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Abstract: We consider Glauber dynamics (starting from an extremal configuration) in
a monotone spin system, and show that interjecting extra updates cannot increase the
expected Hamming distance or the total variation distance to the stationary distribution.
We deduce that for monotone Markov random fields, when block dynamics contracts a
Hamming metric, single-site dynamics mixes in O(n log n) steps on an n-vertex graph. In
particular, our result completes work of Kenyon, Mossel and Peres concerning Glauber
dynamics for the Ising model on trees. Our approach also shows that on bipartite graphs,
alternating updates systematically between odd and even vertices cannot improve the
mixing time by more than a factor of log n compared to updates at uniform random
locations on an n-vertex graph. Our result is especially effective in comparing block and
single-site dynamics; it has already been used in works of Martinelli, Toninelli, Sinclair,
Mossel, Sly, Ding, Lubetzky, and Peres in various combinations.

1. Introduction

In a number of cases, mixing rates have been determined for Glauber dynamics using
block updates, but only rough estimates have been obtained for single site dynamics.
Examples include the Ising model on trees and the monomer-dimer model on Z

d . In
this work, we employ a “censoring lemma” for monotone systems in order to transport
bounds for block dynamics to bounds for single site dynamics; sharp estimates result in
several situations.

Our main interest is in ferromagnetic spin systems with nearest-neighbor interactions
on a finite graph G. A configuration consists of a mapping σ from the set V of sites of
G to a fixed partially ordered set S of “spins”. The probability π(σ) of a configuration
σ is given by

1

Z

∏

u∼v

�(σu, σv),
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where Z is the appropriate normalizing constant. More generally, our results apply when
π defines a monotone Markov random field. In single site Glauber dynamics, at each
step, a uniformly random site is “updated” and assumes a new spin according to π

conditioned on the spins of its neighbors. The resulting Markov chain is irreducible,
aperiodic, and has unique stationary distribution π . Let pt (ω, ·) be the distribution of
configurations after t steps, with initial state ω. Let ‖μ − ν‖ = 1

2

∑
σ |μ(σ) − ν(σ )|

be the total variation distance. The mixing time TG(ε, ω) for initial state ω is the least t
such that ‖pt (ω, ·)−π‖ ≤ ε. Finally, the (overall) mixing time TG(ε) for the dynamics
is maxω∈� TG(ε, ω).

In discrete-time block dynamics, a family B of “blocks” of sites is provided. At each
step, a block B ∈ B is selected uniformly at random and a configuration on B is selected
according to π conditioned on the spins of the sites in the exterior boundary of B. A
useful method of bounding mixing times is to first bound the spectral gap of the block
dynamics using path coupling, and then use comparison theorems for the spectral gap
to derive a bound for TG(ε). In key examples of Glauber dynamics for the Ising model
on lattices and trees, this method tends to overestimate TG(ε) by a factor of n on an
n-vertex graph.

Stated informally, our main results are:

• In Glauber dynamics for a monotone (i.e., attractive) spin system, started at the top
or bottom state, censoring updates increases the distance from stationarity.

• Suppose a monotone spin system on an n-vertex graph G has a block dynamics which
contracts (on average) a weighted Hamming metric (see the remark following Theo-
rem 1.1), and single-site dynamics on each block with arbitrary boundary conditions
mixes in a bounded time. If the collection of blocks can be partitioned into a bounded
number of layers such that blocks in each layer are nonadjacent, and weights within
a block have a bounded ratio, then discrete time single site dynamics on G mixes (in
total variation) in O(n log n) steps.

• In [12] (see also [3]) it was proved that for the Ising model on an n-vertex b-ary tree,
block dynamics with large bounded blocks contracts a (weighted) Hamming metric
at temperatures above the extremality threshold. This, in conjunction with our main
results, implies that single-site dynamics on these trees mixes in O(n log n) steps.
(See [19] for refinements of this theorem using Log-Sobolev inequalities).

• If H is a subgraph of G and only one vertex in H is adjacent to vertices in G\H ,
then continuous-time Glauber dynamics on H mixes faster than the restriction to H
of continuous-time Glauber dynamics on G.

• For an n vertex bipartite graph, alternating updating of all the “odd” and all the
“even” vertices cannot mix much faster than systematic updates (enumerating the
vertices in an arbitrary order): The odd-even updates can reduce the number of verti-
ces updated at most by a factor of two. Similarly, the odd-even updates can be faster
than uniformly random updates by a factor of at most log n.

See §1.2 for further discussion of block dynamics, and §2-3 for proofs. A preliminary
version of our results, including the proof of Theorem 1.1, was presented in the 2005
lectures [23].

1.1. Terminology. In what follows, a system 〈�, S, V, π〉 consists of a finite set S of
spins, a set V of sites, a space � ⊆ SV of configurations (assignments of spins to sites),
and a distribution π on �, which will serve as the stationary distribution for our Glauber
dynamics. We assume that π(ω) > 0 for ω ∈ �. The Ising model (where S = {+,−}
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and � = SV ) is the basic example; we allow � to be a strict subset of SV to account for
“hard constraints” such as those imposed by the hard-core gas model.

We denote by σ s
v the configuration obtained from σ by changing its value at v to s,

that is, σ s
v (v) = s and σ s

v (u) = σ(u) for all u 	= v. Let σ •
v be the set of configurations

{σ s
v }s∈S in �.
The update μv at v of a distribution μ on � is defined by

μv(σ ) = π(σ)

π(σ •
v )

μ(σ •
v ) for σ ∈ �. (1)

For measures μ and ν on a poset 	, we write ν 
 μ to indicate that μ stochastically
dominates ν, that is,

∫
g dν ≤ ∫

g dμ for all increasing functions g : 	 → R.
The system 〈�, S, V, π〉 is called monotone if S is totally ordered, SV is endowed

with the coordinate-wise partial order, and whenever σ, τ ∈ � satisfy σ ≤ τ , then for
any vertex v ∈ V we have

{
π(σ s

v )

π(σ •
v )

}

s∈S



{
π(τ s

v )

π(τ •
v )

}

s∈S
(2)

as distributions on the spin set S. Let + denote the maximal element of S; we will assume
that the all “+” configuration is in �, and refer to it as the top configuration.

1.2. Main results.

Theorem 1.1. Let 〈�, S, V, π〉 be a monotone system and let μ be the distribution on
� which results from successive updates at sites v1, . . . , vm, beginning at the top config-
uration. Let ν be defined similarly but with updates only at a subsequence vi1 , . . . , vik .
Then μ 
 ν, and ‖μ−π‖ ≤ ‖ν −π‖ in total variation. Moreover, this also holds if the
sequence v1, . . . , vm and its subsequence i1, . . . , ik are chosen at random according to
any prescribed distribution.

See §2 for the proof, which shows also that the assumption of starting from the top
configuration can be replaced by the assumption that the dynamics starts at a distribu-
tion μ0, where the likelihood ratio μ0/π is weakly increasing. Other assumptions, in
particular monotonicity of the system, cannot be dispensed with, as shown recently by
Holroyd [11].

Remark. Fix positive weights {wv}v∈V . Note that in the binary case S = {0, 1}, the
average weighted Hamming distance in a monotone coupling between μ and π (when
π 
 μ) can be written as ϒw(μ)−ϒw(π), where ϒw(μ) = ∑

σ∈� μ(σ)
∑

v∈V wvσ(v).
Since μ 
 ν implies that ϒw(μ) ≤ ϒw(ν), this justifies the assertion about Hamming
distance in the abstract.

Next, we discuss block dynamics and the contraction method to bound mixing times
for spin systems.

Let us endow � ⊂ SV with the Hamming metric H(σ, τ ) = |{v ∈ V : σv 	= τv}|.
(More generally, it is sometimes fruitful to consider a weighted �1 metric). The Kant-
orovich (transportation) distance ρ(μ, ν) between two distributions on � is defined
to be the minimum over all couplings of μ and ν of EH(σ, τ ), where σ is drawn from
μ and τ from ν. The fact that this metric satisfies the triangle inequality is proved, e.g.,
in Chap. 14 of [13] and is essentially equivalent to the path-coupling theorem of [4].
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Given a subset B of V , let σ •
B be the set of configurations τ ∈ � such that τ agrees

with σ on V \B. For σ ∈ �, the block update UBσ is a measure on σ •
B defined by

(UBσ)(ω) = π(ω)
π(σ •

B )
for ω ∈ σ •

B . Thus UBσ is π conditioned on σ •
B . For a collection of

blocks B, the B-averaged block update of σ ∈ � yields a random configuration with dis-
tribution 1

|B|
∑

B∈B UBσ. The block dynamics determined by B consists of performing
successive B-averaged block updates. For simplicity, we will assume that all blocks in
B have the same size.

We say that a block dynamics is contracting if for any two configurations σ and τ ,
the average Kantorovich distance after an update of a random block satisfies

1

|B|
∑

B∈B
ρ(UBσ, UBτ) ≤

(
1−γ

|B|
|V |

)
H(σ, τ ), (3)

where γ is a constant and |B| is the number of sites in a block. The triangle inequality
for the Kantorovich metric implies that it suffices to verify this contraction condition
when σ and τ differ at a single site. In our setting, contraction implies a bound of order
|V | log |V | on the mixing time of the block dynamics, since the number of blocks is of
order |V |. When the blocks are cubes in a lattice, a sufficient condition for contraction
of block dynamics is strong spatial mixing, as defined and studied in [9,15–17].

Next, suppose that V is the vertex set of a graph. The system 〈�, S, V, π〉 is a
Markov random field if for any set B ⊂ V and σ ∈ �, the distribution UBσ depends
only on the restriction of σ to ∂ B, the set of vertices in Bc that are adjacent to B.

The next theorem is intended to illustrate how, in a particular case, Theorem 1.1 can
be used to deduce rapid mixing for single-site dynamics from a contraction condition
for block dynamics.

Theorem 1.2. Let � be the configuration space for a monotone Markov random field on
the d-dimensional toroidal grid V = [0, N−1]d . Suppose that � > d is odd and � + 1
divides N. Let B = {Bv : v ∈ V }, where Bv is the cube of side-length �− 1 centered at
v (so the cardinality of B is �d). If the block dynamics determined by B is contracting,
and the single-site dynamics restricted to any block B has mixing time TB(1/4) ≤ t0
(for all boundary conditions), then single-site dynamics on all of V has mixing time
O(|V | log |V |), where the implied constant depends only on the contraction parameter
γ and on �, t0 and d.

Proof. For any u ∈ V and any s ∈ S, suppose σ ′ = σ s
u is obtained from σ by changing

the spin at u to s. Since H(σ, σ ′) = 1, we have ρ(UBσ, UBσ ′) = 1 when neither B nor
∂ B contains u. If u ∈ B, then ρ(UBσ, UBσ ′) = 0.

Since the block dynamics determined by B is assumed to be contracting, there is a
constant γ such that

γ �d/N d ≤ E� = P(B � u) − 1

N d

∑

∂ B�u

ρ(UBσ, UBσ ′)

= �d

N d
− 1

N d

∑

∂ B�u

ρ(UBσ, UBσ ′), (4)

where � is the decrease in average Kantorovich distance between σ and σ ′ caused by
the update.
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Suppose now that we choose �j = ( j1, . . . , jd) uniformly at random in {0, . . . , �}d

and update (in the normal fashion) all the blocks B �j+(�+1)�k , where �k ∈ [0, N
�+1 )d . These

blocks are disjoint, and, moreover, no block has an exterior neighbor belonging to another
block, hence it makes no difference in what order the updates are made. We call this
series of updates a “global block update,” and claim that it is contracting—meaning, in
this case, that a single global block update reduces the Kantorovich distance between
any two configurations σ and τ by a constant factor 1−γ /3.

To see this, we reduce to the case where σ and τ = σ ′ differ only at a vertex u and
average over choice of �j to get that the expected decrease in Kantorovich distance is

�d

(� + 1)d
− 1

(� + 1)d

∑

∂ B�u

ρ(UBσ, UBσ ′)),

which, by comparing with (4), exceeds γ (�/(�+1))d ≥ γ /3 since � > d.
For δ = δ(γ ) > 0 that we will specify later, suppose that t1 = t1(δ) has the following

property: for any t > t1, performing t single-site updates uniformly at random on the
sites inside a block B, suffices (regardless of boundary spins) to bring the Kantorovich
distance between the resulting configuration on B and the block-update configuration
down to at most δ. (In fact, we can take t1 = 2t0 log(�d/δ).) Letting W t

Bσ denote the
distribution that results when t single-site updates are performed on B, the triangle
inequality gives

ρ(W t
Bσ, W t

Bσ ′) ≤ ρ(UBσ, UBσ ′) + 2δ ,

for all t > t1.
Suppose next that T is a nonnegative-integer-valued random variable that satisfies

P(T < t) < δ/�d . Since the Hamming distance of any two configurations is bounded
by �d , if we perform T random single-site updates on the block B, we get

ρ(W T
B σ, W T

B σ ′) ≤ ρ(W t
Bσ, W t

Bσ ′) + �dP(T < t) ≤ ρ(UBσ, UBσ ′) + 3δ. (5)

Suppose we select, uniformly at random, 2t N d/�d sites in V . For any block B, the
number of times that we select a site from B will be a binomially distributed random
variable T with mean 2t ; its probability of falling below t is bounded above by e−t/4

(see, e.g., [1], Thm. A.1.13, p. 312). By taking t ≥ max{t1, 4 log(�d/δ)} we ensure that
P(T < t) ≤ δ/�d as required for (5). Note that t depends only on �, d, t1 and γ .

Let W denote the following global update procedure: choose �j uniformly at random
as above, perform 2t N d/�d random single site updates, but censor all updates of sites
not in

⋃
�k B �j+(�+1)�k . To bound the expected distance between Wσ and Wσ ′, it suffices to

consider blocks B such that u is in B or in the exterior boundary ∂ B. Only one block in
our global block update can contain u, and the expected number of blocks with u ∈ ∂ B
is 2d/(� + 1) < 2, using our assumption that � > d. Therefore

Eρ(Wσ, Wσ ′) ≤ 1 − γ /3 + (1 +
2d

� + 1
)3δ ≤ 1 − γ /3 + 9δ.

Taking δ = γ /36, the RHS is at most 1 − γ /12. Thus for any two configurations σ, τ ,
the censored Glauber dynamics procedure above yields

Eρ(Wσ, Wτ) ≤ (1 − γ

12
)H(σ, τ ).
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We deduce that O(log |V |) iterations of W suffice to reduce the maximal Kantoro-
vich distance from its initial value |V | (the Hamming distance between the top and
bottom configurations) to any desired small constant. Recall that Kantorovich distance
dominates total variation distance, and each application of W involves 2t N d/�d =
O(|V |) single site updates, with censoring of updates that fall on the (random) bound-
ary. Thus with this censoring, uniformly random single-site updates mix in time
O(|V | log |V |).

By Theorem 1.1, censoring these updates cannot improve mixing time, hence the
mixing time for standard single-site Glauber dynamics is again O(|V | log |V |). ��

In the above theorem the periodic boundary and divisibility condition were assumed
only for convenience in the proof, variations of which can be applied in many other
settings. Indeed, since we announced our censoring inequality in 2001, other applica-
tions to block dynamics have been made by Martinelli and Sinclair [18], Martinelli and
Toninelli [20], Mossel and Sly [21], Ding, Lubetzky and Peres [5], and Ding and Peres
[6].

Note that even if the Markov random field is not monotone, our proof shows mixing
time O(|V | log |V |) for censored single-site dynamics; this improves by a log factor
Corollary 3.3 of Van den Berg and Brouwer [2].

2. Proof of the Censoring Inequality (Theorem 1.1)

Lemma 2.1. Let 〈�, S, V, π〉 be a monotone system, let μ be any distribution on �,
and let μv be the result of updating μ at the site v ∈ V . If μ/π is increasing on �, then
so is μv/π .

Proof. Define f : SV → R by

f (σ ) := max

{
μ(ω)

π(ω)
: ω ∈ �, ω ≤ σ

}
(6)

with the convention that f (σ ) = 0 if there is no ω ∈ � satisfying ω ≤ σ . Then f is
increasing on SV , and f agrees with μ/π on �.

Let σ < τ be two configurations in �; we wish to show that
μv

π
(σ) ≤ μv

π
(τ). (7)

Note first that for any s ∈ S,

f (σ s
v ) ≤ f (τ s

v ) ,

since f is increasing. Furthermore, f (τ s
v ) is an increasing function of s. Thus, by (1),

μv

π
(σ) = μ(σ •

v )

π(σ •
v )

=
∑

s∈S

f (σ s
v )

π(σ s
v )

π(σ •
v )

≤
∑

s∈S

f (τ s
v )

π(σ s
v )

π(σ •
v )

≤
∑

s∈S

f (τ s
v )

π(τ s
v )

π(τ •
v )

= μv

π
(τ) ,

where the last inequality follows from the stochastic domination guaranteed by mono-
tonicity of the system. ��
Lemma 2.2. Suppose that S is totally ordered. If α and β are probability distributions
on S such that α/β is increasing on S and β(s) > 0 for all s ∈ S, then α � β.
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Proof. Let g be any increasing function on S; then, with all sums taken over s ∈ S,

∑
g(s)α(s) =

∑
g(s)

α(s)

β(s)
β(s) ≥

∑
g(s)β(s) ·

∑ α(s)

β(s)
β(s) =

∑
g(s)β(s),

confirming stochastic domination. The inequality in the chain is the positive correlations
property of totally ordered sets (which goes back to Chebyshev, see [14] §II.2), applied
to the increasing functions g and α/β on S with measure β. ��
Lemma 2.3. Let 〈�, S, V, π〉 be a monotone system. If μ is a distribution on � such
that μ/π is increasing, then μ � μv for any v ∈ V .

Proof. Let g be increasing. If σ ∈ � satisfies μ(σ •
v ) > 0, then μ/μv is increasing on

σ •
v . By Lemma 2.2 (applied to {s ∈ S : σ s

v ∈ �} in place of S), for such σ we have

∑

s∈S

g(σ s
v )

μ(σ s
v )

μ(σ •
v )

≥
∑

s∈S

g(σ s
v )

μv(σ
s
v )

μ(σ •
v )

.

Multiplying by μ(σ •
v ) and summing over all choices of σ •

v gives
∑

σ∈�

g(σ )μ(σ) ≥
∑

σ∈�

g(σ )μv(σ ) ,

establishing the required stochastic dominance. ��
Lemma 2.4. Let 〈�, S, V, π〉 be a monotone system, and let μ, ν be two arbitrary dis-
tributions on �. If ν/π is increasing on � and ν 
 μ, then ‖ν − π‖ ≤ ‖μ − π‖.

Proof. Let A = {σ : ν(σ ) > π(σ)}. Then the indicator of A is increasing, so

‖ν − π‖ =
∑

σ∈A

(ν(σ ) − π(σ)) = ν(A) − π(A) ≤ μ(A) − π(A),

since ν 
 μ. The right-hand side is at most ‖μ − π‖. ��
Theorem 2.5. Let 〈�, S, V, π〉 be a monotone system. Let μ be the distribution on �

which results from successive updates at sites u1, . . . , uk, beginning at the top configu-
ration. Let ν be defined similarly but with the update at u j left out. Then

1. μ 
 ν, and
2. ‖μ − π‖ ≤ ‖ν − π‖.

Proof. Let μ0 be the distribution concentrated at the top configuration, and μi =
(μi−1)ui for i ≥ 1. Applying Lemma 2.1 inductively, we have that each μi/π is increas-
ing, for 0 ≤ i ≤ k. In particular, we see from Lemma 2.3 that μ j−1 � (μ j−1)u j = μ j .

If we define νi in the same manner as μi , except that ν j = ν j−1, then because sto-
chastic dominance persists under updates, we have νi � μi for all i ; when i = k, we
get μ 
 ν as desired.

For the second statement of the theorem, we merely apply Lemma 2.4, noting that
νk/π is increasing by the same inductive argument used for μ. ��
Proof of Theorem 1.1. Apply Theorem 2.5 inductively, censoring one site at a time. This
establishes the case where the update locations are deterministic. In the case where the
update sequence v1(ξ) . . . , vm(ξ) that yields μ is random (defined on some probability
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space (�, P�)) and its subsequence leading to ν is also random (defined on the same
probability space), then conditioning on ξ yields measures μ(ξ) and ν(ξ) such that
μ(ξ) 
 ν(ξ) and ν(ξ)/π is increasing on �. These properties are preserved under aver-
aging over �, so we conclude that μ 
 ν and ν/π is increasing on �. The inequality
between total variation norms follows from Lemma 2.4. ��
Corollary 2.6. Let 〈�, S, V, π〉 be the ferromagnetic Ising model on a graph G (with
arbitrary boundary conditions and external field). Let μ be the distribution on � which
results from successive block updates at vertex sets B1, . . . , Bk, beginning at the top
configuration. Let ν be defined similarly but with the update at B j left out. Then

1. μ 
 ν, and
2. ‖μ − π‖ ≤ ‖ν − π‖.

Proof. Each block update can be approximated within ε (in total variation) by running
single-site dynamics in the block for sufficiently long. Applying Theorem 2.5 and letting
ε → 0 completes the proof. ��

3. Comparison of Single Site Update Schemes

In practice, updates on a system 〈�, S, V, π〉 are often performed systematically rather
than at random. Typically a permutation of V is fixed and sites are updated periodically
in permutation order. If the interaction graph is bipartite, it is possible and often conve-
nient to update all odd sites simultaneously, then all even sites, and repeat; we call this
alternating updates. To be fair, we count a full round of alternating updates as n single
updates, so that alternating updates constitute a special case of systematic updating.

Mixing time may differ from one update scheme to another; for example, if there
are no interactions (so that one update per site produces perfect mixing) then system-
atic updating is faster by a factor of 1

2 log n than uniformly random updates, since after
( 1

2 −ε)n log n random updates about n1/2+ε sites have not been hit, so counting the num-
ber of sites that still have the initial spin implies the total variation distance to equilibrium
is still close to 1. (For a more general �(n log n) lower bound for Glauber dynamics
with random updates see [10]).

Embarrassingly, there are only a few results to support the observation that mixing
times for the various update schemes never seem to differ by more than a factor of log n
and rarely by more than a constant. (See [7,8] for some recent progress in the Dobrushin
uniqueness regime.) Theorem 1.1 allows us to obtain some useful comparison results
for monotone systems, but is still well short of what is suspected to be true.

Theorem 3.1. Let A be the alternating update scheme, and S an arbitrary systematic
update scheme, for a bipartite monotone system 〈�, S, V, π〉. Then the mixing time for
S (starting at the top state) is no more than twice the mixing time for A.

Proof. When updating according to S, we censor all even-site updates; on even passes,
all odd-site updates. Since successive updates of sites of the same parity commute, the
result is exactly A and an application of Theorem 1.1 shows that we mix at a cost of at
most a factor of 2. ��
Theorem 3.2. Let A be the alternating update scheme, and R the uniformly random
update scheme, for a bipartite monotone system 〈�, S, V, π〉. Then the mixing time for
R (starting at the top state) is no more than 2 log n times the mixing time for A.

Proof. When updating according to R, we censor all even-site updates until all odd sites
are hit; then we censor all odd-site updates until all even sites are hit, and repeat. Since
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each of these steps takes 2(n/2) log(n/2) updates on average, Theorem 1.1 guarantees
a loss of at most a factor of 2 log n. ��
Theorem 3.3. Let R be the uniformly random update scheme, and S an arbitrary sys-
tematic update scheme, for a monotone system 〈�, S, V, π〉 of maximum degree �max.
Then the mixing time for S is no more than O(

√
�maxn) times the mixing time for R.

Proof. Prior to implementing a round of S, we choose uniformly random sites one by
one as long as no two are adjacent; since the probability of adjacency for a random pair
of sites is at most (�max + 1)/n, this “birthday problem” procedure will keep about√

n/�max updates. All updates of sites not on this list are censored from the upcoming
round of S, incurring a loss of a factor of n/

√
n/�max = √

�maxn. Since updates of
non-adjacent sites commute, Theorem 1.1 applies. ��

If 〈�, S, V, π〉 is bipartite, then since the alternating scheme is a systematic scheme,
Theorem 3.3 applies to it as well.

From systematic updates to alternating or random updates, there seems to be nothing
better to do in our context than to score one update per systematic round, incurring a
factor of n penalty.

3.1. Hanging Subgraphs. Let H be a subgraph of the finite graph G, on which some
system 〈�, S, V, π〉 is defined, and suppose what is wanted is mixing on H . When con-
tinuous-time Glauber dynamics is employed, it is natural to compare mixing time TH (ε)

on H by itself (that is, with the rest of G destroyed) with the mixing time TG(ε) when all
points of G are being updated. Indeed, consider the Ising model (with no external field
and free boundary conditions), we conjecture that TH (ε) never exceeds TG(ε)—echoing
a conjecture of the first author for spectral gaps, cited in [22] and proved there when G
is a cycle.

Because the Ising model is a Markov random field, and its stationary distribution
on a single site is independent of the graph (since we assumed a free boundary and
no external field), it enjoys the following property: if only one vertex (say, x) of H is
adjacent to vertices of G\H , then the stationary distribution on H is identical to the
stationary distribution on G restricted to H . To see this, it suffices to note that either
stationary distribution can be obtained by flipping a coin to determine the sign of x , then
conditioning the rest of the configuration on the result.

We can now make use of Theorem 1.1, together with monotonicity of the Ising model,
to prove our conjecture in this limited case.

Theorem 3.4. Let H be a subgraph of the finite graph G and suppose that at most one
vertex of H is adjacent to vertices of G\H. Begin in the all “+” state and fix a mixing
tolerance ε for continuous Glauber dynamics. Then TH (ε, +) ≤ TG(ε, +).

Proof. The result is of course trivial if H is disconnected from G\H ; otherwise let
x be the unique vertex of H with neighbors outside H . Run continuous-time Glauber
dynamics on G for t time units and let Q = 〈v1, . . . , vk〉 be the random sites updated.
Let Q′ on G be the result of replacing each update of x in Q by a block update of
{x} ∪ (G\H). Then, on account of the property noted above, the effect of the Q′ update
on H is identical to running continuous time Glauber dynamics on H . The theorem now
follows from repeated application of Corollary 2.6. ��
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