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Abstract: We consider the problem of existence of asymptotic observables in local rela-
tivistic theories of massive particles. Let p̃1 and p̃2 be two energy-momentum vectors of
a massive particle and let � be a small neighbourhood of p̃1 + p̃2. We construct asymp-
totic observables (two-particle Araki–Haag detectors), sensitive to neutral particles of
energy-momenta in small neighbourhoods of p̃1 and p̃2. We show that these asymptotic
observables exist, as strong limits of their approximating sequences, on all physical
states from the spectral subspace of �. Moreover, the linear span of the ranges of all
such asymptotic observables coincides with the subspace of two-particle Haag–Ruelle
scattering states with total energy-momenta in �. The result holds under very general
conditions which are satisfied, for example, in λφ4

2 . The proof of convergence relies on
a variant of the phase-space propagation estimate of Graf.

1. Introduction

The question of a complete particle interpretation of quantum theories is of funda-
mental importance for our understanding of physics. The solution of this problem in
non-relativistic quantum mechanics, obtained in [En78,SiSo87,Gr90,De93] for a large
class of physically relevant Hamiltonians, requires the convergence of suitably chosen
time-dependent families of observables. The existence of these limits, called asymptotic
observables, relies on the method of propagation estimates [SiSo87,Gr90], which is a
refined variant of the Cook method. This technique was later adapted to non-relativistic
QFT in [DG99] which initiated a systematic study of the problem of asymptotic com-
pleteness in this context [DG00,FGS02,FGS04,DM12]. In the present work we imple-
ment the method of propagation estimates in local relativistic quantum field theories
of massive particles. We obtain the existence of certain asymptotic observables which
can be interpreted as two-particle detectors. Our results, stated in Theorems 2.6 and 2.7
below, hold in any massive theory satisfying the Haag–Kastler axioms, for example in
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λφ4
2 . Our work sheds a new light on the problem of asymptotic completeness in such

theories, which is widely open to date.
The problem of existence of asymptotic observables in the framework of algebraic

quantum field theory (cf. Subsect. 2.1) was first studied in the seminal work of Araki and
Haag [AH67] and later by Enss [En75]. These authors considered families of observables
of the form

Ct :=
∫

h
( x

t

)
C(t, x)dx = eit H

∫
h

( x

t

)
C(x)dx e−it H , (1.1)

where C denotes a suitable (almost local) observable, C(t, x) its translation in space-time
by (t, x) ∈ R

1+d , H is the full Hamiltonian of the relativistic theory and h ∈ C∞0 (Rd).
They were able to show that products of such observables

Qn,t = C1,t . . . Cn,t , (1.2)

associated with functions hi , i = 1, . . . , n, with mutually disjoint supports, converge, as
t → +∞, on suitably chosen domains of Haag–Ruelle scattering states1 (cf. Sect. 6). The
limit Q+

n can be interpreted as a coincidence arrangement of detectors which is sensitive
to states containing a configuration of n particles with velocities in the supports of the
functions h1, . . . , hn .

An important advance was made by Buchholz, who proved the following bound:

sup
t∈R
‖Ct1�(U )‖ <∞ (1.3)

for a sufficiently large class of observables C . Here 1�(U ) is the projection on states
whose energy-momentum belongs to a bounded Borel set �. (See [Bu90] and Lemma 3.3
below). This a priori estimate is a foundation of the theory of particle weights [BPS91,
Po04a,Po04b,Dy10,DT11b,DT11a] and it implies, in particular, that the sequences Qn,t
converge on all Haag–Ruelle scattering states of bounded energy. However, the question
of their convergence on the orthogonal complement of the subspace of scattering states,
which is of crucial importance for the problem of a complete particle interpretation of
the theory (cf. Chap. 6 of [Ha]), remained unanswered to date.

In this paper we give a solution of this problem in the case of n = 2 for Araki–Haag
detectors (1.2) sensitive to massive neutral particles. More precisely, let p̃1 �= p̃2 be
two energy-momentum vectors of massive particles. We choose almost local observ-
ables B1, B2 whose energy-momentum transfers belong to small neighbourhoods of
− p̃1, − p̃2, respectively, and set C1 := B∗1 B1, C2 := B∗2 B2. Now let � be a small
neighbourhood of p̃1 + p̃2. Our main result, stated in Thm. 2.6, is the existence of

Q+
2(�) := s− lim

t→+∞C1,t C2,t1�(U ). (1.4)

Moreover, we show in Thm. 2.7 that the union of the ranges of all the operators Q+
2(�),

constructed as above, coincides with the subspace of two-particle Haag–Ruelle scattering
states, whose total energy-momenta belong to�. Thms. 2.6 and 2.7 can be interpreted as a
weak variant of two-particle asymptotic completeness. We point out that this generalized
concept of complete particle interpretation does not imply the conventional one.

1 We consider only the limit t → +∞ and outgoing scattering states in this paper as the case t → −∞ is
completely analogous.
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To illustrate this point, let us give a simple example of a theory which satisfies
our general assumptions from Subsect. 2.1 and is not asymptotically complete in the
conventional sense: Let O �→ A(O) be the net of local algebras of massive scalar
free field theory acting on the Fock space F and let U be the corresponding unitary
representation of translations. Let O �→ Aev(O) be a subnet generated by even functions
of the fields acting on the subspace Fev ⊂ F spanned by vectors with even particle
numbers and let us set Uev = U |Fev . Then the net Â(O) = A(O)⊗ Aev(O), acting on
F ⊗ Fev and equipped with the unitary representation of translations Û = U ⊗ Uev,
satisfies the assumptions from Subsect. 2.1 but is not asymptotically complete in the
conventional sense. In fact, the subspace �⊗Fev, where � is the Fock space vacuum, is
orthogonal to all the Haag–Ruelle scattering states of the theory (except for the vacuum).
In physical terms, this subspace describes ‘pairs of oppositely charged particles’, whose
mass hyperboloids do not appear in the vacuum sector. Due to the choice of the energy-
momentum transfers of Bi , the asymptotic observables Q+

2(�) annihilate such pairs of
charged particles and, as stated in Thm. 2.7 below, only neutral particles remain in their
ranges.

We would like to stress that our result applies to concrete interacting quantum field
theories, as for example the λφ4

2 model. This theory is known to possess a lower and
upper mass gap at small coupling constants λ, but its particle aspects are rather poorly
understood. Asymptotic completeness is only known for total energies from the intervals
[0, 3m − ε] and [3m + ε, 4m − ε], where m is the particle mass and ε → 0 as λ →
0 [GJS73,SZ76,CD82]. Since we can choose the region � in (1.4) outside of these
intervals, our result provides new information about the asymptotic dynamics of this
theory.

Let us now describe briefly the main ingredients of the proof of existence of the limit
(1.4): Let Q2,t (�) be the approximants on the r.h.s. of (1.4). Exploiting locality and the
disjointness of supports of h1, h2, one can write

Q2,t (�) =
∫

h1

( x1

t

)
h2

( x2

t

)
B∗1 (t, x1)B∗2 (t, x2)B1(t, x1)B2(t, x2)1�(U )dx1dx2

+O(t−∞), (1.5)

where O(t−∞) is a term tending to zero in norm faster than any inverse power of t . In
the next step we exploit our assumptions on the energy-momentum transfers of B1, B2,
which give for any � ∈ Ran1�(U ):

B1(t, x1)B2(t, x2)� = �(�|B1(t, x1)B2(t, x2)�), (1.6)

due to the presence of the lower mass-gap. Thus we obtain

Q2,t (�)� =
∫

Ht (x1, x2)Ft (x1, x2)B∗1 (t, x1)B∗2 (t, x2)�dx1dx2 + O(t−∞), (1.7)

where

Ft (x1, x2) := (�|B1(t, x1)B2(t, x2)�), Ht (x1, x2) := h1

( x1

t

)
h2

( x2

t

)
.

We note that by replacing Ht (x1, x2)Ft (x1, x2) in the first term on the r.h.s. of (1.7)
with g1(t, x1)g2(t, x2), where g1, g2 are positive energy solutions of the Klein-Gordon
equation, one would obtain a Haag–Ruelle scattering state (cf. Thm. 6.5). While
such a replacement is not possible at finite times, it turns out that it can be performed
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asymptotically. In fact, Thm. 4.1 below reduces the problem of strong convergence
of t �→ Q2,t (�) to the existence of the following limit in the norm topology
of L2(R2d):

F+ := lim
t→∞ eitω̃(Dx̃ )Ht Ft , (1.8)

where x̃ = (x1, x2) ∈ R
2d , ω̃(Dx̃ ) = ω(Dx1) + ω(Dx2) and ω(k) = √k2 + m2 is the

dispersion relation of the massive particles under study.
A large part of our paper is devoted to the proof of existence of the limit (1.8). In the

first step, taken in Lemma 4.2, we show that Ft satisfies the following inhomogeneous
evolution equation:

∂t Ft = −iω̃(Dx̃ )Ft + 〈R〉t , (1.9)

where, using locality, we show that the term 〈R〉t satisfies ‖H̃t 〈R〉t‖2 = O(t−∞), for

any H̃t (x̃) := H̃
(

x̃
t

)
with H̃ ∈ C∞0 (R2d) vanishing near the diagonal {x1 = x2}. Given

(1.9), we prove the existence of the limit (1.8) by extending the method of propagation
estimates to inhomogeneous evolution equations.

An important step is to obtain a large velocity estimate, for which the usual quantum
mechanical proof does not apply, since in our case all propagation observables must
vanish near the diagonal. Instead we use a relativistic argument, based on the fact that
hyperplanes {t = v · x} for |v| > 1 are space-like (see Lemma 5.1). Another key
ingredient is a phase-space propagation estimate, whose proof follows closely the usual
quantum mechanical one. One new aspect, to which we will come back below, is the
fact that the convex Graf function R must now vanish near the diagonal. By combining
the two propagation estimates in Prop 5.5, we obtain the existence of the limit (1.8) and
therefore the convergence of the Araki–Haag detectors (1.4).

It is a natural question if the convergence of t �→ Qn,t1�(U ) can also be shown
for n �= 2 by the methods described above. Let us assume, generalizing the conditions
above Eq. (1.4), that the energy-momentum transfers of the corresponding operators Bi ,
i = 1, . . . , n, belong to small neighbourhoods of distinct energy-momentum vectors p̃i
of the massive particles s.t. p̃1 + · · · + p̃n ∈ �. For n = 1 there is nothing to prove
as the problem reduces to the well-known existence of the Araki–Haag detectors on
the subspace of single-particle states [AH67]. For n > 2, however, the situation looks
different: Here the initial steps of our analysis can be carried out and difficulties arise
only at the level of the phase-space propagation estimate: The Graf function R must
vanish not only near the diagonal x1 = x2, but also near all the other collision planes
x1 = x3, x2 = x3 etc. Since R is supposed to be convex in some ball around the origin,
it must be zero in a neighbourhood of the convex hull of the collision planes restricted
to this ball. Thus a large and physically interesting part of the configuration space is
out of reach of the phase-space propagation estimate for n > 2. It seems to us that new
propagation estimates have to be developed to handle this problem. Finally, we remark
that the convergence of the Araki–Haag detectors (1.2) is also expected without detailed
restrictions on the energy-momentum transfers of their constituent observables. Progress
in this direction requires new ideas at the operator-theoretic level of our analysis.

We would like to point out that our analysis is closely related to scattering theory of
quantum-mechanical dispersive systems (see e.g. [Ge91,Zi97]). A simple example of a
dispersive system is the following Hamiltonian:
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Hd =
n∑

i=1

ω(Dxi ) +
∑
i< j

V (xi − x j ), (1.10)

where V ∈ S(Rd). We note that the corresponding Schrödinger equation has the form

∂t�t = −i
n∑

i=1

ω(Dxi )�t − i
∑
i< j

V (xi − x j )�t , (1.11)

where �t = e−it Hd�, � ∈ L2
sym((Rd)×n). For n = 2 Eq. (1.11) has a form of

the evolution Eq. (1.9) with Ft = �t , and 〈R〉t = −iV (x1 − x2)�t which satisfies
‖H̃t 〈R〉t‖2 = O(t−∞) as a consequence of the rapid decay of the potential. In the light
of our discussion of Eq. (1.9), it is not a surprise that asymptotic completeness holds for
dispersive systems for n = 2, (which is actually a well known fact). However, the case
n > 2 is still open and requires new ideas.

Our paper is organized as follows: In Sect. 2 we recall the framework of local rel-
ativistic quantum field theory and state precisely our results. In Sect. 3 we introduce
some notation and terminology and collect the main properties of particle detectors. In
Sect. 4 we reduce the problem of convergence of the families of observables (1.4) to the
existence of the limit (1.8) and derive the inhomogeneous evolution equation (1.9). In
Sect. 5 we prove the convergence in (1.8) by showing large velocity and phase-space
propagation estimates. In Sect. 6 we recall some basic facts on the Haag–Ruelle scat-
tering theory in the two-particle case. The proof of Thm. 2.7 is presented in Sect. 7.
In Appendix A we state some generalizations of standard abstract arguments to the
inhomogeneous evolution equations. They are used in Sect. 5.

2. Framework and Results

In this section we recall the conventional framework of local quantum field theory and
formulate precisely our main results.

2.1. Nets of local observables. As usual in the Haag-Kastler framework of local quantum
field theory, we consider a net

O �→ A(O) ⊂ B(H)

of von Neumann algebras, acting on a Hilbert space H, attached to open bounded regions
of Minkowski space-time R

1+d . This net satisfies the assumptions of isotony, locality,
covariance w.r.t. translations, positivity of energy, uniqueness of the vacuum and cyclicity
of the vacuum.

The assumption of isotony says that A(O1) ⊂ A(O2) if O1 ⊂ O2. It allows to
define the C∗-inductive limit of the net, which will be denoted by A. Locality means that
A(O1) ⊂ A(O2)

′ if O1 and O2 are space-like separated. To formulate the remaining
postulates, we assume that there exists a strongly continuous unitary representation of
translations

R
1+d � (t, x) �→ U (t, x) =: ei(t H−x ·P) on H.



86 W. Dybalski, C. Gérard

We also introduce the group of automorphisms of A induced by U :

αt,x (B) := B(t, x) := U (t, x)BU (t, x)∗, B ∈ A, (t, x) ∈ R
1+d .

The assumption of covariance says that

αt,x (A(O)) = A(O + (t, x)), ∀ open bounded O and (t, x) ∈ R
1+d . (2.1)

We will need a restrictive formulation of positivity of energy, suitable for massive the-
ories. We denote by Hm := {(E, p) ∈ R

1+d : E = √
p2 + m2} the mass hyperboloid

of a particle of mass m > 0 and set Gμ := {(E, p) ∈ R
1+d : E ≥ √

p2 + μ2}. We
assume that:

i) S p U = {0} ∪ Hm ∪ G̃, where G̃ ⊂ Gμ for some m < μ ≤ 2m,

i i) 1{0}(U ) = |�〉〈�|, � cyclic for A.
(2.2)

The unit vector � will be called the vacuum vector. We denoted by S p U ⊂ R
1+d the

spectrum of (H, P) and by 1�(U ) the spectral projection on a Borel set � ⊂ R
1+d . Part

i) in (2.2) encodes positivity of energy and the presence of an upper and lower mass-gap.
We remark that it is a consequence of the Haag–Ruelle scattering theory that G̃ ⊃ G2m .
A possible presence of additional isolated mass hyperboloids Hm′ , m < m′ < 2m in
S p U , (corresponding e.g. to composite particles), is covered by this assumption. Part
i i) encodes the uniqueness and cyclicity of the vacuum.

2.2. Relevant classes of observables. In this subsection we introduce some classes of
observables, which enter into the formulation of our main results. First, we recall the
definition of almost local operators.

Definition 2.1. B ∈ A is almost local if there exists a family Ar ∈ A(Or ), where
Or := {(t, x) ∈ R

1+d : |x | + |t | < r} is the double cone of radius r centered at 0, s.t.
‖B − Ar‖ ∈ O(〈r〉−∞).

To introduce another important class – the energy-decreasing operators – we need
some definitions: If B ∈ A, we denote by B̂ its Fourier transform:

B̂(E, p) := (2π)−(1+d)/2
∫

e−i(Et−p·x) B(t, x)dtdx, (2.3)

defined as an operator-valued distribution. We denote by supp(B̂) ⊂ R
1+d the support

of B̂, called the energy-momentum transfer of B. We recall the following well-known
properties [Ar82]:

i) α̂t,x (B)(E, p) = ei(Et−p·x) B̂(E, p),

i i) supp(B̂∗) = −supp(B̂),

i i i) B1�(U ) = 1
�+supp (B̂)

(U )B1�(U ), ∀ Borel sets � ⊂ R
1+d .

(2.4)

Now we are ready to define the energy-decreasing operators:

Definition 2.2. B ∈ A is energy-decreasing if supp(B̂) ∩ V+ = ∅, where V+ :=
{(E, p) : E ≥ |p|} is the closed forward light cone.



Asymptotic Completeness of Two-Particle Scattering 87

In the rest of the paper we will work with the following set of observables:

Definition 2.3. We denote by L0 ⊂ A the subspace spanned by B ∈ A such that:

i) B is energy-decreasing, supp(B̂) is compact,
i i) R

1+d � (t, x) �→ B(t, x) ∈ A is C∞ in norm,

i i i) ∂α
t,x B(t, x) is almost local for all α ∈ N

1+d .

Note that if i) and ii) hold, then ∂α
t,x B(t, x) is energy-decreasing for any α ∈ N

1+d .
Note also that if A ∈ A(O) and f ∈ S(R1+d) with supp f̂ compact and supp f̂ ∩V+ = ∅,
then

B = (2π)−(1+d)/2
∫

f (t, x)A(t, x)dtdx (2.5)

belongs to L0 by (2.4) i), since B̂(E, p) = f̂ (E, p) Â(E, p). (See (3.1) below for
definition of f̂ .)

2.3. Results. For any B1, B2 ∈ L0 and h1, h2 ∈ C∞0 (Rd) with disjoint supports we
define the approximating families of one-particle detectors:

C1,t :=
∫

h1

( x1

t

)
(B∗1 B1)(t, x1)dx1, C2,t :=

∫
h2

( x2

t

)
(B∗2 B2)(t, x2)dx2 (2.6)

which have appeared already in (1.1) above. We note that in view of Lemma 3.3, stated
below, supt∈R ‖Ci,t1�̃(U )‖ <∞, i = 1, 2, for any bounded Borel set �̃.

Now for any open bounded subset � ⊂ G2m we define the two-particle detectors:

Q2,t (�) := C1,t C2,t1�(U ). (2.7)

Our main result is the strong convergence of Q2,t (�) as t →∞ if the extension of � is
smaller than the mass-gap (i.e., (�−�)∩S p U = {0}) and (B1, B2) is �−admissible
in the following sense:

Definition 2.4. Let � ⊂ R
1+d be an open bounded set and B1, B2 ∈ L0. We say that

(B1, B2) is �−admissible if

(−supp(B̂i )) ∩ S p U ⊂ Hm, i = 1, 2, (2.8)

−(supp(B̂1) + supp(B̂2)) ⊂ �, (2.9)

(� + supp(B̂1) + supp(B̂2)) ∩ S p U ⊂ {0}. (2.10)

Remark 2.5. It is shown in Lemma 7.4 that if � ⊂ G2m is an open bounded set s.t.
(� − �) ∩ S p U ⊂ {0} and −supp(B̂1), −supp(B̂2) are sufficiently small neigh-
bourhoods of vectors p̃1, p̃2 ∈ Hm s.t. p̃1 �= p̃2 and p̃1 + p̃2 ∈ �, then (B1, B2) is
�−admissible. In more physical terms, conditions (2.8)–(2.10) encode the idea that (2.7)
is a detector sensitive to a two-particle configuration with energies-momenta p̃1, p̃2.



88 W. Dybalski, C. Gérard

Theorem 2.6. Let � ⊂ G2m be an open bounded set such that (�−�)∩S p U = {0}.
Let B1, B2 ∈ L0 be �−admissible and suppose that h1, h2 ∈ C∞0 (Rd) have disjoint
supports. Then there exists the limit

Q+
2(�) := s− lim

t→∞C1,t C2,t1�(U ), (2.11)

where Ci,t are defined in (2.6) for Bi , hi , i = 1, 2. The range of Q+
2(�) belongs to

1�(U )H+
2 , where H+

2 is the subspace of two-particle Haag–Ruelle scattering states
defined in Thm. 6.5 and Def. 6.7.

Proof. Follows immediately from Theorems 4.1 and 5.5. ��
Theorem 2.6 implies, in particular, that the closed span of the ranges of the opera-

tors Q+
2(�) is contained in the subspace of two-particle scattering states with energy-

momentum in �. This result is complemented by Thm. 2.7, stated below and proven in
Sect. 7, which says that this inclusion is actually an equality. One of its consequences
is that sufficiently many asymptotic observables (2.11) are non-zero. Thms. 2.6 and 2.7
can be interpreted as a weak variant of asymptotic completeness.

Theorem 2.7. Let � ⊂ G2m be an open bounded set such that (�−�)∩S p U = {0}.
Let J be the collection of quadruples α = (B1, B2, h1, h2) satisfying the conditions
from Thm. 2.6 and let Q+

2,α(�) be the limit (2.11) corresponding to α. Then

1�(U )H+
2 = Span{Ran Q+

2,α(�) : α ∈ J }cl. (2.12)

3. Preparations

In this section we introduce some notation and collect some properties of particle de-
tectors.

3.1. Notation.

– By x, x1, x2 we denote elements of R
d . We set x̃ = (x1, x2) to denote elements of

R
2d .

– We write K � R
1+d if K is a compact subset of R

1+d .

– We set 〈x〉 := (1 + x2)
1
2 for x ∈ R

d and ω(p) = (p2 + m2)
1
2 for p ∈ R

d .
– The momentum operator i−1∇x will be denoted by Dx .
– We denote by (t, x) or (E, p) the elements of R

1+d .
– If f : R1+d → C we will denote by ft : Rd → C the function ft ( · ) := f (t, · ).
– We denote by S(R1+d) the Schwartz class in R

1+d . If f ∈ S(R1+d) we define its
(unitary) Fourier transform:

f̂ (E, p) := (2π)−(1+d)/2
∫

ei(Et−p·x) f (t, x)dtdx, (3.1)

so that

f (t, x) = (2π)−(1+d)/2
∫

e−i(Et−p·x) f̂ (E, p)d Edp. (3.2)

Note the different sign in the exponent in comparison with (2.3).
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If f ∈ S(Rd) we set:

f̂ (p) = (2π)−d/2
∫

e−ip·x f (x)dx,

and ̂

f (x) = (2π)−d/2
∫

eip·x f (p)dp.

– If B is an observable, we write B(∗) to denote either B or B∗. We will also set

Bt := B(t, 0), B(x) := B(0, x) so that B(t, x) = Bt (x).

3.2. Auxiliary maps aB. For B ∈ A, f ∈ S(Rd) we set:

B( f ) :=
∫

B(x) f (x)dx,

so that B∗( f ) = B( f )∗. Clearly, if B1, B2 ∈ A are almost local, then

‖[B1(x1), B2(x2)]‖ ≤ CN 〈x1 − x2〉−N , ∀ N ∈ N. (3.3)

This immediately implies that

‖[B1( f1), B2( f2)]‖ ≤ CN

∫
| f1(x1)|〈x1 − x2〉−N | f2(x2)|dx1dx2, f1, f2 ∈ S(Rd).

(3.4)

Now we introduce auxiliary maps which will be often used in our investigation:

Definition 3.1. We denote by aB : H→ S ′(Rd ;H) the linear operator defined as:

aB�(x) := B(x)�, x ∈ R
d .

Clearly aB : H→ S ′(Rd;H) is continuous and

B( f ) = (1H ⊗ 〈 f |) ◦ aB, f ∈ S(Rd), (3.5)

where (1H ⊗ 〈 f |) : S ′(Rd;H)→ H is defined on simple tensors by

(1H ⊗ 〈 f |)(� ⊗ T ) = T ( f )�, � ∈ H, T ∈ S ′(Rd). (3.6)

By duality a∗B : S(Rd ;H)→ H is continuous and

B∗( f ) = a∗B ◦ (1H ⊗ | f 〉), f ∈ S(Rd). (3.7)

The group of space translations

τy�(x) := �(x − y), y ∈ R
d ,

is strongly continuous on S ′(Rd ;H), and its generator is Dx i.e., τy = e−iy·Dx . It is easy
to check the following identity:

aB ◦ e−iy·P = e−iy·(Dx +P) ◦ aB, y ∈ R
d . (3.8)

We collect now some properties of aB .
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Lemma 3.2. Let B ∈ A. Then:

(1) For any Borel set � ⊂ R
1+d :

aB1�(U ) = (1
�+supp(B̂)

(U )⊗ 1S ′(Rd )) ◦ aB1�(U ),

a∗B ◦ (1�(U )⊗ 1S(Rd )) = 1
�−supp(B̂)

(U )a∗B ◦ (1�(U )⊗ 1S(Rd )).

(2) For any f ∈ S(Rd) one has f (Dx )aB = aB f for

B f := (2π)−d/2 ∫

̂

f (−y)B(0, y)dy

= (2π)−(d+1)/2 ∫ f (−p)B̂(E, p)d Edp,

B̂ f (E, p) = f (−p)B̂(E, p).

(3) If supp(B̂) is compact and f ∈ C∞(Rd) then the above properties also hold.

Proof. (1) follows from (2.4). (2) and (3) follow from the identity:

e−iy·Dx aB = aB(0,−y), y ∈ R
d ,

which is a rephrasing of (3.8). ��
If B ∈ L0, then aB has much stronger properties. In particular, for � � R

1+d the
operator aB1�(U ) maps H into L2(Rd ;H) � H⊗L2(Rd), see Lemma 3.4 below. This
is a consequence of the following important property of the energy-decreasing operators,
proven in [Bu90].

Lemma 3.3. Let B ∈ A be energy-decreasing with supp(B̂) � R
1+d convex and let

� ⊂ R
1+d be some bounded Borel set. Let Y ⊂ R

1+d be a subspace and let dy be the
Lebesgue measure on Y . Then there exists c ≥ 0 such that for any F � Y , one has:

‖
∫

F
(B∗B)(y)1�(U )dy‖ ≤ c

∫
F−F
‖[B∗, B(y)]‖dy. (3.9)

Note that if B is in addition almost local and Y is space-like, then the function
Y � y �→ ‖[B∗, B(y)]‖ vanishes faster than any inverse power of |y| as |y| → ∞, hence
we can take F = Y in (3.9). (We will usually apply this lemma with Y = {0} ×R

d ). In
view of Lemma 3.3, it is convenient to introduce the subspace of vectors with compact
energy-momentum spectrum:

Hc(U ) := {� ∈ H : � = 1�(U )�, � � R
1+d}.

We note the following simple fact:

Lemma 3.4. Assume that � � R
1+d and let B ∈ L0. Then

aB1�(U ) : H→ H⊗ L2(Rd) is bounded.

Remark 3.5. Considering aB as a linear operator from H to H ⊗ L2(Rd) with domain
Hc(U ), we see that H⊗S(Rd) ⊂ Dom a∗B , hence a∗B is densely defined and aB closable.

Proof. It suffices to note that

1�(U )a∗B ◦ aB1�(U ) =
∫

Rd
1�(U )(B∗B)(x)1�(U )dx,

and use Lemma 3.3. (If supp(B̂) is not convex, B should be decomposed as in [Bu90]
p. 639). ��
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3.3. Particle detectors. In this subsection we make contact with the particle detectors
Ct introduced in (2.6).

Definition 3.6. Let B ∈ L0. For h ∈ B(L2(Rd)) we set:

NB(h) := a∗B ◦ (1H ⊗ h) ◦ aB, Dom NB(h) = Hc(U ).

Denoting by h(x, y) the distributional kernel of h we have the following expression for
NB(h):

NB(h) =
∫

B∗(x)h(x, y)B(y)dxdy, (3.10)

which makes sense as a quadratic form identity on Hc(U ). If h is the operator of multi-
plication by the function x �→ h(x), then NB(h) can be written as

NB(h) =
∫

(B∗B)(x)h(x)dx .

Setting ht (x) := h
( x

t

)
, we see that Ct defined in (2.6) equals NBt (ht ), where Bt =

B(t, 0). The following lemma is a direct consequence of Lemmas 3.2 and 3.4.

Lemma 3.7. We have:

(1) ‖NB(h)1�(U )‖B(H) ≤ c�,B‖h‖B(L2(Rd )),

(2) ∀ � � R
1+d , NB(h)1�(U ) = 1�1(U )NB(h)1�(U ), for some �1 � R

1+d .

3.4. Auxiliary maps aB1,B2 . We start with the following definition which is meaningful
due to Lemma 3.4:

Definition 3.8. For B1, B2 ∈ L0 we define the linear operator:

aB1,B2 : Hc(U )→ H⊗ L2(R2d , dx1dx2),

� �→ aB1,B2� = (aB1 ⊗ 1L2(Rd )) ◦ aB2�.
(3.11)

Formally we have

aB1,B2�(x1, x2) = B1(x1)B2(x2)�.

We note the following lemma, which is a direct consequence of Lemmas 3.2 and 3.4.

Lemma 3.9. Assume � � R
1+d and let B1, B2 ∈ L0. Then:

(1) aB1,B21�(U ) : H→ H⊗ L2(R2d , dx1dx2) is bounded,
(2) for any � � R

1+d one has:

aB1,B21�(U ) = (1�+supp(B̂1)+supp(B̂2)(U )⊗ 1L2(R2d )) ◦ aB1,B21�(U ),

a∗B1,B2
◦ (1�(U )⊗ 1L2(R2d )) = 1�−supp(B̂1)−supp(B̂2)(U )a∗B1,B2

◦ (1�(U )⊗ 1L2(R2d )).

For later use we state in Lemma 3.10 below a simple consequence of almost locality.
To simplify the formulation of this result, we introduce the following functions for
N > d:
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gN (k) =
∫

e−ik·x 〈x〉−N dx . (3.12)

Clearly

∂α
k gN (k) ∈ O(〈k〉−p), ∀ p ∈ N, |α| < N − d,

and the operator on L2(Rd) with kernel 〈x − y〉−N equals gN (Dx ).

Lemma 3.10. Let � � R
1+d , Bi ∈ L0, hi ∈ C∞0 (Rd), i = 1, 2. We denote by hi ∈

B(L2(Rd)) the operator of multiplication by hi . Then for any N ∈ N one has:

‖(NB1(h1) ◦ NB2(h2)− a∗B2,B1
◦ (1H ⊗ h1 ⊗ h2) ◦ aB1,B2

)
1�(U )‖

≤ CN ,�,B1,B2‖h1gN (Dx )h2‖B(L2(Rd )). (3.13)

Remark 3.11. In applications we will often estimate the operator norm on the r.h.s. of
(3.13) by the Hilbert–Schmidt norm ‖ · ‖HS.

Proof. Let R be the operator in the l.h.s. of (3.13). By Lemmas 3.7, 3.9
R = 1�1(U )R1�2(U ) for some �i � R

1+d . For ui ∈ H we have

|(u1|Ru2)H|
= |

∫
(1�1(U )u1|B∗1 (x1)[B1(x1), B∗2 (x2)]B2(x2)h1(x1)h2(x2)1�2 (U )u2)Hdx1dx2|

≤C
∫
‖B1(x1)1�1(U )u1‖H‖B2(x2)1�2 (U )u2‖H|h1|(x1)|h2|(x2)〈x1 − x2〉−N dx1dx2.

By Lemma 3.7 we know that vi (x) = ‖Bi (x)1�i (U )ui‖H ∈ L2(Rd) with ‖vi‖L2(Rd ) ≤
Ci‖ui‖H. Therefore

|(u1|Ru2)|H ≤ C‖|h1|gN (Dx )|h2|‖B(L2(Rd ))‖u1‖H‖u2‖H.

Writing hi = |hi |eiϕi and using that the operator of multiplication by eiϕi is unitary, we
obtain the lemma. ��

4. An Intermediate Convergence Argument

For B ∈ L0 and h ∈ C∞0 (Rd) we set:

ht (x) := h
( x

t

)
, NB(h, t) := NBt (ht ). (4.1)

Recalling the notation x̃ = (x1, x2), we also define ω̃(Dx̃ ) = ω(Dx1) + ω(Dx2), acting
on L2(R2d). The following theorem is an important step in the proofs of Thms. 2.6 and
2.7. It essentially allows to reduce their proofs to arguments adapted from non-relativistic
scattering theory.

Theorem 4.1. Let � ⊂ R
1+d be a bounded open set, B1, B2 ∈ L0 with (B1, B2)�−

admissible and let h1, h2 ∈ C∞0 (Rd) have disjoint supports. Let
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Ht (x1, x2) := h1,t (x1)h2,t (x2) (4.2)

and set for � ∈ 1�(U )H:

Ft := (〈�| ⊗ 1L2(R2d )) ◦ aB1,B2 e−it H � ∈ L2(R2d), (4.3)

so that

Ft (x1, x2) = (�|B1(t, x1)B2(t, x2)�)H, (x1, x2) ∈ R
2d .

Assume that

F+ := lim
t→∞ eitω̃(Dx̃ )Ht Ft exists. (4.4)

Then

lim
t→∞ NB1(h1, t)NB2(h2, t)� (4.5)

exists and belongs to 1�(U )H+
2 .

Proof. Applying Lemma 3.10 and noting that ‖h1,t gN (Dx )h2,t‖HS ∈ O(td−N ), we get:

NB1(h1,t )NB2(h2,t )1�(U ) = a∗B2,B1
◦ (1H ⊗ Ht ) ◦ aB1,B21�(U ) + O(t−∞).

By (2.10) and Lemma 3.9 we obtain:

aB1,B21�(U ) = (1{0}(U )⊗ 1L2(R2d )) ◦ aB1,B21�(U )

= (|�〉〈�| ⊗ 1L2(R2d )) ◦ aB1,B21�(U ),

using (2.2). Therefore we have:

eit H NB1(h1,t )NB2(h2,t )e
−it H � = eit H a∗B2,B1

(�⊗ Ht Ft ) + O(t−∞)

= eit H a∗B2,B1
(�⊗ e−itω̃(Dx̃ )F+) + o(t0). (4.6)

Set

St : L2(R2d) � F �→ eit H a∗B2,B1
(�⊗ e−itω̃(Dx̃ )F) ∈ H.

By Lemma 3.9 the family St is uniformly bounded in norm. Moreover if g1, g2 are
two positive energy KG solutions with disjoint velocity supports (see Subsect. 6.1 for
terminology) and f1, f2 ∈ S(Rd) are their initial data, then

St ( f1 ⊗ f2) = B∗1,t (g1,t )B∗2,t (g2,t )�,

where the Haag–Ruelle creation operators B∗i,t (gi,t ) are defined in Subsect. 6.2. From
Thm. 6.5 we know that limt→∞ St ( f1 ⊗ f2) exists. By linearity and density, using the
uniform boundedness of St , we conclude that limt→∞ St F exists for any F ∈ L2(R2d).
By (4.6) this implies the existence of the limit in (4.5). The approximation argument
above implies that this limit belongs to H+

2 . The fact that it belongs to the range of1�(U )

follows from the �−admissibility of (B1, B2). ��
The proof of the existence of the limit (4.4) will be given in the next section. As a

preparation, we collect some properties of the vectors Ft ∈ L2(R2d). The most important
property is that Ft solves a Schrödinger equation with Hamiltonian ω̃(Dx̃ ) and a source
term 〈R〉t whose L2 norm outside of the diagonal decreases very fast when t → +∞.
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Lemma 4.2. Let Ft be defined in (4.3). Then:

(1) Ft is uniformly bounded in L2(R2d),
(2) t �→ Ft ∈ L2(R2d) is C1 with

∂t Ft = −iω̃(Dx̃ )Ft + 〈R〉t ,
where ‖H̃

(
x̃
t

)
〈R〉t‖L2(R2d ) ∈ O(t−∞) for any H̃ ∈ C∞0 (R2d) with

supp H̃ ∩ {x1 = x2} = ∅.
Proof. We have Ft (x1, x2) = (�|B1(t, x1)B2(t, x2)�)H and from Lemma 3.9 we know
that Ft is uniformly bounded in L2(R2d). Moreover, since � ∈ Hc(U ), we see that
t �→ Ft ∈ L2(R2d) is C1 with:

∂t Ft (x̃) = (�|Ḃ1(t, x1)B2(t, x2)�)H + (�|B1(t, x1)Ḃ2(t, x2)�)H
= (�|Ḃ1(t, x1)B2(t, x2)�)H + (�|Ḃ2(t, x2)B1(t, x1)�)H

+ (�|[B1(t, x1), Ḃ2(t, x2)]�)H,

where Ḃi := ∂s Bi (s, 0)|s=0 are again almost local by the definition of L0. We have for
any � ∈ H:

(�|B j (t, x j )�)H = (�|1{0}(U )B j (t, x j )�)H = (�|B j (t, x j )1Hm (U )�)H
= (�|B j (x j )e−itω(P)�)H = e−itω(Dx j )(�|B j (x j )�),

using (2.4), (2.8) and finally (3.8). Differentiating this identity we obtain

(�|Ḃ j (t, x j )�)H = −iω(Dx j )(�|B j (t, x j )�)H.

Therefore we get:

∂t Ft (x̃) = −iω(Dx1)(�|B1(t, x1)B2(t, x2)�)H − iω(Dx2)(�|B2(t, x2)B1(t, x1)�)H
+ (�|[B1(t, x1), Ḃ2(t, x2)]�)H

= − iω(Dx1)(�|B1(t, x1)B2(t, x2)�)H − iω(Dx2)(�|B1(t, x1)B2(t, x2)�)H
− iω(Dx2)(�|[B2(t, x2), B1(t, x1)]�)H + (�|[B1(t, x1), Ḃ2(t, x2)]�)H

= − iω̃(Dx̃ )Ft (x̃) + 〈R〉t (x̃),

for

〈R〉t (x̃) = −iω(Dx2)(�|[B2(t, x2), B1(t, x1)]�)H + (�|[B1(t, x1), Ḃ2(t, x2)]�)H
=: 〈R〉1,t (x̃) + 〈R〉2,t (x̃).

Since Ḃ2 is almost local, we have ‖[B1(t, x1), Ḃ2(t, x2)]‖ ∈ O(〈x1− x2〉−N ) uniformly
in t and ‖H̃t 〈R〉2,t‖L2(R2d ) ∈ O(t−∞) because of the support properties of H̃t (x̃) :=
H̃

(
x̃
t

)
.

To estimate 〈R〉1,t we write it as (�|[ω(Dx2)B2(t, x2), B1(t, x1)]�)H. By
Lemma 3.2 (3) we see that ω(Dx2)B2(t, x2) = C2(t, x2), where

C2 = (2π)−d/2
∫

f (x)B2(0, x)dx, f ∈ S(Rd), f̂ (−p) ≡ ω(p) near supp(B̂2).

Therefore C2 is almost local and ‖[C2(t, x2), B1(t, x1)]‖ ∈ O(〈x1− x2〉−N ). The same
argument as above shows that ‖H̃t 〈R〉1,t‖L2(R2d ) ∈ O(t−∞). ��
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5. Non-Relativistic Scattering with Source Terms

In this section we give the proof of the existence of the limit

F+ = lim
t→+∞ eitω̃(Dx̃ )Ht Ft ,

appearing in Thm. 4.1. The proof is obtained by adapting to our situation the standard
arguments based on propagation estimates. The main difference with the usual scattering
theory is that Ft solves a Schrödinger equation with a source term. This implies that one
has to use propagation observables supported in regions where the source term is small,
in our case outside the diagonal in R

2d . The necessary abstract arguments are collected
in Appendix A.

5.1. Large velocity estimates. In this subsection we prove large velocity estimates. Note
that we do not prove them directly for Ft , but use instead a general argument based on
Lemma 3.3, locality and the fact that the hyperplanes {t = v · x} for |v| > 1 are
space-like.

Lemma 5.1. Let B ∈ L0, � � R
1+d and 1 < c < C. Then,

∫ +∞

1
(e−it H �|1�(U )NB(1{z∈Rd : c≤|z|≤C}

( x

t

)
)1�(U )e−it H �)H

dt

t
≤ c1‖�‖2

H, � ∈ H,

where x in the formula above denotes the corresponding multiplication operator on
L2(Rd).

Proof. Set z = (z1, z′) ∈ R
d , where z1 ∈ R is the first component of z. We can find

constants ci > 1 and rotations Ri ∈ SO(d) such that

{z : c ≤ |z| ≤ C} ⊂⋃N
i=1{z : ci ≤ |(Ri z)1| ≤ C}.

So it suffices to prove the lemma with 1{z : c≤|z|≤C} replaced with 1{z : c≤|(Rz)1|≤C} for
c > 1, R ∈ SO(d). We parametrize the set S = {z : c ≤ |(Rz)1| ≤ C} by coordinates
(y1, y′) with y1 = (Rx)1 so that it equals S = {(y1, y′) : c ≤ |y1| ≤ C}. We have:

I := ∫∞
1 eit H NB(1S

( x
t

)
)e−it H dt

t =
∫∞

1
dt
t

∫
Rd 1S(

y
t )(B∗B)(t, y)dy

= ∫∞
1 dt

∫ C
c dv

∫
Rd−1(B∗B)(t, tv, y′)dy′ ≤ ∫ C

c dv
∫
Rd (B∗B)(t, tv, y′)dtdy′.

We now apply Lemma 3.3 to the subspace Yv = {(t, tv, y′) : t ∈ R, y′ ∈ R
d−1} for

c ≤ v ≤ C which yields2:

‖1�(U )I1�(U )‖ ≤ C ′
∫ C

c
dv

∫
Rd
‖[B∗, B(t, tv, y′)]‖dtdy′. (5.1)

Since B is almost local, there exist Br ∈ A(Or ) with ‖B − Br‖ ∈ O(〈r〉−n). Therefore

‖[B∗, B(t, tv, y′)]‖ ≤ C〈r〉−n + ‖[B∗r , Br (t, tv, y′)]‖.
Set u ·u = x2− t2 for u = (t, x) ∈ R

1+d . If v1, v2 ∈ Or and u1 = v1 + (t, tv, y′), u2 =
v2, then u = u1 − u2 = (t, tv, y′) + w, for w ∈ Or −Or ⊂ O2r . It follows that

u · u = t2(|v|2 − 1) + |y′|2 + O(r)(〈t〉 + 〈y′〉) + O(r2).

2 We can assume here without loss of generality that supp(B̂) is convex (see [Bu90] p. 639).
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Using that c > 1, we conclude that there exists 0 < δ  1 such that if 〈r〉 = δ(〈t〉+〈y′〉)
then Or and Or +(t, tv, y′) are space-like separated for any (t, y′) ∈ R

d s.t. t2 +|y′|2 ≥ 1
and c ≤ v ≤ C . Therefore ‖[B∗, B(t, tv, y′)]‖ ∈ O((〈t〉 + 〈y′〉)−n), and the integral in
the r.h.s. of (5.1) is finite. ��

To proceed we need the following definitions: For 0 ≤ r1 < r2 and ε ≥ 0 we set:

Cr1,r2 := {x̃ ∈ R
2d : r1 ≤ |x̃ | ≤ r2}, Cr := C0,r , Dε := {x̃ ∈ R

2d : |x1 − x2| ≤ ε}.
Let us now prove the following corollary of Lemma 5.1:

Proposition 5.2. Let
√

2 < r < r ′, ε > 0 and let Ft be defined in (4.3). Then
∫ +∞

1

∥∥∥∥1Cr,r ′ \Dε

(
x̃

t

)
Ft

∥∥∥∥
2

L2(R2d )

dt

t
<∞,

where x̃ in the formula above denotes the corresponding multiplication operator on
L2(R2d).

Proof. Set x̃ = (x1, x2) ∈ R
2d . By a covering argument, it suffices to prove the lemma

with1Cr,r ′ \Dε (x̃) replaced with h1(x1)h2(x2), where hi ∈ C∞0 (Rd) are non-negative and

supported near some points yi ∈ R
d with (y1, y2) ∈ Cr,r ′ \Dε and d(supph1, supph2) >

0. Set Ht (x̃) = h1(
x1
t )h2(

x2
t ). By (4.3) we have:

(Ft |Ht Ft )L2(R2d )

=
∫

R2d
(e−it H �|B∗2 (x2)B∗1 (x1)B1(x1)B2(x2)e

−it H �)Hh1

( x1

t

)
h2

( x2

t

)
dx1dx2.

Since |(y1, y2)| >
√

2, necessarily |yi | > 1 either for i = 1 or i = 2, and we can assume
that supp hi ⊂ {y ∈ R

d : |y| > 1}. If this holds for i = 2 then

(Ft |Ht Ft )L2(R2d ) ≤ C
∫
(e−it H �|B∗2 (x2)B2(x2)e−it H �)Hh2(

x2
t )dx2

≤ C(e−it H �|NB2(h2(
x
t ))e−it H �)H,

where x denotes the corresponding multiplication operator on R
d . Then we apply

Lemma 5.1. If the above property holds for i = 1 then, using almost locality as in
the proof of Lemma 3.10, we obtain that

(Ft |Ht Ft )L2(R2d )

= ∫
R2d (e−it H �|B∗1 (x1)B∗2 (x2)B2(x2)B1(x1)e−it H �)Hh1(

x1
t )h2(

x2
t )dx1dx2 + O(t−∞)

= ∫
Rd (B1(x1)e−it H �|NB2(h2(

x
t ))B1(x1)e−it H �)Hh1(

x1
t )dx1 + O(t−∞)

≤ C(e−it H �|NB1(h1(
x
t ))e−it H �)H + O(t−∞),

using that h1, h2 have disjoint supports. We complete the proof as before. ��

5.2. Phase-space propagation estimates. We start with a geometrical consideration re-
lated to a well-known construction of Graf [Gr90].

Lemma 5.3. Let K � R
2d\D0. Then there exist

√
2 < r < r ′, c1, c2, ε > 0 and a

function R ∈ C∞0 (R2d) vanishing near D0 such that
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∇2 R(x̃) ≥ c11K (x̃)− c21Cr,r ′ \Dε (x̃). (5.2)

Proof. Set x̃ = (x1, x2) ∈ R
2d , u = 1√

2
(x1 + x2), v = 1√

2
(x1 − x2). We choose√

2 < r < r ′ such that K ⊂ Cr and set

g(x̃) = (u2 + βv2 − c)F(x̃),

for F ≥ 0, F ∈ C∞0 (Cr ′1), F ≡ 1 in Cr1 , where r < r1 < r ′1 < r ′. The constants
c, β > 0 will be determined later. Note that g is convex in Cr1 , hence

R0(x̃) = sup{g, 0}(x̃)

is convex in Cr1 (but not smooth). We first fix c = r ′2 so that R0(x̃) = 0 for x̃ ∈ Dεβ ,
for some εβ > 0 tending to 0 when β → +∞. We choose then β ! 1 such that
K ⊂ {x̃ ∈ R

2d : R0(x̃) > 0} and set ε = εβ . By the continuity of R0 we also obtain:

K ⊂
⋂
|x̃ ′|≤ε′

{x̃ : R0(x̃ − x̃ ′) > 0}, (5.3)

Dε/2 ⊂
⋂
|x̃ ′|≤ε′

{x̃ : R0(x̃ − x̃ ′) = 0}, (5.4)

for some 0 < ε′  1.
Now we choose η ≥ 0, η ∈ C∞0 (Cε′) with

∫
η(x̃)dx̃ = 1 and set:

R(x̃) :=
∫

η(x̃ ′)R0(x̃ − x̃ ′)dx̃ ′ = η � R0(x̃).

Clearly R ∈ C∞0 (R2d) and R is convex in Cr , hence

∇2 R(x̃) ≥ 0, x̃ ∈ Cr . (5.5)

By relation (5.3), R = η � g on K , hence

∇2 R(x̃) ≥ c11, x̃ ∈ K , (5.6)

for some c1 > 0. In Cr,r ′ , ∇2 R is bounded, and outside of Cr ′ , ∇2 R(x̃) ≥ 0 since
R(x̃) ≡ 0 there by construction. By (5.5), (5.6) we obtain (5.2). ��
Proposition 5.4. Let Ft be defined in (4.3) and K � R

2d\D0. Then
∫ +∞

1

∥∥∥∥1K

(
x̃

t

)(
x̃

t
− ∇ω̃(Dx̃ )

)
Ft

∥∥∥∥
2

L2(R2d )

dt

t
<∞.

Proof. We will apply Lemma A.1 to H = L2(R2d), u(t) = Ft , H = ω̃(Dx̃ ) and

M(t) = R

(
x̃

t

)
− 1

2

(
∇R

(
x̃

t

)
·
(

x̃

t
− ∇ω̃(Dx̃ )

)
+ h.c.

)
.

Recall that DM(t) denotes the associated Heisenberg derivative. By standard pseudo-
differential calculus we obtain that:

DM(t) = 1
t

(
x̃
t −∇ω̃(Dx̃ )

)
· ∇2 R

(
x̃
t

)
·
(

x̃
t − ∇ω̃(Dx̃ )

)
+ O(t−2)

≥ c1
t

(
x̃
t −∇ω̃(Dx̃ )

)
1K

(
x̃
t

)
·
(

x̃
t −∇ω̃(Dx̃ )

)
− C

t 1Cr,r ′
(

x̃
t

)
+ O(t−2),

(5.7)



98 W. Dybalski, C. Gérard

where O(t−2) denotes a term with norm O(t−2) and we have used Lemma 5.3 in the
second line. Since R is supported away from the diagonal, we obtain by Lemma 4.2
and pseudo-differential calculus that ‖M(t)〈R〉t‖ ∈ L1(R+, dt), where we recall that
∂t Ft =: −iω̃(Dx̃ )Ft + 〈R〉t . Lemma 4.2 also gives that supt ‖Ft‖ < ∞. The negative
term in the r.h.s. of (5.7) is controlled by Proposition 5.2. Applying Lemma A.1 we
obtain the desired result. ��

5.3. Existence of the intermediate limit.

Theorem 5.5. Let Ft , Ht be defined in (4.3). Then the limit

F+ = lim
t→+∞ eitω̃(Dx̃ )Ht Ft exists.

Proof. The norms ‖ ·‖ and scalar products ( · | · ) in this proof are in the sense of L2(R2d).
We proceed as in the proof of [DG97, Prop. 4.4.5]. Set first H(x̃) = h1(x1)h2(x2) and

M(t) = H

(
x̃

t

)
−

(
x̃

t
−∇ω̃(Dx̃ )

)
· ∇H

(
x̃

t

)
.

By pseudo-differential calculus, we obtain that

DM(t) = 1
t

(
x̃
t −∇ω̃(Dx̃ )

)
· ∇2H

(
x̃
t

)
·
(

x̃
t − ∇ω̃(Dx̃ )

)
+ O(t−2),

‖M(t)〈R〉t‖, ‖M∗(t)〈R〉t‖ ∈ L1(R+, dt),
(5.8)

where in the second line we use that H is supported away from the diagonal. Note that
the following analog of Prop. 5.4 is well-known and easy to prove by mimicking the
arguments in [DG97, Prop. 4.4.3]:
∫ +∞

1

∥∥∥∥1K

(
x̃

t

) (
x̃

t
−∇ω̃(Dx̃ )

)
e−itω̃(Dx̃ )u

∥∥∥∥
2 dt

t
≤ C‖u‖2, u ∈ L2(R2d), (5.9)

for any K � R
2d\{0}. Combining this estimate with the one in Prop. 5.4, we obtain by

Lemma A.3 that

lim
t→+∞ eitω̃(Dx̃ )M(t)Ft exists.

Therefore the proposition follows if we show that

lim
t→∞

(
x̃

t
−∇ω̃(Dx̃ )

)
· ∇H

(
x̃

t

)
Ft = 0,

or equivalently

lim
t→+∞(Ft |

(
x̃

t
− ∇ω̃(Dx̃ )

)
G̃

(
x̃

t

) (
x̃

t
−∇ω̃(Dx̃ )

)
Ft ) = 0, (5.10)

for G̃ = H̃1, H̃ ∈ C∞0 (R2d\D0) and H̃ ≥ 0. It suffices to prove that the limit in (5.10)
exists, since it will then be equal to 0 by Prop. 5.4. To this end, we apply Lemma A.2
with

M(t) =
(

x̃

t
−∇ω̃(Dx̃ )

)
G̃

(
x̃

t

) (
x̃

t
− ∇ω̃(Dx̃ )

)
.

Again ‖M(t)〈R〉t‖, ‖M∗(t)〈R〉t‖ ∈ L1(R+, dt) and by pseudo-differential calculus we
have:
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DM(t) = − 2
t

(
x̃
t −∇ω̃(Dx̃ )

)
G̃

(
x̃
t

) (
x̃
t − ∇ω̃(Dx̃ )

)

− 1
t

(
x̃
t −∇ω̃(Dx̃ )

)
∇G̃

(
x̃
t

)
·
(

x̃
t −∇ω̃(Dx̃ )

) (
x̃
t − ∇ω̃(Dx̃ )

)
+ O(t−2)

= 1
t

(
x̃
t − ∇ω̃(Dx̃ )

)
1K

(
x̃
t

)
A(t)1K

(
x̃
t

) (
x̃
t −∇ω̃(Dx̃ )

)
+ O(t−2),

for a compact set K ⊂ R
2d\D0 and A(t) ∈ O(1). Now the existence of the limit follows

from Prop. 5.4 and Lemma A.2. ��

6. Haag–Ruelle Scattering Theory

In this section we recall some basic facts concerning the Haag–Ruelle scattering theory.

6.1. Positive energy solutions of the Klein-Gordon equation.

Definition 6.1. Let f ∈ S(Rd), such that f̂ has compact support. The function

g(t, x) = gt (x) for gt = e−itω(Dx ) f,

which solves (∂2
t −�x )g + m2g = 0, will be called a positive energy KG solution.

Proposition 6.2. There hold the following facts:

(1) Let h ∈ C∞0 (Rd). Then

s− lim
t→±∞ eitω(Dx )h

( x

t

)
e−itω(Dx ) = h(∇ω(Dx )).

(2) Let χ1, χ2 ∈ C∞(Rd) be bounded with all derivatives and having disjoint supports.
Let f ∈ S(Rd) be s.t. f̂ has compact support. Then

‖χ1

( x

t

)
e−itω(Dx )χ2(∇ω(Dx )) f ‖L2(Rd ) ∈ O(t−∞).

Proof. (1) is obvious. For (2) see [RS3]. ��
The following notion of velocity support will be useful later on.

Definition 6.3. Let � � Hm. We set

Vel(�) := {∇ω(p) : p ∈ R
d , (ω(p), p) ∈ �}.

Clearly if �1 and �2 are disjoint, then so are Vel(�1) and Vel(�2). If g is a positive
energy KG solution with initial data f , then supp ĝ ⊂ Hm and Vel(supp ĝ) = {∇ω(p) :
p ∈ supp f̂ } can be called the velocity support of g, as illustrated by Prop. 6.2 (2).

6.2. Haag–Ruelle scattering theory. Let B ∈ L0 satisfy (2.8), i.e.,

−supp(B̂) ∩ S p U ⊂ Hm .

Let now g be a positive energy KG solution. The Haag–Ruelle creation operator is given
by {B∗t (gt )}t∈R, that is,

B∗t (gt ) =
∫

g(t, x)B∗(t, x)dx .

Note that since e−itω(Dx ) preserves S(Rd) the integral is well defined.
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Lemma 6.4. The following properties hold:

(1) B∗t (gt )� = B∗( f )� = (2π)d/2 f̂ (P)B∗�, if gt = e−itω(Dx ) f .
(2) Let � � R

1+d , f ∈ L2(Rd). Then ‖B(∗)( f )1�(U )‖ ≤ c�,B‖ f ‖L2(Rd ).
(3) ∂t B∗t (gt ) = Ḃ∗t (gt ) + B∗t (ġt ), where Ḃ = ∂s B(s, 0)|s=0 ∈ L0 and ġ = ∂t g is a

positive energy KG solution with the same velocity support as g.

Proof. We use the notation from Subsect. 3.2. We have

B∗t (gt )� = (1H ⊗ 〈gt |) ◦ aB∗t � = (1H ⊗ 〈gt |) ◦ (eit H ⊗ 1L2(Rd )) ◦ aB∗�.

By (2.8) and (2.4) iii) we have aB∗� = (1Hm (U )⊗ 1L2(Rd )) ◦ aB∗�, hence

(eit H ⊗ 1L2(Rd )) ◦ aB∗� = (eitω(P) ⊗ 1L2(Rd )) ◦ aB∗�.

From (3.8) we obtain that:

(e−iy·P ⊗ 1L2(Rd )) ◦ aB∗� = (1H ⊗ eiy·Dx ) ◦ aB∗�, y ∈ R
d , (6.1)

which implies that

(eitω(P) ⊗ 1L2(Rd )) ◦ aB∗� = (1H ⊗ eitω(Dx )) ◦ aB∗�,

using that ω(p) = ω(−p). Hence

B∗t (gt )� = (1H ⊗ 〈gt |) ◦ (1H ⊗ eitω(Dx )) ◦ aB∗� = (1H ⊗ 〈e−itω(Dx )gt |) ◦ aB∗�
= (1H ⊗ 〈 f |) ◦ aB∗� = B∗( f )�.

The fact that B∗( f )� = (2π)d/2 f̂ (P)B∗� is immediate. Statement (2) follows from
Lemma 3.4, using (3.5) for B and (3.7) for B∗. In the case of B∗ we also use Lemma 3.2
(1) and the fact that supp(B̂) is compact. (3) is a trivial computation. ��

The following result is a special case of the Haag–Ruelle theorem [Ha58,Ru62].
For the reader’s convenience we give an elementary proof which combines ideas from
[He65,BF82,Ar99,Dy05] and exploits the bound (2) in Lemma 6.4.

Theorem 6.5. Let B1, B2 ∈ L0 satisfy (2.8). Let g1, g2 be two positive energy KG
solutions with disjoint velocity supports. Then:

(1) There exists the two-particle scattering state given by

�+ = lim
t→∞ B∗1,t (g1,t )B∗2,t (g2,t )�. (6.2)

(2) The state �+ depends only on the single-particle vectors �i = B∗i,t (gi,t )�, and

therefore we can write �+ = �1
out× �2. Given two such vectors �+ and �̃+ one

has:

(�̃+|�+) = (�̃1|�1)(�̃2|�2) + (�̃1|�2)(�̃2|�1), (6.3)

U (t, x)(�1
out× �2) = (U (t, x)�1)

out× (U (t, x)�2), (t, x) ∈ R
1+d . (6.4)
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Before giving the proof of the theorem, let us explain how to obtain two-particle
scattering states from arbitrary one-particle states, thereby defining the (outgoing) two-
particle wave operator. Let

Hm := 1Hm (U )H,

be the space of one-particle states. For �1, �2 ∈ Hm we set

�1⊗s�2 := 1√
2
(�1 ⊗�2 + �2 ⊗�1) ∈ Hm ⊗s Hm .

Proposition 6.6. There exists a unique isometry

W +
2 : Hm ⊗s Hm → H

with the following properties:

(1) If �1, �2 are as in Thm. 6.5, then W +
2 (�1⊗s�2) = �1

out× �2,
(2) U (t, x) ◦W +

2 = W +
2 ◦ (Um(t, x)⊗Um(t, x)), (t, x) ∈ R

1+d , where we denote by
Um(t, x) the restriction of U (t, x) to Hm.

Definition 6.7. (1) The map W +
2 : Hm ⊗s Hm → H is called the (outgoing) two-

particle wave operator.
(2) The range of W +

2 is denoted by H+
2 .

Proof of Prop. 6.6. Let us denote by F ⊂ Hm ⊗s Hm the subspace spanned by the
vectors �1⊗s�2 for �1, �2 as in Thm. 6.5. By (6.3) there exists a unique isometry
W +

2 : F → H such that

W +
2 (�1⊗s�2) = �1

out× �2,

for all �1, �2 as in the theorem. Moreover by (6.4) U (t, x) ◦W +
2 = W +

2 ◦ (Um(t, x)⊗
Um(t, x)). To complete the proof of the proposition it suffices to prove that the closure
of F is Hm ⊗s Hm .

Denote by (H1, P1), resp. (H2, P2) the generators of the groups Um(t, x)⊗ 1, resp.
1⊗Um(t, x) acting on Hm ⊗Hm , and set (H̃ , P̃) := ((H1, P1), (H2, P2)), whose joint
spectral measure is supported by Hm × Hm .

By Lemma 6.4 (1) and the cyclicity of the vacuum, the set of vectors B∗t (gt )�, for
B ∈ L0 satisfying (2.8) and g a positive energy KG solution, is dense in Hm . Moreover
for � � Hm , the set of such vectors with g having the velocity support included in
Vel(�) is dense in 1�(U )Hm . It follows from these density properties that the closure
of F in Hm ⊗s Hm equals

Fcl = �s ◦ 1(Hm×Hm)\D(H̃ , P̃)(Hm ⊗Hm),

where �s : Hm⊗Hm → Hm⊗s Hm is the orthogonal projection, and D ⊂ Hm×Hm is
the diagonal. From [BF82, Prop. 2.2] we know that the spectral measure of the restriction
of (H, P) to Hm is absolutely continuous w.r.t. the Lorentz invariant measure on Hm .
This implies that 1D(H̃ , P̃) = 0, which completes the proof of the proposition. ��
Proof of Thm. 6.5. Let us first prove (1). Let B1, B2, g1, g2 satisfy the hypotheses of the
theorem. We claim that

[B(∗)
1,t (g1,t ), B(∗)

2,t (g2,t )] ∈ O(t−∞). (6.5)
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In fact by Prop. 6.2 (2) we can find cutoff functions χ1, χ2 ∈ C∞0 (Rd) with disjoint
supports such that

gi,t = χi

( x

t

)
gi,t + O(t−∞) in L2(Rd).

Setting χi,t (x) = χi (
x
t ), this implies by Lemma 6.4 (2) that:

[B(∗)
1,t (g1,t ), B(∗)

2,t (g2,t )] = [B(∗)
1,t (χ1,t g1,t ), B(∗)

2,t (χ2,t g2,t )] + O(t−∞).

By the almost locality of B(∗)
1 , B(∗)

2 we obtain from (3.4) and the Cauchy-Schwarz
inequality that the commutator in the r.h.s. is bounded by

CN‖χ1,t gN (Dx )χ2,t‖HS‖g1,t‖L2(Rd )‖g2,t‖L2(Rd ) ∈ O(t−∞),

which proves (6.5) (cf. the proof of Lemma 3.10). Now we get that

∂t (B∗1,t (g1,t )B∗2,t (g2,t ))� = [∂t B∗1,t (g1,t ), B∗2,t (g2,t )]� ∈ O(t−∞),

where we made use of Lemma 6.4 (1) and applied (6.5) to Bi , gi , Ḃi and ġi . This proves
(1) by the Cook argument.

Let now B ∈ L0, satisfying (2.8), and � = −supp(B̂) ∩ S p U ⊂ Hm . We fix
O ⊂ R

1+d , which is an arbitrarily small neighborhood of �, and a function h ∈ S(R1+d)

with supp ĥ ⊂ O and ĥ = (2π)−(d+1)/2 on �. Setting C∗ = ∫
B∗(t, x)h(t, x)dtdx we

have: C ∈ L0 and

Ĉ∗(E, p) = (2π)(d+1)/2ĥ(E, p)B̂∗(E, p), C∗� = (2π)(d+1)/2ĥ(H, P)B∗�.

This implies that −supp(Ĉ) ⊂ O , and

B∗t (gt )� = (2π)d/2 f̂ (P)B∗� = (2π)d/2 f̂ (P)1�(U )B∗�
= (2π)d/2 f̂ (P)(2π)(d+1)/2ĥ(H, P)B∗� = (2π)d/2 f̂ (P)C∗� = C∗t (gt )�.

(6.6)

Introducing observables Ci as above for Bi and using also (6.5) and Lemma 6.4 (2) we
obtain that

�+ = lim
t→∞ B∗1,t (g1,t )B∗2,t (g2,t )� = lim

t→∞C∗1,t (g1,t )C
∗
2,t (g2,t )�. (6.7)

Thus we can assume that the energy-momentum transfers of B∗i entering in the con-
struction of scattering states are localized in arbitrarily small neighborhoods of subsets
of Hm . This observation will be important in the proof of (2) to which we now proceed.

Let �̃t = B̃∗1,t (g̃1,t )B̃∗2,t (g̃2,t )� be the approximants of the scattering state �̃+. In

order to compute the scalar product (�̃t |�t ) we first observe that

[[B̃1,t (g̃1,t ), B∗1,t (g1,t )], B∗2,t (g2,t )] ∈ O(t−∞). (6.8)

This relation can be justified by writing g̃1 = g̃1,1 + g̃1,2, where g̃1,i are positive energy
KG solutions such that the velocity support of g̃1,i and gi are disjoint for i = 1, 2. Then
(6.8) follows from (6.5) and the Jacobi identity. Next we note that

B̃i,t (g̃i,t )B∗j,t (g j,t )� = �(�|B̃i,t (g̃i,t )B∗j,t (g j,t )�), 1 ≤ i, j ≤ 2. (6.9)
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This relation follows from the fact that B̃i,t (g̃i,t )B∗j,t (g j,t )� belongs to the range of

1−K j +K̃i
(U ), where K j and K̃i are the energy-momentum transfers of B j and B̃i , re-

spectively. In view of (6.7)−K j ,−K̃i can be chosen in arbitrarily small neighbourhoods
of Hm . Since a non-zero vector which is a difference of two vectors from Hm is space-like,
(6.9) follows.

We set for simplicity of notation Bi (t) := (B∗i,t (gi,t ))
∗, B̃ j (t) := (B̃∗j,t (g̃ j,t ))

∗. Then

(�̃t |�t ) = (�|B̃2(t)B1(t)
∗ B̃1(t)B2(t)

∗�)

+ (�|B̃2(t)B2(t)
∗ B̃1(t)B1(t)

∗�)

+ (�|B̃2(t)[[B̃1(t), B1(t)
∗], B2(t)

∗]�). (6.10)

Making use of (6.8) and (6.9), we conclude the proof of (6.3). It follows immediately
from (6.3) that the scattering states �+ depend only on the single-particle states �i (and
not on a particular choice of Bi and gi ). Finally, relation (6.4) is an easy consequence
of Lemma 6.4 (1). ��

7. Proof of Theorem 2.7

In the next proposition we will use the notation NB(h, t) introduced in (4.1) for B ∈ L0
and h ∈ C∞0 (Rd).

Proposition 7.1. Let i = 1, 2. Let �i � Hm with �1,�2 disjoint and Bi ∈ L0 with
supp(B̂1), supp(B̂2) disjoint. Assume moreover that

−supp(B̂i ) ∩ S p U ⊂ �i , (7.1)

(�i + supp(B̂i )) ∩ S p(U ) ⊂ {0}. (7.2)

Let hi ∈ C∞0 (Rd)with disjoint supports and hi ≡ 1 on Vel(�i ). Then for�i ∈ 1�i (U )H
one has:

lim
t→+∞ NB1(h1, t)NB2(h2, t)W +

2 (�1 ⊗s �2) = W +
2 (NB1(1)�1 ⊗s NB2(1)�2). (7.3)

Remark 7.2. Note that W +
2 (�1 ⊗s �2) belongs to Hc(U ), and that NBi (1)�i belong to

1�i (U )H, because of (7.1), (7.2). Hence all the expressions appearing in (7.3) are well
defined.

Proof. We first claim that for B,�,�, h as in the proposition one has:

lim
t→+∞ NB(h, t)� = NB(1)�. (7.4)

In fact we first note that because of (7.1), (7.2) we have

B∗B1�(U ) = B∗|�〉〈�|B1�(U ) = 1�(U )B∗B1�(U ). (7.5)

Therefore

NB(h, t)� = eit H NB(ht )e−it H �

= eitω(P)a∗B ◦ (1H ⊗ ht ) ◦ aBe−itω(P)�

= a∗B ◦ eitω(P+Dx )(1H ⊗ ht )e−itω(P+Dx ) ◦ aB�,
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using (3.8). Since eitω(P+Dx )xe−itω(P+Dx ) = x + t∇ω(P + Dx ), we have

eitω(P+Dx )(1H ⊗ ht )e
−itω(P+Dx ) = h

( x

t
+ ∇ω(P + Dx )

)
,

from which we easily deduce that

s− lim
t→+∞ eitω(P+Dx )(1H ⊗ ht )e

−itω(P+Dx ) = h(∇ω(P + Dx )).

Inserting as usual energy-momentum projections, this implies that

lim
t→+∞ NB(h, t)� = a∗B ◦ h(∇ω(P + Dx )) ◦ aB� = a∗BaBh(∇ω(P))�,

using once again (3.8). From the support property of h we have h(∇ω(p)) = 1 for
(ω(p), p) ∈ �, hence h(∇ω(P))� = �, which completes the proof of (7.4).

Now we proceed to the proof of (7.3). Since NB1(h1, t)NB2(h2, t)1�1(U ) is uni-
formly bounded in time for any �1 � R

1+d , it suffices by density to assume that
�i = A∗i,t (gi,t )� for Ai ∈ L0 satisfying (7.1) and gi a positive energy KG solution with
the velocity support included in Vel(�i ), so that �i = 1�i (U )�i . Let us fix such Ai , gi .

We note that for i �= j ,

‖[NBi (hi , t), A∗j,t (g j,t )]‖ ∈ O(t−∞). (7.6)

In fact since the support of hi and the velocity support of g j are disjoint, we can pick a
smooth partition of unity 1 = χi (x) + χ j (x) with χi ≡ 0 near the velocity support of g j
and χ j ≡ 0 near the support of hi . We have then by almost locality

‖[NBi (hi , t), A∗j,t (g j,t )]‖ ≤
∫ ‖[(B∗i Bi )(t, x), A∗j (t, y)]‖|hi (

x
t )||g j (t, y)|dxdy

≤ CN
∫ 〈x − y〉−N |hi (

x
t )||g j (t, y)|χ j (

y
t )dxdy

+ CN
∫ 〈x − y〉−N |hi (

x
t )||g j (t, y)|χi (

y
t )dxdy.

The first integral is O(t−∞) because hi and χ j have disjoint supports, the second is
also O(t−∞) using that suppχi is disjoint from the velocity support of g j and applying
Prop. 6.2 (2). This proves (7.6).

Finally since NBi (1)�i ∈ 1�i (U )H, we can find for any 0 < εi  1 operators
Ãi ∈ L0 and positive energy solutions g̃i satisfying the same properties as Ai , gi such
that

‖NBi (1)�i − Ã∗i,t (g̃i,t )�‖ ≤ εi , i = 1, 2. (7.7)

Using successively (7.6), (7.4) and (7.7), we obtain:

NB1(h1, t)NB2(h2, t)(�1
out× �2) = NB1(h1, t)NB2(h2, t)A∗1,t (g1,t )A∗2,t (g2,t )� + o(t0)

= NB1(h1, t)A∗1,t (g1,t )NB2(h2, t)A∗2,t (g2,t )� + o(t0)

= NB1(h1, t)A∗1,t (g1,t )NB2(1)�2 + o(t0)

= NB1(h1, t)A∗1,t (g1,t ) Ã∗2,t (g̃2,t )� + o(t0) + O(t0)ε2.
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Using then (6.5), (7.6), (7.4), we have:

NB1(h1, t)A∗1,t (g1,t ) Ã∗2,t (g̃2,t )� = NB1(h1, t) Ã∗2,t (g̃2,t )A∗1,t (g1,t )� + oε2(t
0)

= Ã∗2,t (g̃2,t )NB1(h1, t)A∗1,t (g1,t )� + oε2(t
0) = Ã∗2,t (g̃2,t )NB1(1)�1 + oε2(t

0)

= Ã∗2,t (g̃2,t ) Ã∗1,t (g̃1,t )� + oε2(t
0) + Oε2(t

0)ε1

= Ã∗1,t (g̃1,t ) Ã∗2,t (g̃2,t )� + oε1,ε2(t
0) + Oε2(t

0)ε1

= �̃1
out× �̃2 + oε1,ε2(t

0) + Oε2(t
0)ε1,

for �̃i = Ã∗i,t (g̃i,t )�. By Prop. 6.6 (1) we have also

‖NB1(1)�1
out× NB2(1)�2 − �̃1

out× �̃2‖ ≤ C(ε1 + ε2).

We obtain finally

NB1(h1, t)NB2(h2, t)(�1
out× �2)

= NB1(1)�1
out× NB2(1)�2 + oε1,ε2(t

0) + O(ε1 + ε2) + Oε2(t
0)ε1.

Picking first ε2  1, then ε1  1 and then t ! 1, we obtain (7.3). ��
Lemma 7.3. Let � ⊂ G2m be an open bounded set. Then

1�(U )H+
2 = Span{W +

2 (�1 ⊗s �2) : �i ∈ 1�i (U )H, �i � Hm,

�1 + �2 ⊂ �, �1 ∩�2 = ∅}cl.

Proof. The proof follows immediately from Prop. 6.6 (2) and the absolute continuity of
the spectral measure of (H, P) restricted to Hm recalled in its proof. ��
Lemma 7.4. Let � ⊂ G2m be an open bounded set s.t. (� − �) ∩ S p U = {0}. Let
�1,�2 � Hm be disjoint and such that �1 + �2 ⊂ �. Then there exist O1, O2 ⊂
R

1+d which are disjoint open neighbourhoods of �1,�2, respectively, such that for any
K1, K2 � R

1+d satisfying −Ki ⊂ Oi , −Ki ∩ S p U ⊂ �i , one has:

(� + K1 + K2) ∩ S p U ⊂ {0}, (7.8)

−(K1 + K2) ⊂ �, (7.9)

(�i + Ki ) ∩ S p U ⊂ {0}. (7.10)

Proof. Assume that Oi ⊂ �i + B(0, ε), where B(0, ε) is the ball of radius ε centered
at zero. To prove (7.8), we write

� + K1 + K2 ⊂ �− O1 − O2 ⊂ �−�1 −�2 + B(0, 2ε)

⊂ �−� + B(0, 2ε). (7.11)

Since, by assumption, (�−�)∩ S p U = {0} and 0 is isolated in S p U , we obtain that
(�−� + B(0, 2ε)) ∩ S p U = {0} for ε  1. As for (7.9), we obtain that

− (K1 + K2) ⊂ O1 + O2 ⊂ �1 + �2 + B(0, 2ε) ⊂ �, (7.12)

for ε  1 using that �i are compact and � is open. Finally we write:

�i + Ki ⊂ Oi − Oi ⊂ �i −�i + B(0, 2ε). (7.13)

We note that a difference of two vectors from Hm is either 0 or space-like. For ε  1
we obtain (7.10). ��
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Lemma 7.5. Let � � Hm and O ⊂ R
1+d be a sufficiently small neighbourhood of �.

Then

1�(U )H = Span{ NB(1)1�(U )H : B ∈ L0,

− supp(B̂) ⊂ O,−supp(B̂) ∩ S p U ⊂ � }cl.

Proof. Arguing as in the proof of (7.10) we fix O sufficiently small such that for all B
in the lemma one has (� + supp(B̂)) ∩ S p U ⊂ {0}. Let now S be the subspace in the
r.h.s. of the equality stated in the lemma and let PS be the corresponding projection. By
(7.5) we have PS ≤ 1�(U ). To complete the proof we adapt an argument from the proof
of [DT11a, Thm. 3.5]. Assume that PS �= 1�(U ) and let � �= 0 with � = 1�(U )�,
PS� = 0. Clearly there exists f ∈ S(R1+d) such that−supp f̂ ⊂ O ,−supp f̂ ∩S p U ⊂
� and f̂ (−H,−P)� �= 0. By cyclicity of the vacuum there exists A ∈ A(O), for some
open bounded O ⊂ R

1+d , such that:

0 �=(A∗�| f̂ (−H,−P)�)=(�|B�), for B :=(2π)−
1+d

2

∫
f (t, x)A(t, x)dtdx .

(7.14)

Since B̂(E, p) = f̂ (E, p) Â(E, p)we see that B satisfies the conditions from the lemma,
and B� �= 0. By the norm continuity of x �→ B(x) this implies that (�|NB(1)�) �= 0
which contradicts the fact that PS� = 0. ��
Proof of Thm. 2.7. In view of Thm. 2.6, it suffices to verify the inclusion

1�(U )H+
2 ⊂ Span{Ran Q+

2,α(�) : α ∈ J }cl. (7.15)

By Lemma 7.3, it is enough to show that for any �1,�2 � Hm such that �1 + �2 ⊂ �

and �1 ∩�2 = ∅ one has

W +
2

(
1�1(U )H⊗s 1�2(U )H) ⊂ Span{Ran Q+

2,α(�) : α ∈ J }cl. (7.16)

Let O1, O2 ∈ R
1+d be sufficiently small open neighbourhoods of �1,�2, respec-

tively, so that the assertions of Lemma 7.4 hold. We choose B1, B2 ∈ L0, such that
−supp(B̂i ) ⊂ Oi ,−supp(B̂i )∩S p U ⊂ �i . By Lemma 7.4, B1, B2 are �−admissible
in the sense of Definition 2.4 and satisfy the assumptions of Prop. 7.1. Finally, we choose
h1, h2 ∈ C∞0 (Rd) as in Prop. 7.1.

Let J0 be the set of quadruples (B1, B2, h1, h2) as specified above. We get

Span{Q+
2,α(�) ◦W +

2

(
1�1(U )H⊗s 1�2(U )H) : α ∈ J0}

= Span{W +
2

(
NB1(1)1�1(U )H⊗s NB2(1)1�2(U )H) : α ∈ J0}

= W +
2

(
1�1(U )H⊗s 1�2(U )H)

. (7.17)

In the first step we use Prop. 7.1 and in the second Lemma 7.5. Clearly, J0 ⊂ J , thus the
subspace on the l.h.s. of (7.17) is included in the subspace on the r.h.s. of (7.16). This
concludes the proof. ��

Acknowledgements. W.D. would like to thank Detlev Buchholz for pointing out to him the problem of exis-
tence of particle detectors in relativistic QFT and numerous interesting discussions. W.D. is also grateful for
stimulating discussions with Yoh Tanimoto about scattering theory in CFT and with Jacob Schach Møller,
Alessandro Pizzo and Wojciech De Roeck concerning the problem of existence of asymptotic observables in
non-relativistic QFT. W.D. acknowledges financial support of the German Research Foundation (DFG) within
the stipend DY107/1–1 and hospitality of the Hausdorff Research Institute for Mathematics, Bonn.



Asymptotic Completeness of Two-Particle Scattering 107

Appendix A. Propagation Estimates for Inhomogeneous Evolution Equations

In this section we extend standard results on propagation estimates and existence of
limits for unitary propagators to the case of an inhomogeneous evolution equation:

∂t u(t) = −iHu(t) + r(t).

Let H be a Hilbert space and H a self-adjoint operator on H. We fix a function

R
+ � t �→ u(t) ∈ H,

such that

i) supt≥0 ‖u(t)‖ <∞,

i i) u(t) ∈ C1(R+,H) ∩ C0(R+, Dom H),
(A.1)

and set:

r(t) := ∂t u(t) + iHu(t).

For a map R
+ � t �→ M(t) ∈ B(H) we denote by DM(t) = ∂t M(t) + [H, iM(t)] the

Heisenberg derivative of M(t), w.r.t. the evolution e−it H . We assume that [H, iM(t)],
defined first as a quadratic form on Dom H , extends by continuity to a bounded operator.
The following three lemmas can be proved by mimicking standard arguments, see e.g.
[DG97, Sect. B.4]. By C j ( · ), B( · ), B1( · ) we denote auxiliary functions from R

+ to
B(H).

Lemma A.1. Let R
+ � t �→ M(t) ∈ B(H) be such that:

i) supt∈R+ ‖M(t)‖ <∞, ‖M(·)r(·)‖, ‖M∗(·)r(·)‖ ∈ L1(R+, dt),
i i) DM(t) ≥ B∗(t)B(t)−∑n

j=1 C∗j (t)C j (t),
∫
R+ ‖C j (t)u(t)‖2dt <∞.

Then ∫ +∞

0
‖B(t)u(t)‖2dt <∞.

Lemma A.2. Let R
+ � t �→ M(t) ∈ B(H) be such that:

i) supt∈R+ ‖M(t)‖ <∞, ‖M(·)r(·)‖, ‖M∗(·)r(·)‖ ∈ L1(R+, dt),
i i) |(u1|DM(t)u2)| ≤∑n

j=1 ‖C j (t)u1‖‖C j (t)u2‖, u1, u2 ∈ H,

with
∫
R+ ‖C j (t)u(t)‖2dt <∞.

Then

lim
t→+∞(u(t)|M(t)u(t)) exists.

Lemma A.3. Let R
+ � t �→ M(t) ∈ B(H) be such that:

i) ‖M(·)r(·)‖ ∈ L1(R+, dt),
i i) |(u1|DM(t)u(t))| ≤ ‖B1(t)u1‖‖B(t)u(t)‖, with

ii i)
∫
R+ ‖B(t)u(t)‖2dt <∞,

∫
R+ ‖B1(t)e−it H u1‖2dt ≤ C‖u1‖2, u1 ∈ H.

Then

lim
t→+∞ eit H M(t)u(t) exists.
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