : � being
LOCC}. Here Er,→ is an “update” of Er,1-LOCC such that it is LOCC monotone. Note
that in the definition of Er,→, the supremum is taken over all LOCC operations, in
contrast to the smaller set of LOCC measurements. It is known that [39]

Ed ≤ Kd ≤ E∞
r ≤ Ec.

On the other hand, it is obvious from the definitions that E∞
r,→ ≤ E∞

r,↔ ≤ E∞
r , and we

will show that Ed ≤ E∞
r,→ later in Proposition 7. Hence, we have also

Ed ≤ E∞
r,→ ≤ E∞

r,↔ ≤ E∞
r ≤ Ec.

Although these two classes of entanglement measures are defined in different ways,
we are able to make comparisons between them, and obtain the relations in Proposition 6.
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Proposition 6. The following universal relations between entanglement measures
hold:

1. 2E∞
sq,c ≥ E∞

r ,
2. 2EI ≥ E∞

r,↔,
3. 2Esq ≥ E∞

r,→.

These relations also hold true if we replace the regularized entanglement measures by
their corresponding non-regularized versions.

Proof. The first inequality is easy. For any classical extension ρAB E = ∑
i piρ

i
AB ⊗

|i〉〈i |E of a state ρAB , we have

I (A; B|E)ρ =
∑

i

pi D(ρi
AB‖ρi

A ⊗ ρi
B)

≥ D

(
ρAB‖

∑
i

piρ
i
A ⊗ ρi

B

)

≥ Er (ρAB),

using the joint convexity of the relative entropy. This, together with the definition of
Esq,c, implies that 2Esq,c ≥ Er . Regularizing both sides, we get the regularized version
as desired.

For the second inequality, we employ the idea for the proof of [21, Lem. 1], and
apply it to the partial state merging protocol [35]. Let ρAA′ B B′ E be a pure state, where
the AA′ system is with Alice, B B ′ is with Bob, and E is at Eve’s hand. Alice and Bob
are to transmit their systems A and B to Eve, by sending as few qubits as possible to her,
provided that unlimited entanglement is available between Alice (Bob) and Eve. In the
i.i.d. case, this task can be expressed as the transformation ρ⊗n

AA′:B B′:E −→ ρ⊗n
A′:B′:E AB .

Asymptotically, it requires a minimal sum-rate 1
2 {I (AA′; B B ′)− I (A′; B ′)} of quantum

communication [35]. On the other hand, because the relative entropy of entanglement Er
is unlockable [40], the decrease of entanglement between Alice and Bob in this protocol,
measured by Er , is no larger than 2 times the qubits transmitted. This means

I (AA′; B B ′)− I (A′; B ′) ≥ E∞
r (ρAA′:B B′)− E∞

r (ρA′:B′). (40)

The right side of Eq. (40) satisfies [23]

E∞
r (ρAA′:B B′)− E∞

r (ρA′:B′) ≥ E∞
r,↔(ρAB) ≥ Er,↔(ρAB). (41)

Equations (40) and (41), together with the definition of EI , lead to the second inequality
and its non-regularized version as advertised.

The last inequality and its non-regularized version is essentially due to Theorem 2,
since squashed entanglement is non-increasing under any LOCC operations. ��
Proposition 7. We have E∞

r,→ ≥ Ed.

Proof. Let �n be a LOCC operation that satisfies

‖�n(ρ
⊗n
AB)−�dn ‖1 ≤ ε

with ε ≤ 1
e . We have

Er,→(ρ⊗n
AB) ≥ Er,1-LOCC(�n(ρ

⊗n
AB)) ≥ log

dn + 1

2
− 2ε log

6d2
n

ε
, (42)
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where the first inequality is by definition of Er,→, and the second one makes use of
Proposition 3 and Proposition 4. Recall that the distillable entanglement can be written as

Ed(ρAB) = lim
ε→0

lim
n→∞ sup

�n∈LOCC

{
log dn

n
: ‖�n(ρ

⊗n)−�dn ‖1 ≤ ε

}
. (43)

Equation (42) and Eq. (43) together imply

Ed(ρAB) ≤ lim
ε→0

lim
n→∞

Er,→(ρ⊗n
AB) + 1 − 2ε log ε + 2ε log 6

n(1 − 4ε)
= E∞

r,→(ρAB)

and we are done. ��
We summarize the relations between these entanglement measures in Fig. 1. Since

we are mainly interested in the regularized versions, some relations between the non-
regularized entanglement measures are not reflected here. These include Esq,c ≤ E f ,
Er ≤ E f , Er ≤ 2Esq,c and Er,→ ≤ Er,↔ (E f is the entanglement of formation). Some
pairs of these entanglement measures are incomparable, meaning that—depending on
the state—they can be larger than each other. This is really the case for Esq and Er

Fig. 1. Relations between some entanglement measures. When two quantities are connected by a line with a
constant above (constant 1 is omitted), it means that the higher one multiplied by the constant is no smaller
than the lower one. For those entanglement measures of which the separation is still unknown, we mark a cross
(red in the online version) on the line that connects them. The upper dashed line divides these entanglement
measures into two groups: the upper ones are subadditive and the lower ones are superadditive. Entanglement
measures above the lower dashed line are faithful, while the only one below this line, Ed , is not faithful [42].
Whether the distillable key, Kd , is faithful or not, is still an open question, hence we put the line on it
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(E∞
r ). Esq � Er is known for certain “flower states”, due to the lockability of Esq and

non-locking of Er [40,41]; the other direction E∞
r � Esq holds for d ×d antisymmetric

states [24,25]. We conjecture that the same situation occurs between EI and Er (E∞
r ),

Esq and E∞
r,↔ (Er,↔), Kd and E∞

r,↔, Kd and E∞
r,→, which are left as open questions.

Note that the possibility of EI > Er and Esq > E∞
r,↔ for certain states, are known from

the relations in Fig. 1 and that Esq can be larger than Er .
The separation between entanglement measures is another interesting topic. Propo-

sition 4 provides us with the strict inequalities Er,↔ < E∞
r,↔ and Er,→ < E∞

r,→ for
maximally entangled states. The fact that 2E∞

sq,c ≥ E∞
r (cf. Proposition 6) and E∞

r can
be much larger than Esq implies the separation between E∞

sq,c and Esq , disproving the
conjecture that Esq,c and Esq may be the same [37]. Similarly, the relations shown in
Fig. 1, together with the fact that Esq and E∞

r can be much larger than the other, lead to
separations for the pairs (Ec, E∞

r ), (E
∞
sq,c, E∞

r ), (E
∞
r , E∞

r,→), (E∞
r , Kd), (EI , E∞

r,↔),
(Esq , E∞

r,→) and (Esq , Kd). Separation between E∞
r,→ and Ed is witnessed by the bound

entangled states, since the former is faithful. A separation between Ed and Kd [39] had
been discovered previously, that between Ec and E f is by Hastings [43,44], that between
Er and E∞

r due to Vollbrecht and Werner [16].
At last, separations between pairs of entanglement measures that are still unknown,

are marked in Fig. 1, and we leave them as open questions.
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