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Abstract: We consider Hermitian and symmetric random band matrices H = (hxy)

in d � 1 dimensions. The matrix entries hxy , indexed by x, y ∈ (Z/LZ)d , are inde-
pendent, centred random variables with variances sxy = E|hxy |2. We assume that sxy
is negligible if |x − y| exceeds the band width W . In one dimension we prove that the
eigenvectors of H are delocalized if W � L4/5. We also show that the magnitude of
the matrix entries |Gxy |2 of the resolvent G = G(z) = (H − z)−1 is self-averaging
and we compute E|Gxy |2. We show that, as L → ∞ and W � L4/5, the behaviour
of E|Gxy |2 is governed by a diffusion operator whose diffusion constant we compute.
Similar results are obtained in higher dimensions.

1. Introduction

Random band matrices H = (hxy)x,y∈� represent quantum systems on a large finite
graph � with random quantum transition amplitudes effective up to distances of order
W . The matrix entries are independent, centred random variables. The variance sxy :=
E|hxy |2 depends on the distance between the two sites x and y, and it typically decays
with the distance on a characteristic length scale W , called the band width of H . This
terminology comes from the simplest one-dimensional model where the graph � =
{1, 2, . . . , N } is a path on N vertices, and the matrix entries hxy are negligible if |x−y| �
W . In particular, if W = N and all variances are equal, we recover the well-known Wig-
ner matrix, which corresponds to a mean-field model. Higher-dimensional models are
obtained if � is taken to be the box of linear size L in Z

d . In this case the dimension of
the matrix is N = Ld .
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Typically, W is a mesoscopic scale, larger than the lattice spacing but smaller than
the diameter L of the system: 1 � W � L . These models are natural interpolations
between random Schrödinger operators with short range quantum transitions such as the
Anderson model [3] and mean-field random matrices such as Wigner matrices [40]. In
particular, random band matrices may be used to model the Anderson metal-insulator
phase transition, which we briefly outline.

The key physical parameter of all these models is the localization length �, which
describes the typical length scale of the eigenvectors of H . The system is said to be
delocalized if the localization length is comparable with the system size, � ∼ L , and
it is localized otherwise. Delocalized systems are electric conductors, while localized
systems are insulators.

Nonrigorous supersymmetric calculations [28] show that for random band matrices
the localization length is of order � ∼ W 2 in d = 1 dimension. In d = 2, the localization
length is expected to be exponentially growing in W , and in d � 3, it is macroscopic,
� ∼ L , i.e. the system is delocalized. We refer to the overview papers of Spencer [36,38]
and to the paper of Schenker [33] for more details on these conjectures.

These predictions are in accordance with those for the Anderson model, where the
random matrix is of the form −� + λV ; here � is the lattice Laplacian, V a random
potential (i.e. a diagonal matrix with i.i.d. entries), and λ a small coupling constant.
The localization length is � ∼ λ−2 in the regime of strong localization, which corre-
sponds to the whole spectrum for d = 1 and a neighbourhood of the spectral edges
for d > 1. This result follows from the rigorous multiscale analysis of Fröhlich and
Spencer [27] as well as from the fractional moment method of Aizenman and Mol-
chanov [2]. The two-dimensional Anderson model is conjectured to be in the weak
localization regime with � ∼ exp(λ−2) throughout the spectrum [1], but this has so far
not been proved. In dimensions d � 3, the prediction is that there is a threshold energy,
called the mobility edge, E0, that separates the localized regime near the band edges
from the delocalized regime in the bulk spectrum. The localization length is expected
to diverge as the energy E approaches the mobility edge from the localization side. The
increase of the localization length as an inverse power of E − E0 has been rigorously
established up to a certain scale in [5,37], but this analysis does not allow E to actu-
ally reach the conjectured value of E0. A key open question for the Anderson model
is to establish the metal-insulator transition, i.e. to show that the mobility edge indeed
exists.

For random band matrices, the metal-insulator transition can be investigated even in
d = 1 by varying the band width W . The prediction that the localization length � is of
order W 2 can be recast in the form that the eigenvectors are delocalized if W � L1/2.
Currently only lower and upper bounds have been established for �. On the side of local-
ization, Schenker [33] proved that � � W 8, uniformly in the system size, by extending
the methods of the proofs of the Anderson localization for random Schrödinger opera-
tors. As a lower bound, � � W was proved in [23] by using a self-consistent equation
for the diagonal matrix entries Gxx of the Green function G = G(z) = (H − z)−1. In
particular, Wigner matrices (W = L) are completely delocalized; in fact this has been
proven earlier in [18,19,21] using a simpler self-consistent equation for the trace of the
Green function, Tr G. This lower bound was improved to � � W 7/6 in [6,7] by using
diagrammatic perturbation theory. In fact, not only was the lower bound on localization
length established, but it was also shown that the unitary time evolution, eit H , behaves
diffusively on the spatial scale W , i.e. the typical propagation distance is

√
tW . Thus,

the mechanism responsible for the delocalization of random band matrices is a random
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walk (in fact, a superposition of random walks) with step size of order W . Showing that
the localization length is greater than the naive size W therefore requires a control of
the random walk for large times. For technical reasons, in [6,7] the time evolution could
only be controlled up to time t � W 1/3, which corresponds to delocalization on the
scale W 1+1/6. The work [6,7] was partly motivated by a similar result for the long-time
evolution for the Anderson model [15–17] combined with an algebraic renormalization
using Chebyshev polynomials [26,34].

In the current paper we develop a new self-consistent equation (see (4.2)) which
keeps track of all matrix entries of the Green function G, and not only the diagonal ones
as in [23]. We show that |Gxy |2 is self-averaging and E|Gxy |2 behaves as the resolvent
of a diffusion operator associated with a superposition of random walks with step size
of order W . This result can then be translated into a lower bound on the localization
length.

More precisely, for d = 1 we obtain full control on |Gxy(z)|2 for relatively broad
bands, W � N 4/5, and for η = Im z � (W/N )2. The condition W � N 4/5 is technical.
The condition on η comes from the facts that t = η−1 corresponds to the time scale
of the random walk, and a random walk with step size W in a box of size N reaches
equilibrium in a time of order (N/W )2. As a corollary, we prove that most eigenvectors
are delocalized if W � N 4/5. This improves the exponent in [6,7], where delocalization
for W � N 6/7 was proved. However, unlike in [6,7], here we do not obtain a lower
bound on the localization length � uniformly in N . We also prove analogous results in
higher dimensions. In addition, we investigate the case where the variances sxy of the
matrix entries decay slowly according to the power law |x − y|−(1+β) for 0 < β < 2.
In this regime the system exhibits superdiffusive behaviour. In particular, we may allow
decay of the form |x − y|−2, which is critical in the sense of [30].

One key open question for random band matrices is to control the resolvent G(z)
for η = Im z � W −1. None of the results mentioned above yield a nontrivial con-
trol below W −1. In the regime η � W −1 robust pointwise bounds on Gxy have been
obtained with high probability [23]. For 1

N E Tr G(z) and for η � W −0.99, a more
precise error estimate was derived for a special class of Bernoulli entries in [35]. How-
ever, controlling the quantity 1

N E Tr G(z) does not yield information on the locali-
zation length. In the current paper we obtain much more precise bounds on |Gxy |2
in the regime η � (W/N )2 � W −1/2 , which in particular imply delocalization
bounds.

Supersymmetric (SUSY) methods offer a very attractive approach to studying the
delocalization transition in band matrices, but rigorous control of the ensuing functional
integrals away from the saddle points is difficult. This task has been performed for the
density of states of a special three-dimensional Gaussian model [4]; this is the only result
where a nontrivial control for η � W −1 (in fact, uniform in η) was obtained. The SUSY
method has so far only been applied to the expectation of single Green function, EG,
and not to its square, E|G|2.

The analysis of the trace of the single Green function yields the limiting spectral
density of H which is the Wigner semicircle law provided the band width W diverges
as L → ∞. For band matrices the semicircle law on large scales, corresponding to
spectral parameter η > 0 independent of N , was given in [31]. More recently, a semi-
circle law on small scales, in which η � 1, was derived in [23] and generalized in
[9]. The results of [9,23] are summarized in Lemma 3.4 below. As an application of
our method, we prove a further improvement of the semiricle law in Theorem 2.2
below.
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The main new ingredient in this paper is the self-consistent equation for the matrix
T , whose entries

Txy :=
∑

i

sxi |Giy |2

are local averages of |Gxy |2. We show in Theorem 4.1 below that T satisfies a self-con-
sistent equation of the form

T = |m|2ST + |m|2S + E , (1.1)

where S is the matrix of variances (sxy), m ≡ m(z) is an explicit function of the spectral
parameter z = E + iη (see (2.14) below), and E is an error term. Neglecting the error
term E , we obtain

T ≈ |m|2S

1 − |m|2S
.

In this paper we implement the band structure of H using a symmetric probability den-
sity f on R

d , by requiring that sxy ≈ W −d f ((i − j)/W ) (see Sect. 2.1 below for the
precise statement). Using translation invariance of S and the Taylor expansion of its
Fourier transform Ŝ(p) in the low momentum regime, we obtain for |p| � W −1 that

Ŝ(p) ≈ 1 − W 2(p · Dp) + · · · , (1.2)

where D is the matrix of second moments of f (see (8.1) below). In order to give the
leading-order behaviour of T , we use |m|2 = 1 − αη + O(η2) (see (3.5) below), where

α ≡ α(E) := 2√
4 − E2

(E = Re z). (1.3)

Therefore the Fourier transform of T is approximately given by

α−1

η + W 2(p · Deff p)
, where Deff := D

α
, (1.4)

in the regime |p| � W −1 and η � 1. This corresponds to the diffusion approximation
on scales larger than W with an effective diffusion constant Deff . In the language of
diagrammatic perturbation theory, the change from D to Deff has the interpretation of
a self-energy renormalization. This result coincides with Eq. (1.5.5) of [36], which was
obtained by computing the sum of ladder diagrams in a high-moment expansion.

The main result of this paper is a justification of this heuristic argument in a certain
range of parameters. The error term E contains fluctuations of local averages. Roughly
speaking, we need to control the size of

∑
x

[|Gxy |2 − Px |Gxy |2
]
, where Px denotes

partial expectation with respect to the matrix entries in the x th row (see T̃xy in (4.5)
below). Unfortunately, |Gxy |2 and |Gx ′ y |2 for x �= x ′ are not independent; in fact they
are strongly correlated for small η, and they do not behave like independent random
variables. Estimating high moments of these averages requires an unwrapping of the
hierarchical correlation structure among several resolvent matrix entries. The necessary
estimates are quite involved. They are a special case of the more general Fluctuation
Averaging Theorem that is published separately [8], and was originally developed for
application in the current paper. There have been several previous results in this direction;
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see [25, Lem. 5.2], [24, Lem. 4.1], [10, Thm. 5.6], and [32, Thm. 3.2]. The Fluctuation
Averaging Theorem generalizes these ideas to arbitrary monomials of G and exploits an
additional cancellation mechanism in averages of |Gxy |2 that is not present in averages
of Gxx . For more details, see [8].

2. Formulation of the Results

2.1. Setup. Fix d ∈ N and let f be a smooth and symmetric (i.e. f (x) = f (−x))
probability density on R

d . Let L and W be integers satisfying

Lδ � W � L (2.1)

for some fixed δ > 0. The parameter L is the fundamental large quantity of our model.
Define the d-dimensional discrete torus

T
d
L := [−L/2, L/2)d ∩ Z

d .

Thus, T
d
L has N := Ld lattice points. For the following we fix an (arbitrary) ordering of

T
d
L , which allows us to identify it with {1, . . . , N }. We define the canonical representative

of i ∈ Z
d through

[i]L := (i + LZ
d) ∩ T

d
L ,

and introduce the periodic distance

|i |L := ∣∣[i]L
∣∣ ,

where |·| denotes Euclidean distance in R
d .

Define the N × N matrix S(L , W ) ≡ S = (si j : i, j ∈ T
d
L) through

si j := 1

ZL ,W
f

( [i − j]L

W

)
, (2.2)

where ZL ,W is a normalization constant chosen so that S is a stochastic matrix:

∑

j

si j = 1 (2.3)

for all i ∈ T
d
L . Unless specified otherwise, summations are always over the set T

d
L .

By symmetry of f we find that S is symmetric: si j = s ji . As a stochastic matrix, the
spectrum of S lies in [−1, 1]. In fact it is proved in Lemma A.1 of [23] that there exists
a positive constant δ, depending only on f , such that

− 1 + δ � S � 1. (2.4)

We let (ζi j : i � j), where i, j ∈ T
d
L , be a family of independent, complex-valued,

centred random variables ζi j ≡ ζ
(N )
i j satisfying

Eζi j = 0 , E|ζi j |2 = 1 , ζi i ∈ R. (2.5)
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For i > j we define

ζi j := ζ̄ j i .

We define the band matrix H = (hi j )i, j∈T
d
L

through

hi j := (si j )
1/2 ζi j . (2.6)

Thus we have H = H∗ and

E|hi j |2 = si j . (2.7)

In particular, we may consider the two classical symmetry classes of random matrices:
real symmetric and complex Hermitian. For real symmetric band matrices we assume

ζi j ∈ R for all i � j. (2.8)

For complex Hermitian band matrices we assume

Eζ 2
i j = 0 for all i < j (2.9)

in addition to (2.5). A common way to satisfy (2.9) is to choose the real and imaginary
parts of ζi j to be independent with identical variance. As in [8], our results also hold
without this assumption, but we omit the details of this generalization to avoid needless
complications.

We introduce the parameter

M ≡ MN := 1

maxi, j si j
. (2.10)

From the definition of S it is easy to see that Z N ,W = W d + O(W d−1). In particular,

M = (
W d + O(W d−1)

)
/‖ f ‖∞.

We assume that the random variables ζi j have finite moments, uniformly in N , i , and
j , in the sense that for all p ∈ N there is a constant μp such that

E|ζi j |p � μp (2.11)

for all N , i , and j .
The following definition introduces a notion of a high-probability bound that is suited

for our purposes.

Definition 2.1 (Stochastic domination). Let X = (
X (N )(u) : N ∈ N, u ∈ U (N )

)
be a

family of random variables, where U (N ) is a possibly N-dependent parameter set. Let
� = (

�(N )(u) : N ∈ N, u ∈ U (N )
)

be a deterministic family satisfying �(N )(u) � 0.
We say that X is stochastically dominated by �, uniformly in u, if for all ε > 0 and
D > 0 we have

sup
u∈U (N )

P

[∣∣X (N )(u)
∣∣ > N ε�(N )(u)

]
� N−D

for large enough N � N0(ε, D). Unless stated otherwise, throughout this paper the sto-
chastic domination will always be uniform in all parameters apart from the parameter
δ in (2.1) and the sequence of constants μp in (2.11); thus, N0(ε, D) also depends on
δ and μp. If X is stochastically dominated by �, uniformly in u, we use the equivalent
notations

X ≺ � and X = O≺(�).
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For example, using Chebyshev’s inequality and (2.11) one easily finds that

hi j ≺ (si j )
1/2 � M−1/2 , (2.12)

so that we may also write hi j = O≺((si j )
1/2). The relation ≺ satisfies the familiar alge-

braic rules of order relations. The general statements are formulated later in Lemma 3.3.
We remark that Definition 2.1 is tailored to the assumption that (2.11) holds for any

p. If (2.11) only holds for some large but fixed p then all of our results still hold, but
in a somewhat weaker sense. Indeed, the control of the exceptional events in our theo-
rems is expressed via the relation ≺. If only finitely many moments are assumed to be
finite in (2.11), then the exponents ε and D in the definition of ≺ cannot be chosen to
be arbitrary, and will in fact depend on p. Repeating our arguments under this weaker
assumption would require us to follow all of these exponents through the entire proof.
Our assumption that (2.11) holds for any p streamlines our statements and proofs, by
avoiding the need to keep track of the precise values of these parameters.

Throughout the following we make use of a spectral parameter

z = E + iη , E ∈ R, η > 0.

We choose and fix two arbitrary (small) global constants γ > 0 and κ > 0. All of our
estimates will depend on κ and γ , and we shall often omit the explicit mention of this
dependence. Set

S ≡ S(N )(κ, γ ) := {
E + iη : −2 + κ � E � 2 − κ , M−1+γ � η � 10

}
. (2.13)

We shall always assume that the spectral parameter z lies in S(κ, γ ). In this paper we
always consider families X (N )(u) = X (N )

i (z) indexed by u = (z, i), where z ∈ S(κ, γ )

and i takes on values in some finite (possibly N -dependent or empty) index set.
We introduce the Stieltjes transform of Wigner’s semicircle law, defined by

m(z) := 1

2π

∫ 2

−2

√
4 − ξ2

ξ − z
dξ. (2.14)

It is well known that the Stieltjes transform m is characterized by the unique solution of

m(z) +
1

m(z)
+ z = 0 (2.15)

with Im m(z) > 0 for Im z > 0. Thus we have

m(z) = −z +
√

z2 − 4

2
. (2.16)

To avoid confusion, we remark that the Stieltjes transform m was denoted by msc in the
papers [10–14,18–25], in which m had a different meaning from (2.14).

We define the resolvent of H through

G ≡ G(z) := (H − z)−1 ,

and denote its entries by Gi j (z). In the following sections we list our main results on
the resolvent matrix entries.

We conclude this section by introducing some notation that will be used throughout
the paper. We use C to denote a generic large positive constant, which may depend on
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some fixed parameters and whose value may change from one expression to the next.
Similarly, we use c to denote a generic small positive constant. For two positive quanti-
ties AN and BN we sometimes use the notation AN � BN to mean cAN � BN � C AN .
Moreover, we use AN � BN to mean that there exists a constant c > 0 such that
AN � N−c BN ; we also use AN � BN to denote BN � AN . (Note that these latter con-
ventions are nonstandard.) Finally, we introduce the Japanese bracket 〈x〉 := √

1 + |x |2.
Most quantities in this paper depend on the spectral parameter z, which we however
mostly omit from the notation.

For simplicity, here we state our main results assuming that d = 1 and that f satisfies
the decay condition

| f (x)| � Cn〈x〉−n for all n ∈ N. (2.17)

Since d = 1, we have N = L and we shall consistently use N instead of L . Similarly,
M � W , and we shall consistently use W in estimates. We also abbreviate T

1
N ≡ T.

The generalization of our results to d > 1 and slowly decaying f is straightforward,
and will be given in Sect. 8. We emphasize that the core of our argument, given in
Sects. 3–5, is valid in general, independent of the dimension.

2.2. Improved local semicircle law for resolvent entries and delocalization. Through-
out this section we assume d = 1 and (2.17). The Wigner semicircle law states that the
normalized trace, 1

N Tr G(z), is asymptotically given by m(z). In fact, this asymptotics
holds even for individual matrix entries. Our first theorem controls the (z-dependent)
random variable

�(z) := max
x,y

∣∣Gxy(z) − δxym(z)
∣∣.

For the following we introduce the deterministic control parameter � ≡ �(N )(z) through

�2 := max

{
1

Nη
,

1

W
√

η

}
. (2.18)

Theorem 2.2 (Improved local semicircle law). Assume d = 1 and (2.17). Suppose
moreover that

N � W 5/4 , η � N 2/W 3. (2.19)

Then we have

�2 ≺ �2 (2.20)

for z ∈ S.

Clearly, the assumption η � N 2/W 3 can be replaced with the stronger assumption
η � W −1/2. The assumption N � W 5/4 is technical; to see why it is needed, see (6.3)
in the proof of Theorem 2.2 below. In the regime (2.19), Theorem 2.2 improves the
earlier result

�2 ≺ 1

Mη
(2.21)
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proved in [23] (see Lemma 3.4 below). In fact, the estimate (2.20) is optimal, as may be
seen from (2.38) and the first estimate of (2.30) below. By spectral decomposition of G
one easily finds that

1

N 2

∑

x,y

|Gxy |2 = 1

N 2 Tr G∗G = 1

Nη
Im

Tr G

N
= Im m

Nη
+ O≺

(
�

Nη

)
.

Thus, in the regime where � is bounded, the average of |Gxy |2 is of order (Nη)−1.
Here we introduced the notation G∗(z) := (G(z))∗ = (H − z̄)−1, which we shall use
throughout the following.

Remark 2.3. The bound (2.20) implies an estimate on the Stieltjes transform of the
empirical spectral density, m N (z) := N−1 Tr G(z). Under the assumptions of Theorem
2.2 and the conditions (2.19), we have

m N (z) − m(z) ≺ �2 (2.22)

for z ∈ S. Once � ≺ � is established, (2.22) easily follows from

1

N

∑

k

Qk Gkk ≺ �2 ; (2.23)

we leave the details to the reader. We remark that (2.23) is the simplest form of the
fluctuation averaging mechanism (see Sect. 3.1). A concise proof of (2.23) can be found
in [9, Thm. 4.6].

For η � (W/N )2 we have �2 = (Nη)−1, and the bound (2.20) therefore shows
that all off-diagonal entries of G have a magnitude comparable with the average of
their magnitudes. We say that the resolvent is completely delocalized. Complete delo-
calization of the resolvent implies that the eigenvectors are completely delocalized in a
weak sense. The precise formulation is given in Proposition 7.1 below. By choosing η

such that W −1/2 � η � (W/N )2 and invoking Proposition 7.1 we obtain the following
corollary.

Corollary 2.4 (Eigenvector delocalization). Assume d = 1 and (2.17). If N � W 5/4

then the eigenvectors of H are completely delocalized in the sense of Proposition 7.1
below.

This corollary improves the result in [6,7], where complete eigenvector delocaliza-
tion (in a slightly weaker sense; see Remark 2.7 below) was proved under the condition
N � W 7/6. It was observed in Sect. 11 of [7] that the graphical perturbative ren-
ormalization scheme of [6,7] faces a fundamental barrier at N = W 6/5. The reason
for this barrier is that a large family of graphs whose contribution was subleading for
N � W 6/5 in fact yield a leading-order contribution for N � W 6/5 if estimated indi-
vidually. The cancellation mechanism among these subleading graphs has so far not
been identified. As evidenced by Corollary 2.4, our present approach goes beyond this
barrier.
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2.3. Diffusion profile. In this section we assume d = 1 and (2.17). In the previous
section we saw that for η � (W/N )2 the profile of |Gxy |2 is essentially flat. In the
complementary regime, η � (W/N )2, the averaged resolvent E|Gxy |2 is determined by
a non-constant deterministic profile given by the diffusion approximation

�xy :=
( |m|2S

1 − |m|2S

)

xy
(x, y ∈ T). (2.24)

Note that the matrix � = (�xy) solves the equation

� = |m|2S� + |m|2S ,

which is obtained from (1.1) by dropping the error term E . Clearly, �xy is translation
invariant, i.e. �xy = �u0 with u = [x − y]N . Moreover, �xy > 0 for all x, y. Indeed,
this follows immediately from the geometric series representation

�xy =
∑

n�1

|m|2n(Sn)xy , (2.25)

which converges by |m| < 1 (see (3.6) below) and the trivial bound 0 � (Sn)xy � 1, as
follows from (2.3).

The representation (2.25) in fact provides the following interpretation of �xy in
terms of random walks. From (3.5) below we find that |m|2 ≈ e−αη (recall the defini-
tion of α from (1.3)). Thus the right-hand side of (2.25) may be approximately written as∑

n�1 e−nαη(Sn)xy . By definition, S is a doubly stochastic matrix – the transition matrix
of a random walk on T whose steps are of size W and whose transition probabilities
are given by p(x → y) = sxy . The normalized variance of each step is given by the
unrenormalized diffusion constant

D ≡ DW := 1

2

∑

u∈T

(
u

W

)2

su0. (2.26)

(We normalize by W −2 to account for the fact that the distribution su0 has variance
O(W 2).) It is easy to see that

D = D∞ + O(W −1) where D∞ := 1

2

∫
x2 f (x) dx . (2.27)

We conclude that �xy is a superposition of random walks up to times of order (αη)−1.
In this superposition the random walk with n steps carries a weight |m|2n ≈ e−nαη, so
that walks with times larger than (αη)−1 are strongly suppressed. The total weight of
�u0 is

∑

u

�u0 =
∑

n�1

|m|2n ≈ (αη)−1 ; (2.28)

a precise computation is given in (5.2) below.
The following theorem shows that an averaged version of |Gxy |2 is asymptotically

given by �xy with high probability. The averaging can be done in two ways. First, we
can take the expectation E|Gxy |2. In fact, taking partial expectation Px |Gxy |2 is enough;
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here Px denotes partial expectation in the randomness of the x th row of H (see Definition
3.2 below). Second, we can average in the index x (or y or both) on a scale of W ; for
simplicity we consider the weighted average

Txy :=
∑

i

sxi |Giy |2. (2.29)

Note that T is not symmetric, but our results also hold for Txy replaced with the quantities∑
j sy j |Gx j |2 or

∑
i, j sxi sy j |Gi j |2.

Theorem 2.5 (Diffusion profile). Assume d = 1 and (2.17). Suppose that N � W 5/4

and (W/N )2 � η � 1. Then

|Txy − �xy | ≺ 1

Nη
,

∣∣∣Px |Gxy |2 − δxy |m|2 − |m|2�xy

∣∣∣ ≺ 1

Nη
+

δxy√
W

.

(2.30)

In addition, we have the upper bounds

Txy ≺ ϒxy (2.31)

and

∣∣Gxy − δxym
∣∣2 ≺ ϒxy , (2.32)

where we defined

ϒxy ≡ ϒ(K )
xy := 1

Nη
+

1

W
√

η
exp

[
−

√
αη

W
√

D
|x − y|N

]
+

1

W

〈√
η|x − y|N

W

〉−K

.

(2.33)

Here K is an arbitrary, fixed, positive integer. All estimates are uniform in z ∈ S and
x, y ∈ T.

Note that the total mass of the distribution |Gx0|2 may be computed explicitly by
spectral decomposition of G: assuming � ≺ � we have

∑

x

Tx0 =
∑

x

|Gx0|2 = Im G00

η
= Im m

η
(1 + O≺(�)) , (2.34)

in agreement with the corresponding statement (2.28) for the deterministic limiting pro-
file.

Remark 2.6. We expect that (2.30) should in fact hold under the weaker conditions
η � 1

N and N � W 2. The improved local semicircle law (2.20) should also hold under
these weaker conditions. In particular, this would imply complete delocalization of the
eigenvectors for all N � W 2. One obstacle is that a non-trivial control on � in the
regime η � 1

W is difficult to obtain.
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Remark 2.7. In [6,7] a diffusion approximation was proved for E
∣∣(e−it H )xy

∣∣2 up to times
t � W 1/3; this result was established only in a weak sense, i.e. by integrating against a
test function in x − y, living on the diffusive scale W t1/2. The formula

1

H − E − iη
= i

∫ ∞

0
e−it (H−E−iη) dt (2.35)

relates the resolvent with the unitary time evolution. Notice that the time integration can
be truncated at t � t0 with t0 slightly larger than η−1. Hence, controlling the resolvent
whose spectral parameter has imaginary part greater than η is basically equivalent to
controlling the unitary time evolution up to time t = η−1. Although it was not explicitly
worked out in [6,7], the control on e−it H up to t � W 1/3 allows one to control the
resolvent for η � W −1/3. Theorem 2.5 (combined with Theorem 2.2) is thus stronger
than the results of [6,7] in the following three senses.

(i) The resolvent is controlled for η � W −1/2 (instead of η � W −1/3).
(ii) The control on the profile is pointwise in x and y (instead of in a weak sense on

the scale Wη−1/2).
(iii) The estimates hold with high probability (instead of in expectation).

However, the result in the current paper is not uniform in N , unlike that of [6,7].

We conclude this section with an asymptotic result on the deterministic profile �x0.
Since we are interested in large values of x , we need to consider the small-momentum
behaviour of the Fourier transform of �x0. Using the small-p expansion (1.2) and (1.4),
we therefore find that �x0 ≈ θx , where we defined the N -periodic function

θx := |m|2
N

∑

p∈ 2π
N Z

eipx 1

αη + W 2 Dp2 = |m|2
2W

√
Dαη

∑

k∈Z

exp

[
−

√
αη

W
√

D

∣∣x + k N
∣∣
]

;

(2.36)

here the second equality follows by Poisson summation and the Fourier transform∫
eipx (1 + p2)−1 d p = πe−|x |. The following proposition, proved in Appendix A, gives

the precise statement.

Proposition 2.8 (Deterministic diffusion profile). Assume d = 1 and (2.17). For each
K ∈ N we have

�xy = θx−y + O

(
1

W 2

)
+ OK

(
1

W

〈√
η |x − y|N

W

〉−K )
(2.37)

uniformly for x, y, and z ∈ S with η � 1.
In particular,

max
x,y

�xy � �2. (2.38)

Moreover, if (W/N )2 � η � 1 and N � W 2, we have the sharp upper bound �xy �
Cϒxy .
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Remark 2.9. The leading-order behaviour of (2.37) is given by (2.36). If η � (W/N )2

then θ is essentially a constant, i.e. the profile is flat. Conversely, if η � (W/N )2

then the leading term on the right-hand side of (2.36) is given by the term k = 0 (by
periodicity of θ we assume that x ∈ T). This is an exponentially decaying profile on
the scale |x | ∼ Wη−1/2. The shape of the profile is therefore nontrivial if and only
if η � (W/N )2. Note that in both of the above regimes the error terms in (2.37) are
negligible compared with the main term.

The total mass of the profile
∑

x∈T
θx is given by N times the term p = 0 in the first

sum of (2.36):

∑

x∈T

θx = |m|2
αη

= Im m

η

(
1 + O(η)

)
, (2.39)

where in the last step we used the elementary identities (3.3) and (3.5) below. In fact, the
calculation (2.39) is a mere consistency check (to leading order) since

∑
x �x0 = Im m

η
;

see (5.2) below. We conclude that the average height of the profile is of order (Nη)−1.
The peak of the exponential profile has height of order (W

√
η)−1, which dominates over

the average height if and only if η � (W/N )2. The regime η � (W/N )2 corresponds
to the regime, where η is sufficiently large that the complete delocalization has not taken
place, and the profile is mostly concentrated in the region |x − y| � Wη−1/2 � N .

These scenarios are best understood in a dynamical picture in which η is decreased
down from 1. The ensuing dynamics of θ corresponds to the diffusion approximation,
where the quantum problem is replaced with a random walk of step-size of order W . On a
configuration space consisting of N sites, such a random walk will reach an equilibrium
beyond time scales (N/W )2. As observed in Remark 2.7, η−1 plays the role of time t , so
that in this dynamical picture equilibrium is reached for t ∼ η−1 � (N/W )2. Figure 1
illustrates this diffusive spreading of the profile for different values of η.

Remark 2.10. The W -dependent quantity D in the definition (2.36) may be replaced with
the constant D∞ on the right-hand side of (2.36), at the expense of a multiplicative error

Fig. 1. A plot of the diffusion profile function at five different values of η, where the argument x ranges over
the torus T. Left: the graph x �→ ηθx (see (2.39) for the choice of normalization). Right: the graph x �→ log θx .
Here we chose N = 25W and η = 5−k for k = 1, 2, 3, 4, 5. The cases k = 1, 2, 3 (where η > (W/N )2) are
drawn using dashed lines, the case k = 4 (where η = (W/N )2) using solid lines, and the case k = 5 (where
η < (W/N )2) using dotted lines
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(1+ O(W −1 log W )) and an additive error O(W −2). Indeed, the replacement D �→ D∞
in the prefactor is trivial by (2.27). In order to estimate the error arising from the replace-
ment D �→ D∞ in the exponent, we use the estimate e−ξ(1+O(1/W )) = e−ξ (1+O(x/W ))

with ξ ∼
√

η

W |x − y + k N |. If ξ � C0 log W then x/W � C0W −1 log W , which is small
enough. On the other hand, if ξ � C0 log W then e−ξ � W −C0 , so that the resulting
error is an additive error O(W −2).

2.4. Delocalization with a small mean-field component. In this section we continue to
assume d = 1 and (2.17). We now consider a related model

Hε = (1 − ε)1/2 H +
√

εU , (2.40)

where H is the band matrix from Sect. 2.1, U = (ui j ) is a standard Wigner matrix
independent of H , and ε � 1

2 is a small parameter. We assume that U has the same
symmetry type as H , i.e. either (2.8) or (2.9). Its matrix entries are normalized such
that Eui j = 0 and E|ui j |2 = 1

N . Moreover, in analogy to (2.11), we make the technical
assumption that for each p there exists a constant μp such that E|N 1/2ui j |p � μp for
all N , i , and j .

Let Sε = (s(ε)
i j ) denote the matrix of variances of the entries of Hε = (h(ε)

i j ), i.e.

s(ε)
i j := E

∣∣h(ε)
i j

∣∣2. We find

Sε = (1 − ε)S + εee∗ ,

where we introduced the vector e := N−1/2(1, 1, . . . , 1)T . (Hence ee∗ is the matrix
of the variances of U .) Clearly, 0 � Sε � 1 and Sε is a symmetric stochastic matrix
satisfying (2.3) and (2.10).

The effect of adding a small Wigner component of size ε is that the imaginary part
of the spectral parameter effectively increases from η to η + ε in the local semicircle
law and in the diffusion approximation. In particular, we can eliminate the condition
N � W 5/4 and still obtain delocalization for Hε provided ε is not too small. These
results are summarized in the following theorem. In order to state it, we introduce the
control parameter

�2
ε := max

{
1

Nη
,

1

W
√

ε + η

}
, (2.41)

which is analogous to � defined in (2.18).

Theorem 2.11 (Delocalization with small mean-field component). Assume d = 1 and
(2.17). The following estimates hold uniformly for z ∈ S.

(i) Suppose that η(η + ε) � W −1. Moreover, suppose that N � W 5/4 or η + ε �
W −1/2. Then

�2 ≺ �2
ε. (2.42)

(ii) Suppose that ε + η � W −1/2 and

1

W (ε + η)
� η � W

√
ε + η

N
. (2.43)
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Then the resolvent is completely delocalized:

�2 ≺ 1

Nη
.

(iii) If ε � (N/W 2)2/3 then the eigenvectors of Hε are completely delocalized in the
sense of Proposition 7.1.

This theorem formulates only the bounds concerning delocalization, i.e. the counter-
parts of Theorem 2.2 and Corollary 2.4. Similarly to Theorem 2.5, a non-trivial profile can
be proved for the average of |Gxy |2. The profile is visible in the regime Nη � W

√
ε + η,

and it is given by

�(ε)
xy :=

( |m|2Sε

1−|m|2Sε

)

xy
≈ |m|2(1−ε)

W
√

D
(
(1 − ε)αη + ε

) exp

[
−

√
(1 − ε)αη + ε

W
√

D
|x−y|

]
,

(2.44)

where the approximation is valid in the regime |x − y| � N . The details of the precise
formulation and the proof are left to the reader.

3. Preliminaries

In this subsection we introduce some further notations and collect some basic facts
that will be used throughout the paper. Throughout this section we work in the general
d-dimensional setting of Sect. 2.1.

Definition 3.1 (Minors). For T ⊂ {1, . . . , N } we define H (T ) by

(H (T ))i j := 1(i /∈ T )1( j /∈ T )hi j .

Moreover, we define the resolvent of H (T ) through

G(T )
i j (z) := (H (T ) − z)−1

i j .

We also set

(T )∑

i

:=
∑

i :i /∈T

.

When T = {a}, we abbreviate ({a}) by (a) in the above definitions; similarly, we
write (ab) instead of ({a, b}). Unless specified otherwise, summations are over the set
{1, 2, . . . , N }. Recalling the identification of T

d
L with {1, 2, . . . , N }, this convention is

in agreement with the one given after (2.3).

Definition 3.2 (Partial expectation and independence). Let X ≡ X (H) be a random
variable. For i ∈ {1, . . . , N } define the operations Pi and Qi through

Pi X := E(X |H (i)) , Qi X := X − Pi X.

We call Pi partial expectation in the index i . Moreover, we say that X is independent
of T ⊂ {1, . . . , N } if X = Pi X for all i ∈ T .
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The following lemma collects basic algebraic properties of stochastic domination ≺.
We shall use it tacitly throughout Sects. 4–7. Roughly it says that, under some weak
restrictions, ≺ satisfies all the usual algebraic properties of � on R.

Lemma 3.3. (i) Suppose that X (u, v) ≺ �(u, v) uniformly in u ∈ U and v ∈ V . If
|V | � N C for some constant C then

∑

v∈V

X (u, v) ≺
∑

v∈V

�(u, v)

uniformly in u.
(ii) Suppose that X1(u) ≺ �1(u) uniformly in u and X2(u) ≺ �2(u) uniformly in u.

Then

X1(u)X2(u) ≺ �1(u)�2(u)

uniformly in u.
(iii) Suppose that �(u) � N−C for all u and that for all p there is a constant C p such

that E|X (u)|p � N C p for all u. Then, provided that X (u) ≺ �(u) uniformly in
u, we have

Pa X (u) ≺ �(u) and Qa X (u) ≺ �(u)

uniformly in u and a.

Proof. The claims (i) and (ii) follow from a simple union bound. The claim (iii) follows
from Chebyshev’s inequality, using a high-moment estimate combined with Jensen’s
inequality for partial expectation. We omit the details. ��

Note that if for any ε > 0 and p � 1 we have

E|X |p � N ε� p (3.1)

for large enough N (depending on ε and p) then X ≺ � by Chebyshev’s inequality.
Moreover, if X � � almost surely, then X ≺ �. Hence O≺(�) describes a larger class
of random variables than O(�).

We need the following bound on �.

Lemma 3.4. We have

�(z) ≺ 1√
Mη

(3.2)

uniformly for z ∈ S.

Away from the spectral edges, i.e. for z ∈ S, this bound was proved in Proposition
3.3 of [23]. In [23], the matrix entries xi j were assumed to have at most subexponential
tails (a stronger assumption than (2.11) for all p), but the proof of [23] extends trivially
to our case. See [9] for a simplified and generalized alternative proof.

The following result collects some elementary facts about m.
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Lemma 3.5. We have the identity

1 − |m|2 = η|m|2
Im m

. (3.3)

There is a constant c > 0 such that

c � |m| � 1 (3.4)

on z ∈ S. Furthermore,

|m|2 = 1 − ηα + O(η2) (3.5)

for z ∈ S, with α given in (1.3). We also have the bounds

Im m � 1 , 1 − |m|2 � η (3.6)

for z ∈ S. (The implicit constants in the two latter estimates depend on κ .)

Proof. The identity (3.3) follows by taking the imaginary part of (2.15). The estimate
(3.4) was proved in [25], Lemma 4.2. From (2.16) we find Im m = 1/α + O(η), from
which (3.5) follows easily using (3.3). Finally, (3.6) follows from Lemma 4.2 in [25]
combined with (3.3) and (3.4). ��

The following resolvent identities form the backbone of all of our proofs. They first
appeared in [23, Lems. 4.1 and 4.2] and [11, Lem. 6.10]. The idea behind them is that
a resolvent entry Gi j depends strongly on the i th and j th columns of H , but weakly on
all other columns. The first set of identities (called Family A) determine how to make a
resolvent entry Gi j independent of an additional index k �= i, j . The second set (Family
B) identities express the dependence of a resolvent entry Gi j on the entries in the i th or
in the j th column of H .

Lemma 3.6 (Resolvent identities; [8, Lem. 3.5]). For any Hermitian matrix H and
T ⊂ {1, . . . , N } the following identities hold.

Family A. For i, j, k /∈ T and k �= i, j, we have

G(T )
i j = G(T k)

i j +
G(T )

ik G(T )
k j

G(T )
kk

,
1

G(T )
i i

= 1

G(T k)
i i

− G(T )
ik G(T )

ki

G(T )
i i G(T k)

i i G(T )
kk

.

(3.7)

Family B. For i, j /∈ T satisfying i �= j we have

G(T )
i j = −G(T )

i i

(T i)∑

k

hik G(T i)
k j = −G(T )

j j

(T j)∑

k

G(T j)
ik hk j . (3.8)

Definition 3.7. The deterministic control parameter � is admissible if

M−1/2 � �(N )(z) � M−γ /2 (3.9)

for all N and z ∈ S. (Recall the parameter γ from (2.13).)
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A typical example of an admissible control parameter is

�(z) = 1√
Mη

. (3.10)

If � is admissible then the lower bound in (3.9) together with (2.12) ensure that hi j ≺ �.
The following lemma gives an expansion formula for the diagonal entries of G.

Lemma 3.8. Suppose that � ≺ � for some admissible �. Defining

Zi :=
(i)∑

k,l

Qi
(
hik G(i)

kl hli
)
,

we have

Gii = m + m2 Zi + O≺
(
�2 + M−1/2) , Zi ≺ �. (3.11)

Proof. The claim is an immediate consequence of Eqs. (9.1) and (9.2) in [8]. (Related
but less explicit formulas were also obtained in [24]). ��

3.1. Averaging of fluctuations. In this section we collect the necessary results from
[8]. The following proposition is a special case of the Fluctuation Averaging Theorem
of [8].

Proposition 3.9. Suppose that � ≺ � for some admissible control parameter �. Then

(μν)∑

a

sρaGμaGaν ≺ �(� + M−1/4)2 ,

(μ)∑

a

sρaGμaG∗
aμ ≺ �2 , (3.12)

and

(μ)∑

a

sρa Qa(GμaGaμ) ≺ �3 ,

(μ)∑

a

sρa Qa(GμaG∗
aμ) ≺ �2(� + M−1/4)2

,

(3.13)

as well as

(μ)∑

a �=b

sρasabGbaGaμG∗
μb ≺ �2(� + M−1/4)2

,

(μ)∑

a �=b

sρasbaGbaGaμG∗
μb ≺ �2(� + M−1/4)2

.

(3.14)

Proof. All of these estimates follow immediately from Theorem 4.8, Lemma B.1, and
Proposition B.2 of [8], recalling that by assumption Im m � cκ by (3.6). ��
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The important quantity on the right-hand sides of (3.12), (3.13) and (3.14) is �. The
additional factors M−1/4 are a technical1 nuisance, but their precise form will play some
role in the large-η regime, where M−1/4 is not negligible compared to �.

To interpret these estimates, we note that each summand in (3.12), (3.13), and (3.14)
has a naive size given by �k , where k is the number of off-diagonal resolvent entries in the
summand. Without averaging, this naive size would be a sharp upper bound. In the second
estimate in (3.12) the averaging does not improve the bound since GμaG∗

aμ = |Gμa |2 is
positive. In all other estimates, the monomial on the left-hand side either has a nontrivial
phase or its expectation is zero thanks to Qa . Proposition 3.9 asserts that in these cases
the averaged quantity is smaller than its individual summands. Note that this averaging
of fluctuations is effective even though the entries of G may be strongly correlated. How
many additional factors of � one gains depends on the structure of the left-hand side in
a subtle way; see Theorem 4.8 of [8] for the precise statement. For the applications in
this paper the second bound in (3.13) is especially important; here the averaging yields
a gain of two extra factors of �.

We remark that all these bounds also hold if the weight functions sρa are replaced
with a more general weight function. The precise definition is given in Definition 4.4 of
[8]. All the weights used in this paper satisfy Definition 4.4 of [8].

We also note that averaging in indices can be replaced by expectations. We shall need
the following special case of Theorem 4.15 of [8].

Proposition 3.10. Suppose that � ≺ � for some admissible control parameter �. Then
for a �= μ, ν,

Pa(GμaGaν) ≺ �(� + M−1/4)2. (3.15)

4. Self-consistent Equation for T

After these preparations, we now move on to the main arguments of this paper. Through-
out this section we work in the general d-dimensional setting of Sect. 2.1. In this section
we derive a self-consistent equation for T , given in Theorem 4.1, whose error terms are
controlled precisely using the fluctuation averaging from Proposition 3.9. In Sect. 5 we
solve this self-consistent equation; the result is given in Proposition 5.1.

Theorem 4.1. Suppose that � ≺ � for some admissible control parameter �. Then we
have

Txy = |m|2
∑

i

sxi Tiy + |m|2sxy + O≺
(
�4 + �2 M−1/2). (4.1)

In matrix notation,

T = |m|2ST + |m|2S + E, (4.2)

where the matrix entries of the error satisfy

Exy ≺ �4 + �2 M−1/2. (4.3)

1 This nuisance is necessary, however, and Proposition 3.9 would be false without the factors of M−1/4.
See [8, Rem. 4.10].



386 L. Erdős, A. Knowles, H.-T. Yau, J. Yin

The naive size of Txy is of order �2. Notice that the error term in the self-consistent
equation (4.2) is smaller by two orders. This improvement is essentially due to second
estimate of (3.13).

Remark 4.2. Instead of averaging in the first index of the resolvent in the definition
of T (2.29), we could have averaged in the second, resulting in the quantity T ′

xy :=∑
j |Gx j |2s jy . Then T ′ satisfies the self-consistent equation

T ′ = |m|2T ′S + |m|2S + E ′ ,

where E ′ also satisfies (4.3).

Before the proof we mention that this result also gives a self-consistent equation for
the two-sided averaged quantity

Yxz := (T S)xz =
∑

iy

sxi |Giy |2syz = (ST ′)xz .

Taking the average
∑

y syz of (4.1), we get the following corollary.

Corollary 4.3. Suppose that � ≺ � for some admissible control parameter �. Then
we have

Y = |m|2SY + |m|2S2 + E and Y = |m|2Y S + |m|2S2 + Ẽ , (4.4)

where E and Ẽ each satisfy (4.3).

The rest of this section is devoted to the proof of Theorem 4.1. We begin by writing

Txy =
∑

i

sxi Pi |Giy |2 + T̃xy , T̃xy :=
∑

i

sxi Qi |Giy |2. (4.5)

Then by the second formula in (3.13), we have

T̃xy = O≺(�4 + �2 M−1/2). (4.6)

Notice that (3.13) applies only to the summands i �= y in (4.5). The estimate for the
summand i = y follows from

sxy Qy |G yy |2 = sxy Qy |G yy − m|2 + 2sxy Re m̄ Qy(G yy − m) = O≺(�2 M−1/2) ,

where we used that (G yy − m) ≺ � (see (3.11)) and that � is admissible, and in
particular �M−1 � �2 M−1/2.

We shall compute
∑

i sxi Pi |Giy |2 up to error terms of order �4. We have the follow-
ing result.

Lemma 4.4. Suppose that � ≺ � for some admissible control parameter �. Then

Pi |Giy |2 = |m|2 Pi Tiy + |m|2δiy + O≺
(
�4 + �2 M−1/2) + δiy O≺(�2 + M−1/2)

(4.7)

and
∑

i

sxi Pi |Giy |2 = |m|2
∑

i

sxi Tiy + |m|2sxy + O≺
(
�4 + �2 M−1/2). (4.8)
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(It is possible to improve the last error term in (4.7), but we shall not need this.)
Before proving Lemma 4.4, we show how it implies Theorem 4.1.

Proof of Theorem 4.1. Equation (4.1) is an immediate consequence of (4.8), (4.6), and
(4.5). Hence Theorem 4.1 follows from Lemma 4.4. ��
Proof of Lemma 4.4. Throughout the following we shall repeatedly need the simple
estimate

1

Gii
= 1

m + O≺(�)
= 1

m

(
1 + O≺(�)

) = O≺(1) , (4.9)

where the first step follows from � ≺ �, the second from the fact that � is admissible,
and the last from (3.4). In particular, for k �= i, j , from (3.7) we get the estimate

G(k)
i j = Gi j − Gik Gkj

Gkk
= O≺(δi j + � + �2) = O≺(δi j + �). (4.10)

We start the proof of Lemma 4.4 with the case i �= y. Using (3.11) we get

|Giy |2 = |Gii |2
(i)∑

k,l

hik G(i)
ky G(i)∗

yl hli

= |m|2
∣∣∣1 + m Zi + O≺

(
�2 + M−1/2)

∣∣∣
2

(i)∑

k,l

hik G(i)
ky G(i)∗

yl hli

= |m|2(1 + 2 Re(m Zi )
) (i)∑

k,l

hik G(i)
ky G(i)∗

yl hli + O≺(�4 + �2 M−1/2) (4.11)

where in the last step we used Zi ≺ � and the large deviation bound (see Lemma B.2)

(i)∑

k

hik G(i)
ky ≺ �. (4.12)

We may now compute the contribution of the main term in (4.11) to Pi |Giy |2. Still
assuming i �= y, we find

Pi

(i)∑

k,l

hik G(i)
ky G(i)∗

yl hli =
(i)∑

k

sik
∣∣G(i)

ky

∣∣2

=
(i)∑

k

sik

∣∣∣∣Gky − Gki Giy

Gii

∣∣∣∣
2

=
(i)∑

k

sik

[
|Gky |2 − 2Re

(
Gky

Gki Giy

Gii

)]
+ O≺(�4)

= Tiy − 2Re
(i)∑

k

sik Gky
Gki Giy

Gii
+ O≺

(
�4 + �2 M−1). (4.13)
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In the third step we used (4.9), and in the last step we added the missing term k = i to
obtain Tiy ; the resulting error term is O≺(�2 M−1) since i �= y. Next, using (4.9) we
get

(i)∑

k

sik Gky
Gki Giy

Gii
= 1

m

(i)∑

k

sik Gki GiyG∗
yk + O≺(�4)

= 1

m

(i)∑

k

sik Gki GiyG(i)∗
yk + O≺(�4). (4.14)

In the second step, using (3.7) and (4.9), we inserted an upper index i as a preparation
to taking the partial expectation Pi . We obtain

Pi

(i)∑

k,l

hik G(i)
ky G(i)∗

yl hli = Tiy − 2Re
(i)∑

k

sik
1

m
Gki GiyG(i)∗

yk + O≺
(
�4 + �2 M−1).

(4.15)

Now we take the partial expectation in i in (4.15). Using that

Pi
(
Gki GiyG(i)∗

yk

) = G(i)∗
yk Pi

(
Gki Giy

) ≺ (δyk + �)�
(
� + M−1/4)2

by Proposition 3.10 and (4.10), we find that Pi applied to the second term in (4.15) results
in a quantity O≺

(
�2(� + M−1/4)2

)
. Thus the contribution of main term in (4.11) to

Pi |Giy |2 is

|m|2 Pi

(i)∑

k,l

hik G(i)
ky G(i)∗

yl hli = |m|2 Pi Tiy + O≺
(
�4 + �2 M−1/2). (4.16)

Next, we look at the contribution of the term with a Z in (4.11):

|m|2 Pi

[(
m Zi + m Zi

) (i)∑

k,l

hik G(i)
ky G(i)∗

yl hli

]

= |m|2 Pi

[ (i)∑

c,d

Qi

(
hic

(
mG(i)

cd + mG(i)∗
cd

)
hdi

) (i)∑

k,l

hik G(i)
ky G(i)∗

yl hli

]

= |m|2
(i)∑

k,l

siksil

(
mG(i)

lk G(i)
ky G(i)∗

yl + mG(i)∗
lk G(i)

ky G(i)∗
yl

)
+ O≺(�2 M−1 + M−2)

= |m|22Re

(
m

(i)∑

k,l

siksil G
(i)
lk G(i)

ky G(i)∗
yl

)
+ O≺(�2 M−1 + M−2).

In the second step we assumed for simplicity that we are dealing with the complex
Hermitian case (2.9); thus, thanks to Qi , the only allowed pairing of the entries of H
imposes c = l and k = d. (In the real symmetric case (2.8), there is one other term, (4.18)
below, which is estimated in the same way.) The error terms stem from the summands
c = d = l = k �= y and c = d = l = k = y, respectively. Here we used (4.10) as well
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as the bound E|h4
ic| � C M−1sic � C M−2, an immediate consequence of (2.11) and

(2.12). In the last step we switched the indices k and l.
Now we remove the upper indices at the expense of an error of size O≺(�4), and

then add back the exceptional summation index i as before. This gives

|m|2 Pi

(
2 Re

(
m Zi

) (i)∑

k,l

hik G(i)
ky G(i)∗

yl hli

)

= |m|22Re
[
m

∑

k,l

siksil Glk GkyG∗
yl

]
+ O≺(�4 + �2 M−1 + M−2)

= O≺
(
�4 + �2 M−1/2) , (4.17)

where in the second step we used (3.14); the various cases of coinciding indices k, l, y
are easily dealt with using the bound M−1/2 � �.

As remarked above, in the real symmetric case (2.8) the pairing c = k, d = l is also
possible. This gives rise to the additional error term

∑

k,l

siksil Gkl GkyG∗
yl ≺ �4 + �2 M−1/2 , (4.18)

where we used (3.14).
Combining (4.11), (4.16) and (4.17) yields

Pi |Giy |2 = |m|2 Pi Tiy + O≺
(
�4 + �2 M−1/2) (4.19)

for i �= y. This proves (4.7) for the case i �= y.
If i = y we compute

Py |G yy |2 = |m|2 + Py |G yy −m|2+2Py Re
[
m(G yy −m)

] = |m|2+O≺
(
�2+M−1/2).

(4.20)

Here we used that G yy − m ≺ � and that Py(G yy − m) ≺ �2 + M−1/2 by (3.11). It is
possible to compute this term to high order in �, but we shall not need this.

For the proof of (4.8) we run almost the same argument as above but now we aim at
removing all upper indices i . We first consider the summands i �= y. From (4.15) we
get

Pi

(i)∑

k,l

hik G(i)
ky G(i)∗

yl hli = Tiy − 2Re
∑

k

sik
1

m
Gki GiyG∗

yk + O≺
(
�4 + �2 M−1/2) ,

(4.21)

where we removed the upper index i using (3.7), and included the summand k = i at
the expense of a negligible error term. Taking the average

∑(y)
i sxi of the second term

on the right-hand side yields

(y)∑

i

∑

k

sxi sik
1

m
Gki GiyG∗

yk =
∑

i,k

sxi sik
1

m
Gki GiyG∗

yk + O≺(�2 M−1 + M−2)

= O≺
(
�4 + �2 M−1/2). (4.22)
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In the first step we just added the exceptional index i = y, and estimated the additional
terms with i = y using sxysyk � M−1syk � M−2 as well as GkyG yyG∗

yk ≺ δky + �2.
In the second step we used (3.14). Note that the gain comes from the summation index i .

Thus the contribution of the main term of (4.11) to
∑(y)

i sxi Pi |Giy |2 is

|m|2
(y)∑

i

sxi Pi

(i)∑

k,l

hik G(i)
ky G(i)∗

yl hli = |m|2
(y)∑

i

sxi Tiy + O≺(�4 + �2 M−1/2).

(4.23)

The contributions of the error terms in (4.11) to
∑

i �=y sxi Pi |Giy |2 are of order

O≺
(
�4 + �2 M−1/2

)
; this is true even without averaging (see (4.17)). Thus we have

(y)∑

i

sxi Pi |Giy |2 = |m|2
(y)∑

i

sxi Tiy + O≺
(
�4 + �2 M−1/2). (4.24)

Finally, we consider the case i = y. From (4.20) we get

sxy Py |G yy |2 = |m|2sxy + O≺
(
M−1�2) = |m|2sxy + O≺(�4).

This formula provides the missing summands i = y in (4.24) and hence yields
(4.8). ��

5. Solving the Equation for T

Throughout this section we work in the general d-dimensional setting of Sect. 2.1. In
this section we solve the self-consistent Eq. (4.2) to determine T . This involves invert-
ing the matrix 1 − |m|2S. The stability of the self-consistent Eq. (4.2) is provided
by the spectral gap of S. In the regime of complete delocalization, this gap is larger
(and hence more effective) if we restrict S to the subspace orthogonal to the vector
e = N−1/2(1, 1, . . . , 1)T (see the remarks after Lemma 5.2 for more details). There-
fore, we deal with the span of e and its orthogonal complement separately. Define the
rank-one projection

� := ee∗.

Thus, the entries �i j of � are all equal to 1/N , and S� = �S = � since S is stochastic
by (2.3). The complementary projection is denoted by � := 1 − �.

We perform this splitting on Txy only in the x coordinate, regarding y as fixed. Thus,
we split

Txy = T y + (Txy − T y) ,

where we defined the averaged vector

T y := 1

N

∑

x

Txy = 1

N

∑

i

|Giy |2 = 1

Nη
Im G yy ;
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here the last step follows easily by spectral decomposition of G. We can use the local
semicircle law, Lemma 3.4, to get

T y = Im m

Nη

[
1 + O≺

(
1√
Mη

)]
. (5.1)

It is instructive to perform the same averaging with the deterministic profile �:

1

N

∑

x

�xy =
(

�
|m|2S

1 − |m|2S

)

yy
= 1

N

|m2|
1 − |m|2 = Im m

Nη
, (5.2)

where in the last step we used (3.3).
Having dealt with the component �T in (5.1), we devote the rest of this section to

the component �T . The following proposition contains the main result of this section.

Proposition 5.1. Suppose that � ≺ � for some admissible control parameter �. Then
we have for all y,

Txy = T y + |m|2
(

S − �

1 − |m|2S

)

xy
+ Ẽxy , (5.3)

where the error satisfies

max
x,y

|Ẽxy | ≺ 1

η +
( W

L

)2

(
�4 + �2 M−1/2). (5.4)

The main tool in the proof of Proposition 5.1 is a control on the spectral gap of S on
the space orthogonal to e. In order to state it, we need the Euclidean matrix norm ‖A‖
as well as the �∞ → �∞ norm of the matrix A,

‖A‖∞ := max
i

∑

j

|Ai j |.

The following lemma shows that S has a spectral gap of order (W/L)2 when restricted
to the space orthogonal to e. Its proof is postponed to the end of this section.

Lemma 5.2. We have the bounds
∥∥∥∥

1

1 − |m|2S
�

∥∥∥∥ � C

η +
( W

L

)2 (5.5)

and
∥∥∥∥

1

1 − |m|2S
�

∥∥∥∥∞
� C log N

η +
( W

L

)2 . (5.6)

In the regime of complete delocalization, η � (W/L)2, the control on (1−|m|2S)−1

is stronger on the space orthogonal to e. Indeed, in that regime the bound (5.5) is better
than the trivial bound

∥∥∥∥
1

1 − |m|2S

∥∥∥∥ = 1

1 − |m|2 � C

η
(5.7)

from (3.6).
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Proof of Proposition 5.1. Multiplying (4.2) by � from the left yields

�T = |m|2S �T + |m|2(S − �) + �E ,

where we used that S� = �S = �. Therefore

�T = |m|2 S − �

1 − |m|2S
+ Ẽ , Ẽ := 1

1 − |m|2S
�E .

Note that (�T )xy = Txy − T y . Using (5.6) we therefore get (5.3) whose error term
satisfies

max
x,y

|Ẽxy | �
∥∥∥∥

1

1 − |m|2S
�

∥∥∥∥∞
max
x,y

|Exy | ≺ 1

η +
( W

L

)2

(
�4 + �2 M−1/2).

This completes the proof of (5.3) and (5.4). ��
Next, we estimate |Gi j − δi j m|2 in terms of Ti j . In other words, we derive pointwise

estimates on Gi j from estimates on the averaged quantity Txy . This gives rise to an
improved bound on �, which we may plug back into Proposition 5.1. Thus we get a
self-improving scheme which may be iterated.

Lemma 5.3. Suppose that � ≺ � with some admissible control parameter � and
Ti j ≺ �2

i j for a family of admissible control parameters �i j indexed by a pair (i, j)
(see Definition 3.7). Then

∣∣Gi j − δi j m
∣∣2 ≺ �2

i j + �4 + δi j

∑

k

�2
ikski . (5.8)

(Here we write �2
i j := (�i j )

2.)

Proof. We fix the index j throughout the proof. Let first i �= j . Then (3.8) gives

Gi j = Gii

(i)∑

k

hik G(i)
k j . (5.9)

We shall use the large deviation bounds from Theorem B.1 to estimate the sum. For that
we shall need a bound on

(i)∑

k

sik |G(i)
k j |2 =

(i)∑

k

sik

(
|Gkj |2 + O≺

(|Gki Gi j |2
))

= Ti j − sii |Gi j |2 + O≺
(
�4) ≺ �2

i j + �4 , (5.10)

where in the first step we used (3.7) and (4.9). Since Gii ≺ 1, we get from (5.9) and
Theorem B.1 (i) that

|Gi j |2 ≺ �2
i j + �4.

To estimate Gii − m, we use (3.11) to get

|Gii − m|2 � C |Zi |2 + O≺(�4 + M−1) ≺
∑

k

�2
ikski + �4 + M−1. (5.11)
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Here we used

|Zi |2 �
∣∣∣∣

(i)∑

k

(|hik |2 − sik
)
G(i)

kk

∣∣∣∣
2

+

∣∣∣∣
(i)∑

k �=l

hik G(i)
kl hli

∣∣∣∣
2

≺ M−1 +
∑

k

�2
ikski ,

where in the second step we used Theorem B.1 (i) and (ii), with the bounds G(i)
kk ≺ 1

and

(i)∑

k �=l

sik
∣∣G(i)

kl

∣∣2
sli ≺

∑

k

�2
ikski + �4.

This last estimate follows along the lines of (5.10), whereby the error terms resulting
from the removal of the upper indices are estimated by Cauchy-Schwarz; we omit the
details. Finally M−1 can be absorbed into

∑
k �2

ikski by admissibility of �i j . ��
We may now combine Proposition 5.1 and Lemma 5.3 in an iterative self-improving

scheme, which results in an improved bound on �.

Corollary 5.4. Suppose that � ≺ � and Ti j ≺ �2 for all i and j , where � and � are
admissible control parameters. Then

�2 ≺ �2. (5.12)

Proof. We apply Lemma 5.3 to the constant control parameter �i j = � for each i, j .
Thus, suppose that Ti j ≺ �2 for all i, j , Lemma 5.3 yields

�2 ≺ �2 �⇒ �2 ≺ �2 + �4.

Now we can iterate this estimate, �2 + �4 taking the role of �2 in controlling �2. Thus
after one iteration we get

�2 ≺ �2 + (�2 + �4)2 ≺ �2 + �8.

After k iterations we get �2 ≺ �2 + �2k
. Since � and � are admissible, we have

�2k ≺ �2 for k ∼ | log γ |. This completes the proof. ��
What remains is the proof of Lemma 5.2, which relies on Fourier transformation. We

introduce the dual lattice of T ≡ T
d
L ,

P ≡ Pd
L := 2π

L
T

d
L .

For p ∈ R
d define

Ŝ(p) :=
∑

x∈T

e−ip·x sx0 =
∑

x∈T

e−ip·x 1

ZL ,W
f

(
x

W

)
. (5.13)

In particular, if p ∈ P then Ŝ(p) is the discrete Fourier transform of sx0. Since sxy is
translation invariant and L-periodic, we get for all x, y ∈ T that

sxy = s[x−y]L 0 = 1

N

∑

p∈P

eip·(x−y) Ŝ(p).
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Proof of Lemma 5.2. First we show that for large enough L the Euclidean matrix norm
satisfies

‖S�‖ � 1 − c1

(
W

L

)2

(5.14)

with some positive constant c1 depending on the profile f . Since the matrix entries si j
are translation invariant (see (2.2)), it is sufficient to compute its Fourier transform as
defined in (5.13). Using the property Ŝu(p) = Ŝ(p)̂u(p), the fact that �̂(p) = δp0, and
Plancherel’s identity, we find

‖S�‖ = max
{|Ŝ(p)| : p ∈ P \ {0}} � 1 − c1

(
W

L

)2

. (5.15)

The last step follows easily from Ŝ(p) � −1 + δ (recall (2.4)) and the representation

1 − Ŝ(p) =
∑

x∈T

(
1 − cos(p · x)

) 1

ZL ,W
f

(
x

W

)
� c

∑

x∈T

(p · x)2 1

ZL ,W
f

(
x

W

)

� c1

(
W

L

)2

,

where in the second step we used |p · x | � π , and in the last step |p| � 2π/L .
From (3.6) we get 1 − |m|2 � cη, which, combined with (5.15), yields

|m|2‖S�‖ � 1 − c

(
W

L

)2

− cη. (5.16)

Thus we get
∥∥∥∥

1

1 − |m|2S
�

∥∥∥∥ �
∞∑

k=0

|m|2k‖S�‖k � C

η +
( W

L

)2 .

This is (5.5).
In order to prove (5.6), we first observe that ‖S‖∞ � 1 as follows from the estimate

max
i

|(Sv)i | � max
i

∣∣∣∣
∑

x

si xvx

∣∣∣∣ � max
x

|vx | ,

where v = (vi ) is an arbitrary vector. Thus, for any vector v satisfying 〈v, e〉 = 0 any
k0 ∈ N we have

∥∥∥∥
1

1 − |m|2S
v

∥∥∥∥∞
�

k0−1∑

k=0

|m|2k
∥∥Skv

∥∥∞ +
∞∑

k=k0

|m|2k
∥∥Skv

∥∥
2

� k0‖v‖∞ +
∞∑

k=k0

|m|2k‖S�‖k‖v‖2

� k0‖v‖∞ +
√

N
|m|2k0‖S�‖k0

1 − |m|2‖S�‖‖v‖∞ ,

where we used the bound ‖v‖∞ � ‖v‖2 �
√

N‖v‖∞ and (3.4). Choosing k0 =
C(log N )[η + (W/L)2]−1 with a sufficiently large constant C , we obtain (5.6) exactly
as above using the bound (5.16). This completes the proof of Lemma 5.2. ��
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6. Delocalization Bounds

In this section we prove our main results – Theorems 2.2, 2.5, and 2.11. We return to
the one-dimensional case, d = 1, and continue to assume (2.17). In particular, we write
N instead of L . The simple extension to higher dimensions is given in Sect. 8.

6.1. Delocalization without profile: Proof of Theorem 2.2. Suppose that � ≺ � for
some admissible control parameter �. Then (5.3) together with (5.4), (5.1), and (2.38)
yield

Ti j ≺ 1

Nη
+

1

W
√

η
+

1

η+
( W

N

)2

(
�4 + �2W −1/2) ≺ �2 +

1

η +
( W

N

)2

(
�4 + �2W −1/2).

(6.1)

Recalling Corollary 5.4, we have therefore proved

�2 ≺ �2 �⇒ �2 ≺ �2 +
N 2

W 2

(
�4 + �2W −1/2) , (6.2)

i.e. the upper bound �2 ≺ �2 can be replaced with the stronger bound (6.2).
We can now iterate (6.2), exactly as in the proof of Corollary 5.4. We start the iteration

with �0 := (Wη)−1/2; see Lemma 3.4. Explicitly, the iteration reads

�2
k+1 := �2 +

N 2

W 2

(
�4

k + �2
k W −1/2).

From (6.2) and Lemma 3.4 we get that �2 ≺ �k for any fixed k.
In order to perform the iteration, we require

N 2

W 2 �2
0 � 1 and

N 2

W 2 W −1/2 � 1. (6.3)

Thus we get the conditions N � W 5/4 and η � N 2/W 3. (Here we used (2.1)). Sat-
isfying these two conditions is the reason we need to impose the restriction on W in
Theorem 2.2, Corollary 2.4, and Theorem 2.5. Using (6.3) and the fact that � is by def-
inition admissible, it is now easy to see that there is a finite constant k, which depends
on the implicit constants c in � and � above, such that �2

k � C�2. This concludes the
proof of Theorem 2.2.

6.2. Delocalization with profile: Proof of Theorem 2.5. By assumption we have
(W/N )2 � η � 1, so that in particular �2 = W −1η−1/2 =: �2. Note that this �

is admissible. From (2.20) we get � ≺ �. Now observe that Im m
Nη

= �xy
Im m

η
for all x

and y, as well as

Im m

η
� + |m|2 S − �

1 − |m2|S = |m|2 S

1 − |m2|S
by (3.3) and the property �S = S� = �. Thus (5.3) together with (5.4) and (5.1)
implies the first estimate of (2.30), since in the regime η � (W/N )2 and W 5/4 � N
the error term (5.4) is bounded by

1

η

(
�4 + �2W −1/2) � C

Nη
.

The second estimate of (2.30) follows from the first one and (4.7).



396 L. Erdős, A. Knowles, H.-T. Yau, J. Yin

Next, (2.31) follows by using (2.33) in (2.30).
Finally, using Lemma 5.3 with �2

i j = ϒi j and � := W −1/2η−1/4, we obtain

∣∣Gi j − δi j m
∣∣2 ≺ ϒi j + �4 + δi j

∑

k

ϒikski ≺ ϒi j . (6.4)

Here we used that �4 can be absorbed into (Nη)−1 � ϒi j and in the last summation∑
k ϒikski can be absorbed into ϒi i � C

W
√

η
. This proves (2.32), and hence concludes

the proof of Theorem 2.5.

6.3. Delocalization with a small mean-field component: Proof of Theorem 2.11. In order
to prove Theorem 2.11 we repeat the arguments from the previous sections almost to the
letter. The self-consistent equations from Theorem 4.1 remains unchanged except that
Sε replaces S in (4.2). The key observation is that, on the subspace orthogonal to e, the
lower bound on 1 − |m|2Sε is better than that on 1 − |m|2S. Indeed, using (3.6) we get

(1 − |m|2Sε)� = 1 − |m|2(1 − ε)S� � 1 − (1 − cη)(1 − ε)S� � c(η + ε)

with some positive constant c. This implies that (5.5) and (5.6) can be improved to
∥∥∥∥

1

1 − |m|2Sε

�

∥∥∥∥ � C

η + ε +
( W

N

)2 ,

∥∥∥∥
1

1 − |m|2Sε

�

∥∥∥∥∞
� C log N

η + ε +
( W

N

)2 .

(6.5)

Suppose now that � ≺ � for some admissible control parameter �. Then the state-
ment of Proposition 5.1 is modified to

Txy = T y + |m|2
(

Sε − �

1 − |m|2Sε

)

xy
+ Ẽxy , (6.6)

where the error term satisfies

max
x,y

|Ẽxy | ≺ 1

η + ε +
( W

N

)2

(
�4 + �2W −1/2). (6.7)

Notice that the Fourier transforms of S and Sε (defined by (5.13)) satisfy

Ŝε(p) = (1 − ε)Ŝ(p) + εδp0. (6.8)

Thus we have
(

Sε

1−|m|2Sε

)

xy
= 1

N

∑

p∈P:p �=0

eip(x−y) (1 − ε)Ŝ(p)

1−|m|2(1 − ε)Ŝ(p)
+

Im m

|m|2 Nη

= 1

N

∑

p∈P

eip(x−y) (1 − ε)Ŝ(p)

1 − |m|2(1 − ε)Ŝ(p)
+

Im m

|m|2 Nη
+ O

(
1

(η+ε)N

)
.

(6.9)
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Here we treated the zero mode p = 0 separately; it is given by

1

N

∑

x

(
Sε

1 − |m|2Sε

)

xy
=

(
�

Sε

1 − |m|2Sε

)

xy
= 1

N (1 − |m|2) = Im m

|m|2 Nη
,

where in the last step we used (3.3). The error term in (6.9) is estimated using a similar
calculation.

Notice that the coefficient of Ŝ(p) in the denominator of (6.9) is now |m|2(1 − ε) =
1 − ε − (1 − ε)αη + O(η2), where we used (3.5). The results and the proof of Proposi-
tion 2.8 remain unchanged when S is replaced with Sε, except that αη must be replaced
with (1−ε)αη+ε on the right-hand side of (2.36), and the whole expression is multiplied
by an additional factor (1 − ε). Moreover, instead of (2.38), we now have

max
xy

(
Sε

1 − |m|2Sε

)

xy
� 1

Nη
+

1

W
√

η + ε
. (6.10)

Recall the definition (2.20) of �ε. Following the proof of Theorem 2.2, instead of
(6.2) we now obtain

�2 ≺ �2 �⇒ �2 ≺ �2
ε +

1

η + ε +
( W

N

)2

(
�4 + �2W −1/2). (6.11)

As in Sect. 6.1, we can iterate (6.11) under the conditions

1

Wη
� η + ε +

(
W

N

)2

, W −1/2 � η + ε +

(
W

N

)2

. (6.12)

(Note that the a priori estimate (Wη)−1 is still determined by W despite the small mean-
field component. In Lemma 3.4 it is given by (Mη)−1/2, where M = (maxi j si j )

−1 ∼
(εN−1 + W −1)−1 ∼ W .) The first condition of (6.12) holds if

η(η + ε) � W −1 , (6.13)

and the second holds if either

η + ε � W −1/2 (6.14)

or

N � W 5/4. (6.15)

This concludes the proof of part (i).
In order to get complete delocalization of the resolvent, i.e. �2 ≺ (Nη)−1, we require

� ≺ �2
ε as well as

W
√

η + ε � Nη , (6.16)

which ensures that �ε = (Nη)−1. Hence we get complete delocalization of the resolvent
provided that (6.13), (6.14), and (6.16) hold. This concludes the proof of part (ii).

If ε � (N/W 2)2/3 then there exists an η such that the assumptions of part (ii) are
met. Hence part (ii) and Proposition 7.1 yields part (iii). This concludes the proof of
Theorem 2.11.
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7. Complete Delocalization of Eigenvectors

In this section we derive a delocalization result for the eigenvectors of H , using the
complete delocalization �2 ≺ (Nη)−1 as input. We denote the eigenvalues of H by
λ1 � λ2 � · · · � λN , and the associated normalized eigenvectors by u1, u2, . . . , uN .
We use the notation uα = (uα(x))N

x=1. We shall only consider eigenvectors associated
with eigenvalues lying in the interval

I := [−2 + κ, 2 − κ] ,

where κ > 0 is fixed.
For � ≡ �(L) define the characteristic function Px,� projecting onto the complement

of the �-neighbourhood of x ,

Px,�(y) := 1(|y − x | � �).

Let ε > 0 and define the random subset of eigenvector indices through

Aε,� :=
{
α : λα ∈ I ,

∑

x

|uα(x)| ‖Px,� uα‖ � ε

}
,

which indexes the set of eigenvectors localized on scale � up to an error ε; see Remark
7.2 below for more details on its interpretation.

Proposition 7.1 (Complete delocalization of eigenvectors). Suppose that � ≺ � for
some admissible control parameter �. Let η ≡ ηN be a sequence satisfying M−1+γ �
η � 1. Suppose that

sup
E∈I

|Gxy(E + iη)|2 ≺ 1

Nη
+ δxy . (7.1)

Let � � N. Then we have for any ε > 0,

|Aε,�|
N

� C
√

ε + O≺(N−c).

Remark 7.2. The set Aε,� contains, in particular, all indices associated with eigenvectors
that are exponentially localized in balls of radius O(�). In fact, exactly as in [7, Cor. 3.4],
Proposition 7.1 implies that the fraction of eigenvectors subexponentially localized on
scales � vanishes with high probability for large N .

Proof of Proposition 7.1. As usual, we omit the spectral parameter z = E + iη, where
E ∈ I is arbitrary and η is the parameter given in the statement of Proposition 7.1. By
assumption on �, we have for all x ,

η

Im m

∑

y

|G yx |2 = Im Gxx

Im m
= 1 + O≺(�) , (7.2)

uniformly in E ∈ I , where in the first step we used the spectral decomposition of G.
Thus, for all x , the map y �→ η

Im m |G yx |2 is approximately a probability distribution on
{1, . . . , N }. Roughly, (7.1) states that this probability distribution is supported on the
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order of N sites of {1, . . . , N }. More precisely, (7.1) yields (introducing the standard
basis vector δx defined by (δx )(y) := δxy), for any fixed x ,

η

Im m

∥∥Px,� G δx
∥∥2 = η

Im m

∑

y

1(|y − x | � �) |G yx |2

= η

Im m

∑

y

|G yx |2 − η

Im m

∑

y

1(|y − x | < �) |G yx |2

= 1 + O≺(�) + O≺
[

η

Im m

(
N 1−c

Nη
+ 1

)]

= 1 + O≺(N−c) , (7.3)

uniformly in E ∈ I . Here in the third step we used (7.2) and (7.1), and in the last step
the upper bound η � M−c and the fact that � is admissible.

In order to obtain a statement about the eigenvectors, we do a spectral decomposition

G = ∑
α

uαu∗
α

λα−z , which yields for arbitrary ζ > 0,

η

Im m

∥∥Px,� G δx
∥∥2 = η

Im m

∥∥∥∥
∑

α

1

λα − z
uα(x) Px,�uα

∥∥∥∥
2

� η

Im m

(
1 +

1

ζ

)∥∥∥∥
∑

α∈Aε,�

1

λα − z
uα(x) Px,�uα

∥∥∥∥
2

+
η

Im m
(1 + ζ )

∥∥∥∥
∑

α∈Ac
ε,�

1

λα − z
uα(x) Px,�uα

∥∥∥∥
2

, (7.4)

where we introduced the complement set Ac
ε,�

:= {1, . . . , N }\Aε,�. In order to estimate
the first term on the right-hand side of (7.4), we write

η

Im m

∥∥∥∥
∑

α∈Aε,�

1

λα − z
uα(x) Px,�uα

∥∥∥∥
2

� η

Im m

∥∥∥∥
∑

α∈Aε,�

1

λα − z
uα(x) uα

∥∥∥∥
2

� η

Im m

∑

α

|uα(x)|2
|λα − z|2

= Im Gxx

Im m
= 1 + O≺(�).

Therefore we may estimate the left-hand side by its square root to get the bound

η

Im m

∥∥∥∥
∑

α∈Aε,�

1

λα − z
uα(x) Px,�uα

∥∥∥∥
2

� (1 + O≺(�))

√
η

Im m

∥∥∥∥
∑

α∈Aε,�

1

λα − z
uα(x) Px,�uα

∥∥∥∥

�
(
C + O≺(�)

) ∑

α∈Aε,�

√
η

(E − λα)2 + η2 |uα(x)| ‖Px,�uα‖ , (7.5)

where in the last step we used (3.6).
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Similarly, we may estimate the second term of (7.4) using

∥∥∥∥
∑

α∈Ac
ε,�

1

λα − z
uα(x) Px,�uα

∥∥∥∥
2

�
∥∥∥∥

∑

α∈Ac
ε,�

1

λα − z
uα(x) uα

∥∥∥∥
2

=
∑

α∈Ac
ε,�

|uα(x)|2
|λα − z|2 .

(7.6)

Combining (7.4) with (7.3), (7.5), and (7.6), we get

1 + O≺(N−c) �
(
C + O≺(N−c)

)(
1 +

1

ζ

) ∑

α∈Aε,�

√
η

(E − λα)2 + η2 |uα(x)| ‖Px,�uα‖

+(1 + ζ )
∑

α∈Ac
ε,�

η |uα(x)|2
Im m |λα − z|2 ,

uniformly for E ∈ I . Now taking the average |I |−1
∫

I dE and using Jensen’s inequality,
we find

1 + O≺(N−c) �
(
C + O≺(N−c)

)(
1 +

1

ζ

) ∑

α∈Aε,�

|uα(x)| ‖Px,�uα‖

+(1 + ζ )
1

|I |
∫

I
dE

∑

α∈Ac
ε,�

η |uα(x)|2
Im m |λα − E − iη|2 ,

where we used that
∫

I
dE

η

(E − λα)2 + η2 � π

2
(7.7)

for α ∈ Aε,�. Averaging over x , i.e. taking N−1 ∑
x , yields

1+O≺(N−c) �
(
C +O≺(N−c)

)(
1+

1

ζ

)
ε+(1+ζ )

1

|I |
∫

dE
1

N

×
∑

α∈Ac
ε,�

η

Im m |λα−E − iη|2 , (7.8)

where we used the definition of Aε,�. We may estimate the integral as

1

|I |
∫

dE
1

N

∑

α∈Ac
ε,�

η

Im m |λα − E − iη|2 � 1

|I |
∫

dE
1

N

Im Tr G

Im m
= 1 + O≺(�).

Setting ζ = √
ε in (7.8) therefore yields

1

|I |
∫

dE
1

N

∑

α∈Ac
ε,�

η

Im m |λα − E − iη|2 � 1 − (
C + O≺(N−c)

)√
ε − O≺(N−c)

� 1 − C
√

ε − O≺(N−c).
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Using

1

|I |
∫

dE
1

N

∑

α

η

Im m |λα − E − iη|2 = 1

|I |
∫

dE
1

N

Im Tr G

Im m
= 1 + O≺(�),

we therefore get

1

|I |
∫

dE
1

N

∑

α∈Aε,�

η

Im m |λα − E − iη|2 � C
√

ε + O≺(N−c).

The claim now follows from (7.7). ��

8. Extension to Higher Dimensions and a Slowly Decaying Band

In this section we extend Theorem 2.2, Corollary 2.4, and Theorem 2.5 in two directions:
higher dimensions d and a slowly decaying band.

The multidimensional analogues of the slowly decaying profile are left to the reader,
as is the formulation of these extensions if a small mean-field component is added to the
band matrix. All these results can be obtained in a straightforward manner following the
proofs for the one-dimensional case with a rapidly decaying f .

8.1. Higher dimensions. Fix d = 1, 2, 3, . . ., and recall that N = Ld and M � W d .
Throughout this section we continue to assume (2.17). The following lemma gives the
sharp upper bound on the size of �xy defined by the formula (2.24), where x and y take
on values in the d-dimensional torus T

d
L ≡ T.

Lemma 8.1. Let d = 2, 3, . . . and assume (2.17). Then there is a constant C such that

�xy � C max

{
1

M
,

1

Nη

}

for all x and y.

Proof. See Appendix A. ��
In order to state the precise form of the profile �xy , we define the covariance matrix

D ≡ DW through

Di j := 1

2

∑

x∈T

xi x j

W 2 sx0. (8.1)

We have

D = D∞ + O(W −1) where (D∞)i j := 1

2

∫

Rd
xi x j f (x) dx .

Since D∞ > 0 we get D � c > 0 uniformly in W .
Next, we define the d-dimensional Yukawa potential

V (x) :=
∫

Rd

dq

(2π)d

eiq·x

1 + q2 (x ∈ R
d) ,
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where the integral is to be understood as the Fourier transform of a tempered distribu-
tion. For d = 1 we have V (x) = 1

2 e−|x | and for d = 3 we have V (x) = 1
4π |x |e

−|x |.
Generally, in d � 3 dimensions V has a singularity of type |x |2−d at the origin, and in
d = 2 dimensions a singularity of type log|x |; see e.g. [29, Thm. 6.23] for more details.
The leading-order behaviour of the profile �x0 is given by

θx := |m|2
N

∑

p∈( 2π
L Z)d

eip·x χ(W p)

αη + W 2(p · Dp)

= |m|2(αη)d/2−1

W d
√

det D

∑

k∈Zd

(
V ∗ ϕ√

αη

)(√
αη

W
D−1/2(x + kL)

)
, (8.2)

where χ is a smooth function satisfying χ(q) = 1 for |q| � 1/2 and χ(q) = 0 for
|q| � 1, ϕ is a Schwartz function satisfying

∫
ϕ = 1, and ϕt (x) := t−dϕ(x/t). (In

fact, ϕ(D−1/2x) is the Fourier transform of χ(q).) The second step of (8.2) follows
by Poisson summation; see Appendix A and in particular (A.14) for more details. The
following lemma gives the precise error bounds in the approximation (8.2).

Lemma 8.2. Let d = 1, 2, 3, . . . and assume (2.17). Then

�xy = θx−y + OK

(
1

W d

〈
x

W

〉−K

+
ηd/2

W d

〈√
ηx

W

〉−K )
. (8.3)

Proof. See Appendix A. ��
Remark 8.3. The convolution in (8.2) smooths out the Yukawa potential on the scale
x ≈ W . The error terms in (8.3) are negligible compared to the main term θx in the
regime W � |x | � CWη−1/2. Therefore the approximation θ is meaningful from the
profile scale Wη−1/2 down to the band scale W . The actual choice of the function χ in
(8.2) is immaterial in the relevant regime |x | � W , as long as χ is equal to one in a
neighbourhood of the origin.

Next, we state the counterparts of Theorem 2.2, Corollary 2.4, and Theorem 2.5 in
the higher-dimensional setting. Their proofs are trivial modifications of the proofs of
their one-dimensional counterparts, using Lemmas 8.1 and 8.2.

Theorem 8.4 (Improved local semicircle law). Let d = 2, 3, . . . and assume (2.17).
Suppose moreover that L � W 1+d/4 and η � L2/W d+2. Then we have

�2 ≺ max

{
1

M
,

1

Nη

}
(8.4)

for z ∈ S.

Corollary 8.5 (Eigenvector delocalization). Let d = 2, 3, . . . and assume (2.17). If
L � W 1+d/4 then the eigenvectors of H are completely delocalized in the sense of
Proposition 7.1.
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Theorem 8.6 (Diffusion profile). Let d = 2, 3, . . . and assume (2.17). Suppose that
L � W 1+d/4 and (W/L)2 � η � 1. Then

|Txy −�xy |≺ 1

Nη
+

1

M3/2η
,

∣∣∣Px |Gxy |2−δxy |m|2−|m|2�xy

∣∣∣≺ 1

Nη
+

1

M3/2η
+

δxy√
M

.

(8.5)

Moreover, the analogues of (2.31) and (2.32) hold with

ϒxy ≡ ϒ(K )
xy := ηd/2−1

W d

(
V ∗ ϕ√

η

)(√
αη

W
D−1/2(x − y)

)
+

1

W d

〈
x − y

W

〉−K

+
ηd/2

W d

〈√
η(x − y)

W

〉−K

,

where K is an arbitrary, fixed, positive integer.

8.2. Slowly decaying band. In this section we make the following assumption on the
band shape. Suppose that d = 1 and f is smooth and symmetric, and satisfies

f (x) = h(x)

|x |1+β
(8.6)

for some fixed β ∈ (0, 2). Here h is a symmetric function satisfying

|h(x) − h0| � C〈x〉−3 (8.7)

for some fixed h0 > 0. Note that by definition f is smooth and symmetric, so that
h(x) = O(|x |1+β) near the origin.

In order to avoid technical issues arising from the periodicity of S, we cut off the tail
of f at scales x ≈ N . Thus we set

sxy := 1

Z
f

( [x − y]N

W

)
σ

( [x − y]N

N

)
;

here σ is a smooth, symmetric bump function satisfying σ(x) = 1 for |x | � a and
σ(x) = 0 for |x | � b, where 0 < a < b < 1/2. As usual, Z is a normalization constant.

The following lemma is the analogue of Lemma 5.2. Its proof is similar to that of
Lemma 5.2; the key input is Lemma A.2 (iii).

Lemma 8.7. Suppose that d = 1 and that (8.6) and (8.7) hold. Then
∥∥∥∥

1

1 − |m|2S
�

∥∥∥∥∞
� C log N

η +
( W

N

)β
. (8.8)

Next, we give the sharp upper bound on the peak of the profile.

Lemma 8.8. Suppose that d = 1 and that (8.6) and (8.7) hold. Then

�xy � C max

{
η1/β−1 + 1

W
,

1

Nη

}
.

Proof. See Appendix A. ��
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In order to describe the asymptotic shape of the profile, we define

B := h0
W

Z

∫

R

du
1 − cos u

|u|1+β
= h0

∫

R

du
1 − cos u

|u|1+β
+ O

(
1

W
+

(
W

N

)β)
,

which plays a role similar to the unrenormalized diffusion constant D from (2.26).
Moreover, define the function

V (x) :=
∫

R

dq

2π

eiqx

1 + |q|β ,

which is bounded for β > 1. It is easy to check that for β > 1 and |x | � 1 we have

V (x) = Cβ |x |−1−β + O(|x |−2−β) (8.9)

with an explicitly computable constant Cβ > 0.

Proposition 8.9. Suppose that d = 1 and that (8.6) and (8.7) hold for some β > 1.
Suppose moreover that

(
W

N

)β

� η � 1. (8.10)

Then there is a constant c > 0, depending on the implicit exponents in (8.10), such that
for x ∈ T we have

�x0 = |m|2
Wαη

(
αη

B

)1/β

V

[(
αη

B

)1/β x

W

]
+ O

(
η1/β−1

W 1+c

)
. (8.11)

Proof. See Appendix A. ��
The matrix � is the resolvent of a superdiffusive operator, whose symbol in Fourier

space is B|W p|β . Thus, under the identification t = η−1 from Remark 2.7, we find that
the associated dynamics scales according to x ∼ W t1/β instead of the diffusive scaling
x ∼ W t1/2.

We may now state the counterparts of Theorem 2.2, Corollary 2.4, and Theorem
2.5 for the slowly decaying band. Their proofs are trivial modifications of those for the
strongly decaying band, using Lemmas 8.7 and 8.8.

Theorem 8.10 (Improved local semicircle law). Suppose that d = 1 and that (8.6) and
(8.7) hold. Suppose moreover that N � W 1+1/2β and η � (N/W )β/W . Then we have

�2 ≺ max

{
η1/β−1 + 1

W
,

1

Nη

}
(8.12)

for z ∈ S.

Corollary 8.11 (Eigenvector delocalization). Suppose that d = 1 and that (8.6) and
(8.7) hold. If N � W 1+1/2β then the eigenvectors of H are completely delocalized in
the sense of Proposition 7.1.

Theorem 8.12 (Diffusion profile). Suppose that d = 1 and that (8.6) and (8.7) hold for
some β � 1. Suppose that N � W 1+1/2β and (W/N )β � η � 1. Then

|Txy − �xy | ≺ 1

Nη
,

∣∣∣Px |Gxy |2 − δxy |m|2 − |m|2�xy

∣∣∣ ≺ 1

Nη
+

δxy√
W

.

(8.13)

Moreover, the analogues of (2.31) and (2.32) hold.
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A. The Deterministic Profile

In this appendix we establish bounds and asymptotics for the deterministic profile �xy .

A.1. Proof of Proposition 2.8. We assume d = 1 and abbreviate T ≡ T
1
N as well as

P ≡ P1
N . We assume without loss of generality that x ∈ T.

First we notice that by the symmetry of f and (2.17), the Fourier transform f̂ (q) :=∫
R

e−iqx f (x) dx is a smooth function with a Taylor expansion

f̂ (q) = 1 − D∞q2 + q4g(q) (q ∈ R) , (A.1)

where g is a bounded smooth function satisfying g(q) = g(−q). Clearly, f̂ is real and
‖ f̂ ‖∞ � 1. Moreover, we claim that for any ε > 0 there exists an ε′ > 0 such that

f̂ (q) � 1 − ε′ if |q| � ε ; (A.2)

indeed, this follows easily from the identity

1 − f̂ (q) =
∫

R

(
1 − cos(qx)

)
f (x) dx .

Next, define the lattice

Q := W P = 2πW

N
T.

For q ∈ [−πW, πW ] define

ŜW (q) := Ŝ(q/W ).

Thus we get
(

S

1 − |m|2S

)

x0
= 1

N

∑

p∈P

eipx Ŝ(p)

1 − |m|2 Ŝ(p)
= 1

N

∑

q∈Q

eiqx/W ŜW (q)

1 − |m|2 ŜW (q)

(A.3)

for x ∈ T.
As a guide for intuition, we have ŜW (q) ≈ f̂ (q), as can be seen from

ŜW (q) =
∑

x∈T

e−ixq/W 1

Z N ,W
f

(
x

W

)
≈

∫ N/2

−N/2
e−ixq/W f

(
x

W

)
1

W
dx

=
∫ N/2W

−N/2W
e−iqy f (y) dy ≈ f̂ (q). (A.4)

Thus, our proof consists in controlling the error in the approximation

( S

1 − |m|2S

)

x0
≈ 1

W

∫

R

eiqx/W f̂ (q)

1 − |m|2 f̂ (q)
dq.

As a first step, we establish basic properties of ŜW that are analogous to (A.2) and
(A.1).
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Lemma A.1. The function ŜW smooth with uniformly bounded derivatives, real, and
symmetric with |ŜW (q)| � 1 and ŜW (0) = 1. Moreover, it has the following properties.

(i) For any ε > 0 there exists an ε′ > 0 such that

ŜW (q) � 1 − ε′ if |q| � ε (A.5)

for large enough W (depending on ε).
(ii) For any k, K ∈ N there is a constant Ck,K such that

|∂k
q ŜW (q)| � Ck,K

〈q〉K
+ O(N−1) , (q ∈ [−πW, πW ]). (A.6)

(iii) There exists a smooth function gW whose derivatives are bounded uniformly in
W such that

ŜW (q) = 1 − Dq2 + q4gW (q) , (q ∈ [−πW, πW ]). (A.7)

Proof. The proof of (i) is similar to that of (A.2).
To prove (ii), we use summation by parts combined with (2.17). Let the integers N−

and N+ denote the end points of T = [N/2, N/2), i.e. T = [N−, N+]. Then we find

ŜW (q) = 1

Z N ,W

N+∑

x=N−
e−iqx/W f

(
x

W

)

= 1

Z N ,W

N+−1∑

x=N−

x∑

y=N−
e−iqy/W

[
f

(
x

W

)
− f

(
x + 1

W

)]

+
1

Z N ,W
f

(
N+

W

) N+∑

y=N−
e−iqy/W

= 1

Z N ,W

N+−1∑

x=N−

e−iq N−/W − e−iq(x+1)/W

1 − e−iq/W

[
f

(
x

W

)
− f

(
x + 1

W

)]

+OK

(
N

W

(
W

N

)K )

� CK

W

∑

x

1

|1 − e−iq/W |
1

W

〈
x

W

〉−K

+ CK

(
W

N

)K−1

� C

|q| + O(N−1). (A.8)

Here we used that

1

|1 − e−iq/W | � CW

|q|
(recall that |q| � πW ) and that

∣∣∣∣ f
( x

W

)
− f

( x + 1

W

)∣∣∣∣ � CK

W

〈 x

W

〉−K
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to estimate the main term, and (2.1) to estimate the error term with K ∼ 1/δ. We also
have the trivial bound on |ŜW | � 1. Thus we have

|ŜW (q)| � C

〈q〉 + O(N−1).

We can iterate the above argument for the main term in (A.8), thus obtaining higher
order divided differences of f . Since f is smooth and decays rapidly, (A.6) follows for
k = 0. The proof for k > 0 is analogous.

In order to prove (iii), we write

gW (q)

:= 1 − Dq2− ŜW (q)

q4 = 1

Z N ,W

∑

x∈T

1−(qx/W )2/2−cos(qx/W )

(qx/W )4

(
x

W

)4

f

(
x

W

)
.

Now (iii) follows from the fact that the function h(q) := (
1 − q2/2 − cos(q)

)
q−4 is

smooth and its derivatives are bounded. ��
Having proved Lemma A.1, we may now complete the proof of Proposition 2.8. Fix

a small constant ε > 0 and introduce a partition of unity χ + χ = 1 on R with smooth
functions such that χ(q) = 1 for |q| � ε and χ(q) = 0 for |q| � 2ε. Since ŜW (q) � 1
and |m|2 � 1 − cη (see (3.6)), we have

1 − |m|2 ŜW (q) � 1 − |m|2 � cη

with some positive constant c. By (A.5) we have on the support of χ ,

1 − |m|2 ŜW (q) � ε′ (A.9)

for some ε′ depending on ε. Then from (A.3) we have
(

S

1 − |m|2S

)

x0
= 1

N

∑

q∈Q

eiqx/W ŜW (q)χ(q)

1 − |m|2 ŜW (q)
+

1

N

∑

q∈Q

eiqx/W ŜW (q)χ(q)

1 − |m|2 ŜW (q)

= 1

N

∑

q∈Q

eiqx/W ŜW (q)χ(q)

1 − |m|2 ŜW (q)
+ OK

(
1

W

〈
x

W

〉−K )
. (A.10)

Here we used that the function

R(q) = ŜW (q)χ(q)

1 − |m|2 ŜW (q)
,

extended to the whole real line, is smooth and its derivatives are bounded uniformly in
N and W (by (A.9)). (These bounds may of course depend on ε). Moreover, R(q) =
OK (〈q〉−K ) for any K ; see (A.6). By summation by parts, as in (A.8), we find that for
such a function we have

1

N

∑

q∈Q

eiqx/W R(q) = OK

(
1

W

〈
x

W

〉−K )
(A.11)

for any K .
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Now we consider the first term in (A.10). For the following we use Ai (q, η, N , W )

with i = 1, 2, 3, . . . to denote functions that are smooth in q and whose q-derivatives
are uniformly bounded in q, η, W , and N . Using the Taylor expansion (A.7) and (3.5),
we have (omitting the arguments for brevity)

1 − |m|2 ŜW = αη + Dq2 + A1q4 + A2ηq2 + A3η
2.

This gives (again omitting the arguments)
(

ŜW

1 − |m|2 ŜW
− 1

αη + Dq2

)
χ = A4q4 + A5ηq2 + A6η

2
(
αη + Dq2 + A1q4 + A2ηq2 + A3η2

)(
αη + Dq2

)χ

= A4r4 + A5r2 + A6(
α + Dr2 + A1ηr4 + A2ηr2 + A3η

)(
α + Dr2

)χ

=: FN ,W,η(r) , (A.12)

where we introduced the new variable r := η−1/2q. By definition, A1, . . . , A6 and their
q-derivatives are uniformly bounded. Since D � c > 0 and r � εη−1/2 on the support
of χ , we find that for small enough ε the denominator of the second line of (A.12)
is bounded away from zero, uniformly in r, η, W , and N . We therefore conclude that
FN ,W,η is smooth and its derivatives (in the variable r ) are uniformly bounded.

Using summation by parts, exactly as in (A.8), we get

1

N

∑

q∈Q

eiqx/W FN ,W,η(η
−1/2q) � CK

W

〈√
ηx

W

〉−K

. (A.13)

Here we used that the sum on the left-hand side ranges over a set of size O(N/W ) due
to the factor χ in the definition of FN ,W,η. Therefore (A.12) and (A.13) imply that the
first term of (A.10) is given by

1

N

∑

q∈Q

eiqx/W ŜW (q)χ(q)

1 − |m|2 ŜW (q)
= 1

N

∑

q∈Q

eiqx/W χ(q)

αη + Dq2 + OK

(
1

W

〈√
ηx

W

〉−K )
.

(A.14)

Notice that the error term in (A.11) is smaller than in (A.14). Next, we remove the factor
χ from the main term, exactly as in (A.11). Plugging this into (A.10) yields

(
S

1 − |m|2S

)

x0
= 1

N

∑

q∈Q

eiqx/W 1

αη + Dq2 + OK

(
1

W

〈√
ηx

W

〉−K )
. (A.15)

We can extend the summation in the main term

1

N

∑

q∈Q

eiqx/W 1

αη + Dq2 = 1

N

∑

q∈ 2πW
N Z

eiqx/W 1

αη+ Dq2 +O

(
1

W

∫

R

1(|q| � πW )

αη+ Dq2 dq

)
,

where the error term on the right-hand side is of order O(W −2). Thus we have

( S

1 − |m|2S

)

x0
= 1

N

∑

q∈ 2πW
N Z

eiqx/W 1

αη + Dq2 + OK

(
1

W

〈√
ηx

W

〉−K )
+ O

(
1

W 2

)
.
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The main term can be computed by the Poisson summation formula

1

π

∑

n∈Z

einx

a2 + n2 = 1

a

∑

k∈Z

e−a|x+2πk| ,

where a > 0. Thus,

1

N

∑

q∈ 2πW
N Z

eiqx/W 1

αη + Dq2 = 1

2W
√

Dαη

∑

k∈Z

exp

[
−

√
αη

W
√

D
|x + k N |

]
.

This concludes the proof of (2.37).
In order to prove (2.38), it suffices to analyse the asymptotics of the expression

R := 1

W
√

η

∑

k∈Z

e−√
η N

W k .

We consider two cases. If η �
( W

N

)2 then R � 1
W

√
η

. On the other hand, if η �
( W

N

)2

we use an integral approximation to get

R = 1

Nη

√
η

N

W

∑

k

e−√
η N

W k � 1

Nη
.

This concludes the proof of (2.38), and hence of Proposition 2.8.

A.2. Higher dimensions: Proofs of Lemmas 8.1 and 8.2.

Proof of Lemma 8.1. We follow the argument from the proof of Proposition 2.8 in the
previous section, and merely sketch the differences. We use the d-dimensional lattices

T ≡ T
d
L , Q := 2πW

L
T.

Exactly as in (A.3), we get

(
S

1−|m|2S

)

x0
= 1

N

∑

q∈Q

eiq·x/W ŜW (q)

1−|m|2 ŜW (q)
where ŜW (q) :=

∑

x∈T

e−iq·x/W sx0.

(A.16)

Next, the basic properties of ŜW listed in Lemma A.1, and their proofs, carry over
verbatim to the higher-dimensional setting. Now (A.7) reads ŜW (q) = 1 − (q · Dq)(1 +
A2(q)), where A2(q) = O(|q|2) uniformly in W . Let χ be a smooth bump function on
R

d , as in the proof of Proposition 2.8. As in (A.10), we find

(
S

1 − |m|2S

)

x0
= 1

N

∑

q

eiq·x/W ŜW (q)χ(q)

1 − |m|2 ŜW (q)
+ OK

(
1

W d

〈
x

W

〉−K )
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for arbitrary K ∈ N. Here, and for the rest of this proof, the summation in q ranges over
the lattice

( 2πW
N Z

)d . We split

(
S

1 − |m|2S

)

x0
= 1

N

∑

q

eiq·x/W χ(q)

αη + q · Dq
+

1

N

∑

q

eiq·x/W R(q)χ(q)

+ OK

(
1

W d

〈
x

W

〉−K )
, (A.17)

where

R(q) := ŜW (q)

1 − |m|2 ŜW (q)
− 1

αη + q · Dq
.

Note that, unlike in the proof of Proposition 2.8, we keep the cutoff function χ in the
main term since the function (η + q · Dq)−1 is not integrable in higher dimensions.

The main term of (A.17) can be computed using Poisson summation:

1

N

∑

q∈( 2πW
N Z)d

eiq·x/W χ(q)

αη + q Dq

= (αη)d/2−1

W d
√

det D

∑

k∈Zd

(
V ∗ ϕ√

αη

)(√
αη

W
D−1/2(x − y + kL)

)
. (A.18)

Using that V (x) � |x |2−d near the origin, we find ‖V ∗ ϕ√
αη‖∞ � CW −d . By treat-

ing the two cases η �
( W

N

)2 and η �
( W

N

)2 separately, we find exactly as in the last
paragraph of the proof of Proposition 2.8 that (A.18) is bounded by CW −d + C(Nη)−1.

What remains therefore is the estimate of the error term containing R in (A.17). To
that end, we write

R(q) = B4 + ηB2 + η2 B0(
αη + (q · Dq)(1 + A2) + ηA′

2 + η2 A0
)
(αη + q · Dq)

, (A.19)

where B0, B2, B4, A0, A2, A′
2 are smooth and bounded functions of q, each of order

O(|q|i ) near the origin uniformly in W and η, where i denotes the subscript of the cor-
responding function. Using the change of variables q = √

η r it is now easy to see that
the error term containing R in (A.17) is bounded by CW −d . This concludes the proof
of Lemma 8.1. ��
Proof of Lemma 8.2. We need a more precise bound on the error term of (A.17) than
the bound CW −d from the proof of Lemma 8.1. In fact, we claim that

1

N

∑

q

eiqx/W R(q)χ(q) = OK

(
1

W d

〈
x

W

〉−K

+
ηd/2

W d

〈√
ηx

W

〉−K )
. (A.20)

The proof of (A.20) is a rather laborious exercise in Taylor expansion whose details we
omit. The basic strategy is similar to the analysis of (A.12), except that we expand ŜW
up to order d/2 + 2 (instead of 4). This completes the proof of Lemma 8.2. ��
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A.3. Slowly decaying band: Proof of Lemma 8.8 and Proposition 8.9. We begin by
proving the following auxiliary result, which gives the relevant asymptotics of ŜW . For
q �= 0 define

b(q) := h0
W

Z

∫

R

du
1 − cos u

|u|1+β
σ

(
W u

q N

)
= B + O

[(
W

q N

)β]
. (A.21)

We also set b(0) := 0, so that b is continuous.

Lemma A.2. Suppose that d = 1 and that (8.6) and (8.7) hold. Then the following are
true.

(i) For any K ∈ N there exists a constant CK such that for |q| � 1 we have

|ŜW (q)| � CK

|q|K
.

(ii) For |q| � 1 we have

ŜW (q) = 1 − b(q)|q|β + O(q2) (A.22)

uniformly in N and W .
(iii) There is a constant c1 such that

‖S�‖ � 1 − c1

(
W

N

)β

.

Proof. Part (i) is proved similarly to (A.6), using summation by parts.
In order to prove part (ii), we write

1 − ŜW (q) = 1

Z

∑

x∈ 1
W Z

(
1 − cos(qx)

) h(x)

|x |1+β
σ

(
W x

N

)
. (A.23)

Let χ be a smooth, symmetric bump function satisfying χ(x) = 1 for |x | � 1 and
χ(x) = 0 for |x | � 2. Write χ := 1 − χ . We introduce the splitting

h = χh + χ(h − h0) + h0χ

on the right-hand side of (A.23). It is easy to check that the two first terms give a
contribution of order O(q2). The last term of the splitting gives rise to

h0

Z

∑

x∈ 1
W Z

(
1 − cos(qx)

) χ(x)

|x |1+β
σ

(
W x

N

)

= h0
W

Z

∫

R

(
1 − cos(qx)

) χ(x)

|x |1+β
σ

(
W x

N

)
dx + O

(
q2

W 2 +
1

N 2

)
, (A.24)

where the last step follows from a mid-point Riemann sum approximation. Now a change
of variables u = qx easily yields (A.22).

Part (iii) follows from part (ii) using an argument similar to (5.15). ��
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Proof of Lemma 8.8. The claim follows from the bound

�xy � C

W

W

N

∑

q∈Q

ŜW (q)

1 − |m|2 ŜW (q)
� C

Nη
+

C

W

∫

R

dq
ŜW (q)1(|q| � η1/β)

1 − |m|2 ŜW (q)

� C

Nη
+

C(η1/β−1 + 1)

W
,

where the first term is the contribution of the low modes |q| � η1/β and the second term
the contribution of the high modes |q| � η1/β , which may be replaced with an integral
and estimated using Lemma A.2. We omit the details. ��
Proof of Proposition 8.9. We proceed similarly to the proof of Proposition 2.8. We
choose a cutoff scale ε, and denote by χ the bump function from the proof of Lemma
A.2. The scale ε satisfies η1/β � ε � 1, and will be chosen by optimizing at the end of
the proof.

We use the expansions (A.22) and (3.5). Thus we find, as in the proof of Proposition
2.8,

(
S

1−|m|2S

)

x0
= 1

N

∑

q∈Q

eiqx/W χ(q/ε)

αη+ B|q|β +
1

N

∑

q∈Q

eiqx/W R(q)χ(q/ε)

+O

(
ε1−β

W

)
, (A.25)

where χ is a smooth bump function as in the proof of Proposition 2.8 and

R(q) := ŜW (q)

1−|m|2 ŜW (q)
− 1

αη+ B|q|β = (B−b)|q|β +O
(
η2+η|q|β +q2

)
(
αη+b|q|β +O(η2+η|q|β +q2)

)(
αη+ B|q|β) .

Note that for q ∈ Q \ {0} we have b(q) � c. Using (A.21) we may therefore estimate,
as in (A.12), to get

1

N

∑

q∈Q

|R(q)|χ(q/ε) � C

W

(
log N η1/β−2

(
W

N

)β

+ 1 + ε2−βη1/β−1
)

.

Next, the bump function in the main term of (A.25) may be easily removed, and the
summation in q extended to the whole lattice 2πW

N Z, at the expense of an error of order
O(ε1−β/W ). Putting everything together, we get
(

S

1−|m|2S

)

x0
= 1

N

∑

q∈ 2πW
N Z

eiqx/W 1

αη+ B|q|β +
η1/β−1

W
O

(
W −c +ε2−β +ε1−βη1−1/β

)

for some c > 0, where we used (8.10). Setting ε := η1−1/β and Poisson summation
yields

�x0 = |m|2
Wαη

(
αη

B

)1/β ∑

k∈Z

V

[(
αη

B

)1/β x + k N

W

]
+ O

(
η1/β−1

W 1+c

)
.

Now (8.11) follows by noting that by (8.9), under the assumption (8.10), only the term
k = 0 is of leading order. ��
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B. Multilinear Large Deviation Estimates

In this appendix we give a generalization of the large deviation estimate of Corollary B.3
[23]. The proof is simpler and the statement is formulated under the assumption (2.11)
instead of the stronger subexponential decay assumption. Moreover, since the current
proof does not rely on the Burkholder inequality, it is trivially generalizable to arbitrary
multilinear estimates.

Throughout the following we consider random variables X satisfying

EX = 0 , E|X |2 = 1 , ‖X‖p � μp (B.1)

for all p with some μp. Here we set ‖X‖p := (
E|X |p

)1/p.

Theorem B.1 (Large deviation bounds). Let
(
X (N )

i

)
,
(
Y (N )

i

)
,
(
a(N )

i j

)
, and

(
b(N )

i

)
be inde-

pendent families of random variables, where N ∈ N and i, j = 1, . . . , N. Suppose that
all entries X (N )

i and Y (N )
i are independent and satisfy (B.1).

(i) Suppose that
(∑

i |bi |2
)1/2 ≺ �. Then

∑
i bi Xi ≺ �.

(ii) Suppose that
(∑

i �= j |ai j |2
)1/2 ≺ �. Then

∑
i �= j ai j Xi X j ≺ �.

(iii) Suppose that
(∑

i, j |ai j |2
)1/2 ≺ �. Then

∑
i, j ai j Xi Y j ≺ �.

If all of the above random variables depend on an index u and the hypotheses of (i) –
(iii) are uniform in u, then so are the conclusions.

The rest of this appendix is devoted to the proof of Theorem B.1. Our proof in
fact generalizes trivially to arbitrary multilinear estimates for quantities of the form∑∗

i1,...,ik
ai1...ik (u)Xi1(u) · · · Xik (u), where the star indicates that the summation indices

are constrained to be distinct.
We first recall the following version of the Marcinkiewicz-Zygmund inequality.

Lemma B.2. Let X1, . . . , X N be a family of independent random variables each satis-
fying (B.1) and suppose that the family (bi ) is deterministic. Then

∥∥∥∥
∑

i

bi Xi

∥∥∥∥
p

� (Cp)1/2μp

(∑

i

|bi |2
)1/2

. (B.2)

Proof. The proof is a simple application of Jensen’s inequality. Writing B2 := ∑
j |bi |2,

we get, by the classical Marcinkiewicz-Zygmund inequality [39] in the first line, that
∥∥∥∥
∑

i

bi Xi

∥∥∥∥
p

p
� (Cp)p/2

∥∥∥∥

(∑

i

|bi |2|Xi |2
)1/2∥∥∥∥

p

p

= (Cp)p/2 B p
E

[(∑

i

|bi |2
B2 |Xi |2

)p/2]

� (Cp)p/2 B p
E

[∑

i

|bi |2
B2 |Xi |p

]

� (Cp)p/2 B pμ
p
p.

��
Next, we prove the following intermediate result.
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Lemma B.3. Let X1, . . . , X N , Y1, . . . , YN be independent random variables each sat-
isfying (B.1), and suppose that the family (ai j ) is deterministic. Then for all p � 2 we
have

∥∥∥∥
∑

i, j

ai j Xi Y j

∥∥∥∥
p

� Cp μ2
p

(∑

i, j

|ai j |2
)1/2

.

Proof. Write
∑

i, j

ai j Xi Y j =
∑

j

b j Y j , b j :=
∑

i

ai j Xi .

Note that (b j ) and (Y j ) are independent families. By conditioning on the family (b j ),
we therefore get from Lemma B.2 and the triangle inequality that

∥∥∥∥
∑

j

b j Y j

∥∥∥∥
p

� (Cp)1/2 μp

∥∥∥∥
∑

j

|b j |2
∥∥∥∥

1/2

p/2
� (Cp)1/2 μp

(∑

j

‖b j‖2
p

)1/2

.

Using Lemma B.2 again, we have

‖b j‖p � (Cp)1/2 μp

(∑

i

|ai j |2
)1/2

.

This concludes the proof. ��
Lemma B.4. Let X1, . . . , X N be independent random variables each satisfying (B.1),
and suppose that the family (ai j ) is deterministic. Then we have

∥∥∥∥
∑

i �= j

ai j Xi X j

∥∥∥∥
p

� Cp μ2
p

(∑

i �= j

|ai j |2
)1/2

.

Proof. The proof relies on the identity (valid for i �= j)

1 = 1

Z N

∑

I�J=NN

1(i ∈ I )1( j ∈ J ) , (B.3)

where the sum ranges over all partitions of NN = {1, . . . , N } into two sets I and J , and
Z N := 2N−2 is independent of i and j . Moreover, we have

∑

I�J=NN

1 = 2N − 2 , (B.4)

where the sum ranges over nonempty subsets I and J . Now we may estimate
∥∥∥∥
∑

i �= j

ai j Xi X j

∥∥∥∥
p

� 1

Z N

∑

I�J=NN

∥∥∥∥
∑

i∈I

∑

j∈J

ai j Xi X j

∥∥∥∥
p

� 1

Z N

∑

I�J=NN

Cp μ2
p

(∑

i �= j

|ai j |2
)1/2

,

where we used that, for any partition I � J = NN , the families (Xi )i∈I and (X j ) j∈J
are independent, and hence Lemma B.3 is applicable. The claim now follows from
(B.4). ��
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As remarked above, the proof of Lemma B.4 may be easily extended to multilinear
expressions of the form

∑∗
i1,...,ik

ai1...ik Xi1 · · · Xik .
We may now complete the proof of Theorem B.1.

Proof of Theorem B.1. The proof is a simple application of Chebyshev’s inequality. Part
(i) follows from Lemma B.2, part (ii) from Lemma B.4, and part (iii) from Lemma B.3.
We give the details for part (iii).

For ε > 0 and D > 0 we have

P

[∣∣∣∣
∑

i �= j

ai j Xi X j

∣∣∣∣ � N ε�

]
� P

[∣∣∣∣
∑

i �= j

ai j Xi X j

∣∣∣∣ � N ε� ,

(∑

i �= j

|ai j |2
)1/2

� N ε/2�

]

+ P

[(∑

i �= j

|ai j |2
)1/2

� N ε/2�

]

� P

[∣∣∣∣
∑

i �= j

ai j Xi X j

∣∣∣∣ � N ε/2
(∑

i �= j

|ai j |2
)1/2]

+ N−D−1

�
(

Cpμ2
p

N ε/2

)p

+ N−D−1

for arbitrary D. In the second step we used the definition of
(∑

i �= j |ai j |2
)1/2 ≺ � with

parameters ε/2 and D + 1. In the last step we used Lemma B.4 by conditioning on
(ai j ). Given ε and D, there is a large enough p such that the first term on the last line is
bounded by N−D−1. Since ε and D were arbitrary, the proof is complete.

The claimed uniformity in u in the case that ai j and Xi depend on an index u also
follows from the above estimate. ��
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