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Abstract: In a recent article (Fefferman and Weinstein, in J Am Math Soc 25:1169–
1220, 2012), the authors proved that the non-relativistic Schrödinger operator with a
generic honeycomb lattice potential has conical (Dirac) points in its dispersion surfaces.
These conical points occur for quasi-momenta, which are located at the vertices of the
Brillouin zone, a regular hexagon. In this paper, we study the time-evolution of wave-
packets, which are spectrally concentrated near such conical points. We prove that the
large, but finite, time dynamics is governed by the two-dimensional Dirac equations.

1. Introduction and Outline

There is great interest within the fundamental and applied physics communities in
the properties of waves in periodic structures with honeycomb lattice symmetry. The
(Floquet–Bloch) dispersion relation of such structures is known to have conical singular-
ities which occur at the intersections of certain bands at high-symmetry quasi-momenta.
These conical singularities, also called Dirac points or diabolical points, are central to
the remarkable electronic properties of graphene [19,27] and wave-propagation proper-
ties in dielectrics (linear and nonlinear) with honeycomb structure dielectric parameters
[7,19,20,27–29]. Conical points have long been known to arise in the dispersion relation
of plane waves of the homogeneous and anisotropic Maxwell equations [8].

In [16] it was proved that for generic honeycomb lattice potentials, V (x), that the
non-relativistic time-independent Schrödinger equation:

μφ = (−� + V (x)) φ (1.1)

has conical singularities in its dispersion surfaces. These occur at quasi-momenta located
at the vertices of the Brillouin zone, B, a regular hexagon. In this paper we prove that
the dynamics of solutions of the time-dependent Schrödinger equation:

i∂tψ = (−� + V (x)) ψ, (1.2)
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for initial data which are spectrally concentrated near the vertices of B, are for very
large, but finite, times effectively governed by a two-dimensional system of relativistic
Dirac equations. We next explain our main result, Theorem 5.1.

It is natural to decompose solutions of (1.2) in terms of its Floquet–Bloch states:
�b(x; k)e−iμb(k)t , where b � 1, k ∈ B and μb(k), b � 1 are the eigenvalues of the
pseudo-periodic eigenvalue problem with quasi-momentum, k; see (2.9)–(2.10). At a
conical singularity (Dirac point) of a honeycomb structure we have two dispersion sur-
faces, graphs of consecutive maps k �→ μb1(k) ≡ μ−(k) and k �→ μb1+1(k) ≡ μ+(k)
intersecting conically: μ� ≡ μ+(K�) = μ−(K�). The bth

1 and (b1 + 1)st spectral bands
intersect at the energy μ� and this energy is attained by μ−(k) and μ+(k) at each of
the vertices of B. The corresponding two-dimensional quasi-periodic eigenspace asso-
ciated with the quasi-momenta K�, Nullspace (−� + V − μ�), is spanned by the pair:
�1(x; K�) and �2(x; K�), which satisfy the relation: �2(x) = �1(−x); see the notion
of Dirac point, Definition 3.1.

Theorem 5.1 asserts the following for a generic honeycomb lattice potential, V (x):
Consider initial conditions of the form:

ψ(x, 0) =
2∑

j=1

δα j0(δx)� j (x), (1.3)

with fixed, smooth, rapidly decreasing α j0(X), j = 1, 2 and δ small. We call this a
wave-packet spectrally localized at K� ∈ B. For such initial conditions the solution
evolves, approximately, as a slowly modulated superposition of Floquet–Bloch states:

ψ(x, t) ≈ e−iμ�t
2∑

j=1

δα j (δx, δt) � j (x), (1.4)

where the modulating amplitudes, α j (X, T ), satisfy the effective Dirac system

∂T α1(X, T ) = −λ�

(
∂X1 + i∂X2

)
α2(X, T ), (1.5)

∂T α2(X, T ) = −λ�

(
∂X1 − i∂X2

)
α1(X, T ), (1.6)

where 0 �= λ� ∈ C. In Theorem 5.1 we establish the validity of (1.4) where α1, α2

satisfy (1.5)–(1.6), on time scales of order O(δ−2+ε), for any ε > 0.
To prove Theorem 5.1, we seek a solution of the initial value problem with wave-

packet initial condition (1.3) with leading order term given by the right-hand side of
(1.4) plus a correction term, ηδ(x, t), which is represented via the DuHamel formula;
see (6.5)–(6.7). The Dirac equations (1.5)–(1.6) arise as a non-resonance condition,
which ensures that ηδ(x, t) is small on a time interval: 0 � t � O(δ−2+ε), for any
ε > 0. Estimation of ηδ requires a careful decomposition of the propagator, e−i(−�+V )t

and analysis of its action on functions with quasi-momentum components supported near
K�, a vertex of B, and those with quasi-momentum components supported away from
K�. The resonant terms which are removed by imposing equations (1.5)–(1.6), arise from
quasi-momenta near K�. A detailed expansion of the normalized Floquet–Bloch modes
for such quasi-momenta is required. Such modes are discontinuous at K�. Components
corresponding to quasi-momenta away from K� are controlled, via Poisson summation
and integration by parts with respect to time, by making use of rapid phase oscillations
in time.
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Formal derivations of Dirac-type dynamics for honeycomb lattice structures are dis-
cussed in the physics [27] and applied mathematics [2,3] literature. A rigorous discus-
sion of the tight-binding limit is presented in [1]. Conical singularities have long been
known to occur in Maxwell equations with constant anisotropic dielectric tensor; see,
for example, [8,21] and references cited therein.

To put our results in context, we discuss the effective dynamics of two other classes
of initial conditions; see, for example, [4]

1. Ballistic propagation: Take data given by a wave-packet which is localized at a
frequency, μ̃ = μb̃(K̃), where μb̃(k) is regular in a neighborhood of K̃, μ̃ is a
simple eigenvalue of H(K̃) with corresponding Floquet–Bloch eigenstate �b̃(x; K̃)

and ∇kμb̃(K̃) �= 0:

ψ0(x, 0) = δ α0(δx) �b̃(x; K̃).

Then, the large time approximate evolution is given by:

ψ(x, t) ≈ e−iμ̃tδα(δx, δt)�b̃(x; K̃),

∂T α(X, T ) + ∇kμb̃(K̃) · ∇Xα(X, T ) = 0, X = δx, T = δt.

Thus,

ψ(x, t) ≈ e−iμ̃t δ α0

(
δ · (x − ∇kμb̃(K̃) t

) )
�b̃(x; K̃) (1.7)

for times, t , of order δ−2.
2. Effective mass (homogenized) Schrödinger evolution: Let K̃ be such that μb̃(K̃)

occurs at a spectral band (gap) edge. Take wave-packet data which is spectrally
localized near the frequency μb̃(K̃):

ψ0(x, 0) = δ α0(δx) �b̃(x; K̃), 0 < δ 	 1.

Since μb̃(K̃) is at a band edge, we have ∇kμb(K̃) = 0. Furthermore, assume the
Hessian matrix D2

kμb̃(K̃) is non-degenerate. Then, the large time approximate evo-
lution is given by

ψ(x, t) ≈ e−iμ̃t δ α(δx, δ2t) �b̃(x; K̃),

where α(X, τ ) is governed by the constant coefficient Schrödinger equation:

i∂τα(X, τ ) = −∇X · Aeff∇Xα(X, τ ), X = δx, τ = δ2t,

Aeff = 1

2
D2

kμb̃(K̃)
(1.8)

for times, t , of the order δ−2. Aeff is referred to as the inverse effective mass tensor.

1.1. Outline of the paper. In Sect. 2 we review basic Floquet–Bloch theory for general
periodic potentials and introduce the class of honeycomb lattice potentials. In Sect. 3
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we discuss the main results of the authors’ recent paper [16] as well as some direct
consequences required in the current work. In Sect. 4 we discuss properties of solutions
to the two-dimensional Dirac system (1.5)–(1.6). In Sect. 5 we state our main result,
Theorem 5.1 on the large, but finite, time Dirac effective dynamics for appropriate
wave-packet initial data for the time-dependent Schrödinger equation with a generic
honeycomb lattice potential. The proof of Theorem 5.1 is contained in Sects. 6 and 7.
Appendix A gives an elementary proof of the Lipschitz continuity of eigenvalues of
self-adjoint operators. We thank B. Simon for a sketch of a shorter proof using standard
perturbation theory; see Chap. XII of [30].

In a forthcoming article, we present an analytic perturbation theory of deformed
honeycomb lattice Hamiltonians, for perturbations which commute with inversion com-
posed with complex conjugation. Conical (Dirac) points persist for small perturbations
of this type, although the conical singularities typically perturb away from the vertices
of B. These results extend those of [16] and, in particular, include the case of a uniformly
strained honeycomb structure. We also consider the analogous question of the dynamics
of solutions for wave-packet initial data, spectrally concentrated at a Dirac point of the
deformed honeycomb structure. In this case, the methods of the present article apply to
establish the large, but finite, time dynamics as being given by tilted- Dirac equations.
The latter can be mapped to the standard 2D Dirac equations by a Galilean change of
variables.

1.2. Notation.

1. z ∈ C 
⇒ z denotes the complex conjugate of z.
2. A, a d × d matrix 
⇒ At is its transpose and A∗ is its conjugate-transpose.
3. Km = Km1,m2 = K+mk = K+m1k1 +m2k2. K,k1 and k2 are defined in Sect. 2.2.
4. B denotes the standard Brillouin zone of Fig. 2. Bh denotes an equivalent choice,

introduced for convenience in the proofs, centered at K.
5. ∇k = e−ik·x∇xeik·x = ∇x + ik, �k = ∇k · ∇k.
6. x, y ∈ C

n, 〈x, y〉 = x · y, x · y = x1 y1 + · · · + xn yn .
7. For q = (q1, q2) ∈ Z

2, qk = q1k1 + q2k2.
8. 〈 f, g〉 = ∫

f g
9. x � y if and only if there exists C > 0 such that x � Cy.

10. We write f = OX (ρ) if there exists a constant, C , such that ‖ f ‖X � Cρ.

2. Periodic Potentials and Honeycomb Lattice Potentials

We begin with a review of Floquet–Bloch theory of periodic potentials [15,23,30,32].

2.1. Floquet–Bloch theory. Let {v1, v2} be a linearly independent set in R
2. Consider

the lattice

� = {m1v1 + m2v2 : m1,m2 ∈ Z} = Zv1 ⊕ Zv2. (2.1)

The fundamental period cell is denoted

� = {θ1v1 + θ2v2 : 0 � θ j � 1, j = 1, 2}. (2.2)
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Denote by L2
per,� = L2(R2/�), the space of L2

loc functions which are periodic with the

respect to the lattice �, or equivalently functions in L2 on the torus R
2/� = T

2:

f ∈ L2
per,� if and only if f (x + v) = f (x), for x ∈ R

2, v ∈ �.

More generally, we consider functions satisfying a pseudo-periodic boundary condition:

f ∈ L2
k,� if and only if f (x + v) = f (x)eik·v, for x ∈ R

2, v ∈ �. (2.3)

We shall suppress the dependence on the period-lattice, �, and write L2
k, if the choice

of lattice is clear from context. For f and g in L2
k,�, f g is locally integrable and

�- periodic and we define their inner product by:

〈 f, g〉 =
∫

�

f (x) g(x) dx. (2.4)

In a standard way, one can introduce the Sobolev spaces Hs
k,�.

The dual lattice, �∗, is defined to be

�∗ = {m1k1 + m2k2 : m1,m2 ∈ Z} = Zk1 ⊕ Zk2, (2.5)

where k1 and k2 are dual lattice vectors, satisfying the relations:

ki · v j = 2πδi j .

If f ∈ L2
per,� then f can be expanded in a Fourier series with Fourier coefficients

f̂ = { fm}m∈Z2 :

f (x) =
∑

m∈Z2

fm eimk·x =
∑

(m1,m2)∈Z2

fm1,m2 ei(m1k1+m2k2)·x, (2.6)

fm ≡ 1

|�|
∫

�

e−imk·y f (y) dy = 1

|�|
∫

�

e−i(m1k1+m2k2)·y f (y) dy. (2.7)

Let V (x) denote a real-valued potential which is periodic with respect to �, i.e.

V (x + v) = V (x), for x ∈ R
2, v ∈ �.

Throughout this paper we shall also assume that

V ∈ C∞(R2/�). (2.8)

We expect that this smoothness assumption can be relaxed considerably without much
extra work.

For each k ∈ R
2 we consider the Floquet–Bloch eigenvalue problem,

HV �(x; k) = μ(k) �(x; k), x ∈ R
2, (2.9)

�(x + v; k) = eik·v �(x; k), v ∈ �, (2.10)

where

HV ≡ −� + V (x). (2.11)
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An L2
k- solution of (2.9)–(2.10) is called a Floquet–Bloch state. A function which satisfies

the boundary condition (2.10) is said to be k-pseudo-periodic.
Since the eigenvalue problems (2.9)–(2.10) are invariant under the change k �→ k+k̃,

where k̃ ∈ �∗, the dual period lattice, the eigenvalues and eigenfunctions of (2.9)–(2.10)
can be regarded as �∗-periodic functions of k, or functions on R

2/�∗.
Therefore, it suffices to restrict our attention to k varying over any primitive cell. It is

standard to work with the first Brillouin zone, B, the closure of the set of points k ∈ R
2,

which are closer to the origin than to any other lattice point.
An alternative formulation is obtained as follows. For every k ∈ B we express the

Floquet–Bloch mode, �(x; k), in the form

�(x; k) = eik·x p(x; k). (2.12)

Then p(x; k) satisfies the periodic elliptic boundary value problem:

HV (k)p(x; k) = μ(k) p(x; k), x ∈ R
2, (2.13)

p(x + v; k) = p(x; k), v ∈ �, (2.14)

where

HV (k) ≡ − (∇ + ik)2 + V (x). (2.15)

The eigenvalue problem (2.9)–(2.10), or equivalently (2.13)–(2.14), has a discrete
spectrum:

μ1(k) � μ2(k) � μ3(k) � · · · (2.16)

with eigenpairs pb(x; k), μb(k) : b = 1, 2, 3, . . . . The set {pb(x; k)}b �1 can be taken
to be a complete orthonormal set in L2

per(R
2/�).

The functions μb(k) are called band dispersion functions. Some general results on
their regularity appear in [6,32].

Since V is assumed to be smooth, elliptic regularity theory implies for each b � 1
and k ∈ B, that

x �→ pb(x; k) is C∞(R2/�).

Furthermore, there exists a constant Cb,β,V , depending only on b, β and V , such that

max
k∈B

‖∂β
x pb(·; k)‖L∞(�) < Cb,β,V . (2.17)

We shall also require the regularity of the mapping k �→ μb(k).

Proposition 2.1. The eigenvalue maps k �→ μb(k), b � 1, are Lipschitz continuous.

Proposition 2.1 (see also Proposition A.2) is a consequence of the general result
on Lipschitz continuity of eigenvalues of self-adjoint second order elliptic operators
(Theorem A.1), stated and proved in Appendix A.

Remark 2.1. Although the eigenvalue maps, k �→ μb(k), are Lipschitz functions the
Floquet–Bloch mode maps, k �→ pb(x; k), are in general not even continuous [32].
Indeed, we shall see this behavior explicitly in a neighborhood of degenerate eigenvalues;
see Theorem 3.2.
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As k varies over B, μb(k) sweeps out a closed real interval. The spectrum of −� +
V (x) in L2(R2) is the union of these closed intervals:

spec(HV ) =
⋃

k∈B
spec (HV (k)) . (2.18)

Moreover, the set
⋃

b �1

⋃

k∈B
{�b(x; k)}, �b(x; k) ≡ eik·x pb(x; k), (2.19)

suitably normalized, is complete in L2(R2):

f (x) =
∑

b �1

∫

B
〈�b(·; k), f (·)〉L2(R2) �b(x; k) dk =

∑

b �1

∫

B
f̃b(k) �b(x; k) dk,

(2.20)

where the sum converges in the L2 norm.
Moreover we have, with respect to the Floquet–Bloch basis, the Plancherel Theorem:

‖ f ‖2
L2(R2)

=
∑

b �1

∫

B
| f̃b(k)|2 dk. (2.21)

Remark 2.2. The�∗
h-periodicity of the Floquet–Bloch modes implies that we can express

(2.20) equivalently in terms of a dk-integral over any fundamental period cell. A conve-
nient choice, to be used below, is one where the integral over B is replaced by an integral
over

Bh ≡ K + B. (2.22)

That K is an interior point to this fundamental domain, rather than a vertex, will simplify
certain computations below.

Thus it is natural to introduce Sobelev spaces, defined in terms of the Floquet–Bloch
coefficients as follows:

‖ f ‖2
Hs (R2)

≈ ‖(I + |H |2) s
4 f ‖2

L2(R2)
=

∑

b �1

∫

B
(1 + |μb(k)|2) s

2 | f̃b(k)|2 dk

≈
∑

b �1

(1 + |b|2) s
2

∫

B
| f̃b(k)|2 dk. (2.23)

The latter approximation is a consequence of:

|μb(k)| ∼ |b|, b � 1. (2.24)

The Weyl law (2.24) holds uniformly in B.
Note the simple consequence of (2.23), to be used in Sect. 7:

f̃b ≡ 0, for b outside a fixed finite set 
⇒ ‖ f ‖Hs (R2) � ‖ f ‖L2(R2), s � 0.

(2.25)
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Fig. 1. Part of the honeycomb structure, H. H is the union of two sub-lattices �A = A + �h (blue) and
�B = B + �h (green). The lattice vectors {v1, v2} generate �h (color figure online)

2.2. The period lattice, �h, and its dual, �∗
h. Consider �h = Zv1 ⊕ Zv2, the lattice

generated by the basis vectors:

v1 = a

( √
3

2
1
2

)
, v2 = a

( √
3

2

− 1
2

)
, a > 0. (2.26)

Note: �h (“h” for honeycomb) is a triangular lattice, that arises naturally in connection
with honeycomb structures; see Fig. 1.

The dual lattice �∗
h = Zk1 ⊕ Zk2 is spanned by the dual basis vectors:

k1 = q

( 1
2√
3

2

)
, k2 = q

( 1
2

−
√

3
2

)
, q ≡ 4π

a
√

3
, (2.27)

where

k� · v�′ = 2πδ��′, (2.28)

|v1| = |v2| = a, v1 · v2 = a2

2
, (2.29)

|k1| = |k2| = q, k1 · k2 = −1

2
q2. (2.30)

The Brillouin zone, B, is a hexagon in R
2; see Fig. 2. Denote by K and K′ the vertices

of B given by:

K ≡ 1

3
(k1 − k2) , K′ ≡ −K = 1

3
(k2 − k1) . (2.31)
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Fig. 2. Brillouin zone, B, and dual basis {k1, k2}. K and K′ are labeled. Other vertices of Bh obtained via
application of R, rotation by 2π/3; see Eq. (2.33)

All six vertices of B can be generated by application of the rotation matrix, R, which
rotates a vector in R

2 clockwise by 2π/3. R is given by

R =
⎛

⎝
− 1

2

√
3

2

−
√

3
2 − 1

2

⎞

⎠ (2.32)

and the vertices of B fall into two groups, generated by action of R on K and K′:

K type-points : K, RK = K + k2, R2K = K − k1,

K′ type-points : K′, RK′ = K′ − k2, R2K′ = K′ + k1.

(2.33)

Remark 2.3 (Symmetry Reduction). Let (�(x; k), μ(k) ) denote a Floquet–Bloch eigen-
pair for the eigenvalue problem (2.9)–(2.10) with quasi-momentum k. Since V is real,
( �̃(x; k) ≡ �(x; k), μ(k) ) is a Floquet–Bloch eigenpair for the eigenvalue prob-
lem with quasi-momentum −k. Recall the relations (2.33) and the �∗

h-periodicity of:
k �→ μ(k) and k �→ �(x; k). It follows that the local character of the dispersion sur-
faces in a neighborhood of any vertex of B is determined by its character about any other
vertex of B.

We remind the reader that below, it will be convenient to work with Bh = K + B as
our Brillouin zone, explained in Remark 2.2.
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2.3. Honeycomb lattice potentials. For any function f , defined on R
2, introduce

R[ f ](x) = f (R∗x), (2.34)

where R is the 2 × 2 rotation matrix displayed in (2.32).

Definition 2.2 (Honeycomb lattice potentials). Let V be real-valued and V ∈ C∞(R2).
V is a honeycomb lattice potential if there exists x0 ∈ R

2 such that Ṽ (x) = V (x − x0)

has the following properties:

1. Ṽ is �h-periodic, i.e. Ṽ (x + v) = Ṽ (x) for all x ∈ R
2 and v ∈ �h.

2. Ṽ is even or inversion-symmetric, i.e. Ṽ (−x) = Ṽ (x).
3. Ṽ is R- invariant, i.e.

R[Ṽ ](x) ≡ Ṽ (R∗x) = Ṽ (x),

where, R∗ is the counter-clockwise rotation matrix by 2π/3, i.e. R∗ = R−1, where
R is given by (2.32).

Thus, a honeycomb lattice potential is smooth, �h- periodic and, with respect to
some origin of coordinates, both inversion symmetric and R- invariant.

Remark 2.4. As the spectral properties are independent of translation of the potential we
shall assume in the proofs, without any loss of generality, that x0 = 0.

Remark 2.5. A consequence of a honeycomb lattice potential being real-valued and even
is that if (�(x; k), μ) is an eigenpair with quasimomentum k of the Floquet–Bloch

eigenvalue problem, then
(
�(−x; k), μ

)
is also an eigenpair with quasimomentum k.

A key property of honeycomb lattice potentials, Vh , used in our spectral analysis of
−� + Vh [16], is that if K� denotes any vertex of Bh , then we have the commutation
relation:

[R, HVh (K�)
] = 0. (2.35)

It is therefore natural to the split L2
K�

, the space of K�- pseudo-periodic functions, into
the direct sum:

L2
K�

= L2
K�,1 ⊕ L2

K�,τ
⊕ L2

K�,τ
, (2.36)

where L2
K�,σ

are invariant eigen-subspaces of R, i.e. for σ = 1, τ, τ , where τ =
exp(2π i/3), and

L2
K�,σ

=
{

g ∈ L2
K�

: Rg = σg
}
. (2.37)

3. Dirac Points

We begin with a precise definition of a Dirac point.

Definition 3.1. Let V (x) be a smooth, real-valued, even (inversion symmetric) and peri-
odic potential on R

2. Denote by B the Brillouin zone given in Remark 2.2. We call K ∈ B
a Dirac point if the following holds: There exist an integer b1 � 1, a real number μ�,
and strictly positive numbers, λ and δ, such that:
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1. μ� is a degenerate eigenvalue of H with K-pseudo-periodic boundary conditions.

2. dim Nullspace
(

H − μ� I
)

= 2.

3. Nullspace
(

H − μ� I
)

= span
{
�1(x),�2(x)

}
, where �1 ∈ L2

K,τ and �2(x) =
�1(−x) ∈ L2

K,τ̄ .
4. There exist Lipschitz functions μ±(k),

μb1(k) = μ−(k) μb1+1(k) = μ+(k), μ±(K) = μ�

and E±(k), defined for |k − K| < δ, and k-pseudo-periodic eigenfunctions of H:
�±(x; k), with corresponding eigenvalues μ±(k) such that

μ+(k) − μ� = +λ |k − K| (1 + E+(k)) and

μ−(k) − μ� = −λ |k − K| (1 + E−(k)) , (3.1)

where |E±(k)| � C |k − K| for some C > 0.

Remark 3.1. In [16] we prove the following

Proposition 3.2. Suppose Conditions 1, 2 and 3 of Definition 3.1 hold and denote by
{c(m)}m∈S the sequence of L2

K,τ Fourier-coefficients of �1(x). Define the sum

λ� ≡
∑

m∈S
c(m)2

(
1
i

)
· Km

� , (3.2)

with S ⊂ Z
2; see [16]. If λ� �= 0, then property 4 of Definition 3.1 holds (see (3.1) )

with λ = |λ�|.
We next recall the statement of Theorem 5.1 of [16] concerning the existence of Dirac

points for the Schrödinger operator with a generic honeycomb lattice potentials.

Theorem 3.1. Let Vh(x) be a honeycomb lattice potential. Assume further that the
Fourier coefficient of Vh, V1,1, is non-vanishing, i.e.

V1,1 ≡
∫

�

e−i(k1+k2)·y Vh(y) dy �= 0. (3.3)

Consider the one-parameter family of honeycomb Schrödinger operators defined by:

H (ε) ≡ −� + ε Vh(x). (3.4)

There exists a countable and closed set C̃ ⊂ R such that for all ε /∈ C̃, the vertices, K�,
of Bh are Dirac points in the sense of Definition 3.1.

More specifically, the following holds for ε /∈ C̃: There exists b1 � 1 such that μ� ≡
με

b1
(K�) = με

b1+1(K�) is a K�-pseudo-periodic eigenvalue of multiplicity two where

1. με
� is an L2

K,τ—eigenvalue of H (ε) of multiplicity one, and corresponding eigenfunc-
tion, �ε

1(x),
με

� is an L2
K,τ̄—eigenvalue of H (ε) of multiplicity one, with corresponding eigen-

function, �ε
2(x) = �ε

1(−x),
με

� is not an L2
K,1—eigenvalue of H (ε).



262 C. L. Fefferman, M. I. Weinstein

2. There exist δε > 0, Cε > 0 and Floquet–Bloch eigenpairs: (�ε
+(x; k), με

+(k)) and
(�ε−(x; k), με−(k)), and Lipschitz continuous functions, E±(k), defined for |k −
K�| < δε , such that

με
+(k) − με(K�) = +|λε

�| |k − K�|
(
1 + Eε

+(k)
)

and

με
+(k) − με(K�) = −|λε

�| |k − K�|
(
1 + Eε−(k)

)
,

where

λε
� ≡

∑

m∈S
c(m, με, ε)2

(
1
i

)
· Km

� �= 0 (3.5)

is given in terms of {c(m, με, ε)}, the L2
K,τ - Fourier coefficients of �ε(x; K�).

Furthermore, |Eε±(k)| � Cε |k − K�|. Thus, in a neighborhood of the point (k, μ) =
(K�, μ

ε
�) ∈ R

3, the dispersion surface is closely approximated by a circular cone.
3. There exists ε0 > 0, such that for all ε ∈ (−ε0, ε0) \ {0}

(i) εV1,1 > 0 
⇒ conical intersection of 1st and 2nd dispersion surfaces
(ii) εV1,1 < 0 
⇒ conical intersection of 2nd and 3rd dispersion surfaces.

Our point of departure in this paper will be a periodic Schrödinger operator, −� +
V (x), where V is a honeycomb lattice potential. We fix a Dirac point, ensured to exist
by Theorem 3.1, and study the large time dynamics of wave-packets which are initially
(for t = 0) spectrally localized near these points. Thus we have two band dispersion
surfaces, k ∈ B �→ μb1(k) ≡ μ−(k) and k �→ μb1+1(k) ≡ μ+(k) which touch
conically at k = K� with μ±(K�) = μ�.

Let

�1(x) =def �+(x)∈ L2
K�,τ

,

�2(x) = �1(−x) =def �−(x)∈ L2
K�,τ̄

(3.6)

span the two-dimensional subspace of the degenerate eigenvalue μ� for H :

H� j (x) ≡ (−� + V )� j = μ�� j , (3.7)

� j (x + v) = eiK�·v � j (x), x ∈ R
2, v ∈ �h . (3.8)

We also define the periodic vectors:

p1(x) = e−iK�·x�1(x), p2(x) = e−iK�·x�2(x). (3.9)

We choose these states to be orthonormal

〈�l ,�m〉L2(�) = δlm, l,m = 1, 2.

To study the time evolution (1.2) we expand the solution of the initial value problem
with data ψ0 using the complete set of Floquet–Bloch modes:

e−i Ht ψ0 =
∑

b �1

∫

Bh

e−iμb(k)t 〈�b(·; k), ψ0(·)〉 �b(x; k) dk. (3.10)

Suppose H has a Dirac point, K. We remark that in (3.10) we choose the Brillouin
zone, Bh = B + K, which is centered at K; see Remark 2.2. For initial conditions which
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are spectrally supported near K, the time evolution depends on the precise behavior
of the Floquet–Bloch modes �±(x; k) for k near K. While Theorem 3.1 shows that
the eigenvalues μ±(k) are Lipschitz functions in a small neighborhood of k = K, the
eigenfunctions �±(x; k) are not continuous functions of k in a neighborhood of K.

Theorem 3.2. Let K denote a Dirac point in the sense of Definition 3.1. In particular, let
(�±(x; k), μ±(k)) denote the k-pseudo-periodic eigenpairs as in part 4 of Definition
3.1. Introduce the �h-periodic functions p±(x; k) by

�±(x; k) = eik·x p±(x; k), 〈pa(·; k), pb(·; k)〉 = δab, a, b ∈ {+,−}. (3.11)

Let k = K + κ . Then, for 0 < |κ| < δ and p j given by (3.9) we have:

μ±(K + κ) = μ� ± |λ�| (κ2
1 + κ2

2 )
1
2 + O

(
κ2

1 + κ2
2

)
, (3.12)

and p±(x; k), a priori defined up to an arbitrary (complex) multiplicative constant of
absolute value 1, can be chosen so that:

p±(x; K + κ) = 1√
2

κ1 + iκ2

(κ2
1 + κ2

2 )
1
2

p1(x)± 1√
2

p2(x)

+ OH2(R2/�h)

(
(κ2

1 + κ2
2 )

1
2

)
. (3.13)

Proof of Theorem 3.2. The proof builds on the proof of Theorem 4.1 of [16], in which
the k-pseudo-periodic eigenvalues, μ±(k), are constructed. These were shown to be
Lipschitz continuous functions for k varying in a neighborhood of K. We now consider
the associated Floquet–Bloch modes.

Let k-pseudo-periodic Floquet–Bloch modes be expressed in the form

�(x; k) = eik·x p(x; k),

where p(x; k) is �h periodic. Since we are interested in the character of p(x; k) for k
near K we set: k = K + κ . Then, p(x; K + κ) satisfies the periodic eigenvalue problem:

H(K + κ) p(x; K + κ) = μ(K + κ) p(x; K + κ), (3.14)

p(x + v; K + κ) = p(x; K + κ), for all v ∈ �h, (3.15)

where

H(k) ≡ − (∇x + ik)2 + V (x).

The eigenvalue problem (3.14)–(3.15) has eigenvalues, computed via degenerate per-
turbation theory of the double eigenvalue μ� of H(K), given by:

μ±(K + κ) = μ� + μ(1), (3.16)

μ(1) = ±|λ�| |κ| + O(|κ|2). (3.17)

Denote by Q⊥ the projection onto the orthogonal complement of span{p1, p2}. Then,

RK(μ�) ≡ (H(K) − μ� I )−1 : Q⊥L2(R2/�h) → Q⊥L2(R2/�h)
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is bounded. Furthermore, via Lyapunov–Schmidt reduction of the eigenvalue problem
(3.14)–(3.15) we obtain, corresponding to the eigenvalues μ±(K+κ) the Floquet–Bloch
modes:

p±(x; K + κ) =
(

I + RK(μ�) Q⊥ (2iκ · (∇ + iK))
)
(αp1(x) + βp2(x))

+OH2(R2/�h)

(
|κ|(|α|2 + |β|2) 1

2

)
. (3.18)

The κ-dependent coefficients α and β satisfy the homogeneous equation

M(μ(1), κ)

(
α

β

)
= 0, (3.19)

where M(μ(1), κ) is a 2 × 2 matrix of the form:

M(μ(1), κ) ≡
(

μ(1) + O (|κ|2) −λ�(κ1 + iκ2) + O (|κ|2)

−λ�(κ1 − iκ2) + O (|κ|2) μ(1) + O (|κ|2)
)

; (3.20)

see [16] for the derivation of (3.18)–(3.19).
The Floquet–Bloch modes, p±(x; k), are finally determined by the solutions α =

α±(κ), β = β±(κ) of the homogeneous algebraic system (3.19) for the choices μ
(1)
± (κ)

in (3.17). We select (normalized) solutions of (3.19) as follows:

μ
(1)
± = ±|λ�| |κ| + O(|κ|2),

(
α±
β±

)
=
⎛

⎜⎝
1√
2

λ�

|λ�|
κ1+iκ2

(κ2
1 +κ2

2 )
1
2

+ O
(
(κ2

1 + κ2
2 )

1
2

)

± 1√
2

+ O
(
(κ2

1 + κ2
2 )

1
2

)

⎞

⎟⎠ .
(3.21)

Here, we take advantage of the observation that for a rank-1 matrix,

A =
(

A B
C D

)
the vector

(
B − A

)

lies in the nullspace of A.
Thus, with κ ≡ k−K, we have upon substitution of (3.21) into (3.18) the expansions

of μ±(k) and p±(x; k) in (3.12) and (3.13).

4. 2D Dirac Equation

In this section we collect results on well-posedness and estimates on solutions of the
two-dimensional Dirac system (1.5)–(1.6). Taking the Fourier transform of (1.5)–(1.6)
we obtain for α(�, T ) = α(ξ1, ξ2, T ) the equation

i∂T

(
α̂1
α̂2

)
= �(�)

(
α̂1
α̂2

)
, where

�(�) =
(

0 λ�(ξ1 + iξ2)

λ�(ξ1 − iξ2) 0

)
= �(�)∗. (4.1)
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Remark 4.1. It follows from (4.1) that the dispersion relation for (1.5)–(1.6) is:

ω2(ξ1, ξ2) = |λ�|2
(
ξ2

1 + ξ2
2

)
;

the effective dynamics are non-dispersive.

Remark 4.2. The system (1.5)–(1.6) has the structure of the Dirac system:

i∂t

(
α1
α2

)
=
[
σ

�
1

1

i

∂

∂X1
− σ

�
2

1

i

∂

∂X2

] (
α1
α2

)
. (4.2)

The 2 × 2 matrices σ
�
1 and σ

�
2 satisfy the relations

(σ
�
j )

2 = |λ�|2 I d, and σ
�
1σ

�
2 + σ

�
2σ

�
1 = 0.

Here, σ�
j , j = 1, 2 are given by the Hermitian matrices:

σ
�
1 ≡ ��σ1, σ

�
2 ≡ ��σ2, (4.3)

in terms of �� and the standard Pauli matrices σ1 and σ2:

�� =
(
λ� 0

0 λ�

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
. (4.4)

Finally, note that α j , j = 1, 2 satisfy the two-dimensional wave equation, with wave-
speed |λ�|:

∂2α

∂t2 = |λ�|2
(

∂2

∂X2
1

+
∂2

∂X2
2

)
α.

Proposition 4.1. Assume α(X, 0) = α0(X) ∈ (
Hs(R2)

)2
. Then,

∂k
T α ∈ L∞

(
[0,∞);

(
Hs−k(R2)

)2
)
, for 0 � k � s.

In particular,

1. The Fourier transform of the solution, α(X, T ) is given explicitly by

α̂(�, T ) = e−i�(�)T α̂0(�), �(�)∗ = �(�).

2. For all � ∈ R
2,
∣∣α̂(�, T )

∣∣ = ∣∣α̂0(�)
∣∣, and therefore

3. for any a ∈ Z
2 with |a| � s

∥∥ ∂a
Xα(X, T )

∥∥
L2(R2)

= ∥∥ ∂a
Xα(X, 0)

∥∥
L2(R2)

. (4.5)
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5. Effective Dirac Dynamics; Statement of Main Result, Theorem 5.1

A general solution of the time-dependent Schrödinger equation, constrained to the degen-
erate 2-dimensional eigenspace associated with eigenvalue, μ� = μ(K�), associated
with the Dirac point, K�, is of the form

ψ(x, t) = e−iμ�t (α1 �1(x) + α2 �2(x)) , (5.1)

where α1 and α2 are arbitrary constants.
Consider now a wave packet initial condition, which is spectrally concentrated

near K�:

ψδ(x, 0) = ψδ
0 (x) = δ (α10(δx) �1(x) + α20(δx) �2(x))

= δ (α10(δx) p1(x) + α20(δx) p2(x)) eiK�·x. (5.2)

Here, δ is a small parameter. We assume α10(X) and α20(X) are Schwartz functions of
X. We expect that this assumption can be weakened considerably without difficulty. The
overall factor of δ in (5.2) is not essential (the problem is linear), but is inserted so that
ψδ

0 has L2(R2)-norm of order of magnitude one.
We seek solutions of (1.2), (5.2) in the form:

ψδ(x, t) = e−iμ�t

⎛

⎝
2∑

j=1

δ α j (δx, δt)� j (x) + ηδ(x, t)

⎞

⎠ , (5.3)

where ηδ(x, 0) = 0, α j (X, 0) = α j0(X), j = 1, 2 (5.4)

to ensure the initial condition (5.2).
The goal is to show that the Schrödinger equation (1.2) has a solution of the form

(5.3) with an error term, ηδ(x, t), which satisfies

sup
0�t�ρδ−2+ε1

‖ ηδ(·, t) ‖Hs (R2) = O(δτ�), δ → 0 (5.5)

for some τ� > 0, provided the slowly varying amplitudes α j (δx, δt), j = 1, 2 evolve
according to the system of Dirac-type equations (1.5)–(1.6). Here, ρ > 0 and ε1 > 0
are arbitrary.

We shall prove the following

Theorem 5.1. Assume

α0(X) ≡
(
α10(X)

α20(X)

)
∈
[
S(R2)

]2
,

and let α(X, T ) denote the global-in-time solution of the Dirac system (1.5)–(1.6) with
initial data α(X, 0) = α0(X). Consider the time-dependent Schrödinger equation, (1.2),
where V (x) denotes a potential for which the conclusions of Theorem 3.1 hold, e.g.
V (x) = εVh(x), where Vh is a honeycomb lattice potential satisfying V1,1 �= 0 and ε is
not in the countable closed set C̃. Assume initial conditions, ψ0, of the form (5.2). Fix
any ρ > 0 and ε1 > 0. Also choose non-negative N = (n1, n2) ∈ Z

2 with n1, n2 � 0.
Then, (1.2) has a unique solution of the form (5.3), where for any |α| � N,

sup
0�t�ρ δ−2+ε1

∥∥ ∂α
x ηδ(x, t)

∥∥
L2(R2

x)
= o(δτ�), δ → 0 (5.6)

for some τ∗ > 0.
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6. Proof of Theorem 5.1

We begin with a summary of consequences of Theorems 3.1 and 3.2 which we use in
the proof.

Recall that the spectral bands μ+(Bh) and μ−(Bh) touch conically at the vertices of
Bh . Specifically, μ+(k) = μ−(k) = μ� for k = K� equal to any of the three K-type
vertices, {K, RK, R2K} and any of the three K′-type vertices, {K′, RK′, R2K′}, where
K′ = −K. Here, R denotes the π/3-counterclockwise rotation.

For a Dirac point K�, equal to any vertex of Bh :

(P1) There exist L2
k-eigenvalues of H , denoted μ±(k), such that

for all k ∈ Bh satisfying |k − K�| < κ0,

μ±(k) − μ(K�) = ±|λ�| |k − K�| (1 + E±(k − K�)) , (6.1)

where E±(κ) are Lipschitz continuous in κ and E±(κ) � C± |κ|. Here, λ� is a
constant given by (3.5).

(P2) There are constants κ1,C1 such that

for all k ∈ Bh satisfying |k − K�| < κ1 and all b /∈ {+,−},
|μb(k) − μ(K�)| � C1 > 0. (6.2)

(P3) For 0 < |κ| < δ sufficiently small,

p±(x; K� + κ) = 1√
2

(
α(κ) p1(x) ± p2(x)

)
+ OH2(R2/�h)

(|κ|) , (6.3)

where α(κ) = λ�

|λ�|
κ1 + iκ2√
κ2

1 + κ2
2

. (6.4)

(P2) is a consequence of (P1) and the continuity of the eigenvalues k �→ μb(k); see
Proposition 2.1.

Without loss of generality and for simplicity:

1. We take

K� = K.

2. We recall that the Brillouin zone, Bh , is centered at K; see Remark 2.2. Since we
assume wave-packet initial data which are spectrally localized near K in R

2/�∗
h , this

equivalent choice, which puts K on the interior of the Brillouin zone, simplifies the
analysis.

To prove Theorem 5.1, we study the evolution equation for ηδ(x, t) obtained by
substitution of (5.3) into (1.2):

i∂tη
δ = (H − μ�) η

δ

−δ2
2∑

j=1

[
i∂T α j (X, T ) � j (x) + 2∇Xα j (X, T ) · ∇x� j (x)

] ∣∣∣
(X,T )=(δx,δt)

−δ3
2∑

j=1

�Xα j (X, T )� j (x)
∣∣∣
(X,T )=(δx,δt)

, (6.5)

ηδ(x, t = 0) = 0. (6.6)
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6.1. Estimation of the error, ηδ(x, t). Using the DuHamel principle we may rewrite
(6.5) as the equivalent integral equation:

ηδ(·, t) = iδ2
2∑

j=1

∫ t

0
e−i(H−μ�)(t−s)

[
i∂Sα j (δ·, δs) � j (·) + 2∇Xα j (δ·, δs) · ∇x� j (·)

]
ds

+iδ3
2∑

j=1

∫ t

0
e−i(H−μ�)(t−s) �Xα j (δ·, δs)� j (·) ds. (6.7)

The second integral in (6.7) (call it I nt2) can be bounded as follows. Let s denote an
even positive integer. Recall from elliptic theory that

‖ f ‖2
Hs � ‖ f ‖2

2 + ‖(−� + V + c)
s
2 f ‖2

2 � ‖ f ‖2
Hs , (6.8)

where c > supx∈R2 |V (x)|. Using (6.8), we can bound ‖I nt2‖Hs in terms of ‖I nt2‖L2

and ‖(−�+ V + c)
s
2 I nt2‖L2 . Taking the L2 norm of I nt2 and using that e−i Ht is unitary

in L2, we obtain

‖I nt2‖L2 � δ3
2∑

j=1

∫ t

0
‖�Xα j (δ·, δs)‖L2 ds. (6.9)

Next, using that H = −� + V commutes with e−i Ht we obtain

‖(−� + V + c)
s
2 I nt2‖L2 � δ3

2∑

j=1

∫ t

0
‖(−� + V + c)

s
2 �Xα j (δ·, δs)‖L2 ds.

(6.10)

Next note, via Proposition 4.1, that

‖α j (δ·, δt)‖Hm (R2) � Cδ−1 ‖α0‖Hm (R2). (6.11)

Let ε1 > 0 be arbitrary. Then, Eqs. (6.8)–(6.11) imply

sup
0� t �ρδ−2+ε1

‖I nt2‖Hs

≡ sup
0� t �ρδ−2+ε1

∥∥∥∥∥∥
δ3

2∑

j=1

∫ t

0
ei(H−μ�)(t−s) �Xα j (δ·, δs)� j (·) ds

∥∥∥∥∥∥
Hs (R2)

� C ρ δε1 . (6.12)

It therefore suffices to estimate the first time-integral in (6.7). This time-integral is
the solution of the initial value problem of the form:

i∂t f δ(x, t) − (H − μ�) f δ(x, t) = δ2
∑

r

γr (δx, δt)�r (x), (6.13)

f δ(x, 0) = 0, (6.14)
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where we find it convenient to introduce the notation

∑

r

γr (X, T )�r (x) ≡ −
2∑

j=1

[
i∂T α j (X, T ) � j (x) + 2∇Xα j (X, T ) · ∇x� j (x)

]
,

(6.15)

where

γ1(X, T ) = i∂T α1(X, T ), �1(x) = �1(x), (6.16)

γ2(X, T ) = i∂T α2(X, T ), �2(x) = �2(x), (6.17)

γ3(X, T ) = 2∇Xα1(X, T ), �3(x) = (�3,1(x),�3,2(x)) = ∇x�1(x), (6.18)

γ4(X, T ) = 2∇Xα2(X, T ), �4(x) = (�4,1(x),�4,2(x)) = ∇x�2(x). (6.19)

Note that � j (x) ∈ L2
K, 1 � j � 4.

By hypotheses on α j and � j , and Proposition 4.1, the functions γr and �r satisfy
the following properties:

γr (X, T ) is C∞ (
RT ;S(R2

X)
)
, (6.20)

‖γr (·, T )‖Hs (R2) � ‖α(·, T = 0)‖Hs+1 , (6.21)

�r (x) ∈ C∞(R2
x) ∩ L2

K,

and therefore satisfies the pseudo-periodic boundary condition

�r (x + v) = eiK·v�r (x). (6.22)

We also write �r in the following useful form:

�r (x) = eiK·xPr (x), Pr (x + v) = Pr (x), v ∈ �h . (6.23)

By (2.17), for any β ∈ N
2
0,

‖∂β
x Pr‖L∞(�) � Cr,β . (6.24)

Theorem 5.1 is therefore reduced to the following

Proposition 6.1. Let α1(X, T ) and α2(X, T ) satisfy the system of Dirac equations:

∂T α1 = −λ�

(
∂X1 + i∂X2

)
α2, (6.25)

∂T α2 = −λ�

(
∂X1 − i∂X2

)
α1 (6.26)

with initial conditions as in Theorem 5.1. Then, for any s � 1, ρ > 0 and ε1 > 0, there
exists a unique solution, f δ(x, t) of (6.13), which satisfies the estimate

sup
0�t�ρ δ−2+ε1

∥∥ f δ(·, t)
∥∥

Hs (R2)
� C δ

ε1
2 , for δ ↓ 0. (6.27)

So to finish the proof Theorem 5.1, we only require a proof of Proposition 6.1.

7. Proof of Proposition 6.1

By the completeness of Bloch modes,

e−i(H−μ�)t g =
∑

b

∫

Bh

e−i(μb(k)−μ�)t 〈�b(·; k), g(·)〉L2(R2) �b(x; k) dk. (7.1)
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Thus,

f δ(x, t) =
∑

b

∫

Bh

f̃ δ
b (k, t)�b(x; k) dk, (7.2)

where

f̃ δ
b (k, t) = −iδ2

∫ t

0
ds e−i(μb(k)−μ�)(t−s)

〈
�b(·; k),

∑

r

γr (δ·, δs)�r (·)
〉

L2(R2)

.

(7.3)

We shall henceforth omit the superscript δ from f δ and f̃ δ
b .

Decompose f into fD , frequency components which lie in the two spectral bands:
μ+(Bh) and μ−(Bh) intersecting at the Dirac point μ�, and fDc , frequency components
which lie in all other spectral bands:

f (x, t) = fD(x, t) + fDc (x, t), where

fD(x, t) =
∑

b∈{+,−}

∫

Bh

f̃b(k, t)�b(x; k) dk, (7.4)

and

fDc (x, t) =
∑

b/∈{+,−}

∫

Bh

f̃b(k, t)�b(x; k) dk. (7.5)

Let’s focus initially on fD(x, t). We distinguish between frequencies which are “near”
and “bounded away from” μ�, as these correspond to whether the complex phase in
(7.1) is non-oscillatory or, respectively, oscillatory in t . Recalling property (P2) and
our choice of Brillouin zone with K in its interior: we further decompose fD into its
quasi-momentum components near and away from any of the points K:

fD(x, t) =
∑

b∈{+,−}

∫

Bh

χ
(
|k − K| < δτ

)
f̃b(k, t) �b(x; k) dk

+
∑

b∈{+,−}

∫

Bh

χ
(
δτ � |k − K|

)
f̃b(k, t) �b(x; k) dk

≡
∑

b∈{+,−}

∫

Bh

[
f̃ I,b(k, t) + f̃ I I,b(k, t)

]
�b(x; k) dk

≡
∑

b∈{+,−}

(
f I,b(x, t) + f I I,b(x, t)

)

≡ f I,D(x, t) + f I I,D(x, t). (7.6)

Here, 0 < τ < 1 will be chosen less than but close to 1. By (2.21) and (2.23),

‖ f (·, t)‖2
Hs (R2)

≈ ‖ fD(·, t)‖2
L2(R2)

+ ‖ fDc (·, t)‖2
Hs (R2)

≈
∑

J=I,I I

‖ f J,D(·, t)‖2
L2(R2)

+ ‖ fDc (·, t)‖2
Hs (R2)

=
∑

J=I,I I

∑

b=±
‖ f J,b(·, t)‖2

L2(R2)
+ ‖ fDc (·, t)‖2

Hs (R2)
, (7.7)
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where we have used (2.25). We show below, for fixed ρ > 0, ε1 > 0 that each term in
(7.7) is O(δε1) for 0 � t � ρ δ−2+ε1 as δ ↓ 0.

In the calculations below we shall require a detailed expansion of inner products of
the form:

〈�b(·; k), �(δ·, δs)�(·)〉L2(R2) , (7.8)

where � = �(X, T ) is in Schwartz class and � ∈ L2
K, i.e.

�(x) = eiK·x P(x), P(x + v) = P(x), v ∈ �h; (7.9)

see (7.3). The following proposition will be used:

Proposition 7.1. Let �(X, T ) denote a Schwartz class function of X, varying smoothly
in T . Denote by �̂(�, T ) its Fourier transform with respect to the X variable. Then,

〈�b(·; k), �(δ·, δs)�(·)〉L2(R2)

=
∫

�

pb(y; k) ·
[
δ−2

∑

m∈Z2

eim·y �̂

(
m1k1 + m2k2 + (k − K)

δ
, δs

)]
P(y) dy.

(7.10)

Proof of Proposition 7.1. Recall from (2.19) and (6.23) that �b(x; k) = eik·x pb(x; k),
where pb(x + v; k) = pb(x; k) for any v ∈ �h . Thus, using (7.9), we find that

〈�b(·; k), �(δ·, δs)�(·)〉L2(R2)

=
∫

R2
e−i(k−K)·y �(δy, δs) pb(y; k) P(y) dy

=
∑

m∈Z2

∫

�

e−i(k−K)·(y+mv) �(δ(y + mv), δs) pb(y + mv; k) P(y + mv) dy

=
∑

m∈Z2

∫

�

e−i(k−K)·(y+mv) �(δ(y + mv), δs) pb(y; k) P(y) dy

=
∫

�

[ ∑

m∈Z2

e−i(k−K)·(y+mv) �(δ(y + mv), δs)
]

pb(y; k) P(y) dy.

The above sum can be re-written via the Poisson summation formula as

∑

m∈Z2

e−i(k−K)·(y+mv) �(δ(y + mv), δs)

= δ−2
∑

m=(m1,m2)∈Z2

eim·y �̂

(
m1k1 + m2k2 + (k − K)

δ
, δs

)
. (7.11)

This completes the proof of Proposition 7.1.
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7.1. Estimation of || f I,D(·, t)||L2(R2). In this section we prove that for any fixed ρ > 0
and ε1 > 0,

sup
0�t�ρδ−2+ε1

‖ f I,D(·, t)‖L2(R2) = O(δ
ε1
2 ), δ ↓ 0. (7.12)

Since

f I,D(x, t) =
∑

b∈{+,−}

∫

Bh

χ
(
|k − K| < δτ

)
f̃b(k, t) �b(x; k) dk,

we have

‖ f I,D(·, t)‖2
L2(R2)

=
∑

b∈{+,−}

∫

Bh

χ
(
|k − K| < δτ

)
| f̃b(k, t)|2 dk, (7.13)

where, by (7.3),

f̃±(k, t) = −iδ2
∫ t

0
ds e−i(μ±(k)−μ�)(t−s)

4∑

r=1

〈�±(·; k), γr (δ·, δs)�r (·)〉L2(R2) .

(7.14)

We next use Proposition 7.1 to re-express the inner products appearing in (7.14) as
follows:

〈�±(·; k), γr (δ·, δs)�r (·)〉L2(R2)

=
∫

�

[
δ−2

∑

m∈Z2

eim·y γ̂r

(
m1k1 + m2k2 + (k − K)

δ
, δs

)]
p±(y; k) Pr (y) dy.

(7.15)

Since our goal here is to estimate f I,±, we recall that k is restricted to:{|k − K| � δτ }.
Thus, we rewrite the sum (7.15) in terms of its m = 0 and m �= 0 contributions:

〈�±(·; k), γr (δ·, δs)�r (·)〉L2(R2)

= 1

δ2 γ̂r

(
(k − K)

δ
, δs

)∫

�

p±(y; k)Pr (y) dy
︸ ︷︷ ︸

Term1,r

+
∫

�

1

δ2 Er,δ

(y
δ
, δs; k

)
p±(y; k) Pr (y) dy

︸ ︷︷ ︸
Term2.r

(7.16)

where

δ−2 Er,δ

(
δ−1y, δs; k

)

= δ−2
∑

m∈Z2\{(0,0)}
eim·y γ̂r

(
m1k1 + m2k2 + (k − K)

δ
, δs

)
. (7.17)

We now study the terms Term2,r and Term1,r in (7.16).
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Estimation of Term2,r of (7.16): We begin with the following

Proposition 7.2. Denote by γr any of the functions ∂T α j , ∂Xlα j , j, l = 1, 2. For A � 0,
assume α0(X) = α(X, 0) ∈ W A+1,1(R2). Then, there exist positive constants C1,C2
such that the following holds:

1. For any A � 0 and all κ ∈ R
2:

∣∣γ̂r (κ, T )
∣∣ � C1

(1 + |κ|)A
‖α0‖W A+1,1(R2), (7.18)

2. For all A > 2 and all k ∈ Bh such that |k − K| < δτ we have
∣∣ Er,δ(y, T ; k)

∣∣ � C2 δA ‖α0‖W A+1,1(R2) (7.19)

Proof of Proposition 7.2. Each function γr itself is the component of a solution of the
Dirac system. Hence, by Proposition 4.1 and integration by parts:

∣∣γ̂r (κ, T )
∣∣ � C

∣∣∣(∂Xα) (̂κ, T )

∣∣∣ = C
∣∣∣(∂Xα0) (̂κ)

∣∣∣

∼
∣∣∣
∫

eiκ·X∂Xα0(X) dX
∣∣∣ � 1

(1 + |κ|)A
‖α0‖W A+1,1(R2). (7.20)

This proves (7.18).

We now turn our attention to the bound (7.19). Note that the sum in the definition
of Er,δ , (7.17), is over m = (m1,m2) ∈ Z

2 \ {(0, 0)}. For such m, and for k such that
|k − K| < δτ , we have

|m1k1 + m2k2 + (k − K)| � c|m|.
Thus, by Proposition 7.2,

k ∈ Bh, |k − K| < δτ 
⇒
∣∣ Er,δ(y, T ; k)

∣∣ �

∣∣∣∣∣∣

∑

m∈Z2\{(0,0)}
eim·y γ̂r

(
m1k1 + m2k2 + (k − K)

δ
, T

) ∣∣∣∣∣∣

� C
∑

|m|�1

1

|m|A
δA ‖α0‖W A+1,1(R2) , (7.21)

where we take A > 2 for the sum to converge. This completes the proof of the bound
(7.19) and therewith Proposition 7.2.

By Proposition 7.2 and (6.24) we obtain the following bound on the last term in
(7.16):

k ∈ Bh, |k − K| < δτ 
⇒
∣∣Term2,r

∣∣ ≡
∣∣∣∣
∫

�

δ−2 Er,δ

(
δ−1y, δs; k

)
p±(y; k) Pr (y) dy

∣∣∣∣

� δA−2 ‖α0‖W A+1,1(R2) , A > 2. (7.22)
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Expansion and estimation of Term1,r of (7.16). Term1,r may be written as:

Term1,r = δ−2 χ
(|K − k| < δτ

) · γ̂r

(
k − K

δ
, δs

)
· 〈p±(·; k),Pr (·)〉L2(�) .

(7.23)

Note that the argument of γ̂r may be small and hence we may no longer use the
decay properties of γ̂r to control the magnitude of (7.23). We therefore use the precise
behavior of p±(x; k) for k near K. By (P3),

p±(x; k) = 1√
2

(k1 − K1) + i(k2 − K2)

((k1 − K1)2 + (k2 − K2)2)
1
2

p1(x) ± 1√
2

p2(x)

+ OH2(R2/�h)

( (
(k1 − K1)

2 + (k2 − K2)
2
) 1

2
)
. (7.24)

Next we use (7.24) to expand the inner product in (7.23). We have, recalling that
k = K + κ:

γ̂r

(
k − K

δ
, δs

)
· 〈p±(·; k),Pr (·)〉L2(�)

= 1√
2

κ1 + iκ1

(κ2
1 + κ2

2 )
1
2

〈
p1, γ̂r

(κ
δ
, δs

)
· Pr

〉

L2(�)
± 1√

2

〈
p2, γ̂r

(κ
δ
, δs

)
· Pr

〉

L2(�)

+ O
(
|κ| · ‖α0‖W 2,1(R2)

)

= 1√
2

κ1 + iκ2

(κ2
1 + κ2

2 )
1
2

〈
�1, γ̂r

(κ
δ
, δs

)
· �r

〉

L2(�)
± 1√

2

〈
�2, γ̂r

(κ
δ
, δs

)
· �r

〉

L2(�)

+ O
(
|κ| · ‖α0‖W 2,1(R2)

)
. (7.25)

The inner products in (7.25) can be evaluated using the expressions for γ̂r (X, T ), 1 �
r � 4 displayed in (6.16)–(6.19) and the following mild generalization of Proposition
4.1 of [16] to the case of complex ζ = (ζ1, ζ2):

Proposition 7.3.

〈�a, ζ · ∇�a〉 = 0, a = 1, 2,

2i 〈�1, ζ · ∇�2〉 = 2i
〈
�2, ζ · ∇�1

〉 = −λ� × (ζ1 + iζ2),

2i 〈�2, ζ · ∇�1〉 = −λ� × (ζ1 − iζ2),

(7.26)

where

λ� = 3 area(�) ×
∑

m∈S
c(m, μ�)

2
(

1
i

)
· Km. (7.27)

Here, {c(m;μ�)}m∈S denotes the sequence of L2
K,τ Fourier coefficients of the normalized

eigenstate

�1 ∈ L2
K�,τ

∩ Nullspace
(

− � + Vh − μ�

)

and S ⊂ Z
2 is as in [16].
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The inner products in (7.25) can be evaluated, thanks to (6.16)–(6.19) and Proposition 7.3.

Inner products of the form: 〈�1, ·〉:

〈�1, γ̂1 · �1〉L2(�) = i ∂̂T α1,

〈�1, γ̂2 · �2〉L2(�) = 0,

〈�1, γ̂3 · �3〉L2(�) =
〈
�1, 2∇̂Xα1 · ∇x�1

〉

L2(�)
= 0,

〈�1, γ̂4 · �4〉L2(�) =
〈
�1, 2∇̂Xα2 · ∇x�2

〉

L2(�)
= iλ�

(
∂̂X1α2 + i ∂̂X2α2

)
.

(7.28)

Inner products of the form: 〈�2, ·〉:
〈�2, γ̂1 · �1〉L2(�) = 0,

〈�2, γ̂2 · �2〉L2(�) = i ∂̂T α2,

〈�2, γ̂3 · �3〉L2(�) =
〈
�2, 2∇̂Xα1 · ∇x�1

〉

L2(�)
= iλ�

(
∂̂X1α1 − i ∂̂X2α1

)
,

〈�2, γ̂4 · �4〉L2(�) =
〈
�2, 2∇̂Xα2 · ∇x�2

〉

L2(�)
= 0.

(7.29)

In (7.28) and (7.29) the Fourier transforms are evaluated at ( κ
δ
, δs).

Now summing both sides of (7.25) over 1 � r � 4 we obtain:

4∑

r=1

γ̂r

(κ
δ
, δs

)
· 〈p±(·; k),Pr (·)〉L2(�)

= i√
2

κ1 + iκ1

(κ2
1 + κ2

2 )
1
2

×
[
∂̂T α1 + λ�

(
∂̂X1α2 + i ∂̂X2α2

) ] (κ
δ
, δs

)

± i√
2

[
∂̂T α2 + λ�

(
∂̂X1α1 − i ∂̂X2α1

) ] (κ
δ
, δs

)
+ O

(
|κ| · ‖α0‖W 2,1(R2)

)

=def
i√
2

κ1 + iκ1

(κ2
1 + κ2

2 )
1
2

· D̂1

(κ
δ
, δs

)
± i√

2
D̂2

(κ
δ
, δs

)
+ O

(
|κ| · ‖α0‖W 2,1(R2)

)
.

(7.30)

Remark 7.1. Note that the Dirac equations (1.5)–(1.6) are equivalent to the equations

D1(X, T ) = 0, D2(X, T ) = 0. (7.31)

Recalling the definition (7.16) of Term1,r , we find that:

4∑

r=1

Term1,r = δ−2
4∑

r=1

γ̂r

(κ
δ
, δs

)
· 〈p±(·; k),Pr (·)〉L2(�) χ

(
|k − K| < δτ

)

= δ−2 χ
(|κ| < δτ

) [ i√
2

κ1 + iκ1

(κ2
1 + κ2

2 )
1
2

· D̂1

(κ
δ
, δs

)
± i√

2
D̂2

(κ
δ
, δs

) ]

+ O
(
δ−2 |κ| χ (|κ| < δτ

) · ‖α0‖W 2,1(R2)

)
. (7.32)



276 C. L. Fefferman, M. I. Weinstein

By (7.6), (7.14), (7.16), (7.22) and (7.32), for any fixed t > 0:

f̃ I,±(k, t)

= −iδ2
∫ t

0
e−i(μ±(k)−μ�)(t−s)

×
∑

r

〈�±(·; k), γr (δ·, δs)�r (·)〉L2(R2) χ
(
|k − K| < δτ

)
ds

= −i
∫ t

0
e−i(μ±(k)−μ�)(t−s)

χ
(|κ| < δτ

) [ i√
2

κ1 + iκ1

(κ2
1 + κ2

2 )
1
2

· D̂1

(κ
δ
, δs

)
± i√

2
D̂2

(κ
δ
, δs

) ]∣∣∣
κ=k−K

ds

+ O
(
|t | |k − K| χ

(|k − K| < δτ
) · ‖α0‖W 2,1(R2)

)

+ O
(
|t | χ

(|k − K| < δτ
)
δA · ‖α0‖W A+1,1

)
. (7.33)

Recall that

‖ f I,D(t)‖2
L2(R2)

=
∑

b=±

∫

Bh

χ
(
|k − K| < δτ

)
| f̃b(k, t)|2 dk

=
∑

b=±

∫

Bh

| f̃ I,b(k, t)|2 dk. (7.34)

Remark 7.2. In this remark we assess the contribution of the first term on the right-hand
side of the upper bound (7.33) to ‖ f I,D(t)‖2

L2(R2)
for times t ≈ ρ δ−1−ε0 , and argue that

the Dirac equations (1.5)–(1.6) are necessary for f δ(x, t) to be small on a time scale of
the order δ−1.

This contribution to the right hand side of (7.34) is bounded by a constant multiple
of

|t |2
∫

Bh

χ
(
|K − k| < δτ

)
dk ≈

(
ρ δ−1−ε0

)2
δ2τ ≈

(
δ−(1−τ+ε0)

)2
.

Recall that 0 < τ < 1 and therefore this contribution diverges as δ ↓ 0. Indeed this is
the case even for t ≈ δ−1, (ε0 = 0). We conclude that for f to be small in L2(R2) for
δ ↓ 0 we must have

χ
(
|κ| < δτ−1

) [
∂̂T α1 + λ�

(
∂̂X1α2 + i ∂̂X2α2

) ] (κ
δ
, δt

)
= 0,

χ
(
|κ| < δτ−1

) [
∂̂T α2 + λ�

(
∂̂X1α1 − i ∂̂X2α1

) ] (κ
δ
, δt

)
= 0.

(7.35)

Indeed, these are implied by the Dirac equations (7.31) or equivalently (1.5)–(1.6).

Since the Dirac equations are assumed to hold, f̃ I,±(k, t) is controlled by the latter
two terms in (7.33). Their contributions to ‖ f I,D(t)‖2

L2(R2)
are bounded, for 0 � t �
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ρ δ−2+ε1 , as follows. Fix ε1 > 0. The second term in (7.33) gives a contribution to
‖ f I,D(t)‖2

L2(R2)
which is bounded by:

|t |2
∫

Bh

|k − K|2 χ
(
|k − K| < δτ

)
dk

≈ |t |2 δ4τ � δ2ε1−4(1−τ) � δε1 , (7.36)

by taking τ chosen sufficiently close to 1. The third term in (7.33), for A sufficiently
large, clearly gives a contribution to ‖ f I,D(t)‖2

L2(R2)
which is O(δε1) for 0 � t �

ρ δ−2+ε1 , ε1 > 0 as δ ↓ 0.
In conclusion, for any fixed ρ > 0 and ε1 > 0, we have

sup
0�t�ρδ−2+ε1

‖ f I,D(t)‖L2(R2) = O(δ
ε1
2 ). (7.37)

This proves the bound (7.12).

7.2. Estimation of || f I I,D(t)||L2(R2). In this section we prove that for any fixed ρ > 0
and ε1 > 0,

sup
0�t�ρδ−2+ε1

‖ f I I,D(·, t)‖L2(R2) = O(δε1), as δ ↓ 0. (7.38)

Since

f I I,D(x, t) =
∑

b∈{+,−}

∫

Bh

χ
(
|k − K| � δτ

)
f̃b(k, t) �b(x; k) dk,

we have

‖ f I I,D(·, t)‖2
L2(R2)

=
∑

b∈{+,−}

∫

Bh

χ
(
|k − K| � δτ

)
| f̃b(k, t)|2 dk, (7.39)

where we recall again, by (7.3), that

f̃±(k, t) = −iδ2
∫ t

0
dse−i(μ±(k)−μ�)(t−s)

4∑

r=1

〈�±(·; k), γr (δ·, δs)�r (·)〉L2(R2) .

(7.40)

By Proposition 7.1 with the choices: b = + or b = −, � = γr (δx, δs) and P = Pr we
have

〈�±(·; k), γr (δ·, δs)�r (·)〉L2(R2)

=
∫

�

p±(y; k)
[
δ−2

∑

m∈Z2

eim·y γ̂r

(
m1k1 + m2k2 + (k − K)

δ
, δs

)]
Pr (y) dy.

(7.41)

The next lemma implies that all terms in the infinite sum within (7.41) involve γ̂r
evaluated at a large argument.
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Lemma 7.4. Let k ∈ Bh and assume |k − K| � δτ . Then, there exists a constant, c > 0,
such that for all m = (m1,m2) ∈ Z

2

| m1k1 + m2k2 + (k − K) | � c δτ
(

1 + |m|
)
.

Proof of Lemma 7.4. |m1k1 + m2k2 + (k − K)| is equal to the distance from the point
K − m1k1 − m2k2 to k. Simple geometry concludes the proof.

By Proposition 7.2 and Lemma 7.4, for k ∈ Bh and |k − K| � δτ we have
∣∣∣∣∣∣
δ−2

∑

m∈Z2

eim·y γ̂r

(
m1k1 + m2k2 + (k − K)

δ
, δs

) ∣∣∣∣∣∣

� C
∑

m∈Z2

1

(1 + |m|)A
δ−2 (δ1−τ )A ‖α0‖W A+1,1(R2).

From (7.40) and (7.41), we have that for k ∈ Bh and |k − K| � δτ by taking A > 2:
∣∣∣ f̃±(k, t)

∣∣∣ � C |t | (δ1−τ )A ‖α0‖W A+1,1(R2). (7.42)

By (7.39), for 0 � t � δ−2+ε1 , by taking A � A0 � 2 sufficiently large, we have the
bound ‖ f I I,±(·, t)‖L2(R2) = O(δ10), from which (7.38) follows. Recalling (7.37), we
obtain

sup
0�t�δ−2+ε1

‖ fD(t)‖L2(R2) = O(δ
ε1
2 ). (7.43)

7.3. Estimation of || fDc(·, t)||Hs (R2). Again, we fix ρ > 0 and ε1 > 0 and assume
0 � t � ρδ−2+ε1 . Recall from (7.5) that

fDc (x, t) =
∑

b/∈{+,−}

∫

Bh

f̃b(k, t) �b(x; k) dk, (7.44)

f̃b(k, t) = −iδ2
∫ t

0
ds e−i(μb(k)−μ�)(t−s)

〈
�b(·; k),

4∑

r=1

γr (δ·, δs)�r (·)
〉

L2(R2)

.

(7.45)

To prove that

sup
0�t�ρδ−2+ε1

‖ fDc (·, t)‖Hs (R2) = O
(
δ

ε1
2

)
, δ ↓ 0,

we shall decompose fDc into its k-components near and away from K. For k near K,
Property (P2), (6.2), implies that the complex exponential in (7.44) is oscillatory and
so integration by parts gains us smallness via additional powers of δ. For k ∈ Bh but
away from K we use that the Fourier transform of γr (δx, δs)�r (x) is mainly supported
away from K. Finally, smoothness of γr (δx, δs)�r (x) is used to ensure sufficient decay
as b → ∞, of its �b(·; k)-components, which must be summed in order to control Hs

norms.
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To implement the above strategy we decompose fDc as

fDc (x, t) =
∑

b/∈{+,−}

∫

Bh

χ
(
|k − K| < κ1

)
f̃b(k, t) �b(x; k) dk

+
∑

b/∈{+,−}

∫

Bh

χ
(
|k − K| � κ1

)
f̃b(k, t) �b(x; k) dk

= f I,Dc (x, t) + f I I,Dc (x, t). (7.46)

By property (P2), (6.2), we have

|k − K| < κ1 
⇒ |μb(k) − μ�| � C1 for b �= ±. (7.47)

It is natural to exploit the oscillation coming from the complex exponential in (7.44).
Fix k ∈ Bh and such that |k − K| < κ1. By (7.47), we may integrate by parts once and
obtain:

f̃b(k, t) = δ2 e−i(μb(k)−μ�)t − 1

μb(k) − μ�

〈
�b(·; k),

4∑

r=1

γr (δ·, 0) �r (·)
〉

L2(R2)

+ i δ3
∫ t

0
ds

e−i(μb(k)−μ�)(t−s) − 1

μb(k) − μ�

〈
�b(·; k),

4∑

r=1

∂T γr (δ·, δs) �r (·)
〉

L2(R2)

.

(7.48)

Therefore

| f̃b(k, t)| � δ2 1

|μb(k) − μ�|

∣∣∣∣∣∣

〈
�b(·; k),

4∑

r=1

γr (δ·, 0) �r (·)
〉

L2(R2)

∣∣∣∣∣∣

+ δ3
∫ t

0
ds

1

|μb(k) − μ�|

∣∣∣∣∣∣

〈
�b(·; k),

4∑

r=1

∂T γr (δ·, δs) �r (·)
〉

L2(R2)

∣∣∣∣∣∣
.

(7.49)

For |k − K| < κ1 and b �= ±, we have by (7.47),

| f̃b(k, t)| � δ2

∣∣∣∣∣∣

〈
�b(·; k),

4∑

r=1

γr (δ·, 0) �r (·)
〉

L2(R2)

∣∣∣∣∣∣

+ δ3 |t | max
0�s�ρδ−2+ε0

∣∣∣∣∣∣

〈
�b(·; k),

4∑

r=1

∂T γr (δ·, δs) �r (·)
〉

L2(R2)

∣∣∣∣∣∣
.

(7.50)
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Therefore, for |k − K| < κ1 and b �= ±,

sup
0�t�ρδ−2+ε0

| f̃b(k, t)|2 � δ4

∣∣∣∣∣∣

〈
�b(·; k),

4∑

r=1

γr (δ·, 0) �r (·)
〉

L2(R2)

∣∣∣∣∣∣

2

+ δ2+2ε0 max
0�s�ρδ−2+ε0

∣∣∣∣∣∣

〈
�b(·; k),

4∑

r=1

∂T γr (δ·, δs) �r (·)
〉

L2(R2)

∣∣∣∣∣∣

2

. (7.51)

To obtain a bound on ‖ f I,Dc (·, t)‖Hs (R2) for any s > 0, we proceed as follows. Recall

‖ f I,Dc (·, t)‖2
Hs (R2)

∼
∑

b/∈{+,−}
(1 + |b|)s

∫
{

k∈Bh :|k−K|<κ1

} | f̃b(k, t)|2 dk. (7.52)

By the sum over b /∈ {+,−} we mean the sum over all b � 1 such that b /∈ {b1, b1 + 1},
where μb1(k) ≡ μ−(k) and μb1+1(k) ≡ μ+(k); see Definition 3.1.

Thus we’ll require decay of | f̃b(k, t)| for b large. This decay is obtained from the
inner products in (7.51). Observe, for some sufficiently large postiche constant, C̃ and
any M � 0 and j � 0:

〈
�b(·; k), ∂ j

T γr (δ·, δs) �r (·)
〉

L2(R2)

= 1

(C̃ + μb(k))M

〈
(C̃ + H)M�b(·; k), ∂ j

T γr (δ·, δs) �r (·)
〉

L2(R2)

= 1

(C̃ + μb(k))M

〈
�b(·; k), (C̃ + H)M

(
∂

j
T γr (δ·, δs) �r (·)

)〉

L2(R2)
.

Therefore, thanks to (6.21):
∣∣∣∣
〈
�b(·; k), ∂ j

T γr (δ·, δs) �r (·)
〉

L2(R2)

∣∣∣∣ � (1 + |b|)−M ‖γr (δ·, δs) �r (·) ‖H2M+ j (R2)

� (1 + |b|)−M δ−1 ‖α0‖H2M+ j (R2) (7.53)

for j � 0. Using (7.53) in (7.51) we obtain

sup
0�t�ρδ−2+ε0

| f̃b(k, t)|2 � (1 + |b|)−2M ‖α0‖2
H2M+1(R2)

δ2ε0 . (7.54)

Substituting into (7.52), we get

‖ f I,Dc (·, t)‖Hs (R2) ∼
( ∑

b/∈{+,−}
(1 + |b|)s−2M

) 1
2 ‖α0‖H2M+1(R2) δ

ε0

� ‖α0‖H2M+1(R2) δ
ε0 , (7.55)

provided 2M > s + 1.
It remains to estimate the Hs norm of

f I I,Dc (·; t) =
∑

b/∈{+,−}

∫

Bh

χ
(
|k − K| � κ1

)
f̃b(k, t) �b(x; k) dk, (7.56)
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where we recall

‖ f I I,Dc (·; t)‖2
Hs ∼

∑

b �∈{+,−}
(1 + |b|)s

∫

Bh

χ
(
|k − K| � κ1

)
| f̃b(k, t)|2 dk.

(7.57)

Note that from (7.45),
∫

Bh

χ
(
|k − K| � κ1

)
| f̃b(k, t)|2 dk

� δ4|t |2 max
0�s�t

∫

Bh

χ
(
|k − K| � κ1

) ∣∣∣∣∣

4∑

r=1

〈�b(·; k), γr (δ·, δs) �r (·)〉L2(R2)

∣∣∣∣∣

2

dk.

(7.58)

A crude bound on (7.58), valid for 0 � t � δ−2+ε0 uses the approach taken to obtain
(7.53). This gives the bound: δ4 (δ−2+ε0)2 δ−2 ‖α0‖2

W 2,1(R2)
, which becomes unbounded

as δ ↓ 0. Therefore, a sharper estimate is required.
Now, for k ∈ B, |K−k| � κ1 and b �= ±, it may be that |μb(k)−μ�| is small. Hence

the integral in (7.44) cannot be controlled as an oscillatory integral, via integration by
parts with respect to time. We therefore obtain the decay of f I I,Dc using the rapid decay
of the Fourier transform of γr .

The inner product can be rewritten and estimated as follows. Choose a positive con-
stant C̃ such that C̃ I + H is strictly positive. We have, for any integer M � 0,

〈�b(·; k), γr (δ·, δs) · �r (·)〉L2(R2)

= 1

(C̃ + μb(k))M

〈
(C̃ + H)M�b(·; k), γr (δ·, δs) �r (·)

〉

L2(R2)

= 1

(C̃ + μb(k))M

〈
�b(·; k), (C̃ + H)M [

γr (δ·, δs) �r (·)
] 〉

L2(R2)

= 1

(C̃ + μb(k))M

∑̃

a,b1,b2

δ|b1|
〈
�b(·; k),!νmax

ν=1 ∂aν
x V (·) ∂b1

X γr (δ·, δs) ∂b2
x �r (·)

〉

L2(R2)
,

(7.59)

where
∑̃

denotes a finite sum over terms of the above form with a1, . . . , aνmax , b1, b2

in Z
2
+ and 2νmax +

∑νmax
ν=1 |aν | + |b1| + |b2| � 2M . Each inner product of this sum can

be re-expressed, via Poisson summation, using Proposition 7.1. With the choices

�(X, T ) = ∂
b1
X γr (δx, δs),

�(x) = !
νmax
ν=1 ∂

aν
x V (x) ∂b2

x �r (x) = eiK·x !
νmax
ν=1 ∂

aν
x V (x) (∂x + iK)b1Pr (x) ∈ L2

K,

we apply Proposition 7.1 and obtain
〈
�b(·; k),!νmax

ν=1 ∂
aν
x V (·) ∂b1

X γr (δ·, δs) ∂b2
x �r (·)

〉

L2(R2)

=
∫

�

pb(y; k) ·
[
δ−2

∑

m∈Z2

eim·y ̂
∂

b1
X γr

(
m1k1 + m2k2 + (k − K)

δ
, δs

)]

× !
νmax
ν=1 ∂

aν
y V (y)(∂y + iK)b2Pr (y) dy. (7.60)
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Note that there is a constant c > 0, depending only on κ1, such that for all k ∈ Bh
satisfying |k − K| � κ1, we have |m1k1 + m2k2 + (k − K)| � c(1 + |m|). It follows from
Proposition 7.2 applied to (7.60) that for all b1 and all A such that A � M and A > 2:

∣∣∣∣
〈
�b(·; k),!νmax

ν=1 ∂
aν
x V (·) ∂b1

X γr (δ·, δs) ∂b2
x �r (·)

〉

L2(R2)

∣∣∣∣

� δA ‖α0‖W A+1,1(R2)

∑

m∈Z2

1

(1 + |m|)A
� δA ‖α0‖W A+1,1(R2). (7.61)

Recall that μb(k) ≈ b, for b large, uniformly in k ∈ Bh . Using (7.59) and (7.61) in
(7.57) and (7.58) we obtain

‖ f I I,Dc (·; t)‖2
Hs � δ4 |t |2 δ2A ‖α0‖2

W A+1,1(R2)

∑

b �1

(1 + b)s−2M .

Choosing A and M sufficiently large, we obtain

sup
0�t�δ−2+ε0

‖ f I I,Dc (·; t)‖Hs � δ10 ‖α0‖W A+1,1(R2) . (7.62)

Together, estimates (7.55) and (7.62) imply

sup
0�t�δ−2+ε0

‖ fDc (·; t)‖Hs � δε0 ‖α0‖W A+1,1(R2) . (7.63)

Finally, (7.43), (7.63) and (2.25) imply, for any ε0 > 0, ρ > 0, that

sup
0�t�ρδ−2+ε0

‖ f δ(t)‖Hs (R2) � δ
ε0
2 ‖α0‖W A+1,1(R2). (7.64)

This completes the proof of Proposition 6.1 and therewith Theorem 5.1.
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[5,9–13,24–26].

Appendix A. Lipschitz-Continuity of Eigenvalues Self-Adjoint 2nd -Order Elliptic
Operators and an Application to Floquet–Bloch Eigenvalues

Theorem A.1. Let T and T̃ denote operators with the following properties:

1. T and T̃ are non-negative and self-adjoint operators on L2.
2. T and T̃ are bounded maps from H2 to L2.
3. T and T̃ have discrete spectrum given, respectively, by the sequences of eigenvalues:

spec(T) : λ1(T ) � λ2(T ) � · · · ,
spec(T̃) : λ1(T̃ ) � λ2(T̃ ) � · · · . (A.1)
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4. There is a positive constant, a�, such that T satisfies the elliptic estimate:

‖Tϕ‖L2 + ‖ϕ‖L2 � a�‖ϕ‖H2 (A.2)

for all ϕ ∈ H2. Assume that

‖T − T̃ ‖H2→L2 � 1

4
a�. (A.3)

Then, for k = 1, 2, . . . we have the following Lipschitz estimate

∣∣∣λk(T ) − λk(T̃ )

∣∣∣ � 2

a�
(2λk(T ) + 1) · ‖T̃ − T ‖H2→L2 . (A.4)

Remark A.1. Theorem A.1 generalizes in a straightforward manner to higher order self-
adjoint elliptic operators, defined on Hs(Rd).

A consequence of Theorem A.1 is the Lipschitz continuity of the Floquet–Bloch
eigenvalues of H = −� + V (x), where V is periodic, real and bounded.

Corollary A.2 (Proposition 2.1). The Floquet–Bloch eigenvalue maps k → μb(k), b � 1
are Lipschitz continuous functions of k ∈ B.

Proof of Corollary A.2. Define

T = H(k1) = −(∇ + ik1)
2 + V (x) and T̃ = H(k2) = −(∇ + ik2)

2 + V (x),

and note that ‖T −T̃ ‖H2→L2 = ‖H(k1)−H(k2)‖H2→L2 � C |k1−k2| for some C > 0.
Let μb(k j ) = μb(H(k j )) denote the bth eigenvalue of H(k j ). Applying Theorem A.1,
we have

|μb(k1) − μb(k2)| � C ( |μb(k)| + 1 ) |k1 − k2| (A.5)

whenever |k1 − k2| is less than a small enough positive constant. This completes the
proof of Corollary A.2.

Proof of Corollary A.1. Note first that

‖T̃ϕ‖L2 + ‖ϕ‖L2 �
[ ‖Tϕ‖L2 + ‖ϕ‖L2

] − ‖T − T̃ ‖H2→L2‖ϕ‖H2

� a�‖ϕ‖H2 − ‖T − T̃ ‖H2→L2‖ϕ‖H2 � 3

4
a�‖ϕ‖H2 . (A.6)

Therefore, we have the following three estimates:

‖Tϕ‖L2 + ‖ϕ‖L2 � 3

4
a�‖ϕ‖H2 , (A.7)

‖T̃ϕ‖L2 + ‖ϕ‖L2 � 3

4
a�‖ϕ‖H2 , (A.8)

‖T − T̃ ‖H2→L2 � 1

4
a�. (A.9)

These conditions, which are symmetric in T and T̃ , will be used below.
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Recall now the min-max characterization of the kth eigenvalue, λk(A), of a self-
adjoint operator, A : H2 → L2 [14]:

λk(A) = min
S⊂H2, dim(S)=k

max
v∈S\{0}

〈Av, v〉
‖v‖2

L2

. (A.10)

Proposition A.3. Let A denote a self-adjoint operator which maps H2 to L2 satisfying
the ellipticity estimate (A.7). Then,

λk(A) = min
S⊂H2, dim(S)=k

‖ψ‖H2�4
3 (a

�)−1(λk (A)+1)‖ψ‖L2
for all ψ∈S

max
ϕ∈S\{0}

〈Aϕ, ϕ〉
‖ϕ‖2

L2

. (A.11)

Proof of Proposition A.3. First note that the min max in (A.11), greater than or equal to
λk(A), is given by (A.10). We claim λk is achieved at an eigenfunction, ψk �= 0, with

ψk ∈ Sk(A) = span of the first k eigenfunctions of A,

where any ψ ∈ Sk(A) satisfies:

‖ψ‖H2 � 4

3
(a�)−1(λk(A) + 1)‖ψ‖L2 . (A.12)

Indeed, for any ψ ∈ Sk(A), the span of the first k-eigenfunctions of A, we have

‖Aψ‖L2 � λk(A) ‖ψ‖L2 .

It follows from (A.7) that

3

4
a�‖ψ‖H2 � ‖Aψ‖L2 + ‖ψ‖L2 � (λk(A) + 1) ‖ψ‖L2 .

Thus, any ψ ∈ Sk(A) satisfies (A.12). Furthermore, the maximum of the quotient
〈Aψ,ψ〉 /‖ψ‖2

L2 over Sk(A)\{0} is equal to λk(A) and is attained at ψk . This completes
the proof of Proposition A.3.

Continuing with the proof of Theorem A.1, take S to be any subspace of dimension
k and such that

v ∈ S 
⇒ ‖v‖H2 � 4

3
(a�)−1(λk(A) + 1)‖v‖L2 .

For all 0 �= v ∈ S, we have

〈T v, v〉L2

‖v‖2
L2

=
〈
T̃ v, v

〉

L2

‖v‖2
L2

+

〈
(T − T̃ )v, v

〉

L2

‖v‖2
L2

�

〈
T̃ v, v

〉

L2

‖v‖2
L2

− ‖T − T̃ ‖H2→L2‖v‖H2‖v‖L2

‖v‖2
L2

�

〈
T̃ v, v

〉

L2

‖v‖2
L2

− ‖T − T̃ ‖H2→L2 ·
4
3 (a

�)−1(λk(T ) + 1)‖v‖2
L2

‖v‖2
L2

=
〈
T̃ v, v

〉

L2

‖v‖2
L2

− ‖T − T̃ ‖H2→L2 · 4

3
(a�)−1(λk(T ) + 1). (A.13)
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Therefore,

λk(T ) � λk(T̃ ) − ‖T − T̃ ‖H2→L2 · 4

3
(a�)−1(λk(T ) + 1), (A.14)

thanks to (A.11) with A = T and (A.10) with A = T̃ . Interchanging T̃ and T in the
above argument yields

λk(T̃ ) � λk(T ) − ‖T − T̃ ‖H2→L2 · 4

3
(a�)−1(λk(T̃ ) + 1). (A.15)

Estimates (A.14) and (A.15) imply that
∣∣∣λk(T ) − λk(T̃ )

∣∣∣ � 4

3
(a�)−1(λk(T ) + λk(T̃ ) + 1) · ‖T − T̃ ‖H2→L2

� 4

3
(a�)−1(2λk(T ) + 1) · ‖T − T̃ ‖H2→L2

+
4

3
(a�)−1 · ‖T − T̃ ‖H2→L2

∣∣∣λk(T ) − λk(T̃ )

∣∣∣ . (A.16)

Therefore, since we have assumed ‖T − T̃ ‖H2→L2 � 1
4 a�, we find that

2

3

∣∣∣λk(T ) − λk(T̃ )

∣∣∣ � 4

3
(a�)−1(2λk(T ) + 1) · ‖T − T̃ ‖H2→L2 .

This completes the proof of the Lipschitz bound (A.4) and therewith Proposition A.1.
Finally, Proposition 2.1 is an immediate consequence of Proposition A.1.
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