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Abstract: This paper deals with the evolution of the Einstein gravitational fields which
are coupled to a perfect fluid. We consider the Einstein–Euler system in asymptotically
flat spacestimes and therefore use the condition that the energy density might vanish or
tend to zero at infinity, and that the pressure is a fractional power of the energy density. In
this setting we prove local in time existence, uniqueness and well-posedness of classical
solutions. The zero order term of our system contains an expression which might not be
a C∞ function and therefore causes an additional technical difficulty. In order to achieve
our goals we use a certain type of weighted Sobolev space of fractional order. In Brauer
and Karp (J Diff Eqs 251:1428–1446, 2011) we constructed an initial data set for these
of systems in the same type of weighted Sobolev spaces.

We obtain the same lower bound for the regularity as Hughes et al. (Arch Ratl Mech
Anal 63(3):273–294, 1977) got for the vacuum Einstein equations. However, due to the
presence of an equation of state with fractional power, the regularity is bounded from
above.

1. Introduction

This paper deals with the Cauchy problem for the Einstein–Euler system describing a
relativistic self-gravitating perfect fluid, whose density either has compact support or
falls off at infinity in an appropriate manner.

The evolution of the gravitational field is described by the Einstein equations

Gαβ = Rαβ − 1

2
gαβR = 8πTαβ, (1.1)

where gαβ is a semi-Riemannian metric having a signature (−,+,+,+), Rαβ is the Ricci
curvature tensor, and R is the scalar curvature. Both tensors are functions of the metric
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gαβ and its first and second order partial derivatives. The right-hand side of (1.1) consists
of the energy–momentum tensor Tαβ , which in the case of a perfect fluid takes the form

T αβ = (ε + p)uαuβ + pgαβ, (1.2)

where ε is the energy density, p is the pressure and uα is the four-velocity vector.
The vector uα is a unit timelike vector, which means that it satisfies the normalization
condition

gαβuαuβ = −1. (1.3)

The Euler equations describing the evolution of the fluid take the form

∇αT αβ = 0, (1.4)

where ∇ denotes the covariant derivative associated with the metric gαβ . Equations (1.1)
and (1.4) are not sufficient to determinate the structure uniquely, a functional relation
between the pressure p and the energy density ε (equation of state) is also needed.
We choose an equation of state that has been used in astrophysical problems. It is the
analogue of the well known polytropic equation of state in the non-relativistic theory,
given by

p = p(ε) = K εγ , K , γ ∈ R
+, 1 < γ. (1.5)

The sound velocity is denoted by

σ 2 = dp

dε
,

and the range of the energy density ε will be restricted so that the causality condition
σ 2 < 1 will hold.

The unknowns of these equations are the semi-Riemannian metric gαβ , the velocity
vector uα and the energy density ε. These are functions of t and xa , where xa (a =
1, 2, 3) are the Cartesian coordinates on R

3. The alternative notation x0 = t will also
be used and Greek indices will take the values 0, 1, 2, 3 in the following.

In the present paper we prove the well-posedness of the coupled systems (1.1), (1.2),
(1.4) and (1.5) under the harmonic gauge condition in asymptotically flat spacetimes. In
order to achieve this, we need to rewrite the above equations as a hyperbolic system.

In astrophysical context the density ε is expected to have compact support, or tend
to zero at spatial infinity in an appropriate sense. It is well known that the usual sym-
metrization of the Euler equations is badly behaved in cases where the density tends to
zero somewhere. The coefficients of the system degenerate or become unbounded when
ε approaches zero. It was observed by Makino [19] that this difficulty can be to some
extent circumvented in the case of a non-relativistic fluid by using a new matter variable
w in place of the mass density. For this reason we introduce the quantity

w = M(ε) = ε
γ−1

2 , (1.6)

and we call it the Makino variable. A similar device was used by Gamblin [12] and
Bezard [2] for the Euler-Poisson equations, and by Rendall [24] and Oliynyk [22] for
the Einstein–Euler equations. The common method for solving the Cauchy problem for
the Einstein equations consists usually of the following steps.
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1. Initial data must satisfy the constraint equations, which are intrinsic to the initial
hypersurface. Therefore, the first step is to construct solutions of these constraints.

2. The second step is to use the harmonic coordinate condition and to solve the evolution
equations with these initial data.

3. The last step is to prove that the harmonic coordinate condition and the solution of
the constraints propagate. That means if they held on an initial hypersurface, they
hold for later times.

The last step was treated in detail, for example in Fisher and Marsden[11]. The idea is to
work out the condition ∇αGαβ = 0. Since our energy–momentum satisfies (1.4), their
result can be immediately generalized for our case. But for the sake of brevity we have
omitted the details.

However, the presence of the equation of state (1.5) introduces an additional step:
the compatibility problem of the initial data for the fluid and the gravitational field [see
(2.11)]. There are three types of initial data for the Einstein–Euler system:

• The gravitational data is a triple (M, h, Kab), where M is a space-like manifold,
h is a proper Riemannian metric on M, and Kab is the second fundamental form
on M (extrinsic curvature). The pair (h, Kab) must satisfy the constraint equations
(2.10);

• The matter variables, consisting of the energy density z and the momentum density
ja , appear on the right-hand side of the constraints (2.10);

• The initial data for the Makino variable w and the velocity vector uα of the perfect
fluid.

The only type of Sobolev spaces which are known to be useful for existence theorems
for the constraint equations in an asymptotically flat manifold, are the weighted Sobolev
spaces Hk,δ , where k ∈ N and δ ∈ R. These spaces were introduced by Nirenberg and
Walker [21] and Cantor [5], and they are the completion of C∞

0 (R
3)-functions under the

norm

‖u‖2
k,δ =

∑

|α|≤k

∫ (
(1 + |x |)δ+|α||∂αu|

)2
dx . (1.7)

Due to the presence of the equation of state (1.5) and the Makino variable (1.6), we

have to estimate ‖w 2
γ−1 ‖k,δ . So it is perhaps worth discussing the estimate of Sobolev’s

norm of uβ in more details for β > 1. For simplicity we discuss this in the ordinary
Sobolev space Hk = Hk(R3). The simplest case is when β ∈ N, then ‖uβ‖Hk ≤
C(‖u‖L∞)‖u‖Hk and there is no restriction on k. When β �∈ N, then we obtain the same
estimate, provided that k ≤ β. This bound on k was improved by Runst and Sickel [25]
to k < β + 1

2 . Applying this to β = 2
γ−1 , and taking into account the Sobolev embedding

‖u‖L∞ ≤ C‖u‖Hk for k > 3
2 , we get a lower and upper bound for k:

3

2
< k <

2

γ − 1
+

1

2
. (1.8)

The only exception is the case when 2
γ−1 is an integer. Note that for certain values

of γ , inequalities (1.8) possess no integer solution. Hence, for these values of γ it is
impossible to obtain a solution to the Einstein–Euler system in Sobolev spaces of integer
order. So in order to be able to solve the coupled system for the maximal range of the
power γ , and in addition, to improve the regularity of the solutions, we are considering
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the Cauchy problem in the weighted fractional spaces Hs,δ , where s is real number
(see Definition 2.1). These spaces were introduced by Triebel [28], and they generalize
Hk,δ to a fractional order. In [4] the authors constructed initial data for coupled systems
(1.1), (1.2) and (1.4) with the equations of state (1.5). This includes the solution to the
constraint equations (2.10), as well as the solution to the compatibility problem between
the matter variable (z, ja) and the fluid variables (w, uα), (2.11), in the Hs,δ-spaces.
Here we will establish the well-posedness of Einstein–Euler systems in the weighted
fractional Sobolev spaces Hs,δ .

The common way to prove well-posedness is to rewrite the evolution equations as
a symmetric hyperbolic system. So our first step is to use the Makino variable (1.6)
and to reduce the Euler equations (1.4) to a uniformly first order symmetric hyperbolic
system. This result was announced in [3] and here we present a detailed proof of it.
Our hyperbolic reduction is based on the fluid decomposition; for alternative reductions
see [24].

It is well-known that the Einstein equations can be written as a system of quasi-linear
wave equations under the harmonic gauge condition [6,7,29]. The proofs of existence
and uniqueness either use second order techniques [6,8,13,14,17], or transferring the
equations to a first order symmetric hyperbolic system. Fischer and Marsden used the
first order techniques and obtained the well-posedness of the reduced vacuum Einstein
equations in Hs and for s > 7

2 [11]. This result was improved by Hughes et al. [14], who
obtained (gαβ, ∂t gαβ) ∈ Hs+1 × Hs for s > 3

2 . They used second order theory, and took
advantage of the specific form of the quasi-linear system of wave equations, namely, that
the coefficients depend only on the semi-metric gαβ , but not on its first order derivatives.

Our aim is to prove existence and uniqueness of the reduced Einstein–Euler system
(1.1), (1.2) and (1.4) with the equation of state (1.5). In addition, we would like to achieve
the same regularity of the metric as in [14]. But since we have here a coupled system
which one of them is a first order, the second order techniques of Hughes, Kato and
Marsden in [14] are no longer available for the present problem.

In asymptotically flat spacetimes the initial metric gαβ(0) differs from the Minkowski
metric by a term which is O(1/r) at spatial infinity, and this term does not belong
to Hs . It is therefore more appropriate to consider both the constraint and evolution
equations in the Hs,δ spaces rather than in the spaces Hs without weights. For the
vacuum equations the second author obtained well-posedness of the reduced Einstein
equations with (gαβ, ∂t gαβ) ∈ Hs+1,δ × Hs,δ+1, s > 3

2 and δ > − 3
2 , see [16]. But unlike

Hughes, Kato and Marsden [14], he treated the quasi-linear system of wave equations as
a first order symmetric hyperbolic system. The first order techniques have the advantage
that they enable, in a convenient way, the coupling of the gravitational field equations
to other matter models, in particular, to perfect fluids. In the Appendix we explain the
main idea of [16] which allows us to obtain the regularity index s > 3

2 by means of first
order hyperbolic systems.

A crucial step in the proof of existence and uniqueness of any hyperbolic system is to
establish energy estimates for the linearized system. In order to achieve this we define an
appropriate inner-product of the Hs,δ spaces, which takes into account the coefficients
of the linearized system (see Sect. 5 ). A similar inner-product was used in [16], and
here we rely on these energy estimates.

Once we have obtained the energy estimates for the linearized system, we use Majda’s
iterative scheme in order to obtain existence and uniqueness of the quasi-linear symmetric
hyperbolic system [18]. This procedure uses the fact that solutions to a linear first order
symmetric hyperbolic system with C∞

0 coefficients and initial data are also C∞
0 . But
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here we encounter a further difficulty, namely, the right-hand side of (1.1) contains the

fractional power w
2

γ−1 , see (3.16). So even when w ∈ C∞
0 and w ≥ 0, w

2
γ−1 might

not be a C∞ function. We solve that problem by using the fact that ε = w
2

γ−1 satisfies
a certain first order linear equation. Gamblin encountered a similar problem for the
Euler–Poisson equations [12], but he solved it in a somewhat different way.

Our results improve the existence theory of solutions locally in time of self gravitating
relativistic perfect fluids in several aspects. Rendall studied this problem in [24], but he
assumed time symmetry, which means that the extrinsic curvature of the initial manifold
is zero, and therefore the Einstein constraint equations are reduced to a single scalar
equation. In addition, he dealt only with C∞

0 -solutions. In his study of the Newtonian
limit of perfect fluids, Oliynyk obtained existence locally in time in the weighted space
of integer order Hk,δ , for k ≥ 4 [22]. Both Rendall and Oliynyk assume that the adiabatic
exponent of (1.5) satisfies the condition that 2

γ−1 is an integer.
The paper is organized as follows: In the next section we define the weighted Sobolev

spaces of fractional order Hs,δ and state the main result. Section 3 has two subsections:
the first one deals with the hyperbolic reduction of the Euler equations (1.4); in the
second one we spell out the matrices which describe the coupled equations (1.1), (1.2)
and (1.4) as a hyperbolic system.

In Sect. 4 we present tools and properties of the Hs,δ-spaces which we need in the
course of the publication. We also define the corresponding product spaces. The energy
estimates for the linearized system are considered in Sect. 5, there we also define the
appropriate inner-product. In Sect. 6 we treat the iteration procedure. Parts of the steps
are standard and known, but some of them require special attention due to the specific
form of the system (3.24) and the product spaces. In this section we will use the fact
that the coefficients of the first order derivatives depend only on the semi-metric gαβ .
Finally, in Sect. 7 we prove the main result. In the Appendix we give a heuristic idea
explaining how the fact that the coefficients of the system of wave equations depend
only on the semi-metric gαβ enables us to obtain the desired regularity by means of
symmetric hyperbolic systems.

2. The Main Results

We obtain the well-posdeness in the weighted Sobolev spaces of fractional order. So we
first recall their definition.

Let {ψ j }∞j=0 ⊂ C∞
0 (R

3) be a sequence of cutoff function such that, ψ j (x) ≥ 0 for

all j ≥ 0, supp(ψ j ) ⊂ {x : 2 j−2 ≤ |x | ≤ 2 j+1}, ψ j (x) = 1 on {x : 2 j−1 ≤ |x | ≤ 2 j }
for j = 1, 2, ..., supp(ψ0) ⊂ {x : |x | ≤ 2}, ψ0(x) = 1 on {x : |x | ≤ 1} and

|∂αψ j (x)| ≤ Cα2−|α| j ,

where the constant Cα does not depend on j .
We restrict ourselves to the case p = 2 and denote the Bessel potential spaces by Hs

with the norm given by

‖u‖2
Hs =

∫
(1 + |ξ |2)s |û(ξ)|2dξ,

where û is the Fourier transform of u.



110 U. Brauer, L. Karp

Definition 2.1. For s, δ ∈ R,

(‖u‖Hs,δ

)2 =
∞∑

j=0

2(
3
2 +δ)2 j‖(ψ j u)(2 j )‖2

Hs , (2.1)

where fε(x) = f (εx) denotes the scaling by a positive number ε. The space Hs,δ is the
set of all tempered distributions having a finite norm given by (2.1).

The Hs,δ-norm of a distribution u in an open set � ⊂ R
3 is given by

‖u‖Hs,δ(�) = inf
f |�=u

‖ f ‖Hs,δ(R3) .

Definition 2.2. Let M be a 3 dimensional smooth connected manifold and let h be a
metric on M such that (M, h) is complete. We say that (M, h) is asymptotically flat of
the class Hs,δ if h ∈ Hs

loc(M) and there is a compact set S ⊂ M such that:

1. There is a finite collection of charts {(Ui , ϕi )}N
i=1 which covers M\S;

2. For each i , ϕ−1
i (Ui ) = Eri := {x ∈ R

3 : |x | > ri } for some positive ri ;
3. The pull-back (ϕi∗h)ab is uniformly equivalent to the Euclidean metric δab on Eri for

each i;
4. For each i, (ϕi∗h)ab − δab ∈ Hs,δ(Eri ).

The Hs,δ-norm on the manifold M is defined as follows. Let U0 ⊂ M be an open
set such that S ⊂ U0 and U0 � M. Let {χ0, χi } be a partition of unity subordinate to
{U0,Ui }, then

‖u‖Hs,δ(M) := ‖χ0u‖Hs (U0)
+

N∑

i=1

∥∥ϕ∗
i (χi u)

∥∥
Hs,δ(R3)

(2.2)

is the norm of the weighted fractional Sobolev space Hs,δ(M). For the definition of the
norm ‖χ0u‖Hs (�) on the manifold M, see e.g. [1]. Note that the norm (2.2) depends
on the partition of unity, but different partitions of unity result in equivalent norms. In
the following we will omit the notation M, that is, we will write ‖u‖Hs,δ instead of
‖u‖Hs,δ(M).

Since the principal symbol of the field equations (1.1) is characteristic in every direc-
tion (see e.g. [10]), it is impossible to solve (1.1) in the present form. We study these
equations under the harmonic gauge condition

Fμ = gβγ �μβγ = 0, (2.3)

where gαβ is the inverse matrix of gαβ . Then the field equations (1.1) are equivalent to
the reduced Einstein equations

gμν∂μ∂νgαβ = Hαβ(g, ∂g)− 16πTαβ + 8πgμνTμνgαβ, (2.4)

where Hαβ(g, ∂g) is a quadratic function of the semi-metric gαβ and its first order
derivatives. Since gμν has a Lorentzian signature, (2.4) is a system of quasi-linear wave
equations. Taking into account the equation of state (1.5), the normalization condition
(1.2), and the Makino variable (1.6), then the system of wave equations (2.4) becomes

gμν∂μ∂νgαβ = Hαβ(g, ∂g)− 8πw
2

γ−1

(
(1 − Kw2)gαβ + 2(1 + Kw2)uαuβ

)
. (2.5)
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So the unknowns of the system (2.5) coupled with the Euler equations (1.4) are the
semi-metric gαβ , the velocity vector uα and the Makino variable w. Note that even if

w is a smooth function, w
2

γ−1 might not be smooth in certain regions. The initial data
consist of the triple (M, hab, Kab), where M is a space-like manifold, hab is a proper
Riemannian metric on M and Kab is its second fundamental form (extrinsic curvature).

The semi-metric gαβ takes the following data on M :
{

g00|M = −1, g0a|M = 0, gab|M = hab

− 1
2∂0gab|M = Kab,

a, b = 1, 2, 3. (2.6)

The remaining initial data for ∂0gα0|M are determined through the harmonic condition
Fμ = 0. We compute them by inserting the initial data (2.6) in the harmonic gauge
condition (2.3). Since ∂a g00|M = ∂agb0|M = 0, this results in the following expressions
for ∂0gα0|M :

{
∂0g00|M = 2hab(Kab)

∂0g0c|M = 1
2

(
hab(∂ahbc − ∂chab)

)
.

(2.7)

In addition, the initial data of the velocity vector uα and the Makino variablew are given
on M. We denote the Minikowski metric by ηαβ .

Theorem 2.3 (Main result). Let 3
2 < s < 2

γ−1 + 1
2 and − 3

2 ≤ δ. Assume M is asymp-

totically flat of class Hs+1,δ , Kab ∈ Hs,δ+1,
(
u0 − 1, ua, w

) ∣∣M ∈ Hs+1,δ+1, w(0) ≥ 0
and uα(0) is a timelike vector. Then there exists a positive T , a unique semi-metric gαβ ,
a unit timelike vector uα and w satisfying the reduced Einstein equations (2.5) and the
Euler equations (1.4) such that

(gαβ(t)− ηαβ) ∈ C([0, T ], Hs+1,δ) ∩ C1([0, T ], Hs,δ+1) (2.8)

and
(

u0 − 1, ua, w
)

∈ C([0, T ], Hs+1,δ+1) ∩ C1([0, T ], Hs,δ+2). (2.9)

Remark 2.4 (On the differentiability). Note that we have a lower and an upper bound of
the differentiability index s, however, in case 2

γ−1 is an integer, then there is no upper
bound.

A necessary and sufficient condition for the equivalence between the reduced Einstein
equations (2.5) and the field equations (1.1) is that the geometric data (h, Kab) satisfy
the constraint equations

{
R(h)− Kab K ab + (hab Kab)

2 = 16π z
(3)∇b K ab − (3)∇b(hbc Kbc) = −8π ja .

(2.10)

Here R(h) = hab Rab is the scalar curvature with respect to the metric hab. The right-
hand-side (z, ja) consists of the energy density and the momentum density respectively.

Note that the harmonic coordinates Fμ satisfy a homogeneous wave equation. That is
why Fμ ≡ 0, if Fμ| M = 0 and ∂0 Fμ| M = 0. The first condition follows from (2.7),
and the second holds if the reduced Einstein equations (2.5) and the constraint equations
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(2.10) are satisfied [7], [27, §18.8], [29, §10.2]. Although some of these references
concern only the vacuum equations, since the proof relies on the Bianchi identities,
it is valid for the Einstein-Euler equations, whose energy-momentum tensor T αβ is
divergence free.

Thus solving the constraint equations (2.10) ensures that the solution of (2.5) satisfies
the original system (1.1). However, before we solve the constraints, we need to treat the
compatibility problem between the matter variables (z, ja) and the initial data for the
velocity uα and the Makino variable w.

This problem can be described as follows: Let ūα denote the projection of the velocity
vector uα on the initial manifold M and nα the timelike unit normal vector to M. The
energy density z is the double projection of Tαβ on nα and the momentum density ja

is once the projection of Tαβ on nα and once on M. Applying these projections to the
perfect fluid (1.2) results in

⎧
⎨

⎩
z = w

2
γ−1

(
1 + (1 + Kw2)

)
habūaūb

ja = w
2

γ−1
(
1 + Kw2

)
ūa

√
1 + hbcūbūc

. (2.11)

So the compatibility problem consists of solving (2.11) for w, ūa , when z and ja

are given. This problem combined with a solution to the constraint equations (2.10)
was solved in the Hs,δ-spaces in [4, Thm. 2.6]. The conditions for this result are that
3
2 < s < 2

γ−1 + 1
2 , where the metric hab − δab ∈ Hs+1,δ with δ ∈ (− 3

2 ,− 1
2 ), while for

the matter variables (z, ja) ∈ Hs,δ and δ is just bounded below by − 3
2 . Note that for the

hyperbolic equations we need one more degree of regularity, so we need to require that
(z, ja) ∈ Hs+1,δ+1. But then the Makino variable (1.6) causes the upper bound for s to
become 2

γ−1 − 1
2 . Given this restriction, we have by Theorem 2.5 of [4] and Proposition

4.9 below that (w, u0 − 1, ua)
∣∣M ∈ Hs+1,δ+1.

Thus relying on [4], we conclude that there is an initial data set (hab, Kab) and
(w, uα) belonging to the Hs,δ-spaces that satisfies both the constraints (2.10) and the
compatibility problem (2.11). The parameter γ of these initial data, however, belongs
to the interval (1, 2).

Corollary 2.5. Under the assumptions of Theorem 2.3 and in addition under the assump-
tion that the initial data (hab, Kab) and (w, uα) satisfy the constraint equations (2.10)
and the compatibility problem (2.11), there exists a positive T , a semi-metric g, a unit
timelike vector uα and w satisfying the Einstein (1.1) and the Euler equations (1.4) for
t ∈ [0, T ]. The regularity of g, uα and w are the same as in Theorem 2.3.

Remark 2.6 (Existence, uniqueness and regularity). Existence, uniqueness and regular-
ity of solutions of the Einstein equations (1.1) hold relative to the harmonic coordinate
condition (2.3). Geometrical uniqueness requires usually one degree more of differentia-
bility [11]. Planchon and Rodnianski [23](see also [9]) gave an argument for the vacuum
case to get rid of this additionally regularity. For the Einstein–Euler system, and other
matter fields, however, this problem remains still open.

3. Symmetric Hyperbolic Systems

The main result is proved by transforming the coupled system (2.5) and (1.4) into a
symmetric hyperbolic system. We therefore recall its definition.
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Definition 3.1 (Symmetric hyperbolic system). A first order quasi-linear k × k system
is a symmetric hyperbolic system in a region G ⊂ R

k , if it is of the form

L[U ] = Aα(U )∂αU + B(U ) = 0, (3.1)

where the matrices Aα(U ) are symmetric and for every arbitrary U ∈ G, there exists a
covector ξ such that

ξαAα(U ) (3.2)

is positive definite. The covectors ξα for which (3.2) is positive definite, are called
timelike with respect to Eq. (3.1).

If ξ can be chosen to be the vector (1, 0, 0, 0), then condition (3.2) implies that the
matrix A0(U ) is a positive definite matrix, and we may write system (3.1) in the form

A0(U )∂tU = Aa(U )∂aU + B(U ). (3.3)

3.1. The Euler equations written as a symmetric hyperbolic system. It is not obvious
that the Euler equations written in the conservative form ∇αT αβ = 0 are symmetric
hyperbolic. In fact these equations have to be transformed in order to be expressed in a
symmetric hyperbolic form. Rendall presented such a transformation of these equations
in [24]; however, its geometrical meaning is not entirely clear and it might be difficult to
generalize it to the non-time symmetric case. Hence we will present a different hyperbolic
reduction of the Euler equations and discuss it in some details, for we have not seen it
anywhere in the literature.

The basic idea is to perform the standard fluid decomposition and then to modify the
equation by adding, in an appropriate manner, the normalization condition (1.3) which
will be considered as a constraint equation. The fluid decomposition method consists of
the projection of equation ∇νT νβ = 0 onto uα which leads to uβ∇νT νβ = 0 and the
projection of these equations onto the rest subspace O orthogonal to uα of a fluid which
leads to Pαβ∇νT νβ = 0, where Pαβ = gαβ + uαuβ . Inserting this decomposition into
(1.2) results in a system of the following form:

uν∇νε + (ε + p)∇νuν = 0; (3.4a)

(ε + p)Pαβuν∇νuβ + Pνα∇ν p = 0. (3.4b)

Note that we have beside the evolution equations (3.4a) and (3.4b) the following
constraint equation: gαβuαuβ = −1. We will show in Subsect. 3.1.1 that this constraint
equation is conserved under the evolution equation. In order to obtain a symmetric hyper-
bolic system we have to modify it in the following way. The normalization condition
(1.3) gives that uβuν∇νuβ = 0, so we add (ε + p)uβuν∇νuβ = 0 to Eq. (3.4a) and
uαuβuν∇νuβ = 0 to (3.4b), which results in

uν∇νε + (ε + p)Pνβ∇νuβ = 0, (3.5a)

�αβuν∇νuβ +
σ 2

(ε + p)
Pνα∇νε = 0, (3.5b)

where σ :=
√
∂p
∂ε

is the speed of sound and

�αβ = Pαβ + uαuβ = gαβ + 2uαuβ



114 U. Brauer, L. Karp

is a reflection with respect to the rest subspace O. As mentioned above, we will introduce
a new matter variable which is given by (1.6). The idea behind is the following: The
system (3.5a) and (3.5b) is almost of symmetric hyperbolic form, it is symmetric if we
multiply the system by appropriate factors, for example, (3.5a) by ∂p

∂ε
= σ 2 and (3.5b)

by (ε + p). However, doing so we will be faced with a system in which the coefficients
will either tend to zero or to infinity, as ε → 0. Hence, it is impossible to represent this
system in a non-degenerate form using these multiplications.

The central point is now to introduce a new variablew = M(ε)which will regularize
the equations even for ε = 0. We do this by multiplying Eq. (3.5a) by κ2 M ′ = κ2 ∂M

∂ε
.

This results in the following system which we have written in matrix form:
⎛

⎜⎜⎝

κ2uν κ2(ε + p)M ′ Pνβ

σ 2

(ε+p)M ′ Pνα �αβuν

⎞

⎟⎟⎠∇ν
(
w

uβ

)
=

(
0
0

)
. (3.6)

In order to obtain symmetry we have to demand that

M ′ = σ

(ε + p)κ
, (3.7)

where κ � 0 has been introduced in order to simplify the expression forw. If we choose

κ = 2
γ−1

√
Kγ

1+K εγ−1 , then (3.7) holds and consequently the system (3.6) is transformed into
the symmetric system

⎛

⎜⎝

κ2uν σκPνβ

κσ Pνα �αβuν

⎞

⎟⎠∇ν
(
w

uβ

)
=

(
0
0

)
. (3.8)

The covariant derivative ∇ν takes in local coordinates the form ∇ν = ∂ν +
�(gγ δ, ∂gαβ), where � denotes the Christoffel symbols. This expresses the fact that
system (3.8) is coupled to system (1.1) for the gravitational field gαβ . In addition, from

the definition of the Makino variable (1.6), we see that εγ−1 = w2, so κ = 2
γ−1

√
Kγ

1+Kw2

and σ = √
γ Kw. Thus the fractional power of the equation of state (1.5) does not appear

in the coefficients of the system (3.8), and these coefficients are C∞ functions of the
scalar w, the four vector uα and the gravitational field gαβ .

Now we want to show that A0 of our system (3.8) is indeed positive definite. In
order to do that we analyze the principal symbol of this system. For each ξα ∈ T ∗

x V , the
principal symbol is a linear map from R×Ex to R×Fx , where Ex is a fiber in Tx V and Fx
is a fiber in the cotangent space T ∗

x V . Since in local coordinates ∇ν = ∂ν +�(gγ δ, ∂gαβ),
the principal symbol of system (3.8) is

ξν Aν =
⎛

⎜⎝

κ2(uνξν) σκPνβξν

σκPναξν (uνξν)�αβ

⎞

⎟⎠ . (3.9)

The characteristics are the set of covectors ξ for which (ξν Aν) is not an isomorphism.
Hence the characteristics are the zeros of Q(ξ) := det(ξν Aν). The geometrical advan-
tages of the fluid decomposition are the following. The operators in the blocks of the
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matrix (3.9) are the projection on the rest hyperplane O, Pνα , and the reflection with
respect to the same hyperplane, �αβ . Therefore, the following relations hold:

�αγ �γβ = δβ
α, �αγ Pγ

ν = Pαν and Pβ
αPα

ν = Pνβ,

which yields

⎛

⎜⎝

1 0

0 �αγ

⎞

⎟⎠
(
ξν Aν

) =

⎛

⎜⎜⎝

κ2(uνξν) σκPνβξν

σκPανξν (uνξν)
(
δαβ

)

⎞

⎟⎟⎠ . (3.10)

It is now fairly easy to calculate the determinate of the right hand side of (3.10) and
we have

det

⎛

⎜⎜⎝

κ2(uνξν) σκPνβξν

σκPανξν (uνξν)
(
δαβ

)

⎞

⎟⎟⎠ = κ2(uνξν)
3
(
(uνξν)

2 − σ 2 PανξνPνα ξν
)
.

Since Pαβ is a projection,

Pανξν Pνα ξν = gνβξν Pαβ Pνα ξν = gνβξν Pνβξν = Pνβξνξ
β,

and since �γβ is a reflection,

det

(
1 0

0 �αγ

)
= det

(
gαβ�γβ

)
= − (

det
(
gαβ

))−1
.

Consequently,

Q(ξ) := det(ξν Aν) = −κ2 det(gαβ)(u
νξν)

3
{
(uνξν)

2 − σ 2 Pαβξαξ
β
}
, (3.11)

and therefore the characteristic covectors are given by two simple equations:

ξνuν = 0; (3.12)

(ξνuν)2 − σ 2 Pαβξαξ
β = 0. (3.13)

Remark 3.2. The characteristics conormal cone is a union of two hypersurfaces in T ∗
x V .

One of these hypersurfaces is given by the condition (3.12) and it is a three dimensional
hyperplane O with the normal uα . The other hypersurface is given by the condition
(3.13) and forms a three dimensional cone, the so-called, sound cone.

Let us now consider the timelike vector uν and insert the covector −uν into the
principal symbol (3.9), then

−uν Aν =
⎛

⎜⎝

κ2 0

0 �αβ

⎞

⎟⎠

is positive definite. Indeed, �αβ is a reflection with respect to a hyperplane having a
timelike normal. Hence, −uν is a timelike covector with respect to the hydrodynamic
equations (3.8). Herewith, we have showed by relatively elegant and elementary methods
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that the relativistic hydrodynamic equations are symmetric-hyperbolic. We want now to
show that the covector tα = (1, 0, 0, 0) is also timelike with respect to the system (3.8).
Since Pαβuα = 0, the covector −uν belongs to the sound cone

(ξνuν)2 − σ 2 Pαβξαξ
β > 0. (3.14)

Inserting tν = (1, 0, 0, 0) the right hand side of (3.14) yields

(u0)2(1 − σ 2)− σ 2g00. (3.15)

Since the sound velocity is always less than the light speed, that is σ 2 = ∂p
∂ε
< c2 = 1, we

conclude from (3.15) that tν also belongs to the sound cone (3.14). Hence, the vector −uν
can be continuously deformed to tν while condition (3.14) holds along the deformation
path. Consequently, the determinant of (3.11) remains positive under this process and
hence tν Aν = A0 is also positive definite. Thus we have proved.

Theorem 3.3. Let ε be a non-negative density function, then the Euler system (1.4)
coupled with the equation of state (1.5) can be written as a symmetric hyperbolic system
of the form (3.3), and where A0 is positive definite.

3.1.1. Conservation of the unit length vector of the fluid.

Proposition 3.4. The constraint condition gαβuαuβ = −1 is conserved along the stream
lines uα .

Proof. Let k(t) be a curve such that k′(t) = uα and set Z(t) = (u ◦ k)β(u ◦ k)β . In
order to establish the conservation of the constraint condition it suffices to establish the
following relation:

d

dt
Z(t) = 2uβ∇k′(t)u

β = 2uνuβ∇νuβ = 0.

Multiplying the four last rows of the Euler system (3.8) by uα and recalling that Pνα is
the projection on the rest space O orthogonal to uα , we have

0 = uα
(
�αβuν∇νuβ + κσ Pνα∇νw

)

= uαPαβuν∇νuβ − uνuβ∇νuβ + κσuαPνα∇νw
= −uνuβ∇νuβ.

Therefore, if gαβuαuβ = −1 on the initial manifold, then it holds along the stream
lines uα . ��

3.2. The coupled hyperbolic system. In this section we will transform the coupled system
(2.5) and (3.8) into a symmetric hyperbolic system. We will pay attention to the fact that
the system will be in a form in which we can apply the energy estimates of [16]. That
allows us to obtain the same regularity for the gravitational fields as Hughes, Kato and
Marsden [14] got for the Einstein vacuum equations. Note that our system is slightly
different from the symmetric hyperbolic system obtained by Fisher and Marsden [11],
since our system contains a constant matrix Ca as given by (3.21).
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We consider a spacetime (V, gαβ) of the type R × M, where M is a Riemannian
manifold, and we denote local coordinates by (t, xa). Set

hαβγ = ∂γ gαβ,

then the reduced Einstein equations (2.5) take the form

∂t gαβ = hαβ0,

−g00∂t hαβ0 =
{

2g0a∂ahαβ0 + gab∂ahαβb + Hαβ(g, ∂g)

− 8πw
2

γ−1

(
(1 − Kw2)gαβ + 2(1 + Kw2)uαuβ

)}
,

gab∂t hαβa = gab∂ahαβ0. (3.16)

In order to apply the energy estimates of [16], we need that the coefficients of ∂t hαβ0
will be independent of t . This is because of the specific form of the inner-product in Hs,δ
spaces which takes into account the matrix A0 of the system (3.1). In Sect. 5 we will
further clarify this issue. Therefore we divide the second row by −g00 and in order to
preserve the symmetry of the system, we also multiply the third row by (−g00)−1. Thus
the system of wave equations (2.5) is equivalent to the system

∂t gαβ = hαβ0,

∂t hαβ0 = (−g00)−1
{

2g0a∂ahαβ0 + gab∂ahαβb + Hαβ(g, ∂g)

− 8πw
2

γ−1

(
(1 − Kw2)gαβ + 2(1 + Kw2)uαuβ

)}
,

(−g00)−1gab∂t hαβa = (−g00)−1gab∂ahαβ0.

(3.17)

To shorten and simplify the notation, we introduce the auxiliary variables

(v, ∂tv, ∂xv) = (gαβ − ηαβ, ∂t gαβ, ∂x gαβ),

where ηαβ denotes the Minkowski metric and ∂x denotes the set of all spatial derivatives.
We also set (e0)

α = (1, 0, 0, 0) and W = (w, uα − eα0 ) represents the Makino and the
fluid variables. Finally,

U = (v, ∂tv, ∂xv,W )

represents the unknowns of the coupled system.
We write the matrices in a block form, A = (ai j ), the k ×k identity matrix is denoted

by ek and 0m×n is the zero matrix.
The coupled system (3.17) and (3.8) can be written in the form of (3.1), where Aα

are 55 × 55 symmetric matrices which depend only on v and W . We shall describe now
the structure of these matrices:

A0(v,W ) =

⎛

⎜⎜⎜⎝

e10 010×10 010×30 010×5

010×10 e10 010×30 010×5

030×10 030×10 a0
33 030×5

05×10 05×10 05×30 a0
44

⎞

⎟⎟⎟⎠ , (3.18)
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where

a0
33 = 1

−g00

⎛

⎜⎝
g11e10 g12e10 g13e10

g21e10 g22e10 g23e10

g31e10 g32e10 g33e10

⎞

⎟⎠ ,

and a0
44 = a0

44(gαβ,w, uα) is given by (3.8) when ν = 0. From (3.17) we see that the
coefficients of ∂aU , a = 1, 2, 3, have the form

⎛

⎝
010×10 010×40 05×5

040×10 aa
22 040×5

05×10 05×40 aa
33

⎞

⎠ ,

where aa
33 = aa

33(gαβ,w, uα) is from the system (3.8) of the fluid and

aa
22(gαβ) = 1

g00

⎛

⎜⎜⎜⎝

2ga0e10 ga1e10 ga2e10 ga3e10

ga1e10

ga2e10 030×30

ga3e10

⎞

⎟⎟⎟⎠ . (3.19)

It is essential to demand that aa
22(gαβ) ∈ Hs,δ , whenever gαβ−ηαβ ∈ Hs,δ . Obviously,

this does not hold for the matrix in (3.19). Therefore we need to modify these matrices
by a constant matrix

ca
22 =

⎛

⎜⎜⎜⎝

010×10 δ
a1e10 δa2e10 δa3e10

δa1e10

δa2e10 030×30

δa3e10

⎞

⎟⎟⎟⎠ ,

then
(
aa

22 − ca
22

)
(v) ∈ Hs,δ whenever v ∈ Hs,δ . So we set

Aa(v,W ) =
⎛

⎝
010×10 010×40 05×5

040×10 aa
22 − ca

22 040×5

05×10 05×40 aa
33

⎞

⎠ , (3.20)

and a constant matrix

Ca =
⎛

⎝
010×10 010×40 05×5

040×10 ca
22 040×5

05×10 05×40 05×5

⎞

⎠ . (3.21)

We turn now to the lower order terms. The presence of the fractional powerw2/(γ−1)

in (3.17) causes substantial technical difficulties. We set

f (v,W ) := −8πw
2

γ−1

g00

(
(1 − Kw2)gαβ + 2(1 + Kw2)uαuβ

)
, (3.22)
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then we can write B(U ) in the form

B(U ) = B(U )(v, ∂tv, ∂xv)
T + F(v,W ),

where F(v,W ) = (0, f (v,W ), 0, 0)T and

B(U ) =

⎛

⎜⎜⎝

010×10 e10 010×10 010×10 010×10

010×10 b22 b23 b24 b25

030×10 030×10 030×10 030×10 030×10

05×10 b42 b43 b44 b45

⎞

⎟⎟⎠ . (3.23)

The block b2 j , j = 2, 3, 4, 5, appears from the quadratic terms in (2.4):

Hαβ(g, ∂g) = Cεζηκλμ
αβγ δρσ hεζηhκλμgγ δgρσ ,

where the term Cεζηκλμ
γ δαβρσ is a combination of Kronecker deltas with integer coefficients.

Thus

b2 j = (−g00)−1Cεζηκλμ
αβγ δρσ hεζηgγ δgρσ , μ = j − 2.

The block b4 j , j = 2, 3, 4, 5, appears from the multiplication of the reflection �αβ and
uν in (3.8) with the Christoffel symbols. So its coefficients consist of multiplications of
gαβ , gαβ and uν .

In summary, we can write the coupled systems (3.17) and (3.8) as a symmetric
hyperbolic system

A0(v,W )∂tU = (
(Aa(v,W ) + Ca) ∂aU + B(U )

⎛

⎝
v

∂tv

∂xv

⎞

⎠ + F(v,W ), (3.24)

where A0(U ) is positive definite in the neighborhood of the initial data (2.6), A0(0)−
e55 = Aa(0) = 0 and Ca is a constant symmetric matrix.

4. The Hs,δ Spaces and Their Properties

The definition of the weighted Sobolev spaces of fractional order Hs,δ , Definition 2.1,
is due to Trieble [28]. Here we quote the propositions and properties which are needed
for the proof of the main result. For their proofs see [4,20,28].

We start with some notations.

• Let {ψ j } be the sequence of functions in Definition 2.1. For any positive γ we set

‖u‖2
Hs,δ,γ

=
∞∑

j=0

2(
3
2 +δ)2 j‖(ψγj u)2 j ‖2

Hs , (4.1)

and we will use the convention ‖u‖Hs,δ,1 = ‖u‖Hs,δ . The subscripts 2 j mean a scaling
by 2 j , that is, (ψγj u)2 j (x) = (ψ

γ

j u)(2 j x).
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• For a non-negative integer m and β ∈ R, the space Cm
β is the set of all functions

having continuous partial derivatives up to order m and such that the norm

‖u‖Cm
β

=
∑

|α|≤m

sup
R3

(
(1 + |x |)β+|α||∂αu(x)|

)
(4.2)

is finite.
• We will use the notation A � B to denote an inequality A ≤ C B where the positive

constant C does not depend on the parameters in question.

We recall that {ψ j } are cutoff functions, hence ψβj ∈ C∞
0 (R

3) for any positive β.
Furthermore, for a given α, there are two constants C1(β, α) and C2(β, α) such that

C1(β, α)|∂αψ j (x)| ≤ |∂αψβj (x)| ≤ C2(β, α)|∂αψ j (x)|,
and these inequalities are independent of j . Therefore Proposition 4.1 below is a conse-
quence of [28, Thm. 1].

Proposition 4.1. For any positive γ , there are two positive constants c0(γ ) and c1(γ )

such that

c0(γ )‖u‖Hs,δ ≤ ‖u‖Hs,δ,γ ≤ c1(γ )‖u‖Hs,δ .

Proposition 4.2. For any nonnegative integer m, positive γ and δ,

‖u‖2
Hm,δ,γ

� ‖u‖2
m,δ � ‖u‖2

Hm,δ,γ
holds,

where ‖u‖m,δ is defined by (1.7).

Proposition 4.3. If s1 ≤ s2 and δ1 ≤ δ2, then

‖u‖Hs1,δ1
≤ ‖u‖Hs2,δ2

.

Proposition 4.4. If u ∈ Hs,δ , then

‖∂i u‖Hs−1,δ+1 ≤ ‖u‖Hs,δ .

Proposition 4.5. Let s1, s2 ≥ s, s1 + s2 > s + 3
2 , s1 + s2 ≥ 0 and δ1 + δ2 ≥ δ − 3

2 . If
u ∈ Hs1,δ1 and v ∈ Hs2,δ2 , then

‖uv‖Hs,δ
� ‖u‖Hs1,δ1

‖v‖Hs2,δ2
. (4.3)

Remark 4.6. If for a fixed constant c0, u − c0 ∈ Hs1,δ1 and v ∈ Hs2,δ2 , then we can
apply the multiplication property (4.3) to (u − c0)v and obtain

‖uv‖Hs,δ
�

(
‖u − c0‖Hs1,δ1

+ |c0|
)

‖v‖Hs2,δ2
.

Proposition 4.7. Let u ∈ Hs,δ ∩ L∞, 1 < β, 0 < s < β + 1
2 and δ ∈ R, then

‖|u|β‖Hs,δ ≤ C(‖u‖L∞)‖u‖Hs,δ .
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Proposition 4.8. If s > 3
2 + m and δ + 3

2 ≥ β, then

‖u‖Cm
β

� ‖u‖Hs,δ , (4.4)

where ‖u‖Cm
β

is given by (4.2).

Proposition 4.9. Let F : R
m → R

l be a C N+1-function such that F(0) = 0 and where
N ≥ [s] + 1. Then there is a constant C such that for any u ∈ Hs,δ ,

‖F(u)‖Hs,δ ≤ C‖F‖C N+1

(
1 + ‖u‖N

L∞
)

‖u‖Hs,δ . (4.5)

Proposition 4.10. (a) The class C∞
0 (R

3) is dense in Hs,δ .
(b) Given u ∈ Hs,δ , s′ > s ≥ 0 and δ′ ≥ δ. Then for ρ > 0 there is uρ ∈ C∞

0 (R
3) and

a positive constant C(ρ) such that

‖uρ − u‖Hs,δ ≤ ρ and ‖uρ‖Hs′,δ′ ≤ C(ρ)‖u‖Hs,δ .

4.1. Product spaces. The unknown of system (3.24) is a vector valued function

U = (v, ∂tv, ∂xv,W ) ,

where v = gαβ − ηαβ stands for the field variables and W = (w, uα − eα0 ) stands for
the fluid variables. We consider them in the space

Xs,δ := Hs,δ × Hs,δ+1 × Hs,δ+1 × Hs+1,δ+1, (4.6)

with the norm [see (4.1)]

‖U‖2
Xs,δ

= ‖v‖2
Hs,δ,2

+ ‖∂tv‖2
Hs,δ+1,2

+ ‖∂xv‖2
Hs,δ+1,2

+ ‖W‖2
Hs+1,δ+1,2

. (4.7)

Remark 4.11. Note that if U = (v, ∂tv, ∂xv,W ) ∈ Xs,δ , then v ∈ Hs+1,δ . Because
U ∈ Xs,δ implies that v ∈ Hs,δ and ∂xv ∈ Hs,δ+1, so by the integral representation of
the norm Hs,δ (see [4, §2)]), we obtain that

‖v‖Hs+1,δ �
(
‖v‖Hs,δ

+ ‖∂xv‖Hs,δ+1

)
.

5. Energy Estimates

In this section we will derive the energy estimates for a linear symmetric hyperbolic
system, a system which we have obtained by linearising (3.24). So we consider

A0∂tU = (Aa + Ca) ∂aU + B
⎛

⎝
v

∂tv

∂xv

⎞

⎠ + F + D, (5.1)

where U = (v, ∂tv, ∂xv,W ), the matrices A0, Aa, B and Ca have the same structural
form as the corresponding matrices in (3.24), Ca is a constant matrix, and the vectors F
and D have the form (0, f, 0, 0) and (0, d2, d3, d4) respectively.

Assumption 5.1. All the matrices have the same block structure as (3.18), (3.20) and
(3.23) and satisfy:
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(
A0(t, ·)− e55

)
,Aa(t, ·) ∈ Hs+1,δ; (5.2a)

∃ c0 ≥ 1 such that c0
−1V T V ≤ V T A0V ≤ c0V T V, ∀V ∈ R

55; (5.2b)

∂tA0(t, ·) ∈ L∞; (5.2c)

b2 j (t, ·),b4 j (t, ·) ∈ Hs,δ+1, j = 2, 3, 4, 5; (5.2d)

F(t, ·),D(t, ·) ∈ Hs,δ+1. (5.2e)

5.1. Xs,δ-energy estimates. We turn now to the definition of an inner-product of the
space Xs,δ which takes into account the structure of the matrix A0 of the system (5.1).

Let F(u) denote the Fourier transform of a distribution u, then we set

�s(u) = (1 −�)
s
2 (u) = F−1

((
1 + |ξ |2

) s
2

F

)
(u).

The standard inner-product of the Bessel-potential spaces Hs is

〈u1, u2〉s = 〈�s(u1),�
s(u2)〉L2 .

Taking into account the term-wise definition of the norm (2.1), we define the inner-
product of Hs,δ as follows:

〈u1, u2〉s,δ :=
∞∑

j=0

2

(
δ+ 3

2

)
2 j

〈
�s

(
ψ2

j u1

)

2 j
,�s

(
ψ2

j u2

)

2 j

〉

L2
, (5.3)

where (u)2 j denotes scaling by 2 j . By Proposition 4.1, 〈u, u〉s,δ = ‖u‖2
Hs,δ,2

� ‖u‖2
Hs,δ

.
To each component of the space

Xs,δ := Hs,δ × Hs,δ+1 × Hs,δ+1 × Hs+1,δ+1

we assign its own inner-product. Since A0 = (a0
i j ), where a0

i j is the zero matrix for

i �= j, a0
i i is the identity for i = 1, 2, we assign to the first two components the

inner-product (5.3), while for the other terms we insert A0 termwise.

Definition 5.2 (Inner-product in Xs,δ). Let Ui = (vi , ∂tvi , ∂xvi ,Wi ) ∈ Xs,δ, i = 1, 2
and assume that the matrix A0 satisfies Assumption 5.1, then we denote the inner-product
of Xs,δ by

〈U1,U2〉Xs,δ,A0 := 〈v1, v2〉s,δ + 〈∂tv1, ∂tv2〉s,δ+1

+ 〈∂xv1, ∂xv2〉s,δ+1,a0
33

+ 〈W1,W2〉s+1,δ+2,a0
44
, (5.4)

where the terms are defined in the following way:

• An inner-product of Hs,δ of the form: 〈v1, v2〉s,δ , where the inner-product 〈·, ·〉s,δ is
defined by (5.3);

• An inner-product of Hs,δ+1 of the form: 〈∂tv1, ∂tv2〉s,δ+1, where 〈·, ·〉s,δ+1 is defined
by (5.3) with δ + 1;
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• An inner-product on Hs,δ+1 of the form:

〈∂xv1, ∂xv2〉s,δ+1,a0
33

:=
∞∑

j=0

2

(
δ+1+ 3

2

)
2 j

〈
�s

(
ψ2

j ∂xv1

)

2 j
,
(

a0
33

)

2 j
�s

(
ψ2

j ∂xv2

)

2 j

〉

L2
. (5.5)

• An inner-product of Hs+1,δ+1 of the form:

〈W1,W2〉s+1,δ+2,a0
44

:=
∞∑

j=0

2

(
δ+1+ 3

2

)
2 j

〈
�s+1

(
ψ2

j W1

)

2 j
,
(

a0
44

)

2 j
�s+1

(
ψ2

j W2

)

2 j

〉

L2
. (5.6)

We denote by ‖U‖Xs,δ,A0 the norm associated with the inner-product (5.4). Since the

matrix A0 satisfies (5.2b), the following equivalence:

‖U‖Xs,δ
� ‖U‖Xs,δ,A0 � ‖U‖Xs,δ

(5.7)

holds. In order to simplify the notation we set U (t) = U (t, x1, x2, x3).

Lemma 5.3. Let s > 3
2 , δ ≥ − 3

2 and assume the coefficients of (5.1) satisfy Assumptions
5.1. If U (t) ∈ C∞

0 (R
3) is a solution of (5.1), then

d

dt
〈U (t),U (t)〉Xs,δ,A0 ≤ Cc0

(
〈U (t),U (t)〉Xs,δ,A0 + 1

)
, (5.8)

where the constant C depends on the corresponding norms of the coefficients, s and δ.

The corresponding energy estimates for the vacuum Einstein equations were obtained
in [16]. The same techniques can be applied here with some obvious modifications. We
therefore give only a short sketch of the proof.

Sketch of the proof. From the inner-product (5.4) we see that

1

2

d

dt
〈U,U 〉Xs,δ,A0 = 〈v, ∂tv〉s,δ + 〈∂tv, ∂

2
t v〉s,δ+1 + 〈∂xv, ∂x∂tv〉s,δ+1,a0

33

+ 〈W, ∂t W 〉s+1,δ+2,a0
44

+
∞∑

j=0

2

(
δ+1+ 3

2

)
2 j

〈
�s

(
ψ2

j ∂xv
)

2 j
, ∂t

(
a0

33

)

2 j
�s

(
ψ2

j ∂xv
)

2 j

〉

L2

+
∞∑

j=0

2

(
δ+2+ 3

2

)
2 j
〈
�s+1

(
ψ2

j W
)

2 j
, ∂t

(
a0

44

)

2 j
�s+1

(
ψ2

j W
)

2 j

〉

L2
.

By the Cauchy Schwarz inequality, we obtain

|〈v, ∂tv〉s,δ| ≤ ‖v‖Hs,δ,2
‖∂tv‖Hs,δ,2 ≤ 1

2

(
‖v‖2

Hs,δ,2
+ ‖∂tv‖2

Hs,δ+1,2

)
,
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and by Assumption (5.2c), the first infinite sum is less than

C
∥∥∥∂t a0

33

∥∥∥
L∞

∞∑

j=0

2

(
δ+1+ 3

2

)
2 j

〈
�s

(
ψ2

j ∂xv
)

2 j
,�s

(
ψ2

j ∂xv
)

2 j

〉

L2

= C
∥∥∥∂t a0

33

∥∥∥
L∞ ‖∂xv‖2

Hs,δ+1,2
.

A similar estimate holds for the second infinite sum. The most difficult part is the estimate
∣∣∣〈∂tv, ∂

2
t v〉s,δ+1 + 〈∂xv, ∂x∂tv〉s,δ+1,a0

33

∣∣∣ �
(
‖U‖2

Xs,δ
+ 1

)
, (5.9)

and here it is essential to use the assumption that Aα ∈ Hs+1,δ and s > 3
2 . We present

here the main ideas of this estimate and for a detailed proof we refer to [16, §4].
Let

E∂t ( j) =
〈
�s

(
ψ2

j ∂tv
)

2 j
,�s

(
ψ2

j (∂
2
t v)

)

2 j

〉

L2
(5.10)

and

E∂x ( j) =
〈
�s

(
ψ2

j ∂xv
)

2 j
,
(

a0
33

)

2 j
�s

(
ψ2

j ∂t (∂xv)
)

2 j

〉

L2
. (5.11)

In order to use Eq. (5.1) we need to commute
(
a0

33

)
2 j both with the operator�s and ψ2

j .
An essential ingredient is the Kato–Ponce commutator estimate (8.3) (see the Appendix).
Usually this estimate is used in similar situations with the operator �s , we, however,
apply it to the pseudodifferential operator P = �s∂x . This enables us to use estimate
(8.3) with the index s + 1 and to exploit the assumption that Aα ∈ Hs+1

loc .

Let �k =
(∑∞

j=0 ψ j

)−1
ψk , where {ψ j } is the dyadic resolution of the norm (2.1).

Since supp(�kψ j ) = supp(�k) ∩ supp(ψ j ), �k(x)ψ j (x) �= 0 only when k = j − 3,
. . . , j + 3, and hence we have that

E∂x ( j) =
j+3∑

k= j−3

〈
�s

(
ψ2

j ∂xv
)

2 j
,
(

a0
33

)

2 j
�s

(
�kψ

2
j ∂t (∂xv)

)

2 j

〉

L2

=:
j+3∑

k= j−3

E∂x ( j, k), (5.12)

and similarly

E∂t ( j) =
j+3∑

k= j−3

〈
�s

(
ψ2

j ∂tv
)

2 j
,�s

(
�kψ

2
j ∂t (∂tv)

)

2 j

〉

L2
=:

j+3∑

k= j−3

E∂t ( j, k).

(5.13)

Writing
(
�kψ

2
j ∂t (∂xv)

)

2 j
= 2− j∂x

(
�kψ

2
j ∂tv

)

2 j
− ∂x

(
�kψ

2
j

)

2 j
(∂tv)2 j , (5.14)
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and

�s
(
∂x

(
�kψ

2
j ∂tv

)

2 j

)
= (

�s∂x
) (
�kψ

2
j ∂tv

)

2 j
− (�k)2 j

(
�s∂x

) ((
ψ2

j ∂tv
)

2 j

)

+ (�k)2 j

(
�s∂x

) ((
ψ2

j ∂tv
)

2 j

)
, (5.15)

we have that

E∂x ( j, k) = 2− j
〈
�s

(
ψ2

j ∂xv
)

2 j
,
(
�ka0

33

)

2 j

(
�s∂x

) (
ψ2

j ∂tv
)

2 j

〉
+ R(a, j, k)

=: E∂x (a, j, k) + R(a, j, k), (5.16)

where

R(a, j, k)

=
〈
�s

(
ψ2

j ∂xv
)

2 j
,
(

a0
33

)

2 j

[(
�s∂x

) (
�kψ

2
j ∂tv

)

2 j
− (�k)2 j

(
�s∂x

) (
ψ2

j ∂tv
)

2 j

]〉

L2

+
〈
�s

(
ψ2

j ∂xv
)

2 j
,
(

a0
33

)

2 j
�s

[
∂x

(
�kψ

2
j

)

2 j
(∂tv)2 j

]〉

L2
.

Using the Kato–Ponce estimate with the operator (�s∂x ), we conclude that
∥∥∥
[(
�s∂x

) (
�kψ

2
j ∂tv

)

2 j
− (�k)2 j

(
�s∂x

) (
ψ2

j ∂tv
)

2 j

]∥∥∥
L2

�
{∥∥∇ (�k)2 j

∥∥
L∞

∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
Hs

+
∥∥(�k)2 j

∥∥
Hs

∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
L∞

}
.

Since k = j−3, . . . , j+3, the norms involving�k are bounded by a constant independent
of j . So by the Cauchy–Schwarz inequality and the Sobolev embedding theorem we
obtain that

|R(a, j, k)| �
∥∥∥
(

a0
33

)

2 j

∥∥∥
L∞

∥∥∥
(
ψ2

j ∂xv
)

2 j

∥∥∥
Hs

(∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
Hs

+
∥∥(ψ j∂tv

)
2 j

∥∥
Hs

)
.

(5.17)

Next, we commute
(
�ka0

33

)
2 j with �s∂x , that is, we write,

(
�ka0

33

)

2 j

(
�s∂x

) (
ψ2

j ∂tv
)

2 j

=
(
�ka0

33

)

2 j

(
�s∂x

) (
ψ2

j ∂tv
)

2 j
− (
�s∂x

) ((
�ka0

33

)

2 j

(
ψ2

j ∂tv
)

2 j

)

+�s
((
∂x

(
�ka0

33ψ
2
j

))

2 j
(∂tv)2 j

)
+ 2 j�s

((
�ka0

33ψ
2
j

)

2 j
(∂t∂xv)2 j

)
,

then

E∂x (a, j, k) =
〈
�s

(
ψ2

j ∂xv
)
,�s

(
�ka0

33ψ
2
j ∂t∂xv

)

2 j

〉

L2
+ R(b, j, k)

:= E∂x (b, j, k) + R(b, j, k). (5.18)

Since a0
33 ∈ Hs+1

loc , the Kato–Ponce commutator estimate (8.3) implies that
∥∥∥
(
�ka0

33

)

2 j

(
�s∂x

) (
ψ2

j ∂tv
)

2 j
− (
�s∂x

) ((
�ka0

33

)

2 j

(
ψ2

j ∂tv
)

2 j

)∥∥∥
L2

�
∥∥∥∇

(
�ka0

33

)

2 j

∥∥∥
L∞

∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
Hs

+
∥∥∥
(
�ka0

33

)

2 j

∥∥∥
Hs+1

∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
L∞ .

(5.19)
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Taking into account that
∥∥(�ka0

33

)
2 j

∥∥
Hs+1 � ∥∥(ψka0

33

)
2k

∥∥
Hs+1 , we obtain in a similar

manner, as in the estimate of the previous remainder term, the following

|R(b, j, k)| �
(∥∥∥

(
ψk

(
a0

33 − e33

))

2k

∥∥∥
Hs+1

+ 1
) ∥∥∥

(
ψ2

j ∂xv
)

2 j

∥∥∥
Hs

×
(∥∥(ψ j∂tv

)
2 j

∥∥
Hs +

∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
Hs

)
. (5.20)

Adding E∂t ( j, k) to E∂x (b, j, k) enables us now to use Eq. (5.1), that is,

E∂t ( j, k) + E∂x (b, j, k)

=
〈
�s

(
ψ2

j

(
∂tv

∂xv

))

2 j
,�s

(
�kψ

2
j

(
e10 010×30

030×10 a0
33

)
∂t

(
∂tv

∂xv

))

2 j

〉

L2

=
3∑

a=1

〈
�s

(
ψ2

j

(
∂tv

∂xv

))

2 j
,�s

(
�kψ

2
j

(
aa

22 + ca
22

)
∂a

(
∂tv

∂xv

))

2 j

〉

L2

+

〈
�s

(
ψ2

j

(
∂tv

∂xv

))

2 j
,�s

(
�kψ

2
j B

)

2 j

〉

L2
,

where the matrices aa
22 and ca

22 are defined in Subsect. 3.2 and ca
22 are constant matrices. In

the last expression B contains the zero and first order derivatives of v. It is straightforward
to estimate this term since it does not contain second order derivatives.

In order to estimate the second order terms, we write
(
�kψ

2
j

(
aa

22 + ca
22

)
∂a

(
∂tv

∂xv

))

2 j
= 2− j∂a

(
�k

(
aa

22 + ca
22

)
ψ2

j

(
∂tv

∂xv

))

2 j

−
(
∂a

(
�kψ

2
j

(
aa

22 + ca
22

))(
∂tv

∂xv

))

2 j
, (5.21)

and then

(
�s∂a

) (
�k

(
aa

22 + ca
22

)
ψ2

j

(
∂tv

∂xv

))

2 j

= (
�s∂a

) (
�k

(
aa

22 + ca
22

)
ψ2

j

(
∂tv

∂xv

))

2 j
−
(
�k

(
aa

22 + ca
22

) (
�s∂a

) (
ψ2

j

(
∂tv

∂xv

)))

2 j

+

(
�k

(
aa

22 + ca
22

) (
�s∂a

) (
ψ2

j

(
∂tv

∂xv

)))

2 j
. (5.22)

The first term of the right-hand side of (5.21) is being estimated by the Kato–Ponce
commutator estimate (8.3) and with the operator (�s∂a), which is of order s + 1. For the
second term we use the common method of integration by parts. As to the second term
of (5.21), we have that

(
∂a

(
�kψ

2
j

(
aa

22 + ca
22

))(
∂tv

∂xv

))

= (
∂a

(
�k

(
aa

22 + ca
22

))
ψ j + 2�k

(
aa

22 + ca
22

)
∂aψi

)
ψ j

(
∂tv

∂xv

)
.
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So by the Cauchy–Schwarz inequality we obtain that
∣∣∣
〈
�s

(
ψ2

j

(
∂tv

∂xv

))

2 j
,�s

(
∂a

(
�k

(
aa

22

))
ψ2

j

(
∂tv

∂xv

))

2 j

〉

L2

∣∣∣

�
(∥∥∥

(
ψ2

j ∂tv
)

2 j

∥∥∥
Hs

+
∥∥∥
(
ψ2

j ∂xv
)

2 j

∥∥∥
Hs

) ∥∥∥∥

(
∂a

(
�k

(
aa

22

))
ψ2

j

(
∂tv

∂xv

))

2 j

∥∥∥∥
Hs
,

(5.23)

and since Aa ∈ Hs+1,δ, s > 3
2 , we have by the multiplicity property of the Hs spaces

that ∥∥∥∥

(
∂a

(
�k

(
aa

22

))
ψ2

j

(
∂tv

∂xv

))

2 j

∥∥∥∥
Hs

�
∥∥(ψkaa

22

)
2 j

∥∥
Hs+1

(∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
Hs

+
∥∥∥
(
ψ2

j ∂xv
)

2 j

∥∥∥
Hs

)
. (5.24)

The other term can be estimated by similar arguments. From inequalities (5.17),
(5.20), (5.23) and (5.24), we conclude that

∞∑

j=0

j+3∑

k= j−3

2(δ+1+ 3
2 )2 j

∣∣∣E∂t ( j, k) + E∂x ( j, k)
∣∣∣

�
∞∑

j=0

j+3∑

k= j−3

2(δ+1+ 3
2 )2 j

∥∥(ψkaa
22

)
2k

∥∥
Hs+1

∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
Hs

∥∥(ψ j∂xv
)

2 j

∥∥
Hs + · · · ,

(5.25)

where · · · represent terms that are sums of similar structure. For exampleψ j is replaced
by ψ2

j , aa
22 is replaced by (a0

33 − e33), or the Hs+1-norm is replaced by the L∞-norm.
Applying the Hölder inequality and using the equivalence of norms (Propositions

4.1), we have that

∞∑

j=0

j+3∑

k= j−3

2(δ+1+ 3
2 )2 j

∥∥(ψkaa
22

)
2k

∥∥
Hs+1

∥∥∥
(
ψ2

j ∂tv
)

2 j

∥∥∥
Hs

∥∥(ψ j∂xv
)

2 j

∥∥
Hs

�
∥∥aa

22

∥∥
Hs+1,δ

‖∂tv‖Hs+1,δ
‖∂xv‖Hs+1,δ ≤ ∥∥aa

22

∥∥
Hs+1,δ

(
‖∂tv‖2

Hs+1,δ
+ ‖∂xv‖2

Hs+1,δ

)
.

(5.26)

So recalling the properties of the inner-products (5.3), (5.5), (5.4), (5.10), (5.11),
(5.12) and (5.13), we obtain (5.9). The estimate of 〈W, ∂t W 〉s+1,δ+2,a0

44
relies on similar

ideas to those of (5.9), but it is simpler, since W ∈ Hs+1
loc . Having collected the estimates

of all the terms, we have
1

2

d

dt
〈U,U 〉Xs,δ,A0 �

(
‖U‖2

Xs,δ
+ 1

)

and by the equivalence (5.7) we obtain (5.8). ��
Remark 5.4. Note that if the coefficients of ∂tv in the matrix A0 were dependent on
t , then we would have to reiterate the commutation (5.15), but with the operator �s∂t
instead of �s∂x . However, �s∂t is a pseudodifferential operator of order s, and hence
we would not get the desired regularity. This is the reason for dividing Eqs. (3.16)
by −g00.
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5.2. L2
δ -energy estimates. The next section deals with the existence of solutions to the

nonlinear symmetric hyperbolic systems by means of an iteration scheme. The Xs,δ-
energy estimates are used to obtain boundedness of the sequence, while L2

δ -energy
estimates are needed in order to establish the contraction.

Let

〈u1, u2〉δ =
∫

R3
(1 + |x |)2δ uT

1 (x)u2(x)dx

denote a weighted L2 inner-product, where uT
1 u2 denote the scalar product between two

vectors. The L2
δ (R

3)-space is the closure of all continuous functions under the norm
‖u‖2

L2
δ

= 〈u, u〉δ , and this norm is equivalent to the norm ‖u‖H0,δ (see [28]). Similar to

(4.6), we set

Yδ = L2
δ × L2

δ+1 × L2
δ+1 × L2

δ+1,

and ‖U‖2
Yδ

= ‖v‖2
L2
δ

+‖∂tv‖2
L2
δ+1

+‖∂xv‖2
L2
δ+1

+‖W‖2
L2
δ+1

. We also define the inner-product

of Yδ in accordance with the system (5.1):

〈U1,U2〉Yδ,A0 = 〈v1, v2〉δ + 〈∂tv1, ∂tv2〉δ+1 +
〈
∂xv1, a0

33∂xv2

〉

δ+1
+
〈
W1, a0

44W2

〉

δ+1
,

and the associated norm ‖U‖2
Yδ,A0 = 〈U,U 〉Yδ,A0 . By assumption (5.2b), ‖U‖Yδ,A0 �

‖U‖Yδ .

Lemma 5.5. Assume the coefficients of (5.1) satisfy Assumptions 5.1. If U (t) ∈ X1,δ is
a solution of (5.1), then

d

dt
〈U (t),U (t)〉Yδ,A0 ≤ Cc0

(
〈U (t),U (t)〉Yδ,A0 + ‖F‖2

L2
δ+1

+ ‖D‖2
L2
δ+1

)
, (5.27)

where the constant C depends upon the L∞-norms of Aα, ∂αAα and B.

Proof. We find that

1

2

d

dt
〈U (t),U (t)〉Yδ,A0 = 〈v, ∂tv〉δ +

〈
∂tv, ∂

2
t v

〉

δ+1
+
〈
∂xv, a0

33∂t∂xv
〉

δ+1

+
〈
W, a0

44∂t W
〉

δ+1
+
〈
∂xv, ∂t (a0

33)∂xv
〉

δ+1
+
〈
W, ∂t (a0

44)W
〉

δ+1
.

By the Cauchy–Schwarz inequality | 〈v, ∂tv〉δ | ≤ (‖v‖2
L2
δ

+ ‖∂tv‖2
L2
δ

), | 〈∂xv,

∂t (a0
33)∂xv

〉
δ+1 | � ‖∂t (a0

33)‖L∞‖∂xv‖2
L2
δ+1

and | 〈W, ∂t (a0
44)W

〉
δ+1 | � ‖∂t (a0

44)‖L∞

‖W‖2
L2
δ+1

. Since the system (5.1) is semi-decoupled, we may estimate the expressions

with ∂tv and ∂xv first, and later the term W . Using Eq. (5.1) and recalling the structure
matrices (3.18), (3.20) and (3.23), we have

〈
∂tv, ∂

2
t v

〉

δ+1
+
〈
∂xv, a0

33∂t∂xv
〉

δ+1
=

3∑

a=1

〈(
∂tv

∂xv

)
,
(
aa

22 + ca
22

)
∂a

(
∂tv

∂xv

)〉

δ+1

+ 〈∂tv,b22∂tv + (b23 + b24 + b25) ∂xv〉δ+1 + 〈∂tv, f + d2〉δ+1 + 〈∂xv, d3〉δ+1 .
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Exploring the symmetry of the matrices and using integration by parts, we have that

2

〈(
∂tv

∂xv

)
,
(
aa

22 + ca
22

)
∂a

(
∂tv

∂xv

)〉

δ+1
= −

〈(
∂tv

∂xv

)
, ∂a

(
aa

22

) (∂tv

∂xv

)〉

δ+1

−2(δ + 1)

〈(
∂tv

∂xv

)
,

xa

|x |
(
aa

22 + ca
22

) (∂tv

∂xv

)〉

δ+ 1
2

.

Thus
∣∣∣
〈
∂tv, ∂

2
t v

〉

δ+1
+
〈
∂xv, a0

33∂t∂xv
〉

δ+1

∣∣∣

�
(

3∑

a=1

(‖∂a(aa
22)‖L∞ + ‖aa

22‖L∞
)

+ ‖B‖L∞

)(
‖∂tv‖2

L2
δ+1

+ ‖∂xv‖2
L2
δ+1

)

+‖∂tv‖2
L2
δ+1

+ ‖∂xv‖2
L2
δ+1

+ ‖ f ‖2
L2
δ+1

+ ‖d2‖2
L2
δ+1

+ ‖d3‖2
L2
δ+1
.

And for W we have,

〈
W, a0

44∂t W
〉

δ+1
=

3∑

a=1

〈
W, aa

33∂a W
〉
δ+1 + 〈W, d4〉δ+1 ,

so similar arguments give that

∣∣∣
〈
W, a0

44∂t W
〉

δ+1

∣∣∣ �
(

3∑

a=1

(‖∂a(aa
33)‖L∞ + ‖aa

33‖L∞
)

+ 1

)
‖W‖2

L2
δ+1

+ ‖d4‖2
L2
δ+1
.

Finally, using the equivalence of the norms we obtain (5.27). ��

6. The Iteration Process

In this section we adopt Majda’s iterative scheme[18] in order to prove the well-posdeness
of the coupled hyperbolic system (3.24) in the Hs,δ-spaces. A similar approach was
carried out in [16] for the vacuum Einstein equations, but in the presence of a perfect
fluid there are additional difficulties. The zero order term B is not necessarily a C∞-
function since it contains the fractional power of the Makino variable w2/(γ−1). Hence
we could not apply the standard iteration scheme in order to prove the existence theorem
for symmetric hyperbolic systems. We denote the initial data by U0 = (φ, ϕ, ∂xφ,W0),
where W0 = (w0, (u0)

α − eα0 ) represents the initial data for the Makino variable w and
the four velocity vector uα − eα0 .

Theorem 6.1. Let 3
2 < s < 2

γ−1 + 1
2 , − 3

2 ≤ δ. Assume U0 ∈ Xs,δ , w0 ≥ 0 and that
there exists a positive constant μ such that

1

μ
V T V ≤ V T A0(φ,W0)V ≤ μV T V for all V ∈ R

55. (6.1)

Then there exists a positive constant T and a unique solutionU (t)=(v(t), ∂tv(t), ∂xv(t),
W (t)) to the system (3.24) such that U (0, x) = U0(x),

U ∈ C
([0, T ], Xs,δ

)
and W ∈ C1 ([0, T ], Hs,δ+2

)
. (6.2)

The size of the time interval depends only on the norms of the initial data.
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The proof of Theorem 6.1 will be carried out in several steps:

1. Setting up the iterative scheme;
2. Proving that the fractional power (wk)2/(γ−1) is a C∞

0 -function;
3. Boundedness of the iteration sequence in the Xs,δ-norm;
4. Contraction in a lower norm;
5. Convergence;
6. Uniqueness;
7. Continuity in the Xs,δ-norm.

A part of the above proofs are standard, but some of them require special attention
due to the specific form of the system (3.24) and use of the space Xs,δ . Moreover, the fact
that the matrices Aα = Aα(v,W ) are not dependent on the derivative of the semi-metric
plays an essential role here.

Step 1. From condition (6.1) and the embedding into the continuous, Proposition 4.8,
we see that there is a bounded domain G ⊂ R

55 containing the initial value U0 and a
constant c0 ≥ 1 such that

1

c0
V T V ≤ V T A0(v,W )V ≤ c0V T V (6.3)

for all U = (v, ∂tv, ∂xv,W ) ∈ G and V ∈ R
55. By means of the density properties of

Hs,δ , Proposition 4.10, there exist positive constants C and R, and a sequence

{
U k

0

}∞
k=0

=
{
(φk, ϕk, ∂xφ

k, wk
0, (u

α
0 )

k − eα0 )
}∞

k=0
⊂ C∞

0 (R
3), (6.4)

such that
∥∥∥U 0

0

∥∥∥
Xs+1,δ

≤ C ‖U0‖Xs,δ
, (6.5)

∥∥∥U − U 0
0

∥∥∥
Xs,δ

≤ R ⇒ U ∈ G, (6.6)

and

∥∥∥U k
0 − U0

∥∥∥
Xs,δ

≤ R2−k

4c0
. (6.7)

The iterative scheme is defined as follows: let U 0(t, x) = U 0
0 (x) and

U k+1(t, x) = (vk+1(t, x), ∂tv
k+1(t, x), ∂xv

k+1(t, x),W k+1(t, x))

be a solution of the linear Cauchy problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A0(vk,W k)∂tU k+1 = (Aa(vk,W k) + Ca
)
∂aU k+1

+B(U k)

⎛

⎜⎝
vk+1

∂tv
k+1

∂xv
k+1

⎞

⎟⎠ + F(vk,W k),

U k+1(0, x) = U k+1
0 (x),

(6.8)
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where F(vk,W k) = (0, f (vk,W k), 0, 0), f (vk,W k) is given by (3.22) and W k =
(wk, (uα)k − eα0 ).

Step 2. The iterative method relies on the fact that solutions of linear symmetric hyper-
bolic systems with C∞

0 coefficients and initial data, are also C∞
0 . However, even if

wk ≥ 0 and wk ∈ C∞
0 , it does not guarantee that (wk)2/(γ−1) is a C∞

0 -function. Since
the function f (vk,W k) contains the term (wk)2/(γ−1), we must assure that it is a C∞

0 -
function.

Proposition 6.2. Let u ∈ Hs,δ be non-negative and β > 0. Then there is a sequence
{uk} ⊂ C∞

0 such that uk → u in the Hs,δ-norm and (uk)β ∈ C∞
0 .

Proof. Let ε > 0, then by Proposition 4.10 there is uε ∈ C∞
0 with ‖u − uε‖Hs,δ

< ε.
Take now a positive number M so that supp(uε) ⊂ {|x | ≤ M}, and let χM be the cut-off
function satisfying χM (x) = 1 for |x | ≤ M and χM (x) = 0 for |x | ≥ M + 1. For any
positive number �, we set

uε,�(x) = χM (x)
(
uε(x) + �

)
.

Then (uε,�)β ∈ C∞
0 , since (uε + �) > 0 and χM is a cut-off function. Moreover,

uε,� − uε = χM�, hence uε,� → uε in the Hs,δ-norm as � → 0. ��
Thus we may assume that {wk

0}∞k=0, the C∞
0 approximation of the initial data of the

Makino variable w0 in (6.4), satisfies (wk
0)

2/(γ−1) ∈ C∞
0 . We turn now to showing that

for t ≥ 0,

εk(t, x) =
(
wk

) 2
γ−1

(t, x)

is also a C∞
0 -function.

Proposition 6.3. For each integer k ≥ 0, εk(t, ·) ∈ C∞
0 (R

3).

Proof. We conduct the proof by induction. Obviously the statement holds when k = 0.
Now the 51st row of the system (6.8) is equivalent to (3.5a), so the linearization of it
results in

(u0)k∂tε
k+1 + (ua)k∂aε

k+1 + εk(1 + K (wk)2)Pνα
(

gk
αβ, (u

β)k
)
∂v(u

α)k+1

+εk(1 + K (wk)2)Pνα
(

gk
αβ, (u

β)k
) (
�ανμ

)k
(uμ)k = 0, (6.9)

where the Pνα (·, ·) is the projection of Eq. (3.5a) and
(
�ανμ

)k are the Christoffel symbols

with respect to the semi-metric gk
αβ . It follows from [4, Thm. 2.6], that u0(0, x) ≥ 1,

hence (u0)k(0, x) ≥ 1 and therefore we can divide (6.9) by (u0)k and we conclude that
εk+1 satisfies a first order linear equation of the form

⎧
⎨

⎩
∂tε

k+1 + ba(t, x)∂aε
k+1 + c(t, x) = 0

εk+1(0, x) = (wk+1
0 (x))

2
γ−1

. (6.10)

Note that c(t, x) contains the term εk , but this term is C∞
0 by the induction hypothesis.

Hence all the coefficients of (6.10) are C∞
0 -functions. We solve (6.10) by means of the

characteristic method. So let �(s, y) be the solution of the system
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dt

ds
= 1,

dxa

ds
= ba(t, x), t (0) = 0, x(0) = y.

Then εk+1(t, x) = Z(�−1(t, x)), where Z(s, y) is the solution of the initial value
problem

d Z

ds
= −c(s, x), Z(0, y) = (wk+1

0 (y))
2

γ−1 .

Obviously

Z(s, y) = (wk+1
0 (y))

2
γ−1 −

∫ s

0
c(τ, x(τ ))dτ.

Since c(τ, ·) ∈ C∞
0 and (wk+1

0 )
2

γ−1 ∈ C∞
0 by Proposition 6.2, Z(s, ·) also belongs to

C∞
0 , and hence also Z(�−1(t, ·)) = εk+1(t, ·) = (

wk+1
) 2
γ−1 (t, ·) ∈ C∞

0 . ��
Step 3. We conclude from Proposition 6.2, and the theory of linear symmetric hyperbolic
systems (cf. [15]), that for each k there is a solution U k(t, x) of the linear system (6.8)
such that U k(t, ·) ∈ C∞

0 (R
3). Therefore by (6.5), (6.6) and (6.7), for each k we have

Tk = sup

{
T : sup

0≤t≤T

∥∥∥U k(t)− U 0
0

∥∥∥
Xs,δ

≤ R

}
> 0.

Proposition 6.4. There are positive constants T ∗ and L such that

sup

{
T : sup

0≤t≤T

∥∥∥U k(t)− U 0
0

∥∥∥
Xs,δ

≤ R

}
≥ T ∗ for all k, (6.11)

and

sup
0≤t≤T ∗

∥∥∥∂t W
k
∥∥∥

Hs,δ+2
≤ L for all k. (6.12)

Proof. We prove it by induction. Set V k+1 = U k+1 − U 0
0 , then V k satisfies the linear

initial value problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0(vk,W k)∂t V k+1 = (Aa(vk,W k) + Ca
)
∂a V k+1

+B(U k)

⎛

⎜⎝
vk+1 − φ0

0

∂tv
k+1 − ϕ0

0

∂x
(
vk+1 − φ0

0

)

⎞

⎟⎠ + F(vk,W k) + Dk

V k+1(0, x) = U k+1
0 (x)− U 0

0 (x),

(6.13)

where

Dk =
(
Aa(vk,W k) + Ca

)
∂aU 0

0 + B(U k)

⎛

⎜⎝

φ0
0

ϕ0
0

∂xφ
0
0

⎞

⎟⎠ . (6.14)



Local Existence of Relativistic Perfect Fluids 133

In order to apply the energy estimate, Lemma 5.3, to (6.13) we have to check that
Assumptions 5.1 are satisfied and the corresponding norms are independent of k. Note
that all the matrices have the same structure, and from (6.3) we see that condition 5.2b
holds. By the induction hypothesis,

∥∥∥vk(t)− φ0
0

∥∥∥
2

Hs,δ,2
+
∥∥∥∂xv

k(t)− ∂xφ
0
0

∥∥∥
2

Hs,δ+1,2
≤

∥∥∥U k(t)− U 0
0

∥∥∥
2

Xs,δ
≤ R2,

therefore by Remark 4.11,
∥∥vk(t)− φ0

0

∥∥
Hs+1,δ

� R. Applying the Moser type estimate,
Proposition 4.9, we have

∥∥∥A0(vk,W k)− e55

∥∥∥
2

Hs+1,δ
�

(∥∥∥vk
∥∥∥

2

Hs+1,δ
+
∥∥∥W k

∥∥∥
2

Hs+1,δ

)

�
∥∥∥U k − U 0

0

∥∥∥
2

Xs,δ
+
∥∥∥U 0

0

∥∥∥
2

Xs,δ
�

(
R2 +

∥∥∥U 0
0

∥∥∥
2

Xs,δ

)
.

In a similar way we get that
∥∥Aa(vk,W k)

∥∥
Hs+1,δ

is bounded by a constant depend-
ing on R. By Propositions 4.3, 4.5 ,4.9, Remark 4.6 and the structure of the matrix B
in (3.23), we obtain that

∥∥b2 j (U k)
∥∥

Hs,δ+1
� ‖U k‖Xs,δ �

(
R + ‖U 0

0 ‖Xs,δ

)
and a sim-

ilar estimate holds for
∥∥b4 j (U k)

∥∥
Hs,δ+1

, j = 2, 3, 4, 5. We recall that F(vk,W k) =
(0, f (vk,W k), 0, 0), where f (vk,W k) is given by (3.22). Applying again Propositions
4.5, 4.9 and Remark 4.6, we obtain that

∥∥∥ f (vk,W k)

∥∥∥
Hs,δ+1

�
∥∥∥(wk)

2
γ−1

∥∥∥
Hs,δ+1

(∥∥∥vk
∥∥∥

Hs,δ+1
+
∥∥∥(uα)k − eα0

∥∥∥
Hs,δ+1

+ 1

)
.

(6.15)

Now, for 3
2 < s < 2

γ−1 + 1
2 , we apply the estimate for the fractional power, Proposition

4.7, and obtain that
∥∥∥(wk)

2
γ−1

∥∥∥
Hs,δ+1

�
∥∥∥wk

∥∥∥
Hs,δ+1

≤
∥∥∥wk

∥∥∥
Hs+1,δ+1

. (6.16)

Since
∥∥vk

∥∥
Hs,δ+1

and
∥∥W k

∥∥
Hs,δ+1

are bounded by a constant independent of k, it follows

from (6.15) and (6.16) that also
∥∥ f (vk,W k)

∥∥
Hs,δ+1

is bounded by a constant independent
of k.

The required estimate for Dk defined in (6.14) follows from the multiplicity property
(4.3) and the estimates which we have already obtained for

∥∥Aα(vk,W k)
∥∥

Hs+1,δ
and

∥∥B(U k)
∥∥

Hs,δ+1
.

It remains to verify (5.2c); note that by the induction hypothesis (6.11), condition
(6.6) and the embedding (4.4), we have

∥∥∥∂tA0(vk,W k)

∥∥∥
L∞ ≤ sup

G

∣∣∣
∂A0

∂v
(v,W )

∣∣∣
∥∥∥∂tv

k
∥∥∥

L∞

+ sup
G

∣∣∣
∂A0

∂W
(v,W )

∣∣∣
∥∥∥∂t W

k
∥∥∥

L∞ �
(∥∥∥∂tv

k
∥∥∥

Hs,δ+1
+
∥∥∥∂t W

k
∥∥∥

Hs,δ+2

)
.
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Since
∥∥∂t W k

∥∥
Hs,δ+2

is bounded by hypothesis (6.12), we see that
∥∥∂tA0(vk,W k)

∥∥
L∞ is

also bounded by a constant depending on R but not on k. We now apply Lemma 5.3,
and with the combination of Gronwall’s inequality, condition (6.7) and the equivalence
(5.7), we conclude that there is a constant C depending on R such that

sup
0≤t≤T

∥∥∥V k+1(t)
∥∥∥

2

Xs,δ
≤ eCc0T

(
R2

8
+ Cc2

0T

)
. (6.17)

We turn now to show (6.12). It follows from the structure of the matrices A0, Aa and B
(see (3.18), (3.20) and (3.23)) that

∂t W
k+1 =

(
a0

44(v
k,W k)

)−1
[

3∑

a=1

aa
33(v

k,W k)∂a W k+1

+b42(U
k)∂tv

k+1 +
3∑

a=1

b4(a+2)(U
k)∂av

k+1

]
. (6.18)

Note that ‖vk(t)‖Hs+1,δ , ‖W k(t)‖Hs+1,δ+1 and ‖U k(t)‖Xs,δ are bounded by a constant
independent of k, while ‖∂tv

k+1(t)‖Hs,δ+1 , ‖∂av
k+1(t)‖Hs,δ+1 and ‖∂a W k+1(t)‖Hs,δ+2 are

bounded by (6.17). Hence applying the calculus of the Hs,δ-spaces to (6.18), we obtain
that

∥∥∂t W k+1
∥∥

Hs,δ+2
is also bounded by a constant independent of k. Choosing T ∗ so

that

eCc0T ∗
(

R2

8
+ Cc2

0T ∗
)
< R2

completes the proof of the proposition. ��
Step 4. Here we show contraction in the weighted L2-norm. Our method relies on the
L2
δ -energy estimates, Lemma 5.5.

Proposition 6.5. There exist positive constants T ∗∗ ≤ T ∗ and � < 1, and a positive
sequence {βk} with

∑
βk < ∞ such that

sup
0≤t≤T ∗∗

∥∥∥U k+1(t)− U k(t)
∥∥∥

Yδ,A0
≤ � sup

0≤t≤T ∗∗

∥∥∥U k(t)− U k−1(t)
∥∥∥

Yδ,A0
+ βk .

(6.19)

Proof. The function (U k+1 − U k) satisfies the linear system

A0(vk,W k)∂t (U
k+1 − U k) = Aa(vk,W k)∂a(U

k+1 − U k) + B(U k)

⎛

⎜⎝
vk+1 − vk

∂t (v
k+1 − vk)

∂x (v
k+1 − vk)

⎞

⎟⎠

+F(vk,W k)− F(vk−1,W k−1) + Dk, (6.20)

where

Dk = −
(
A0(vk,W k)− A0(vk−1,W k−1)

)
∂tU

k

+
(
Aa(vk,W k)− Aa(vk−1,W k−1)

)
∂aU k +

(
B(U k)− B(U k−1)

)
⎛

⎝
vk

∂tv
k

∂xv
k

⎞

⎠ .

(6.21)
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By (6.11), (6.12) and Proposition 4.8, ‖Aα(vk,W k)‖L∞ , ‖∂αAα(vk,W k)‖L∞ and∥∥B(U k)
∥∥

L∞ are bounded by a constant independent of k, so we may apply Lemma 5.5
and get that

d

dt

∥∥∥U k+1(t)− U k(t)
∥∥∥

2

Y,A0
≤ C1

(∥∥∥U k+1(t)− U k(t)
∥∥∥

2

Y,A0

+
∥∥∥F(vk,W k)− F(vk−1,W k−1)

∥∥∥
2

Lδ+1
+
∥∥∥Dk

∥∥∥
2

Lδ+1

)
. (6.22)

Thus our main task is to estimate the two last terms of the above inequality by means
of the difference ‖U k − U k−1‖2

Yδ
. Recall that F(v,W ) = (0, f (v,w), 0, 0)T , where f

is a scalar function given in (3.22), so

f (vk,W k)− f (vk−1,W k−1)

=
(
∂ f

∂v

(
τvk + (1 − τ) vk−1, τW k + (1 − τ)W k−1

))(
vk − vk−1

)

+

(
∂ f

∂W

(
τvk + (1 − τ) vk−1, τW k + (1 − τ)W k−1

))(
W k − W k−1

)

for some τ ∈ [0, 1]. Note that (vk − vk−1) belong to L2
δ , while we need to estimate the

L2
δ+1-norm of the above expressions. However, since the Makinow ∈ Hs+1,δ+1 ⊂ Hs,δ+1,

we get from (3.22), and Propositions 4.7, 4.5 and 4.9 that ∂ f
∂v

∈ Hs,δ+1. Therefore, by
the equivalence ‖u‖L2

δ
� ‖u‖H0,δ (Proposition 4.2) and the multiplicity property (4.3),

we obtain
∥∥∥∥
∂ f

∂v

(
vk − vk−1

)∥∥∥∥
H0,δ+1

�
∥∥∥∥
∂ f

∂v

∥∥∥∥
Hs,δ+1

∥∥∥vk − vk−1
∥∥∥

H0,δ
�

∥∥∥∥
∂ f

∂v

∥∥∥∥
Hs,δ+1

∥∥∥vk − vk−1
∥∥∥

L2
δ

.

The other term is somewhat easier to treat, since (W k − W k−1) ∈ L2
δ+1, and hence

∥∥∥∥
∂ f

∂W

(
W k − W k−1

)∥∥∥∥
L2
δ+1

≤
∥∥∥∥
∂ f

∂W

∥∥∥∥
L∞

∥∥∥W k − W k−1
∥∥∥

L2
δ+2

.

Now
∥∥∥ ∂ f
∂W

∥∥∥
L∞ is bounded by a constant depending on

∥∥U k
∥∥

Xs,δ
and

∥∥U k−1
∥∥

Xs,δ
, and

these are independent of k. Thus
∥∥∥F(vk,W k)− F(vk−1,W k−1)

∥∥∥
L2
δ+1

≤ C2

∥∥∥U k − U k−1
∥∥∥

Y,δ
, (6.23)

where the constant C2 is independent of k. We shall now estimate the first term of Dk

in (6.21). From the structure of A0(v,W ) we see that
(
A0(vk,W k)− A0(vk−1,W k−1)

)
∂tU

k

=
(

a0
33(v

k)− a0
33(v

k−1)
)
∂t∂xv

k +
(

a0
44(v

k,W k)− a0
44(v

k−1,W k−1)
)
∂t W

k .

Now

a0
33(v

k)− a0
33(v

k−1) = ∂a0
33

∂v

(
τvk + (1 − τ)vk−1

) (
vk − vk−1

)
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for some τ ∈ [0, 1]. But since (vk −vk−1) �∈ L2
δ+1, we cannot use the L∞−L2 estimates.

We therefore apply the algebra (or multiplication) property, once with s1 = 1, s2 = s−1
and s = 0, and once with s1 = s, s2 = 1 and s = 1, which results in the following
inequality:

∥∥∥
(

a0
33(v

k)− a0
33(v

k−1)
)
∂t∂xv

k−1
∥∥∥

H0,δ+1

�
∥∥∥∥∥
∂a0

33

∂v

(
τvk + (1 − τ)vk−1

) (
vk − vk−1

)∥∥∥∥∥
H1,δ

∥∥∥∂t∂xv
k−1

∥∥∥
Hs−1,δ+2

�
∥∥∥∥∥
∂a0

33

∂v

(
τvk + (1 − τ)vk−1

)∥∥∥∥∥
Hs,δ

∥∥∥vk − vk−1
∥∥∥

H1,δ

∥∥∥∂tv
k−1

∥∥∥
Hs,δ+1

. (6.24)

We use now the third Moser inequality (4.5) and ‖vk −vk−1‖L∞ � ‖vk −vk−1‖Hs+1,δ

in order to obtain
∥∥∥∥∥
∂a0

33

∂v

(
τvk + (1 − τ)vk−1

)∥∥∥∥∥
Hs+1,δ

≤ C

(∥∥∥vk
∥∥∥

Hs+1,δ
,

∥∥∥vk−1
∥∥∥

Hs+1,δ

)
, (6.25)

where

C

(∥∥∥vk
∥∥∥

Hs+1,δ
,

∥∥∥vk−1
∥∥∥

Hs+1,δ

)

denotes that the constant depends in some way on the terms ‖vk‖Hs+1,δ and
∥∥vk−1

∥∥
Hs+1,δ

.
In a similar way we obtain

∥∥∥
(

a0
44(v

k,W k)− a0
44(v

k−1,W k−1)
)
∂t W

k
∥∥∥

L2
δ+1

�

⎛

⎝
∥∥∥∥∥
∂a0

44

∂v

(
τvk + (1 − τ)vk−1

)∥∥∥∥∥
Hs,δ+1

∥∥∥vk − vk−1
∥∥∥

H1,δ

+

∥∥∥∥∥
∂a0

44

∂W

∥∥∥∥∥
L∞

∥∥∥W k − W k−1
∥∥∥

L2
δ+1

)∥∥∥∂t W
k
∥∥∥

Hs,δ+2
. (6.26)

We recall that
∥∥∂t W k

∥∥
Hs,δ+2

is bounded by (6.12) and
∥∥vk − vk−1

∥∥2
H1,δ

� ∥∥vk −vk−1
∥∥2

L2
δ
+

∥∥∂xv
k −∂xv

k−1
∥∥2

L2
δ+1

, therefore from (6.24), (6.25) and (6.26) we obtain that

∥∥∥
(
A0(vk,W k)− A0(vk−1,W k−1)

)
∂tU

k
∥∥∥

L2
δ+1

≤ C3

∥∥∥U k − U k−1
∥∥∥

Yδ
. (6.27)

In a similar manner we can estimate the difference involving the Aa matrices. The
estimate of B(U k)−B(U k−1) is simpler, since its first column of the matrix B is zero and
therefore this expression does not contain the element (vk − vk−1). Thus we conclude
from inequalities (6.22), (6.23) and (6.27) that

d

dt

∥∥∥U k+1(t)−U k(t)
∥∥∥

2

Y,A0
≤C4

(∥∥∥U k+1(t)−U k(t)
∥∥∥

2

Y,A0
+
∥∥∥U k(t)−U k−1(t)

∥∥∥
2

Y,A0

)
,
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where C4 is independent of k. Therefore by Gronwall’s inequality, we obtain that for
any T ∗∗ ≤ T ∗,

sup
0≤t≤T ∗∗

∥∥∥U k+1(t)− U k(t)
∥∥∥

2

Y,A0
≤ eC4T ∗∗

(∥∥∥U k+1
0 − U k

0

∥∥∥
2

Yδ,A0

+T ∗∗C4 sup
0≤t≤T ∗∗

∥∥∥U k(t)− U k−1(t)
∥∥∥

2

Y,A0

)
,

and hence inequality (6.19) holds if we choose T ∗∗ so that � :=
√

2C4eC4T ∗∗ T ∗∗ < 1,
and set βk := √

2eC4T ∗∗ ∥∥U k+1
0 − U k

0

∥∥
Yδ,A0 . ��

Step 5. We discuss here the convergence. It follows from Proposition 6.5 that
∑

k

∥∥∥U k+1(t)− U k(t)
∥∥∥

Yδ
< ∞,

hence {U k(t)} is a Cauchy sequence in L∞ ([0, T ∗∗],Yδ). Applying the Gagliardo-

Nirenberg-Moser estimate ‖u‖Hs′ ≤ ‖u‖
s′
s
Hs ‖u‖1− s′

s
L2 term-wise to the norm (2.1), we

get that

‖u‖Hs′,δ ≤ ‖u‖
s′
s
Hs,δ

‖u‖1− s′
s

L2
δ

for 0 < s′ < s and δ ∈ R. (6.28)

Hence {U k(t)} is a Cauchy sequence in L∞ ([0, T ∗∗], Xs′,δ
)

and therefore U k(t) →
U (t) in the Xs′,δ-norm for any 0 < s′ < s and δ ≥ − 3

2 . Furthermore, by Remark 4.6,
vk(t) → v(t) in Hs′+1,δ-norm. Thus if we choose 3

2 < s′ < s, then by the embed-
ding (4.4),

vk(t) → v(t), W k(t) → W (t) in C1

and

∂tv
k(t) → ∂tv(t), ∂t W

k(t) → ∂t W (t) in C0.

Thus, U (t) = (v(t), ∂tv(t), ∂xv(t),W (t)) is a solution of the system (3.24).

Proposition 6.6. For any � ∈ Xs,δ ,

lim
k

〈
U k(t),�

〉

Xs,δ
= 〈U (t),�〉Xs,δ

, (6.29)

uniformly for 0 ≤ t ≤ T ∗∗, and where 〈·, ·〉Xs,δ
denote the inner-product (5.4) with A0

being the identity matrix.

As a consequence of the weak convergence (6.29), we have that

‖U (t)‖Xs,δ
≤ lim inf

k

∥∥∥U k(t)
∥∥∥

Xs,δ
.

Thus the solution U (t) belongs to Xs,δ . For the proof of Proposition 6.6 see [16, §5].

Step 6. Here we shall prove uniqueness.

Proposition 6.7. Suppose U1(t),U2(t) ∈ Xs,δ are two solutions of (3.24) with the same
initial data, then U1(t) ≡ U2(t).
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Proof. Let V (t) = U1(t) − U2(t), then it satisfies the same type of a linear system as
(6.20), therefore by similar estimates as in Step 4, we obtain that

d

dt
‖V (t)‖2

Y
δ,A0

� ‖V (t)‖2
Y
δ,A0

,

and since V (0) ≡ 0, Gronwall’s inequality implies that V (t) ≡ 0. ��
Step 7. Since Xs,δ is a Hilbert space it suffices to show that

lim sup
t→0+

‖U (t)‖Xs,δ,A0 ≤ ‖U (0)‖Xs,δ,A0 (6.30)

in order to establish the continuity in the norm. Here A0 depends on the initial data φ
and W0, that is, A0 = A0(φ,W0). The proof of (6.30) relies on the same arguments as
in [18] and therefore we leave it out. This completes the proof of Theorem 6.1.

7. Proof of the Main Result

The proof of the main result, Theorem 2.3, actually follows from Theorem 6.1, we just
have to check whether the initial data of the gravitational fields and of the fluid satisfy the
assumptions of Theorem 6.1. We recall that v(t) = gαβ(t)− ηαβ , so setting φ = v(0),
we have by the assumptions of Theorem 2.3 that φ ∈ Hs+1,δ . The initial data for the
time derivative ϕ are given by ∂t gαβ(0), where ∂t gab(0) = −2Kab (a, b = 1, 2, 3), and
∂t gα0(0) is given by expression (2.7). By the assumption of Theorem 2.3, Kab ∈ Hs,δ+1
and therefore by Propositions 4.5 and 4.9, ∂t gα0(0) also belongs to Hs,δ+1. Thus ϕ =
∂t gαβ(0) satisfies the initial condition of Theorem 6.1. Note that a0

33(0) = hab, where hab

is a proper Riemannian metric. Sincew(0) ≥ 0 and uα(0) is a unit timelike vector, a0
44(0)

is a positive definite matrix by Theorem 3.3. Hence A0(φ,W0) satisfy condition (6.1) and
we conclude that U (t) = (

gαβ(t)− ηαβ, ∂t gαβ(t), ∂x gαβ(t),W (t)
) ∈ C([0, T ], Xs,δ).

Hence (2.8) follows from Remark 4.11, and (2.9) from (6.2). That completes the proof.

8. Appendix

The classical paper of Hughes, Kato and Marsden [14] established the short time exis-
tence of the vacuum Einstein equations by solving a second order quasi-linear hyperbolic
system whose solutions (gαβ, ∂t gαβ) belong to Hs+1 × Hs for s > 3

2 .
On the other hand, Fisher and Marsden treated the Einstein vacuum equation by

means of the theory of symmetric hyperbolic systems. However, they only obtained the
regularity of s > 7

2 . In [16] we generalized the result of [14] to the Hs,δ spaces, treating
however, the Einstein equations as a symmetric hyperbolic system. Since the techniques
of [16], and in particular the energy estimates, play an essential role in the present paper,
we outline its main idea that enables us to obtain the same regularity as in [14].

We present a heuristic argument explaining the essential idea. First, if a function
v satisfies a wave equation, then the vector V = (v, ∂tv, ∂xv) satisfies a symmetric
hyperbolic system. The general condition for existence and uniqueness in the Hs(R3)

spaces is s > 5
2 . Hence, we have by this method that ∂tv, ∂xv ∈ Hs for s > 5

2 .
However, in our case we improve this regularity to (v, ∂tv, ∂xv) ∈ Hs+1×Hs×Hs for

s > 3
2 . This is because we do not consider a general quasi-linear symmetric hyperbolic
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system where the matrices Aa(V ) depend on V , but a system in which the matrices
Aa(v) only depend on v but not on its derivatives.

In order to see how this fact allows us to improve the regularity of the solution we will
derive energy estimates for the linearized symmetric hyperbolic system. For the sake of
clarity we consider a simple hyperbolic system

∂t V = Aa(v)∂a V,

then its linearized form is

∂t V = Ãa∂a V . (8.1)

Note that in each iteration we solve the linear system (8.1) with Ãa = Ãa(vk), and since
V k = (vk, ∂tv

k, ∂xv
k) ∈ Hs , vk ∈ Hs+1, and hence Ãa = Ãa(vk) ∈ Hs+1 by Moser

type estimates. The crucial step is to derive the energy estimate

d

dt

(
1

2
‖V ‖2

Hs

)
≤ C ‖V ‖2

Hs (8.2)

for s > 3
2 and whenever V satisfies the linear system (8.1). We recall that ‖V ‖Hs =

‖�s V ‖L2 , where �s is the pseudodifferential operator (1 −�)
s
2 .

One of the basic tools for obtaining (8.2) are the commutator estimates. Here we
shall use the following Pseudodifferential operator version of the Kato–Ponce estimate
[26, §3.6]: Let P be a differential operator in the class O P Ss

1,0, then

‖P( f g)− f P(g)‖L2 ≤ C
{‖∇ f ‖L∞‖g‖Hs−1 + ‖ f ‖Hs ‖g‖L∞

}
, (8.3)

for any f ∈ Hs ∩ C1 and g ∈ Hs−1 ∩ L∞.
The standard way to obtain (8.2) is to differentiate ‖V ‖2

Hs with respect to time, to
insert the differential equation (8.1) and then apply a suitable commutator which leads to

1

2

d

dt
‖V ‖2

Hs = 〈
�s(V ),�s (∂t V )

〉
L2 = 〈

�s(V ),�s ( Ãa∂a V
)〉

L2

= 〈
�s(V ), Ãa (

�s (∂a V )
)〉

L2

+
〈
�s(V ),

[
�s ( Ãa∂a V

) − Ãa (
�s (∂a V )

)]〉
L2 ,

and then the first term is taken care of by integration by parts and the second one is by
applying the above Kato–Ponce estimate to the operator �s . But this procedure results
in a term of the form ‖∂a V ‖L∞ which contains ‖∂a∂xv‖L∞ . In order to estimate it by
‖∂a∂xv‖Hs−1 � ‖∂xv‖Hs we need to require that s − 1 > 3

2 , and hence we do not get
the desired result.

We circumvent this difficulty by writing

Ãa∂a V = ∂a
(

Ãa V
) − (

∂a Ãa) V,

and making the commutation

�s (∂a
(

Ãa V
)) = [(

�s∂a
) (

Ãa V
) − Ãa (

�s∂a
)
(V )

]
+ Ãa (

�s∂a
)
(V ) ,

which we insert into the first row of Eq. (8.4). Then we have to estimate three terms:

I = 〈
�s(V ),

[(
�s∂a

) (
Ãa V

) − Ãa (
�s∂a

)
(V )

]〉
L2 ,

I I = 〈
�s(V ), Ãa (

�s∂a
)
(V )

〉
L2 ,
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and

I I I = 〈
�s(V ),�s ((∂a Ãa)V

)〉
L2 .

For the first term we apply the Kato-Ponce commutator (8.3). However, this time we do
it for the operator (�s∂a) which has order s + 1, and hence

|I | ≤ ‖V ‖Hs

∥∥(�s∂a
) (

Ãa V
) − Ãa (

�s∂a
)
(V )

∥∥
L2

� ‖V ‖Hs
{‖∇ Ãa‖L∞‖V ‖Hs + ‖ Ãa‖Hs+1‖V ‖L∞

}
.

So by the Sobolev embedding theorem, we see that |I | � ‖ Ãa‖Hs+1‖V ‖2
Hs . Likewise,

since Hs is an algebra for s > 3
2 ,

|I I I | � ‖V ‖Hs ‖(∂a Ãa)V ‖Hs � ‖V ‖2
Hs ‖(∂a Ãa)‖Hs � ‖ Ãa‖Hs+1‖V ‖2

Hs .

Since �s∂a = ∂a�
s and Ãa is symmetric, we obtain a similar estimate for I I by

using integration by parts. Hence we conclude that the energy estimate (8.2) holds. Note
that in the estimate of all three terms above we have used the fact that Ãa ∈ Hs+1.

For the general case where A0 �= I , one has to define an appropriated inner-product
which takes into account the matrix A0. Details for the vacuum equations in the weighted
spaces Hs,δ and a positive definite A0 can be found in [16, §4] and only slight mod-
ifications are needed in order to extend the energy estimates of [16] to the coupled
system (3.24).
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