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Abstract: We discuss Schrödinger operators on a half-line with decaying oscillatory
potentials, such as products of an almost periodic function and a decaying function. We
provide sufficient conditions for preservation of absolutely continuous spectrum and
give bounds on the Hausdorff dimension of the singular part of the spectral measure.
We also discuss the analogs for orthogonal polynomials on the real line and unit circle.

1. Introduction

In this paper, we investigate half-line Schrödinger operators

(Hu)(x) = −u′′(x) + V (x)u(x), (1.1)

with decaying oscillatory potentials V : (0,∞) → R. All operators we consider have
0 as a regular point and are limit point at +∞. Therefore, the expression (1.1), together
with a choice of boundary condition θ ∈ [0, π), defines a Schrödinger operator H on
L2(0,+∞), with the domain

D(H) = {u ∈ L2(0,+∞) | u, u′ ∈ ACloc,−u′′ + V u ∈ L2, u′(0) sin θ = u(0) cos θ}.
The operator H is self-adjoint, and for every z ∈ C with Im z > 0, there is a nontrivial
solution of −u′′

z + V uz = zuz which is square-integrable near +∞. This can be used to
define the m-function

m(z) = u′
z(0) cos θ + uz(0) sin θ

uz(0) cos θ − u′
z(0) sin θ

,

which, in turn, defines a canonical spectral measure μ by

dμ = 1
π

w-lim
ε↓0

m(x + iε)dx
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(the weak limit is with respect to continuous functions of compact support). The impor-
tance of μ lies in the fact that the operator H is unitarily equivalent to multiplication by
x on L2(R, dμ(x)).

The potentials we consider decay at +∞, so σess(H) = [0,+∞). The purpose of this
paper is to characterize the type of spectrum on [0,+∞). More precisely, for E > 0, we
study generalized eigenfunctions of H , i.e. solutions of

− u′′(x) + V (x)u(x) = Eu(x) (1.2)

and estimate the Hausdorff dimension of

S = {E > 0 | not all solutions of (1.2) are bounded} . (1.3)

The importance of the set S, from a spectral theorist’s point of view, is that by the work of
Gilbert–Pearson [9], Behncke [2] and Stolz [28], on (0,+∞)\S,μ is mutually absolutely
continuous with the Lebesgue measure.

We denote by Var(γ, I ) the variation of the function γ on the interval I ,

Var(γ, I ) = sup
k∈N

sup
x0,...,xk∈I
x0<···<xk

k∑

j=1

|γ (x j )− γ (x j−1)|.

The following is our main result.

Theorem 1.1. Let the potential V be given by

V (x) =
∞∑

k=1

cke−iφk xγk(x), (1.4)

where ck ∈ C, φk ∈ R, and the following conditions hold:

(i) (uniformly bounded variation) γk(x) : (0,∞) → C are functions of bounded
variation whose variation is bounded uniformly in k, i.e.

sup
k

Var(γk, (0,∞)) < ∞; (1.5)

(ii) (uniform L p condition) for some p ∈ Z, p ≥ 2,

sup
k

∫ ∞

0
|γk(x)|pdx < ∞; (1.6)

(iii) (decay of coefficients) for some α ∈ (0, 1
p−1 ),

∞∑

k=1

|ck |α < ∞. (1.7)

Then the set S given by (1.3) has Hausdorff dimension at most (p − 1)α, and [0,∞) is
the essential support of the absolutely continuous spectrum of H.

Note that conditions (i)–(ii) above imply that limx→∞ γk(x) = 0 for all k.
Bounded variation conditions have been analyzed in spectral theory since Weid-

mann’s theorem [31], but finite sums of the form (1.4) were first analyzed by Wong [32],
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in the setting of orthogonal polynomials on the unit circle, in the L2 case. In the
Schrödinger operator literature, Wigner–von Neumann type potentials have attracted
attention since Wigner–von Neumann [30] and have been studied by Atkinson [1],
Harris–Lutz [12], Reed–Simon [25, Thm. XI.67], Ben-Artzi–Devinatz [3] and Janas–
Simonov [13]. Those results are mostly restricted to the L2 case, with the exception of
Janas–Simonov [13] which includes the L3 case.

Theorem 1.1 continues our earlier work in [21], which was, in turn, the analog of the
work [22] on orthogonal polynomials. It is proved in [21] that if the potential V is given
by a sum of the form (1.4), with only finitely many non-zero terms and V ∈ L p, then S
is a subset of an explicit finite set which depends only on p and the set of frequencies
φk . The constructions of Krüger [17] and Lukic [21] show that this result is optimal; in
particular, when there are finitely many terms, the p-dependence of possible singular
spectrum is a real phenomenon, and not just an artifact of the method. This encourages
us to conjecture that the p-dependence of possible Hausdorff dimension in Theorem 1.1
is also a real phenomenon; however, no such result is presently known.

In the special case when all the γk are equal, the potential becomes the product of an
almost periodic function and a decaying function.

Corollary 1.2. Let V (x) = γ (x)W (x), where the following conditions hold:

(i) γ (x) : (0,∞) → C has bounded variation;
(ii) W (x) is an almost periodic function given by

W (x) =
∞∑

k=1

cke−iφk x , (1.8)

with ck ∈ C, φk ∈ R, and with (1.7) satisfied for some α ∈ (0, 1
p−1 );

(iii) V ∈ L p(0,∞) for some p ∈ Z+, p ≥ 2.

Then the set S given by (1.3) has Hausdorff dimension at most (p − 1)α, and [0,∞) is
the essential support of the absolutely continuous spectrum of H.

Corollary 1.2 is an immediate consequence of Theorem 1.1, except for the observation
that the L p condition can be moved from V (x) to γ (x), which is proved later. We singled
out this special case because it was the main motivation for our work. For various
classes of functions W (x), multiplied by a decaying γ (x), it has been studied which
rate of decay preserves a.c. spectrum. If, instead of being almost periodic, W (x) was
sparse (Pearson [23], Kiselev–Last–Simon [15]) or random (Delyon–Simon–Souillard
[5], Kotani–Ushiroya [16], Kiselev–Last–Simon [15]), L2 decay of V would be critical
for preservation of a.c. spectrum; however, if W (x) was periodic, any decay would
suffice to preserve a.c. spectrum (Golinskii–Nevai [10]). The answer for almost periodic
W (x) has been more elusive; Corollary 1.2 gives a partial answer, providing a sufficient
condition for preservation of a.c. spectrum.

There have been other results investigating perturbations with bounded variation
conditions: Stolz [28,29] investigated higher-order bounded variation conditions, prov-
ing purely a.c. spectrum on [lim sup V,∞). In another direction, Denisov [6,7] and
Kaluzhny–Shamis [14] have shown that with a free or periodic background, pertur-
bations of bounded L2 variation preserve a.c. spectrum. L2 variation conditions have
also found their way into some necessary and sufficient conditions, in the setting of
orthogonal polynomials [11,18,19,26,27].
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Last [20] has shown that this picture does not carry over in the presence of an arbitrary
background potential, by constructing examples of decaying V0, V such that σac(−	 +
V0) = [−2, 2], but V has bounded variation and σac(−	 + V0 + V ) = ∅.

The core of the method is summarized by the following technical lemma. To state
the lemma, we need to introduce functions h j of 1 + j variables, defined recursively by
h0(η) = 1 and

h J (η;φ1, . . . , φJ ) = 1

η − φ1 − · · · − φJ

J−1∑

j=0

h j (η;φ1, . . . , φ j )

×h J− j−1(η;φ j+1, . . . , φJ−1). (1.9)

Lemma 1.3. Let the potential V be given by (1.4), with ck ∈ C, φk ∈ R, and let
η ∈ (0,∞) be such that the following conditions hold:

(i) (uniformly bounded variation) same as condition (i) of Theorem 1.1;
(ii) (uniform L p condition) same as condition (ii) of Theorem 1.1;

(iii) (decay of coefficients)
∞∑

k=1

|ck | < ∞; (1.10)

(iv) (small divisor conditions) for j = 1, . . . , p − 1,
∞∑

k1,...,k j =1

∣∣ck1 · · · ck j h j (η;φk1 , . . . , φk j )
∣∣ < ∞. (1.11)

Then, for E = η2

4 , all solutions of (1.2) are bounded.

Remark 1.1. The proof of Lemma 1.3 shows that for real solutions u(x), the quantity

u′(x)2 + Eu(x)2 (1.12)

is bounded as x → ∞, and a simple modification (pointed out in the proof) also shows
that (1.12) converges as x → ∞. However, the solution u(x) does not, except in special
cases, obey WKB asymptotics in its usual form. This is because for p > 2, there are
correction terms in the Prüfer phase which depend on the frequencies φk , and cannot be
expressed directly in terms of V (x).

We also present the analogs of Theorem 1.1 for orthogonal polynomials on the real
line and unit circle. Their proofs are largely analogous, so we will only explain the
necessary modifications. We first state the result for orthogonal polynomials on the real
line (OPRL).

Theorem 1.4. Let ρ be a nontrivial probability measure on R with Lebesgue decompo-
sition dρ = f (x)dx + dρs into an absolutely continuous and a singular part. Let ρ have
diagonal Jacobi coefficients {bn}∞n=1 and off-diagonal Jacobi coefficients {an}∞n=1.

Assume that there is an integer p ∈ Z, p ≥ 2, and a real number β ∈ (0, 1
p−1 ), such

that each of the sequences {a2
n − 1}∞n=1, {bn}∞n=1 can be written in the form

∞∑

l=1

cle
−inφlγ (l)n , (1.13)

where cl ∈ C, φl ∈ R, such that the following conditions hold:
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(i) (uniformly bounded variation)

sup
l

∞∑

n=1

|γ (l)n+1 − γ (l)n | < ∞; (1.14)

(ii) (uniform p condition)

sup
l

∞∑

n=1

|γ (l)n |p < ∞; (1.15)

(iii) (decay of coefficients)

∞∑

l=1

|cl |β < ∞. (1.16)

Then there is a set S of Hausdorff dimension at most β(p − 1) with ρs((−2, 2)\S) = 0,
and f (x) > 0 for Lebesgue-a.e. x ∈ (−2, 2).

Remark 1.2. The above theorem assumes that the sequence {a2
n − 1}∞n=1 is of the form

(1.13) and obeys the conditions listed there. The sequence {a2
n −1}∞n=1 appears naturally

in the proof, but for a spectral theorist, it would be more natural to pose conditions on
{an − 1}∞n=1. However, if an − 1 = (1.13), then

a2
n − 1 = (an − 1)2 + 2(an − 1)

=
∞∑

k,l=1

ckcle
−in(φk +φl )γ (k)n γ (l)n + 2

∞∑

l=1

cle
−inφlγ (l)n

is of the same form (with the same values of p and β), so there is an immediate corollary
where the condition is applied on {an − 1}∞n=1 instead.

The next result is for orthogonal polynomials on the unit circle (OPUC).

Theorem 1.5. Let μ be a nontrivial probability measure on ∂D with Lebesgue decom-
position dμ = w(θ) dθ

2π + dμs into an absolutely continuous and a singular part. Let μ
have Verblunsky coefficients {αn}∞n=0 of the form

αn =
∞∑

l=1

cle
−inφlγ (l)n , (1.17)

where cl ∈ C, φl ∈ R, such that conditions (i)–(iii) of Theorem 1.4 hold with some
odd integer p ∈ Z, p ≥ 3, and some β ∈ (0, 1

p−2 ). Then there is a set S of Hausdorff
dimension at most β(p − 2) with μs(∂D\S) = 0, and w(θ) > 0 for Lebesgue-a.e. θ .

Remark 1.3. Note that in the previous theorem, the only critical values of p for the
p condition are odd integers. The same phenomenon was noticed for the finite fre-
quency case in [22], and is in contrast with orthogonal polynomials on the real line and
Schrödinger operators, where the statement changes at every integer value of p. There
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is an informal way to understand why this happens. For all systems, the method tells us
that critical points are of the form

η = φm1 + · · · + φmk − (φn1 + · · · + φnl )

with k + l < p. However, only on the unit circle, we can rotate a measure; by rotating
the measure by an angle ψ , we shift

η 	→ η + ψ, φm 	→ φm + ψ

so only the critical points with k − l = 1 are preserved. However, increasing p, new
points with k − l = 1, k + l < p emerge only when p exceeds an odd integer value.

We prove Lemma 1.3 in Sects. 2–3. Sections 4 and 5 contain proofs of Theorem 1.1
and Corollary 1.2, respectively, and Sect. 6 describes the adaptations necessary to carry
over the method to prove Theorems 1.4 and 1.5.

2. Preliminaries

To analyze solutions of (1.2), we use Prüfer variables, first introduced by Prüfer [24].
For

E = η2

4
(2.1)

with η > 0 and for a real-valued nonzero solution u(x) of (1.2), we define modified
Prüfer variables R(x), θ(x) by

u′(x) = 1
2ηR(x) cos( 1

2ηx + θ(x)), (2.2)

u(x) = R(x) sin( 1
2ηx + θ(x)). (2.3)

From (1.2), we obtain a system of first-order differential equations for log R and θ ,

dθ

dx
= V (x)

η

( 1
2 ei[ηx+2θ(x)] + 1

2 e−i[ηx+2θ(x)] − 1
)
, (2.4)

d

dx
log R(x) = Im

(
V (x)

η
ei[ηx+2θ(x)]

)
. (2.5)

Note that, by (2.2) and (2.3), boundedness of R(x) implies boundedness of the cor-
responding solution of (1.2). Thus, the goal becomes to analyze the integral of (2.5),

log R(b)− log R(a) = Im
∫ b

a

V (x)

η
ei[ηx+2θ(x)]dx . (2.6)

Note that we will, indeed, only estimate the imaginary part of the integral in (2.6). The
real part does not, in general, converge as b → ∞.

Substituting (1.4) into (2.6), our goal becomes to estimate integrals of the form
∫ b

a
eK i[ηx+2θ(x)]e−i(φm1 +···+φm J )xγm1(x) . . . γm J (x)dx . (2.7)

Initially, in (2.6), these integrals appear with K = J = 1, but later in the proof they
appear with J ≥ 2 and 0 ≤ K ≤ J .
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Integrals of the form (2.7) can be estimated by the following lemma, which is just
a more quantitative version of Lemma 4.1 from [21]. To avoid placing an absolute
continuity assumption on γk(x), the proof is expressed in terms of Fubini’s theorem
rather than integration by parts. Remember that by (i), the variations of the γk are
uniformly bounded,

τ = sup
k

Var(γk, (0,∞)) < ∞. (2.8)

Lemma 2.1. Let J, K ∈ Z with J ≥ 1 and 0 ≤ K ≤ J . Let 0 ≤ a < b < ∞, and
denote

�(x) = γm1(x) . . . γm J (x),

φ = φm1 + · · · + φm J .

Then
∣∣∣∣
∫ b

a

(
(φ−Kη)eK i[ηx+2θ(x)]e−iφx�(x)−2K eK i[ηx+2θ(x)]e−iφx�(x)

dθ

dx

)
dx

∣∣∣∣ ≤ 2τ J .

(2.9)

Proof. Without loss of generality assume that γk are left continuous. Then there exist
finite positive measures νk on R and functions sk : R → {−1, 1} such that γk(x) =∫
[x,∞)

skdνk and νk([x,∞)) = Var(γk, [x,∞)) ≤ τ by (2.8). Using Fubini–Tonelli’s
theorem and then integrating in x , rewrite the integral on the left-hand side of (2.9) as
∫ b

a
ψ ′(x)�(x)dx

=
∫

[a,∞)J

∫ min(t1,...,tJ ,b)

a
ψ ′(x)sm1(t1) · · · sm J (tJ )dxdνm1(t1) · · · dνm J (tJ )

=
∫

[a,∞)J

(
ψ(min(t1, . . . , tJ , b))− ψ(a)

)
sm1(t1) · · · sm J (tJ )dνm1(t1) · · · dνm J (tJ ),

where ψ(x) = iei(Kη−φ)x e2i K θ(x). Since |ψ(x)| = 1, this implies
∣∣∣∣
∫ b

a
ψ ′(x)�(x)dx

∣∣∣∣ ≤ 2
∫

[a,∞)J
|sm1(t1) · · · sm J (tJ )|dνm1(t1) · · · dνm J (tJ ),

and integrating in t1, . . . , tJ implies (2.9). ��
We must keep track of integrals of the form (2.7) and the multiplicative constants with

which they will appear in the method. We need to introduce quite a bit of notation, whose
importance will become clear in Sect. 3 (or see [21] for more motivation). For instance,
the integral (2.7) will appear multiplied by f J,K (η;φm1 , . . . , φm J ), with a function f J,K
which we are about to define.

The functions f J,K and gJ,K are introduced in [21], for J, K ∈ Z with J ≥ 1
and 0 ≤ K ≤ J . For other pairs (J, K ) ∈ Z

2, we take those functions to be zero by
convention. They are functions of 1 + J variables, defined recursively by

f1,0(η;φ1) = −1

η
, f1,1(η;φ1) = 1

η
, (2.10)
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and

gJ,K (η; {φ j }J
j=1) = − 2K

Kη − ∑J
j=1 φ j

f J,K (η; {φ j }J
j=1), (2.11)

f J,K (η; {φ j }J
j=1) = 1

η

K +1∑

k=K−1

∑

σ∈SJ

1

J !ωK−k gJ−1,k(η; {φσ( j)}J−1
j=1 ), J ≥ 2, (2.12)

where SJ denotes the symmetric group in J elements and

ωa =

⎧
⎪⎨

⎪⎩

−1 a = 0
1
2 a = ±1
0 |a| ≥ 2

(2.13)

are constants which come from an alternative way of writing (2.4) as

dθ

dx
= V (x)

η

1∑

a=−1

ωaeia[ηx+2θ(x)]. (2.14)

Notation can be simplified by the following symmetric product.

Definition 2.1. For a function pI of 1 + I variables and a function qJ of 1 + J variables,
their symmetric product is a function pI  qJ of 1 + (I + J ) variables defined by

(pI  qJ )
(
η; {φi }I +J

i=1

) = 1

(I + J )!
∑

σ∈SI +J

pI
(
η; {φσ(i)}I

i=1

)
qJ

(
η; {φσ(i)}I +J

i=I +1

)
.

Further, it will be convenient to think of ωa , with a ∈ Z, as a function of 1 + 1
variables, with values given by (2.13), and to introduce ξJ,K , for 0 ≤ K ≤ J , as a
function of 1 + J variables,

ξJ,K (η; {φ j }J
j=1) =

{
(−1)K−1

η
J = 1

0 J ≥ 2.
(2.15)

We can now rewrite (2.10), (2.12) as

f J,K = ξJ,K +
1

η

1∑

a=−1

ωa  gJ−1,K +a . (2.16)

It will also be useful to have notation for the corresponding functions with flipped signs
of all but the first parameter,

f̆ J,K (η; {φ j }J
j=1) = f J,K (η; {−φ j }J

j=1), (2.17)

ğJ,K (η; {φ j }J
j=1) = gJ,K (η; {−φ j }J

j=1), (2.18)

and for

GJ,0 =
J−1∑

j=1

min{ j,J− j}∑

k=1

1

4k
g j,k  ğJ− j,k . (2.19)
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We now point out some identities among the functions just defined. The importance
of these identities is mostly in locating singularities of those functions, rather than
in the precise form of the identities. For instance, (2.11) seems to indicate that gJ,K

has a singularity when Kη = ∑J
j=1 φ j , but (2.21) below implies that many of those

singularities are removable and that all non-removable singularities stem from g j,1 for

some j ≤ J , with η = ∑ j
i=1 φmi .

Lemma 2.2. (i) For 0 ≤ K ≤ J and 0 < k < K ,

f J,K = 1
2

J∑

j=0

f j,k  gJ− j,K−k, (2.20)

gJ,K = 1
2

J∑

j=0

g j,k  gJ− j,K−k . (2.21)

(ii) For J ≥ 2,

f J,0 − f̆ J,0 = (φ1 + · · · + φJ )GJ,0, (2.22)

assuming the parameters η;φ1, . . . , φJ for both sides of the identity.
(iii) The functions gJ,1 are just rescaled and symmetrized h J , namely,

gJ,1(η; {φ j }J
j=1) = − 2

ηJ

1

J !
∑

σ∈SJ

h J (η; {φσ( j)}J
j=1). (2.23)

Proof. (i) is a rescaled version of [21, Lem. 5.1(i)].
(ii) Start from (2.11) to note

1

2k
(φ1 + · · · + φJ )g j,k  ğJ− j,k = − f j,k  ğJ− j,k + g j,k  f̆ J− j,k .

Summing in j and k and using (2.16), we have

2(φ1 + · · · + φJ )GJ,0 =−ξ1,1  ğJ−1,1− 1

η

J−1∑

j=1

min{ j,J− j}∑

k=1

1∑

a=−1

ωa  g j−1,k+a  ğJ− j,k

+ ξ1,1  gJ−1,1+
1

η

J−1∑

j=1

min{ j,J− j}∑

k=1

1∑

a=−1

g j,k  ωa  ğJ− j−1,k+a,

which implies (2.22) since the triple sums are equal (after a relabeling of indices) and
f J,0 = 1

η
ω1  gJ−1,1 = 1

2ξ1,1  gJ−1,1.
(iii) We prove (2.23) by induction on J . Start by verifying

g1,1(η;φ1) = −2

η

1

η − φ1
= −2

η
h1(η;φ1).
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For J ≥ 2, by (2.11), (2.16) and (2.21), we have

gJ,1(η; {φ j }J
j=1) = − 2

η − ∑J
j=1 φ j

f J,1

= − 2

η − ∑J
j=1 φ j

1

η

⎛

⎝ω0  gJ−1,1 + 1
2ω1 

J−2∑

j=1

g j,1  gJ− j−1,1

⎞

⎠.

By the inductive hypothesis, this implies

gJ,1(η; {φ j }J
j=1) = − 2

η − ∑J
j=1 φ j

1

ηJ

⎛

⎝−2ω0  h J−1 + 2ω1 
J−2∑

j=1

h j  h J− j−1

⎞

⎠.

Using (2.13) and h0 = 1, the inductive step is completed. ��

3. Proof of Lemma 1.3

In this section, we freely use all assumptions of Lemma 1.3. We break up its proof into
several lemmas. Let us start by denoting

σ = sup
k

‖γk‖p, (3.1)

which is finite by assumption (ii).
Denoting

SJ,K (x)=
∞∑

m1,...,m J =1

f J,K (η;φm1 , . . . , φm J )βm1(x) . . . βm J (x)e
i K [ηx+2θ(x)], (3.2)

where

βk(x) = cke−iφk xγk(x), (3.3)

(2.6) becomes

log R(b)− log R(a) = Im
∫ b

a
S1,1(x)dx . (3.4)

The idea of the proof is to iteratively replace S1,1 by a sum of SJ,K ’s with ever higher
values of J . We will have to keep track of the errors, so denote

E J,K =
∞∑

m1,...,m J =1

∣∣cm1 . . . cm J gJ,K (η;φm1 , . . . , φm J )
∣∣ (3.5)

(note that E J,K is trivially zero unless 1 ≤ K ≤ J , since the same is true of gJ,K ) and

EJ,0 =
∞∑

m1,...,m J =1

∣∣cm1 . . . cm J GJ,0(η;φm1 , . . . , φm J )
∣∣ (3.6)

for K = 0.
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Lemma 3.1. E J,K is finite when 1 ≤ K ≤ J ≤ p − 1 and EJ,0 is finite for 2 ≤ J ≤ p.

Proof. By (2.23), since the condition (1.11) holds for J = 1, . . . , p − 1, E J,1 is finite
for the same values of J . Now note that (2.21) implies

E J,K ≤ 1
2

J∑

j=0

E j,k E J− j,K−k, (3.7)

and (2.22) implies

EJ,0 ≤
J−1∑

j=1

min{ j,J− j}∑

k=1

1
4k E j,k E J− j,k, (3.8)

and the lemma follows from these two identities. ��
Lemma 3.2. The sum SJ,K (x) is absolutely convergent when 0 ≤ K ≤ J ≤ p, and if
in addition J ≥ 2, then

∞∑

m1,...,m J =1

∣∣ f J,K (η;φm1 , . . . , φm J )βm1(x) . . . βm J (x)
∣∣

≤ 1
η

1∑

a=−1

|ωa |E J−1,K +a

∞∑

l=1

|cl |τ J . (3.9)

If J = p, then also

∫ ∞

0

∞∑

m1,...,m J =1

∣∣ f J,K (η;φm1 , . . . , φm J )βm1(x) . . . βm J (x)
∣∣ dx

≤ 1
η

1∑

a=−1

|ωa |E p−1,K +a

∞∑

l=1

|cl |σ p. (3.10)

Proof. Equation (2.16) implies

| f J,K | ≤ |ξJ,K | + 1
η

1∑

a=−1

|ωa |  |gJ−1,K +a |. (3.11)

Multiplying by

|βm1(x) . . . βm J (x)| ≤ |cm1 . . . cm J |τ J

(which follows from (2.8)) and summing in m1, . . . ,m J proves (3.9). For J = p,
multiplying (3.11) instead by

∫ ∞

0
|βm1(x) . . . βm p (x)|dx ≤ |cm1 . . . cm p |σ p

(which follows from (3.1)) and summing in m1, . . . ,m p proves (3.10). ��
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Lemma 3.3. For J = 1, . . . , p − 1 and 0 ≤ a < b < ∞,
∣∣∣∣∣

∫ b

a

(
J∑

K=1

SJ,K −
J+1∑

K=0

SJ+1,K

)
dx

∣∣∣∣∣ ≤
J∑

K=1

1
K E J,K τ

J . (3.12)

Proof. For K ≥ 1, use Lemma 2.1 and multiply (2.9) by 1
2K gJ,K (η;φm1, . . . , φm J ) to

conclude
∣∣∣∣
∫ b

a

(
f J,K eK i[ηx+2θ(x)]e−iφx�(x)− gJ,K eK i[ηx+2θ(x)]e−iφx�(x)

dθ

dx

)
dx

∣∣∣∣ ≤ 1

K
|gJ,K |τ J ,

where we have used (2.11) and the notation in Lemma 2.1. Multiply by cm1 . . . cm J , sum
in m1, . . . ,m J from 1 to ∞, and sum in K from 1 to J to conclude (3.12). The sum
containing the gJ,K turns into the sum of SJ+1,K by using (1.4), (2.14) and (2.12).

The infinite summation is justified by Fubini’s Theorem, by Lemmas 3.1 and 3.2. ��
Lemma 3.4. For J = 2, . . . , p and 0 ≤ a < b < ∞,

∣∣∣∣Im
∫ b

a
SJ,0(x)dx

∣∣∣∣ ≤ EJ,0τ
J . (3.13)

Proof. Without loss of generality, we can assume that for each term (3.3) in the sum
(1.4), the sum also contains a term c̄keiφk x γ̄k(x); we can fulfill this assumption by taking
the representation (1.4) and averaging it with its complex conjugate, since V (x) is real-
valued. Then, note that for every term

f J,0(η;φm1 , . . . , φm J )βm1(x) . . . βm J (x)

in SJ,0, there is another term with opposite signs of the φm j ,

f J,0(η;−φm1 , . . . ,−φm J )β̄m1(x) . . . β̄m J (x).

Averaging those two terms and using Lemma 2.2(ii) and Lemma 2.1, we can estimate

1
2

∣∣∣∣Im
∫ b

a

(
f J,0βm1(x) . . . βm J (x) + f̆ J,0β̄m1(x) . . . β̄m J (x)

)
dx

∣∣∣∣

= 1
2

∣∣∣∣Im
∫ b

a

(
( f J,0 − f̆ J,0)βm1(x) . . . βm J (x)

)
dx

∣∣∣∣

≤ |GJ,0(η;φm1 , . . . , φm J )|τ J .

Summing in m1, . . . ,m J implies (3.13). ��
Proof of Lemma 1.3. Summing (3.12) in J = 1, . . . , p − 1, we obtain

∣∣∣∣∣∣

∫ b

a

⎛

⎝S1,1(x)−
p∑

K=1

Sp,K (x)−
p∑

j=2

S j,0(x)

⎞

⎠ dx

∣∣∣∣∣∣
≤

p−1∑

j=1

j∑

k=1

1

k
E j,kτ

j . (3.14)

Meanwhile, using Lemma 3.2 for J = p, using the triangle inequality on (3.10) and
summing in K ,

∣∣∣∣∣

p∑

K=1

∫ b

a
Sp,K (x)dx

∣∣∣∣∣ ≤ 2

η

p−1∑

k=0

E p−1,k

∞∑

l=1

|cl |σ p. (3.15)
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Taking the imaginary part of (3.14) and using Lemma 3.4 and (3.15), we conclude
(remembering (3.4)) that

|log R(b)− log R(a)| ≤
p−1∑

j=1

j∑

k=1

1

k
E j,kτ

j +
p∑

J=2

EJ,0τ
J +

2

η

p∑

k=0

E p−1,k

∞∑

l=1

|cl |σ p.

(3.16)

All we need from this inequality is that it is an estimate independent of b. Thus, log R(b)
is a bounded function as b → ∞, which shows that u(x) is a bounded function.

We presented the proof in this way for (relative) clarity. If we had, instead of using
τ and σ , written the estimates in terms of the γk and used that throughout the method,
(3.16) would be an inequality with a right-hand side that converges to 0 as a → ∞. This
would automatically imply that log R(x) is Cauchy as x → ∞, and that a finite limit

lim
x→∞ log R(x)

exists. ��

4. Proof of Theorem 1.1

To prove Theorem 1.1 starting from Lemma 1.3, we need to estimate the Hausdorff
dimension of the set of η for which the small divisor condition (1.11) fails for some
j < p. For instance, for p = 2 we need to estimate the dimension of the set of η where

∞∑

l=1

∣∣∣∣
cl

η − φl

∣∣∣∣ = ∞;

for p = 3 we also need to estimate the dimension of the set where

∞∑

k,l=1

∣∣∣∣
ckcl

(η − φk)(η − φk − φl)

∣∣∣∣ = ∞;

etc. We will use measures with the following property: for β ∈ [0, 1], a Borel measure
ν on R is uniformly β-Hölder continuous (or UβH) if there exists C̃ < ∞ such that for
every interval I ⊂ R with |I | < 1,

ν(I ) ≤ C̃ |I |β, (4.1)

where |·| denotes Lebesgue measure. If ν is finite, the condition |I | < 1 can be removed
(while possibly changing C̃). The condition (4.1) enters the proof through the following
lemma.

Lemma 4.1. Let ν be a finite UβH measure on R.

(i) If α ∈ (0, β), then for all ψ ∈ R,
∫

1

|η − ψ |α dν(η) ≤ Dα, (4.2)

where Dα is a finite constant which depends only on α and not on ψ .
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(ii) For J ≥ 1 and α ∈ (0, βJ ),∫
|h J (η;φ1, . . . , φJ )|α dν(η) ≤ CJ DJα, (4.3)

where CJ = 1
J+1

(2J
J

)
are Catalan numbers.

Proof. (i) By Fubini’s theorem, and picking an arbitrary ε ∈ (0,∞),
∫

1

|η − ψ |α dν(η) =
∫ ∞

0
ν

({
η : 1

|η − ψ |α > t

})
dt

≤ εν(R) +
∫ ∞

ε

C̃(2t−1/α)βdt

≤ εν(R) + C̃
2β

β
α

− 1
ε1−β/α,

which is a bound independent on ψ , concluding the proof.
(ii) The proof proceeds by induction. For J = 0 the statement is trivial.
Assume the statement is true for all j < J . Integrating one term of the sum on the

right-hand side of (1.9) and using Hölder’s inequality and the inductive hypothesis, we
get
∫ ∣∣∣∣

1

η − φ1 − · · · − φJ
h j h J− j−1

∣∣∣∣
α

dν(η)≤ D1/J
Jα (C j DJα)

j/J (CJ− j−1 DJα)
(J− j−1)/J

≤ C j CJ− j−1 DJα.

Summing in j , using (1.9), and remembering that Catalan numbers obey the recursion
relation

CJ =
J−1∑

j=0

C j CJ− j−1,

we complete the inductive step. ��
Lemma 4.2. Assume that (1.7) holds. Then, for a positive integer j , the set of η for
which the condition (1.11) fails has Hausdorff dimension at most jα.

Proof. Denote by T the set of η where the condition (1.11) fails. If the Hausdorff
dimension of T was greater than jα, then for some β > jα we would have hβ(T ) = ∞.
Thus, there would exist a subset T ′ ⊂ T such that ν = χT ′hβ is a finite UβH measure
with ν(T ) > 0 (see, e.g.,[8, Thm. 5.6]).

Then Lemma 4.1(ii) implies

∫ ∞∑

k1,...,k j =1

∣∣ck1 · · · ck j h j (η;φk1 , . . . , φk j )
∣∣α dν(η) ≤ C j D jα

( ∞∑

k=1

|ck |α
) j

.

Since the integral is finite, the integrand must be ν-a.e. finite. However, for α ∈ (0, 1]
and a sequence xn of nonnegative numbers,

∞∑

n=1

xαn < ∞ �⇒
∞∑

n=1

xn < ∞;

thus, (1.11) holds for ν-a.e. η, contradicting ν(T ) > 0. ��
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Proof of Theorem 1.1. Conditions (i)–(iii) of Lemma 1.3 are trivially satisfied. By
Lemma 4.2, the condition (1.7) holds for all j = 1, . . . , p − 1 away from a set of
Hausdorff dimension at most (p − 1)α. Thus, by Lemma 1.3, the Hausdorff dimen-

sion of the set S is at most (p − 1)α (the map η 	→ η2

4 obviously preserves Hausdorff
dimension).

By the results of Gilbert–Pearson [9], Behncke [2] and Stolz [28], boundedness
of solutions for E ∈ (0,∞)\S implies that the canonical spectral measure dμ and
Lebesgue measure are mutually absolutely continuous on (0,∞)\S, which completes the
proof. ��

5. Proof of Corollary 1.2

Corollary 1.2 is a special case of Theorem 1.1, with all the γk(x) taken to be equal to
the same function γ (x); by the following lemma, V (x) ∈ L p then implies γ (x) ∈ L p,
and the corollary is immediate.

Lemma 5.1. Let W (x) be (uniformly) almost periodic and not identically zero, and let
γ : (0,∞) → R have bounded variation. Let p ∈ [1,∞). Then Wγ ∈ L p(0,∞)

implies γ ∈ L p(0,∞).

Proof. If W is almost periodic, then so is |W |p, since the map t 	→ |t |p is uniformly
continuous on compacts. If γ has bounded variation, then so does |γ |p, since (by the
mean value theorem for t 	→ t p)

∣∣|γ (x)|p − |γ (y)|p
∣∣ ≤ p‖γ ‖p−1∞ |γ (x)− γ (y)|.

Thus, it suffices to prove the lemma for p = 1.
We may pick T > 0 for which there exist δ,	 ∈ (0,∞) such that for all a ≥ 0,

δ ≤
∫ a+T

a
|W (x)|dx ≤ 	. (5.1)

The upper bound is trivial with 	 = T ‖W‖∞, whereas existence of the lower bound
for large enough T is a standard fact for non-zero almost periodic functions (see, e.g.,
[4, p. 20]).

For x, y ∈ [a, a + T ], by the triangle inequality,

|γ (y)| ≤ |γ (x)| + |γ (x)− γ (y)| ≤ |γ (x)| + Var(γ, [a, a + T ]).
Integrating in y from a to a + T , we conclude

1

T

∫ a+T

a
|γ (y)|dy ≤ |γ (x)| + Var(γ, [a, a + T ]).

Multiplying by |W (x)|, integrating in x from a to a + T , and using (5.1), we obtain

δ

T

∫ a+T

a
|γ (y)|dy ≤

∫ a+T

a
|W (x)γ (x)|dx + Var(γ, [a, a + T ])	.

Specialize to a = nT and sum in n to obtain

δ

T

∫ ∞

0
|γ (y)|dy ≤

∫ ∞

0
|W (x)γ (x)|dx + Var(γ, [0,∞))	,

which completes the proof since the right-hand side is finite. ��
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6. An Outline of the Proofs of Theorems 1.4 and 1.5

The proofs of Theorems 1.4 and 1.5 follow the same ideas, adapted to the discrete case.
We present a discussion of the necessary adaptations, omitting the computational details.

In [22], we have developed an iterative scheme for proving theorems similar to
Theorems 1.4 and 1.5, but where (1.13) and (1.17) are finite sums. For both OPRL and
OPUC, the essential spectrum can be parametrized by η ∈ [0, 2π ], by η 	→ 2 cos(η/2)
or by η 	→ eiη, respectively. The suitable analog of Prüfer variables can be presented in
a unified way for both OPRL and OPUC (see [22, Sect. 4]), as sequences rn, θn obeying
the recursion relations

rn+1

rn
= |1 − αnei[(n+1)η+2θn ] − cᾱn|√

(1 − cαn)(1 − cᾱn)− αnᾱn
, (6.1)

e2i(θn+1−θn) = 1 − ᾱne−i[(n+1)η+2θn ] − cαn

1 − αnei[(n+1)η+2θn ] − cᾱn
, (6.2)

where

c =
{

0 for OPUC,
1 for OPRL.

Here, for OPUC, αn are just Verblunsky coefficients, whereas for OPRL,

αn = a2
n − 1 + eiη/2bn+1

eiη − 1
.

Thus, in either case, the sequence αn is of the form (1.13). To discuss boundedness of
the sequence rn , we estimate partial sums of (6.1),

N∑

n=M

e−inφ�neik[(n+1)η+2θn ], (6.3)

where

�n = γ (k1)
n · · · γ (ks )

n γ̄ (l1)n · · · γ̄ (lt )n , (6.4)

φ = φk1 + · · · + φks − φl1 − · · · − φlt , (6.5)

and s + t < K . The analog of Lemma 2.1 becomes (compare with [22, Lem. 6.1])

Lemma 6.1. With notation as above,

N∑

n=M

(
(e−i(kη−φ) − 1)e−inφ�neik[(n+1)η+2θn ]

− e−inφ�neik[(n+1)η+2θn ](e2ik(θn+1−θn) − 1
)) ≤ 2τ s+t ,

where τ is a uniform bound on the variation of the γ (l),

τ = sup
l

∞∑

n=M

|γ (l)n+1 − γ (l)n |.
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This lemma drives an iterative procedure, and it is proved that the Prüfer amplitude
rn is bounded in n if certain small divisor conditions are met. The singularities involved
are of the form

1

e−i(η−φ) − 1
,

with φ as in (6.5), and since these are first order singularities at η ∈ φ + 2πZ, they can
be handled as in Sect. 4. For instance, in the 2 case, the Prüfer amplitude is bounded if

∞∑

l=1

∣∣∣∣
cl

e−i(η−φl ) − 1

∣∣∣∣ < ∞.

In the general case, the algebra is more complicated than for Schrödinger operators,
and one needs to work with functions f I,J,K ,L , gI,J,K ,L parametrized by four indices
I, J, K , L , as defined in [22, Sect. 8]. The proof needs identities analogous to those
in Lemma 2.2. For some of those identities, [22] avoided finding them explicitly, and
instead proved by contradiction that the functions obey desired properties. This indirect
proof is easily adapted to the current needs; for instance, if in Sect. 2 we hadn’t known
that (2.22) held, but we knew that f J,0 − f̆ J,0 = 0 whenever φ1 + · · · +φJ = 0, that and
the fact that f J,0 − f̆ J,0 is a rational function would suffice to conclude existence of a
rational function GJ,0 such that (2.22) holds.

A closer look at the algebra shows that for OPRL, we obtain small divisor conditions
for integers j with j < p, whereas for OPUC, we only obtain small divisor conditions
for odd integers j with j < p. This explains why Theorems 1.4 and 1.5 give different
estimates on the Hausdorff dimension, as was already motivated in Remark 1.3.
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