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Abstract: Given an irreducible unitary representation of a cocompact lattice of
SL(2, C), we explicitly write down a solution of the Strominger system of equations.
These solutions satisfy the equation of motion, and the underlying holomorphic vector
bundles are stable.

1. Introduction

Evoking physical requirements from anomaly cancellations, realistic fermionic spectrum
and the appropriate amount (N = 1) of Space-time supersymmetry, Candelas et al. had
originally proposed a model for compactification of the superstring, by analyzing the
vacuum configurations of these 10-dimensional theories [CHSW]. Anomaly cancella-
tion requirements (which constrain the gauge groups of these models to be O(32) or
E8 × E8), along with the requirement of a zero cosmological constant, then lead them
to propose/construct the 10-dimensional vacuum solutions of these theories to be of the
metric product type X4 × M, where X4 is the maximally symmetric 4d space-time
(which should admit unbroken N = 1 supersymmetry), and M is a complex 3-dimen-
sional Calabi-Yau manifold. Subsequently, these conclusions were further generalized
to include other gauge groups (like SU(4) or SU(5)), as would arise when considering
compactifications for the strongly coupled heterotic string theory. The correspondence
between the algebro-geometric notion of stable vector bundles and the existence of
Hermitian-Yang-Mills connections was one of the primary mathematical inputs under-
lying these derivations [Wi]. In all these examples, the supersymmetric vacuum (man-
ifold) was assumed to be one whose geometry had no torsion. Hence the existence of
a solution on such a given manifold was mostly a topological question and the issue of
existence of appropriate solutions (obeying all the physical requirements) often boiled
down to a set of conditions on the Chern classes of the vacuum manifold M and the
Yang-Mills Gauge connections.
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In 1986, Strominger investigated the necessary and sufficient conditions for space-
time supersymmetric solutions of the heterotic string. While considering more general
space-times as solutions to the heterotic superstring solutions, Strominger, [St], was lead
to considering vacuum configurations with torsion. He relaxed the requirement of the
10-dimensional vacuum metric by considering that, for more general vacuum configu-
rations (which can sustain non-zero fluxes as well as space-time supersymmetry), the
10-dimensional space-time be a warped product of X4 and the 6-dimensional internal
space M. Analyzing the constraints imposed by the requirements of N = 1 space-
time (i.e., 4 dimensional) supersymmetry (and other usual consistency requirements
like anomaly cancellation), Strominger then established that the 6-dimensional inter-
nal manifold M should be a compact, connected, complex manifold (hereafter denoted
as M), such that its canonical line bundle KM is holomorphically trivial. Let ω =√−1

2 gi j dzi ∧ dz j be a (1, 1) Hermitian form on M , and let ∇M be a connection on T M
compatible with ω. We denote its curvature by R. Further, let E be a holomorphic vector
bundle on M equipped with the (gauge) connection A, and corresponding curvature FA.
It turns out that the anomaly cancellation condition then demands that the Hermitian
(1, 1) form ω obeys an equation of the form:

√−1 ∂∂ ω = α′

4
(trace(R ∧ R) − trace(FA ∧ FA)) .

The consistency conditions from requirements of the space-time supersymmetry trans-
lates into the equation:

d∗ω = √−1
(
∂ − ∂

)
ln ‖�‖ω

for the Hermitian form ω and the holomorphic 3-form �. The previous equation may
also be equivalently re-written as [LY2]:

d
(
‖�‖ω · ω2

)
= 0.

The above equations, along with the system (constraining the Yang-Mills Gauge
theory content):

F2,0
A = F0,2

A = 0, F ∧ ω2 = 0

gives a complete and general solution of a superstring theory with torsion and with a flux
that allows a non-trivial dilation field (cosmological constant). Henceforth, the above
system of equations (which are derived solely from the explicit requirements stemming
from Superstring theory) would be referred to as the Strominger system of equations.
Thus, by considering vacuum geometries with torsion, Strominger was able to relax the
requirement of M to be Kähler and consider more general complex 3-manifolds. But
the price to be paid was that the familiar tools and methods from Kähler geometry could
now no longer be applied to these more general cases. Moreover, a purely topological
characterization and classification of these heterotic superstring vacua solutions (i.e., the
Chern classes of the bundles E and the vacuum manifold M), would no longer suffice.

The above results provide us with the necessary and sufficient conditions for any het-
erotic superstring theory solution (admitting space-time supersymmetry for its vacuum
configuration) to exist, but in practice, it is quite a difficult matter to exhibit or actually
explicitly construct a solution which exists (and satisfies the Strominger equation). Apart
from its interest and usefulness in the context of string theory, it is also of interest from



Unitary Representations of Cocompact Lattices of SL(2, C) 375

a mathematical point of view to find solutions (i.e., construct the bundles E with the
appropriate connection A for a given manifold M with properties as defined above) of
the Strominger system. In recent years, there has been a flurry of activities surrounding
this problem of providing explicit constructive methods for solutions of these Stromin-
ger systems (cf. [AG1,AG2,Iv] and references therein). The present paper explores a
new and altogether different constructive scheme, based on an approach that does not
require the perturbative/deformation prescription.

Further attempts at exploring more general vacuum configurations for the heterotic
string with non-zero fluxes have lead to some additional corrections to the original
analysis of Strominger. These come from considering (SU(3)) instanton corrections at
higher loops, and lead to the additional consistency conditions (for the solutions of the
Strominger system) and these are:

R2,0 = R0,2 = 0, R ∧ ω2 = 0.

These are referred to as equations of motion. Here we shall consider those solutions of
the Strominger system which also additionally satisfy the above conditions.

In recent years, there has been a lot of activity, in trying to construct actual/explicit
examples which are solutions to the above extended Strominger system. In [FTY], Fu,
Tseng and Yau have studied the existence of smooth solutions to the Strominger sys-
tem. They proposed a perturbation method where deformation theory results were used
to construct solutions for some U (4) and U (5) principal bundles. Subsequent general-
izations of this method lead to the construction of new examples (of solutions to the
Strominger system) on a class of non-Kähler three-dimensional manifolds like T 2-bun-
dles over a K 3 surface, or T 2-bundles over Eguchi-Hanson spaces. Nevertheless finding
new/more examples of such solutions has proved to be rather tricky, and it seems that
there is no general ansatz/scheme for constructing an example; instead one has to invent
specific prescriptions and construction procedure for every new example.

In the present work, we produce solutions of the Strominger system from irreducible
unitary representations of any cocompact lattice in SL(2, C). Let � be a cocompact lattice
in SL(2, C) (meaning SL(2, C)/� is compact), and let ρ : � −→ U(n) be an irreduc-
ible homomorphism, meaning no nonzero proper linear subspace of C

n is left invariant
by the action of the image ρ(�). The compact complex manifold M := SL(2, C)/�

has trivial canonical line bundle, and M is equipped with a natural Hermitian structure.
The Chern connection on T M for this Hermitian structure has the following properties:

(1) the torsion of the connection is totally skew–symmetric, meaning it is a section of∧3 T M , and
(2) the holonomy of the connection lies in SU(3)

(see Corollary 4.3). The homomorphism ρ produces a holomorphic vector bundle over
M with a flat unitary connection. This vector bundle is stable; see Proposition 4.5. We
prove that all these together produce a solution of the Strominger system satisfying the
equation of motion; the details are in Theorem 4.6.

2. Strominger System of Equations

We write down the Strominger system of equations in one place for the convenience of
later reference in Sect. 4.
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Let M be a compact connected complex manifold of dimension three such that the
canonical line bundle KM := ∧3

�1
M is holomorphically trivial. Let

� ∈ H0(M, KM )

be a nowhere vanishing holomorphic section. Let ω be a Hermitian (1 , 1)–form on M .
Take a connection ∇T on T M compatible with ω; its curvature will be denoted by R.
Let E be a holomorphic vector bundle on M equipped with a connection A. Let FA be
the curvature of A. Let d∗ be the adjoint of d with respect to ω; it sends smooth k forms
on M to k − 1 forms.

The sextuple (M ,� , ω ,∇T , E , A) is said to solve the Strominger system if the
following equations hold:

F2,0
A = F0,2

A = 0, F ∧ ω2 = 0, (2.1)

d∗ω = √−1(∂ − ∂)‖�‖ω, (2.2)

d(‖�‖ω · ω2) = 0 (2.3)√−1∂∂ω =, α′(trace(R ∧ R) − trace(FA ∧ FA)), where α′ ∈ R. (2.4)

A Strominger system (M ,� , ω , E , A) as above is said to solve the eqnarray of motion
if

R2,0 = 0 = R0,2 and R ∧ ω2 = 0. (2.5)

3. Invariant Forms on SL(2, C)

Consider the complex Lie group SL(2, C). Let h0 be the Hermitian structure on the Lie
algebra sl(2, C) of SL(2, C) defined by

h0(A, B) = trace(AB∗) , (3.1)

where B∗ = B
t
. Note that the adjoint action of SU(2) on sl(2, C) preserves h0.

Using the right–translation invariant vector fields on SL(2, C), we identify the holo-
morphic tangent bundle T SL(2, C) with the trivial vector bundle

SL(2, C) × sl(2, C) −→ SL(2, C)

with fiber sl(2, C). Let h be the unique right–translation invariant Hermitian structure
on SL(2, C) such that

h|TeSL(2,C) = h0,

where e ∈ SL(2, C) is the identity element. Let

ωh ∈ C∞(SL(2, C), �
1,1
SL(2,C)

) (3.2)

be the Kähler form associated to the Hermitian structure h on SL(2, C). We note that
dωh �= 0.

Proposition 3.1. Let ξ ∈ C∞(SL(2, C), �
1,0
SL(2,C)

⊕ �
0,1
SL(2,C)

) be a complex 1–form
on SL(2, C) such that
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• the right–translation action of SL(2, C) on itself preserves ξ , and
• the left–translation action of SU(2) on SL(2, C) preserves ξ .

Then

ξ = 0.

Proof. Since the holomorphic tangent space of SL(2, C) at e ∈ SL(2, C) is iden-
tified with sl(2, C), the evaluation of ξ at e is an element of sl(2, C)∗

⊗
R C =

(sl(2, C)
⊗

R C)∗; here we identify (T 0,1
e SL(2, C))∗ with (T 1,0

e SL(2, C))∗ by sending
any u to its conjugate u. Let

ξ0 := ξ(e) ∈ sl(2, C)∗ ⊗R C

be the evaluation of ξ at e. The adjoint action of SL(2, C) on sl(2, C) produces an
action of SL(2, C) on sl(2, C)∗

⊗
R C. In particular, we get an action of SU(2) on

sl(2, C)∗
⊗

R C. The two given conditions on ξ imply that this action of SU(2) on
sl(2, C)∗

⊗
R C fixes the element ξ0.

Consider the nondegenerate symmetric bilinear pairing on sl(2, C) defined by

(A , B) �−→ trace(AB). (3.3)

It produces an isomorphism of sl(2, C) with sl(2, C)∗ that is equivariant for the actions
of SL(2, C) on sl(2, C) and sl(2, C)∗. Using this identification between sl(2, C)∗ and
sl(2, C), the above element ξ0 gives an element

ξ̃0 ∈ ∈ sl(2, C) ⊗R C.

We note that ξ̃0 is fixed by the adjoint action of SU(2), because

• ξ0 is fixed by the action of SU(2) on sl(2, C)∗ ⊗R C, and
• the isomorphism between sl(2, C) and sl(2, C)∗ is SL(2, C)–equivariant.

But no nonzero element of sl(2, C) is fixed by the adjoint action of SU(2) on sl(2, C).
This implies that there is no nonzero element of sl(2, C)

⊗
R C that is fixed by the action

of SU(2), because (sl(2, C)
⊗

R C)SU(2) = sl(2, C)SU(2)
⊗

R C. (For an SU(2)–mod-
ule W , by W SU(2) we denote the space of invariants for the action of SU(2) on W .)
Hence we conclude that ξ̃0 = 0. So, ξ0 = 0. This implies that ξ = 0 because it is fixed
by the right–translation action of SL(2, C) on itself. ��
Proposition 3.2. Let ζ be a C∞ complex 4–form on SL(2, C) such that

• the right–translation action of SL(2, C) on itself preserves ζ , and
• the left–translation action of SU(2) on SL(2, C) preserves ζ .

Then there is constant c ∈ C such that

ζ = c · ωh ∧ ωh,

where ωh is constructed in (3.2).
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Proof. As in the proof of Proposition 3.1, the evaluation of ζ at e is an element

ζ0 ∈
∧4

(sl(2, C)∗ ⊗R C).

The adjoint action of SL(2, C) on sl(2, C) produces an action of SL(2, C) on the com-
plex line

∧6
(sl(2, C)

⊗
R C). Since SL(2, C) does not have any nontrivial character,

this action of SL(2, C) on
∧6

(sl(2, C)
⊗

R C) is trivial. The adjoint action of SL(2, C)

on the Lie algebra sl(2, C) produces actions of SL(2, C) on
∧4

(sl(2, C)∗
⊗

R C) and∧2
(sl(2, C)

⊗
R C). Fixing a nonzero element of the line

∧6
(sl(2, C)

⊗
R C), we get an

SL(2, C)–equivariant isomorphism of
∧4

(sl(2, C)∗
⊗

R C) with
∧2

(sl(2, C)
⊗

R C).
Using this isomorphism, the above element ζ0 gives an element

ζ̂0 ∈
∧2

(sl(2, C) ⊗R C). (3.4)

The two given conditions on ζ imply that the element ζ̂0 in (3.4) is fixed by the action
of SU(2) on

∧2
(sl(2, C)

⊗
R C) (recall that SL(2, C) acts on

∧2
(sl(2, C)

⊗
R C)).

Note that
∧2

(sl(2, C) ⊗R C) = (
∧2

sl(2, C))⊕2 ⊕ (sl(2, C) ⊗ sl(2, C));
this decomposition is preserved by the action of SL(2, C). There is no nonzero element
of

∧2 sl(2, C) preserved by the action of SU(2). The subspace of sl(2, C) ⊗ sl(2, C)

defined by all elements fixed pointwise by the action of SU(2) is one-dimensional, and it
is generated by the element of Sym2(sl(2, C)) ⊂ sl(2, C)⊗2 given by the nondegener-
ate pairing in (3.3). This immediately implies that the space of smooth complex 4–forms
on SL(2, C) satisfying the two conditions in the proposition is one dimensional.

Since the inner product h0 on sl(2, C) in (3.1) is SU(2)–invariant, it follows imme-
diately that the Hermitian structure h on SL(2, C) is preserved by the left–translation
action of SU(2) on SL(2, C). Hence the Kähler form ωh on SL(2, C) is preserved by
the left–translation action of SU(2) on SL(2, C). Recall that ωh is also preserved by
the right–translation action of SL(2, C) on itself. Therefore, ωh

∧
ωh is a nonzero com-

plex 4–form satisfying the two conditions in the proposition. Since the space of smooth
complex 4–forms on SL(2, C) satisfying the two conditions in the proposition is one
dimensional, we now conclude that ζ is a constant scalar multiple of ωh

∧
ωh . ��

Lemma 3.3. The differential form ωh in (3.2) satisfies the identity

d(ωh ∧ ωh) = 0.

Proof. Using the identification between TeSL(2, C) and sl(2, C), the evaluation of the
5–form d(ω2

h) at e is an element of
∧5

(sl(2, C)
⊗

R C)∗; as in the proof of Proposition

3.1, we identify (T 0,1
e SL(2, C))∗ with (T 1,0

e SL(2, C))∗ by sending any u to u.
As in the proof of Proposition 3.2, fixing a nonzero element of

∧6
(sl(2, C)

⊗
R C),

we get an SL(2, C)–equivariant isomorphism of
∧5

(sl(2, C)
⊗

R C)∗ with sl(2, C)⊗
R C. Using this isomorphism, we have

(d(ωh ∧ ωh))(e) ∈ sl(2, C) ⊗R C. (3.5)

As noted in the proof of Proposition 3.2, the Kähler form ωh is preserved by the left–
translation action of SU(2) on SL(2, C). Consequently, the 5–form d(ω2

h) is preserved by
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the left–translation action of SU(2)on SL(2, C). This implies that the element (d(ω2
h))(e)

in (3.5) is fixed by the adjoint action of SU(2) on sl(2, C)
⊗

R C. From this it follows that
(d(ω2

h))(e) = 0, because (sl(2, C)
⊗

R C)SU(2) = sl(2, C)SU(2)
⊗

R C = 0. Since dω2
h

is invariant under the right–translation action of SL(2, C) on itself, and (d(ω2
h))(e) = 0,

we conclude that d(ω2
h) = 0. ��

As before, T SL(2, C) is the holomorphic tangent bundle of T SL(2, C). Let ∇h

denote the Chern connection on T SL(2, C) corresponding to the Hermitian structure h
on SL(2, C). The torsion of the connection ∇h of T SL(2, C) will be denoted by T (∇h);
it is a C∞ section of �

2,0
SL(2,C)

⊗ (T SL(2, C)).
Consider the Hermitian structure h on T SL(2, C). It produces a C∞ isomorphism

h′ : �
1,0
SL(2,C)

−→ T SL(2, C)

defined by h(h′(w) , v) = w(v) for w ∈ (�
1,0
SL(2,C)

)x , v ∈ Tx SL(2, C) and x ∈
SL(2, C). We note that h′ is a conjugate linear isomorphism. Using the isomorphism h′,
the torsion T (∇h) is a C∞ section of (

∧2
(T SL(2, C)))

⊗
(T SL(2, C)).

Proposition 3.4. The torsion T (∇h) ∈ C∞(SL(2, C), (
∧2

(T SL(2, C)))
⊗

(T SL
(2, C))) lies in the subspace

C∞(SL(2, C),
∧3

(T SL(2, C)))⊂C∞(SL(2, C), (
∧2

(T SL(2, C)))⊗(T SL(2, C))).

In other words, the torsion is totally skew–symmetric.
The holonomy of the connection ∇h lies in SU(3).

Proof. Consider the element

T (∇h)(e) ∈ (
∧2

sl(2, C)) ⊗ sl(2, C), (3.6)

where e ∈ SL(2, C) is the identity element. It is invariant under the adjoint action of
SU(2) because the Hermitian structure h is preserved by the least translation action of
SU(2) on SL(2, C).

Let V0 be the standard two dimensional representation of SU(2). The SU(2)–module
sl(2, C) is isomorphic to the symmetric product Sym2(V0).

Therefore, the SU(2)–module in (3.6) is isomorphic to (
∧2 Sym2(V0))⊗Sym2(V0).

But
∧2

Sym2(V0) = Sym2(V0)

(see [FH, p. 160, Ex. 11.35]), and

Sym2(V0) ⊗ Sym2(V0) = Sym4(V0) ⊕ Sym2(V0) ⊕ Sym0(V0)

(see [FH, p. 151, Ex. 11.11]). Consequently,

((
∧2

Sym2(V0)) ⊗ Sym2(V0))
SU(2) = Sym0(V0) =

∧3
Sym2(V0).

Consequently, T (∇h) is a section of
∧3

(T SL(2, C)). This proves the first part of the
proposition.
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To prove the second part of the proposition, consider the Hermitian structure on the
trivial holomorphic line bundle

∧3
(T SL(2, C)) induced by h. It is a constant Hermitian

structure on the trivial holomorphic line bundle. Hence the holonomy of the connec-
tion on

∧3
(T SL(2, C)) induced by ∇h is trivial. Consequently, the holonomy of the

connection ∇h lies in the subgroup SU(3) ⊂ U(3). ��

4. A Class of Solutions of the Strominger System

Let

� ⊂ SL(2, C) (4.1)

be a cocompact lattice, meaning � is a closed discrete subgroup of SL(2, C) such that
the quotient

M := SL(2, C)/� (4.2)

is compact. We note that M is not a Kähler manifold.
Since the Hermitian structure h on SL(2, C) constructed in Sect. 3 is invariant under

the right–translation action of SL(2, C) on itself, we conclude that h defines a Hermitian
structure on M . Let ĥ denote the Hermitian structure on M given by h. Note that the
pullback of ĥ by the quotient map SL(2, C) −→ M coincides with h. Let

ω ∈ C∞(M, �
1,1
M ) (4.3)

be the Kähler form on M associated to ĥ. Let

∇ω (4.4)

be the Chern connection on T M associated to ω.

Corollary 4.1. The differential form ω in (4.3) satisfies the identity

d(ω2) = 0.

Proof. Since the pullback of ω to SL(2, C), by the quotient map SL(2, C) −→ M ,
coincides with ωh , from Lemma 3.3 it follows that d(ω2) = 0. ��

For any torsionfree coherent analytic sheaf F on M , let det(F) be the determinant
line bundle on M ; see [Ko, Ch. V,§ 6] for the construction of the determinant bundle.
Define the degree of F to be

degree(F) :=
∫

M
α(F) ∧ ω ∧ ω ∈ R, (4.5)

where α(F) is any 2–form on M representing the first Chern class c1(det(F)) ∈
H2(M, R).

Lemma 4.2. The degree is well defined.
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Proof. Let α and β be two 2–forms on M representing c1(det(F)). So, α − β = dδ,
where δ is a smooth 1–form on M . Now,
∫

M
α ∧ ω2 −

∫

M
β ∧ ω2 =

∫

M
(α − β) ∧ ω2 =

∫

M
(dδ) ∧ ω2 =

∫

M
δ ∧ d(ω2) = 0

be Corollary 4.1. So,
∫

M α ∧ ω2 = ∫
M β ∧ ω2. Hence the degree is independent of the

choice of the differential form representing the first Chern class. ��
Since the connection ∇ω is the descent of the connection ∇h considered in Proposition

3.4, the following corollary is an immediate consequence of Proposition 3.4.

Corollary 4.3. The torsion of the connection ∇ω is a C∞ section of
∧3 T M ; in other

words, the torsion is totally skew–symmetric.
The holonomy of the connection ∇ω lies in SU(3).

We note that the torsion of the connection ∇ω is nonzero because M is not Kähler.
We choose � such that there are irreducible unitary representations of �.

Remark 4.4. There are many examples of such �; see [La, p. 3393, Thm. 2.1]. Note
that any free nonabelian group has irreducible unitary representations in U(n) for all
n ≥ 2. To see this, take any two elements g1 and g2 of SU(n) such that g1g2g−1

1 g−1
2

is a generator of the center of SU(n). The subgroup of U(n) generated by g1 and g2 is
irreducible.

Let

ρ : � −→ U(n) (4.6)

be an irreducible representation; this means that the only linear subspaces of C
n left

invariant by the action of ρ(�) are 0 and C
n . Let

(E ,∇) −→ M (4.7)

be the unitary flat vector bundle over M given by ρ. We briefly recall the constructions
of the vector bundle E and the connection ∇ on it. Consider the trivial vector bundle
SL(2, C) × C

n on SL(2, C); it has the trivial connection. This trivial connection is uni-
tary with respect to the standard inner product on C

n . The group � acts on SL(2, C)

as right–translations, and it acts on C
n as follows: the action of any γ ∈ � sends any

v ∈ C
n to ρ(γ −1)(v). Consider the diagonal action of � on SL(2, C)×C

n constructed
using these two actions. Let (SL(2, C) × C

n)/� be the quotient for this action. The
natural map

(SL(2, C) × C
n)/� −→ SL(2, C)/� = M

is a vector bundle, which we will denote by E . The trivial connection on the vector
bundle SL(2, C) × C

n −→ SL(2, C) descends to a flat unitary connection on E ; this
descended connection on E will be denoted by ∇.

A holomorphic vector bundle F of positive rank on M is called stable if for every
nonzero coherent analytic subsheaf V ⊂ F with rank(V ) < rank(F), the inequality

degree(V )

rank(V )
<

degree(F)

rank(F)

holds, where degree is defined in (4.5) (and Lemma 4.2).
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Proposition 4.5. The holomorphic vector bundle E over M in (4.7) is stable.

Proof. Since the vector bundle E admits a flat connection (recall that ∇ is flat), we have
c1(det(E)) = c1(E) = 0. Hence degree(E) = 0.

Since the connection ∇ in (4.7) is unitary flat and irreducible, the proof of Proposition
8.2 in [Ko, p. 176] gives that E is stable. In fact, the proof of Proposition 8.2 in [Ko,
p. 176], which is for irreducible Einstein-Hermitian bundles, gets simplified due to the
stronger input that ∇ is unitary flat. ��

Let {A0 , B0 , C0} be the basis of sl(2, C) defined by

A0 =
(

1 0
0 −1

)
, B0 =

(
0 1
0 0

)
, C0 =

(
0 0
1 0

)
.

Then A0
∧

B0
∧

C0 is a nonzero element of the line
∧3 sl(2, C); we will call this ele-

ment θ0. Note that the adjoint action of SL(2, C) on
∧3 sl(2, C) preserves θ0, because

the action of SL(2, C) on
∧3 sl(2, C) is trivial (the group SL(2, C) does not have any

nontrivial character).
The holomorphic tangent bundle T SL(2, C) of SL(2, C) is identified with the trivial

vector bundle SL(2, C) × sl(2, C) using right–translation invariant vector fields. This
identification produces a holomorphic isomorphism of the holomorphic tangent bundle
T M , where M is constructed in (4.2), with the trivial vector bundle M × sl(2, C). Using
this isomorphism, the above element θ0 ∈ ∧3 sl(2, C) produces a trivialization of the
canonical line bundle

KM :=
∧3

�
3,0
M = (

∧3
T M)∗.

Let

θ ∈ H0(M, KM ) (4.8)

be the nowhere zero holomorphic section given by θ0.

Theorem 4.6. Consider the sextuple (M , θ , ω ,∇ω , E ,∇) constructed in (4.2), (4.8),
(4.3), (4.4) and (4.7). It solves the Strominger system. Moreover, it solves the equation
of motion.

Proof. Since ∇ is flat, the equations in (2.1) are satisfied.
The differential forms on both sides of Eq. (2.2) are given by right–translation invari-

ant 1–forms on SL(2, C). Moreover, these two 1–forms on SL(2, C) are invariant under
the left–translation action of SU(2). Hence both sides of Eq. (2.2) vanish identically by
Proposition 3.1.

The two form ‖�‖ω ·ω2 is given by a right–translation invariant 1–form on SL(2, C)

which is also fixed by the left–translation action of SU(2) on SL(2, C). Therefore,
by Proposition 3.2, the form ‖�‖ω · ω2 is a constant scalar multiple of ω2. Hence
d(‖�‖ω · ω2) = 0 by Corollary 4.1.

The two 2–forms on two sides of Eq. (2.4) are given by right–translation invariant
2–forms on SL(2, C) that are fixed by the left–translation action of SU(2) on SL(2, C).
Therefore, from Proposition 3.2 we conclude that (2.4) holds.

Therefore, the sextuple (M , θ , ω ,∇ω , E ,∇) solves the Strominger system. We
will now show that Eq. (2.5) also holds.
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Let R(∇ω) be the curvature of the connection ∇ω on T M . Since ∇ω is the Chern
connection for ω, we have

R(∇ω)2,0 = 0 = R(∇ω)0,2.

To prove that R(∇ω)
∧

ω2 = 0, we first note that R(∇ω)
∧

ω2 = 0 if and only if

�ω(R(∇ω) ∧ ω2) = 0,

where �ω is the star operator on differential forms on M constructed using ω; we note
that �ω(R(∇ω)

∧
ω2) is a C∞ section of End(T M) = T M ⊗ (T M)∗.

Consider the evaluation �ω(R(∇ω)
∧

ω2)(e) ∈ End(Te M) of �ω(R(∇ω)
∧

ω2) at
e ∈ SL(2, C). Using the identification of Te M with sl(2, C), it will be considered as
an element of

End(sl(2, C)) = sl(2, C) ⊗ sl(2, C)∗.
The space of invariants End(sl(2, C))SU(2) ⊂ End(sl(2, C)) is one dimensional, and it
is generated by the identity element Idsl(2,C). In other words, �ω(R(∇ω)

∧
ω2)(e) is a

scalar multiple of Idsl(2,C). Let λ ∈ C be such that

�ω (R(∇ω)
∧

ω2)(e) = λ · Idsl(2,C). (4.9)

Since �ω(R(∇ω)
∧

ω2) is given by a section of End(T SL(2, C)) which is invariant
under the right–translation action of SL(2, C) on itself, from (4.9) we conclude that

�ω (R(∇ω)
∧

ω2)(e) = λ · IdT M . (4.10)

From (4.10) it follows immediately that

R(∇ω)
∧

ω2 = λ · IdT M ⊗ ω3. (4.11)

Since �ω(R(∇ω)
∧

ω2) is given by a section of End(T SL(2, C)) which is invariant under
the right–translation action of SL(2, C) on itself, to prove that �ω(R(∇ω)

∧
ω2) = 0, it

suffices to show that λ = 0, where λ is the scalar in (4.9).
To prove that λ = 0, first that c1(T M) = 0, because T M is holomorphically trivial.

Hence

trace(R(∇ω)) = dβ

for some smooth 1–form β on M . Therefore,
∫

M
trace(R(∇ω)) ∧ ω2 =

∫

M
(dβ) ∧ ω2 =

∫

M
β ∧ d(ω2) = 0 (4.12)

by Lemma 3.3. Now from (4.11),
∫

M
trace(R(∇ω)) ∧ ω2 = 3λ ·

∫

M
ω3.

Since
∫

M ω3 �= 0, from (4.12) we conclude that λ = 0. Therefore, (2.5) holds. This
completes the proof. ��
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