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Abstract: We propose an iterative scheme for the solutions of the TAP-equations in the
Sherrington–Kirkpatrick model which is shown to converge up to and including the de
Almeida–Thouless line. The main tool is a representation of the iterations which reveals
an interesting structure of them. This representation does not depend on the temperature
parameter, but for temperatures below the de Almeida–Thouless line, it contains a part
which does not converge to zero in the limit.

1. Introduction

The TAP equations [9] for the Sherrington–Kirkpatrick model describe the quenched
expectations of the spin variables in a large system.

The standard SK-model has the random Hamiltonian on �N
def= {−1, 1}N , N ∈ N,

HN ,β,h,ω (σ )
def= −β

∑

1≤i< j≤N

g(N )i j (ω) σiσ j − h
N∑

i=1

σi ,

where σ = (σ1, . . . , σN ) ∈ �N , β > 0, h ≥ 0, and where the g(N )i j , 1 ≤ i < j ≤ N ,
are i.i.d. centered Gaussian random variables with variance 1/N , defined on a probability

space (�,F ,P). We extend this matrix to a symmetric one, by putting gi j
def= g ji for

i > j , and gii
def= 0. The quenched Gibbs measure on �N is

1

Z N ,β,h,ω
exp

[−HN ,β,h,ω (σ )
]
,

where Z N ,β,h,ω
def= ∑

σ exp
[−HN ,β,h,ω (σ )

]
.
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We write 〈·〉N ,β,h,ω for the expectation under this measure. We will often drop the
indices N , β, h, ω if there is no danger of confusion. We set

mi
def= 〈σi 〉 .

The TAP equations state that

mi = tanh

⎛

⎝h + β
N∑

j=1

gi j m j − β2 (1 − q)mi

⎞

⎠ , (1.1)

which have to be understood in a limiting sense, as N → ∞. q = q (β, h) is the solution
of the equation

q =
∫

tanh2 (h + β
√

qz
)
φ (dz) , (1.2)

where φ (dz) is the standard normal distribution. It is known that this equation has a
unique solution q > 0 for h > 0 (see [7, Prop. 1.3.8]). If h = 0, then q = 0 is the unique
solution if β ≤ 1, and there are two other (symmetric) solutions when β > 1, which
are supposed to be the relevant ones. Mathematically, the validity of the TAP equations
has only been proved in the high temperature case, i.e. when β is small, although in the
physics literature, it is claimed that they are valid also at low temperature, but there they
have many solutions, and the Gibbs expectation has to be taken inside “pure states”. For
the best mathematical results, see [7, Chap. 1.7].

The appearance of the so-called Onsager term β2 (1 − q)mi is easy to understand.
From standard mean-field theory, one would expect an equation

mi = tanh

⎛

⎝h + β
N∑

j=1

gi j m j

⎞

⎠ ,

but one has to take into account the stochastic dependence between the random variables
m j and gi j . In fact, it turns out that the above equation should be correct when one

replaces m j by m(i)
j , where the latter is computed under a Gibbs average dropping the

interactions with the spin i . Therefore m(i)
j is independent of the gik, 1 ≤ k ≤ N , and

one would get

mi = tanh

⎛

⎝h + β
N∑

j=1

gi j m
(i)
j

⎞

⎠ . (1.3)

The Onsager term is an Itô-type correction expanding the dependency of m j on g ji = gi j ,

and replacing m(i)
j on the right hand side by m j . The correction term is non-vanishing

because of
∑

j

g2
i j ≈ 1,

i.e. exactly for the same reason as in the Itô-correction in stochastic calculus. We omit
the details which are explained in [5].
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In the present paper, there are no results about SK itself. We introduce an iterative
approximation scheme for solutions of the TAP equations which is shown to converge
below and at the de Almeida–Thouless line, i.e. under condition (2.1) below (see [3]).
This line is supposed to separate the high-temperature region from the low-temperature
one, but although the full Parisi formula for the free energy of the SK-model has been
proved by Talagrand [8], and with a different approach recently by Panchenko [6], there
is no proof yet that the AT line is the correct phase separation line.

The scheme we propose is defined as follows: Consider sequences m(k) ={
m(k)

i

}

1≤i≤N ,
, k ∈ N, of random variables by defining recursively

m(0) def= 0, m(1) def= √
q1.

1 here the vector with coordinates all 1, and q = q (β, h) is the unique solution of (1.2).
Then, defining tanh componentwise, we set

m(k+1) def= tanh
(

h + β gm(k) − β2 (1 − q)m(k−1)
)
, k ≥ 1.

This iterative scheme reveals, we believe, an interesting structure of the dependence
of the mi on the family

{
gi j
}
, even below the AT line. The main technical result, Propo-

sition 2.5 is proved at all temperatures, but beyond the AT-line, it does not give much
information.

It may be useful to sketch the first two steps: m(1)
i = √

q and m(2)
i =

tanh
(

h + β
√

qξ (1)i

)
, where ξ (1)i

def= ∑
j gi j . Then by the law of large numbers,

1

N

N∑

i=1

m(2)
i �

∫
tanh

(
h + β

√
qz
)
φ (dz)

def= γ1,

and

1

N

N∑

i=1

m(2)2
i �

∫
tanh2 (h + β

√
qz
)
φ (dz) = q.

The next step is more interesting, as there the Onsager correction appears:

m(3)
i = tanh

⎛

⎝h + β
∑

j

gi j m
(2)
j − β2 (1 − q)

√
q

⎞

⎠ .

In order to be able to compute inner products N−1∑N
k=1 m(i)

k m( j)
k , we replace g by

a matrix g(2) which is independent of m(2). As this latter vector depends on the gi j

only through the ξ (1)i , we can obtain this by a linear procedure. The exact formula is
somewhat complicated, but the leading correction is easily described: The shift from g
to g(2) which is independent of ξ (1) essentially is:

g(2)i j � gi j − N−1
(
ξ
(1)
i + ξ (1)j

)
.
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By the law of large numbers, this leads to a correction inside tanh of m(3)
i :

βN−1
∑

j

(
ξ
(1)
i + ξ (1)j

)
m(2)

j � βγ1ξ
(1)
i + β

∫
x tanh

(
h + β

√
qx
)
φ (dx)

= βγ1ξ
(1)
i + β2√q (1 − q) ,

which implies that

m(3)
i � tanh

⎛

⎝h + β
∑

j

g(2)i j m(2)
j + βγ1ξ

(1)
i

⎞

⎠ .

Using now the fact that g(2) is independent of the m(2)
i , ξ

(1)
i , one can easily evaluate

inner products like N−1∑N
i=1 m(2)

i m(3)
i in the N → ∞ limit.

More interesting features appear in the next iteration

m(4)
i = tanh

⎛

⎝h + β
∑

j

gi j m
(3)
j − β2 (1 − q)m(2)

i

⎞

⎠ .

As the m(3)
i no longer depend linearly on g, one first does the replacement from g to g(2),

and then one chooses g(3), conditionally on ξ (1), independent of the
∑

j g(2)i j m(2)
j . Fixing

ξ (1), the m(2)
j are constant, and therefore, conditionally on ξ (1),m(3) depends linearly

on g(2) and one obtains g(3) by a “conditionally linear” transformation. After doing a
similar application of the LLN as above, the replacements lead to

m(4)
i � tanh

⎛

⎝h + β
∑

j

g(3)i j m(3)
j + βγ1ξ

(1)
i + βγ2ξ

(2)
i

⎞

⎠ ,

with

ξ
(2)
i

def=
∑

j

g(2)i j

m(2)
j − γ1√
q − γ1

,

and someγ2 > 0, and again, in this form, it is not difficult to evaluate N−1∑N
k=1 m(i)

k m( j)
k

for i, j ≤ 4 and N → ∞, by applying the law of large numbers, but in a conditional
version. The details of this are explained later.

In this way one can go on, and the outcome is a representation

m(k)
i � tanh

⎛

⎝h + β
∑

j

g(k−1)
i j m(k−1)

j + β
k−2∑

r=1

γrξ
(r)
i

⎞

⎠ . (1.4)

The interesting structure is that at every step of the iteration, the additional dependency
between g and m(k−1) is shifted into an additional term γk−2ξ

(k−2) which is tractable. We
then prove that β is below or at the AT-line if and only if the first part

∑
j g(k−1)

i j m(k−1)
j

asymptotically vanishes as k → ∞ (in a way to be made precise) which leads to the
convergence of the iterative procedure.
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Our method of sequential conditioning used to prove Proposition 2.5 has been used
in other contexts by Bayati and Montanari [1] and Bayati et al. [2].

We finish the section by introducing some notations.
If x, y ∈ R

N , we write

〈x, y〉 def= 1

N

N∑

i=1

xi yi , ‖x‖ def= √〈x, x〉.

As mentioned above, we suppress N in notations as far as possible, but this parameter
is present everywhere.

We also define the N × N -matrix x ⊗s y, x ⊗ y, by

(x ⊗s y)i, j
def= 1

N

(
xi y j + x j yi

)
, x ⊗ y def= xi y j

N
. (1.5)

If A is an N × N -matrix and x ∈ R
N , the vector Ax is defined in the usual way

(interpreting vectors in R
N as column matrices). If f : R → R is a function and x ∈ R

N

we simply write f (x) for the vector obtained by applying f to the coordinates.
g = (

gi j
)

is a Gaussian N × N -matrix where the gi j for i < j are independent cen-
tered Gaussians with variance 1/N , and where gi j = g ji , gii = 0. We will exclusively
reserve the notation g for such a Gaussian matrix.

We will use Z , Z ′, Z1, Z2, . . . as generic standard Gaussians. Whenever several of
them appear in the same formula, they are assumed to be independent, without special
mentioning. We then write E when taking expectations with respect to them. (This
notation is simply an outflow of the abhorrence probabilists have of using integral signs,
as John Westwater once put it).

If {X N } , {YN } are two sequences of real random variables, defined on (�,F ,P), we
write

X N � YN ,

provided there exists a constant C > 0 such that

P (|X N − YN | ≥ t) ≤ C exp
[
−t2 N/C

]

for all N ∈ N, 0 < t ≤ 1.
Clearly, if X N � YN , and X ′

N � Y ′
N , then X N + X ′

N � YN + Y ′
N .

If X(N ) =
(

X (N )i

)

i≤N
, Y(N ) =

(
Y (N )i

)

i≤N
are two sequences of random vectors

in R
N , we write X(N ) ≈ Y(N ) if

1

N

N∑

i=1

∣∣∣X (N )i − Y (N )i

∣∣∣ � 0.

We will use C > 0 as a generic positive constant, not necessarily the same at different
occurrences. It may depend on β, h, and on the level k of the approximation scheme
appearing in the next section, but on nothing else, unless stated otherwise.

In order to avoid endless repetitions of the parameters h andβ, we use the abbreviation

Th (x) = tanh (h + βx) .
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We always assume h �= 0, and as there is a symmetry between the signs, we assume
h > 0. q = q (β, h)will exclusively be used for the unique solution of (1.2). In the case
h = 0, β > 1, there is a unique solution of (1.2) which is positive. Proposition 2.5 is
valid in this case, too, but this does not lead to a useful result. So, we stick to the h > 0
case.

Gaussian random variables are always assumed to be centered.

2. The Recursive Scheme for the Solutions of the TAP Equations

k will exclusively be used to number the level of the iteration. Our main result is

Theorem 2.1. Assume h > 0. If β > 0 is below the AT-line, i.e. if

β2 E cosh−4 (h + β
√

q Z
) ≤ 1, (2.1)

then

lim
k,k′→∞

lim sup
N→∞

E

∥∥∥m(k) − m(k
′)
∥∥∥

2 = 0.

If there is strict inequality in (2.1), then there exist 0 < λ (β, h) < 1, and C > 0, such
that for all k,

lim sup
N→∞

E

∥∥∥m(k+1) − m(k)
∥∥∥

2 ≤ Cλk .

The theorem is a straightforward consequence of a computation of the inner products〈
m(i),m( j)

〉
. We explain that first. The actual computation of these inner products will

be quite involved and will depend on clarifying the structural dependence of m(k) on g.
As we assume h > 0, we have q > 0. We define a function ψ : [0, q] → R by

ψ (t)
def= E Th

(√
t Z +

√
q − t Z ′)Th

(√
t Z +

√
q − t Z ′′) ,

where Z , Z ′, Z ′′, as usual, are independent standard Gaussians. Remember that Th (x) =
tanh (h + βx).

Let α
def= E Th

(√
q Z
)
> 0.

Lemma 2.2. (a) ψ satisfies 0 < ψ (0) = α2 < ψ (q) = q, and is strictly increasing
and convex on [0, q].

(b)

ψ ′ (q) = β2 E cosh−4 (h + β
√

q Z
)
.

Proof. ψ (0) = α2, and ψ (q) = q are evident by the definition of α, q. We compute
the first two derivatives of ψ :

ψ ′ (t) = 1√
t

E
[

Z Th′ (√t Z +
√

q − t Z ′)Th
(√

t Z +
√

q − t Z ′′) ]

− 1√
q − t

E
[

Z ′ Th′ (√t Z +
√

q − t Z ′)Th
(√

t Z +
√

q − t Z ′′) ]
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= E Th′′ (√t Z +
√

q − t Z ′)Th
(√

t Z +
√

q − t Z ′′)

+E Th′ (√t Z +
√

q − t Z ′)Th′ (√t Z +
√

q − t Z ′′)

−E Th′′ (√t Z +
√

q − t Z ′)Th
(√

t Z +
√

q − t Z ′′)

= E Th′ (√t Z +
√

q − t Z ′)Th′ (√t Z +
√

q − t Z ′′) ,

the second equality by Gaussian partial integration.
Differentiating once more, we get

ψ ′′ (t) = E
(

Th′′ (√t Z +
√

q − t Z ′)Th′′ (√t Z +
√

q − t Z ′′)) .

In both expressions, we can first integrate out Z ′, Z ′′, getting

ψ ′ (t) =
∫ ∞

−∞

[∫ ∞

−∞
Th′ (√t x +

√
q − t y

)
φ (dy)

]2

φ (dx) > 0,

and the similar expression for ψ ′′ with Th′ replaced by Th′′. So, we see that ψ is
increasing and convex. Furthermore, as

Th′ (x) = β tanh′ (βx + h) = β
(

1 − tanh2 (βx + h)
)

= β

cosh2 (βx + h)
,

we get

ψ ′ (q) = E Th′ (√q Z
)2 = β2 E cosh−4 (h + β

√
q Z
)
.

��
Corollary 2.3. If (2.1) is satisfied, then q is the only fixed point of ψ in the interval
[0, q]. If (2.1) is not satisfied then there is a unique fixed point of ψ (t) = t inside the
interval (0, q).

We define sequences {ρk}k≥1, {γk}k≥1 recursively by γ1
def= α, ρ1

def= γ1
√

q, and for
k ≥ 2,

ρk
def= ψ (ρk−1) ,

γk
def= ρk − �2

k−1√
q − �2

k−1

,

where

�2
m

def=
m∑

j=1

γ 2
j , �2

0
def= 0.

In order for γk to be well defined, we have to prove recursively that �2
k−1 < q.
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Lemma 2.4. (a) For all k ∈ N,

�2
k−1 < ρk < q.

(b) If (2.1) is satisfied, then

lim
k→∞ ρk = q, lim

k→∞�
2
k = q.

(c) If there is strict inequality in (2.1) , then �2
k and ρk converge to q exponentially fast.

Proof. (a) ρk < q for all k is evident.
We prove by induction on k that ρk > �2

k−1. For k = 1, as ρ1 = γ1
√

q , the
statement follows.
Assume that it is true for k. Then

γk = ρk − �2
k−1√

q − �2
k−1

<

√
ρk − �2

k−1,

i.e. ρk > �2
k . As ρk+1 > ρk , the statement follows.

(b) Evidently limk→∞ ρk = q if (2.1) is satisfied. The sequence
{
�2

k

}
is increasing

and bounded (by q). If ζ
def= limk→∞ �2

k < q, then limk→∞ γk = √
q − ζ > 0, a

contradiction to the boundedness of
{
�2

k

}
.

(c) Linearization ofψ around q easily shows that the convergence is exponentially fast
if ψ ′ (q) < 1. ��

Remark that by (a) of the above lemma, one has γk > 0 for all k.
Let � j be the orthogonal projection in R

N , with respect to the inner product 〈·, ·〉,
onto span

(
m(1), . . . ,m( j)

)
. Remember that the inner product is N−1 times the standard

inner product in R
N . We set

M(k, j) def= m(k) −� j

(
m(k)

)
, j < k, (2.2)

and

M(k) def= M(k,k−1). (2.3)

Let

φ(k)
def= M(k)
∥∥M(k)

∥∥ (2.4)

if
∥∥M(k)

∥∥ �= 0. In case m(k) ∈ span
(
m(1), . . . ,m(k−1)

)
, we define φ(k)

def= 1, to have
it defined everywhere, but we will see that this happens only with exponentially small
probability. Remark that φ(1) = 1.

The key result is:

Proposition 2.5. For all k ∈ N

∥∥∥m(k)
∥∥∥

2 � q, (2.5)
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and for 1 ≤ j < k,
〈
m( j),m(k)

〉
� ρ j , (2.6)

〈
φ( j),m(k)

〉
� γ j . (2.7)

Proof of Theorem 2.1 from Proposition 2.5. As the variables m(k) are bounded, (2.5)
implies

lim
N→∞ E

∥∥∥m(k)
∥∥∥

2 = q,

and for j < k,

lim
N→∞ E

〈
m( j),m(k)

〉
= ρ j .

Therefore, for k′ < k,

E

∥∥∥m(k
′) − m(k)

∥∥∥
2 = E

∥∥∥m(k)
∥∥∥

2
+ E

∥∥∥m(k
′)
∥∥∥

2 − 2E

〈
m(k),m(k

′)
〉
.

Taking the N → ∞, this converges to 2q −2ρk′ . From Lemma 2.4, the claim follows.
��

Remark 2.6. Proposition 2.5 is true for all temperatures. However, beyond the AT-line,
it does not give much information on the behavior of the m(k) for large k. If (2.1) is
not satisfied, then there exists a unique number q∗ ∈ (0, q) with ψ (q∗) = q∗, and
from ψ ′, ψ ′′ > 0 it easily follows that limk→∞ ρk = q∗. Therefore, it follows from
Proposition 2.5 that

lim
k,k′→∞

lim
N→∞ E

∥∥∥m(k
′) − m(k)

∥∥∥
2 = 2

(
q − q∗) > 0.

The main task is to prove Proposition 2.5. It follows by an involved induction argu-
ment.

Lemma 2.7. (2.7) is a consequence of (2.5) and (2.6).

Proof. We do induction on j .
For j = 1, we have φ(1) = 1, m(1) = √

q1, and therefore

〈
φ(1),m(k)

〉
= 1√

q

〈
m(1),m(k)

〉
� ρ1√

q
= γ1.

Let j ≥ 2. Then φ( j) = M( j)/
∥∥M( j)

∥∥, and

∥∥∥M( j)
∥∥∥

2 =
∥∥∥m( j)

∥∥∥
2 −

j−1∑

s=1

〈
m( j), φ(s)

〉2
.

As
∣∣〈m( j), φ(s)

〉∣∣ is bounded, it follows from the induction hypothesis that with

δ j
def=
√

q − �2
j−1/2 > 0, (2.8)
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one has

P

(∥∥∥M( j)
∥∥∥ ≤ δ j

)
≤ C exp [−N/C] ,

and that
∥∥∥M( j)

∥∥∥ �
√

q − �2
j−1. (2.9)

If now k > j , then

〈
m(k), φ( j)

〉
=
〈
m(k),m( j)

〉−∑ j−1
s=1

〈
m(k), φ(s)

〉 〈
m( j), φ(s)

〉
∥∥M( j)

∥∥ ,

and using (2.9), (2.6), and the induction hypothesis, we get

〈
m(k), φ( j)

〉
� ρ j − �2

j−1√
q − �2

j−1

= γ j .

��
Definition 2.8. If J ∈ N, we say that COND (J ) holds if (2.5) and (2.6) are true for
k ≤ J .

COND (1) is trivially true.

Remark 2.9. Assume COND (J ), and take δ j as in (2.8),

AJ
def=

J⋂

j=1

{∥∥∥M( j)
∥∥∥ > δ j

}
, (2.10)

which then satisfies

P (AJ ) ≥ 1 − CJ exp [−N/CJ ] . (2.11)

Furthermore, there exist constants cJ > 0, depending only on J , which can be expressed

in terms of δ j , j ≤ J , such that
∣∣∣φ(k)i (ω)

∣∣∣ ≤ cJ for ω ∈ AJ , and all k ≤ J , all N , and

all i ≤ N . This is easily seen from (2.4) and
∣∣∣m(k)

i (ω)

∣∣∣ ≤ 1.

The rest of the paper is the proof that

COND (J ) �⇒ COND (J + 1) . (2.12)

In the course of the proof, we find the alternative representation of the m(k) (1.4),
precisely formulated in (5.13).

3. Iterative Modifications of the Interaction Variables

Let G be a sub-σ -field of F , and y = (
yi j
)

1≤i, j≤N be a random matrix. We are only
interested in the case where y is symmetric and 0 on the diagonal, but this is not important
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for the moment. We assume that y is jointly Gaussian, conditioned on G, i.e. there is a
positive semidefinite, G-m.b. N 2 × N 2-matrix � such that

E

⎛

⎝exp

⎡

⎣i
∑

k, j

tk j yk j

⎤

⎦

∣∣∣∣∣∣
G
⎞

⎠ = exp

⎡

⎣−1

2

∑

k,k′, j, j ′
tk j�k j,k′ j ′ tk′ j ′

⎤

⎦ .

(We do not assume that y is Gaussian, unconditionally.) Consider a G-measurable random
vector x, and the linear space of random variables

L def=
{

N∑

i=1

ai (yx)i : a1, . . . , aN G − measurable

}
.

We consider the linear projection πL (y) of y onto L, which is defined to be the unique
matrix with components πL

(
yi j
)

in L which satisfy

E
({

yi j − πL
(
yi j
)}

U |G) = 0, ∀U ∈ L.
As y is assumed to be conditionally Gaussian, given G, it follows that y − πL (y) is
conditionally independent of the variables in L, given G.

If y is symmetric, then clearly πL (y) is symmetric, too.

Remark 3.1. If κ is a G-measurable real-valued random variable then κy is conditionally
Gaussian as well and

κπL (y) = πL (κy) .

Remark also that

(y − πL (y)) x = yx−πL (yx) = 0, (3.1)

as yx ∈ L.
Using this construction, we define a sequence g(k), k ≥ 1 of matrices, and a sequence

{Fk} of sub-σ -fields of F , starting with g(1) def= g, and F−1 = F0
def= N , the set of P-null

sets. The construction is done in such a way that

(C1) g(k) is conditionally Gaussian, given Fk−1.
(C2) m(k), M(k), and φ(k) are Fk−1-measurable.

Using that we define

g(k+1) def= g(k) − πLk

(
g(k)

)
, (3.2)

with

Lk
def=
{

N∑

i=1

ai

(
g(k)M(k)

)

i
: ai Fk−1-measurable

}
,

i.e. we perform the above construction with G = Fk−1 and x = M(k).
Furthermore, we define

Fk+1
def= σ

(
Fk, ξ

(k+1)
)
,
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where

ξ (k)
def= g(k)φ(k).

There is a “nicer” representation of Fk stated below in Remark 3.4, but the one given
above is more convenient for the moment.

In order that the construction is well defined, we have to inductively prove the prop-
erties (C1) and (C2). We actually prove a condition which is stronger than (C1):

(C1’) Conditionally on Fk−2, g(k) is Gaussian, and conditionally independent of Fk−1.

(C1’) implies that g(k) is conditionally Gaussian, given Fk−1, and the conditional
law, given Fk−1, is the same as given Fk−2.

Inductive proof of (C1’) and (C2). The case k = 1 is trivial. We first prove (C2) for
k ≥ 2, using (C1’), (C2) up to k − 1. We claim that

m(k) = Th
(

g(k−1)M(k−1) + R(k−2)
)
, (3.3)

where R(k−2) stands for a generic Fk−2-measurable random variable, not necessarily
the same at different occurrences.

As g(k−1)M(k−1) = ∥∥M(k−1)
∥∥ ξ (k−1), and M(k−1) is Fk−2-measurable, by the induc-

tion hypothesis, it follows from (3.3) that m(k) is Fk−1-measurable The statements for
M(k), φ(k) are then trivial consequences.

We therefore have to prove (3.3). We prove by induction on j that

m(k) = Th
(

g( j)M(k−1, j−1) + R(k−2)
)
. (3.4)

The case j = 1 follows from the definition of m(k), and the case j = k − 1 is (3.3).
Assume that (3.4) is true for j < k−1. We replace g( j) by g( j+1) through the recursive

definition

m(k) = Th
(

g( j+1)M(k−1, j−1) + πL j

(
g( j)

)
M(k−1, j−1) + R(k−2)

)

= Th
(

g( j+1)M(k−1, j−1) + R(k−2)
)
,

asπL j

(
g( j)

)
is F j -measurable and thereforeπL j

(
g( j)

)
M(k−1, j−1) is Fk−2-measurable.

Using (3.1), one gets g( j+1)M( j) = 0, and therefore

g( j+1)M(k−1, j−1) = g( j+1)M(k−1, j).

This proves (3.3), and therefore (C2) for k.
We next prove (C1’) for k,

g(k) def= g(k−1) − πLk−1

(
g(k−1)

)
.

We condition on Fk−2. By (C2), M(k−1) is Fk−2-measurable. As g(k−1), conditioned
on Fk−3, is Gaussian, and independent of Fk−2, it has the same distribution also con-
ditioned on Fk−2. By the construction of g(k), this variable is conditioned on Fk−2,
independent of Fk−1, and conditionally Gaussian. ��
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Lemma 3.2. For m < k one has

g(k)φ(m) = 0.

Proof. The proof is by induction on k. For k = 1, there is nothing to prove.
Assume that the statement is proved up to k. We want to prove g(k+1)φ(m) = 0 for

m ≤ k. The case m = k is covered by (3.1). For m < k, it follows by Remark 3.1, as
φ(m) is Fk−1-measurable, that

πLk

(
g(k)

)
φ(m) = πLk

(
g(k)φ(m)

)
,

and therefore

g(k+1)φ(m) = g(k)φ(m) − πLk

(
g(k)

)
φ(m)

= g(k)φ(m) − πLk

(
g(k)φ(m)

)
= 0,

as g(k)φ(m) = 0 by the induction hypothesis. ��
Lemma 3.3. If m < k, then

∑

i

ξ
(k)
i φ

(m)
i = 0.

Proof.

∑

i

ξ
(k)
i φ

(m)
i =

∑

i

∑

j

g(k)i j φ
(k)
j φ

(m)
i

=
∑

j

φ
(k)
j

∑

i

g(k)i j φ
(m)
i

=
∑

j

φ
(k)
j

∑

i

g(k)j i φ
(m)
i = 0

for m < k, by the symmetry of g(k) and the previous lemma. ��
Remark 3.4. Fk has a more straightforward description in terms of the original random
variables:

Fk = σ
(

gm(1), . . . , gm(k)
)
.

Proof. We use induction on k. k = 1 is evident as m(1) = √
q1 and therefore gm(1) =√

qξ (1).
We assume that the equation is correct for k ≥ 1. g(k+1)M(k+1) = ∥∥M(k+1)

∥∥ g(k+1)

φ(k+1) = ∥∥M(k+1)
∥∥ ξ (k+1), and in the proof of (3.4), we have seen that g(k+1)M(k+1) =

gm(k+1) + R(k), where R(k) is Fk-measurable. Therefore

gm(k+1) + R(k) =
∥∥∥M(k+1)

∥∥∥ ξ (k+1).
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∥∥M(k+1)
∥∥ is Fk-measurable. Remember also that we had defined φ(k+1) = 1 on the

Fk-measurable event
{∥∥M(k+1)

∥∥ = 0
}
. From that it follows that

Fk+1 = σ
(
Fk, ξ

(k+1)
)

= σ
(
Fk, gm(k+1)

)
,

which by the induction hypothesis for k proves

Fk+1 = σ
(

gm(1), . . . , gm(k+1)
)
.

��
Remark 3.5. The g(k) can of course be expressed “explicitly” in terms of the g, but already
the expression for g(2) is fairly involved. We haven’t found a structurally simple formula
for the g(k) for general k. If it would exist, it would probably considerably simplify the
arguments in the next section, but we doubt that there is one.

4. Computation of the Conditional Covariances of g(k)

We introduce some more notations.
We write Ok

(
N−r

)
for a generic sequence

{
X (N )

}
of Fk-measurable non negative

random variables which satisfies

P

(
Nr X (N ) ≥ K

)
≤ C exp [−N/C] ,

for some K ,C > 0. As usual, we don’t write N as an index in the random variables.
The constants C, K > 0 here may depend on h, β, and the level k, and on the formula
where they appear, but on nothing else, in particular not on N , and any further indices.
For instance, if we write

Xi j = Yi j + Ok

(
N−5

)
,

we mean that there exists C (β, h, k) , K (β, h, k) > 0 with

sup
i j

P

(
N 5
∣∣Xi j − Yi j

∣∣ ≥ K
)

≤ C exp [−N/C] .

Furthermore, in such a case, it is tacitly assumed that Xi j − Yi j are Fk-measurable.
Evidently, if X,Y are Ok

(
N−r

)
, then X + Y is Ok

(
N−r

)
, and if X is Ok

(
N−r

)
, and

Y is Ok
(
N−s

)
, then XY is Ok

(
N−r−s

)
.

We write Ek for the conditional expectation, given Fk .
We will finally prove the validity of the following relations:

Ek−2g(k)2i j = 1

N
+ Ok−2

(
N−2

)
, (4.1)

Ek−2g(k)i j g(k)j t = −
k−1∑

m=1

φ
(m)
i φ

(m)
t

N 2 + Ok−2

(
N−3

)
, ∀t �= i, j, (4.2)

Ek−2g(k)i j g(k)st = α
(k)
i jst

N 3 + Ok−2

(
N−4

)
, if {s, t} ∩ {i, j} = ∅, (4.3)



Iterative Construction of Solutions of TAP Equations for SK Model 347

where

α
(k)
i jst =

k−1∑

m=1

∑

A⊂{i, j,s,t}
λ
(k)
m,Aφ

(m)
A

with

φ
(m)
A

def=
∏

u∈A

φ(m)u .

The λ(k)m,A are real numbers, not random variables, which depend on A only through
the type of subset which is taken with respect to the two subsets {i, j} , {s, t}. More
precisely, there is only one number for |A| = 4, one for |A| = 3, and one for |A| = 3,
but possibly two if |A| = 2, namely one for A = {i, j} or A = {s, t}, and one for the
other cases {i, s} , {i, t} , { j, s} , { j, t}. So totally, for any k,m, there are five possible
λ’s.

The main result of this section is:

Proposition 4.1. Let J ∈ N, assume COND (J ), and assume the validity of (4.1)–(4.3)
hold for k ≤ J . Then they hold for k = J + 1.

The main point with assuming COND (J ) is (2.11). On AJ , the variables φ(k) are
bounded for k ≤ J .

Lemma 4.2. Assume (4.1)–(4.3) for k = J , and (2.11). Then

(a)

EJ−1ξ
(J )2
i = 1 + OJ−1

(
N−1

)
. (4.4)

(b)

EJ−1ξ
(J )
i ξ

(J )
j = 1

N
φ
(J )
i φ

(J )
j − 1

N

J−1∑

r=1

φ
(r)
i φ

(r)
j + OJ−1

(
N−2

)
. (4.5)

(c)

EJ−1g(J )i j ξ
(J )
i = φ

(J )
j

N
+ OJ−1

(
N−2

)
. (4.6)

(d) For s �= i, j ,

EJ−1g(J )i j ξ
(J )
s = −φ

(J )
i

N 2

J−1∑

m=1

φ
(m)
j φ(m)s − φ

(J )
j

N 2

J−1∑

m=1

φ
(m)
i φ(m)s + OJ−1

(
N−3

)
.

(4.7)
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Proof. (a) As φ(J ) is FJ−1-measurable, and g(J ) is independent of FJ−1, conditionally
on FJ−2, we get

EJ−1ξ
(J )2
i =

∑

s,t �=i

φ(J )s φ
(J )
t EJ−1

(
g(J )is g(J )i t

)
=
∑

s,t �=i

φ(J )s φ
(J )
t EJ−2

(
g(J )is g(J )i t

)

=
∑

s �=i

φ(J )2s EJ−2

(
g(J )2is

)
+
∑

s,t �=i
s �=t

φ(J )s φ
(J )
t EJ−2

(
g(J )is g(J )i t

)
.

Using (4.1), (4.2), and the boundedness of the φ’s on AJ , and N−1∑
i φ

(J )2
i = 1,

∑
i φ

(J )
i φ

(m)
i = 0 for m < J , we get

EJ−1ξ
(J )2
i = 1 + OJ−1

(
N−1

)
.

(b)

EJ−1ξ
(J )
i ξ

(J )
j =

∑

s �=i,t �= j

φ(J )s φ
(J )
t EJ−2

(
g(J )is g(J )j t

)
.

We split the sum over (s, t) into the one summand s = j, t = i , in A =
{(s, s) : s �= i, j} , B = {( j, t) : t �= i, j} , C = {(s, i) : s �= i, j}, and D =
{(s, t) : {s, t} ∩ {i, j} = ∅}. The one summand s = j, t = i gives φ(J )i φ

(J )
j /N +

OJ−1
(
N−2

)
,

∑

A

=
∑

s �=i, j

φ(J )2s EJ−2

(
g(J )is g(J )js

)
=
∑

s �=i, j

φ(J )2s

{
−

J−1∑

m=1

φ
(m)
i φ

(m)
j

N 2 + OJ−2

(
N−3

)}

= −
J−1∑

m=1

φ
(m)
i φ

(m)
j

N
+ OJ−1

(
N−2

)
.

∑

B

=
∑

t �=i, j

φ
(J )
j φ

(J )
t EJ−2

(
g(J )i j g(J )j t

)

=
∑

t �=i, j

φ
(J )
j φ

(J )
t

{
−

J−1∑

m=1

φ
(m)
i φ

(m)
t

N 2 + OJ−2

(
N−3

)}
.

Because
〈
φ(J ), φ(m)

〉 = 0 for m < J , this is seen to be OJ−1
(
N−2

)
. The same applies

to
∑

C .
It remains to consider the last part

∑
D . Here we have to use the expression for

EJ−2

(
g(J )i j g(J )st

)
where {i, j} ∩ {s, t} = ∅ given by (4.3),

∑

s,t :{s,t}∩{i, j}=∅
φ(J )s φ

(J )
t

⎡

⎣ 1

N 3

J−1∑

m=1

∑

A⊂{i, j,s,t}
λ
(J )
m,Aφ

(m)
A + OJ−2

(
N−4

)
⎤

⎦

= 1

N 3

∑

s,t :{s,t}∩{i, j}=∅
φ(J )s φ

(J )
t

J−1∑

m=1

∑

A⊂{i, j,s,t}
λ
(J )
m,Aφ

(m)
A + OJ−2

(
N−2

)
.
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Take e.g. A = {i, j, s}. Then λ(J )m,A = λ
(J )
m,3 with no further dependence of this number

on i, j, s. So we get for this part for any summand on m with m < J ,

1

N 3 λ
(J )
m,3

∑

s,t :{s,t}∩{i, j}=∅
φ(J )s φ

(J )
t φ(m)s φ

(m)
i φ

(m)
j .

Using again
〈
φ(J ), φ(m)

〉 = 0, we get that this is OJ−1
(
N−2

)
. This applies in the same

way to all the parts. Therefore (b) follows.
(c)

EJ−1g(J )i j ξ
(J )
i =

∑

t �=i

φ
(J )
t EJ−2

(
g(J )i j g(J )i t

)
= φ

(J )
j

N
+ OJ−1

(
N−2

)

+
∑

t �=i, j

φ
(J )
t

[
−

J−1∑

m=1

φ
(m)
j φ

(m)
t

N 2

]
+ OJ−1

(
N−2

)

= φ
(J )
j

N
+ OJ−1

(
N−2

)
,

due to the orthogonality of the φ(m).
(d)

Eg(J )i j ξ
(J )
s =

∑

t �=s

φ
(J )
t Eg(J )i j g(J )st

= φ
(J )
i Eg(J )i j g(J )si + φ(J )j Eg(J )i j g(J )s j + OJ−1

(
N−3

)
,

due again to (4.3). We therefore get

Eg(J )i j ξ
(J )
s = − 1

N 2

J−1∑

m=1

φ(m)s

[
φ
(J )
i φ

(m)
j + φ(J )j φ

(m)
i

]
+ OJ−1

(
N−3

)
.

��
Lemma 4.3. We assume the same as in Lemma 4.2. Put

ĝ(J )i j
def= g(J )i j − φ

(J )
i ξ

(J )
j + φ(J )j ξ

(J )
i

N
+ φ(J )i φ

(J )
j

1

N 2

N∑

r=1

φ(J )r ξ (J )r .

Then

g(J+1)
i j = ĝ(J )i j −

∑

s

x (J )i j,sξ
(J )
s , (4.8)

where the FJ−1-measurable coefficients x (J )i j,s satisfy

∑

s

x (J )i j,sφ
(m)
s = 0, ∀i, j, ∀m < J, (4.9)
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with

x (J )i j,s = OJ−1

(
N−2

)
, s ∈ {i, j} ,

x (J )i j,s = OJ−1

(
N−3

)
, s /∈ {i, j} .

Proof. The existence of FJ−1-measurable coefficients x (J )i j,s comes from linear algebra.
Remark that

∑

s

ξ (J )s φ(m)s =
∑

s, j

φ(m)s g(J )s j φ
(J )
j =

∑

j

φ
(J )
j

[
∑

s

g(J )js φ
(m)
s

]
= 0.

Therefore, we can replace the x (J )i j,· by

x (J )i j,· −
J−1∑

m=1

〈
x (J )i j,· , φ

(m)
〉
φ(m),

which satisfy the desired property (4.9).
We keep i, j fixed for the moment and write xs for x (J )i j,s . The requirement for them

is that for all t ,

EJ−1

((
ĝ(J )i j −

∑

s

xsξ
(J )
s

)
ξ
(J )
t

)
= 0 (4.10)

(see the definition of the g(J ) in (3.2)).
From Lemma 4.2, we get

EJ−1

(
ĝ(J )i j ξ

(J )
i

)
= OJ−1

(
N−2

)
,

and the same for EJ−1

(
ĝ(J )i j ξ

(J )
j

)
. For t /∈ {i, j}, we have

EJ−1

(
ĝ(J )i j ξ

(J )
t

)
= −φ

(J )
i

N 2

J−1∑

m=1

φ
(m)
j φ

(m)
t − φ

(J )
j

N 2

J−1∑

m=1

φ
(m)
i φ

(m)
t + OJ−1

(
N−3

)

− φ
(J )
i

N

{
1

N
φ
(J )
j φ

(J )
t − 1

N

J−1∑

m=1

φ
(m)
j φ

(m)
t + OJ−1

(
N−2

)}

− φ
(J )
j

N

{
1

N
φ
(J )
i φ

(J )
t − 1

N

J−1∑

m=1

φ
(m)
i φ

(m)
t + OJ−1

(
N−2

)}

+ φ(J )i φ
(J )
j

1

N 2

∑

r

φ(J )r EJ−1ξ
(J )
r ξ

(J )
t

= − 2

N 2 φ
(J )
i φ

(J )
j φ

(J )
t +

1

N 2 φ
(J )
i φ

(J )
j φ

(J )
t

+
1

N 2 φ
(J )
i φ

(J )
j

∑

r �=t

φ(J )r

{
1

N
φ(J )r φ

(J )
t − 1

N

J−1∑

m=1

φ(m)r φ
(m)
t

}

+ OJ−1

(
N−3

)
.
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Due to the orthonormality of the φ, one gets

1

N

∑

r �=t

φ(J )2r = 1 + OJ−1

(
N−1

)
,

∑

r �=t

φ(J )r φ(m)r = OJ−1

(
N−1

)
.

So we get

EJ−1

(
ĝ(J )i j ξ

(J )
t

)
= OJ−1

(
N−3

)
.

We write for the moment yt
def= EJ−1

(
ĝ(J )i j ξ

(J )
t

)
. The equations (4.10) for {xs} are

∑

s

xsEJ−1ξ
(J )
s ξ

(J )
t = yt , ∀t.

Writing ri j for the OJ−1
(
N−2

)
error term in (4.5), and for j = i , the OJ−1

(
N−1

)
error

term in (4.4), we arrive at

∑

s �=t

xs

{
1

N
φ(J )s φ

(J )
t − 1

N

J−1∑

m=1

φ(m)s φ
(m)
t + rst

}
+ xt (1 + rtt ) = yt .

In the first summand, we sum now over all s, remarking that we have assumed that∑
s xsφ

(m)
s = 0 for m < J . The error for not summing over the single t can be incorpo-

rated into rtt . We therefore arrive at

xt + φ(J )t
1

N

∑

s

xsφ
(J )
s +

∑

s

xsrst = yt .

Write � for the matrix
(

N−1φ
(J )
i φ

(J )
j

)
and R for

(
ri j
)
. Then we have to invert the

matrix (I +� + R). Remark that (I +�)−1 = I −�/2. Therefore

(I −�/2) (I +� + R) = I + (I −�/2) R.

We can develop the right hand side as a Neumann series:

(I +� + R)−1 (I +�) = (I + (I −�/2) R)−1

= I − (I −�/2) R + [(I −�/2) R]2 − · · ·
(I +� + R)−1 = I − �

2
−
(

I − �

2

)
R

(
I − �

2

)
+ · · · .

As (�y)i = OJ−1
(
N−3

)
, we get the desired conclusion. ��
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Proof of Proposition 4.1.

EJ−1

(
g(J+1)

i j g(J+1)
st

)
= EJ−1

(
ĝ(J+1)

i j ĝ(J+1)
st

)
−
∑

u

x (J )st,uEJ−1

(
ξ (J )u ĝ(J )i j

)

−
∑

u

x (J )i j,uEJ−1

(
ξ (J )u ĝ(J )st

)

+
∑

u,v

x (J )i j,u x (J )st,vEJ−1

(
ξ (J )u ξ (J )v

)
. (4.11)

The summands involving the x (J ) all only give contributions which enter the OJ−1-terms.
Take for instance s = j, t �= i, j . In that case, the claimed OJ−1-term is OJ−1

(
N−3

)
.

In the last summand of (4.11), there is one summand, namely u = v = j , where the
x (J ) are OJ−1

(
N−2

)
, so this summand is only OJ−1

(
N−4

)
,

∑

u

x (J )j t,uEJ−1

(
ξ (J )u ĝ(J )i j

)
= x (J )j t,i EJ−1

(
ξ
(J )
i ĝ(J )i j

)
+ x (J )j t, j EJ−1

(
ξ
(J )
j ĝ(J )i j

)

+ x (J )j t,tEJ−1

(
ξ
(J )
t ĝ(J )i j

)

+
∑

u �=i, j,t

x (J )j t,uEJ−1

(
ξ (J )u ĝ(J )i j

)
. (4.12)

From Lemma 4.2, we get

EJ−1

(
ξ
(J )
i ĝ(J )i j

)
= EJ−1

(
ξ
(J )
i g(J )i j

)
− N−1φ

(J )
i EJ−1

(
ξ
(J )
i ξ

(J )
j

)

− N−1φ
(J )
j EJ−1

(
ξ
(J )2
i

)

+ φ(J )i φ
(J )
j N−2

N∑

r=1

φ(J )r EJ−1

(
ξ
(J )
i ξ (J )r

)

= OJ−1

(
N−1

)

and similarly EJ−1

(
ξ
(J )
j ĝ(J )i j

)
= OJ−1

(
N−1

)
, and EJ−1

(
ξ
(J )
u ĝ(J )i j

)
for u /∈ {i, j}. So

the sum in (4.12) is

OJ−1

(
N−3

)
OJ−1

(
N−1

)
+ OJ−1

(
N−2

)
OJ−1

(
N−1

)

+OJ−1

(
N−2

)
OJ−1

(
N−2

)
+ N OJ−1

(
N−3

)
OJ−1

(
N−2

)

= OJ−1

(
N−3

)
.

The other summands behave similarly. The third and fourth summand in (4.11) behave
similarly.

As another case, take {i, j} ∩ {s, t} = ∅, where we have to get OJ−1
(
N−4

)
for the

second to fourth summand in (4.11),
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∑

u

x (J )st,uEJ−1

(
ξ (J )u ĝ(J )i j

)
=
∑

u=i, j

+
∑

u=s,t

+
∑

u /∈{i, j,s,t}

= OJ−1

(
N−3

)
OJ−1

(
N−1

)

+ OJ−1

(
N−2

)
OJ−1

(
N−2

)

+ N OJ−1

(
N−3

)
OJ−1

(
N−2

)

= OJ−1

(
N−4

)
.

∑

u,v

x (J )i j,u x (J )st,vEJ−1

(
ξ (J )u ξ (J )v

)
=

∑

u=v∈{i, j,s,t}
+

∑

u=v /∈{i, j,s,t}
+
∑

u∈{i, j}

∑

v∈{s,t}
+
∑

u∈{i, j}

∑

v /∈{s,t},�=u

+
∑

v∈{s,t}

∑

u /∈{i, j},�=v
+
∑

u �=v

∑

u /∈{i, j}

∑

v /∈{s,t}

= OJ−1

(
N−5

)
+ N OJ−1

(
N−6

)

+ OJ−1

(
N−2

)
OJ−1

(
N−2

)
OJ−1

(
N−1

)

+ N OJ−1

(
N−2

)
OJ−1

(
N−3

)
OJ−1

(
N−1

)

+ N OJ−1

(
N−2

)
OJ−1

(
N−3

)
OJ−1

(
N−1

)

+ N 2 OJ−1

(
N−3

)
OJ−1

(
N−3

)
OJ−1

(
N−1

)

= OJ−1

(
N−5

)
,

which is better than required.

In order to prove (4.1)–(4.3), it therefore remains to investigate EJ−1

(
ĝ(J+1)

i j ĝ(J+1)
st

)
.

For (4.1):

EJ−1

(
ĝ(J )2i j

)
= EJ−1

⎡

⎣
(

g(J )i j − φ
(J )
i ξ

(J )
j + φ(J )j ξ

(J )
i

N
+
φ
(J )
i φ

(J )
j

N 2

∑

t

φ
(J )
t ξ

(J )
t

)2⎤

⎦ .

Using Lemma 4.2, one easily gets that anything except EJ−1

(
g(J )2i j

)
is OJ−1

(
N−2

)
.

EJ−1

(
g(J )2i j

)
= EJ−2

(
g(J )2i j

)
from the conditional independence of g(J ) of FJ−1,

given FJ−2. So the claim follows.
For (4.2):

EJ−1

(
ĝ(J )i j ĝ(J )j t

)
= EJ−1

[(
g(J )i j − φ

(J )
i ξ

(J )
j + φ(J )j ξ

(J )
i

N
+
φ
(J )
i φ

(J )
j

N 2

∑

u

φ(J )u ξ (J )u

)

×
(

g(J )j t − φ
(J )
j ξ

(J )
t + φ(J )t ξ

(J )
j

N
+
φ
(J )
j φ

(J )
t

N 2

∑

u

φ(J )u ξ (J )u

)]
.
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We write m × n for the summand, we get by multiplying the mth summand in the
first bracket with the nth in the second. By induction hypothesis, we get

1 × 1 = −
J−1∑

m=1

φ
(m)
i φ

(m)
t

N 2 + OJ−2

(
N−3

)
.

In the 1 × 2-term, only the multiplication of g(J )i j with ξ (J )j counts, the other part giving

OJ−2
(
N−3

)
. Therefore

1 × 2 = −φ
(J )
t

N
EJ−1g(J )i j ξ

(J )
j + OJ−1

(
N−3

)

= −φ
(J )
i φ

(J )
t

N 2 + OJ−1

(
N−3

)
.

2 × 1 gives the same. In 2 × 2, again only the matching of ξ (J )j with ξ (J )j counts, so we
get

2 × 2 = φ
(J )
i φ

(J )
t

N 2 + OJ−1

(
N−3

)
.

The other parts are easily seen to give OJ−1
(
N−3

)
. We have proved that

EJ−1

(
ĝ(J )i j ĝ(J )j t

)
= −

J∑

m=1

φ
(m)
i φ

(m)
t

N 2 + OJ−1

(
N−3

)
.

Finally for (4.3), we have here {i, j} ∩ {s, t} = ∅,

EJ−1

(
ĝ(J )i j ĝ(J )st

)
= EJ−1

(
g(J )i j − φ

(J )
i ξ

(J )
j + φ(J )j ξ

(J )
i

N
+
φ
(J )
i φ

(J )
j

N 2

∑

u

φ(J )u ξ (J )u

)

×
(

g(J )st − φ
(J )
s ξ

(J )
t + φ(J )t ξ

(J )
s

N
+
φ
(J )
s φ

(J )
t

N 2

∑

u

φ(J )u ξ (J )u

)
.

The 1 × 1, 1 × 2, 2 × 1, and 2 × 2-terms are clearly of the desired form, either from
induction hypothesis or Lemma 4.2,

1 × 3 = φ
(J )
s φ

(J )
t

N 2

∑

u

EJ−1

(
g(J )i j φ

(J )
u ξ (J )u

)
.

For u = i we get for the expectation φ(J )i φ
(J )
j /N + OJ−1

(
N−2

)
, so this is of the desired

form. The same applies to u = j . It therefore remains

φ
(J )
s φ

(J )
t

N 2

∑

u �=i, j

φ(J )u EJ−1

(
g(J )i j ξ

(J )
u

)

= φ
(J )
s φ

(J )
t

N 2

∑

u �=i, j

φ(J )u

{
− 1

N 2

J−1∑

m=1

φ(m)u

[
φ
(J )
i φ

(m)
j + φ(J )j φ

(m)
i

]}
+ OJ−1

(
N−4

)
.

As
∑

u φ
(J )
u φ

(m)
u = 0, the whole expression is OJ−1

(
N−4

)
. The other cases are

handled similarly. ��
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5. Proof of Proposition 2.5

Proof of the proposition. The proof is short given the results of two main lemmas which
are formulated and proved afterwards.

We assume COND (J ), and (4.1)–(4.3) for k ≤ J . By Proposition 4.1 of the last
section, this implies (4.1)–(4.3) for k ≤ J + 1. Using this, we prove now (2.5) and (2.6)
for k = J + 1, so that we have proved COND (J + 1). Having achieved this, the proof
of Proposition 2.5 is complete.

We have to introduce some more notations:
For j < k, define X(k,0) def= 0, X(k, j) def= ∑ j

t=1 γtφ
(t), and X(k,k) def= ∑k−1

t=1 γtφ
(t) +√

q − �2
k−1φ

(k).
Remark that under COND (J ),

m(k) ≈ X(k,k), (5.1)

for k ≤ J . Indeed
∥∥∥∥∥m(k) −

k−1∑

m=1

〈
m(k), φ(m)

〉
φ(m)

∥∥∥∥∥φ
(k)

= m(k) −
k−1∑

m=1

〈
m(k), φ(m)

〉
φ(m)

≈ m(k) −
k−1∑

m=1

γmφ
(m).

From q > �2
k−1, by (2.5) and (2.6) for k ≤ J , and the fact that the φ(k)j are uniformly

bounded on AJ , we have
∥∥∥∥∥m(k) −

k−1∑

m=1

〈
m(k), φ(m)

〉
φ(m)

∥∥∥∥∥ �
√

q − �2
k−1.

So the claim (5.1) follows.
We set for 1 ≤ s < k,

m(k,s) def= Th

(
g(s)M(k−1,s−1) +

s−1∑

t=1

γtξ
(t) + β (1 − q)

{
X(k−2,s−1) − m(k−2)

})
.

Remark that by Lemma 3.2, we have g(s)M(k−1,s−1) = g(s)m(k−1). Evidently

m(k,1) = m(k),

and we define

m̂(1) def= m(1) = √
q1, m̂(k) def= m(k,k−1), k ≥ 2.

By Lemma 5.1 below COND (J ) implies

m(J+1) ≈ m̂(J+1). (5.2)
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As COND (J ) implies trivially COND
(
J ′) for J ′ < J , it follows that COND (J ) implies

m(k) ≈ m̂(k) for all k ≤ J + 1. As the m(k)
j are uniformly bounded by 1, we get from

that
〈
m(J+1),m( j)

〉
�
〈
m̂(J+1), m̂( j)

〉
,

for all j ≤ J + 1.
By Lemma 5.3 below, we also have

〈
m̂(J+1), m̂( j)

〉
� ρ j

for j ≤ J , and

∥∥∥m̂(J+1)
∥∥∥

2 � q.

This implies COND (J + 1) which finishes the proof of Proposition 2.5. ��
Unfortunately, there is a slight complication when proving (5.2), namely that we have

to extend the induction scheme by proving in parallel
〈
ξ (m),m(k)

〉
�
〈
ξ (m), m̂(k)

〉
, ∀m < k (5.3)

for k = J + 1 which is not evident from (5.2) as the ξ (m)i are not bounded.

Lemma 5.1. Assume the validity of (2.5)–(2.7) and (5.3) for k ≤ J . Then for s =
1, . . . , J − 1,

m(J+1,s) ≈ m(J+1,s+1),

and (5.3) holds for k = J + 1. In particular,

m(J+1) ≈ m̂(J+1) follows.

Proof. We prove by induction on s, 1 ≤ s ≤ J − 1, that

m(J+1,s) ≈ m(J+1,s+1), (5.4)

and
〈
ξ (m),m(J+1,s)

〉
�
〈
ξ (m),m(J+1,s+1)

〉
, m ≤ J. (5.5)

We have

g(s+1) = g(s) − ξ (s) ⊗s φ
(s) +

〈
ξ (s), φ(s)

〉 (
φ(s) ⊗ φ(s)

)
+ c(s),

where

c(s)i j =
∑

r

x (s)i j,r ξ
(s)
r ,
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see Lemma 4.3. Therefore

m(J+1,s) = Th
(

g(s+1)m(J ) + y+
s−1∑

t=1

γtξ
(t)

+ β (1 − q)
{

X(J−1,s−1) − m(J−1)
} )
, (5.6)

where

y def=
〈
φ(s),m(J )

〉
ξ (s) +

〈
ξ (s),m(J )

〉
φ(s) +

〈
φ(s),m(J )

〉 〈
φ(s), ξ (J )

〉
φ(s) + c(s)m(J ).

We write

y(1) def=
〈
φ(s),m(J )

〉
ξ (s) +

〈
ξ (s),m(J )

〉
φ(s) +

〈
φ(s),m(J )

〉 〈
φ(s), ξ (J )

〉
φ(s),

y(2) def=
〈
φ(s),m(J )

〉
ξ (s) +

〈
ξ (s),m(J )

〉
φ(s),

y(3) def= γsξ
(s) +

〈
ξ (s),m(J )

〉
φ(s),

y(4) def= γsξ
(s) +

〈
ξ (s), m̂(J )

〉
φ(s),

y(5) def=
⎧
⎨

⎩

γsξ
(s) + β (1 − q) γsφ

(s) if s < J − 1

γsξ
(s) + β (1 − q)

√
q − �2

s−1φ
(s) if s = J − 1

,

and then set ad hoc

μ(0)
def= m(J+1,s),

and define μ(n) where y is replaced by y(n), n = 1, . . . , 5. Remark that from (5.6),

μ(5) = m(J+1,s+1).

We will prove

μ(n−1) ≈ μ(n), n = 1, . . . , 5, (5.7)

and
〈
ξ (m), μ(n−1)

〉
�
〈
ξ (m), μ(n)

〉
, n = 1, . . . , 5. (5.8)

which prove the desired induction in s.
To switch from μ(0) to μ(1), we observe that by the estimates of Lemma 4.3, one has

∣∣∣
(

c(s)m(J )
)

i

∣∣∣ ≤ Os−1 (1)

⎡

⎣ 1

N

∣∣∣ξ (s)i

∣∣∣ +
1

N 2

∑

j

∣∣∣ξ (s)j

∣∣∣

⎤

⎦ .

Therefore

1

N

∑

i

∣∣∣μ(0)i − μ
(1)
i

∣∣∣ ≤ Os−1 (1)

N 2

∑

j

∣∣∣ξ (s)j

∣∣∣ ,



358 E. Bolthausen

and

1

N

∑

i

∣∣∣ξ (m)i

(
μ
(0)
i − μ

(1)
i

)∣∣∣

≤ Os−1 (1)

N

{
1

N

∑

i

∣∣∣ξ (m)i ξ
(s)
i

∣∣∣ +
1

N

∑

i

∣∣∣ξ (m)i

∣∣∣
1

N

∑

i

∣∣∣ξ (s)i

∣∣∣

}
.

By choosing K large enough, we get for 1/
√

N ≤ t ≤ 1 by Corollary A.2 (a),

P

(
1

N

∑

i

∣∣∣μ(0)i − μ
(1)
i

∣∣∣ ≥ t

)
≤ P

⎛

⎝K

N

∑

j

∣∣∣ξ (s)j

∣∣∣ ≥ t N

⎞

⎠ + P (Os−1 (1) ≥ K )

≤ C exp [−N/C] ≤ C exp
[
−Nt2/C

]
.

For t ≤ 1/
√

N , the bound is trivial anyway. This proves (5.7) for n = 1. Equation (5.8)
follows in the same way using Corollary A.2 (b),

1

N

∑

i

∣∣∣μ(1)i − μ
(2)
i

∣∣∣ ≤ C
∣∣∣
〈
φ(s),m(J )

〉 〈
φ(s), ξ (J )

〉 〈
φ(s), 1

〉∣∣∣

≤ C
∣∣∣
〈
φ(s), ξ (J )

〉∣∣∣

on AJ . Equation (5.7) for n = 2 then follows from Corollary A.2 (c). As for (5.8), we
remark that

1

N

∑

i

∣∣∣ξ (m)i

(
μ
(1)
i − μ

(2)
i

)∣∣∣ ≤ C
∣∣∣
〈
φ(s), ξ (J )

〉∣∣∣
∣∣∣
〈
φ(s), ξ (m)

〉∣∣∣ .

We can then again use Corollary A.2 (c) remarking that exp [−Nt/C] ≤ exp
[−Nt2/C

]

for t ≤ 1,

1

N

∑

i

∣∣∣μ(2)i − μ
(3)
i

∣∣∣ ≤ C
∣∣∣
〈
φ(s),m(J )

〉
− γs

∣∣∣
1

N

∑

i

∣∣∣ξ (s)i

∣∣∣ .

Equation (5.7) for n = 3 follows from the induction hypothesis (2.7), and Corollary A.2
(a). Similarly with (5.8) but here, one has to use part (b) of Corollary A.2,

1

N

∑

i

∣∣∣μ(3)i − μ
(4)
i

∣∣∣ ≤ C
∣∣∣
〈
ξ (s),m(J ) − m̂(J )

〉∣∣∣

on Ak , and one uses the induction hypothesis (5.3) for J to get (5.7) for n = 4. Remark
that actually, one has a bound uniform in i :

∣∣∣μ(3)i − μ
(4)
i

∣∣∣ ≤ C
∣∣∣
〈
ξ (s),m(J ) − m̂(J )

〉∣∣∣ .

Therefore, one also gets (5.8) using Corollary A.2. Up to now, we have obtained

m(J+1,s) ≈ Th
(

g(s)M(k−1,s−1) +
s∑

t=1

γtξ
(t)

+
〈
ξ (s), m̂(J )

〉
φ(s) + β (1 − q)

{
X(J−1,s−1) − m(J−1)

} )
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and

〈
ξ (m),m(J+1,s)

〉
�
〈
ξ (m),Th

(
g(s)M(k−1,s−1) +

s∑

t=1

γtξ
(t)

+
〈
ξ (s), m̂(J )

〉
φ(s) + β (1 − q)

{
X(J−1,s−1) − m(J−1)

} )〉
.

By Lemma 5.3 (a) below, we have

〈
ξ (s), m̂(J )

〉
�
⎧
⎨

⎩

β (1 − q) γs for s < J − 1

β (1 − q)
√

q − �2
J−2 for s = J − 1

, (5.9)

and we can therefore replace
〈
ξ (s), m̂(J )

〉
φ(s) on the right hand side, by β (1 − q) γsφ

(s)

for s < J − 1, or β (1 − q)
√

q − �2
J−2φ

(J−1) for s = J − 1, which is the same as

replacing X(J−1,s−1) by X(J−1,s). Therefore, the lemma is proved. ��
Remark 5.2. m̂(k) still contains inside Th (·) the summandβ (1−q)

(
X(k−2,k−2)−m(k−2)

)

which is ≈ 0, according to (5.1). Therefore, if we define

m(k) def= Th

(
g(k−1)M(k−1,k−2) +

k−2∑

t=1

γtξ
(t)

)
,

then we have

m̂(k) ≈ m(k), k ≤ J + 1 (5.10)

under COND (J ), but also
〈
ξ (m), m̂(k)

〉
�
〈
ξ (m),m(k)

〉
(5.11)

for m < k ≤ J + 1. This last relation follows in the same way as (5.3) in the proof of
Lemma 5.1.

Lemma 5.3. We assume COND (J ).

(a)

〈
ξ (s),m(J )

〉
�
⎧
⎨

⎩

β (1 − q) γs for s < J − 1

β (1 − q)
√

q − �2
J−2 for s = J − 1

.

(b)
〈
m(J+1),m( j)

〉
� ρ j ,

for j ≤ J , and
〈
m(J+1),m(J+1)

〉
� q.
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Proof. (a) Consider first the case s = J − 1,

m(J ) = Th

(∥∥∥M(J−1)
∥∥∥ ξ (J−1) +

J−2∑

t=1

γtξ
(t)

)
,

1

N

N∑

i=1

ξ
(J−1)
i m(J )

i = 1

N

N∑

i=1

ξ
(J−1)
i Th

(∥∥∥M(J−1)
∥∥∥ ξ (J−1)

i +
J−2∑

t=1

γtξ
(t)
i

)
.

We condition on FJ−2. Then ξ (J−1) is conditionally Gaussian with covariances given
in Lemma 4.2 (a), (b). We can therefore apply Lemma A.3 which gives, conditionally
on FJ−2, on an event BJ−2 ∈ FJ−2 which has probability ≥ 1 − C exp [−N/C],

1

N

N∑

i=1

ξ
(J−1)
i m(J )

i � 1

N

N∑

i=1

E Z J−1 Th

(∥∥∥M(J−1)
∥∥∥ Z J−1 +

J−2∑

t=1

γtξ
(t)
i

)

= 1

N

N∑

i=1

β

∥∥∥M(J−1)
∥∥∥

[
1−E Th2

(∥∥∥M(J−1)
∥∥∥ Z J−1+

J−2∑

t=1

γtξ
(t)
i

)]

� β

√
q−�2

J−1
1

N

N∑

i=1

[
1−E Th2

(√
q−�2

J−1 Z J−1+
J−2∑

t=1

γtξ
(t)
i

)]
.

Applying now Lemma A.3 successively to ξ (J−2), ξ (J−2), . . . , we get

1

N

N∑

i=1

ξ
(J−1)
i m(J )

i � β

√
q − �2

J−1

[
1 − E Th2

(√
q − �2

J−1 Z J−1 +
J−2∑

t=1

γt Zt

)]

= β

√
q − �2

J−1 (1 − q) .

The case s < J − 1 uses a minor modification of the argument. One first uses
Lemma A.3 successively to get

1

N

N∑

i=1

ξ
(s)
i m(J )

i � 1

N

N∑

i=1

ξ
(s)
i E Th

(∥∥∥M(J−1)
∥∥∥ Z J−1+

J−2∑

t=s+1

γt Zt + γsξ
(s)
i +

s−1∑

t=1

γtξ
(t)
i

)
,

and then one argues as above to obtain

1

N

N∑

i=1

ξ
(s)
i m(J )

i � E Zs Th

(∥∥∥M(J−1)
∥∥∥ Z J−1 +

J−2∑

t=1

γt Zt

)

= βγs

[
1 − E Th2

(∥∥∥M(J−1)
∥∥∥ Z J−1 +

∑J−2

t=1
γt Zt

)]
= βγs (1 − q) .

(b) This is proved with a modification of the reasoning in (a).
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Assume first j ≤ J ,

1

N

N∑

i=1

m(J+1)
i m( j)

i � 1

N

N∑

i=1

[
E Th

(∥∥∥M(J )
∥∥∥ Z J +

J−1∑

t=1

γtξ
(t)
i

)

× Th

⎛

⎝
∥∥∥M( j−1)

∥∥∥ ξ ( j−1)
i +

j−2∑

t=1

γtξ
(t)
i

⎞

⎠

⎤

⎦ .

In the case j = J + 1, the outcome is similar, one only has to replace the second factor

by Th
(∥∥M(J )

∥∥ Z J +
∑J−1

t=1 γtξ
(t)
i

)
.

The next observation is that by the induction hypothesis, one can replace
∥∥M(J )

∥∥ by√
q − �2

J−1 and we get

1

N

N∑

i=1

m(J+1)
i m( j)

i � 1

N

N∑

i=1

[
E Th

(√
q − �2

J−1 Z J +
∑J−1

t=1
γtξ

(t)
i

)

× Th

⎛

⎝
∥∥∥M( j−1)

∥∥∥ ξ ( j−1)
i +

j−2∑

t=1

γtξ
(t)
i

⎞

⎠
]

in the j ≤ J case, and

1

N

N∑

i=1

m(J+1)2
i � 1

N

N∑

i=1

E Th2

(√
q − �2

J−1 Z J +
J−1∑

t=1

γtξ
(t)
i

)
.

The important point is that the factor before Z J is replaced by a constant, which
is due to the induction hypothesis. We can now proceed in the same way with ξ (J−1),
applying again Lemma A.3, conditioned on FJ−2, and the induction hypothesis. The
final outcome is

1

N

N∑

i=1

m(J+1)
i m( j)

i � E

⎡

⎣Th

⎛

⎝
√

q − �2
J−1 Z J +

J−1∑

r= j

γr Zr +
j−1∑

r=1

γr Zr

⎞

⎠

× Th

⎛

⎝
√

q − �2
j−1 Z j +

j−2∑

r=1

γr Zr

⎞

⎠

⎤

⎦ ,

in the case j ≤ J , and

1

N

N∑

i=1

m(J+1)2
i � E Th2

⎛

⎝
√

q − �2
J−1 Z J +

J−1∑

r= j

γr Zr +
j−1∑

r=1

γr Zr

⎞

⎠ .

For the latter case, the right-hand side is simply q. For the case j ≤ J , we can rewrite
the expression on the right-hand side as

E Th
(√

q − �2
j−1 Z ′′ + γ j−1 Z ′ + � j−2 Z

)
Th
(√

q − �2
j−2 Z ′ + � j−2 Z

)
. (5.12)
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We represent
√

q − �2
j−1 Z ′′ + γ j−1 Z ′ = aZ1 + bZ2,
√

q − �2
j−2 Z ′ = aZ1 + bZ3.

Solving, we get a2 + b2 = q − �2
j−2, and

a2 = γ j−1

√
q − �2

j−2.

Using this, we get that (5.12) equals

E Th
(
� j−2 Z + aZ1 + bZ2

)
Th
(
� j−2 + aZ1 + bZ2

) = ψ
(
�2

j−2 + a2
)
,

�2
j−2 + a2 = �2

j−2 + γ j−1

√
q − �2

j−2 = ρ j−1.

Therefore, for j ≤ J , we get

1

N

N∑

i=1

m(J+1)
i m( j)

i � ψ
(
ρ j−1

) = ρ j .

��
Remark 5.4. In a way, the key result of this paper is that

m(k) ≈ m̂(k) (5.13)

holds for all k. This is correct for all β. The key point with (2.1) is that the first summand∥∥M(k−1)
∥∥ ξ (k−1) disappears for k → ∞ as

∥∥M(k−1)
∥∥ �

√
q − �2

k−2, so that for large

k, m̂(k) stabilizes to Th
(∑

t γtξ
(t)
)
, but above the AT-line q − �2

k−2 does not converge
to 0. Therefore, above the AT-line, in every iteration, new conditionally independent
contributions appear.

Acknowledgements. I thank two anonymous referees for their careful reading and useful comments which
lead to a number of improvements.

A. Appendix

Lemma A.1. Let ζ = (ζi )i=1,...,N be a sequence of Gaussian vectors with supN ,i E
(
ζ 2

i

)
<

∞, and supN ,i �= j N
∣∣E
(
ζiζ j

)∣∣ < ∞. Then there exist K ,C > 0, depending only on these
two suprema, such that

P

(
1

N

N∑

i=1

|ζi | ≥ K

)
≤ C exp [−N/C] (A.1)

and

P

(
1

N

N∑

i=1

ζ 2
i ≥ K

)
≤ C exp [−N/C] . (A.2)
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Proof. We can multiply the ζi by a fixed positive real number. Therefore, we may assume

that supN ,i �= j N
∣∣E
(
ζiζ j

)∣∣ ≤ 1/4, supN ,i E
(
ζ 2

i

) ≤ 1. Put αi
def= 1−E

(
ζ 2

i

)
, and choose

independent Gaussians Ui with EU 2
i = αi . If we prove the statements (A.1) and (A.2)

for the sequence {ζi + Ui }, then it follows for the ζi itself, simply because (A.1) and (A.2)
hold for the Ui . Therefore we may assume that E

(
ζ 2

i

) = 1, and
∣∣E
(
ζiζ j

)∣∣ ≤ 1/4N for
i �= j . Write � for the covariance matrix of {ζi } .� = I + ε, where

∣∣εi j
∣∣ ≤ 1/4N .

Taking the symmetric square root

I + a = √
I + ε,

then supi, j≤N

∣∣ai j
∣∣ ≤ C/N . Therefore, we can represent the ζi as

ζi = Zi +
∑

j

ai j Z j ,

where the Zi are i.i.d. standard Gaussians. Then

P

(
1

N

N∑

i=1

|ζi | ≥ K

)
≤ P

(
1

N

N∑

i=1

|Zi | ≥ K/2

)
+ P

(
1

N

N∑

i=1

|Zi | ≥ √
K/2C

)
.

By choosing K appropriate, we get the desired estimate.
To prove (A.2), we use the same representation. As

1

N

N∑

i=1

ζ 2
i ≤ 2

N

N∑

i=1

Z2
i +

2

N

N∑

i=1

⎛

⎝
∑

j

ai j Z j

⎞

⎠
2

≤ 2

N

N∑

i=1

Z2
i +

C

N

(
N∑

i=1

|Zi |
)2

and

P

(
1

N

N∑

i=1

Z2
i ≥ K

)
≤ C exp [−N/C]

for large enough K , we get the desired conclusion. ��
Corollary A.2. Assume COND (J ) and k ≤ J .

(a) For any m ≤ k there exist C, K > 0 such that

P

(
1

N

∑

i

∣∣∣ξ (m)i

∣∣∣ ≥ K

)
≤ C exp [−N/C] .

(b) For any m, l, there exist C, K > 0 such that

P

(
1

N

∑

i

∣∣∣ξ (m)i ξ
(l)
i

∣∣∣ ≥ K

)
≤ C exp [−N/C] .



364 E. Bolthausen

(c) If Yi are Fm−1-measurable with

P
(
supi |Yi | ≥ K

) ≤ C exp [−N/C]

for some K , then

P

(∣∣∣
〈
ξ (m),Y

〉∣∣∣ ≥ t
)

≤ C exp
[
−t2 N/C

]
, t ≤ 1.

Proof. Conditioned on Fm−1, ξ
(m) is Gaussian with covariances given by Lemma 4.2.

On Fm−1-measurable events BN with P (BN ) ≥ 1 − C exp [−N/C], the variables
appearing in this lemma on the right hand sides are appropriately bounded. So, on BN ,
the ξ (m)i are Gaussians which satisfy the conditions of the previous lemma. So (a) follows
from that lemma. For (b), we estimate

1

N

∑

i

∣∣∣ξ (m)i ξ
(l)
i

∣∣∣ ≤
√

1

N

∑

i

ξ
(m)2
i

√
1

N

∑

i

ξ
(l)2
i ,

so that we see that it suffices to consider l = m. Then we apply the lemma, part (b).
As for (c), we have that the conditional distribution of

√
N
〈
ξ (m),Y

〉
, given Fm−1, is

Gaussian, with bounded variance. So the statement follows. ��
Lemma A.3. Let

{
η
(N )
i

}

i≤N
, be Gaussian vectors with σ (N )i j = Eη

(N )
i η

(N )
j . We assume

that for some sequence μN > 0 with logμN being bounded, one has
∣∣∣σ (N )i i − μN

∣∣∣ ≤ C/N ,

and there are vectors
{

x (N )i

}

i≤N
,
{

y(r,N )i

}

i≤N , r≤m
, m fixed, which are bounded in all

indices, such that

sup
i �= j,N

N 2

∣∣∣∣∣σ
(N )
i j − x (N )i x (N )j

N
+

m∑

r=1

y(N ,r)i y(N ,r)j

N

∣∣∣∣∣ < ∞.

Let also FN ,i , i ≤ N, be functions R → R, which are bounded and Lipshitz, uniformly
in N , i . Then

1

N

N∑

i=1

FN ,i

(
η
(N )
i

)
� 1

N

N∑

i=1

E FN ,i
(√
μN Z

)
.

Proof. We leave out N in notations, as often as possible. Consider

η′
i

def= ηi +
m∑

r=1

y(r)i√
N

Zr +
√

K
Z ′

i√
N
.

The constant K > 0 will be specified below. Then
∣∣∣∣∣

1

N

N∑

i=1

FN ,i (ηi )− 1

N

N∑

i=1

FN ,i
(
η′

i

)
∣∣∣∣∣

≤ Lc
m∑

r=1

1√
N

|Zr | + L

√
K

N 3/2

N∑

i=1

∣∣Z ′
i

∣∣ ,
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where L is a bound on the Lipshitz constants for the FN ,i , and c is a bound of the
∣∣∣y(r)i

∣∣∣.
As

P
(
|Zr | ≥ t

√
N
)

≤ C exp
[
−t2 N/C

]
, (A.3)

P

(
1

N

N∑

i=1

∣∣Z ′
i

∣∣ ≥ t
√

N

)
≤ C exp

[
−t2 N/C

]
,

we get

1

N

N∑

i=1

FN ,i (ηi ) � 1

N

N∑

i=1

FN ,i
(
η′

i

)
.

E
(
η′2

i

)
= μN + δi +

m∑

r=1

y(r)2i

N
+

K

N
,

E
(
η′

iη
′
j

)
= xi x j

N
+ ri j , i �= j,

where

δi
def= σi i − μN ,

ri j
def= σi j − xi x j

N
+

m∑

r=1

y(r)i y(r)j

N
.

We choose K large enough such that the N × N -matrix � which is
(
ri j
)

off diagonal,
and

m∑

r=1

y(r)2i

N
+

K

N
− x2

i

N
+ δi

on the diagonal is positive definite. This is possible as
∣∣ri j
∣∣ ≤ C N−2.

Let {Ui } be a Gaussian vector with covariance matrix �. Then

√
μN Zi +

xi√
N

Z + Ui

has the same distribution as
{
η′

i

}
. Here we assume that {Ui } is independent of the Z ’s.

So, we assume that the η′
i are presented in this way,

∣∣∣∣∣
1

N

N∑

i=1

FN ,i
(
η′

i

)− 1

N

N∑

i=1

FN ,i
(√
μN Zi

)
∣∣∣∣∣ ≤ C L

|Z |√
N

+ L
1

N

N∑

i=1

|Ui | .

We apply Lemma A.1 to the vector
(√

NUi

)

1≤i≤N
, and (A.3) to the first summand on

the right-hand side, obtaining

1

N

N∑

i=1

FN ,i
(
η′

i

) � 1

N

N∑

i=1

FN ,i
(√
μN Zi

)
,
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so we finally have

1

N

N∑

i=1

FN ,i
(√
μN Zi

) � 1

N

N∑

i=1

E FN ,i
(√
μN Z

)
,

by standard Gaussian isoperimetry (see e.g. [4]). ��

References

1. Bayati, M., Montanari, A.: The dynamics of message passing on dense graphs, with applications to com-
pressed sensing. IEEE Trans. Inf. Th. 57, 771–808 (2011)

2. Bayati, M., Lelargey, M., Montanari, A.: Universality in polytope phase transitions and message passing
algorithms. Preprint, available at http://arxiv.org/abs/1207.7321v1 [math.PR], 2012

3. de Almeida, J.R.L., Thouless, D.J.: Stability of the Sherrington–Kirkpatrick model of spin glasses. J. Phys.
A. Math. Gen. II, 983–990 (1978)

4. Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Berlin: Springer, 1991
5. Mézard, M., Parisi, G., Virasoro, M.: Spin glass theory and beyond. Singapore: World Scientific, 1987
6. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics, New York:

Springer, 2013
7. Talagrand, M.: Mean Field Models in Spin Glasses, Vol I. Berlin: Springer, 2010
8. Talagrand, M.: The Parisi formula. Ann. Math. 163, 221–263 (2006)
9. Thouless, D.J., Anderson, P.W., Palmer, R.G.: Solution of “solvable model in spin glasses”. Phil. Mag.

35, 593–601 (1977)

Communicated by F. Toninelli

http://arxiv.org/abs/1207.7321v1

	An Iterative Construction of Solutions of the TAP Equations for the Sherrington--Kirkpatrick Model
	Abstract:
	1 Introduction
	2 The Recursive Scheme for the Solutions of the TAP Equations
	3 Iterative Modifications of the Interaction Variables
	4 Computation of the Conditional Covariances of g( k)
	5 Proof of Proposition 2.5
	Acknowledgements.
	A Appendix
	References


