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Abstract: We investigate the low-energy excitation spectrum of a Bose gas confined in
a trap, with weak long-range repulsive interactions. In particular, we prove that the spec-
trum can be described in terms of the eigenvalues of an effective one-particle operator,
as predicted by the Bogoliubov approximation.

1. Introduction and Main Results

1.1. Introduction. Bose-Einstein condensates of dilute atomic gases have been studied
extensively in recent years, both from an experimental and a theoretical perspective [1,2].
Many fundamental aspects of quantum mechanics were investigated with the aid of these
systems. One of the manifestations of their quantum behavior is superfluidity, leading to
the appearance of quantized vortices in rotating systems [3,4]. This property is related
to the structure of the low-energy excitation spectrum, via the Landau criterion [5].
Excitation spectra of atomic Bose-Einstein condensates have actually been measured
[6], and agreement was found with theoretical predictions based on the Bogoliubov
approximation [7].

From the point of view of mathematical physics, starting with the basic underlying
many-body Schrödinger equation, it remains a big challenge to understand many fea-
tures of cold quantum gases [8,9]. While the validity of the Bogoliubov approximation
for evaluating the ground state energy has been studied in several cases [10–15], no
rigorous results on the excitation spectrum of many-body systems with genuine inter-
actions among the particles are available, with the exception of certain exactly solvable
models in one dimension [16–22]. In particular, it remains an open problem to verify
Landau’s criterion for superfluidity in interacting gases.

In this paper, we shall prove the accuracy of the Bogoliubov approximation for the
excitation spectrum of a trapped Bose gas, in the mean-field or Hartree limit [23,24],
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where the interaction is weak and long-range. While the interactions among atoms in
the experiments on cold gases are more accurately modeled as strong and short-range,
effective long-range interactions can be achieved via application of suitable electro-
magnetic fields [25]. Our work generalizes the recent results in [26], where the validity
of Bogoliubov’s approximation was verified for a homogeneous, translation invariant
model of interacting bosons. The inhomogeneity caused by the trap complicates the anal-
ysis and leads to new features, due to the non-commutativity of the various operators
appearing in the effective Bogoliubov Hamiltonian.

1.2. Model and main results. We consider a system of N ≥ 2 bosons in R
d , for general

d ≥ 1. The particles are confined by an external potential Vext(x), and interact via a
weak two-body potential, which we write as (N − 1)−1v(x − y). The Hamiltonian of
the system reads, in suitable units,

HN =
N∑

i=1

(−�i + Vext(xi )) +
1

N − 1

∑

i< j

v(xi − x j ), (1)

with � denoting the standard Laplacian on R
d . It acts on the Hilbert space of permu-

tation-symmetric square integrable functions on R
d N , as appropriate for bosons. We

assume that v is a bounded symmetric function, which is non-negative and of positive
type, i.e., has non-negative Fourier transform. The external potential Vext is assumed to
be locally bounded and to satisfy Vext(x) → ∞ as |x | → ∞.

Under these assumptions on Vext and v, the non-linear Hartree equation

(−� + Vext)ϕ0 + (v ∗ |ϕ0|2)ϕ0 = ε0ϕ0 (2)

admits a unique strictly positive solution ϕ0, normalized as
∫
ϕ2

0 = 1, which is equal to
the ground state of the corresponding Hartree energy functional. In addition, there is a
complete set of normalized eigenfunctions {ϕi }i∈N for the Hartree operator

HH = −� + Vext + v ∗ ϕ2
0 . (3)

The corresponding eigenvalues will be denoted by ε0 < ε1 ≤ ε2 . . . . We note that ϕ0 is
necessarily the ground state of HH, since it is an eigenfunction that is positive. Moreover,
we emphasize that the inequality ε1 > ε0 is strict, since operators of the form (3) have
a unique ground state [27]. This will be essential for our analysis.

Let V denote the operator defined by the integral kernel

V (x, y) = ϕ0(x)v(x − y)ϕ0(y) .

As shown below, our assumptions on v imply that this defines a positive trace-class
operator, whose trace is equal to tr V = v(0) = ‖v‖∞. Define also

D := HH − ε0 =
∑

i≥0

(εi − ε0) |ϕi 〉 〈ϕi | (4)

and let

E :=
(

D1/2(D + 2V )D1/2
)1/2

. (5)
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Since V is positive and bounded, E is well-defined on the domain of D. We note that
both D and E are, by construction, positive operators, with Dϕ0 = Eϕ0 = 0. The
Hartree minimizer ϕ0 is the only function in their kernel, all other eigenvalues of D and
E are strictly positive.

It turns out that E − D − V is a trace class operator. (We will prove this in Sub-
sect. 5.2 below.) Let 0 = e0 < e1 ≤ e2 ≤ . . . denote the eigenvalues of E . Our main
result concerns the spectrum of the Hamiltonian HN , and reads as follows:

Theorem 1. The ground state energy E0(N ) = inf spec HN equals

E0(N )= N
∫

Rd

(|∇ϕ0(x)|2 +Vext(x)ϕ0(x)
2) dx +

N +1

2

∫

R2d
ϕ0(x)

2v(x−y)ϕ0(y)
2dx dy

−1

2
tr(D+V −E)+O(N−1/2) . (6)

Moreover, the spectrum of HN − E0(N ) below an energy ξ is equal to all finite sums of
the form

∑

i≥1

ei ni + O(ξ3/2 N−1/2) , (7)

where ni ∈ N with
∑

i≥1 ni ≤ N.

The error term O(N−1/2) in (6) stands for an expression which is bounded by a
constant times N−1/2 for large N , where the constant only depends on the interaction
potential v and the gap ε1 − ε0 in the spectrum of HH; likewise for the error term
O(ξ3/2 N−1/2) in (7). The dependence on v is relatively complicated but could in prin-
ciple be computed explicitly by following our proof; all our bounds are quantitative.

Our result is a manifestation of the fact that the Bogoliubov approximation becomes
exact in the Hartree limit N → ∞. In particular, as long as ξ � N , each individual
excitation energy ξ is of the form

∑
i≥1 ei ni (1 + o(1)). This result is expected to be

optimal in the following sense: if ξ � N fails to hold then there is a non-negligible
number of particles outside the condensate, violating a key assumption of Bogoliubov’s
approximation [7,8,26]. Hence there is no reason why the Bogoliubov approximation
should predict the correct spectrum for excitation energies of order N or larger.

Remark 1. The emergence of the effective operator E in (5) can also be understood as fol-
lows. One considers the time-dependent Hartree equation i∂tϕ = (−�+ Vext + |ϕ|2 ∗v)ϕ
and looks for solutions of the form ϕ = e−iε0t (ϕ0 + u e−iωt + y eiωt ) for some ω > 0.
Expanding to first order in u and y leads to the Bogoliubov-de-Gennes equations (see,
e.g., [28], Eq. (5.68))

(
D + V V
−V −(D + V )

)(
u
y

)
= ω

(
u
y

)
. (8)

The positive values which can be assumed by ω are then interpreted as excitation ener-
gies. This is in agreement with our result: We will see below that the values forω obtained
this way are precisely the eigenvalues of E . (Compare with Remark 4 in Sect. 4.)

Theorem 1 states that the low-energy spectrum of HN − E0(N ) is, up to small errors,
equal to the one of the effective operator

N∑

i=1

Êi , Ê =
∑

j≥1

e j |ϕ j 〉〈ϕ j |, (9)
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where the subscript i in Êi stands for the action of the operator Ê on the i th variable. Note
that Ê is unitarily equivalent to the operator E defined in (5). The proof of Theorem 1
actually consists of constructing an explicit unitary operator that relates HN − E0(N )
and (9). In other words, we shall bound HN − E0(N ) from above and below by a suit-
able unitary transform (cf. Eq. (31) below) of (9), with error terms that are small in the
subspace of low energy. As a byproduct of the proof we obtain the following corollary.

Corollary 1. Let P j
H be the projection onto the subspace spanned by the eigenfunctions

corresponding to the j lowest eigenvalues of HN (counted with multiplicity). Similarly,
let P j

K = ∑ j
k=1 |ψk〉 〈ψk | be the projection onto the subspace spanned by the eigen-

functions corresponding to the j lowest eigenvalues of

K := U†

(
N∑

i=1

Êi

)
U + 1 =:

∞∑

i=1

ki |ψi 〉 〈ψi |

(k1 ≤ k2 ≤ . . .), where U is the unitary operator defined in (31). Then there is a constant
C, depending only on v and ε1 − ε0, such that if k j+1 > k j then

‖P j
K − P j

H ‖2
2 ≤ C(k j/N )1/2

∑ j
l=1 kl

k j+1 − k j
,

with ‖ · ‖2 denoting the Hilbert-Schmidt norm.

The corollary implies, in particular, that the ground state wave function 	0 of HN
satisfies

∥∥∥	0 − U† ⊗N
i=1 ϕ0

∥∥∥
2 ≤ C N−1/2 (10)

(for a suitable choice of the phase factor). The presence of the unitary operator U in (10)
is important; we do not expect that 	0 is close to ⊗N

i=1ϕ0 in an L2-sense for large N .
(Compare with Remark 6 in Sect. 7.)

In addition, the corollary states that the eigenfunctions of HN near the bottom of
the spectrum are approximately given by U† applied to the eigenfunctions of (9), which
are symmetrized products of the eigenfunctions ϕi of HH in (3). These functions can
be obtained by applying a number, n, of raising operators a†(ϕi ) to the N − n particle
ground state, which is simply the product

∏N−n
i=1 ϕ0(xi ). (Here we use the convenient

Fock space notation of creation operators, which will be recalled in the next section.)
In Subsect. 5.1, we shall also calculate U†a†(ϕi )U (up to small error terms), and hence
arrive at a convenient alternative characterization of the excited eigenstates of HN . (See
Remark 5 in Sect. 7.)

1.3. The translation-invariant case. It is instructive to compare Theorem 1 with the
translation invariant case studied in [26], where the Bose gas is confined to the flat
unit torus T

d . Up to an additive constant, the Hartree operator equals the Laplacian in
this case, whose eigenfunctions are conveniently labeled by the quantized momentum
p ∈ (2πZ)d , and are given explicitly by the plane waves ϕp(x) = eip·x . In this basis,
the operators D and V can be written as

D =
∑

p∈(2πZ)d

p2 |ϕp〉 〈ϕp| ,
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V =
∑

p∈(2πZ)d

v̂(p) |ϕp〉 〈ϕp| ,

with v̂(p) = ∫
Td v(x)e−ip·x dx = v̂(−p). Since D and V commute in this case, we

further have

E =
∑

p∈(2πZ)d

√
p4 + 2p2v̂(p) |ϕp〉 〈ϕp| .

Hence

tr (D + V − E) =
∑

p∈(2πZ)d

(
p2 + v̂(p)−

√
p4 + 2p2v̂(p)

)
,

and the eigenvalues of E are given by

ep =
√

p4 + 2p2v̂(p),

yielding the well-known Bogoliubov spectrum of elementary excitations, which is linear
in |p| for small momentum.

1.4. Short-range interactions. In Theorem 1, we assumed that v(x) is a bounded func-
tion. If we replace v(x) by gδ(x), then D + V − E will, in general, fail to be trace class
(in fact, it is not for the above model of bosons on T

d for d ≥ 2). However, Formula (7)
for the excitation spectrum still makes sense. Since all our bounds are quantitative, our
proof thus shows that if v is allowed to depend on N in such a way that it converges to a
δ-function, and v(0) increases with N slow enough, then the excitation spectrum is still
of the form

∑
i ei ni , where ei are the non-zero eigenvalues of E in (5), and V is now

the multiplication operator gϕ0(x)2. If v(0) increases too fast with N , though, our error
bounds cease to be good enough to allow this conclusion.

Consider now the case d = 3. If we write the interaction potential as (N −
1)−1λ3

Nv0(λN x) for some fixed, N -independent v0, with λN → ∞ as N → ∞, we
expect that the Bogoliubov approximation yields the correct excitation spectrum as long
as λN increases slower than N , i.e., λN � N . If λN ∼ N , the scattering length of
the interaction potential is of the same order as the range of the interactions. This corre-
sponds to the Gross-Pitaevskii scaling [8] of a dilute gas. In this latter case, the scattering
length becomes the physically relevant parameter quantifying the interacting strength,
instead of

∫
R3 v(x)dx . Hence we expect the following to be true.

Conjecture 1. Consider the Hamiltonian

HGP
N :=

N∑

i=1

(−�i + Vext(xi )) + N 2
∑

i< j

v(N (xi − x j )),

on L2(R3)⊗s N , with v non-negative, bounded and integrable at infinity, and denote its
ground state energy by E0(N ). The spectrum of HGP

N − E0(N ) below an energy ξ � N
is equal to finite sums of the form

∑

i≥1

ei ni (1 + o(1))
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for large N. Here, ei is defined as in the Hartree case with the replacements

HH � HGP := −� + Vext + 8πa0ϕ
2
0 ,

V � 8πa0ϕ
2
0 ,

where ϕ0 is now the minimizer of the Gross-Pitaevskii energy functional, and a0 is the
zero energy scattering length of the interaction potential v(x).

We expect the proof of Conjecture 1 to be more complicated than that of Theorem 1.
In particular, the Bogoliubov approximation would have to be modified in such a way to
account for the detailed structure of the wave function when particles are close, which
gives rise to the scattering length a0 (instead of merely its first-order Born approximation
(8π)−1

∫
R3 v(x)dx).

1.5. Outline. The remainder of the paper is organized as follows. In Sect. 2 we establish
bounds on the number of particles outside the condensate, the N -body Hartree operator∑N

i=1 Di , and their product for a low-energy state. Section 3 shows how HN can be
bounded from above and below by what we call the Bogoliubov Hamiltonian, which is
formally close to Bogoliubov’s approximate quadratic Hamiltonian on Fock space, yet
is particle number conserving. The diagonalization of the quadratic Hamiltonian can be
achieved by a Bogoliubov transformation, which is carried out in Sect. 4. To diagonal-
ize the actual Bogoliubov Hamiltonian we use a modification thereof, which involves
the estimation of various error terms (Sect. 5). Finally, we shall complete the proof of
Theorem 1 (Sect. 6) and Corollary 1 (Sect. 7).

Throughout this work a multiplicative constant C in an estimate is understood to
be generic: it can have different values on each appearance. By ‖ · ‖ we denote the
operator or vector norm, depending on context; ‖ · ‖1 and ‖ · ‖2 denote the trace class
and Hilbert-Schmidt norms of operators, respectively.

2. Bounds on the Condensate Depletion

It is convenient to regard the N -particle Hilbert space F (N ) := L2(Rd)⊗s N , the sym-
metric tensor product of N one-particle Hilbert spaces L2(Rd), as a subspace of the
bosonic Fock space F = ⊕∞

N=0F (N ). The Hamiltonian HN can then be written in
second quantized form as

HN =
∑

i, j

hi j a
†
i a j +

1

2(N − 1)

∑

i, j,k,l

vi jkla
†
j a

†
i akal , (11)

where

hi j := 〈ϕi | −� + Vext|ϕ j 〉 and vi jkl := 〈ϕi , ϕ j |v|ϕk, ϕl〉 .
Recall that the set {ϕi }i∈N denotes the orthonormal basis of eigenfunctions of HH in (3),
which we can all assume to be chosen real without loss of generality. The operators a†

i
and ai in (11) are the usual creation and annihilation operators corresponding to these
functions, i.e., ai := a(ϕi ).

To be precise, HN in (1) agrees with the right side of (11) on the subspace F (N ). We
shall always work on this subspace, and use Fock space notation only for convenience.
In particular, unless stated otherwise, all subsequent identities and inequalities involving
operators on Fock space are understood as holding on F (N ) only.
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We introduce the rank-one projection P = |ϕ0〉 〈ϕ0| and the complementary projec-
tion Q = 1 − P . The operator that counts the number of particles outside the Hartree
ground state is the second quantization d(Q) of Q and will be denoted by N>, i.e.

N> =
N∑

i=1

Qi =
∑

i

′
a†

i ai .

Here and in the following,
∑′

denotes a sum over all nonzero indices. Another important
quantity is the following N -body Hartree operator,

TH :=
N∑

i=1

(
−�i + Vext(xi ) + (v ∗ ϕ2

0)(xi )− ε0

)
= d(D), (12)

with D defined in (4).
The following lemma gives simple bounds on the ground state energy of HN , as well

as on the expectation values of N> and TH in low-energy states.

Lemma 1. The ground state energy E0(N ) of HN satisfies the bounds

0 ≥ E0(N )− Nh00 − N

2
v0000 ≥ 1

2
v0000 − N

2(N − 1)
v(0).

Moreover, for any N-particle state 	 with 〈	| HN |	〉 ≤ Nh00 + N
2 v0000 +μ, we have

(ε1 − ε0) 〈	| N> |	〉 ≤ 〈	| TH |	〉 ≤ μ +
N

2(N − 1)
v(0)− v0000

2
. (13)

Recall that ε0 and ε1 denote the lowest two eigenvalues of the Hartree operator HH
in (3). We emphasize that ε1 − ε0 > 0.

Proof. For the upper bound we use the trial function |N , 0, . . .〉 denoting a state where
all particles occupy the ground state of the Hartree operator HH. This yields

E0(N ) ≤
∑

i, j

hi j 〈N , 0, . . .| a†
i a j |N , 0, . . .〉

+
1

2(N − 1)

∑

i, j,k,l

vi jkl 〈N , 0, . . .| a†
j a

†
i akal |N , 0, . . .〉

= Nh00 +
N

2
v0000.

For the lower bound we exploit the positive definiteness of the interaction potential v in
the following way. With ψ(x) = ϕ2

0(x)− 1
N−1

∑N
i=1 δ(x − xi ), we have

0 ≤
∫

R2d
ψ(x)v(x − y)ψ(y)dxdy

= v0000 − 2

N − 1

N∑

i=1

(v ∗ ϕ2
0)(xi ) +

1

(N − 1)2
∑

i, j

v(xi − x j ). (14)
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Put differently, this inequality reads

1

N −1

∑

i< j

v(xi −x j )≥− N −1

2
v0000+

N∑

i=1

(v ∗ ϕ2
0)(xi )− N

2(N −1)
v(0) . (15)

Since ε0 = h00 + v0000, we hence have

HN ≥
N∑

i=1

(
−�i + Vext(xi ) + (v ∗ ϕ2

0)(xi )
)

− N − 1

2
v0000 − N

2(N − 1)
v(0)

= TH + Nh00 +
N + 1

2
v0000 − N

2(N − 1)
v(0).

The asserted bounds now follow, since TH ≥ (ε1 − ε0)N> ≥ 0. ��
Remark 2. The proof actually shows the operator inequality

TH ≤ HN − Nh00 − N + 1

2
v0000 +

N

2(N − 1)
v(0)

from which (13) readily follows.

In our analysis we shall also need bounds on the expectation value of the product
N>TH for a low-energy state. Such a bound is the content of Lemma 2.

Lemma 2. Let 	 be an N-particle wave function in the spectral subspace of HN cor-
responding to an energy E ≤ E0(N ) + μ. Then

(ε1 − ε0) 〈	| N>TH |	〉 ≤ (μ− v0000 + 3v(0))

(
μ +

N

2(N − 1)
v(0)− v0000

2

)

+
1

4
(2v(0) + μ)2.

Remark 3. A slight modification of the proof yields the operator inequality

(ε1 − ε0)N
>TH ≤ (3v(0)− v0000)TH + 2v(0)2 + 2(HN − E0(N ))

2 .

Proof. We write

〈	| N>TH |	〉 = 〈	| N>S |	〉 +
〈
	

∣∣∣N>
(

HN − E0(N )− μ

2

)∣∣∣	
〉
,

where S = ∑N
i=1(v ∗ϕ2

0)(xi )− Nε0 − 1
N−1

∑
i< j v(xi − x j )+ μ

2 + E0(N ). The second
term can be bounded by Schwarz’s inequality as

∣∣∣
〈
	

∣∣∣N>
(

HN − E0(N )− μ

2

)∣∣∣	
〉∣∣∣ ≤ μ

2
〈	| (N>)2 |	〉1/2 .

For the first we use the permutation symmetry of 	 and get

〈	| N>S |	〉 = N 〈	| Q1S |	〉 .
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We split S into two parts, S = Sa + Sb, where

Sa :=
N∑

i=2

(v ∗ ϕ2
0)(xi )− Nε0 − 1

N − 1

∑

2≤i< j

v(xi − x j ) +
μ

2
+ E0(N ),

Sb := (v ∗ ϕ2
0)(x1)− 1

N − 1

N∑

i=2

v(x1 − xi ).

Using positive definiteness of v as in (14), this time forψ(x)=ϕ2
0(x)− 1

N−1

∑N
i=2δ(x−xi ),

we obtain

1

N − 1

∑

2≤i< j

v(xi − x j ) ≥ − (N − 1)

2
v0000 +

N∑

i=2

(v ∗ ϕ2
0)(xi )− v(0)

2
.

In combination with the upper bound on E0(N ) in Lemma 1 this implies that

Sa ≤ 1

2
(v(0)− v0000 + μ) .

In particular, since Sa commutes with Q1, we have

N 〈	| Q1Sa |	〉 ≤ 1

2
(v(0)− v0000 + μ) 〈	| N> |	〉 .

To bound the contribution of Sb, we compute

〈	| Q1Sb |	〉 = 〈	| Q1

[
(v ∗ ϕ2

0)(x1)− v(x1 − x2)
]
|	〉

= 〈	| Q1 Q2

[
(v ∗ ϕ2

0)(x1)− v(x1 − x2)
]
|	〉

+ 〈	| Q1 P2

[
(v ∗ ϕ2

0)(x1)− v(x1 − x2)
]

P2 |	〉
+ 〈	| Q1 P2

[
(v ∗ ϕ2

0)(x1)− v(x1 − x2)
]

Q2 |	〉 .
The second term on the right side of the last equation vanishes. For the first and the third,
we use Schwarz’s inequality and |(v ∗ ϕ2

0(x1)− v(x1 − x2)| ≤ v(0) to conclude

| 〈	| Q1Sb |	〉 | ≤ v(0) 〈	| Q1 Q2 |	〉1/2 + v(0) 〈	| Q1 |	〉 .
Since

N 2 〈	| Q1 Q2 |	〉 ≤ 〈	| (N>)2 |	〉
we have thus shown that

〈	| N>TH |	〉 ≤ 1

2
(μ− v0000 + 3v(0)) 〈	| N> |	〉

+
1

2
(2v(0) + μ) 〈	| (N>)2 |	〉1/2 .

Using TH ≥ (ε1 − ε0)N> this implies

〈	| N>TH |	〉 ≤ (μ− v0000 + 3v(0)) 〈	| N> |	〉 +
1

4

(2v(0) + μ)2

ε1 − ε0
.

The result then follows from Lemma 1. ��
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3. The Bogoliubov Hamiltonian

The well-known Bogoliubov approximation [7] consists of replacing the operators a0

and a†
0 in (11) by

√
N , and dropping all terms higher than quadratic in the ai and a†

i
for i ≥ 1. The resulting Bogoliubov Hamiltonian does not preserve particle number and
is thus not suitable as an approximation to the full Hamiltonian HN , as far as operator
inequalities are concerned. To circumvent this problem, we work with the following
modification of the Bogoliubov Hamiltonian. For i ≥ 1, we introduce the operators

bi := ai a
†
0√

N − 1
,

and we define the Bogoliubov Hamiltonian as

HBog :=
∑

i

′
(εi − ε0) b†

i bi +
1

2

∑

i, j

′
Vi j

(
2b†

i b j + bi b j + b†
j b

†
i

)
, (16)

where Vi j = v00i j = 〈ϕi |V |ϕ j 〉. Note that this operator preserves the number of parti-
cles, hence we can study its restriction to F (N ), the sector of N particles. The price to
pay, as compared with the usual Bogoliubov Hamiltonian, is that the bi , b†

i do not satisfy
canonical commutation relations, making it harder to determine the spectrum of HBog.

In the following, we shall investigate the relation between HN and HBog. In particu-
lar, we shall derive upper and lower bounds on HN in terms of HBog, which are stated
in Eqs. (19) and (21), respectively. The error terms in (20) and (22) are small in the
low-energy sector.

3.1. Lower bound. Using the positivity of the interaction potential v, a Schwarz inequal-
ity on F (2) yields

(P ⊗ Q + Q ⊗ P)vQ ⊗ Q + Q ⊗ Qv(P ⊗ Q + Q ⊗ P)

≥ −ε(P ⊗ Q + Q ⊗ P)v(P ⊗ Q + Q ⊗ P)− ε−1 Q ⊗ QvQ ⊗ Q.

Consequently,

v ≥ P ⊗ PvP ⊗ P + P ⊗ PvQ ⊗ Q + Q ⊗ QvP ⊗ P

+(1 − ε)(P ⊗ Q + Q ⊗ P)v(P ⊗ Q + Q ⊗ P) + (1 − ε−1)Q ⊗ QvQ ⊗ Q

+P ⊗ PvP ⊗ Q + P ⊗ PvQ ⊗ P + P ⊗ QvP ⊗ P + Q ⊗ PvP ⊗ P (17)

for any ε > 0. The last term in the second line can be bounded from below by (1 −
ε−1)v(0)Q ⊗ Q as long as ε ≤ 1 which we shall assume henceforth. We remark that
in the case of translation invariance the terms in the last line vanish due to momentum
conservation, but this is not the case here.

In second quantized language, the bound (17) implies that HN is bounded from below
by the operator

∑

i, j

′
hi j a

†
i a j +

√
N − 1

∑

i

′
hi0

(
b†

i + bi

)
+ h00(N − N>)

+v0000
(N − N>)(N − N> − 1)

2(N − 1)
+

1

2

∑

i, j

′
Vi j

(
bi b j + b†

j b
†
i

)
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+
1 − ε

N − 1

∑

i, j

′ (
v0i0 j + Vi j

)
a†

i a†
0a j a0

+(1 − ε−1)
N>(N> − 1)v(0)

2(N − 1)
+
∑

i

′ vi000√
N − 1

(
bi (N − N>) + (N − N>)b†

i

)
,

(18)

restricted to the N -particle sector. We note that

∑

i, j

′
(hi j − ε0δi j )b

†
i b j =

∑

i, j

′
(hi j − ε0δi j )a

†
i a j

N − N> + 1

N − 1

=
∑

i, j

′
(hi j − ε0δi j )a

†
i a j +

2 − N>

N − 1

∑

i, j

′
(hi j − ε0δi j )a

†
i a j .

Since D − v(0) ≤ −� + Vext − ε0 ≤ D, we can bound the last term as

2 − N>

N − 1

∑

i, j

′
(hi j − ε0δi j )a

†
i a j ≤ 1

N − 1
TH + v(0)

(N>)2

N
.

This bound can be easily verified by investigating separately the sectors of different
values of N>. (In particular, note that TH = 0 on the subspace where N> = 0, for
instance.)

We also have

1 − ε

N − 1

∑

i, j

′ (
v0i0 j + Vi j

)
a†

i a†
0a j a0

=
∑

i, j

′ (
v0i0 j + Vi j

)
b†

i b j − 1 + ε(N − N>)

N − 1

∑

i, j

′ (
v0i0 j + Vi j

)
a†

i a j

≥
∑

i, j

′ (
v0i0 j + Vi j

)
b†

i b j − 2v(0)
N> + εN>(N − N>)

N − 1
,

where we have used that V as well as multiplication with v ∗ ϕ2
0 are bounded operators

with norm bounded by v(0). Using ε0 = h00 + v0000 one verifies that

ε0 N>+h00(N −N>)+v0000
(N −N>)(N −N> − 1)

2(N − 1)
+(1−ε−1)

N>(N> − 1)v(0)

2(N −1)

= Nh00 +
N

2
v0000 + ((1 − ε−1)v(0) + v0000)

N>(N> − 1)

2(N − 1)
.

The Hartree equation (2) implies hi0 + vi000 = 0 for i �= 0, hence we have

√
N − 1

∑

i

′
hi0

(
b†

i + bi

)
+
∑

i

′ vi000√
N − 1

(
bi (N − N>) + (N − N>)b†

i

)

=
∑

i

′ vi000√
N − 1

(
bi (1 − N>) + (1 − N>)b†

i

)
.
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This last expression can be bounded by Schwarz’s inequality: for any ζ > 0 one has

− (1 − N>)2

ζ
√

N − 1
− ζv(0)2

N N>

(N − 1)3/2
≤

∑

i

′ vi000√
N − 1

(
bi (1 − N>) + (1 − N>)b†

i

)

≤ (1 − N>)2

ζ
√

N − 1
+ ζv(0)2

N N>

(N − 1)3/2
.

Here we made use of
∑

i

′ |vi000|2 = 〈ϕ0| v ∗ ϕ0 Qv ∗ ϕ2
0 |ϕ0〉 ≤ v(0)2.

What these computations show is that

HN ≥ HBog + Nh00 +
N

2
v0000 − Eε , (19)

where

Eε = −
(
(1 − ε−1)v(0) + v0000

) N>(N> − 1)

2(N − 1)
+

1

N − 1
TH + v(0)

(N>)2

N

+
(1 − N>)2

ζ
√

N − 1
+ ζv(0)2 N> N

(N − 1)3/2
+ 2v(0)

1 + εN

N − 1
N>

≤ C
((
ε−1 N−1 + ζ−1 N−1/2

)
(N> + 1)(TH + 1) + (N−1 + ε + ζN−1/2)(TH + 1)

)
.

(20)

3.2. Upper bound. The upper bound on HN follows essentially the same lines as the
lower bound in the previous subsection. By Schwarz’s inequality,

(P ⊗ Q + Q ⊗ P)vQ ⊗ Q + Q ⊗ Qv(P ⊗ Q + Q ⊗ P)

≤ ε(P ⊗ Q + Q ⊗ P)v(P ⊗ Q + Q ⊗ P) + ε−1 Q ⊗ QvQ ⊗ Q,

and hence

v ≤ P ⊗ PvP ⊗ P + P ⊗ PvQ ⊗ Q + Q ⊗ QvP ⊗ P

+(1 + ε)(P ⊗ Q + Q ⊗ P)v(P ⊗ Q + Q ⊗ P) + (1 + ε−1)v(0)Q ⊗ Q

+P ⊗ PvP ⊗ Q + P ⊗ PvQ ⊗ P + P ⊗ QvP ⊗ P + Q ⊗ PvP ⊗ P

for any ε > 0. This means that HN is bounded from above by the expression (18) with
ε exchanged for −ε. Using

∑

i, j

′ (
hi j − ε0δi j

)
a†

i a j =
∑

i, j

′ (
hi j − ε0δi j

)
b†

i b j +
N> − 2

N − 1

∑

i, j

′ (
hi j − ε0δi j

)
a†

i a j

≤
∑

i, j

′ (
hi j − ε0δi j

)
b†

i b j +
N>TH

N
+ v(0)

N>

N − 1
,
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we obtain

HN ≤ HBog + Nh00 +
N

2
v0000 + Fε, (21)

where

Fε = N>TH

N
+ v(0)

3 + 2εN

N − 1
N> + ((1 + ε−1)v(0) + v0000)

N>(N> − 1)

2(N − 1)

+
(1 − N>)2

ζ
√

N − 1
+ ζv(0)2 N> N

(N − 1)3/2

≤ C
( (

N−1 + ζ−1 N−1/2 + ε−1 N−1
)
(N> + 1)(TH + 1)

+
(
ε + ζN−1/2 + N−1

)
(N> + 1)1/2(TH + 1)1/2

)
. (22)

Here we have again used that N> can be bounded by TH, and similarly for their square
roots. To proceed with the analysis in Sect. 6.2, it is convenient to work with the bound
(22) on Fε, involving only the operator (N> + 1)(TH + 1) and its square root.

4. Symplectic Diagonalization

In order to investigate the spectrum of the Bogoliubov Hamiltonian HBog in (16), it is
useful to consider first the usual Bogoliubov Hamiltonian, which is the formal quadratic
expression

H̃Bog = 1

2

(
(a†)ᵀ, aᵀ

)(
D + V V

V D + V

)(
a
a†

)
. (23)

It is convenient to use a matrix notation where

a =
⎛

⎜⎝
a1
a2
...

⎞

⎟⎠ , a† =

⎛

⎜⎜⎝

a†
1

a†
2
...

⎞

⎟⎟⎠ ,

and ᵀ denotes transposition; e.g., aᵀDa† stands for
∑′

i, j 〈ϕi |D|ϕ j 〉ai a
†
j , (a

†)ᵀV a stands

for
∑′

i, j Vi j a
†
i a j , etc. The operator H̃Bog is symmetric since V has real matrix elements

with respect to the basis {ϕi }i∈N. Equation (23) is only a formal expression; in particular,
it has an infinite ground state energy. It also does not preserve the particle number and
hence cannot be restricted to the sector of N particles. Nevertheless, it serves as a useful
device to motivate our analysis below leading to an approximate diagonalization of the
actual Bogoliubov Hamiltonian HBog.

We introduce the Segal field operators φ = (φ1, φ2, . . . )
ᵀ, π = (π1, π2, . . . )

ᵀ,
which are given by

(
a
a†

)
= 1√

2

(
1 i
1 −i

)(
φ

π

)
=: T

(
φ

π

)
.

They satisfy the commutation relations

[φi , φ j ] = [πi , π j ] = 0 , [φi , π j ] = iδi j .
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These remain invariant under symplectic transformations S, which satisfy

SᵀJ S = J =
(

0 1
−1 0

)
.

We can write

H̃Bog = (
φᵀ, πᵀ) M

(
φ

π

)
,

where

M := 1

2
T ∗

(
D + V V

V D + V

)
T = 1

2

(
D + 2V 0

0 D

)
.

Here and in the following, we shall use ∗ for the adjoint of an operator on the one-particle
space F (1) or the doubled space F (1)⊕F (1), while we use † for the adjoint of an operator
on Fock space.

In order to diagonalize H̃Bog we thus have to symplectically diagonalize M . To do
so we introduce a real unitary operator U0 such that

Ê = U∗
0 EU0

is diagonal with ordered eigenvalues, i.e. Ê = ∑′
i ei |ϕi 〉 〈ϕi | with 0 < e1 ≤ e2 ≤ . . ..

On the subspace QL2(Rd), the operators D, E and Ê are invertible, and we denote their
inverse by D−1, E−1 and Ê−1 for simplicity, i.e., D−1 = Q(Q D)−1, etc.

With

S =
(

D1/2 0
0 D−1/2

)(
U0 0
0 U0

)(
Ê−1/2 0

0 Ê1/2

)
=

(
AU0 0

0 BU0

)
, (24)

where A := D1/2 E−1/2 and B := (A−1)∗, we then have Sᵀ = S∗ and

S∗M S = 1

2

(
Ê 0
0 Ê

)
.

This corresponds to a Hamiltonian consisting of sums of independent harmonic oscilla-
tors of the form φ2

i + π2
i , and hence yields the desired diagonalization of H̃Bog.

Remark 4. As claimed in Remark 1 in Sect. 1.2, it is not difficult to see that the positive
eigenvalues ω in (8) are precisely the eigenvalues of E . With

I :=
(−i 0

0 i

)
,

Eq. (8) can be written as

2iI T MT ∗ψ = ωψ,

where we denoteψ = (u, y)ᵀ for short. If we multiply this from the left with I T S∗ J T ∗,
using T ∗ I = J T ∗ and S∗ J = J S−1, we obtain the equation

2iI T S∗M ST ∗χ = ωχ ,
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with χ = T S−1T ∗ψ . This latter equation is simply
(

Ê 0
0 −Ê

)
χ = ωχ ,

hence ω is indeed an eigenvalue of Ê , as claimed.

The formal considerations above serve as a starting point of our analysis. Using S in
(24), we define particle number preserving operators c = (c1, c2, . . . ) by

(
b
b†

)
= 1

2

(
1 i
1 −i

)(
AU0 0

0 BU0

)(
1 1
−i i

)(
c
c†

)

= 1

2

(
AU0 + BU0 AU0 − BU0

AU0 − BU0 AU0 + BU0

)(
c
c†

)
. (25)

Note that the operators A, B and U0 are all real, hence c†
j is indeed the adjoint of c j . By

inverting S one easily obtains the inverse transformation law
(

c
c†

)
= 1

2

(
U∗

0 A−1 + U∗
0 B−1 U∗

0 A−1 − U∗
0 B−1

U∗
0 A−1 − U∗

0 B−1 U∗
0 A−1 + U∗

0 B−1

)(
b
b†

)
. (26)

We can rewrite the Bogoliubov Hamiltonian

HBog = (b†)ᵀ(D + V )b +
1

2
bᵀV b +

1

2
(b†)ᵀV b† (27)

as a quadratic operator in these c, c†. Here, (b†)ᵀV b = ∑′
i, j Vi j b

†
i b j , etc. We insert

(25) into (27) and obtain

HBog =
∑

i

′
ei c

†
i ci −

∑

i, j

′
(

U∗
0

(
Y − E

2

)
U0

)

i j
[ci , c†

j ]

−1

2

∑

i, j

′
Zi j

(
[c j , ci ] + [c†

i , c†
j ]
)

=: (I)+(II)+(III) , (28)

where

Y := 1

4
E1/2 D−1/2 (D + V ) D1/2 E−1/2 + h.c.

and

Z := 1

4
U∗

0

[
(A−B)∗(D+V )(A+ B)+

1

2
(A+ B)∗V (A+ B)+

1

2
(A−B)∗V (A−B)

]
U0

= 1

4
U∗

0

[
A∗(D+2V )A−B∗ DB−B∗(D+V )A + A∗(D+V )B

]
U0

= 1

4
U∗

0

[
A∗(D+V )B − B∗(D+V )A

]
U0 .

Note that Z is antisymmetric and hence

∑

i, j

′
Zi j ci c j = 1

2

∑

i, j

′
Zi j ci c j − 1

2

∑

i, j

′
Z ji ci c j = −1

2

∑

i, j

′
Z ji [ci , c j ].
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To arrive at (28), we have used that

1

4

[
(A + B)∗(D + V )(A + B) +

1

2
(A − B)∗V (A + B) +

1

2
(A + B)∗V (A − B)

]

= 1

4

[
(A + B)∗(D + V )(A + B) + A∗V A − B∗V B

]

= 1

4

[
A∗(D + 2V )A + B∗ DB + B∗(D + V )A + A∗(D + V )B

]

= 1

2
E +

1

4

[
B∗(D + V )A + A∗(D + V )B

]

= 1

2
E + Y

and
1

4

[
(A − B)∗(D + V )(A − B) +

1

2
(A + B)∗V (A − B) +

1

2
(A − B)∗V (A + B)

]

= 1

4

[
(A − B)∗(D + V )(A − B) + A∗V A − B∗V B

]

= 1

4

[
A∗(D + 2V )A + B∗ DB − B∗(D + V )A − A∗(D + V )B

]

= 1

2
E − 1

4

[
B∗(D + V )A + A∗(D + V )B

]

= 1

2
E − Y .

5. Bounds on the Bogoliubov Hamiltonian

To prove Theorem 1 we derive upper and lower bounds for the various terms (I)–(III) in
(28). This yields a bound on HBog in terms of an operator whose spectrum is explicit,
as well as errors which are small for large N in the low-energy sector. More specifically
we shall prove:

Proposition 1. The three terms in (28) have the following properties. There exists a uni-
tary operator U : F (N ) → F (N ) (explicitly given in (31) below) such that the following
bounds hold on F (N ):
(I): For arbitrary λ > 0 we have

∑

i

′
ei c

†
i ci ≥ (1 − λ)U†

(
∑

i

′
ei a

†
i ai

)
U − C(1 + λ−1)N−1(N> + 1)(TH + 1) ,

∑

i

′
ei c

†
i ci ≤ (1 + λ)U†

(
∑

i

′
ei a

†
i ai

)
U + C(1 + λ−1)N−1(N> + 1)(TH + 1) .

(II): D + V − E is a trace class operator, and

−C N−1(TH + 1)

≤ 2
∑

i, j

′(
U∗

0

(
Y − E

2

)
U0

)

i j
[ci , c†

j ] − tr(D + V − E) + v0000

≤ C N−1(TH + 1) .
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(III):

−C N−1TH ≤
∑

i, j

′
Zi j

(
[c j , ci ] + [c†

i , c†
j ]
)

≤ C N−1TH .

The following three subsections contain the proof of this proposition.

5.1. Proof of Proposition 1 (I). We first refine the symplectic transformation S. By polar
decomposition there is a unitary W0 such that A = |A∗|W0 = W0|A|. Since

|B∗| = |A−1| = |A∗|−1, (29)

also B = |B∗|W0. Hence

S =
( |A∗|W0U0 0

0 |B∗|W0U0

)
=: S̃

(
W 0
0 W

)
,

where W = W0U0. The transformation
(

W 0
0 W

)
(30)

is implementable on F by a unitary W = (W ), as it corresponds to a change of basis
of the one-particle Hilbert space L2(Rd). We define the real, bounded, and positive
operator

α := log
(
|A∗|−1

)
.

Note that log |B∗| = α due to (29). One can show that for any t ∈ R the symplectic
transformation

S̃t :=
(

e−tα 0
0 etα

)

is implemented on Fock space F by eXat where

Xa := 1

2

∑

i, j

′
αi j (a

†
i a†

j − ai a j ).

However, it is important to note that eXat does not preserve the particle number, and
hence we shall instead work with eXt , where

X := 1

2

∑

i, j

′
αi j (b

†
i b†

j − bi b j ).

We will repeatedly need the following facts.

Lemma 3. (i) V is a positive trace class operator.
(ii) A − 1 and B − 1 are Hilbert-Schmidt operators.

(iii) α is a Hilbert-Schmidt operator.
(iv) iX : F (N ) → F (N ) is a symmetric bounded operator.
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The proof of this lemma will be given at the end of this subsection. The lemma implies
that

U := W†eX (31)

(with W defined just after (30)) is a particle number preserving unitary transformation
on the Fock space F , and hence we can study its restriction to the N -particle sector

F (N ). With ν := a2
0

N−1 ,G := cosh(α)W , and H := sinh(α)W , we define the operators

di : F (N ) → F (N−1) by

di := a(Gϕi ) + νa†(Hϕi ). (32)

Note that (26) implies

ci = 1√
N − 1

∑

j

′ ((
W ∗ cosh(α)

)
i j a j a

†
0 +

(
W ∗ sinh(α)

)
i j a†

j a0

)

= a(Gϕi )a
†
0√

N − 1
+

a(Hϕi )a
†
0√

N − 1
,

from which we derive

d†
i di = c†

i ci + a†(Gϕi )a(Gϕi )

(
1 − a0a†

0

N − 1

)

+a(Hϕi )a
†(Hϕi )

(
(a†

0)
2a2

0

(N − 1)2
− a†

0a0

N − 1

)

= c†
i ci + a†(Gϕi )a(Gϕi )

N> − 2

N − 1

−(a†(Hϕi )a(Hϕi ) + ‖Hϕi‖2)
N>(N − N>)

(N − 1)2
. (33)

The first step towards the proof of Proposition 1 (I) is the following lemma.

Lemma 4.
∑

i

′
ei d

†
i di − C N−1TH N> ≤

∑

i

′
ei c

†
i ci ≤

∑

i

′
ei d

†
i di + C N−1(N> + 1)(TH + 1).

Proof. By (33) we have

∑

i

′
ei c

†
i ci ≥

∑

i

′
ei d

†
i di − N>

N

∑

i

′
ei a

†(Gϕi )a(Gϕi ), (34)

and similarly

∑

i

′
ei c

†
i ci ≤

∑

i

′
ei d

†
i di +

∑

i

′
ei

( 2

N − 1
a†(Gϕi )a(Gϕi )

+
N N>

(N − 1)2

(
a†(Hϕi )a(Hϕi ) + ‖Hϕi‖2

) )
. (35)
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Hence the lemma follows from the following three estimates:
∑

i

′
ei a

†(Gϕi )a(Gϕi ) ≤ CTH,

∑

i

′
ei a

†(Hϕi )a(Hϕi ) ≤ C N>, (36)

∑

i

′
ei‖Hϕi‖2 < ∞.

For the proof of the first estimate note that the operator on the left side is the second
quantization of GU∗

0 EU0G∗, which we can write as

GU∗
0 EU0G∗ = cosh(α)W0 EW ∗

0 cosh(α)

= 1

4

(
D−1/2 E1/2 + D1/2 E−1/2

)
E

(
E1/2 D−1/2 + E−1/2 D1/2

)

= 1

4
D1/2

(
D−1 E1/2 + E−1/2

)
E

(
E1/2 D−1 + E−1/2

)
D1/2 .

Since TH = d(D) it suffices to show boundedness of the operator

D−1 E2 D−1 + D−1 E + E D−1 + 1,

which follows from

‖D−1 E2 D−1‖ = ‖1 + 2D−1/2V D−1/2‖ < ∞.

The second estimate in (36) follows from the third, for which we note that
∑

i

′
ei‖Hϕi‖2 = tr(HU∗

0 EU0 H∗)

= ‖E1/2W ∗
0 sinh(α)‖2

2

= 1

4
‖(D − E)D−1/2‖2

2.

To bound the Hilbert-Schmidt norm of the operator (D − E)D−1/2, we use the integral
representation x1/2 = π

∫ ∞
0 t1/2

( 1
t − 1

x+t

)
dt , which implies that

‖(D−E)D−1/2‖2 = π

∥∥∥∥
∫ ∞

0
t1/2

(
(t + D2)−1−(t +E2)−1

)
D−1/2dt

∥∥∥∥
2

= 2π

∥∥∥∥
∫ ∞

0
t1/2(t +E2)−1 D1/2V (t + D2)−1dt

∥∥∥∥
2

≤ 2π‖V ‖2

∫ ∞

0
t1/2‖(t +E2)−1 D1/2‖‖(t + D2)−1‖dt . (37)

Using D ≤ E and the spectral theorem one verifies that ‖(t + E2)−1 D1/2‖ ≤ ‖(t +
E2)−1 E1/2‖ ≤ C(1 + t3/4)−1. Since also ‖(t + D2)−1‖ ≤ 1/t , the integrand in the last
line in (37) falls off like t−5/4 at infinity, making the integral finite. ��

Proposition 1 (I) is now a direct consequence of the following lemma.
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Lemma 5. For arbitrary λ > 0 we have the bounds

∑

i

′
ei d

†
i di ≥ (1 − λ)U†

(
∑

i

′
ei a

†
i ai

)
U − Cλ−1 N−1(N> + 1)2,

∑

i

′
ei d

†
i di ≤ (1 + λ)U†

(
∑

i

′
ei a

†
i ai

)
U + C(1 + λ−1)N−1(N> + 1)2.

Proof. We define Ki := U†aiU − di and hence, by Schwarz’s inequality,

(1 − λ)U†a†
i aiU − λ−1 K †

i Ki ≤ d†
i di ≤ (1 + λ)U†a†

i aiU + (1 + λ−1)K †
i Ki

for arbitrary λ > 0. We have to show that
∑

i
′
ei K †

i Ki ≤ C N−1(N> + 1)2. To simplify
notation we define also gt := cosh(αt), ht := sinh(αt) and the quantity

κ f (t) := e−t X a( f )et X − a(gt f )− νa†(ht f ) for f ⊥ ϕ0 ,

which is related to Ki by Ki = κWϕi (1). We claim

κ f (1)
†κ f (1) ≤ C N−1(N> + 1)2〈 f |α2| f 〉. (38)

Assuming this for the moment, we can use Ê = U∗
0 EU0 as well as W ∗

0 α
2W0 = (log |A|)2

to conclude that
∑

i

′
ei K †

i Ki ≤ C N−1(N> + 1)2
∑

i

′
ei 〈Wϕi |α2Wϕi 〉

= C N−1(N> + 1)2
∑

i

′ 〈E1/2(log |A|)2 E1/2U0ϕi |U0ϕi 〉

= C N−1(N> + 1)2‖E1/2(log |A|)2 E1/2‖1.

The claim of the lemma then follows if ‖E1/2(log |A|)2 E1/2‖1 < ∞. To see this observe
that

0 ≤ − log |A| ≤ |A|−1 − 1

≤ |A|−2 − 1 = E1/2 D−1 E1/2 − 1, (39)

which leads to

‖E1/2(log |A|)2 E1/2‖1 ≤ ‖E1/2(E1/2 D−1 E1/2 − 1)2 E1/2‖1

= ‖(E D−1 − 1)E1/2‖2
2

= ‖(E − D)D−1 E1/2‖2
2

≤ ‖(E − D)D−1/2‖2
2‖D−1/2 E1/2‖2 .

The claim thus follows from (37) and boundedness of B = D−1/2 E1/2.
The proof of (38) is a bit more elaborate. With

[X, a( f )] = −νa†(α f )

we easily obtain

κ ′′
f (t) = κα2 f (t)− rα,α f (t),
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where

rα,ϕ(t) := e−t X
[
(1 − νν†)a(αϕ)− [X, ν]a†(ϕ)

]
et X .

Using κ f (0) = κ ′
f (0) = 0, a second order Taylor expansion yields

κ f (t) =
∫ t

0
(t − s)

(
κα2 f (s)− rα, f (s)

)
ds.

For any |ψ〉 ∈ F (N ) we introduce

κ̂ψ (t) := sup
‖α f ‖≤1

‖κ f (t) |ψ〉 ‖,

r̂α,ψ := 1

2
sup
s≤1

sup
‖α f ‖≤1

‖rα, f (s) |ψ〉 ‖.

Note that

sup
‖α f ‖≤1

‖κα2 f (t) |ψ〉 ‖ = ‖α‖2 sup
‖α f ‖≤1

‖κα2 f/‖α‖2(t) |ψ〉 ‖ ≤ ‖α‖2κ̂ψ (t)

which yields

κ̂ψ (t) ≤ r̂α,ψ + ‖α‖2
∫ t

0
κ̂ψ (s)ds

for t ≤ 1. It follows from Grönwall’s lemma (see, e.g., [29, Thm. III.1.1]) that

κ̂ψ (1) ≤ e‖α‖2
r̂α,ψ(1).

If f ∈ ker α then κ f (t) = 0. For f /∈ ker α,

‖κ f (1) |ψ〉 ‖
‖α f ‖ ≤ e‖α‖2

r̂α,ψ(1),

from which (38) follows if we can show that

r̂α,ψ(1) ≤ C N−1/2‖(N> + 1) |ψ〉 ‖. (40)

To see (40) we define g = α f and first show that for ‖g‖ ≤ 1,

a†(αg)(1 − νν†)2a(αg) ≤ C N−1(N> + 1)2 (41)

and

a(g)[X, ν]†[X, ν]a†(g) ≤ C N−1(N> + 1)2. (42)

The first bound follows directly from

1 − νν† = (2N + 3)N> − (N>)2 − 5N − 1

(N − 1)2
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and a†(αg)a(αg) ≤ ‖α‖2 N>. To show (42) we write

a(g)[X, ν]†[X, ν]a†(g) ≤
(

[(a†
0)

2, a2
0]

2(N − 1)2

)2

a(g)

⎛

⎝
∑

i, j,k,l

′
αi jαkla

†
k a†

l ai a j

⎞

⎠ a†(g)

≤
(

2(N − N>) + 1

(N − 1)2

)2

a(g)‖α‖2
2 N>(N> − 1)a†(g)

≤ C N−2‖α‖2
2‖g‖2 N>(N> − 1)(N> + 1)

≤ C N−1(N> + 1)2.

To conclude the proof of (38) it remains to show that the inequality

e−t X (N> + 1)2et X ≤ eCt (N> + 1)2 (43)

holds for t = 1. To that end we compute

[X, N>] = −1

2

∑

i, j

′ (
ν†αi j [ai a j , N>] − ναi j [a†

i a†
j , N>]

)

= −
∑

i, j

′
αi j (bi b j + b†

i b†
j ).

Taking the square of this expression yields

[X, N>]2 ≤ 2

⎛

⎝
∑

i, j

′
αi j bi b j

⎞

⎠

⎛

⎝
∑

k,l

′
αklb

†
k b†

l

⎞

⎠+2

⎛

⎝
∑

i, j

′
αi j b

†
i b†

j

⎞

⎠

⎛

⎝
∑

k,l

′
αklbkbl

⎞

⎠

≤ 2ν†ν
∑

i, j,k,l

′
αi jαklai a j a

†
k a†

l +2‖α‖2
2νν

† N>(N>−1)

≤ 2
(N −N>)(N −N>−1)

(N −1)2

⎛

⎝
∑

i, j,k,l

′
αi jαkla

†
i a†

j akal +4
∑

i, j

′
(α2)i j a

†
i a j +2‖α‖2

2

⎞

⎠

+2‖α‖2
2
(N −N>)(N −N>+3)+2

(N −1)2
N>(N>−1)

≤ 2
(N −N>)(N −N>−1)

(N −1)2
(‖α‖2

2 N>(N>−1)+4‖α‖2 N>+2‖α‖2
2

)

+2‖α‖2
2
(N −N>)(N −N>+3)+2

(N −1)2
N>(N>−1)

≤ C‖α‖2
2(N

>+1)2 . (44)

By Schwarz’s inequality we obtain

[X, (N> + 1)2] = (N> + 1)[X, N>] + [X, N>](N> + 1)

≤ C(N> + 1)2,
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and hence it follows that

et X (N> + 1)2e−t X = (N> + 1)2 +
∫ t

0
es X [X, (N> + 1)2]e−s X ds

≤ (N> + 1)2 + C
∫ t

0
es X (N> + 1)2e−s X ds.

Grönwall’s lemma then yields (43). This completes the proof of the lemma. ��
We conclude this section with the proof of Lemma 3.

Proof of Lemma 3. (i): The positivity of V follows directly from the assumption that v
is of positive type:

〈ψ | V |ψ〉 =
∫

R2d
ϕ0(x)ϕ0(y)v(x − y)ψ(x)ψ(y)dxdy ≥ 0.

In particular, the trace norm of V equals its trace, which is equal to

tr V =
∫

Rd
ϕ0(y)

2v(0)dy = v(0) < ∞ .

(ii): With A − 1 = (D1/2 − E1/2)E−1/2 and the integral representation

x1/4 − y1/4 = √
2π

∫ ∞

0
t1/4

(
1

y + t
− 1

x + t

)
dt

we have

‖A − 1‖2 ≤ √
2π

∫ ∞

0
t1/4‖

(
(t + D2)−1 − (t + E2)−1

)
E−1/2‖2dt

= 23/2π

∫ ∞

0
t1/4‖(t + D2)−1 D1/2V D1/2(t + E2)−1 E−1/2‖2dt

≤ 23/2π‖V ‖2

∫ ∞

0
t1/4‖(t + D2)−1 D1/2‖‖D1/2(t + E2)−1 E−1/2‖dt.

(45)

Since D ≤ E we can further bound

‖D1/2(t + E2)−1 E−1/2‖ = ‖E−1/2(t + E2)−1 D(t + E2)−1 E−1/2‖1/2

≤ ‖(t + E2)−1‖ ≤ 1

t
.

Using the spectral theorem we conclude that ‖(t + D2)−1 D1/2‖ ≤ C(1 + t3/4)−1 and
hence the integrand in (45) falls off like t−3/2 at infinity, making the integral finite. The
estimate for B − 1 = D−1/2(E1/2 − D1/2) is obtained along the same lines.

(iii): We apply the integral representation log x = 1
2

∫ ∞
0

(
1

x+t − 1
x−1+t

)
dt and the

resolvent identity to obtain

2‖α‖2 ≤
∫ ∞

0
‖(|A∗| + t)−1 − (|B∗| + t)−1‖2dt

≤ ‖|A∗| − |B∗|‖2

∫ ∞

0
‖(|A∗| + t)−1‖‖(|B∗| + t)−1‖dt < ∞,

since ‖|A∗| − |B∗|‖2 = ‖A − B‖2 ≤ ‖A − 1‖2 + ‖B − 1‖2 < ∞ by (i).



582 P. Grech, R. Seiringer

(iv): On F (N ) we have the bound

∑

i, j

′
αi j b

†
i b†

j

∑

i, j

′
αi j bi b j ≤ a2

0(a
†
0)

2

(N − 1)2
∑

i, j,k,l

αi jαkla
†
i a†

j akal

≤
(

N + 2

N − 1

)2

‖α‖2
2 N (N − 1) ,

which shows that X is a bounded operator. Its anti-symmetry follows directly from its
definition. ��

This completes the proof of part (I) of Proposition 1.

5.2. Proof of Proposition 1 (II). We abbreviate the symplectic transformation (26) by
(

c
c†

)
=:

(
L M
M L

)(
b
b†

)
. (46)

A straightforward computation shows that

[ci , c†
j ] + [c j , c†

i ] = 2
N − N>

N − 1
δi j − 1

N − 1

∑

k,l

′ (
L jl Lik − M jl Mik

) (
a†

k al + a†
l ak

)
.

We will show below that Y − E/2 and D − E are trace class, with

tr

(
Y − E

2

)
= 1

2
tr (D + QV − E) . (47)

Given that, we have

2
∑

i, j

′(
U∗

0

(
Y − E

2

)
U0

)

i j
[ci , c†

j ]

= N −N>

N −1
tr (D+ QV −E)

− 1

N −1

∑

k,l

′
(

L∗U∗
0

(
Y − E

2

)
U0 L−M∗U∗

0

(
Y − E

2

)
U0 M

)

kl

(
a†

k al +a†
l ak

)
.

Since tr QV = tr V − v0000, Proposition 1 (II) then follows if we can show that

− C D ≤ L∗U∗
0

(
Y − E

2

)
U0 L − M∗U∗

0

(
Y − E

2

)
U0 M ≤ C D . (48)

We compute

4L∗U∗
0

(
Y − E

2

)
U0 L − 4M∗U∗

0

(
Y − E

2

)
U0 M

= 1

2
D1/2

(
1 + D−1/2V D−1/2 + D−1 E(1 + D−1/2V D−1/2)DE−1

−2D−1 E + h.c.
)

D1/2

=: D1/2 RD1/2 .
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Now R is a bounded operator since DE−1 and D−1 E are bounded, which follows from

‖DE−1‖2 = ‖DE−2 D‖ ≤ 1 , (49)

‖D−1 E‖2 = ‖D−1 E2 D−1‖ = ‖1 + 2D−1/2V D−1/2‖ < ∞ . (50)

This proves (48).
We now turn to (47). Note that

2 (2Y − E) = B∗ (
D + V − D1/2 E D−1/2

)
A + A∗ (

D + V − D−1/2 E D1/2
)

B.

We claim that

‖D1/2(E − D)D−1/2‖2 < ∞, (51)

‖D1/2(E − D)D−1/2 + h.c.‖1 < ∞, (52)

‖D + QV − E‖1 < ∞. (53)

Since by Lemma 3 A − 1, B − 1, are Hilbert-Schmidt and, in addition, V is trace class
by Lemma 3, it follows from (51)–(53) that

B∗ (
D + V − D1/2 E D−1/2

)
A + h.c. = D + QV − D1/2 E D−1/2 + h.c. + Rest

with ‖Rest‖1 < ∞; hence 2Y − E is trace class. Moreover,

tr(2Y − E) = 1

2
tr
(

D1/2(D − E)D−1/2 + h.c.
)

+ tr QV

= tr (D + QV − E) ,

where the first equality holds by cyclicity of the trace and the second is seen to be true
by computing the trace in the eigenbasis of D.

To show (51)–(53) we compute

D1/2(E − D)D−1/2 =πD1/2
∫ ∞

0

√
t
(
(t + D2)−1−(t +E2)−1

)
D−1/2dt

= 2π
∫ ∞

0

√
t D(t + D2)−1V D1/2(t +E2)−1 D−1/2dt

= 2π
∫ ∞

0

√
t D(t + D2)−1V (t + D2)−1dt

−4π
∫ ∞

0

√
t D(t + D2)−1V D1/2(t +E2)−1 D1/2V (t + D2)−1dt ,

(54)

where we applied the resolvent identity twice. The expression on the last line is trace
class. This follows from the bound

∥∥∥D(t + D2)−1V D1/2(t + E2)−1 D1/2V (t + D2)−1
∥∥∥

1

≤
∥∥∥D(t + D2)−1

∥∥∥
2 ∥∥∥(t + D2)−1

∥∥∥ ‖V ‖2
1 ,
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where we have used that E2 ≥ D2 in the second factor. The latter expression falls off
like t−2 for large t , making the integral finite. For the first term on the right side of (54),
we compute its matrix elements. With Di = εi − ε0 the eigenvalues of D,

〈
ϕi

∣∣∣∣π
∫ ∞

0

√
t D(t + D2)−1V (t + D2)−1dt

∣∣∣∣ϕ j

〉

= Vi jπ

∫ ∞

0

√
t

Di

t + D2
i

1

t + D2
j

dt = Vi j
Di

Di + D j
.

In particular, since
∣∣∣∣Vi j

Di

Di + D j

∣∣∣∣ ≤ |Vi j |,

the Hilbert-Schmidt property (51) follows. Moreover,

Vi j
Di

Di + D j
+ (i ↔ j) = Vi j ,

which implies (52). To prove (53), one simply computes the trace of the operator in (52)
in the basis of D, which leads to the conclusion that

∑′
i 〈ϕi |E − D|ϕi 〉 < ∞. Since

E − D is a positive operator, this implies that E − D is trace class. Since also V is trace
class, this proves (53).

5.3. Proof of Proposition 1 (III). Recall the notation introduced in (46). A straightfor-
ward computation shows

[c j , ci ] = 1

N − 1

∑

k,l

′ (
M jk Lilala

†
k − L jk Milaka†

l

)

and
∑

i, j

′
Zi j

(
[c j , ci ] + [c†

i , c†
j ]
)

= 1

N − 1

∑

k,l

′ (
L∗Z M − M∗Z L

)
kl

(
a†

k al + a†
l ak

)
.

Hence what we need to show is

−C D ≤ L∗Z M − M∗Z L ≤ C D .

We observe that

8
(
L∗Z M − M∗Z L

)

= 1

2
(B − A)

(
B∗ (D + V ) A − A∗ (D + V ) B

)
(A∗ + B∗) + h.c.

=
[

D−1/2 E D−1/2(D + V )D1/2 E−1 D1/2 − D − V
]

+ h.c.

= D1/2
([

D−1 E(1 + D−1/2V D−1/2)DE−1 − 1 − D−1/2V D−1/2
]

+ h.c.
)

D1/2.

The operator in square brackets is bounded because of (49) and (50), hence the claim
follows.
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6. Proof of Theorem 1

This section contains the proof of Theorem 1. We split the proof into two parts, corre-
sponding to the lower and upper bounds on the eigenvalues of HN , respectively.

6.1. Lower bound. By combining the estimate (19) with Proposition 1, we obtain the
inequality

HN ≥ Nh00 +
N + 1

2
v0000 + (1 − λ)U†

(
∑

i

′
ei a

†
i ai

)
U +

1

2
tr(E − D − V )

−C
( (

N−1ε−1 + N−1λ−1 + ζ−1 N−1/2
)
(N> + 1)(TH + 1)

+(N−1 + ε + ζN−1/2)(TH + 1)
)
, (55)

which holds for any λ > 0, ζ > 0 and 0 < ε < 1. Since the spectrum of
∑′

i ei a
†
i ai

consists of finite sums of the form
∑′

i ei ni with
∑′

i ni ≤ N , the desired lower bound
follows directly from the min-max principle. In fact, for any function 	 in the spectral
subspace of HN corresponding to energy E ≤ E0(N ) + ξ , Lemmas 1 and 2 imply that

〈	| (TH + 1) |	〉 ≤ C(ξ + 1)

and

〈	| (N> + 1)(TH + 1) |	〉 ≤ C(ξ + 1)2 .

Choosing ε = O(
√
ξ/N ) = λ and ζ = √

ξ , we conclude that the spectrum of HN
below an energy E0(N ) + ξ is bounded from below by the corresponding spectrum of

Nh00 +
N + 1

2
v0000 +

∑

i

′
ei a

†
i ai − 1

2
tr(D + V − E)− O(ξ

3
2 N−1/2).

This completes the desired lower bound.

6.2. Upper bound. A combination of (21) and Proposition 1 implies that

HN ≤ Nh00 +
N + 1

2
v0000 + (1 + λ)U†

(
∑

i

′ei a
†
i ai

)
U − 1

2
tr(D + V − E)

+C
(

N−1ε−1 + N−1λ−1 + N−1 + ζ−1 N−1/2
)
(N> + 1)(TH + 1)

+C
(
ε + ζN−1/2 + N−1

)
(N> + 1)1/2(TH + 1)1/2 , (56)

for any λ > 0, ζ > 0 and ε > 0. To apply the min-max principle we need the following
bound.

Lemma 6. One has the bound

U(N> + 1)(TH + 1)U† ≤ C

(
∑

i

′
ei a

†
i ai + 1

)2

. (57)

Note that by operator monotonicity of the square root it follows immediately from
Lemma 6 that
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U(N> + 1)1/2(TH + 1)1/2U† ≤ C

(
∑

i

′
ei a

†
i ai + 1

)
.

Hence we obtain from (56),

U HN U† ≤ Nh00 +
N + 1

2
v0000 + (1 + λ)

∑

i

′
ei a

†
i ai − 1

2
tr(D + V − E)

+ C
(

N−1ε−1 + N−1λ−1 + N−1 + ζ−1 N−1/2
)(

∑

i

′
ei a

†
i ai + 1

)2

+ C
(
ε + ζN−1/2 + N−1

)(
∑

i

′
ei a

†
i ai + 1

)
. (58)

Given an eigenvalue of
∑′

i ei a
†
i ai with value ξ , we choose ε = O(

√
ξ/N ) = λ and

ζ = √
ξ to obtain Nh00 + N+1

2 v0000 + ξ − 1
2 tr(D + V − E)+ O(ξ3/2 N−1/2) for the right

side of (58). Hence the desired upper bound follows from the min-max principle.
It remains to prove (57).

Proof of Lemma 6. If we can show that

eX (N> + 1)(TH + 1)e−X ≤ C(N> + 1)(TH + 1) (59)

and

W ∗ DW = U∗
0 W ∗

0 DW0U0 ≤ C Ê , (60)

the claim follows since then

U(N> + 1)(TH + 1)U† ≤ CW†(N> + 1)1/2(TH + 1)(N> + 1)1/2W
= C(N> + 1)1/2W†(TH + 1)W(N> + 1)1/2

≤ C(N> + 1)

(
∑

i

′
ei a

†
i ai + 1

)
,

where we have used (59) for the first inequality, and (60) for the second.
We start with the proof of (59). In fact we shall show that

eX (N> + 1)2(TH + 1)2e−X ≤ C(N> + 1)2(TH + 1)2, (61)

from which the claim follows by operator monotonicity of the square root. We compute

[X, (N> + 1)2(TH + 1)2] = (N> + 1)(TH + 1)[X, (N> + 1)(TH + 1)]
+[X, (N> + 1)(TH + 1)](N> + 1)(TH + 1). (62)

With

A1 := [X, N>] =
∑

i, j

′
αi j

(
bi b j + b†

j b
†
i

)
,

A2 := [X, TH] =
∑

i, j

′
αi j (εi − ε0)

(
bi b j + b†

j b
†
i

)
,
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we can bound

[X, (N>+1)(TH+1)]2 = (
A1(TH+1)+(N>+1)A2

)2

= (
A1(TH+1)+ A2(N

>+1)+[N>, A2]
)2

≤ C
(
(TH+1)A2

1(TH+1)+(N>+1)A2
2(N

>+1) + [N>, A2]2
)
.

By (44) we have

A2
1 ≤ C‖α‖2

2(N
> + 1)2

and similarly

A2
2 ≤ C‖Dα‖2

2(N
> + 1)2 .

Furthermore, since

[N>, A2] = 2
∑

i, j

′
αi j (εi − ε0)

(
b†

j b
†
i − bi b j

)

one checks that

[N>, A2]2 ≤ C‖Dα‖2
2(N

> + 1)2 .

To see that ‖Dα‖2 < ∞, we can proceed as in (39) and bound

Dα2 D ≤ D(D−1/2 E D−1/2 − 1)2 D = D1/2(E − D)D−1(E − D)D1/2 .

Hence we have

‖Dα‖2 ≤ ‖D1/2(E − D)D−1/2‖2,

which is finite due to (51). Applying Schwarz’s inequality to (62), we have thus shown
that

[X, (N> + 1)2(TH + 1)2] ≤ C(N> + 1)2(TH + 1)2 .

We further have

et X (N> + 1)2(TH + 1)2e−t X = (N> + 1)2(TH + 1)2

+
∫ t

0
es X [X, (N> + 1)2(TH + 1)2]e−s X dx

≤ (N> + 1)2(TH + 1)2

+C
∫ t

0
es X (N> + 1)2(TH + 1)2e−s X ds

which by Grönwall’s inequality implies (61).
For the proof of (60) we need to show that

W ∗
0 DW0 ≤ C E
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or, equivalently, that

D1/2W0 E−1/2 = DE−1/2(E−1/2 DE−1/2)−1/2 E−1/2

= πD
∫ ∞

0
t−1/2(Et + D)−1dt (63)

is a bounded operator. Observe that, by (49),

∥∥∥D(Et + D)−1
∥∥∥ ≤ ‖DE−1‖‖Q(t + DE−1)−1‖ ≤ ‖Q(t + DE−1)−1‖. (64)

With the aid of a Neumann expansion, one sees that the right side of (64) can be bounded
by 2t−1 for t > 2‖DE−1‖, which gives a bounded contribution to the integral in (63). For
t ≤ 2‖DE−1‖, one can argue that by analyticity of the resolvent map t �→ (t +DE−1)−1,
as well as the fact that E D−1 is bounded, we get a uniform bound on ‖Q(t + DE−1)−1‖.
This argument does not yield a quantitative bound, however, since DE−1 is not a self-
adjoint operator. To obtain an explicit bound, we make use of the fact that DE−1 − 1 is
a Hilbert-Schmidt operator. In fact, it is even trace class, since by (49) and (53),

‖DE−1 − 1‖1 = ‖DE−1(D − E)D−1‖1 ≤ ‖(D − E)D−1‖1 < ∞.

We shall apply the following result.

Lemma 7 (Theorem 6.4.1 in [30]). Let A be a Hilbert-Schmidt operator. Then for z /∈
σ(A) (the spectrum of A),

‖(A − z)−1‖ ≤
∞∑

k=0

‖A‖k
2

(inf t∈σ(A) |z − t |)k+1
√

k! .

Define a to be the infimum of the spectrum of DE−1 on the space QF (1). It equals
the infimum of the spectrum of E−1/2 DE−1/2 on that space, hence

a = ‖E1/2 D−1 E1/2‖−1 > 0 .

By Lemma 7 we thus have

‖Q(t + DE−1)−1‖ = ‖Q(t + 1 + DE−1 − 1)−1‖
≤

∞∑

k=0

‖DE−1 − 1‖k
2

(t + a)k+1
√

k!

≤
√

2

t + a
exp

(‖DE−1 − 1‖2

t + a

)
.

Here we have used the bound
∑∞

k=0 xk/
√

k! ≤ √
2ex2

for x ≥ 0 (cf. p. 84 in [30]).
This yields the desired quantitative bound, and concludes the proof of the boundedness
of (63). ��
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7. Consequences for Eigenvectors

7.1. Proof of Corollary 1. We abbreviate

H := HN − E0(N ) + 1 =:
∞∑

i=1

hi |χi 〉 〈χi | ,

with hi ≤ hi+1. For h j ≤ ξ , it follows from (55) and Lemmas 1–2 that

〈χ j | K |χ j 〉 ≤ h j

(
1 + C(ξ/N )1/2

)
.

From (58) we further deduce that h j ≤ k j
(
1 + C(ξ/N )1/2

)
, and thus

〈χ j | K |χ j 〉 ≤ k j

(
1 + C(ξ/N )1/2

)
.

A simple application of the min-max principle [31, Lem. 2] then shows that if k j+1 > k j
then

j∑

k,l=1

|〈χk, ψl〉|2 ≥ j − C(ξ/N )1/2
∑ j

l=1 kl

k j+1 − k j
.

In other words, with P j
K := ∑ j

k=1 |ψk〉 〈ψk | and P j
H := ∑ j

k=1 |ψk〉 〈ψk |,

‖P j
K − P j

H ‖2
2 ≤ C(ξ/N )1/2

∑ j
l=1 kl

k j+1 − k j
.

This completes the proof. ��
Remark 5. Note that the (normalized) eigenfunctions of K can be written as

⎛

⎝U†
∏

i≥1

(a†
i )

ni

√
ni ! U

⎞

⎠U† |N −n, 0, . . .〉=
∏

i≥1

(d†
i +K †

i )
ni

√
ni ! U† |N −n, 0, . . .〉 , (65)

where n = ∑
i≥1 ni ≤ N , and |N − n, 0, . . .〉 denotes the function ⊗N−n

i=1 ϕ0 ∈ F (N−n).
The operators di are explicitly defined in (32). The operators Ki are small in the low-
energy subspace, as shown in the proof of Lemma 5. The eigenfunctions of K (and,
hence, the ones of HN ) are thus approximately obtained by applying the raising-type
operators d†

i to the N − n-particle ground state. To explicitly estimate the difference of
the functions (65) and

∏

i≥1

(d†
i )

ni

√
ni ! U† |N − n, 0, . . .〉 ,

however, it would be necessary to give bounds on products of powers of the operators
K †

i and d†
i , which are more involved than the ones used in Lemma 5.
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Remark 6. As noted in Sect. 1.2, Corollary 1 implies that the ground state 	0 of HN is
close, in L2-norm, to U† |N , 0, . . .〉. To see the importance of the unitary operator U ,
one can calculate the matrix element

〈N , 0, . . .| U† |N , 0, . . .〉 = 〈N , 0, . . .| e−X |N , 0, . . .〉 . (66)

This equality follows from the fact that W leaves the Hartree ground state ϕ0 invariant.
One readily checks that d

dt 〈N , 0, . . .| e−t X |N , 0, . . .〉 |t=0 = 0. However,

d2

dt2 〈N , 0, . . .| e−t X |N , 0, . . .〉 |t=0 = 〈N , 0, . . .| X2 |N , 0, . . .〉 = − N

2(N − 1)
‖α‖2

2 ,

which is not small for large N . Hence we expect that the matrix element (66) differs
significantly from 1.
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