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Abstract: This paper establishes a blowup criterion for the three-dimensional viscous,
compressible, and heat conducting magnetohydrodynamic (MHD) flows. It is essen-
tially shown that for the Cauchy problem and the initial-boundary-value one of the
three-dimensional compressible MHD flows with initial density allowed to vanish, the
strong or smooth solution exists globally if the density is bounded from above and the
velocity satisfies Serrin’s condition. Therefore, if the Serrin norm of the velocity remains
bounded, it is not possible for other kinds of singularities (such as vacuum states van-
ishing or vacuum appearing in the non-vacuum region or even milder singularities) to
form before the density becomes unbounded. This criterion is analogous to the well-
known Serrin’s blowup criterion for the three-dimensional incompressible Navier-Stokes
equations, in particular, it is independent of the temperature and magnetic field and is
just the same as that of the barotropic compressible Navier-Stokes equations. As a direct
application, it is shown that the same result also holds for the strong or smooth solutions
to the three-dimensional full compressible Navier-Stokes system describing the motion
of a viscous, compressible, and heat conducting fluid.

1. Introduction

In this paper, we consider the system of partial differential equations for the three-dimen-
sional viscous, compressible, and heat conducting magnetohydrodynamic (MHD) flows
in the Eulerian coordinates [21],
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μ�u − (μ + λ)∇divu + ∇ P = (curl H) × H,

cv[(ρθ)t + div(ρuθ)] − κ�θ + Pdivu = 2μ|D(u)|2 + λ(divu)2 + ν|curl H |2,
Ht − curl (u × H) = ν�H, divH = 0,

(1.1)
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where t ≥ 0 is time, x ∈ � ⊂ R
3 is the spatial coordinate, and ρ, u = (u1, u2, u3)

tr , θ,

P = Rρθ (R > 0), and H = (H1, H2, H3)
tr, represent respectively the fluid density,

velocity, absolute temperature, pressure, and magnetic field; D(u) is the deformation
tensor given by

D(u) = 1

2
(∇u + (∇u)tr).

The constant viscosity coefficients μ and λ satisfy the physical restrictions

μ > 0, 2μ + 3λ ≥ 0. (1.2)

Positive constants cv, κ, and ν are respectively the heat capacity, the ratio of the heat
conductivity coefficient over the heat capacity, and the magnetic diffusivity acting as a
magnetic diffusion coefficient of the magnetic field.

Equations (1.1) will be studied with initial condition:

(ρ, u, θ, H)(x, 0) = (ρ0, u0, θ0, H0)(x), x ∈ �, (1.3)

and one of the following boundary conditions:

1) If � = R
3, for constant ρ̃ ≥ 0, (ρ, u, θ, H) satisfies the far field condition:

(ρ, u, H, θ)(x, t) → (ρ̃, 0, 0, 0) as |x | → ∞; (1.4)

2) If � is a bounded smooth domain in R
3, (u, θ, H) satisfies

u = 0,
∂θ

∂n
= 0, H = 0 on ∂�, (1.5)

where n = (n1, n2, n3) is the unit outward normal to ∂�.

The compressible MHD system (1.1) is a combination of the compressible Na-
vier-Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism.
Indeed, Eqs. (1.1)1, (1.1)2, and (1.1)3 describe, respectively, the conservation of mass,
momentum, and energy. In addition, it is well-known that the electromagnetic fields are
governed by Maxwells equations. In magnetohydrodynamics, the displacement current
can be neglected ([21]). As a consequence, Eq. (1.1)4 is called the induction equation,
and the electric field can be written in terms of the magnetic field H and the velocity u,

E = ν∇ × H − u × H.

Although the electric field E does not appear in the compressible MHD system (1.1), it
is indeed induced according to the above relation by the moving conductive flow in the
magnetic field. In particular, when there is no electro-magnetic effect, that is, H ≡ 0,

the compressible MHD system (1.1) reduces to the following full compressible Navier-
Stokes system describing the motion of a viscous, compressible, and heat conducting
fluid:

⎧
⎪⎨

⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μ�u − (μ + λ)∇divu + ∇ P = 0,

cv[(ρθ)t + div(ρuθ)] − κ�θ + Pdivu = 2μ|D(u)|2 + λ(divu)2.

(1.6)

There is a considerable body of literature on the multi-dimensional full compress-
ible Navier-Stokes system (1.6) and compressible MHD one (1.1) by physicists and
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mathematicians because of their physical importance, complexity, rich phenomena, and
mathematical challenges; see [4,5,7,8,11,12,15,21,22,24,25,27–29,38,39] and the ref-
erences cited therein. However, many physically important and mathematically funda-
mental problems are still open due to the lack of smoothing mechanism and the strong
nonlinearity. For example, although the local strong solutions to the compressible MHD
system (1.1) with large initial data were respectively obtained by [38] and [7] in the
cases that the initial density is strictly positive and that the density is allowed to vanish
initially, whether the unique local strong solution can exist globally is an outstanding
challenging open problem.

Therefore, it is important to study the mechanism of blowup and structure of possible
singularities of strong (or smooth) solutions to the compressible MHD system (1.1) and
to the full compressible Navier-Stokes one (1.6). The pioneering work can be traced
to Serrin’s criterion [30] on the Leray-Hopf weak solutions to the three-dimensional
incompressible Navier-Stokes equations, which can be stated that if a weak solution u
satisfies

u ∈ Ls(0, T ; Lr ),
2

s
+

3

r
≤ 1, 3 < r ≤ ∞, (1.7)

then it is regular. Later, He-Xin[10] showed that Serrin’s criterion (1.7) still holds even
for the strong solution to the incompressible MHD equations.

Recently, Huang-Li-Xin [17] extended Serrin’s criterion (1.7) to the barotropic com-
pressible Navier-Stokes equations and showed that if T ∗ < ∞ is the maximal time of
existence of a strong (or classical) solution (ρ, u), then

lim
T →T ∗

(‖divu‖L1(0,T ;L∞) + ‖u‖Ls (0,T ;Lr )

) = ∞, (1.8)

and

lim
T →T ∗

(‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls (0,T ;Lr )

) = ∞, (1.9)

with r and s as in (1.7). For more information on the blowup criteria of barotropic
compressible flow, we refer to [9,13,17,18,20,36] and the references therein. Later Xu-
Zhang [40] extended the results of [17] to the isentropic compressible MHD system and
obtained that the same blow-up criterion (1.9) holds. More recently, when the initial
density is strictly away from vacuum and P = Rρ, Suen [35] obtained that

lim
T →T ∗

(
‖ρ‖L∞(0,T ;L∞) + ‖ρ−1‖L∞(0,T ;L∞) + ‖H‖L∞(0,T ;L∞)

)
= ∞. (1.10)

When it comes to the full compressible Navier-Stokes system (1.6), the problem is
much more complicated. Let T ∗ < ∞ be the maximal time of existence of a strong (or
classical) solution (ρ, u, θ) to the system (1.6). Besides (1.2), under the condition that

7μ > λ, (1.11)

Fan-Jiang-Ou [6] obtained that

lim
T →T ∗(‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞)) = ∞.

Recently, under just the physical restrictions (1.2), Huang-Li [14] and Huang-Li-Xin
[18] established the following blowup criterion:

lim
T →T ∗

(‖θ‖L2(0,T ;L∞) + ‖D(u)‖L1(0,T ;L∞)

) = ∞,



150 X. Huang, J. Li

where D(u) is the deformation tensor. Later, in the absence of vacuum, Sun-Wang-Zhang
[37] showed that

lim
T →T ∗

(

‖θ‖L∞(0,T ;L∞) +
∥
∥
∥

(
ρ, ρ−1

)∥
∥
∥

L∞(0,T ;L∞)

)

= ∞,

provided that (1.2) and (1.11) both hold. Very recently, under just the physical restric-
tions (1.2) and allowing the initial density to vanish, Huang-Li-Wang [16] improved all
the previous results [6,14,18,37] by obtaining that (1.8) still holds. It should be noted
here that (1.9) is much stronger than (1.8) and that whether (1.9) holds or not remains
open.

For the compressible MHD system (1.1), let T ∗ < ∞ be the maximal time of exis-
tence of a strong (or classical) solution (ρ, u, θ, H). Lu et al [23] obtained that

lim
T →T ∗(‖ρ‖L∞(0,T ;L∞) + ‖θ‖L∞(0,T ;L∞) + ‖∇u‖L4(0,T ;L2)) = ∞,

and

lim
T →T ∗(‖divu‖L∞(0,T ;L∞) + ‖θ‖L∞(0,T ;L∞) + ‖∇u‖L4(0,T ;L2)) = ∞,

while Chen-Liu[3] showed that

lim
T →T ∗(‖∇u‖L1(0,T ;L∞) + ‖θ‖L∞(0,T ;L∞)) = ∞.

The aim of this paper is to improve all the previous blowup criterion results on both
the compressible MHD system (1.1) and the full compressible Navier-Stokes one, (1.6),
by allowing initial vacuum states, and by describing the blowup mechanism just in terms
of the Serrin-type criterion, (1.9). Before stating our main result, we first explain the
notations and conventions used throughout this paper. We denote

∫

f dx =
∫

�

f dx .

For 1 ≤ p ≤ ∞ and integer k ≥ 0, the standard homogeneous and inhomogeneous
Sobolev spaces are denoted by:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L p = L p(�), W k,p = W k,p(�), Dk,p = {
u ∈ L1

loc(�)
∣
∣∇ku ∈ L p

}
,

D1
0 = {

u ∈ L6
∣
∣∇u ∈ L2, u = 0 on ∂�

}
, H1

0 = L2 ∩ D1
0, Hk = W k,2,

D2,2
0,n =

{{
θ ∈ D1,2 ∩ D2,2

∣
∣∇θ · n = 0 on ∂�

}
, for bounded �,

D1
0 ∩ D2,2, for � = R

3.

Then, the strong solutions to the initial-boundary-value problem (1.1)–(1.3) together
with (1.4) or (1.5) are defined as follows.

Definition 1.1 (Strong Solutions). For ρ̃ ≥ 0 and θ̃ = 0, (ρ, u, θ, H) is called a strong
solution to (1.1) in � × (0, T ), if for some q0 > 3,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ ≥ 0, ρ − ρ̃ ∈ C([0, T ]; H1 ∩ W 1,q0), ρt ∈ C([0, T ]; L2 ∩ Lq0),

(H, u) ∈ C([0, T ]; D1
0 ∩ D2,2) ∩ L2(0, T ; D2,q0), H ∈ C([0, T ]; H2),

θ ≥ 0, θ ∈ C([0, T ]; D2,2
0,n) ∩ L2(0, T ; D2,q0),

(Ht , ut , θt ) ∈ L2(0, T ; D1,2), (Ht ,
√

ρut ,
√

ρθt ) ∈ L∞(0, T ; L2),
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and (ρ, u, θ, H) satisfies both (1.1) almost everywhere in � × (0, T ) and (1.3) almost
everywhere in �.

Our main result can be stated as follows:

Theorem 1.1. For q̃ ∈ (3, 6], assume that the initial data (ρ0 ≥ 0, u0, θ0 ≥ 0, H0)

satisfies

ρ0 − ρ̃ ∈ H1 ∩ W 1,q̃ , u0 ∈ D1
0 ∩ D2,2, θ0 ∈ D2,2

0,n,

ρ0|u0|4 + ρ0θ
2
0 ∈ L1, H0 ∈ H1

0 ∩ H2, divH0 = 0,
(1.12)

and the compatibility conditions

−μ�u0 − (μ + λ)∇divu0 + R∇(ρ0θ0) − (curlH0) × H0 = √
ρ0g1, (1.13)

κ�θ0 +
μ

2
|∇u0 + (∇u0)

tr |2 + λ(divu0)
2 + ν|curlH0|2 = √

ρ0g2, (1.14)

with g1, g2 ∈ L2. Let (ρ, u, θ, H) be the strong solution to the initial boundary value
problem (1.1)–(1.3) together with (1.4) or (1.5). If T ∗ < ∞ is the maximal time of
existence, then for r and s as in (1.7),

lim
T →T ∗(‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls (0,T ;Lr )) = ∞. (1.15)

If H ≡ H0 ≡ 0, Theorem 1.1 directly yields the following Serrin-type blowup
criterion for the three-dimensional full compressible Navier-Stokes system (1.6).

Theorem 1.2. For constants q̃ ∈ (3, 6] and ρ̃ ≥ 0, assume that (ρ0 ≥ 0, u0, θ0 ≥ 0)

satisfies

ρ0 − ρ̃ ∈ H1 ∩ W 1,q̃ , u0 ∈ D1
0 ∩ D2,2, θ0 ∈ D2,2

0,n, ρ0|u0|4 + ρ0θ
2
0 ∈ L1,

and the compatibility conditions

−μ�u0 − (μ + λ)∇divu0 + R∇(ρ0θ0) = √
ρ0g1,

κ�θ0 +
μ

2
|∇u0 + (∇u0)

tr |2 + λ(divu0)
2 = √

ρ0g2,

with g1, g2 ∈ L2. Let (ρ, u, θ) be the strong solution to the full compressible Navier-
Stokes system (1.6) together with

(ρ, u, θ)(x, 0) = (ρ0, u0, θ0), x ∈ �, (1.16)

and either for � = R
3,

(ρ, u, θ) → (ρ̃, 0, 0) as |x | → ∞, (1.17)

or for a bounded smooth domain � ⊂ R
3,

u = 0,
∂θ

∂n
= 0 on ∂�. (1.18)

If T ∗ < ∞ is the maximal time of existence, then

lim
T →T ∗(‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls (0,T ;Lr )) = ∞, (1.19)

with r and s as in (1.7).
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A few remarks are in order:

Remark 1.1. The conclusion in Theorem 1.1 is somewhat surprising since the criterion
(1.15) is independent of the temperature and magnetic fields and just the same as those
of barotropic compressible Navier-Stokes equations ([17]).

Remark 1.2. In [16, Thm. 1], we obtained that (1.8) holds for the Cauchy problem of
the full compressible Navier-Stokes system (1.6). Thus,

lim
T →T ∗ ‖divu‖L1(0,T ;L∞) = ∞, (1.20)

provided that

sup
0≤T ≤T ∗

‖u‖Lr (0,T ;Ls ) < ∞, (1.21)

for r, s as in (1.7). It follows from the continuity equation (1.6)1 that for t ∈ [0, T ∗),

ρ(x, t) = ρ0(y(0; x, t)) exp

{

−
∫ t

0
divu(y(s; x, t), s)ds

}

, (1.22)

where y(s; x, t) is the characteristic curve defined by

d

ds
y = u(y, s), y(t; x, t) = x .

The combination of (1.20) with (1.22) implies that there may hold for the density:

1) The density remains bounded, that is,

lim
T →T ∗ ‖ρ‖L∞(0,T ;L∞) < ∞; (1.23)

2) The density may concentrate, that is,

lim
T →T ∗ ‖ρ‖L∞(0,T ;L∞) = ∞; (1.24)

3) Vacuum states may vanish: There exists some x1 ∈ � and x1(t) satisfying ρ0(x1) = 0
and y(0; x1(t), t) = x1 such that

lim
t→T ∗ ρ(x1(t), t) ≥ c0 > 0; (1.25)

4) Vacuum states may appear in the non-vacuum region: There exists some x2 ∈ � and
x2(t) satisfying ρ0(x2) > 0 and y(0; x2(t), t) = x2 such that

lim
t→T ∗ ρ(x2(t), t) = 0. (1.26)

Then one may ask: Which one or some of (1.23)–(1.26) will happen? Theorem 1.2
gives an answer to this question by obtaining that the density will concentrate pro-
vided that (1.21) holds. In other words, if the Serrin norm of the velocity remains
bounded, it is not possible for other kinds of singularities (such as vacuum states
vanishing or vacuum appearing in the non-vacuum region or even milder singulari-
ties) to form before the density becomes unbounded. Moreover, (1.19) still holds for
the initial-boundary-value problem (1.6) (1.16) (1.18). Thus, Theorem 1.2 greatly
improves all the previous blowup criterion for the full compressible Navier-Stokes
system (1.6) [6,13,14,16,37].
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Remark 1.3. If � is a bounded smooth domain of R
3, Theorems 1.1 and 1.2 still hold

when the boundary condition ∇θ · n|∂� = 0 is replaced by θ |∂� = 0.

Remark 1.4. Theorems 1.1 and 1.2 also hold respectively for classical solutions to the
three-dimensional compressible MHD system (1.1) and to the full compressible Navier-
Stokes one (1.6).

We now comment on the analysis of this paper.
Let (ρ, u, θ, H) be a strong solution described in Theorem 1.1. Suppose that (1.15)

were false, that is,

lim
T →T ∗

(‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls (0,T ;Lr )

) ≤ M0 < +∞. (1.27)

We want to show that

sup
0≤t≤T ∗

(‖ρ − ρ̃‖H1∩W 1,q̃ + ‖∇u‖H1 + ‖∇θ‖H1 + ‖H‖H2
) ≤ C < +∞.

Since the methods in all previous works [3,6,16,23,37] depend crucially on either
the L∞

t L∞
x -norm of the temperature θ or the L1

t L∞
x -norm of the divergence of the veloc-

ity divu, some new ideas are needed to recover all the a priori estimates just under the
assumption (1.27) without any a priori bounds on the temperature, the magnetic field,
and the divergence of the velocity. In fact, we prove (see Lemma 3.3) that a control of
the Serrin norm of the velocity and L∞

t L∞
x -norm of the density implies a control on the

L∞
t L2

x norm of ∇u. In order to obtain this control, the key observation is that, instead
of the temperature θ, we treat E � cvθ + 1

2 |u|2, the sum of specific internal energy
and specific kinetic energy, which greatly reduces the difficulties arising from the high
nonlinearities of the temperature equation, (1.1)3. Indeed, multiplying the equation of
E (see (3.5)) by E yields that to bound the L2

t L2
x -norm of ∇E (see (3.4)), it is enough to

control that of |u||∇u|, which in fact can be reduced to the estimate of the L2
t L6

x -norm
of ∇u (see (3.30)). Then, to overcome the difficulty caused by the boundary when �

is bounded, motivated by [9,36], we decompose the velocity into two parts (see (3.14)
and (3.18)) which together with the L p-estimate for the Lamé system yield the desired
bound on the L2

t L6
x -norm of ∇u (see (3.31)). Finally, the a priori estimates on both

the L∞
t L p

x -norm of the density gradient and the L1
t L∞

x -norm of the velocity gradient
can be obtained simultaneously by solving a logarithm Gronwall inequality based on a
logarithm estimate for the Lamé system (see Lemma 2.3) and the a priori estimates we
have just derived.

The rest of the paper is organized as follows: In the next section, we collect some
elementary facts and inequalities that will be needed later. The main result, Theorem
1.1, is proved in Sect. 3.

2. Preliminaries

In this section, we recall some known facts and elementary inequalities that will be used
later.

First, the following existence and uniqueness of local strong solutions when the initial
density may not be positive and may vanish in an open set can be proved in a similar
way as in [4] (cf. [7]).
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Lemma 2.1. Assume that the initial data (ρ0 ≥ 0, u0, θ0 ≥ 0, H0) satisfy (1.12)–(1.14).
Then there exists a positive time T1 ∈ (0,∞) and a unique strong solution (ρ, u, θ, H)

in the sense of Definition 1.1 to the initial-boundary-value problem (1.1)–(1.3) together
with (1.4) or (1.5) on � × (0, T1].

Next, the following well-known Sobolev inequality will be used later frequently (see
[26]).

Lemma 2.2. For p ∈ (1,∞) and q ∈ (3,∞), there exists a generic constant C > 0,
which depends only on p, q such that for f ∈ D1

0 and g ∈ L p ∩ D1,q , we have

‖ f ‖L6 ≤ C‖∇ f ‖L2 , ‖g‖L∞ ≤ C‖g‖L p + C‖∇g‖Lq . (2.1)

Finally, we consider the following Lamé system:

− μ�v(x) − (μ + λ)∇divv(x) = f (x), x ∈ �, (2.2)

where v = (v1, v2, v3), f = ( f1, f2, f3), and μ, λ satisfy (1.2). The system (2.2) is
imposed on one of the following boundary conditions:

1) Cauchy problem: � = R
3, and

v(x) → 0, as |x | → ∞; (2.3)

2) Dirichlet problem: � is a bounded smooth domain in R
3, and

v = 0 on ∂�. (2.4)

The following logarithm estimate for the Lamé system (2.2) will be used to estimate
‖∇u‖L∞ and ‖∇ρ‖L2∩Lq .

Lemma 2.3. Let μ, λ satisfy (1.2). Assume that f = div g where g = (gkj )3×3 with
gk j ∈ L2 ∩ Lr ∩ D1,q for k, j = 1, · · · , 3, r ∈ (1,∞), and q ∈ (3,∞). Then the Lamé
system (2.2) together with (2.3) or (2.4) has a unique solution v ∈ D1

0 ∩ D1,r ∩ D2,q ,

and there exists a generic positive constant C depending only on μ, λ, q, and r (besides
� when � is bounded) such that

‖∇v‖Lr ≤ C‖g‖Lr , (2.5)

and

‖∇v‖L∞ ≤ C (1 + ln(e + ‖∇g‖Lq )‖g‖L∞ + ‖g‖Lr ) . (2.6)

Proof. First, if � = R
3, direct calculations show that v = (v1, v2, v3) with

v j = 1

2μ + λ
(−�)−1∂k gk j , j = 1, . . . , 3

is the unique solution to the Cauchy problem (2.2) (2.3) and satisfies (2.5).
Then, if � is a bounded smooth domain of R

3, it follows from [34] that the Dirichlet
problem (2.2), (2.4) is of Petrovsky type. In Petrovsky’s systems, roughly speaking, dif-
ferent equations and unknowns have the same “differentiability order”, see [33, p.126].
We also recall that Petrovsky’s systems are an important subclass of Agmon-Douglis-
Nirenberg (ADN) elliptic systems([1]), having the same good properties of self-adjoint
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ADN systems. It follows from Solonnikov [33, Thm. 1.1] and [34, Thm. 5.1] that the
solution v to the system (2.2) together with (2.4) can be represented as

vi (x) =
∫

Gi j (x, y) f j (y)dy, for all x ∈ �, (2.7)

by means of the Green function Gi j = Gi j (x, y) ∈ C∞(�×�\ D) with D ≡ {(x, y) ∈
� × �|x = y} which satisfies that for every multi-indexes α = (α1, α2, α3) and β =
(β1, β2, β3) there is a constant Cα,β such that for all (x, y) ∈ � × �\D, and i, j =
1, . . . , 3,

|∂α
x ∂β

y Gi j (x, y)| ≤ Cα,β |x − y|−1−|α|−|β|, (2.8)

where |α| = α1 +α2 +α3 and β = β1 +β2 +β3. Moreover, the estimate (2.5) is standard.
Finally, it remains to prove (2.6). We will only deal with the Dirichlet problem (2.2),

(2.4), since the same procedure holds for the Cauchy problem (2.2), (2.3). Following
Beale-Kato-Majda [2], we introduce a small parameter δ ∈ (0, 1] which depends on
v, and which will be fixed later. Using δ, we define a cut-off function χδ(s) satisfying
χδ(s) = 1 for 0 ≤ s < δ, χδ(s) = 0 for s > 2δ, and |χ(k)

δ (s)| ≤ Cδ−k . It thus follows
from (2.7) that

vi (x) =
∫

(χδ(|x − y|) + (1 − χδ(|x − y|))) Gi j (x, y)∂k gk j (y)dy

=
∫

χδ(|x − y|)Gi j (x, y)∂k gk j (y)dy +
∫

∂yk χδ(|x − y|)Gi j (x, y)gkj (y)dy

−
∫

(1 − χδ(|x − y|))∂yk Gi j (x, y)gkj (y)dy,

where in the second equality we have used integration by parts due to the fact that
Gi j (x, y)|∂� = 0 for each x ∈ �. Hence, we have

|∇v(x)| ≤ C
∫

(|χ ′
δ||Gi j | + χδ|∇x Gi j |

) |∇g|dy

+ C
∫

(|χ ′′
δ ||Gi j | + |χ ′

δ||∇x Gi j | + |χ ′
δ||∇yGi j |

) |g|dy

+ C
∫

(1 − χδ)|∇x∇yGi j ||g|dy. (2.9)

Each term on the right-hand side of (2.9) can be estimated by (2.8) as follows:

∫
(|χ ′

δ||Gi j | + χδ|∇x Gi j |
) |∇g|dy

≤ C
∫

�∩{y||x−y|<2δ}

(
δ−1|x − y|−1 + |x − y|−2

)
|∇g|dy

≤ C

(

δ−q/(q−1)

∫ 2δ

0
s−q/(q−1)s2ds +

∫ 2δ

0
s−2q/(q−1)s2ds

)(q−1)/q

‖∇g‖Lq

≤ Cδ(q−3)/q‖∇g‖Lq , (2.10)
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∫
(|χ ′′

δ ||Gi j | + |χ ′
δ||∇x Gi j | + |χ ′

δ||∇yGi j |
) |g|dy

≤ C
∫ 2δ

δ

(
δ−2s−1 + δ−1s−2

)
s2ds‖g‖L∞

≤ C‖g‖L∞ , (2.11)

and
∫

(1 − χδ)|∇x∇yGi j ||g|dy

≤ C

(∫

�∩{y|δ≤|x−y|≤1}
+

∫

�∩{y||x−y|>1}

)

|x − y|−3|g(y)|dy

≤ C
∫ 1

δ

s−3s2ds‖g‖L∞ + C

(∫ ∞

1
s−3r/(r−1)s2ds

)(r−1)/r

‖g‖Lr

≤ −C‖g‖L∞ ln δ + C‖g‖Lr . (2.12)

It follows from (2.9)–(2.12) that

‖∇v‖L∞ ≤ C
(
δ(q−3)/q‖∇g‖Lq + (1 − ln δ)‖g‖L∞ + ‖g‖Lr

)
. (2.13)

Set δ = min
{

1, ‖∇g‖−q/(q−3)
Lq

}
. Then (2.13) becomes (2.6). We finish the proof of

Lemma 2.3.

3. Proof of Theorem 1.1

Before proving Theorem 1.1, we state some a priori estimates under the condition (1.27).
First, we have

Lemma 3.1. Under the condition (1.27), it holds that for q ∈ [2, 12] and 0 ≤ T < T ∗,

‖H‖L∞(0,T ;Lq ) +
∫ T

0

∫

|H |q−2|∇H |2dx ≤ C, (3.1)

where (and in what follows) C and Ci (i = 1, · · · , 6) denote generic constants depending
only on M0, μ, λ, R, κ, cv, ν, T ∗, ρ̃, q̃ and the initial data (besides � for bounded �).

Proof. Following He-Xin [10], we prove (3.1). Multiplying (1.1)4 by q|H |q−2 H and
integrating the resulting equation over � yield that

d

dt

∫

|H |qdx + ν

∫ (
q|H |q−2|∇H |2 + q(q − 2)|H |q−2|∇|H ||2

)
dx

= −
∫

q|H |q−2
(

H · ∇H · u − q − 1

2
u · ∇|H |2

)

dx

−q(q − 2)

2

∫

|H |q−4(H · ∇|H |2)(u · H)dx

≤ ν

2

∫

q|H |q−2|∇H |2dx + Cq2
∫

|u|2|H |qdx



Blowup Criterion for 3-D Viscous Compressible Heat Conducting MHD Flows 157

≤ ν

2

∫

q|H |q−2|∇H |2dx + C‖u‖2
Lr ‖|H |q/2‖2(r−3)/r

L2 ‖|H |q/2‖6/r
L6

≤ ν

2

∫

q|H |q−2|∇H |2dx + Cδ‖∇|H |q/2‖2
L2 + C(δ)(1 + ‖u‖s

Lr )‖H‖q
Lq .

(3.2)

Choosing δ suitably small in (3.2), we obtain (3.1) directly after using Gronwall’s
inequality and (1.27). We thus finish the proof of Lemma 3.1.

Then, we derive the following key estimate on the sum of specific internal energy
and specific kinetic energy, E, defined by

E � cvθ +
|u|2

2
. (3.3)

Lemma 3.2. Under the condition (1.27), it holds that

cv

d

dt

∫

ρE2dx + κ‖∇E‖2
L2 ≤ C

∫

|u|2
(
ρE2 + |∇u|2

)
dx + C1‖∇H‖2

H1

+ C‖∇u‖2
L2 + C

∫

ρE2dx . (3.4)

Proof. First, it follows from (1.1) that E satisfies

(ρE)t + div(ρEu) − κ

cv

�E = divF − Hi H j∂i u
j +

1

2
|H |2divu + ν|curlH |2, (3.5)

with

F � μ − κc−1
v

2
∇(|u|2) + μu · ∇u + λudivu − Pu + (u · H)H − 1

2
|H |2u.

Next, applying the standard maximum principle to (1.1)3 together with θ0 ≥ 0 (cf. [6,8])
shows

inf
R3×[0,T ]

θ(x, t) ≥ 0.

Multiplying (3.5) by cvE and integrating the resulting equality over �, we obtain after
integration by parts and using (1.1)1 that

cv

2

d

dt

∫

ρE2dx + κ

∫

|∇E |2dx

≤ C
∫

(|u||∇u| + ρθ |u|) |∇E |dx + C
∫ (

|u||H |2|∇E | + |∇u||H |2E
)

dx

+C
∫

E |curlH |2dx . (3.6)

We estimate each term on the right-hand side of (3.6) as follows:
First, Holder’s inequality yields that for any η > 0,
∫

(|u||∇u| + ρθ |u|) |∇E |dx ≤ η‖∇E‖2
L2 + C(η)

∫ (
|u|2|∇u|2 + ρE2|u|2

)
dx .

(3.7)
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Next, if � = R
3, Sobolev’s inequality gives that there exists a universal constant C

such that

‖E‖L6 ≤ C‖∇E‖L2 . (3.8)

If � is a bounded smooth domain in R
3, the Poincaré-type inequality ([8, Lem. 3.2])

shows that there exists a generic positive constant C which also depends on � such that

‖E‖L6 ≤ C‖ρ1/2E‖L2 + C‖∇E‖L2 .

This combined with (3.8) implies

‖E‖L6 ≤ C‖ρ1/2E‖L2 + C‖∇E‖L2 . (3.9)

It thus follows from Holder’s inequality, (3.9), (3.1), and (2.1) that
∫ (

|u||H |2|∇E | + |∇u||H |2E
)

dx

≤ ‖u‖L6‖H‖2
L6‖∇E‖L2 + ‖∇u‖L2‖H‖2

L6‖E‖L6

≤ η‖∇E‖2
L2 + C(η)‖ρ1/2E‖2

L2 + C(η)‖∇u‖2
L2 . (3.10)

Finally, integration by parts together with (3.9) yields
∫

E |curlH |2dx ≤ C
∫

|∇E ||∇H ||H |dx + C
∫

|E ||∇2 H ||H |dx

≤ C‖∇E‖L2‖∇H‖L6‖H‖L3 + C‖E‖L6‖∇2 H‖L2‖H‖L3

≤ η‖∇E‖2
L2 + C(η)‖ρ1/2E‖2

L2 + C(η)‖∇H‖2
H1 . (3.11)

Putting (3.7), (3.10), and (3.11) into (3.6), we obtain (3.4) after choosing η suitably
small. The proof of Lemma 3.2 is completed.

Then, we derive the following crucial estimate on the L∞(0, T ; L2)-norm of ∇u.

Lemma 3.3. Under the condition (1.27), it holds that for 0 ≤ T < T ∗,

sup
0≤t≤T

∫ (
(ρ − ρ̃)2 + ρθ2 + |∇u|2 + |∇H |2

)
dx

+
∫ T

0

∫ (
|∇θ |2 + ρ|u̇|2 + |Ht |2 + |∇2 H |2

)
dxdt ≤ C. (3.12)

Proof. First, multiplying (1.1)2 by ut and integrating the resulting equation over � show
that

1

2

d

dt

∫ (
μ|∇u|2 + (μ + λ)(divu)2

)
dx +

∫

ρ|u̇|2dx

=
∫

ρu̇ · (u · ∇)udx +
∫

Pdivut dx − 1

2

∫

(∇|H |2 − 2div(H ⊗ H)) · ut dx

≤ 1

4

∫

ρ|u̇|2dx + C
∫

ρ|u|2|∇u|2dx +
d

dt

∫

Pdivudx

−
∫

Pt divudx +
1

2

∫

(|H |2divut − 2H · ∇ut · H)dx . (3.13)

Then, we will estimate the last two terms on the right-hand side of (3.13).
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On the one hand, to overcome the difficulty caused by the boundary, motivated by
[36,9], we decompose the velocity into two parts. It follows from Lemma 2.3 that for
any t ∈ [0, T ], there exists a unique v(·, t) ∈ D1

0 ∩ D2,2 ∩ D2,q̃ satisfying

μ�v + (μ + λ)∇divv = ∇ P, (3.14)

which together with (2.5) yields that

‖∇v‖L p ≤ C‖P‖L p ≤ C‖ρE‖L p , for p ∈ [2, 6], t ∈ [0, T ], (3.15)

and that

−
∫

Pt divvdx = −
∫

(μ∇vt · ∇v + (μ + λ)divvt divv)dx

= −1

2

d

dt

∫ (
μ|∇v|2 + (μ + λ)(divv)2

)
dx . (3.16)

Denoting by

w � u − v, (3.17)

we have w ∈ D1
0 ∩ D2,2 ∩ D2,q̃ , for a.e. t ∈ [0, T ]. Moreover, for a.e. t ∈ [0, T ], w

satisfies

μ�w + (μ + λ)∇divw = ρu̇ + H × (curlH), (3.18)

which together with the standard L2-estimate for elliptic system gives

‖∇w‖L6 + ‖∇2w‖L2 ≤ C‖ρu̇‖L2 + C‖|H ||∇H |‖L2

≤ C‖ρu̇‖L2 + C‖H‖L6‖∇H‖1/2
L2 ‖∇H‖1/2

L6

≤ C‖ρu̇‖L2 + C‖∇H‖1/2
L2 ‖∇H‖1/2

H1 , (3.19)

due to (3.1). It follows from (3.3) and (3.5) that

−
∫

Pt divwdx = − R

cv

∫

(ρE)t divwdx +
R

2cv

∫

(ρ|u|2)t divwdx

≤ C
∫ (

ρE |u| + |∇E | + |u||∇u| + |u||H |2
)

|∇2w|dx

+C
∫

|H |2|∇u||∇w|dx − Rν

cv

∫

|curlH |2divwdx

− R

2cv

∫ (
div(ρu)|u|2divw − 2ρu · ut divw

)
dx =

4∑

i=1

Ii .

(3.20)

Cauchy’s and Sobolev’s inequalities together with (3.1) yield that for any η > 0,

I1 + I2 ≤ η
(
‖∇2w‖2

L2 + ‖∇w‖2
L6

)

+C(η)

∫ (
ρ2E2|u|2 + |∇E |2 + |u|2|∇u|2 + |∇u|2

)
dx . (3.21)
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Similar to (3.11), integration by parts leads to

I3 ≤ C
∫ (

|∇H ||H ||∇2w| + |∇2 H ||H ||∇w|
)

dx

≤ C
(
‖∇H‖L6‖∇2w‖L2 + ‖∇2 H‖L2‖∇w‖L6

)
‖H‖L3

≤ η
(
‖∇2w‖2

L2 + ‖∇w‖2
L6

)
+ C(η)‖∇H‖2

H1 , (3.22)

where in the last inequality we have used (3.1).
Integration by parts also gives

I4 ≤ C
∫

ρ|u|3|∇2w|dx + C
∫ (

ρ|u|2|∇u| + ρ|u||u̇|
)

|∇w|dx

≤ C(η)

∫

|u|2
(
ρE2+ρ|∇u|2 + ρ|∇v|2

)
dx + η‖∇2w‖2

L2 + η

∫

ρ|u̇|2dx . (3.23)

On the other hand, direct calculations show
∫

(|H |2divut − 2H · ∇ut · H)dx

= d

dt

∫

(|H |2divu − 2H · ∇u · H)dx

−2
∫

(H · Ht divu − Ht · ∇u · H − H · ∇u · Ht )dx

≤ d

dt

∫

(|H |2divu − 2H · ∇u · H)dx + C‖Ht‖2
L2 + C‖|H ||∇u|‖2

L2 . (3.24)

Substituting (3.16) and (3.20)–(3.24) into (3.13), we obtain after using (3.19) and choos-
ing η suitably small that

d

dt

∫

�dx +
∫

ρ|u̇|2dx

≤ C
∫

|u|2
(
ρE2 + |∇u|2 + |∇v|2

)
dx + C‖∇u‖2

L2

+C2

(
‖∇E‖2

L2 + ‖Ht‖2
L2 + ‖∇H‖2

H1 + ‖|H ||∇u|‖2
L2

)
, (3.25)

where

� � μ|∇ u|2 + (μ + λ)(divu)2 − 2Pdivu + μ|∇v|2 + (μ + λ)(divv)2

− |H |2divu + 2H · ∇u · H

satisfies
∫

�dx ≥ μ

2
‖∇u‖2

L2 − C
∫ (

ρ2θ2 + |H |4
)

dx

≥ μ

2
‖∇u‖2

L2 − C3

∫

ρE2dx − C, (3.26)

due to Cauchy’s inequality, (1.2), (1.27), (3.1), and (3.3).
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Next, it follows from (1.1) that for r, s as in (1.7)

ν
d

dt
‖∇H‖2

L2 + ‖Ht‖2
L2 + ν2‖�H‖2

L2

=
∫

|Ht − ν�H |2dx

≤ C(‖|H ||∇u|‖2
L2 + ‖|u||∇H |‖2

L2)

≤ C‖H‖2
L6‖∇u‖L2‖∇u‖L6 + C‖u‖2

Lr ‖∇H‖2(r−3)/r
L2 ‖∇H‖6/r

L6

≤ η‖∇u‖2
L6 + C(η)‖∇u‖2

L2 + C(ε)(1 + ‖u‖s
Lr )‖∇H‖2

L2 + ε‖∇2 H‖2
L2 . (3.27)

Noticing that the standard L2-estimate of elliptic system gives

‖∇2 H‖L2 ≤ C4‖�H‖L2 ,

after choosing ε suitably small, we deduce from (3.27) that for any η ∈ (0, 1),

4ν
d

dt
‖∇H‖2

L2 + 4‖Ht‖2
L2 + 2ν2C−1

4

(
‖∇H‖2

H1 + ‖|H ||∇u|‖2
L2

)

≤ Cη‖∇u‖2
L6 + C(η)‖∇u‖2

L2 + C(1 + ‖u‖s
Lr )‖∇H‖2

L2 . (3.28)

Then, adding (3.4) multiplied by C5 � C3c−1
v + (C2 + 2)κ−1 and (3.28) by C6 �

(1 + C4ν
−2)(C2 + C1C5 + 2) to (3.25), we obtain that

d

dt

∫ (
� + C5ρE2 + 4C6ν|∇H |2

)
dx

+ ‖∇E‖2
L2 +

1

2

∫

ρ|u̇|2dx + ‖Ht‖2
L2 + ‖∇H‖2

H1

≤ C
∫

|u|2
(
ρE2 + |∇u|2 + |∇v|2

)
dx + C(1 + ‖u‖s

Lr )‖∇H‖2
L2

+Cη‖∇u‖2
L6 + C(η)

∫ (
ρE2 + |∇u|2

)
dx . (3.29)

Holder’s inequality together with (3.15) yields that
∫

|u|2
(
ρE2 + |∇u|2 + |∇v|2

)
dx

≤ C‖u‖2
Lr

(
‖ρ1/2E‖2

L2r/(r−2) + ‖∇u‖2
L2r/(r−2)

)

≤ C‖u‖2
Lr

(
‖ρ1/2E‖2(r−3)/r

L2 ‖E‖6/r
L6 + ‖∇u‖2(r−3)/r

L2 ‖∇u‖6/r
L6

)

≤ C(η)(1 + ‖u‖s
Lr )

∫ (
ρE2 + |∇u|2

)
dx + η‖∇E‖2

L2 + η‖∇u‖2
L6 , (3.30)

where in the last inequality we have used (3.9). It follows from (3.17), (3.15), (3.19),
and (3.9) that

‖∇u‖L6 ≤ C‖ρE‖L6 + C‖ρu̇‖L2 + C‖∇H‖1/2
L2 ‖∇H‖1/2

H1

≤ C‖ρ1/2E‖L2 + C‖∇E‖L2 + C‖ρu̇‖L2 + C‖∇H‖1/2
L2 ‖∇H‖1/2

H1 . (3.31)
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Putting this and (3.30) into (3.29), and choosing η suitably small, we obtain after using
Gronwall’s inequality, (3.26), (3.1), and (1.27) that

sup
0≤t≤T

∫ (
ρE2 + |∇u|2 + |∇H |2

)
dx

+
∫ T

0

∫ (
|∇E |2 + ρ|u̇|2 + |u|2|∇u|2 + |Ht |2 + |∇2 H |2

)
dxdt ≤ C. (3.32)

Finally, (1.1)1 implies that

(ρ − ρ̃)t + div((ρ − ρ̃)u) + ρ̃divu = 0. (3.33)

Multiplying (3.33) by ρ − ρ̃ and integrating the resulting equation over �, we obtain
after using (1.27) that

(‖ρ − ρ̃‖2
L2)

′(t) ≤ C‖ρ − ρ̃‖2
L2 + C‖∇u‖2

L2 ,

which together with (3.32) and the following simple fact that

‖∇θ‖L2 ≤ C‖∇E‖L2 + C‖|u||∇u|‖L2 ,

directly gives (3.12). The proof of Lemma 3.3 is completed.

Finally, the following Lemma 3.4 will deal with the higher order estimates of the
solutions which are needed to guarantee the extension of the local strong solution to be
a global one under the conditions (1.12)–(1.14) and (1.27).

Lemma 3.4. Under the condition (1.27), it holds that for 0 ≤ T < T ∗,

sup
0≤t≤T

(‖ρ − ρ̃‖H1∩W 1,q̃ + ‖∇u‖H1 + ‖∇θ‖H1 + ‖H‖H2) ≤ C. (3.34)

Proof. First, it follows from (3.31), (3.12), and (3.1) that

‖∇u‖L6 ≤ C + C‖ρu̇‖L2 + C‖∇θ‖L2 + C‖|u||∇u|‖L2 + C‖∇H‖1/2
H1

≤ C + C‖ρu̇‖L2 + C‖∇θ‖L2 + C‖u‖L6‖∇u‖1/2
L2 ‖∇u‖1/2

L6 + C‖∇H‖1/2
H1

≤ C + C‖ρu̇‖L2 + C‖∇θ‖L2 +
1

2
‖∇u‖L6 + C‖∇H‖1/2

H1 ,

which implies

‖∇u‖L6 ≤ C + C‖ρu̇‖L2 + C‖∇θ‖L2 + C‖∇H‖1/2
H1 . (3.35)

Then, it follows from the standard L2-estimate of (1.1)4, (3.12), and (3.1) that

‖∇2 H‖L2 ≤ C‖Ht‖L2 + C‖|u||∇H |‖L2 + C‖|∇u||H |‖L2

≤ C‖Ht‖L2 + C‖u‖L6‖∇H‖1/2
L2 ‖∇2 H‖1/2

L2 + C‖H‖L4‖∇u‖L4

≤ C‖Ht‖L2 +
1

2
‖∇2 H‖L2 + C‖∇u‖L4 + C,

which together with (3.12) and (3.1) implies

‖H‖H2 ≤ C‖Ht‖L2 + C‖∇u‖L4 + C. (3.36)
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Holder’s inequality, along with (3.35) and (3.12), gives

‖∇u‖L4 ≤ ‖∇u‖1/4
L2 ‖∇u‖3/4

L6 ≤ C + C‖ρu̇‖3/4
L2 + C‖∇θ‖3/4

L2 + C‖∇H‖3/8
H1 , (3.37)

which combined with (3.36) and (3.35) shows

‖∇u‖L6 + ‖H‖H2 ≤ C‖ρu̇‖L2 + C‖Ht‖L2 + C‖∇θ‖L2 + C. (3.38)

Then, similar to (3.9), we have

‖θ‖L6 ≤ C‖ρ1/2θ‖L2 + C‖∇θ‖L2 ≤ C + C‖∇θ‖L2 , (3.39)

which together with the standard L2-estimate of (1.1)3 and (3.12) gives

‖∇θ‖2
H1

≤ C + C‖∇θ‖2
L2 + C

∫

ρθ̇2dx + C
∫

ρ2θ2|∇u|2dx + C‖∇u‖4
L4 + C‖∇H‖4

L4

≤ C + C‖∇θ‖2
L2 + C

∫

ρθ̇2dx + C‖∇u‖2
L2‖θ‖2

L∞ + C‖∇u‖4
L4 + C‖∇H‖4

H1

≤ C + C
∫

ρθ̇2dx + C‖∇θ‖2
L2 +

1

2
‖∇θ‖2

H1 + C‖∇u‖4
L4 + C‖∇H‖4

H1 .

Combining this with (3.36) shows

‖∇θ‖2
H1 ≤ C

∫

ρθ̇2dx + C‖∇θ‖2
L2 + C‖∇u‖4

L4 + C‖Ht‖4
L2 + C. (3.40)

Next, we claim that we have the following estimates on both u̇ and θ̇ , (3.41) and
(3.42), whose proofs are similar to those in [15,40] and can be found in Appendix A:

sup
0≤t≤T

∫ (
|∇θ |2 + ρ|u̇|2 + |Ht |2

)
dx +

∫ T

0

∫ (
ρθ̇2 + |∇u̇|2 + |∇Ht |2

)
dxdt ≤ C,

(3.41)

sup
0≤t≤T

‖ρ1/2θ̇‖2
L2 +

∫ T

0
‖∇ θ̇‖2

L2 dt ≤ C. (3.42)

Then, the combination of (3.38)–(3.42) with (3.37) leads to

sup
0≤t≤T

(‖∇u‖L6 + ‖H‖H2 + ‖θ‖L6 + ‖∇θ‖H1
) ≤ C. (3.43)

For 2 ≤ p ≤ q̃, direct calculations show that

d

dt
‖∇ρ‖L p ≤ C(1 + ‖∇u‖L∞)‖∇ρ‖L p + C‖∇2u‖L p . (3.44)

For v ∈ D1
0 ∩ D2,2 ∩ D2,q̃ satisfying (3.14), it follows from Lemma 2.3 and (3.43) that

‖∇v‖L∞ ≤ C
(
1 + log

(
e + ‖∇(ρθ)‖Lq̃

) ‖ρθ‖L∞ + ‖ρθ‖L2
)

≤ C log
(
e + ‖∇ρ‖Lq̃

)
. (3.45)
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Then, for w � u − v ∈ D1
0 ∩ D2,2 ∩ D2,q̃ satisfying (3.18), applying the standard

L p-estimate to (3.18), along with (3.43), gives

‖∇2w‖L6 ≤ C‖ρu̇‖L6 + C‖|H ||∇H |‖L6

≤ C‖∇u̇‖L2 + C,

which together with (3.19), (3.43), and (3.41) shows

‖∇w‖L∞ ≤ C + C‖∇u̇‖L2 .

The combination of this with (3.45) gives

‖∇u‖L∞ ≤ C log
(
e + ‖∇ρ‖Lq̃

)
+ C‖∇u̇‖L2 . (3.46)

Applying the standard L p-estimate to (1.1)2 leads to

‖∇2u‖L p ≤ C (‖ρu̇‖L p + ‖|H ||∇H |‖L p + ‖∇ P‖L p )

≤ C (‖ρu̇‖L p + ‖∇ρ‖L p ) + C

≤ C
(
1 + ‖∇u̇‖L2 + ‖∇ρ‖L p

)
, (3.47)

due to (3.41) and (3.43). Substituting (3.47) and (3.46) into (3.44) yields that

f ′(t) ≤ Cg(t) f (t) ln f (t), (3.48)

where

f (t) � e + ‖∇ρ‖Lq̃ , g(t) � 1 + ‖∇u̇‖L2 .

It thus follows from (3.48), (3.41), and Gronwall’s inequality that

sup
0≤t≤T

‖∇ρ‖Lq̃ ≤ C, (3.49)

which, along with (3.46) and (3.41), directly gives

∫ T

0
‖∇u‖2

L∞dt ≤ C. (3.50)

Taking p = 2 in (3.44), we get by using (3.50), (3.47), (3.41), and Gronwall’s inequality
that

sup
0≤t≤T

‖∇ρ‖L2 ≤ C, (3.51)

which together with (3.47), (3.43), and (3.41) yields that

sup
0≤t≤T

‖∇2u‖L2 ≤ C sup
0≤t≤T

(‖ρu̇‖L2 + ‖∇ρ‖L2 + ‖∇θ‖L2 + ‖H · ∇H‖L2
) ≤ C.

This combined with (3.49), (3.51), (3.43), and (3.12) finishes the proof of Lemma 3.4.

Now we are in a position to prove Theorem 1.1.
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Proof of Theorem 1.1. Suppose that (1.15) were false, that is, (1.27) holds. Note that
the generic constant C in Lemma 3.4 remains uniformly bounded for all T < T ∗, so the
functions (ρ, u, θ, H)(x, T ∗) � lim

t→T ∗(ρ, u, θ, H)(x, t) satisfy the conditions imposed

on the initial data (1.12) at the time t = T ∗. Furthermore, standard arguments yield that
ρu̇, ρθ̇ ∈ C([0, T ]; L2), which implies

(ρu̇, ρθ̇)(x, T ∗) = lim
t→T ∗(ρu̇, ρθ̇) ∈ L2.

Hence,

−μ�u − (μ + λ)∇divu + R∇(ρθ) − (curl H) × H |t=T ∗ = √
ρ(x, T ∗)g1(x),

κ�θ +
μ

2
|∇u + (∇u)tr |2 + λ(divu)2 + ν|curl H |2|t=T ∗ = √

ρ(x, T ∗)g2(x),

with

g1(x) �
{

ρ−1/2(x, T ∗)(ρu̇)(x, T ∗), for x ∈ {x |ρ(x, T ∗) > 0},
0, for x ∈ {x |ρ(x, T ∗) = 0},

and

g2(x) �
{

ρ−1/2(x, T ∗)(cvρθ̇ + Rρθdivu)(x, T ∗), for x ∈ {x |ρ(x, T ∗) > 0},
0, for x ∈ {x |ρ(x, T ∗) = 0},

satisfying g1, g2 ∈ L2 due to (3.41), (3.42), and (3.34). Thus, (ρ, u, θ, H)(x, T ∗) also
satisfies (1.13) and (1.14). Therefore, one can take (ρ, u, θ, H)(x, T ∗) as the initial data
and apply Lemma 2.1 to extend the local strong solution beyond T ∗. This contradicts
the assumption on T ∗. We thus finish the proof of Theorem 1.1.
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suggestions. X. D. Huang is partially supported by NNSFC 11101392. J. Li is partially supported by the
National Center for Mathematics and Interdisciplinary Sciences, CAS, and NNSFC 10971215, 11171326,
and 11371348.

Appendix A. Proofs of (3.41) and (3.42)

The proofs of (3.41) and (3.42) are a direct combination of those of Lemma 4.1 and
(4.28) in [15] with that of (3.24) in [40]. We sketch them here for completeness.

First, it follows from (3.12) and (3.38) that

sup
0≤t≤T

∫

ρθ2dx +
∫ T

0

(
‖∇θ‖2

L2 + ‖∇u‖2
L6

)
dt ≤ C. (A.1)

Applying u̇ j [∂t + div(u·)] to (1.1) j
2 and integrating the resulting equality over � give

1

2

d

dt

∫

ρ|u̇|2dx = −
∫

u̇ j [∂ j Pt + div(u∂ j P)]dx + μ

∫

u̇ j [∂t�u j + div(u�u j )]dx

+ (μ + λ)

∫

u̇ j [∂ j divut + div(u∂ j divu)]dx
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−1

2

∫

u̇ j [∂t∂ j |H |2 + div(u∂ j |H |2)]dx

+
∫

u̇ j [∂t∂i (Hi Hj ) + div(u∂i (Hi Hj ))]dx

=
5∑

i=1

Ni . (A.2)

We get after integration by parts and using Eq. (1.1)1 that

N1 = −
∫

u̇ j [∂ j Pt + div(∂ j Pu)]dx

= R
∫

∂ j u̇ j
(
ρθ̇ − ρu · ∇θ − θu · ∇ρ − θρdivu

)
dx +

∫

∂k u̇ j∂ j Pukdx

= R
∫

∂ j u̇ j
(
ρθ̇ − θρdivu

)
dx +

∫

Pdivu̇divudx −
∫

P∂k u̇ j∂ j ukdx

≤ μ

8
‖∇u̇‖2

L2 + C‖ρθ̇‖2
L2 + C

∫

ρ2θ2|∇u|2dx

≤ μ

8
‖∇u̇‖2

L2 + C‖ρθ̇‖2
L2 + C‖ρθ‖1/2

L2 ‖θ‖3/2
L6 ‖∇u‖2

L4

≤ μ

8
‖∇u̇‖2

L2 + C‖ρθ̇‖2
L2 + C‖∇θ‖4

L2 + C‖∇u‖4
L4 + C, (A.3)

where in the last inequality we have used (3.39). Integration by parts leads to

N2 = μ

∫

u̇ j [∂t�u j + div(u�u j )]dx

= −μ

∫
(
∂i u̇ j (∂i u j )t + �u j u · ∇u̇ j

)
dx

= −μ

∫ (
|∇u̇|2 − ∂i u̇ j uk∂k∂i u j − ∂i u̇ j∂i uk∂ku j + �u j u · ∇u̇ j

)
dx

= −μ

∫ (
|∇u̇|2 + ∂i u̇ j∂i u j divu − ∂i u̇ j∂i uk∂ku j − ∂i u j∂i uk∂k u̇ j

)
dx

≤ −7μ

8

∫

|∇u̇|2dx + C
∫

|∇u|4dx . (A.4)

Similarly, we have

N3 ≤ −7

8
(μ + λ)‖divu̇‖2

L2 + C
∫

|∇u|4dx . (A.5)

Integration by parts together with (3.12) and (3.1) shows

|N4| ≤ C‖∇u̇‖L2(‖|H ||Ht |‖L2 + ‖|u||H ||∇H |‖L2)

≤ C‖∇u̇‖L2(‖H‖L6‖Ht‖1/2
L2 ‖Ht‖1/2

L6 + ‖u‖L6‖H‖L6‖∇H‖L6)

≤ ε‖∇u̇‖2
L2 + η‖∇Ht‖2

L2 + C(ε, η)‖Ht‖2
L2 + C(ε)‖∇2 H‖2

L2 . (A.6)

Similarly, we also have

|N5| ≤ ε‖∇u̇‖2
L2 + η‖∇Ht‖2

L2 + C(ε, η)‖Ht‖2
L2 + C(ε)‖∇2 H‖2

L2 . (A.7)
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Substituting (A.3)–(A.7) into (A.2), we obtain after choosing ε suitably small that

d

dt

∫

ρ|u̇|2dx + μ‖∇u̇‖2
L2 ≤ C

∫

ρθ̇2dx + Cη‖∇Ht‖2
L2 + C(η)‖Ht‖2

L2

+C‖∇2 H‖2
L2 + C‖∇θ‖4

L2 + C‖∇u‖4
L4 + C. (A.8)

Next, multiplying (1.1)3 by θ̇ and integrating the resulting equality over � yield that

κ

2

(
‖∇θ‖2

L2

)

t
+ cv

∫

ρ|θ̇ |2dx

= −κ

∫

∇θ · ∇(u · ∇θ)dx + λ

∫

(divu)2θ̇dx

+2μ

∫

|D(u)|2θ̇dx − R
∫

ρθdivuθ̇dx + ν

∫

|curlH |2θ̇dx

�
5∑

i=1

Ii . (A.9)

We estimate each Ii (i = 1, . . . , 5) as follows:
First, it follows from (3.40) and (3.12) that

|I1| ≤ C
∫

|∇u||∇θ |2dx

≤ C‖∇u‖L2‖∇θ‖1/2
L2 ‖∇θ‖3/2

L6

≤ δ‖∇2θ‖2
L2 + C(δ)‖∇θ‖2

L2

≤ Cδ

∫

ρθ̇2dx + C(δ)‖∇θ‖2
L2 + C‖∇u‖4

L4 + C‖Ht‖4
L2 + C. (A.10)

Next, integration by parts yields that, for any η ∈ (0, 1],

I2 = λ

∫

(divu)2θt dx + λ

∫

(divu)2u · ∇θdx

= λ

∫ (
(divu)2θ

)

t
dx − 2λ

∫

θdivudiv(u̇ − u · ∇u)dx + λ

∫

(divu)2u · ∇θdx

= λ

(∫

(divu)2θdx

)

t
− 2λ

∫

θdivudivu̇dx

+2λ

∫

θdivu∂i u j∂ j ui dx + λ

∫

u · ∇
(
θ(divu)2

)
dx

≤ λ

(∫

(divu)2θdx

)

t
+ C‖θ‖L6‖∇u‖1/3

L2 ‖∇u‖2/3
L4

(
‖∇u̇‖L2 + ‖∇u‖2

L4

)

≤ λ

(∫

(divu)2θdx

)

t
+ η‖∇u̇‖2

L2 + C(η)‖∇u‖4
L4 + C‖∇θ‖4

L2 + C, (A.11)

where in the last inequality we have used (3.39).
Then, similar to (A.11), we have that, for any η ∈ (0, 1],

I3 ≤ 2μ

(∫

|D(u)|2θdx

)

t
+ η‖∇u̇‖2

L2 + C(η)‖∇u‖4
L4 + C‖∇θ‖4

L2 + C. (A.12)
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Next, it follows from (3.12) and (3.39) that

|I4| ≤ C‖ρ1/2θ̇‖L2‖ρ1/2θ‖1/4
L2 ‖θ‖3/4

L6 ‖∇u‖L4

≤ δ

∫

ρθ̇2dx + C(δ)‖∇θ‖4
L2 + C‖∇u‖4

L4 + C(δ), (A.13)

and that

I5 = ν

∫

|curlH |2θt dx + ν

∫

|curlH |2u · ∇θdx

= ν
d

dt

∫

|curlH |2θdx − 2ν

∫

θcurlH · curlHt dx + ν

∫

|curlH |2u · ∇θdx

≤ ν
d

dt

∫

|curlH |2θdx + C‖θ‖L6‖∇H‖1/2
L2 ‖∇H‖1/2

L6 ‖∇Ht‖L2

+C‖∇H‖2
L6‖u‖L6‖∇θ‖L2

≤ ν
d

dt

∫

|curlH |2θdx + η‖∇Ht‖2
L2 + C(η)

(
1 + ‖∇θ‖2

L2

) (
1 + ‖∇2 H‖2

L2

)
.

(A.14)

Substituting (A.10)–(A.14) into (A.9), we obtain after choosing δ suitably small that,
for any η ∈ (0, 1],

d

dt

∫

�dx + cv

∫

ρ|θ̇ |2dx

≤ C(η)
(

1 + ‖∇θ‖2
L2

) (
1 + ‖∇2 H‖2

L2 + ‖∇θ‖2
L2

)
+ Cη‖∇u̇‖2

L2

+Cη‖∇Ht‖2
L2 + C‖∇u‖4

L4 + C‖Ht‖4
L2 + C, (A.15)

where

� � κ|∇θ |2 − 2θ
[
λ(divu)2 + 2μ|D(u)|2 + ν|curlH |2

]
. (A.16)

Next, differentiating (1.1)4 with respect to t and multiplying the resulting equations
by Ht , we obtain after integration by parts and using (3.1) and (3.12) that

1

2

d

dt

∫

|Ht |2dx + ν

∫

|∇Ht |2dx

≤ C
(‖|ut ||H |‖L2 + ‖|u||Ht |‖L2

) ‖∇Ht‖L2

≤ C
(
‖|u̇||H |‖L2 + ‖|u||∇u||H |‖L2 + ‖u‖L6‖Ht‖1/2

L2 ‖Ht‖1/2
L6

)
‖∇Ht‖L2

≤ C
(
‖u̇‖L6‖H‖L3 + ‖u‖L6‖∇u‖L4‖H‖L12 + ‖Ht‖1/2

L2 ‖∇Ht‖1/2
L2

)
‖∇Ht‖L2

≤ ν

2
‖∇Ht‖2

L2 + C‖∇u̇‖2
L2 + C‖∇u‖2

L4 + C‖Ht‖2
L2 ,

which implies

d

dt

∫

|Ht |2dx + ν

∫

|∇Ht |2dx ≤ C‖∇u̇‖2
L2 + C‖∇u‖2

L4 + C‖Ht‖2
L2 . (A.17)
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Finally, adding (A.8) multiplied by η1/4 and (A.17) by η1/2 to (A.15), we obtain after
choosing η suitably small and using (3.37) that

2
d

dt

∫

(� + η1/2|Ht |2 + η1/4ρ|u̇|2)dx

+
∫ (

cvρ|θ̇ |2 + νη1/2|∇Ht |2 + μη1/4|∇u̇|2
)

dx

≤ C(η)
(

1 + ‖∇θ‖2
L2

) (
1 + ‖∇2 H‖2

L2 + ‖∇θ‖2
L2

)

+C(η)‖ρ1/2u̇‖4
L2 + C(η)‖Ht‖4

L2 . (A.18)

Noticing that (A.16), (3.12), (3.38), and (3.39) lead to

2
∫

(� + η1/2|Ht |2 + η1/4ρ|u̇|2)dx

≥ 2κ‖∇θ‖2
L2 − C‖θ‖L6‖∇u‖3/2

L2 ‖∇u‖1/2
L6 − C‖θ‖L6‖∇H‖3/2

L2 ‖∇H‖1/2
H1

+ 2
∫

(η1/2|Ht |2 + η1/4ρ|u̇|2)dx

≥ κ‖∇θ‖2
L2 +

∫

(η1/2|Ht |2 + η1/4ρ|u̇|2)dx − C(η),

we directly obtain (3.41) after using Gronwall’s inequality, (1.13), (A.18), (3.12), and
(A.1).

It remains to prove (3.42). First, it follows from (3.38)–(3.41) that

sup
0≤t≤T

(‖θ‖L6 + ‖∇u‖L2∩L6 + ‖H‖H2) +
∫ T

0
‖∇2θ‖2

L2 dt ≤ C. (A.19)

Similar to (3.9), we have

‖θ̇‖L6 ≤ C‖ρ1/2θ̇‖L2 + C‖∇ θ̇‖L2 . (A.20)

Next, applying the operator ∂t + div(u·) to (1.1)3 leads to

cvρ
(
∂t θ̇ + u · ∇ θ̇

)

= κ�θ̇ + κ (divu�θ − ∂i (∂i u · ∇θ) − ∂i u · ∇∂iθ)

+
(
λ(divu)2 + 2μ|D(u)|2

)
divu + Rρθ∂kul∂luk

−Rρθ̇divu − Rρθdivu̇ + 2λ (divu̇ − ∂kul∂luk) divu

+μ(∂i u j + ∂ j ui )
(
∂i u̇ j + ∂ j u̇i − ∂i uk∂ku j − ∂ j uk∂kui

)

+ν
[
∂t |curlH |2 + div(|curlH |2u)

]
. (A.21)

Multiplying (A.21) by θ̇ , we obtain after integration by parts and using (A.19), (3.41),
and (A.20) that
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cv

2

(∫

ρ|θ̇ |2dx

)

t
+ κ‖∇ θ̇‖2

L2

≤ C
∫

|∇u|
(
|∇2θ ||θ̇ | + |∇θ ||∇ θ̇ |

)
dx + C

∫

|∇u|2|θ̇ | (|∇u| + θ) dx

+ C
∫

ρ|θ̇ |2|∇u|dx + C
∫

ρθ |∇u̇||θ̇ |dx + C
∫

|∇u||∇u̇||θ̇ |dx

+ C
∫ (

|∇H ||∇Ht ||θ̇ | + |∇H |2|u||∇ θ̇ |
)

dx

≤ C‖∇u‖L3‖∇θ‖H1
(‖θ̇‖L6 + ‖∇ θ̇‖L2

)
+ C‖∇u‖2

L3‖θ̇‖L6
(‖∇u‖L6 + ‖θ‖L6

)

+ C‖∇u‖L3‖ρθ̇‖L2‖θ̇‖L6 + C‖ρ1/2θ‖1/2
L2 ‖θ‖1/2

L6 ‖∇u̇‖L2‖θ̇‖L6

+ C‖∇u‖L3‖∇u̇‖L2‖θ̇‖L6 + C‖∇H‖L3‖∇Ht‖L2‖θ̇‖L6

+ C‖∇H‖2
L6‖u‖L6‖∇ θ̇‖L2

≤ κ

2
‖∇ θ̇‖2

L2 + C‖∇2θ‖2
L2 + C‖ρ1/2θ̇‖2

L2 + C‖∇u̇‖2
L2 + C‖∇Ht‖2

L2 + C,

which combined with Gronwall’s inequality, (1.14), (A.19), and (3.41) directly gives
(3.42).
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