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Abstract: We obtain the asymptotics of the optimal global Hölder exponent of the
integrated density of states of the Fibonacci Hamiltonian for large and small couplings.

1. Introduction

In this paper we are interested in regularity properties of the integrated density of states
associated with the Fibonacci Hamiltonian. It follows from known results that it is uni-
formly Hölder continuous. However, it is clear that the known estimates of the Hölder
exponent are far from optimal. Here we employ new methods to obtain estimates for
the Hölder exponent in terms of the coupling constant in the regime of large or small
coupling, which are shown to be asymptotically optimal in each case.

To motivate our study, let us consider an invertible ergodic transformation T of a
probability measure space (�, dμ) and a bounded measurable function f : � → R.
One associates a family of discrete Schrödinger operators on the line as follows: For
ω ∈ �, the potential Vω : Z → R is given by Vω(n) = f (T nω) and the operator Hω in
�2(Z) acts as

[Hωφ](n) = φ(n + 1) + φ(n − 1) + Vω(n)φ(n).

An important quantity associated with such a family of operators, {Hω}ω∈�, is given by
the integrated density of states, which is defined as follows: compare [2,13]. Define the
measure d N by ∫

g(λ)d N (λ) =
∫

〈δ0, g(Hω)δ0〉 dμ(ω). (1)
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The integrated density of states (IDS), N , is then given by

N (E) =
∫

χ(−∞,E](λ) d N (λ). (2)

The terminology is explained by

N (E) = lim
n→∞

#{eigenvalues of Hω,[1,n] ≤ E}
n

for μ-a.e. ω ∈ �, (3)

where Hω,[1,n] denotes the restriction of Hω to the interval [1, n] with Dirichlet boundary
conditions. It is a basic result that the IDS is always continuous [2]; see [27] for a very
short proof that also works in higher dimensions. Craig and Simon, [11] (see [12] for
the multi-dimensional case), have shown that more is true. Using the Thouless formula,
they proved that N is log-Hölder continuous, that is, there is a constant C such that

|N (E1) − N (E2)| ≤ C
(

log |E1 − E2|−1
)−1

(4)

for all E1, E2 with |E1 − E2| ≤ 1/2.
In this general setting, the bound (4) is essentially optimal; see Craig [10] and Gan and

Krüger [28]. However, for concrete models, one may hope to improve upon (4). Roughly
speaking, one expects stronger regularity properties of the IDS the more random the sto-
chastic process Vω(n) is. In the i.i.d. situation, it is always Hölder continuous, that is,

|N (E1) − N (E2)| ≤ C |E1 − E2|γ (5)

for some C < ∞ and γ > 0, as shown by Le Page [40]. If the single-site distribution
is nice enough, Simon-Taylor [47] and Campanino-Klein [7] proved that N is C∞. We
refer the reader to the survey article [46] by Simon, which describes the regularity results
for the IDS that had been obtained by the mid-1980’s.

More recently, there has been renewed interest in the problem of proving regularity
better than (4) for some classes of ergodic Schrödinger operators with little randomness.
This was initiated by Goldstein and Schlag, who proved Hölder continuity of the IDS,
(5), for analytic quasi-periodic potentials in the regime of positive Lyapunov exponents
[29]. This paper was followed by [4–6,30] who improved the estimate in some cases or
proved regularity results for different models (e.g., with T given by a skew-shift on T

2).
Also see Hadj-Amor [31] and Avila-Jitomirskaya [1] for results for analytic quasi-peri-
odic potentials in the regime of zero Lyapunov exponents, and Schlag [45] for results
for analytic quasi-periodic models at large coupling in two dimensions.

Due to the typical presence of a dense set of gaps in the spectrum, one does not hope
for more than Hölder regularity for quasi-periodic (or, more generally, almost-periodic)
models.

Our objective here is to study the regularity properties of the IDS for a prominent
quasi-periodic model that is not covered by the Goldstein-Schlag paper and its succes-
sors; the Fibonacci Hamiltonian, introduced independently by Kohmoto et al. [37] and
Ostlund et al. [41]. It is given by � = T = R/Z, T x = x + α mod 1, where

α =
√

5 − 1

2

is the inverse of the golden mean, μ is the Lebesgue measure on T, and f (ω) =
λχ[1−α,1)(ω) for some λ > 0. Thus, the potentials have the form

Vω(n) = λχ[1−α,1)(nα + ω mod 1). (6)
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The associated operators {Hω}ω∈� form the family of Fibonacci Hamiltonians. This is
the standard model of a one-dimensional quasicrystal. The spectrum of Hω is easily seen
to be independent of ω, and it will henceforth be denoted by �λ. This set is known to be
a Cantor set of zero Lebesgue measure [49] (and in fact of Hausdorff dimension strictly
between 0 and 1 [8]). Moreover, it is known that Hω has purely singular continuous
spectrum for every λ and ω; see Damanik and Lenz [24], Kotani [38], and Sütő [48,49].
The survey articles [15–17,48] contain information on the results obtained for this model
and its generalizations. Here we are interested in the integrated density of states asso-
ciated with the Fibonacci Hamiltonian, which we will henceforth denote by Nλ since
its dependence on the coupling constant λ will be of explicit interest. We mention in
passing that d Nλ is the equilibrium measure on �λ in the sense of logarithmic potential
theory.

We first note a result that is essentially well-known, but which is stated for the sake
of completeness.

Theorem 1. For every λ > 0, there are Cλ < ∞ and γλ > 0 such that

|Nλ(E1) − Nλ(E2)| ≤ Cλ|E1 − E2|γλ

for every E1, E2 with |E1 − E2| < 1.

Proof. It follows from the definition (1)–(2) that the integrated density of states is the
distribution function of the μ-average of the spectral measures with respect to Hω and
δ0. It was shown in [23] that for each λ, these spectral measures are uniformly Hölder
continuous with constants Cλ < ∞ and γλ > 0 that are uniform in ω. That is, the
μ-average of these measures will also be uniformly Hölder continuous with the same
pair of constants. 	


One can infer explicit expressions for Cλ and γλ from [23]. However, they are clearly
far from optimal and hence we opted not to make them explicit. We also note that [23] had
the precursors [14,34], which established uniform Hölder continuity of spectral measure
for the single phase ω = 0. Central to all these papers was the work [33] which proved
uniform power law upper bounds on transfer matrices for energies from the spectrum.

Our main goal is to identify the asymptotic behavior of the Hölder exponent in the
regimes of large and small coupling. As mentioned above, the tools used to establish
Theorem 1 do not produce optimal results and hence are inadequate to identify the
asymptotic behavior precisely. Therefore, different methods are needed in these asymp-
totic regimes, and we will indeed use different ones in either of these two cases.

In the large coupling regime, we have the following:

Theorem 2. (a) Suppose λ > 4. Then, for every

γ <
3 log(α−1)

2 log(2λ + 22)
,

there is some δ > 0 such that the IDS associated with the family of Fibonacci
Hamiltonians satisfies

|Nλ(E1) − Nλ(E2)| ≤ |E1 − E2|γ

for every E1, E2 with |E1 − E2| < δ.
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(b) Suppose λ ≥ 8. Then, for every

γ̃ >
3 log(α−1)

2 log
(

1
2

(
(λ − 4) +

√
(λ − 4)2 − 12

))

and every 0 < δ < 1, there are E1, E2 with 0 < |E1 − E2| < δ such that

|Nλ(E1) − Nλ(E2)| ≥ |E1 − E2|γ̃ .

This shows in particular that the optimal Hölder exponent is asymptotically 3 log(α−1)
2 log λ

in the large coupling regime.
Theorem 2 is proved in Subsect. 2.2. The proof is based on the self-similarity of

the spectrum of Hω. In particular, we do not use the Thouless formula and a Hölder
continuity result for the Lyapunov exponent, as was the case in many of the works men-
tioned above. Thus, in a sense, we use a geometric, rather than an analytic, approach.
Before turning to the proof, we first recall the canonical periodic approximants, which
are obtained by replacing α by its continued fraction approximants. This enables us to
describe the self-similarity of the spectrum that is crucial to our proof and it will also
establish an explicit way to express Nλ(E) in terms of periodic spectra.

In the small coupling regime, we have the following:

Theorem 3. The integrated density of states Nλ(·) is Hölder continuous with Hölder
exponent γλ, where γλ → 1

2 as λ → 0, and γλ < 1
2 for small λ > 0.

More precisely,

(a) For any γ ∈ (0, 1
2 ), there exists λ0 > 0 such that for any λ ∈ (0, λ0), there exists

δ > 0 such that

|Nλ(E1) − Nλ(E2)| ≤ |E1 − E2|γ

for every E1, E2 with |E1 − E2| < δ.
(b) For any sufficiently small λ > 0, there exists γ̃ = γ̃ (λ) < 1

2 such that for every
δ > 0, there are E1, E2 with 0 < |E1 − E2| < δ and

|Nλ(E1) − Nλ(E2)| ≥ |E1 − E2|γ̃ .

Theorem 3 is proved in Subsect. 3.6. The proof uses the trace map formalism and the
dynamical properties of the Fibonacci trace map studied previously in [3,8,9,19–21,44].
In particular, a relation between the integrated density of states of the Fibonacci Ham-
iltonian and the measure of maximal entropy of the trace map was established in [22].
The proof combines this relation with Hölder structures that appear due to hyperbolicity
of the trace map in order to get explicit estimates on the Hölder exponent. To show that
the obtained asymptotics of the Hölder exponent are optimal, we study the behavior of
unstable multipliers of specific periodic points of the trace map.

We conclude this introduction with some general remarks. In [22] we studied the
scaling exponents associated with the measures d Nλ. We showed that there exists 0 <

λ̃0 ≤ ∞ such that for λ ∈ (0, λ̃0), there is dλ ∈ (0, 1) so that the density of states
measure d Nλ is of exact dimension dλ, that is, for d Nλ-almost every E ∈ R, we have

lim
ε↓0

log Nλ(E − ε, E + ε)

log ε
= dλ.
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Moreover,

lim
λ↓0

dλ = 1.

While at first sight this result and the question addressed in Theorem 3 are quite similar,
note that in the latter result, one has to establish a uniform estimate in the vicinity of
an arbitrarily chosen energy in �λ, whereas in the former result, one may exclude a set
of zero d Nλ measure from the consideration. This crucial difference leads to different
answers, as the different asymptotics show. Of course the scaling exponent of d Nλ at
any energy E ∈ �λ bounds the optimal global Hölder exponent of Nλ from above, and
hence one gets a one-sided estimate in this way. More specifically, the scaling exponents
are worse at gap boundaries of �λ and essentially determine the global Hölder exponent
of Nλ, but these points form a countable set and hence a set of measure zero with respect
to d Nλ since this measure is always continuous.

It is interesting to compare the large coupling asymptotics of several λ-dependent
quantities. As we saw in Theorem 2, the optimal Hölder exponent behaves asymptot-

ically like 1.5 · log(α−1)
log λ

. On the other hand, it was shown in [18] that the Hausdorff

dimension of �λ behaves asymptotically like 1.831 . . . · log(α−1)
log λ

, and it was shown in
[26] that a certain transport exponent, which measures the rate of wavepacket spreading
in the time-dependent Schrödinger equation associated with the Fibonacci Hamiltonian,

behaves asymptotically like 2 · log(α−1)
log λ

. Similarly, in the weak coupling regime, we have
that the Hausdorff dimension of �λ strictly exceeds the dimension dλ of d Nλ (a fact that
was also proven in [22]), which in turn strictly exceeds the optimal Hölder exponent of
Nλ (since they have different asymptotic values). This shows that the strongly coupled
and the weakly coupled Fibonacci Hamiltonian serve as a good source of examples dem-
onstrating that certain quantities associated with a discrete Schrödinger operator need
not be identical. Moreover, the three different prefactors in the large coupling asymptot-
ics (1.5, 1.831 . . ., and 2) correspond directly, and in a quite beautiful way, to the scaling
properties exhibited by �λ (cf. Subsect. 2.1).

Finally, determining the correct Hölder exponent is one important ingredient in a
recent study of the spacings of the zeros of a certain class of orthogonal polynomials (or,
equivalently, the eigenvalues of Hω,[1,n] in the notation introduced above) by Krüger
and Simon [39] and hence our results feed into their theory.

2. The Large Coupling Regime

2.1. Canonical periodic approximants and scaling properties. In this subsection, we
recall some known results for the Fibonacci Hamiltonian, its periodic approximants,
and their spectra. The main tools we shall need in the sequel are summarized in Propo-
sitions 2.1–2.3 below.

Define the sequence (Fk)k≥−1 of Fibonacci numbers by

F−1 = 0, F0 = 1, Fk = Fk−1 + Fk−2 for k ≥ 1.

For k ≥ 1, define

xk(E, λ) = 1

2
tr Mk(E, λ),
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where

Mk(E, λ) =
(

E − Vω=0(Fk) −1
1 0

)
× · · · ×

(
E − Vω=0(1) −1

1 0

)
,

that is, the transfer matrix for phase ω = 0 and energy E from the origin to the site Fk .
The matrices Mk obey the recursion

Mk(E, λ) = Mk−2(E, λ)Mk−1(E, λ), (7)

and as a consequence,

xk+1(E, λ) = 2xk(E, λ)xk−1(E, λ) − xk−2(E, λ). (8)

With the definitions above, (7) and (8) hold for k ≥ 3. If we define

M−1(E, λ) =
(

1 −λ

0 1

)
and M0(E, λ) =

(
E −1
1 0

)
,

these recursions extend to all k ≥ 1.
The so-called trace map relation, (8), yields the invariant

xk+1(E, λ)2+xk(E, λ)2+xk−1(E, λ)2 −2xk+1(E, λ)xk(E, λ)xk−1(E, λ)=1+
λ2

4
. (9)

The identities (7)–(9) were proved by Sütő in [48].
For fixed λ, define (leaving the dependence on λ implicit)

σk = {E ∈ R : |xk(E, λ)| ≤ 1}.
The set σk is actually equal to the spectrum of the Schrödinger operator H whose
potential Vk results from Vω=0 in (6) by replacing α by Fk−1/Fk (see [48]). Hence, Vk
is Fk-periodic, σk ⊂ R, and it consists of Fk bands (closed intervals).

Next, we recall some results of Damanik and Tcheremchantsev [25], Killip, Kiselev,
and Last [36], and Raymond [43]. From now on, we shall always assume λ > 4 since
we will make critical use of the fact that in this case, it follows from the invariant, (9),
that three consecutive half-traces cannot simultaneously be bounded in absolute value
by 1:

∀ λ > 4, ∀ E, k : max{|xk(E, λ)|, |xk+1(E, λ)|, |xk+2(E, λ)|} > 1. (10)

Following [36], we call a band Ik ⊂ σk a type A band if Ik ⊂ σk−1 (and hence
Ik ∩ (σk+1 ∪ σk−2) = ∅). A band Ik ⊂ σk is called a type B band if Ik ⊂ σk−2 (and
therefore Ik ∩ σk−1 = ∅); compare Fig. 1.

By definition of M−1 and M0, σ−1 = R, σ0 = [−2, 2], and σ1 = [λ − 2, λ + 2].
Hence, σ0 consists of a single band of type A, and σ1 consists of a single band of
type B.

From (10), one gets the following result on the relative position of bands on successive
levels (cf. [36, Lem. 5.3] and [43, Lem. 6.1]):

Proposition 2.1. For every λ > 4 and every k ≥ 0,

(a) Every type A band Ik ⊂ σk contains exactly one type B band Ik+2 ⊂ σk+2, and no
other bands from σk+1, σk+2.
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Fig. 1. Left: a type A band in σk ; Right: a type B band in σk

(b) Every type B band Ik ⊂ σk contains exactly one type A band Ik+1 ⊂ σk+1 and two
type B bands from σk+2, positioned around Ik+1.

The Lebesgue measure of each individual band admits the following geometric
(in k) lower bound:

Proposition 2.2. For λ > 4, k ≥ 3, and every band Ik of σk , we have

|Ik | ≥ 4

(2λ + 22)2k/3 ,

where | · | denotes Lebesgue measure.

Proof. This follows from [25, Lem. 3.5], noting (10) and the fact that on each band Ik
of σk , we have

∫
Ik

|x ′
k(E)| d E = 2.1 	


In the large coupling regime, this result is asymptotically optimal in the following
sense:

Proposition 2.3. For λ ≥ 8, k ≥ 4 and k ≡ 1 mod 3, there exists a type B band Ik of
σk with

|Ik | ≤ 4(
1
2

(
(λ − 4) +

√
(λ − 4)2 − 12

))2k/3 .

Proof. This follows from [36, Lem. 5.5], Proposition 2.1 above (start with the type B
band of σ1 and then cycle periodically through B, A, and “not contained”), and again
the fact that on each band Ik of σk , we have

∫
Ik

|x ′
k(E)| d E = 2. 	


Let us study the scaling properties of the sets σk in more detail. In particular, we want
to show that, when n > k, each band of σk contains either Fn−k or Fn−k−2 bands of σn .

Recall that σ0 consists of a single band of type A, and σ1 consists of a single band
of type B. A repeated application of Proposition 2.1 yields the entries in the following
table:

1 Here we caution the reader that the literature on the Fibonacci Hamiltonian is not consistent in the sense
that some papers use half-traces, as we do here, and other papers use traces instead. The papers [25,36,43],
on which much of the present subsection is based, belong to the second group and hence their results need to
be slightly reformulated when given here.
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k # of bands in σk of type A # of bands in σk of type B
0 1 0
1 0 1
2 1 1
3 1 2
4 2 3
5 3 5
6 5 8
...

...
...

We observe the following:

Lemma 2.4. For λ > 4 and k ≥ 2, we have

# of type A bands in σk = Fk−2,

# of type B bands in σk = Fk−1.

In particular, for k ≥ 0, every band of σk is either of type A or of type B.

Proof. This is a straightforward induction. 	

A similar straightforward application of Proposition 2.1 gives the following result.

Lemma 2.5. Suppose λ > 4, k ≥ 0, and n > k.

(a) Every type A band of σk contains Fn−k−2 bands of σn.
(b) Every type B band of σk contains Fn−k bands of σn.

2.2. Proof of Theorem 2. In this subsection we prove Theorem 2. Our main tools will
be Proposition 2.2, Lemmas 2.4 and 2.5, and a formula, given in (11) below, connecting
the IDS of the Fibonacci Hamiltonian and the band structure of the periodic spectra
introduced in the previous subsection.

Let us first note that in the Fibonacci case, as a consequence of results of Hof for
uniquely ergodic models, [32], the convergence in (3) takes place for every, rather than
almost every, ω ∈ �. Moreover, Dirichlet boundary conditions can be replaced by other
boundary conditions, such as Neumann or periodic boundary conditions. If we choose
periodic boundary conditions, and consider ω = 0 and convergence only along the sub-
sequence (Fn)n≥1, we obtain the following formula (which had already been noted by
Raymond [43]),

Nλ(E) = lim
n→∞

#{bands of σn ≤ E}
Fn

, (11)

since each band of σn contains exactly one eigenvalue of the operator Hω=0, restricted
to [1, Fn] with periodic boundary conditions.

Proof of Theorem 2. (a) Given E1 < E2 (with E2 − E1 small; less than 4/(2λ + 22)2,
say), we want to estimate Nλ(E2) − Nλ(E1) from above. It follows from (11) that

Nλ(E2) − Nλ(E1) = lim
n→∞

#{bands of σn contained in [E1, E2]}
Fn

. (12)
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Thus, we need to estimate from above the number of bands of σn that are contained in
[E1, E2].

Let k ≥ 3 be the integer with

4

(2λ + 22)2(k+1)/3
≤ E2 − E1 <

4

(2λ + 22)2k/3 .

Consider, for n > k, the bands of σn that are contained in [E1, E2]. By the results of the
previous section, each of these bands is contained in a band of σk or in a band of σk−1.
By the definition of k and Proposition 2.2, at most two bands from σk ∪ σk−1 can occur
as associated bands. Thus, Lemmas 2.4 and 2.5 imply that at most 2Fn−(k−1) bands of
σn can be contained in [E1, E2].

Define γk by

γk = (k − 3) log(α−1)
2
3 (k + 1) log(2λ + 22) − log 4

.

Then, we infer from (12) that

Nλ(E2) − Nλ(E1) = lim
n→∞

#{bands of σn contained in [E1, E2]}
Fn

≤ lim
n→∞

2Fn−(k−1)

Fn

≤ lim
n→∞

Fn−(k−3)

Fn

= αk−3

=
(

4

(2λ + 22)2(k+1)/3

)γk

≤ (E2 − E1)
γk .

Now, given

0 < γ <
3 log(α−1)

2 log(2λ + 22)
,

choose k0 ≥ 3 such that γk ≥ γ for every k ≥ k0. Let

δ = 4

(2λ + 22)2k0/3 ∈ (0, 1).

We obtain that for every E1, E2 with |E1 − E2| < δ,

|Nλ(E1) − Nλ(E2)| ≤ |E1 − E2|γk ≤ |E1 − E2|γ ,

where k ≥ k0 is the integer associated with |E1 − E2|.
(b) Suppose λ ≥ 8 and let

γ̃ ∈
⎛
⎝ 3 log(α−1)

2 log
(

1
2

(
(λ − 4) +

√
(λ − 4)2 − 12

)) , 1

⎞
⎠

and 0 < δ < 1 be given.
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Choose k0 such that

4(
1
2

(
(λ − 4) +

√
(λ − 4)2 − 12

))2k0/3 < δ

and such that

γ̃k := (k + 1) log α−1

2
3 k log

(
1
2

(
(λ − 4) +

√
(λ − 4)2 − 12

))
− log 4

< γ̃

for every k ≥ k0.
Next, choose k ≥ max{k0, 4} with k ≡ 1 mod 3. By Proposition 2.3, there exists a

type B band Ik of σk with

|Ik | ≤ 4(
1
2

(
(λ − 4) +

√
(λ − 4)2 − 12

))2k/3 .

Denote the endpoints of Ik by E1, E2, that is, Ik = [E1, E2].
By (12), Lemma 2.5, the definition of γ̃k , the choice of Ik = [E1, E2], the choice of

k, and the fact that 0 < E2 − E1 < δ < 1, we find that

Nλ(E2) − Nλ(E1) = lim
n→∞

#{bands of σn contained in [E1, E2]}
Fn

= lim
n→∞

Fn−k−1

Fn

= αk+1

=
⎛
⎜⎝ 4(

1
2

(
(λ − 4) +

√
(λ − 4)2 − 12

))2k/3

⎞
⎟⎠

γ̃k

≥ (E2 − E1)
γ̃k

≥ (E2 − E1)
γ̃ .

This completes the proof. 	


3. The Small Coupling Regime

Here we will use the relation between the IDS for the Fibonacci Hamiltonian and the
measure of maximal entropy for the so called Trace Map associated with the discrete
Schrödinger operator with Fibonacci potential.

3.1. IDS for the free laplacian. It is well known that �0 = [−2, 2] and

N0(E) =

⎧⎪⎨
⎪⎩

0 E ≤ −2
1
π

arccos
(− E

2

) −2 < E < 2
1 E ≥ 2.

(13)
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In particular, N0 is Hölder continuous with Hölder exponent 1/2. We will need a
somewhat more detailed description of the continuity properties of N0 (which also fol-
lows directly from the explicit form (13)).

Lemma 3.1. For any ε > 0, there exists C > 0 such that the following hold:

(a) If E1, E2 ∈ [−2 + ε, 2 − ε], then

|N0(E2) − N0(E1)| ≤ C |E2 − E1|.

(b) If E1, E2 ∈ [−2, 2], then

|N0(E2) − N0(E1)| ≤ C |E2 − E1|1/2.

(c) If E1, E2 ∈ [−2,−2 + ε) and −2 < E1 < E2, then

|N0(E2) − N0(E1)| ≤ C

|2 + E1|1/2 |E2 − E1|.

Similarly, if E1, E2 ∈ (2 − ε, 2] and E1 < E2 < 2, then

|N0(E2) − N0(E1)| ≤ C

|2 − E2|1/2 |E2 − E1|.

(d) There exists C0 > 0 such that for any E ∈ (−2, 2), one has

|N0(−2) − N0(E)| ≥ C0|E + 2|1/2 and |N0(2) − N0(E)| ≥ C0|E − 2|1/2.

3.2. The trace map. The recursion (8) gives rise to a fundamental connection between
the spectral properties of the Fibonacci Hamiltonian and the dynamics of the trace map

T : R
3 → R

3, T (x, y, z) = (2xy − z, x, y).

The function G(x, y, z) = x2 + y2 + z2 − 2xyz − 1 is invariant2 under the action of T
(cf. (9)), and hence T preserves the family of cubic surfaces3

Sλ =
{
(x, y, z) ∈ R

3 : x2 + y2 + z2 − 2xyz = 1 +
λ2

4

}
.

It is therefore natural to consider the restriction Tλ of the trace map T to the invariant
surface Sλ. That is, Tλ : Sλ → Sλ, Tλ = T |Sλ . We denote by �λ the set of points in Sλ

whose full orbits under Tλ are bounded (it is known that �λ is equal to the non-wandering
set of Tλ).

2 It is usually called the Fricke-Vogt invariant.
3 The surface S0 is known as Cayley cubic.
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3.3. Hyperbolicity of the trace map. Recall that an invariant closed set � of a diffe-
omorphism f : M → M is hyperbolic if there exists a splitting of the tangent space
Tx M = Eu

x ⊕ Eu
x at every point x ∈ � such that this splitting is invariant under D f , the

differential D f exponentially contracts vectors from the stable subspaces {Es
x }, and the

differential of the inverse, D f −1, exponentially contracts vectors from the unstable sub-
spaces {Eu

x }. A hyperbolic set � of a diffeomorphism f : M → M is locally maximal
if there exists a neighborhood U of � such that

� =
⋂
n∈Z

f n(U ).

It is known that for λ > 0, �λ is a locally maximal hyperbolic set of Tλ : Sλ → Sλ; see
[8,9,19].

3.4. Properties of the trace map for λ = 0. The surface

S = S0 ∩ {(x, y, z) ∈ R
3 : |x | ≤ 1, |y| ≤ 1, |z| ≤ 1}

is homeomorphic to S2, invariant under T , smooth everywhere except at the four points
P1 = (1, 1, 1), P2 = (−1,−1, 1), P3 = (1,−1,−1), and P4 = (−1, 1,−1), where S

has conic singularities, and the trace map T restricted to S is a factor of the hyperbolic
automorphism of T

2 = R
2/Z

2 given by

A(θ, ϕ) = (θ + ϕ, θ) (mod 1).

The semi-conjugacy is given by the map

F : (θ, ϕ) �→ (cos 2π(θ + ϕ), cos 2πθ, cos 2πϕ). (14)

The map A is hyperbolic, and is given by the matrix A =
(

1 1
1 0

)
, which has eigenvalues

μ = 1 +
√

5

2
and − μ−1 = 1 − √

5

2
.

A Markov partition for the map A : T
2 → T

2 is shown in Fig. 2. Its image under the
map F : T

2 → S is a Markov partition for the pseudo-Anosov map T : S → S.

3.5. Spectrum and trace map. Denote by �λ the line

�λ =
{(

E − λ

2
,

E

2
, 1

)
: E ∈ R

}
.

It is easy to check that �λ ⊂ Sλ. An energy E ∈ R belongs to the spectrum �λ of the
Fibonacci Hamiltonian if and only if the positive semiorbit of the point ( E−λ

2 , E
2 , 1)

under iterates of the trace map T is bounded; see [48]. Moreover, the stable manifolds
of points in �λ intersect the line �λ transversally if λ > 0 is sufficiently small [19] or if
λ ≥ 16 [9].

Let us denote Lλ : R → �λ, Lλ(E) = ( E−λ
2 , E

2 , 1
)
. It is affine and contracts dis-

tances by the multiplicative factor 1√
2

.



The Integrated Density of States of the Fibonacci Hamiltonian 509

−0.5

0

0.5

1 −0.5
0

0.5
1

−0.5

0

0.5

1

Fig. 2. The semi-conjugacy F between the linear map A and the trace map T on the central part S of the
Cayley cubic

Define the map �λ : �λ → [0, 2] by

�λ(x) = y ⇔ Nλ(x) = N0(y). (15)

It turns out that there is a direct relation between the map �λ and dynamical structures
of the trace map Tλ. The following statement is implicitly contained in [22, Claim 3.2].

Proposition 3.2. There exists λ0 > 0 such that the following holds. Take any λ ∈ [0, λ0)

and x1, x2 ∈ �λ. Consider the stable manifolds W s(x1) and W s(x2), and take some
points p1 = W s(x1) ∩ �λ and p2 = W s(x2) ∩ �λ. When λ changes, there are unique
continuations of the points x1, x2 ∈ �λ, denote them by x1(λ), x2(λ). The continuations
of the intersections pi (λ) = W s(xi (λ)) ∩ �λ, i = 1, 2, are also well defined, and the
value of the difference Nλ(L−1

λ (p2(λ))− Nλ(L−1
λ (p1(λ)) is independent of λ ∈ [0, λ0).

Notice that Proposition 3.2 gives a dynamical description of the map �λ. In [22]
this description was used to establish a relation between the IDS Nλ and the measure of
maximal entropy for T |�λ .

3.6. Hölder continuity of the IDS in the small coupling regime. Here we prove Theo-
rem 3.

Choose sufficiently small neighborhoods U (Pi ) of the singularities {P1, P2, P3, P4}
of the Cayley cubic. Let U∗(Pi ) ⊂ U (Pi ) be an essentially smaller neighborhood of
the singularity Pi . Set U = ⋃

i=1,2,3,4 U (Pi ) and U∗ = ⋃
i=1,2,3,4 U∗(Pi ). Take any

E1, E2 ∈ �λ, and denote by b the interval on �λ between the points Lλ(E1) and Lλ(E2).
Notice that

|Nλ(E1) − Nλ(E2)| = |N0(�λ(E1)) − N0(�λ(E2))|.
Let a be the interval on �0 between the points L0(�λ(E1)) and L0(�λ(E2)). We will
consider separately three cases:

(i) a and b are away from the neighborhoods U∗(Pi ) of the singularities.
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(ii) a and b are in a neighborhood U (Pi ) of a singularity (that could be either P1 =
(1, 1, 1) or P2 = (−1,−1, 1)), and one of the edges of a is on a local strong
stable manifold of the singularity (which implies that one of the edges of b is
on the local strong stable manifold of a periodic orbit of period 2 or 6). This is
equivalent to the case when E1 or E2 is equal to min �λ or max �λ.

(iii) a and b are in a neighborhood U (Pi ) of a singularity (that could be either P1 =
(1, 1, 1) or P2 = (−1,−1, 1)), and none of the edges of a is on a local strong
stable manifold of the singularity.

Note that if |E1 − E2| is sufficiently small (depending on the choice of U and U∗),
then exactly one of the cases (i)–(iii) applies.

Consider the case (i). Let us iterate a and b until they grow up to the length of order
one. To simplify the estimates, let us introduce the following notation:

x ∼C y ⇔ C−1|y| ≤ |x | ≤ C |y|.

There exists a constant C > 0 that is independent of a, b such that for some
M ∈ N, we have |T M (a)| ∼C |T M (b)| ∼C 1. Let us split the sequence
of iterates {a, T (a), T 2(a), . . . , T M (a)} into finite intervals {a, T (a), . . . , T k1(a)},
{T k1+1(a), . . . , T k2(a)}, . . . (and similarly for {b, T (b), T 2(b), . . . , T M (b)}) in such
a way that for each ki , one of the following cases holds:

(a) {T ki−1+1(a), . . . , T ki (a)} as well as {T ki−1+1(b), . . . , T ki (b)} are away from U∗,

and moreover, |T ki (a)|
|T ki−1 (a)| > 2 and |T ki (b)|

|T ki−1 (b)| > 2,

(b) {T ki−1+1(a), . . . , T ki (a)} as well as {T ki−1+1(b), . . . , T ki (b)} are inside of U .

In the case (a), since for small λ > 0, the maps T0|S\U∗ and Tλ|Sλ\U∗ are C1-close,

for some αλ < 1 with αλ → 1 as λ → 0, we have |T ki (a)|
|T ki−1 (a)| ≥

( |T ki (b)|
|T ki−1 (b)|

)αλ

. In the

case (b), by [21, Prop. 3.15], we have |T ki (a)|
|T ki−1 (a)| ≥ Cμ

ki −ki−1
2

0 , where μ0 is an unstable

multiplier at a singularity, and at the same time we have |T ki (b)|
|T ki−1 (b)| ≤ C̃μ

ki −ki−1
λ , where

μλ is an unstable multiplier of a periodic orbit Pλ, and which obeys μλ → μ0 as λ → 0.
Choose γλ < 1

2 , γλ → 1
2 as λ → 0, in such a way that μ

2γλ

λ < μ0. Then, (since in this
case, the smallness of U∗ relative to U guarantees that ki − ki−1 is large enough) we

have |T ki (a)|
|T ki−1 (a)| ≥

( |T ki (b)|
|T ki−1 (b)|

)γλ

.

Now we have

1 ∼C |T M (a)| = |a| · |T k1(a)|
|a| · |T k2(a)|

|T k1(a)| · . . . · |T km (a)|
|T km−1(a)|

and

1 ∼C |T M (b)| = |b| · |T k1(b)|
|b| · |T k2(b)|

|T k1(b)| · . . . · |T km (b)|
|T km−1(b)| .
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Therefore,

|a| = |T M (a)|
∏m

j=1
|T k j (a)|

|T k j−1 (a)|

(16)

≤ C(∏m
j=1

|T k j (b)|
|T k j−1 (b)|

)γλ
= C( |T M (b)|

|b|
)γλ

≤ C1+γλ |b|γλ = C ′|b|γλ . (17)

Since |b| = 1√
2
|E1 − E2| and |a| = 1√

2
|�λ(E1) − �λ(E2)|, using Lemma 3.1.(a), we

find

|Nλ(E1) − Nλ(E2)| = |N0(�λ(E1)) − N0(�λ(E2))|
≤ C |�λ(E1) − �λ(E2)| ≤ C

√
2|a| ≤ CC ′√2|b|γλ ≤ C ′′|E1 − E2|γλ .

Now let us consider the case (ii). In this case, one of the edges of a and b will never
leave the neighborhood U∗. Let us iterate a and b sufficiently many times to have

|T M (a)| ∼C |T M (b)| ∼C 1. (18)

Consider the coordinate system in a neighborhood of the singularity that rectifies all the
invariant manifolds (see [19, Sect. 4] or [21, Subsect. 3.2]). The lines �0 and �λ are trans-
versal to the central-stable manifolds, hence we can apply [21, Prop. 3.15] with some
bounded (independent of a and b) number k∗ from [21, Lem. 3.16]. Since μ

2γλ

λ < μ0,
we have

|a| ≤ Cμ−M
0 ≤ Cμ

−2γλ M
λ ≤ C ′|b|2γλ .

Using Lemma 3.1.(b), we find

|Nλ(E1) − Nλ(E2)| = |N0(�λ(E1)) − N0(�λ(E2))|
≤ C |�λ(E1) − �λ(E2)|1/2 ≤ C ′|E1 − E2|γλ .

Finally, let us consider the case (iii). Suppose that E1, E2 ∈ �λ are such that E1 <

E2 < max �λ and �λ(E1) is close to 2 (the case when �λ(E1) is close to −2 is similar).
Then, a ⊂ �0, b ⊂ �λ are in the neighborhood U (P1) of P1 = (1, 1, 1), and the distance
from a to the central-stable manifold is of order μ−s

0 , where s is a number of iterates
needed for a to leave U (P1); see [21, Prop. 3.14]. This implies that

|2 − �λ(E2)| ∼C μ−s
0 .

Consider the arcs ã = T s(a) and b̃ = T s(b). These arcs are away from U , and therefore
from (16) we deduce that |ã| ≤ C |b̃|γλ . On the other hand, we have

|ã| ∼C μs
0|a|, |b̃| ∼C μs

λ|b|,
and therefore

|a| ≤ Cμ−s
0 |ã| ≤ C2μ−s

0 |b̃|γλ ≤ C2+γλμ−s
0 μ

sγλ

λ |b|γλ = C2+γλμ
− s

2
0

(
μ

γλ

λ

μ
1/2
0

)s

|b|γλ

≤ C ′μ− s
2

0 |b|γλ .
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Now, using Lemma 3.1.(c), we find

|Nλ(E1) − Nλ(E2)| = |N0(�λ(E1)) − N0(�λ(E2))|
≤ C

|2 − �λ(E2)| 1
2

|�λ(E1) − �λ(E2)| ≤ C2C ′

μ
− s

2
0

μ
− s

2
0 |b|γλ ≤ C ′′|E1 − E2|γλ .

Finally, notice that in all cases (i), (ii), (iii), the constant in the inequality can be set to
1 if one takes a slightly smaller Hölder exponent and sufficiently small |E1 − E2|. This
finishes the proof of part (a) of Theorem 3.

In order to show part (b) of Theorem 3, consider the periodic points of period 2
that are born out of the singularity (1, 1, 1). The strong stable manifolds of these points
correspond to the boundaries of the gaps in the spectrum. These periodic points form a
curve

Per2 =
{
(x, y, z) : x ∈

(
−∞,

1

2

)
∪

(
1

2
,∞

)
, y = x

2x − 1
, z = x,

}
.

For the map T 2, these points are fixed points, and DT 2(1, 1, 1) =
⎛
⎝6 3 −2

2 2 −1
1 0 0

⎞
⎠, with

eigenvalues 1 and 7±3
√

5
2 .

Lemma 3.3. For λ > 0 sufficiently small, the largest eigenvalue of DT 2 at the peri-
odic point of period 2 near the singularity (1, 1, 1) is strictly larger than the largest
eigenvalue of DT 2(1, 1, 1).

Proof. Take a periodic point
(

x, x
2x−1 , x

)
∈ Per2. We have

DT 2
(

x,
x

2x − 1
, x

)
=

⎛
⎝

2x(4x−1)
2x−1

4x−1
(2x−1)2

2x
1−2x

2x 2x
2x−1 −1

1 0 0

⎞
⎠ ,

and the largest eigenvalue is

λu(x) = 1 − 2x + 8x2 +
√−3 + 12x + 4x2 − 32x3 + 64x4

2(2x − 1)
.

Now we have

d

dx
λu(x)|x=1 = 0,

d2

dx2 λu(x)|x=1

= 8(−3(1+3
√

5)+2(9+18
√

5+2(−27+3
√

5 + 2(55 − 12
√

5 + 4(−1 + 6
√

5)))))

135
√

5
= 16.247987... > 0.

	

In other words, Lemma 3.3 claims that μλ > μ0 if λ > 0 is small enough. Fix a small

λ > 0 and take any γ̃ ∈ (0, 1
2 ) such that μ

2γ̃
λ > μ0. We claim that if E2 = max �λ,

E1 ∈ �λ, and |E1 − E2| is sufficiently small, then

|Nλ(E1) − Nλ(E2)| ≥ |E1 − E2|γ̃ .
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Indeed, �(E2) = 2, and the interval a ⊂ �0 between the points L0(�λ(E2)) and
L0(�λ(E1)) has one of its end points at the singularity P1 = (1, 1, 1). Consider also
the interval b ⊂ �λ between Lλ(E2) and Lλ(E1). As in the case (ii) above, consider M
iterates of a and b, where M is such that (18) holds. Then, due to [21, Prop. 3.14], we
have

|a| ∼C μ−M
0 , |b| ∼C μ−M

λ .

Using Lemma 3.1.(d), we find

|Nλ(E1) − Nλ(E2)| = |N0(�λ(E1)) − N0(�λ(E2))|

≥ C0|�λ(E1) − �λ(E2)|1/2 = 21/4C0|a|1/2 ≥ C ′μ− M
2

0 = C ′
⎛
⎝μ

M γ̃
λ

μ
M
2

0

⎞
⎠ μ

−M γ̃
λ

≥ C ′′
(

μ
2γ̃
λ

μ0

) M
2

|b|γ̃ ≥ C ′′′
(

μ
2γ̃
λ

μ0

) M
2

|E2 − E1|γ̃ ≥ |E2 − E1|γ̃ ,

provided M is large enough (i.e., if |a| and |b| are small enough, or, equivalently, if
|E2 − E1| is small enough). This completes the proof of Theorem 3. 	


Notice that as a byproduct of this proof, we also get the following statement:

Proposition 3.4. The map �λ : �λ → [0, 2] given by (15) is Hölder continuous with a
Hölder exponent γλ that obeys γλ → 1

2 as λ → 0.

Remark 3.5. In terms of the dynamics of the trace map, there exists λ0 > 0 such that for
any λ ∈ (0, λ0), the semiconjugacy �λ : �λ → S, �λ ◦ Tλ|�λ = T0|S ◦ �λ, is Hölder
continuous with a Hölder exponent γλ such that γλ → 1

2 as λ → 0. Since we are not
using this statement here, we do not elaborate on it.

This is related to the following classical fact from hyperbolic dynamics. Suppose � f

is a compact locally maximal hyperbolic set of a surface diffeomorphism f : M2 → M2,
g is C1-close to f , and �g is a continuation of � f . Then there is a continuous conjugacy
h : � f → �g , h ◦ f = g ◦ h, and h has to be Hölder continuous with Hölder exponent
close to one (see [35,42]). In our case, the Hölder exponent of the conjugacy �λ is
close to 1/2, not to one, due to essentially different behavior of T0|S and Tλ|�λ near the
singularities of the Cayley cubic.
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