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Abstract: We discuss the local minimality of certain configurations for a nonlocal iso-
perimetric problem used to model microphase separation in diblock copolymer melts.
We show that critical configurations with positive second variation are local minimizers
of the nonlocal area functional and, in fact, satisfy a quantitative isoperimetric inequality
with respect to sets that are L1-close. The link with local minimizers for the diffuse-
interface Ohta-Kawasaki energy is also discussed. As a byproduct of the quantitative
estimate, we get new results concerning periodic local minimizers of the area functional
and a proof, via second variation, of the sharp quantitative isoperimetric inequality in
the standard Euclidean case. As a further application, we address the global and local
minimality of certain lamellar configurations.

1. Introduction

Diblock copolymers are extensively studied materials, used to engineer nanostructures
thanks to their peculiar properties and rich pattern formation. A well established theory
used in the modeling of microphase separation for A/B diblock copolymer melts is based
on the following energy first proposed by Ohta-Kawasaki, see [33]:

Eε(u) := ε

∫
�

|∇u|2 dx +
1

ε

∫
�

(u2 − 1)2 dx

+γ0

∫
�

∫
�

G(x, y)
(
u(x)− m

)(
u(y)− m

)
dx dy, (1.1)

where u is an H1(�) phase parameter describing the density distribution of the compo-
nents (u = −1 stands for one phase, u = +1 for the other), m = −∫

�
u is the difference

of the phases’ volume fractions and G is the Green’s function for −�. The parameter
γ0 ≥ 0 is characteristic of the material.
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Fig. 1. From left to right spherical spots, cylinders, gyroids and lamellae

Since ε is a small parameter, from the point of view of the mathematical analysis it
is often more convenient to consider the variational limit of the energy (1.1), which is
given by

E(u) := 1

2
|Du|(�) + γ

∫
�

∫
�

G(x, y)
(
u(x)− m

)(
u(y)− m

)
dx dy,

where now u is a function of bounded variation in � with values ±1, |Du|(�) is the
total variation of u in �, and γ = 3γ0/16 ≥ 0. Writing

E = {x ∈ � : u(x) = 1},
so that u = χE − χ�\E , this energy may be rewritten in a useful geometric fashion as

J (E) = P�(E) + γ
∫
�

∫
�

G(x, y)
(
u(x)− m

)(
u(y)− m

)
dx dy, (1.2)

where P�(E) is the perimeter of E in �.
Competition between the short-range interfacial energy and the long-range nonlocal

Green’s function term in both functionals (1.1) and (1.2) leads to pattern formation.
Indeed the perimeter term drives the system toward a raw partition in few sets of pure
phases with minimal interface area, whereas the Green’s term is reduced by a finely
intertwined distribution of the materials.

As observed in the literature, the domain structures in phase-separated diblock
copolymers closely approximate periodic surfaces with constant mean curvature, see
e.g. [47]. Some of the most commonly observed structures are schematized in Fig. 1.

A challenging mathematical problem is to prove that global minimizers of (1.2) are
periodic: this is known to be true in one dimension, see e.g. [29,35], but still open in
higher dimensions, where only partial results are known, see e.g. [2,43]. We refer also to
[6,7,10,17–19,23,24,31,44,48] for other related results on global minimizers. A more
reasonable task is to exhibit a class of periodic solutions which are local minimizers of
the approximating and limit energies (1.1) and (1.2), rather than investigating general
properties of global minimizers: this is the direction taken, among others, by Ren and
Wei and by Choksi and Sternberg. The first authors in a series of papers [34,36–39] con-
struct several examples of lamellar, spherical and cylindrical critical configurations and
find conditions under which they are stable, i.e., their second variation is positive defi-
nite. The main contribution in [9] is the computation of the second variation for general
critical configurations of (1.2) (see also [30,32], where related linear stability/instability
issues have been addressed for the first time, but from a more physical perspective).
However, all these papers leave open the basic question whether the positivity of the
second variation implies local minimality.
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We give a full answer to this question by showing that any critical configuration of
(1.2) with positive definite second variation is a local minimizer with respect to small
L1-perturbations. We now describe in more details the results proved here. We consider
both the periodic case, where � = T

N is the N-dimensional flat torus of unit volume,
and the homogeneous Neumann case, where � is a bounded smooth open set. We start
by considering the periodic case.

We recall that a sufficiently smooth critical set for J satisfies the Euler-Lagrange
equation,

H∂E (x) + 4γ v(x) = λ for all x ∈ ∂E,

where H∂E (x) denotes the sum of the principal curvatures of ∂E at x , the number λ is
a constant Lagrange multiplier associated to the volume constraint

∫
TN u dx = m, i.e.,

|E | = (m + 1)/2, and

v(x) :=
∫

TN
G(x, y)(u(y)− m) dy

is the unique solution to

−�v = u − m in T
N

∫
TN
v dx = 0.

By the results of [9], we can associate with the second variation of (1.2) at a regular
critical set E the quadratic form ∂2 J (E) defined over all functions ϕ ∈ H1(∂E) such
that

∫
∂E ϕ dHN−1 = 0 by

∂2 J (E)[ϕ] =
∫
∂E

(|Dτ ϕ|2 − |B∂E |2ϕ2) dHN−1

+ 8γ
∫
∂E

∫
∂E

G(x, y)ϕ(x)ϕ(y)dHN−1(x) dHN−1(y)

+ 4γ
∫
∂E
∂νvϕ

2 dHN−1,

where ν is the outer normal to ∂E , |B∂E |2 is the sum of the squares of the principal curva-
tures of ∂E , and Dτ is the tangential gradient. Note that the condition

∫
∂E ϕ dHN−1 = 0

is related to the fact that we consider local minimizers of J under a volume constraint.
It is easily checked that if E is a local minimizer, then ∂2 J (E) is positive semidefinite.

Therefore, it is natural to look for sufficient conditions for minimality based on the
positivity of ∂2 J (E). However, we have to take into account that J is translation invariant,
so that in particular J (E) = J (E +tη) for all η ∈ R

N and t ∈ R. By differentiating twice
this identity with respect to t , we obtain ∂2 J (E)[η·ν] = 0. This shows that there is always
a finite dimensional subspace T (∂E) of directions where the second variation degener-
ates. Thus, we are led to decompose H̃1(∂E) = {ϕ ∈ H1(∂E) : ∫

∂E ϕ dHN−1 = 0}
as

H̃1(∂E) = T ⊥(∂E)⊗ T (∂E),

where T (∂E) is the subspace generated by the functions ϕ = νi , i = 1, . . . , N , and

T ⊥(∂E) =
{
ϕ ∈ H̃1(∂E) :

∫
∂E
ϕν dHN−1 = 0

}
.
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Since our energy functional is invariant under translations, it is convenient to define the
distance between two subsets of T

N modulo translations in the following way:

α(E, F) := min
x

|E�(x + F)|. (1.3)

The main result of the paper reads as follows.

Theorem 1.1. Let E ⊂ T
N be a regular critical set of J such that

∂2 J (E)[ϕ] > 0 for all ϕ ∈ T ⊥(∂E)\{0}.
Then, there exist δ,C > 0 such that

J (F) ≥ J (E) + C(α(E, F))2 (1.4)

for all F ⊂ T
N , with |F | = |E | and α(E, F) < δ.

A first application of the previous theorem deals with lamellar configurations. In The-
orem 5.1 we show that if a horizontal strip L is the unique solution of the isoperimetric
problem in T

N , then it is also the unique global minimizer of the non local functional
(1.2) under the volume constraint, provided γ is sufficiently small. In the two-dimen-
sional case it is known that a horizontal strip minimizes the perimeter in T

2 if and only
if the volume fraction parameter m satisfies |m| < 1 − 2

π
. Therefore, our Theorem 5.1

yields the global minimality of a single strip for small values of γ if |m| < 1 − 2
π

,
thus giving an alternative proof of a result already proved in [44]. Concerning the three-
dimensional case, to the best of our knowledge nothing was known about the minimality
of the lamellar configuration, apart from a classical result by Hadwiger (see [21]), who
proved that the strip is the unique minimizer of the perimeter in T

3 under the volume
constraint 1

2 . In Sect. 5 we improve this result by showing that the isoperimetric property
still holds for strips with volume in a neighborhood of 1

2 (see Theorem 5.3). In turn, this
implies via Theorem 5.1 that such strips are also global minimizers of J for γ small.

We also mention, as a simple consequence of Theorem 1.1, that in any dimension and
for any γ > 0 lamellar configurations are local minimizers, provided that the number
of strips is sufficiently large (see Proposition 5.6).

It is important to remark that Theorem 1.1, besides proving strict local minimality,
contains a quantitative estimate of the deviation from minimality for sets close to E
in L1. This can be viewed as a quantitative isoperimetric inequality for the nonlocal
perimeter (1.2), in the spirit of the recent results proved in [15], see also [11,14]. In fact,
since our result holds also when γ = 0, we cover the important case of local minimizers
of the area functional under periodicity conditions.

Corollary 1.2. Let E ⊂ T
N be a regular set whose boundary has constant mean cur-

vature and such that∫
∂E

(|Dτ ϕ|2 − |B∂E |2ϕ2) dHN−1 > 0 for all ϕ ∈ T ⊥(∂E)\{0}.

Then, there exist δ,C > 0 such that

PTN (F) ≥ PTN (E) + C(α(E, F))2

for all F ⊂ T
N , with |F | = |E | and α(E, F) < δ.



Nonlocal Isoperimetric Problem 519

Previous related investigations were carried out by B. White [49] and K. Grosse-
Brauckmann [20], who proved that the strict positivity of the second variation implies
local minimality with respect to small L∞-perturbations. Their results were recently
extended by F. Morgan and A. Ros in [27], where they show that strictly stable constant
mean curvature hypersurfaces are area minimizing with respect to small L1-perturba-
tions, up to dimension N = 7, thus giving a positive answer to a conjecture formulated
in [8]. Our corollary removes the restriction N ≤ 7 and improves their result in a
quantitative fashion.

Notice that Corollary 1.2 applied to the unit ball E and with T
N replaced by cT

N for
c > 0 sufficiently large, yields the quantitative isoperimetric inequality in the standard
Euclidean case for bounded open sets F with small asymmetry index α(E, F). This
fact, in view of Lemma 5.1 in [15], implies the quantitative isoperimetric inequality for
all sets, thus leading to an alternative proof based on the second variation.

The Neumann counterpart to Theorem 1.1 is stated and proved in Sect. 6.
We now briefly describe the strategy of the proof of Theorem 1.1. The first step is to

show that strict stability implies local minimality with respect to W 2,p-perturbations, see
Theorem 3.9. This is accomplished by constructing suitable volume-preserving flows
connecting the critical set E to a given close competitor F and by carefully analyzing
the continuity properties of the quadratic form ∂2 J along the flow (see Theorem 3.7). A
technical difficulty in this analysis comes from the translation invariance, since we have
to avoid the degenerate directions at all times. This issue is dealt with in Lemma 3.8,
where it is shown that given any set F sufficiently W 2,p-close to E , one can always
find a translation of F such that the function describing the boundary of the new set has
small translational component.

The second step is to show that any W 2,p-local minimizer is in fact an L1-local mini-
mizer. This is done by a contradiction argument: we assume that there exists a sequence
Eh of sets such that |Eh | = |E |, and Eh → E in L1, but inequality (1.4) fails along the
sequence. Then, following an idea used in [16] for a two dimensional problem related to
epitaxial growth, we replace the sequence Eh with a new sequence Fh of minimizers of
suitable penalized problems, tailored in such a way that (1.4) still fails. Using regularity
techniques we then show that in fact the sets Fh have uniformly bounded curvatures
and converge to E strongly in W 2,p, thus contradicting the W 2,p-local minimality of
E . A penalization approach via regularity has been recently used also in [10] to prove
the quantitative isoperimetric inequality in the Euclidean case. However, our method is
quite different and seems more suited to deal with local minimizers.

We now state a result that links Theorem 1.1 with the existence of local minimiz-
ers for the Ohta-Kawasaki energy (1.1). Fix m ∈ (−1, 1). We say that a function u ∈
H1(TN ) is an isolated local minimizer for the functional Eε with prescribed volume m,
if
∫
TN u dx = m and there exists δ > 0 such that

Eε(u) < Eε(w) for all w ∈ H1(TN ) with
∫

TN
w dx = m,

0 < min
τ

‖u − w(· + τ)‖L1(TN ) ≤ δ.

Since it is well-known that the functionals Eε �-converge in L1 to the sharp interface
energy J , the L1-local minimality result proved in Theorem 1.1 allows to show:

Theorem 1.3. Let E be a regular critical set for the functional J with positive second
variation and u = χE − χTN \E . Then there exist ε0 > 0 and a family {uε}ε<ε0 of
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isolated local minimizers of Eε with prescribed volume m = ∫
TN u dx such that uε → u

in L1(TN ) as ε → 0.

An analogous result holds in the Neumann case, see Theorem 6.3. We stress that the
choice of the L1 topology in the minimality result stated in Theorem 1.1 is crucial in the
proof of Theorem 1.3, as �-convergence of (Eε) to E holds only with respect to such a
topology.

We conclude this introduction by observing that Theorem 1.3 and its Neumann coun-
terpart apply to a wealth of examples of strictly stable critical configurations for the sharp
interface functional in (1.2). Among these, we mention the many droplet and spherical
patterns proved to be strictly stable in [38] and [39], for some range of the parameters
involved. In particular, we can deduce that for small values of ε there are local minimiz-
ers of the diffuse energies (1.1) which are close to such configurations, thus solving a
problem which was left open in the aforementioned papers.

A straightforward variant of the argument used to prove Theorem 1.3 shows also
that if ∂E is a periodic strictly stable constant mean curvature hypersurface, then for
sufficiently small values of ε and γ0 in (1.1) there exist local minimizers of Eε which
are close to E . This seems to give a first mathematical confirmation to the findings of
Thomas et al. [47], who observed domain structures in phase-separated diblock copoly-
mers that closely approximate triply periodic constant mean curvature surfaces, such as
the gyroids. Indeed, strict stability for a class of triply periodic surfaces was proved in
[40].

The paper is organized as follows: in Sect. 2 we give the precise mathematical formu-
lation of the problem and we prove some preliminary results concerning the regularity of
local minimizers; Sect. 3 is devoted to the proof of the W 2,p-local minimality of critical
configurations with positive second variation. In Sect. 4 we show that any W 2,p-local
minimizer is in fact an L1-local minimizer: this result is used to complete the proof of
Theorem 1.1. Sect. 5 is devoted to the minimality properties of lamellar configurations.
The extension to the Neumann case is contained in Sect. 6, and in the final appendix we
collect a few technical results and computations.

2. Notation and Auxiliary Results

In the following we shall denote by T
N the N -dimensional flat torus of unit volume,

i.e., the quotient of R
N under the equivalence relation x ∼ y ⇐⇒ x − y ∈ Z

N .

Thus, the functional space W k,p(TN ), k ∈ N, p ≥ 1, can be identified with the sub-
space of W k,p

loc (R
N ) of functions that are one-periodic with respect to all coordinate

directions. Similarly Ck,α(TN ), α ∈ (0, 1) denotes the space of one-periodic functions
in Ck,α(RN ).

We now recall the definition of a function of bounded variation in the periodic setting
considered in the paper. We say that a function u ∈ L1(TN ) is of bounded variation if
its total variation

|Du|(TN ) := sup

{∫
TN

u div ζ dx : ζ ∈ C1(TN ,RN ), |ζ | ≤ 1

}

is finite. We denote the space of such functions by BV (TN ). We say that a measurable
set E ⊂ T

N is of finite perimeter in T
N if its characteristic function χE ∈ BV (TN ).

The perimeter PTN (E) of E in T
N is nothing but the total variation |DχE |(TN ). We

refer to [4] for all the main properties of sets of finite perimeter needed in the following.
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For fixed m ∈ (−1, 1) and γ ≥ 0 we consider the following nonlocal variational
problem:

minimize E(u) := 1

2
|Du|(TN ) + γ

∫
TN

|∇v|2 dx, (2.1)

over all u ∈ BV (TN ; {−1, 1}), with

−�v = u − m in T
N ,

∫
TN
v dx = 0, where

∫
TN

u dx = m; (2.2)

the equation is to be understood in the periodic sense. Notice that

∫
TN

|∇v|2 dx = −
∫

TN
v�v dx =

∫
TN
v(u − m) dx

=
∫

TN
vu dx =

∫
TN

∫
TN

G(x, y)u(x)u(y) dxdy, (2.3)

where G(x, y) is the solution of

−�yG(x, y) = δx − 1 in T
N ,

∫
TN

G(x, y) dy = 0. (2.4)

Here δx denotes the Dirac measure supported at x .
From now on, we regard E as a geometric functional defined on sets of finite perimeter.

Precisely, given E ⊂ T
N such that |E | − |TN \ E | = m, we set

J (E) := PTN (E) + γ
∫

TN
|∇vE |2 dx, (2.5)

where

−�vE = uE − m in T
N , with uE := χE − χTN \E . (2.6)

Remark 2.1. Notice that by standard elliptic regularity vE ∈ W 2,p(TN ) for all p ∈
[1,+∞). More precisely, given p > 1, there exists a constant C = C(p, N ) such that

‖vE‖W 2,p(TN ) ≤ C for all E ⊂ T
N such that |E | − |TN \ E | = m. (2.7)

It can be shown (see [9, Thm. 2.3]) that if E is a sufficiently smooth (local) minimizer
of the functional (2.5), then the following Euler-Lagrange equation holds:

H∂E (x) + 4γ vE (x) = λ for all x ∈ ∂E, (2.8)

where λ is a constant Lagrange multiplier associated with the volume constraint and
H∂E (x) denotes the sum of the principal curvatures of ∂E at x ; i.e., H∂E (x) = divτ νE ,
where νE is the outer unit normal to ∂E and divτ denotes the tangential divergence on
∂E (see [4, Sect. 7.3]). When no confusion is possible, we shall omit the dependence of
the outer unit normal on the set.
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Definition 2.2. We say that E ⊂ T
N is a regular critical set for the functional (2.5) if

E is of class C1 and (2.8) holds on ∂E in the weak sense; i.e,
∫
∂E

divτ ζ dHN−1 = −
∫
∂E

4γ vE (ζ · ν) dHN−1 for all ζ ∈ C1(TN ; R
N )

s.t.
∫
∂E
ζ · ν dHN−1 = 0.

Remark 2.3. By Remark 2.1, if E is a regular critical set, then from (2.8), by standard
regularity (see [4, Thm. 7.57]) we have that E is of class C1,α for all α ∈ (0, 1). In turn,
Schauder estimates imply that E is of class C3,α(TN ) for all α ∈ (0, 1).

Definition 2.4. Recalling (1.3), we say that a set E ⊂ T
N of finite perimeter is a local

minimizer for the functional (2.5) if there esists δ > 0 such that

J (F) ≥ J (E)

for all F ⊂ T
N with |E | = |F | and α(E, F) ≤ δ. If the inequality is strict whenever

α(E, F) > 0, then we say that E is an isolated local minimizer. We say that E is a
regular local minimizer if, in addition, it is a regular critical set according to Defini-
tion 2.2.

We also recall the definition of ω-minimizers for the area functional.

Definition 2.5. We say that a set of finite perimeter E ⊂ T
N is an ω-minimizer for the

area functional, ω > 0, if for any ball Br (x0) ⊂ T
N and any set of finite perimeter

F ⊂ T
N such that E�F ⊂⊂ Br (x0) we have

PTN (E) ≤ PTN (F) + ωr N .

Proposition 2.7 below shows that the volume constraint can be removed and replaced
by a sufficiently large volume penalization term. Before proving it, we need the following
lemma.

Lemma 2.6. There exists C = C(N ) > 0 such that if E, F ⊂ T
N are measurable, then

∣∣∣∣
∫

TN
|∇vE |2 dx −

∫
TN

|∇vF |2 dx

∣∣∣∣ ≤ C |E�F |,

where vE and vF are defined as in (2.6).

Proof. Note that
∫

TN
|∇vE |2 dx −

∫
TN

|∇vF |2 dx

=
∫

TN
|∇vE − ∇vF |2 dx + 2

∫
TN

∇vF · (∇vE − ∇vF ) dx .

Since

−�(vE − vF ) = 2(χE − χF )− 2(|E | − |F |),
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we have∫
TN

|∇vE − ∇vF |2 dx ≤ c
∫

TN
|χE − χF + |F | − |E ||2 dx ≤ c|E�F |.

Moreover,
∫

TN
∇vF · (∇vE − ∇vF ) dx = 2

∫
TN
vF (χE − χF + |F | − |E |) dx ≤ c|E�F |,

so that we may conclude that
∣∣∣∣
∫

TN
|∇vE |2 dx −

∫
TN

|∇vF |2 dx

∣∣∣∣ ≤ C |E�F |.

��
Proposition 2.7. Let E be a local minimizer for the functional (2.5) and let δ > 0 be as
in Definition 2.4. Then, there exists λ > 0 such that E solves the following penalized
minimization problem:

min
{

J (F) + λ||F | − |E || : F ⊂ T
N , α(E, F) ≤ δ

2

}
.

Proof. We adapt to our situation an argument from [13, Sect. 2]. We indicate only the
relevant changes. We set

Jλ(F) := J (F) + λ||F | − |E ||.
We argue by contradiction assuming that there exist a sequence λh → ∞ and a sequence
Eh such that

Jλh (Eh) = min
{

Jλh (F) : α(E, F) ≤ δ

2

}
,

but |Eh | �= |E |. Without loss of generality we may assume that |Eh | < |E | (the other
case being similar) and Eh → Ẽ , with |Ẽ | = |E | and α(E, Ẽ) ≤ δ

2 . Notice that the
compactness of Eh follows from the fact that Jλh (Eh) ≤ J (E) and thus the perimeters
are equibounded.

Arguing as in Step 1 of [13], given ε > 0 we can find r > 0 and a point x0 ∈ T
N

such that

|Eh ∩ Br/2(x0)| < εr N , |Eh ∩ Br (x0)| > ωN r N

2N+2

for all h sufficiently large. To simplify the notation we assume that x0 = 0 and we write
Br instead of Br (0). For a sequence 0 < σh < 1/2N to be chosen, we introduce the
following sequence of bilipschitz maps:

�h(x) :=

⎧⎪⎨
⎪⎩
(1 − σh(2N − 1))x if |x | ≤ r

2 ,

x + σh

(
1 − r N

|x |N

)
x r

2 ≤ |x | < r,

x |x | ≥ r.
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Setting Ẽh := �h(Eh), we have as in Step 3 of [13],

PBr (Eh)− PBr (Ẽh) ≥ −2N N PBr (Eh)σh . (2.9)

Moreover, as in Step 4 of [13] we have

|Ẽh | − |Eh | ≥ σhr N
[
c
ωN

2N+2 − ε(c + (2N − 1)N )
]

for a suitable constant c depending only on the dimension N . Let us fix ε so that the
negative term in the square bracket does not exceed half the positive one. We have that

|Ẽh | − |Eh | ≥ σhr N C1, (2.10)

with C1 > 0 depending on N . In particular from this inequality it is clear that we can
choose σh so that |Ẽh | = |E |; this implies that σh → 0.

By Lemma 2.6 we have

∣∣∣∣
∫

TN
|∇vEh |2 dx −

∫
TN

|∇vẼh
|2 dx

∣∣∣∣ ≤ C0|Ẽh�Eh |. (2.11)

Let us now estimate |Ẽh�Eh |. To this aim observe that if f ∈ C1(TN )

∫
TN

| f (�−1
h (x))− f (x)| dx ≤

∫
TN

∫ 1

0
|∇ f (t x + (1 − t)�−1

h (x))||�−1
h (x)− x | dtdx

≤ cσh

∫ 1

0

∫
Br

|∇ f (t x + (1 − t)�−1
h (x))| dxdt

≤ cσh

∫
Br

|∇ f (y)| dy, (2.12)

where the last inequality is obtained by a change of variables. By approximation we
deduce

|Ẽh�Eh | =
∫

TN
|χEh (�

−1
h (x))− χEh (x)| dx ≤ C3σh PBr (Eh). (2.13)

Notice that, in particular, since σh → 0 for h sufficiently large we have that α(Ẽh, E) ≤
δ. Combining (2.9), (2.10), (2.11), and (2.13) we conclude that for h sufficiently large,

Jλh (Ẽh) ≤ Jλh (Eh) + σh
[
(2N N + γC0C3)PBr (Eh)− λhr N C1

]
< Jλh (Eh),

a contradiction to the minimality of Eh . ��
As a consequence of two previous results we recover the following regularity result

which was proved first in [44].

Theorem 2.8. Let E be a local minimizer for (2.5). Then E is an ω-minimizer for the
area functional. Moreover, the reduced boundary ∂∗E is a C3,α manifold for all α < 1
and the Hausdorff dimension of the singular set satisfies dimH(∂E \ ∂∗E) ≤ N − 8.
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Proof. We start by showing that E is an ω-minimizer for the area functional for a suit-
able ω > 0. To this aim fix any ball Br ⊂ T

N such that ωN r N ≤ δ/2, where δ is like
in Definition 2.4. Using Proposition 2.7, we may find λ > 0 such that E minimizes Jλ
among all F ⊂ T

N with α(E, F) ≤ δ/2. Therefore, if F is any set of finite perimeter
coinciding with E outside Br (x0), using an estimate similar to (2.11), we have

PBr (E)− PBr (F) = Jλ(E)− Jλ(F) + γ
∫

TN

(|∇vF |2 − |∇vE |2) dx + λ||F | − |E ||
≤ γC0|E�F | + λ||F | − |E || ≤ (γC0 + λ)ωN r N .

This shows that E is anω-minimizer for someω ≥ (γC0 +λ)ωN . By classical regularity

results (see [45, Thm. 1]), it follows that ∂∗E is a C1, 1
2 -manifold and dimH(∂E \∂∗E) ≤

N − 8. The C3,α regularity then follows from Remark 2.3. ��
Remark 2.9. Observe that the C3,α regularity follows only from the equation. Hence, in
view of Remark 2.3 it holds for regular critical sets.

3. Second Variation and W2, p-Local Minimality

Let E ⊂ T
N be of class C2 and X : T

N → T
N a C2-vector field, and consider the

associated flow � : T
N × (−1, 1) → T

N defined by
∂�

∂t
= X (�),�(x, 0) = x . We

define the second variation of J at E with respect to the flow � to be the value

d2

dt2 J (Et )
∣∣t=0

,

where Et := �(·, t)(E).
Throughout the section, when no confusion is possible, we shall omit the indication

of E , writing v instead of vE , ν instead of νE , and denoting by d the signed distance
from the boundary of E .

Before stating the representation formula for the second variation, we fix some nota-
tion. Given a vector X , its tangential part on ∂E is defined as Xτ := X −(X ·ν)ν. In par-
ticular, we will denote by Dτ the tangential gradient operator given by Dτ ϕ := (Dϕ)τ .
We also recall that the second fundamental form B∂E of ∂E is given by Dτ ν and that
the square |B∂E |2 of its Euclidean norm coincides with the the sum of the squares of the
principal curvatures of ∂E .

Theorem 3.1. If E, X, and � are as above, we have

d2

dt2 J (Et )
∣∣t=0

=
∫
∂E

(
|Dτ (X · ν)|2 − |B∂E |2(X · ν)2

)
dHN−1

+8γ
∫
∂E

∫
∂E

G(x, y)
(
(X ·ν)(x))((X ·ν)(y))dHN−1(x) dHN−1(y)

+4γ
∫
∂E
∂νv(X · ν)2 dHN−1 −

∫
∂E
(4γ v + H∂E ) divτ

(
Xτ (X · ν)) dHN−1

+
∫
∂E
(4γ v + H∂E )(div X)(X · ν) dHN−1. (3.1)

The proof of the theorem is given in the Appendix.
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Remark 3.2. In the case of a critical set E the computation of the second variation was
carried out in [9]. The novelty here is that we deal with a general regular set. This explains
the presence of the last two terms in the formula.

Remark 3.3. Notice that if E is also critical, from (2.8) it follows that∫
∂E
(4γ v + H∂E ) divτ

(
Xτ (X · ν)) dHN−1 = 0.

Moreover, if in addition

|�(·, t)(E)| = |E | for all t ∈ [0, 1], (3.2)

then it can be shown (see [9, Eq. (2.30)]) that

0 = d2

dt2 |Et |∣∣t=0
=
∫
∂E
(div X)(X · ν) dHN−1.

Hence, again from (2.8), we have

d2

dt2 J (Et )
∣∣t=0

=
∫
∂E

(
|Dτ (X · ν)|2 − |B∂E |2(X · ν)2

)
dHN−1

+ 8γ
∫
∂E

∫
∂E

G(x, y)
(
(X · ν)(x))((X · ν)(y))dHN−1(x) dHN−1(y)

+ 4γ
∫
∂E
∂νv(X · ν)2 dHN−1. (3.3)

Note that this formula coincides exactly with the one given in [9, Eq. (2.20)], where it
was obtained using a particular family of asymptotically volume preserving diffeomor-
phisms.

The previous remark motivates the following definition. Given any sufficiently
smooth open set E ⊂ T

N we denote by H̃1(∂E) the set of all functions ϕ ∈ H1(∂E)
such that

∫
∂E ϕ dHN−1 = 0, endowed with the norm ‖∇ϕ‖L2(∂E). With E we then

associate the quadratic form ∂2 J (E) : H̃1(∂E) → R defined as

∂2 J (E)[ϕ] =
∫
∂E

(|Dτ ϕ|2 − |B∂E |2ϕ2) dHN−1

+ 8γ
∫
∂E

∫
∂E

G(x, y)ϕ(x)ϕ(y)dHN−1(x) dHN−1(y)

+ 4γ
∫
∂E
∂νvϕ

2 dHN−1. (3.4)

If E is a regular critical set and the flow � satisfies (3.2), then

d|Et |
dt

∣∣∣
t=0

=
∫
∂E

X · ν dHN−1 = 0.

Hence, ∂2 J (E)[X · ν] coincides with the second variation of J at E with respect to �.
Notice that, setting μ := ϕHN−1�∂E , the nonlocal term∫

∂E

∫
∂E

G(x, y)ϕ(x)ϕ(y)dHN−1(x) dHN−1(y)
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can be rewritten as∫
TN

∫
TN

G(x, y)dμ(x) dμ(y) =
∫

TN
|∇z|2 dx, (3.5)

where z ∈ H1(TN ) is the unique weak solution to the equation

−�z = μ in T
N ,

∫
TN

z dx = 0.

Thus the nonlocal term (3.5) is equivalent to the square of the H−1-norm of the
measure μ.

As a consequence of Remark 3.3 we have the following corollary.

Corollary 3.4. Let E be a regular local minimizer of J according to Definition 2.4.Then

∂2 J (E)[ϕ] ≥ 0 for all ϕ ∈ H̃1(∂E).

Proof. Let ϕ ∈ C∞ ∩ H̃1(∂E). We set X := ∇u where u solves
{
�u = 0 in T

N \ ∂E,
∂νu = ϕ on ∂E,

where ν is the outer normal to ∂E . Note that div X = 0 and, by elliptic regularity and
recalling Remark 2.3, X ·ν is of class C2,α separately in Ē∩N (∂E) and TN \ E∩N (∂E)
and globally Lipschitz continuous in N (∂E) for a suitable tubular neigborhood N (∂E)
of ∂E . Here by ν we denote a C2,α extension of the outer unit normal field νE from ∂E
to N (∂E). With a slight abuse of notation we still denote by Dτ the extension of the
tangential gradient on ∂E given by Dτ := D − ν∂ν in N (∂E). Observe that Dτ (X · ν)
is continuous in N (∂E). We now set

Xε(x) :=
∫

TN
ρε(z)X (x + z) dz,

where ρε is the standard mollifier. Notice that div Xε = 0. Hence, the associated
flow is volume preserving and by the local minimality together with (3.3) we have
∂2 J (E)[ϕε] ≥ 0, where ϕε := Xε · ν. We claim that ϕε → ϕ in C1(∂E). Indeed,
observing that we can write

(Xε · ν)(x) = (X · ν)ε(x)−
∫

TN
ρε(z)X (x + z) · [ν(x + z)− ν(x)] dz

=: (X · ν)ε(x)− Rε(x),

and recalling that X · ν is continuous in N (∂E), one easily gets that Xε · ν → X · ν uni-
formly in N (∂E). In particular, ϕε → ϕ uniformly on ∂E . To show that Dτ (Xε · ν) →
Dτ (X · ν) uniformly in N (∂E), it is enough to check (by a lengthy but straightforward
computation) that ∇ Rε → 0 uniformly in N (∂E). Hence, the claim follows recall-
ing the continuity of Dτ (X · ν). It is now easy to check that the claim implies that
∂2 J (E)[ϕ] = limε ∂

2 J (E)[ϕε] ≥ 0. If now ϕ is any function in H̃1(∂E), we construct
a sequence ϕn of functions in C∞(∂E) ∩ H̃1(∂E) such that ϕn → ϕ in H1(∂E). Then
the conclusion follows by observing that all the terms appearing in the expression of
∂2 J (E) are continuous with respect to the H1-convergence. ��
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We now switch to the search for a sufficient condition for local minimality. Observe
that if E ⊂ T

N is of class C2 and�(x, t) = x +tηei for some η ∈ R and some element ei
of the canonical basis in R

N , we clearly have J
(
�(·, t)(E)

) = J (E), by the translation
invariance of J . Hence,

d2

dt2 J (Et )
∣∣t=0

= ∂2 J (E)[ηνi ] = 0.

In view of this it is convenient to introduce the subspace T (∂E) ⊂ H̃1(∂E) generated
by the functions νi , i = 1, . . . , N . Note that we can then write

H̃1(∂E) = T ⊥(∂E)⊗ T (∂E), (3.6)

where

T ⊥(∂E) :=
{
ϕ ∈ H̃1(∂E) :

∫
∂E
ϕνi dHN−1 = 0, i = 1, . . . , N

}

is the orthogonal set, in the L2-sense, to the space of infinitesimal translations T (∂E).
We observe that there exists an orthonormal frame {ε1, . . . , εN } such that

∫
∂E
(ν · εi )(ν · ε j ) dHN−1 = 0 for all i �= j. (3.7)

The existence of such an orthonormal frame can be proved by observing that, denoting by
A the matrix with coefficients ai j := ∫

∂E νiν j dHN−1, we have for every O ∈ SO(N ),
∫
∂E
(Oν)i (Oν) j dHN−1 = (O AO−1)

i j .

Choose O so that O AO−1 is diagonal and set εi = O−1ei . In view of this remark, the
functions ν · εi are orthogonal and generate T (∂E). Notice however that the dimension
of T (∂E) can be strictly smaller than N , since it may happen that ν · εi = 0 for some
i , as in the case when E is translation invariant along some direction. Therefore, given
ϕ ∈ H̃1(∂E), its projection on T ⊥(∂E) is

πT ⊥(∂E)(ϕ) = ϕ −
∑(∫

∂E
ϕν · εi dHN−1

)
ν · εi

‖ν · εi‖2
2

, (3.8)

where it is understood that the sum runs over all indices i such that ‖ν · εi‖L2(∂E) �= 0.

Definition 3.5. In the following we say that the functional J has positive second vari-
ation at the critical set E if

∂2 J (E)[ϕ] > 0 for all ϕ ∈ T ⊥(∂E) \ {0}.
Lemma 3.6. Assume that J has positive second variation at the critical set E. Then

m0 := inf
{
∂2 J (E)[ϕ] : ϕ ∈ T ⊥(∂E), ‖ϕ‖H1 = 1

}
> 0, (3.9)

and

∂2 J (E)[ϕ] ≥ m0‖ϕ‖2
H1 for all ϕ ∈ T ⊥(∂E).
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Proof. Let ϕh be a minimizing sequence for the infimum in (3.9) and assume that
ϕh ⇀ ϕ0 ∈ T ⊥(∂E) weakly in H1(∂E). If ϕ0 �= 0, by (3.4) it follows that

m0 = lim
h
∂2 J (E)[ϕh] ≥ ∂2 J (E)[ϕ0] > 0.

If ϕ0 = 0, then

m0 = lim
h
∂2 J (E)[ϕh] = lim

h

∫
∂E

|Dτ ϕh |2 dHN−1 = 1.

��
We now show how to construct a flow satisfying (3.2) connecting any two sufficiently

regular and close sets in T
N . If E ⊂ T

N is at least of class C2, we denote by Nr (∂E) the
tubular neighborhood of ∂E of thickness 2r . We shall always assume r to be so small
that the signed distance d from ∂E and the projection π on ∂E are well defined and
regular on Nr (∂E); when r is irrelevant, we shall omit it.

Theorem 3.7. Let E ⊂ T
N be a set of class C3 and let p > N − 1. For all ε > 0 there

exist a tubular neighborhood Nr (∂E) and two positive constants δ,C with the following
properties: If ψ ∈ C2(∂E) and ‖ψ‖W 2,p(∂E) ≤ δ then there exists a field X ∈ C2 with
div X = 0 in Nr (∂E) such that

‖X − ψν‖L2(∂E) ≤ ε‖ψ‖L2(∂E). (3.10)

Moreover, the associated flow

�(x, 0) = x,
∂�

∂t
= X (�) (3.11)

satisfies �(∂E, 1) = {x + ψ(x)ν : ∈ ∂E}, and for every t ∈ [0, 1],
‖�(·, t)− Id‖W 2,p(∂E) ≤ C‖ψ‖W 2,p(∂E), (3.12)

where Id denotes the identity map. If in addition E1 has the same volume as E, then for
every t we have |Et | = |E | and

∫
∂Et

X · νEt dHN−1 = 0.

Proof. For σ > 0 set dσ := ρσ ∗ d, where ρσ is the standard mollifier. Since E is of
class C3 there exist a neighborhood Nr (∂E) and σε such that if 0 < σ < σε,

‖dσ − d‖C3(Nr (∂E)) ≤ ε. (3.13)

For such σ let � be the flow associated with ∇dσ , i.e.

�(x, 0) = x,
∂�

∂t
= ∇dσ (�).

Then, there exists t0 > 0 such that �|∂E×(−t0,t0) is a C∞-diffeomorphism onto some
neighborhood U of ∂E . We start by constructing a C∞ vector field X̃ : U → R

N such
that

div X̃ = 0 in U, X̃ = ∇dσ on ∂E .
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To this aim, for every y ∈ U we set

ζ(y) = ζ(�(x, t)) := exp
(
−
∫ t

0
�dσ (�(x, s)) ds

)
. (3.14)

By construction we have that div(ζ∇dσ ) = 0 in U . We define X̃ to be any C∞-vector
field which coincides with ζ∇dσ on U , and denote by �̃ the associated flow. Note that
�̃ and � have the same trajectories in U. Let us consider the two functions πσ : U →
∂E, tσ : U → R implicitly defined by

�̃(πσ (y), tσ (y)) = y.

If t is small, for all x ∈ ∂E we have tσ (�̃(x, t)) = t . Hence, ∇tσ (�̃(x, t))· ∂
∂t �̃(x, t) = 1

and in particular ∇tσ · ∇dσ = 1 on ∂E . Therefore, since tσ = 0 on ∂E , we have

∇tσ = ∇d

∇d · ∇dσ
on ∂E .

Therefore, for σ < σε sufficiently small ‖∇tσ − ∇dσ ‖L∞(∂E) ≤ ε. Thus, taking r
smaller if needed, we may assume that Nr (∂E) ⊂ U and for all y ∈ Nr (∂E),

|tσ (y)− dσ (y)| ≤ 2εd(y).

In other words, there exists a function aσ ∈ C3(Nr (∂E)), with ‖aσ ‖L∞(Nr (∂E)) ≤ 3ε
such that

tσ (y) = d(y)(1 + aσ (y)). (3.15)

Let us now take ψ ∈ C2(∂E). If ‖ψ‖L∞(∂E) is small, we set

S(x) := πσ (x + ψ(x)ν(x))

for x ∈ ∂E . Since E is of class C3 we have that S is of class C2. Moreover,

Dτ S(x) = (Dτ πσ )(x + ψ(x)ν(x)) + R(x),

where |R(x)| ≤ C‖ψ‖C1(∂E). Therefore, since πσ (x) = x on ∂E , we deduce that S is
a C2-diffeomorphism, provided that ‖ψ‖C1(∂E) is small. Moreover, it is easily checked
that if ‖Dττψ‖L p(∂E) ≤ 1, then

‖S−1‖W 2,p(∂E) ≤ C (3.16)

for some positive constant C independent of ψ . Note also that

|S−1(x)− x | = |S−1(x)− S−1(πσ (x + ψ(x)ν(x)))|
≤ C |x − πσ (x + ψ(x)ν(x))| ≤ C |ψ(x)|. (3.17)

Now for y ∈ Nr (∂E) we set

G(y) := (S−1 ◦ πσ )(y) + ν((S−1 ◦ πσ )(y))ψ((S−1 ◦ πσ )(y)). (3.18)

Thus, G(y) is the unique point of the trajectory of �̃ passing through y that belongs to
the graph of ψ . Finally, we may define

X (y) := tσ (G(y))X̃(y) (3.19)
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for y ∈ Nr (∂E). Note that X ∈ C2(Nr (∂E); T
N ). We shall still denote by X any

C2-extension of the vector field to T
N .

Since tσ ◦ G is constant along the trajectories of �̃, we have div X = 0 in Nr (∂E).
Let us denote by � the flow associated to X . Since tσ (G(x)) is the time needed to go
from x to G(x) along the trajectory of �̃, we have �(x, 1) = G(x). Thus, we may
conclude that �(∂E, 1) is the normal graph of ψ . Note that from (3.15) and (3.18),

X (y) = ψ((S−1 ◦ πσ )(y))(1 + aσ (G(y)))ζ(y)∇dσ (y). (3.20)

Thus, from (3.16) we have

‖X‖W 2,p(Nr (∂E)) ≤ C‖ψ‖W 2,p(∂E) (3.21)

for a constant C > 0 independent of ψ .
We now show (3.10). From (3.20), (3.16), and (3.17), we have for every x ∈ ∂E ,

|X (x)− ψ(x)ν(x)| = |ψ((S−1 ◦ πσ )(x))(1 + aσ (G(x)))ζ(x)∇dσ (x)− ψ(x)∇d(x)|,
≤ |ψ(S−1(x))||(1 + aσ (G(x)))ζ(x)∇dσ (x)− ∇d(x)|

+|(ψ(S−1(x))− ψ(x))∇d(x)|
≤ Cε|ψ(S−1(x))| + |ψ(S−1(x))− ψ(x)|
≤ Cε|ψ(S−1(x))| + ‖ψ‖C1(∂E)|S−1(x)− x |
≤ Cε(|ψ(S−1(x))| + |ψ(x)|),

provided that ‖ψ‖C1(∂E) is small. Hence, (3.10) follows.
To establish (3.12), observe that the closeness of� to Id in L∞ follows from (3.11) and

(3.21). By differentiating (3.11) and solving the resulting equation, and since p > N −1,
one easily gets

‖∇x�− I‖L∞(Nε0 (∂E)) ≤ C(ε0)‖∇ X‖L∞(Nε0 (∂E)) ≤ C(ε0)‖ψ‖W 2,p(∂E) ≤ C(ε0)ε.

In particular, if ε is small enough the (N − 1)-dimensional Jacobian of �(·, t) on ∂E
is uniformly close to 1. Using this information and by differentiating again (3.11), we
have

‖∇2
x�(·, t)‖L p(∂E) ≤ C(ε0)‖∇2 X‖L p(Nε0 (∂E)),

whence (3.12) follows.
Assume now that |E1| = |E | and recall that by [9, Eq. (2.30)],

d2

dt2 |Et | =
∫
∂Et

(div X)(X · νEt ) = 0 for all t ∈ [0, 1].

Hence the function t �→ |Et | is affine in [0, 1] and since |E0| = |E | = |E1| it is constant.
Therefore

0 = d

dt
|Et | =

∫
Et

div X dx =
∫
∂Et

X · νEt dHN−1 for all t ∈ [0, 1].

This concludes the proof of the theorem. ��
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Before proving the main result of the section we need the following key lemma,
which shows that any set F sufficiently close to E can be translated in such a way that
the resulting set F̃ satisfies ∂ F̃ = {x + ψ(x)ν(x) : x ∈ ∂E}, with ψ having a suitably
small projection on T (∂E).

Lemma 3.8. Let E ⊂ T
N be of class C3 and let p > N − 1. For any δ > 0 there exist

η0,C > 0 such that if F ⊂ T
N satisfies ∂F = {x + ψ(x)ν(x) : x ∈ ∂E} for some

ψ ∈ C2(∂E) with ‖ψ‖W 2,p(∂E) ≤ η0, then there exist σ ∈ R
N and ϕ ∈ W 2,p(∂E) with

the properties that

|σ | ≤ C‖ψ‖W 2,p(∂E), ‖ϕ‖W 2,p(∂E) ≤ C‖ψ‖W 2,p(∂E),

and

∂F − σ = {x + ϕ(x)ν(x) : x ∈ ∂E},
∣∣∣
∫
∂E
ϕν dHN−1

∣∣∣ ≤ δ‖ϕ‖L2(∂E).

Proof. In the following ν stands for ∇d, where d is the signed distance from ∂E .
Throughout the proof the various constants will be independent of ψ . Set

η := ‖ψ‖W 2,p(∂E) + ‖ψ‖L2(∂E).

We recall that there exists an orthonormal frame {ε1, . . . , εN } satisfying (3.7).
Let I be the set of all i ∈ {1, . . . , N } such that ‖ν · εi‖L2(∂E) > 0. We define

σ =∑N
i=1 σiεi , where

σi := 1

‖ν · εi‖2
L2(∂E)

∫
∂E
ψ(x)(ν(x) · εi ) dHN−1 if i ∈ I, σi = 0 otherwise.

(3.22)

Note that

|σ | ≤ C1‖ψ‖L2(∂E). (3.23)

Step 1. Let Tψ : ∂E �→ ∂E be the map

Tψ(x) := π(x + ψ(x)ν(x)− σ),

where π is the projection on ∂E .
It is easily checked that there exists ε0 > 0 such that if

‖ψ‖W 2,p(∂E) + |σ | ≤ ε0 ≤ 1, (3.24)

then Tψ is a diffeomorphism of class C2. Moreover,
∥∥JN−1d∂E Tψ − 1

∥∥
L∞(∂E) ≤ C‖ψ‖C1(∂E), (3.25)

where JN−1d∂E stands for the (N − 1)-Jacobian of the tangential gradient on ∂E , and

‖T −1
ψ − Id‖W 2,p(∂E) ≤ C(‖ψ‖W 2,p(∂E) + |σ |). (3.26)

Therefore, setting F̂ := F − σ , we have

∂ F̂ = {x + ϕ(x)ν(x) : x ∈ ∂E}
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for some function ϕ, which is linked to ψ by the following relation: for all x ∈ ∂E ,

x + ψ(x)ν(x)− σ = y + ϕ(y)ν(y),

where y = Tψ(x). Thus, using (3.26),

‖ϕ‖W 2,p(∂E) ≤ C2
(‖ψ‖W 2,p(∂E) + |σ |) (3.27)

for some C2 ≥ 1. We now estimate
∫
∂E
ϕ(y)ν(y) dHN−1(y) =

∫
∂E
ϕ(Tψ(x))ν(Tψ(x))JN−1d∂E Tψ(x) dHN−1(x)

=
∫
∂E
ϕ(Tψ(x))ν(Tψ(x)) dHN−1(x) + R1, (3.28)

where

|R1| =
∣∣∣∣
∫
∂E
ϕ(Tψ(x))ν(Tψ(x))

[
JN−1d∂E Tψ(x)− 1

]
dHN−1(x)

∣∣∣∣
≤ C3‖ψ‖C1(∂E)‖ϕ‖L2(∂E). (3.29)

On the other hand
∫
∂E
ϕ(Tψ(x))ν(Tψ(x)) dHN−1

=
∫
∂E

[
x + ψ(x)ν(x)− σ − Tψ(x)

]
dHN−1

=
∫
∂E

[
x + ψ(x)ν(x)− σ − π(x + ψ(x)ν(x)− σ)

]
dHN−1

=
∫
∂E

{
ψ(x)ν(x)− σ +

[
π(x)− π(x + ψ(x)ν(x)− σ)

]}
dHN−1

=
∫
∂E
(ψ(x)ν(x)− σ) dHN−1 + R2, (3.30)

where

R2 =
∫
∂E

[
π(x)− π(x + ψ(x)ν(x)− σ)

]
dHN−1

= −
∫
∂E

dHN−1
∫ 1

0
∇π(x + t (ψ(x)ν(x)− σ)

)
(ψ(x)ν(x)− σ) dt

= −
∫
∂E

∇π(x)(ψ(x)ν(x)− σ) dHN−1 + R3. (3.31)

In turn, recalling (3.23),

|R3| ≤
∫
∂E

dHN−1
∫ 1

0

∣∣∇π(x + t (ψ(x)ν(x)− σ)
)− ∇π(x)∣∣|ψ(x)ν(x)− σ | dt

≤ C4‖ψ‖2
L2(∂E). (3.32)
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If x is sufficiently close to ∂E , then π(x) = x − d(x)ν(x) = x − d(x)∇d(x) and

∂πi

∂x j
(x) = δi j − ∂d

∂xi
(x)

∂d

∂x j
(x)− d(x)

∂2d

∂xi∂x j
(x),

and, thus, for all x ∈ ∂E ,

∂πi

∂x j
(x) = δi j − νi (x)ν j (x).

From this identity, (3.28) and the equalities above, we get
∫
∂E
ϕ(y)ν(y) dHN−1(y) =

∫
∂E

[
ψ(x)ν(x)− (σ · ν(x))ν(x)] dHN−1(x) + R1 + R3.

But the integral at the right-hand side vanishes by (3.22) and (3.7). Therefore, (3.29)
and (3.32) imply

∣∣∣
∫
∂E
ϕ(y)ν(y) dHN−1(y)

∣∣∣ ≤ C3‖ψ‖C1(∂E)‖ϕ‖L2(∂E) + C4‖ψ‖2
L2(∂E)

≤ C‖ψ‖C1(∂E)

(‖ϕ‖L2(∂E) + ‖ψ‖L2(∂E)

)
≤ C5‖ψ‖1−ϑ

W 2,p(∂E)
‖ψ‖ϑL2(∂E)

(‖ϕ‖L2(∂E) + ‖ψ‖L2(∂E)

)
,

(3.33)

with ϑ ∈ (0, 1) depending only on p > N − 1. In the last inequality we used a well-
known interpolation result, see for instance [1, Thm. 5.2].

Step 2. The previous estimate does not allow to conclude directly, but we have to rely
on the following iteration procedure. Fix any number

K > 2, (3.34)

and assume that η ∈ (0, 1) is such that

C2η(1 + 2C1) ≤ ε0, 2C5η
ϑK ≤ δ. (3.35)

Given ψ , we set ϕ0 = ψ and we denote by σ 1 the vector defined as in (3.22). We set
F1 := F −σ 1 and denote by ϕ1 the function such that ∂F1 = {x +ϕ1(x)ν(x) : x ∈ ∂E}.
As before, ϕ1 satsfies

x + ϕ0(x)ν(x)− σ 1 = y + ϕ1(y)ν(y).

Since ‖ψ‖W 2,p(∂E) ≤ η and ‖ψ‖L2(∂E) ≤ η, by (3.23), (3.27), and (3.35) we have

‖ϕ1‖W 2,p(∂E) ≤ C2η(1 + C1) ≤ 1. (3.36)

Using again that ‖ψ‖W 2,p(∂E) ≤ η ≤ 1, by (3.33) we obtain

∣∣∣
∫
∂E
ϕ1(y)ν(y) dHN−1(y)

∣∣∣ ≤ C5‖ϕ0‖ϑL2(∂E)

(‖ϕ1‖L2(∂E) + ‖ϕ0‖L2(∂E)

)
.

As for the last term we have ‖ϕ0‖L2(∂E) ≤ η. We now distinguish two cases.
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If ‖ϕ0‖L2(∂E) ≤ K‖ϕ1‖L2(∂E), from the previous inequality and (3.35) we get

∣∣∣
∫
∂E
ϕ1(y)ν(y) dHN−1(y)

∣∣∣ ≤ C5η
ϑ
(‖ϕ1‖L2(∂E) + ‖ϕ0‖L2(∂E)

)

≤ 2C5η
ϑK‖ϕ1‖L2(∂E) ≤ δ‖ϕ1‖L2(∂E),

and, thus, the conclusion follows with σ = σ 1.
In the other case

‖ϕ1‖L2(∂E) ≤ ‖ϕ0‖L2(∂E)

K
≤ η

K
≤ η. (3.37)

We repeat the whole procedure: denote by σ 2 the vector defined as in (3.22) with ψ
replaced by ϕ1, set F2 := F1 − σ 2 = F − σ 1 − σ 2 and consider the corresponding ϕ2.
Then ϕ2 satisfies

z + ϕ2(z)ν(z) = y + ϕ1(y)ν(y)− σ 2 = x + ϕ0(x)ν(x)− σ 1 − σ 2.

Since

‖ϕ0‖W 2,p(∂E) + |σ1 + σ2| ≤ η + C1η + C1‖ϕ1‖L2(∂E)

≤ η + C1η
(

1 +
1

K

)
≤ C2η(1 + 2C1) ≤ ε0,

the map Tϕ0(x) := π(x + ϕ0(x)ν(x)− (σ 1 + σ 2)) is a diffeomorphism thanks to (3.24).
Thus, by applying (3.27) with σ = σ1 + σ2, and (3.23), (3.37), (3.34), (3.35) implies

‖ϕ2‖W 2,p(∂E) ≤ C2
(‖ϕ0‖W 2,p(∂E) + |σ 1 + σ 2|) ≤ C2η

(
1 + C1 +

C1

K

)
≤ 1,

analogously to (3.36). On the other hand, since by (3.36), (3.37), and (3.23),

‖ϕ1‖W 2,p(∂E) + σ2 ≤ C2η(1 + C1) + C1
η

K
≤ C2η(1 + 2C1) ≤ ε0,

also the map Tϕ1(x) := π(x + ϕ1(x)ν(x) − σ 2) is a diffeomorphism satisfying (3.24)
and (3.25). Therefore, arguing as before, we obtain

∣∣∣
∫
∂E
ϕ2(y)ν(y) dHN−1(y)

∣∣∣ ≤ C5‖ϕ1‖ϑL2(∂E)

(‖ϕ2‖L2(∂E) + ‖ϕ1‖L2(∂E)

)
.

Since ‖ϕ1‖L2(∂E) ≤ η by (3.37), if ‖ϕ1‖L2(∂E) ≤ K‖ϕ2‖L2(∂E) the conclusion follows
with σ = σ 1 + σ 2. Otherwise, we iterate the procedure observing that

‖ϕ2‖L2(∂E) ≤ ‖ϕ1‖L2(∂E)

K
≤ ‖ϕ0‖L2(∂E)

K 2 ≤ η

K 2 .

This construction leads to three (possibly finite) sequences σn , Fn , and ϕn such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fn = F − σ 1 − · · · − σ n, |σ n| ≤ C1η

K n−1 ,

‖ϕn‖W 2,p(∂E) ≤ C2
(‖ϕ0‖W 2,p(∂E) + |σ 1 + · · · + σ n|) ≤ C2η(1 + 2C1),

‖ϕn‖L2(∂E) ≤ η
K n ,

∂Fn = {x + ϕn(x)ν(x) : x ∈ ∂E}.
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If for some n we have ‖ϕn−1‖L2(∂E) ≤ K‖ϕn‖L2(∂E), the construction stops, since,
arguing as before,

∣∣∣
∫
∂E
ϕn(y)ν(y) dHN−1(y)

∣∣∣ ≤ δ‖ϕn‖L2(∂E),

and the conclusion follows with σ = σ 1 + · · · + σ n and ϕ = ϕn . Otherwise, the iteration
continues indefinitely and we reach the conclusion with

σ =
∞∑

n=0

σ n, ϕ = 0,

which means that F = E + σ . ��
We are now ready to prove the main result of this section.

Theorem 3.9. Let p > max{2, N − 1} and let E be a regular critical set for J with
positive second variation. Then there exist δ > 0,C0 > 0 such that

J (F) ≥ J (E) + C0
(
α(E, F)

)2
,

whenever F ⊂ T
N satisfies |F | = |E | and ∂F = {x + ψ(x)ν(x) : x ∈ ∂E} for some

‖ψ‖W 2,p(∂E) ≤ δ.

Proof. Since all estimates will depend only on ‖ψ‖W 2,p(∂E), by an approximation argu-
ment we may assume that ψ is of class C∞. Moreover, since different sets are involved
we employ the full notation for the normal vectors.

Step 1. We claim that there exists δ1 > 0 such that if F = {x + ψ(x)ν(x) : x ∈ ∂E}
with |F | = |E | and ‖ψ‖W 2,p(∂E) ≤ δ1, then

inf
{
∂2 J (F)[ϕ] : ϕ ∈ H̃1(∂F), ‖ϕ‖H1(∂F) = 1,

∣∣∣
∫
∂F
ϕνF dHN−1

∣∣∣ ≤ δ1

}
≥ m0

2
,

(3.38)

where m0 is defined in (3.9). We argue by contradiction assuming that there exist a
sequence Fh = {x +ψh(x)ν(x) : x ∈ ∂E} with |Fh | = |E | and ‖ψh‖W 2,p(∂E) → 0 and
a sequence ϕh ∈ H̃1(∂Fh), with ‖ϕh‖H1(∂Fh)

= 1 and
∫
∂Fh

ϕhν
Fh dHN−1 → 0

such that

∂2 J (Fh)[ϕh] < m0

2
. (3.39)

Consider a family �h of diffeomorphisms from E to Fh converging to the identity in
W 2,p(∂E), which exists by the convergence of ψh to 0. Set

ah := −
∫
∂E
ϕh ◦�h dHN−1 and ϕ̃h := ϕh ◦�h − ah .

Since νFh ◦ �h → ν in C0,α(∂E) and a similar convergence holds for the tangential
vectors, one easily checks that for those i for which ν · εi �≡ 0 we have



Nonlocal Isoperimetric Problem 537

∫
∂E
ϕ̃hν · εi dHN−1 → 0,

so that, using (3.8),

‖πT ⊥(∂E)(ϕ̃h)‖H1(∂E) → 1. (3.40)

Moreover, the second fundamental forms and the functions vFh (see (2.6)) satisfy

B∂Fh ◦�h → B∂E in L p(∂E), vFh → vE in C1,β(TN ) for all β < 1. (3.41)

Indeed, the first convergence follows immediately by the W 2,p convergence of Fh to E ,
while the second one is implied by (2.7).

We now show that∫
∂Fh

∫
∂Fh

G(x, y)ϕh(x)ϕh(y) dHN−1dHN−1

−
∫
∂E

∫
∂E

G(x, y)ϕ̃h(x)ϕ̃h(y) dHN−1dHN−1 → 0, (3.42)

as h → ∞, which in turn is equivalent to proving that
∫

TN

(|∇zh |2 − |∇ z̃h |2) dx → 0, (3.43)

where

−�zh = μh := ϕhHN−1�∂Fh, −�z̃h = μ̃h := ϕ̃hHN−1�∂E,

see (3.5). Clearly, it is enough to show that μh − μ̃h → 0 strongly in H−1(TN ).
Indeed, from this convergence it would follow that zh − z̃h → 0 in H1(TN ) and, in
turn, that (3.43) holds, since both sequences zh and z̃h are bounded in H1(TN ). To
prove that μh − μ̃h → 0 strongly in H−1(TN ) we fix w ∈ H1(TN ) ∩ C1(TN ), with
‖w‖H1(TN ) ≤ 1. Then, denoting by JN−1(d∂E�h) the Jacobian of �h on ∂E ,

〈μh − μ̃h, w〉 =
∫

TN
w d(μh − μ̃h)

=
∫
∂E

[
w(�h(x))ϕ̃h(x)JN−1(d

∂E�h)(x)− w(x)ϕ̃h(x)
]

dHN−1

+ah

∫
∂Fh

w dHN−1

=
∫
∂E
ϕ̃h(x)

[
w(�h(x))− w(x)

]
JN−1(d

∂E�h)(x) dHN−1

+
∫
∂E

[
JN−1(d

∂E�h)(x)−1
]
w(x)ϕ̃h(x) dHN−1 + ah

∫
∂Fh

w dHN−1.

Therefore we can estimate

|〈μh − μ̃h, w〉| ≤ ‖JN−1(d
∂E�h)‖L∞(∂E) · ‖ϕ̃h‖L2(∂E) · ‖w ◦�h − w‖L2(∂E)

+ c‖JN−1(d
∂E�h)− 1‖∞ · ‖ϕ̃h‖L2(∂E)

·‖w‖H1(TN ) + c|ah |‖w‖H1(TN ).
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Arguing as in the proof of (2.12), we have

‖w ◦�h − w‖2
L2(∂E) =

∫
∂E

|w(x + ψh(x)ν(x))− w(x)|2dHN−1

≤
∫
∂E

|ψh |2
∫ 1

0
|∇w(x + tψh(x)ν(x))|2 dtdHN−1

≤ C‖ψh‖2∞‖∇w‖2
L2(TN )

.

Combining all the above estimates, we may conclude that

‖μh − μ̃h‖H−1(TN ) ≤ C
(
‖ψh‖L∞(∂E) + ‖JN−1(d

∂E�h)− 1‖L∞(∂E) + |ah |
)

→ 0,

thus proving (3.42). From (3.40), (3.41), and (3.42), recalling that p > max{2, N − 1}
and using the Sobolev Embedding to show that

∫
∂Fh

|B∂Fh |2ϕ2
h dHN−1 −

∫
∂E

|B∂E |2ϕ̃2
h dHN−1 → 0,

it follows that all terms in the expression (3.4) of ∂2 J (Fh)[ϕh] are asympotically close
to the corresponding terms of ∂2 J (E)[ϕ̃h]. Hence ∂2 J (Fh)[ϕh] − ∂2 J (E)[ϕ̃h] → 0.
Since ∂2 J (E)[ϕ̃h] − ∂2 J (E)[(ϕ̃h)

⊥] → 0 and ‖(ϕ̃h)
⊥‖H1(∂E) → 1, from Lemma 3.6

we get a contradiction to (3.39).

Step 2. Let us fix F so that ‖ψ‖W 2,p(∂E) ≤ δ2 < δ1, where δ2 is to be chosen, and con-
sider the field X and the flow � constructed in Theorem 3.7. Replacing F by a F − σ

for some σ ∈ R
N , if needed, thanks to Lemma 3.8 we may assume

∣∣∣
∫
∂E
ψν dHN−1

∣∣∣ ≤ δ1

2
‖ψ‖L2(∂E). (3.44)

We claim that
∣∣∣
∫
∂Et

(X · νEt )νEt dHN−1
∣∣∣ ≤ δ1‖X · νEt ‖L2(∂Et )

(3.45)

for all t ∈ [0, 1]. To this aim, we write
∫
∂Et

(X · νEt )νEt dHN−1

=
∫
∂E
(X (�(x, t)) · νEt (�(x, t)))νEt (�(x, t))JN−1(d

∂E�(·, t))(x) dHN−1

=
∫
∂E
(X (�(x, t)) · ν(x))ν(x) dHN−1 + R1

=
∫
∂E
(X (x) · ν(x))ν(x) dHN−1 + R1 + R2

=
∫
∂E
ψ(x)ν(x) dHN−1 + R1 + R2 + R3.
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Fix ε > 0. Recalling (3.20), (3.15), (3.14), and (3.16), we have
∫
∂E

|X (�(x, t))| dHN−1 ≤ C‖ψ‖L2(∂E).

From this inequality, observing that by (3.12),

‖ν − νEt (�(·, t))‖L∞(∂E), ‖JN−1(d
∂E�(·, t))− 1‖L∞(∂E)

are arbitrarily small, and recalling (3.10) and (3.21) we deduce that

|R1| + |R2| + |R3| ≤ ε‖ψ‖L2(∂E),

provided that δ2 is sufficiently small. This proves that

∣∣∣
∫
∂Et

(X · νEt )νEt dHN−1
∣∣∣ ≤
∣∣∣
∫
∂E
ψν dHN−1

∣∣∣ + ε‖ψ‖L2(∂E) ≤
(δ1

2
+ ε
)
‖ψ‖L2(∂E),

where we used also (3.44). A similar argument shows that

‖X · νEt ‖L2(∂Et )
≥ (1 − ε)‖ψ‖L2(∂E), (3.46)

and thus (3.45) follows, if ε and, in turn, δ2 are suitably chosen.
Recalling (3.1), (3.4), the fact that E is a critical set for J and that div X = 0 in a

neighborhood of ∂E , we can write

J (F)− J (E) = J (E1)− J (E) =
∫ 1

0
(1 − t)

d2

dt2 J (Et ) dt

=
∫ 1

0
(1 − t)

(
∂2 J (Et )[X · νEt ]

−
∫
∂Et

(4γ vEt + Ht ) divτt

(
Xτt (X · νEt )

)
dHN−1

)
dt,

where divτt stands for the tangential divergence on ∂Et , we set Xτt := X −(X ·νEt )νEt ,
and Ht is the sum of principal curvatures of ∂Et . By (3.45) and (3.38), we obtain that

J (F)− J (E) ≥ m0

2

∫ 1

0
(1 − t)‖X · νEt ‖2

H1(∂Et )
dt

−
∫ 1

0
(1 − t)

∫
∂Et

(4γ vEt + Ht ) divτt

(
Xτt (X · νEt )

)
dHN−1dt.

(3.47)

We claim that

It :=
∣∣∣∣
∫
∂Et

(4γ vEt + Ht ) divτt

(
Xτt (X · νEt )

)
dHN−1

∣∣∣∣ ≤ m0

4
‖X · νEt ‖2

H1(∂Et )

(3.48)

for all t ∈ [0, 1], provided that δ2 is sufficiently small.
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Indeed, recalling that E satisfies (2.8), we get

It =
∣∣∣∣
∫
∂Et

[
(4γ vEt + Ht )− λ

]
divτt

(
Xτt (X · νEt )

)
dHN−1

∣∣∣∣
≤ ‖(4γ vEt + Ht )− λ‖L p(∂Et )‖ divτt

(
Xτt (X · νEt )

)‖
L

p
p−1 (∂Et )

. (3.49)

Observe that, given ε > 0, if δ2 is sufficiently small the first norm on the right-hand side
of (3.49) can be taken smaller than ε. Hence, using Lemma 7.1 below we get

It ≤ cε
[
‖Dτt Xτt ‖L2(∂Et )

‖X ·νEt ‖
L

2p
p−2 (∂Et )

+‖Xτt ‖
L

2p
p−2 (∂Et )

‖Dτt

(
X ·νEt

)‖L2(∂Et )

]

≤ cε‖X · νEt ‖H1(∂Et )
‖X · νEt ‖

L
2p

p−2 (∂Et )
.

Since p > max{2, N − 1}, from the Sobolev Embedding Theorem we obtain

It ≤ cε‖X · νEt ‖2
H1(∂Et )

,

hence (3.48) follows.
We now observe that from (3.47) and (3.48) we have

J (F) ≥ J (E) +
m0

4

∫ 1

0
(1 − t)‖X · νEt ‖2

H1(∂Et )
dt

≥ J (E) +
m0

4

∫ 1

0
(1 − t)‖X · νEt ‖2

L2(∂Et )
dt.

Recalling (3.46), we finally get

J (F) ≥ J (E) +
m0

16
‖ψ‖2

L2(∂E) ≥ J (E) + C0|E�F |2.

This concludes the proof of the theorem. ��

4. W2, p-local Minimality Implies L1-local Minimality

We start by proving the following simple lemma.

Lemma 4.1. Let E ⊂ T
N be of class C2 and let F ⊂ T

N be a set of finite perimeter.
Then there exists C = C(E) > 0 such that

PTN (F)− PTN (E) ≥ −C |E�F |.
Proof. Let X ∈ C1(TN ; R

N ) be a vector field such that ‖X‖∞ ≤ 1 and X = νE on
∂E . Then,

PTN (F)− PTN (E) ≥
∫
∂∗ F

X · νF dHN−1 −
∫
∂E

X · νE dHN−1

=
∫

F
div X dx −

∫
E

div X dx ≥ −C |E�F |,

where C := ‖ div X‖∞. ��



Nonlocal Isoperimetric Problem 541

Theorem 4.3 below shows that if E is a smooth isolated W 2,p-local minimizer of J ,
in the sense of Theorem 3.9, then E is also a minimizer among all competitors which are
sufficiently close in the Hausdorff distance. Some points in the proof are adapted from
[49], see also [16]. In the proof the theorem we will make use of an important regularity
result concerning sequences of ω-minimizers of the area functional. This is essentially
contained in [3] (see also [41,46,49]).

Theorem 4.2. Let Eh ⊂ T
N be a sequence of ω-minimizers of the area functional such

that

sup
h

PTN (Eh) < ∞ and χEh → χE in L1(TN )

for some set E of class C2. Then, for h large enough Eh is of class C1, 1
2 and

∂Eh = {x + ψh(x)ν(x) : x ∈ ∂E},

with ψh → 0 in C1,α(∂E) for all α ∈ (0, 1
2 ).

Recalling that d denotes the signed distance to a set E , we define for all δ ∈ R,

Iδ(E) = {x : d(x) < δ} .

We are now ready to state the L∞-local minimality result.

Theorem 4.3. Let E ⊂ T
N be a smooth set and p > 1. Assume that there exists δ > 0

such that

J (F) ≥ J (E) (4.1)

for all F ⊂ T
N , with |F | = |E | and such that ∂F = {x +ψ(x)ν(x) : x ∈ ∂E} for some

function ψ with ‖ψ‖W 2,p(∂E) ≤ δ. Then there exists δ0 > 0 such that (4.1) holds for all
F ⊂ T

N of finite perimeter, with |F | = |E | and I−δ0(E) ⊂ F ⊂ Iδ0(E).

Proof. We argue by contradiction assuming that there exist two sequences δh → 0 and
Eh ⊂ T

N such that |Eh | = |E |, I−δh (E) ⊂ Eh ⊂ Iδh (E), and

J (Eh) < J (E)

for all h. For every h let Fh be a minimizer of the penalized obstacle problem

min{J (F) +�
∣∣|F | − |E |∣∣ : I−δh (E) ⊂ F ⊂ Iδh (E)}, (4.2)

where � > 1 will be chosen later. Clearly,

J (Fh) ≤ J (Eh) < J (E). (4.3)

We split the proof into four steps.



542 E. Acerbi, N. Fusco, M. Morini

Step 1. We claim that for � > 0 sufficiently large,

|Fh | = |E |. (4.4)

Indeed, assume by contradiction that |Fh | �= |E |. We consider the case |Fh | < |E |. We
define

F̃h = Fh ∪ Iτh (E)

for some τh ∈ (−δh, δh) such that |F̃h | = |E |. Set ν := ∇d. Since ∂∗ F̃h can be decom-
posed in three disjoint parts, one contained in ∂∗Fh \ ∂ Iτh (E), another contained in
∂ Iτh (E)\∂∗Fh , and the third one given by {x ∈ ∂∗Fh ∩∂ Iτh (E) : νFh (x) = νIτh (E)(x)},
and since νIτh (E) = ν, we have

PTN (F̃h)− PTN (Fh) ≤
∫
∂∗ F̃h

ν · ν F̃h dHN−1 −
∫
∂∗ Fh

ν · νFh dHN−1.

Hence, also by Lemma 2.6,

J (F̃h) +�
∣∣|F̃h | − |E |∣∣− J (Fh)−�

∣∣|Fh | − |E |∣∣
= PTN (F̃h)− PTN (Fh) + γ

∫
TN

(|∇vF̃h
|2 − |∇vFh |2

)
dx −�

(|F̃h | − |Fh |)

≤
∫
∂∗ F̃h

ν · ν F̃h dHN−1 −
∫
∂∗ Fh

ν · νFh dHN−1 + (γC −�)
(|F̃h | − |Fh |)

≤
∫

F̃h�Fh

| div ν| dx + (γC −�)
(|F̃h | − |Fh |)

≤ (‖ div ν‖∞ + γC −�)
(|F̃h | − |Fh |). (4.5)

Thus, if

� > ‖ div ν‖∞ + γC, (4.6)

the last term of the previous inequality is negative, thus contradicting the minimality of
Fh . If |Fh | > |E |, we argue similarly.

Step 2. For any set F , we set Kh(F) := (F ∪ I−δh (E)) ∩ Iδh (E). We claim that Fh
solves the penalized problem (without obstacle)

min{J (F) +�
∣∣|F | − |E |∣∣ + 2�|F�Kh(F)| : F ⊂ T

N }. (4.7)

Indeed, let J̃ denote the functional in (4.7). Writing Kh for Kh(F), using Lemma 2.6
and arguing as in (4.5), we obtain by the minimality of Fh ,

J̃ (F)− J̃ (Fh) = J (Kh) +�
∣∣|Kh | − |E |∣∣− [J (Fh) +�

∣∣|Fh | − |E |∣∣]

+
[
PTN (F)− PTN (Kh)] + γ

∫
TN

|∇vF |2 dx − γ

∫
TN

|∇vKh |2 dx

+�
(∣∣|F | − |E |∣∣− ∣∣|Kh | − |E |∣∣) + 2�|F�Kh |

≥ −‖ div ν‖∞|F�Kh | − γC |F�Kh | +�|F�Kh | > 0,

where in the last inequality we used (4.6).
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Step 3. We claim that for h large enough Fh is of class C1, 1
2 and

∂Fh = {x + ψh(x)ν(x) : x ∈ ∂E},
for some ψh such that ψh → 0 in C1,α(∂E) for all α ∈ (0, 1

2 ). To this aim we observe
that Fh solves (4.7), thus it is a 4�-minimizer of the area functional. By Theorem 4.2
the claim follows.

Step 4. We claim that ψh → 0 in W 2,p(∂E) for all p > 1. To this aim, we first observe
that since Fh is a C1 solution of the minimum problem (4.7), a standard variation argu-
ment (see Step 2 of the proof of Prop. 7.41 in [4]) yields

sup
h

‖H∂Fh ‖L∞(∂Fh) ≤ 4�, (4.8)

where, we recall, H∂Fh denotes the sum of the principal curvatures of ∂Fh . Since the
functions ψh are equibounded in C1,α , the above estimate on the curvatures implies that
for all p > 1 the functions ψh are equibounded in W 2,p(∂E), thanks to Remark 7.3.
Recall now that, due to (4.4), each Fh is a solution of the obstacle problem (4.2) under
the volume constraint. Since Fh is of class W 2,p, we have that H∂Fh = fh , where

fh :=
{
λh − 4γ vFh in Ah := ∂Fh ∩ Nδh (∂E),
λ− 4γ vE + ρh otherwise,

(4.9)

λh and λ are the volume constraint Lagrange multipliers corresponding to Fh and E ,
respectively, and ρh is a remainder term converging uniformly to 0.

We claim that

H∂Fh

(· + ψh(·)ν(·)
)→ H∂E (·) in L p(∂E) for all p > 1. (4.10)

To this aim, first observe that

vFh → vE in C1(TN ) (4.11)

by (2.7) and Lemma 2.6. Moreover, from (4.8) we have that the sequence λh is bounded.
If HN−1(Ah) → 0, where Ah is defined in (4.9), then (4.10) follows immediately.

Otherwise, (with no loss of generality) we have HN−1(Ah) ≥ c > 0 and we argue as
follows. By a compactness argument we may find a cylinder C = B ′ × (−L , L), where
B ′ ⊂ R

N−1 is a ball centered at the origin, and functions gh, g ∈ W 2,p(B ′; (−L , L))
such that, upon rotating and relabeling the coordinate axes if necessary, we have E ∩C =
{(x ′, xn) ∈ B ′ × (−L , L) : xn < g(x ′)},
Fh ∩ C ={(x ′, xn) ∈ B ′×(−L , L) : xn<gh(x

′)}, and HN−1(Ah ∩ C)≥c′>0

(4.12)

for all h. Moreover, by Step 3 we also have

gh → g in C1,α(B ′) for all α ∈ (0, 1
2 ). (4.13)
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Denote by A′
h the projection of Ah ∩ C over B ′. Then from (4.9) we have

λhHN−1(A′
h)− 4γ

∫
A′

h

vFh (x
′, gh(x

′)) dHN−1(x ′)

+ λHN−1(B ′\A′
h)− 4γ

∫
B′\A′

h

vE (x
′, g(x ′)) dHN−1(x ′) + ωh

=
∫

B′
div

( ∇x ′ gh√
1 + |∇x ′ gh |2

)
dHN−1(x ′) =

∫
∂B′

∇x ′ gh√
1 + |∇x ′ gh |2 · x ′

|x ′| dHN−2

with ωh → 0. Since by (4.13),
∫
∂B′

∇x ′ gh√
1 + |∇x ′ gh |2 · x ′

|x ′| dHN−2 →
∫
∂B′

∇x ′ g√
1 + |∇x ′ g|2 · x ′

|x ′| dHN−2

=
∫

B′
div

( ∇x ′ g√
1 + |∇x ′ g|2

)
dHN−1(x ′)

= λHN−1(B ′)− 4γ
∫

B′
vE (x

′, g(x ′)) dHN−1(x ′),

recalling (4.11), we conclude that

(λh − λ)HN−1(A′
h) → 0.

As HN−1(A′
h) ≥ c′′ > 0 by (4.12), we obtain (4.10). In turn, by Lemma 7.2 we conclude

that ψh → 0 in W 2,p(∂E) for all p > 1. Thus, by Theorem 3.9 and recalling (4.4), we
have that J (Fh) ≥ J (E) for h sufficiently large, a contradiction to (4.3). ��
We are now ready to prove the main result of the paper.

Proof of Theorem 1.1. We argue by contradiction assuming that there exists a sequence
Eh ⊂ T

N , with |Eh | = |E |, such that α(Eh, E) → 0 and

J (Eh) ≤ J (E) +
C0

4

(
α(Eh, E)

)2
, (4.14)

where C0 > 0 is the constant appearing in Theorem 3.9. By translating the sets if nec-
essary, we may assume that χEh → χE in L1(TN ). We now replace the sequence Eh
with a sequence of minimizers Fh of the following penalized functional:

J (F) +�1

√(
α(F, E)− εh

)2 + εh +�2
∣∣|F | − |E |∣∣, (4.15)

where εh := α(Eh, E), while the constants �1,�2 will be chosen later. Up to a sub-
sequence we may assume that χFh → χF0 in L1, where F0 ⊂ T

N is a minimizer
of

J (F) +�1α(F, E) +�2
∣∣|F | − |E |∣∣

and therefore, by translating F0 and Fh if necessary, also of

J (F) +�1|E�F | +�2
∣∣|F | − |E |∣∣. (4.16)
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Using Lemma 4.1 and arguing as in the proof of (4.5), one can prove that if�1 is suffi-
ciently large (independently of�2) the unique minimizer of (4.16) is E . Thus, F0 = E .
We now observe that the same argument used in the proof of Proposition 2.7 shows that
if �2 is sufficiently large then |Fh | = |E | for all h. Moreover, using Lemma 2.6, it can
be checked that for all h the set Fh is a �-minimizer of the area functional for some
� > 0 independent of h. Therefore, Theorem 4.2 yields that Fh → E in C1,α for all
α ∈ (0, 1

2 ). More precisely,

∂Fh = {x + ψh(x)ν(x) : x ∈ ∂E},
where ψh → 0 in C1,α(∂E) for all α ∈ (0, 1

2 ).
We show that ψh → 0 in W 2,p(∂E) for all p > 1. To this aim, we claim that

ε−1
h α(Fh, E) → 1. (4.17)

Indeed, if |α(Fh, E) − εh | ≥ σεh for some σ > 0 and for infinitely many h, recalling
(4.14) and the fact that Fh minimizes the functional (4.15), we have

J (Fh) +�1

√
σ 2ε2

h + εh ≤ J (Eh) +�1

√(
α(Eh, E)− εh

)2 + εh = J (Eh) +�1
√
εh

≤ J (E) +
C0

4

(
α(Eh, E)

)2 +�1
√
εh = J (E)+

C0

4
ε2

h +�1
√
εh

≤ J (Fh) +
C0

4
ε2

h +�1
√
εh,

where in the last inequality we have used the local minimality of E with respect to L∞
perturbations proved in Theorem 4.3. Since by the previous chain of inequalities we get
that

�1

√
σ 2ε2

h + εh ≤ C0

4
ε2

h +�1
√
εh,

which is impossible for h large, the claim is proved. Next, we set fh(t) :=√(
t − εh

)2 + εh and we observe that

| f ′
h(t)| ≤ 3

√
εh if |t − εh | ≤ 3εh . (4.18)

By (4.17) we have |α(Fh, E)−εh | ≤ 2εh for h large enough. Thus, if |α(F, E)−εh | ≤ εh
and |F | = |Fh |, by the minimality of Fh and by (4.18), we get

J (Fh) ≤ J (F) +�1

√(
α(F, E)− εh

)2 + εh −�1

√(
α(Fh, E)− εh

)2 + εh

≤ J (F) + 3�1
√
εh |α(Fh, E)− α(F, E)| ≤ J (F) + 3�1

√
εh |Fh�F |. (4.19)

Let X be a smooth divergence-free vector-field in T
N and let �(·, t) the corresponding

volume-preserving flow. Using the Coarea Formula, one can check that

|Fh��(·, t)(Fh)| = |t |
∫
∂Fh

|X · ν| dHN−1 + o(t).

Thus, also by (4.19) we have

J (�(·, t)(Fh))− J (Fh) + 3�1
√
εh |Fh��(·, t)(Fh)|

= J (�(·, t)(Fh))− J (Fh) + 3�1
√
εh |t |

∫
∂Fh

|X · ν| dHN−1 + o(t) ≥ 0 (4.20)
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for t sufficiently small. Dividing the previous inequality by t , letting t → 0+ and t → 0−,
and using [9, Theorem 2.3] we conclude

∣∣∣∣
∫
∂Fh

(H∂Fh + 4γ vFh )X · ν dHN−1
∣∣∣∣ ≤ 3�1

√
εh

∫
∂Fh

|X · ν| dHN−1.

By a density argument similar to the one used in the proof of Corollary 3.4, we deduce
that ∣∣∣∣

∫
∂Fh

(H∂Fh + 4γ vFh )ϕ dHN−1
∣∣∣∣ ≤ 3�1

√
εh

∫
∂Fh

|ϕ| dHN−1

for all ϕ ∈ C∞(∂Fh) with
∫
∂Fh

ϕ dHN−1 = 0. In turn, this implies that there are
constants λh such that

‖H∂Fh + 4γ vFh − λh‖L∞(∂Fh) ≤ 3�1
√
εh → 0.

We may now argue as in Step 4 of the proof of Theorem 4.3 to deduce that

H∂Fh

(· + ψh(·)ν(·)
)→ H∂E (·) in L∞(∂E)

and thus ψh → 0 in W 2,p(∂E) for all p > 1. The conclusion now follows: since
J (Fh) ≤ J (Eh) by the minimality of Fh and since (4.17) holds, we have that

J (Fh) ≤ J (Eh) ≤ J (E) +
C0

4

(
α(Eh, E)

)2 ≤ J (E) +
C0

2

(
α(Fh, E)

)2

for h large. This contradicts the minimality property proved in Theorem 3.9.

Remark 4.4. It is worth remarking that in the previous proof we did not use the second
variation and we have in fact shown that any critical set E , for which the conclusion of
Theorem 3.9 holds, satisfies also the conclusion of Theorem 1.1.

We conclude this section by sketching the proof of the link between local minimizers
of J and of the Ohta-Kawasaki energy.

Proof of Theorem 1.3. We start by observing that the classical Modica-Mortola result
(see [26]; see also [12] for the definition and properties of �-convergence) and the
continuity of the non-local term with respect to the L1 convergence of u imply the
�-convergence of Eε to 16

3 E , where E is the functional defined in (2.1). The conclu-
sion follows from the L1-local minimality of E proved in Theorem 1.1, arguing as in
[8, Prop. 3.2]. ��

Remark 4.5. A careful inspection of the proof of [8, Prop. 3.2] shows that the radius δ in
the local minimality condition is uniform throughout the family {uε}ε<ε0 and depends
only on the local minimality radius of the set E appearing in Definition 2.4.
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5. Application: Minimality of Lamellae

In this section we deal with global (and local) minimality of lamellar configurations.
To this aim, for a given volume fraction parameter m ∈ (−1, 1) we denote by uL the
one-strip lamellar configuration corresponding to the set L := T

N−1 × [0, m+1
2 ] and by

Lm the collection of all sets which may be obtained from L by translations and relabeling
of coordinates.

Theorem 5.1. Assume that L is the unique, up to translations and relabeling of coordi-
nates, global minimizer of the periodic isoperimetric problem. Then the same set is also
the unique global minimizer of the non local functional (2.5), provided γ is sufficiently
small.

Proof. We argue by contradiction assuming that there exist a sequence γh → 0 and a
sequence of global minimizers Eh of

min{Jh(E) : E ⊂ T
N , |E | = |L|},

where Jh(E) := PTN (E) + γh
∫
TN |∇vE |2 dx , such that Eh �∈ Lm for all h. Up to a

subsequence we have Eh → E in L1 and by the (easily proved) �-convergence of Jh to
the perimeter functional as γh → 0 we have that E is a global minimizer of the periodic
isoperimetric problem, thus by assumption E ∈ Lm . Without loss of generality we may
assume E = L .

The second variation of Jh at L in (3.4) reduces to

∂2 Jh(L)[ϕ]
=
∫
∂L

|Dτ ϕ|2 dHN−1 + 8γh

∫
∂L

∫
∂L

G(x, y)ϕ(x)ϕ(y)dHN−1(x) dHN−1(y)

+ 4γh

∫
∂L
∂νvLϕ

2 dHN−1

≥
∫
∂L

|Dτ ϕ|2 dHN−1 − 4γh‖∇vL‖L∞
∫
∂L
ϕ2 dHN−1.

Note that ϕ ∈ T ⊥(∂L) if and only if ϕ ∈ H1(∂L) with zero average on each connected
component of ∂L . Thus, using Poincaré inequality on each connected component of ∂L
we have that

∂2 Jh(L)[ϕ] ≥ 1

2

∫
∂L

|Dτ ϕ|2 dHN−1,

provided that h is large enough, say h ≥ h0. By Theorem 1.1, there exists δ > 0 such
that

Jh0(F) > Jh0(L), for all |F | = |L|, 0 < α(F, L) < δ. (5.1)

We claim that the same holds for all h > h0. Indeed, if for some h > h0 and for some
set F with |F | = |L| and 0 < α(F, L) < δ the above inequality does not hold, then we
have

Jh(F) ≤ Jh(L). (5.2)
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In turn, since L is the unique global minimizer of the perimeter and thus PTN (F) >
PTN (L), we deduce

∫
TN

|∇vL |2 dx −
∫

TN
|∇vF |2 dx > 0.

But then, by (5.2), we get

PTN (F)− PTN (L) ≤ γh

(∫
TN

|∇vL |2 dx −
∫

TN
|∇vF |2 dx

)

< γh0

(∫
TN

|∇vL |2 dx −
∫

TN
|∇vF |2 dx

)
,

which contradicts (5.1). Thus, we have proved that

Jh(F) > Jh(L), for all |F | = |L|, 0 < α(F, L) < δ

for all h ≥ h0. As Eh → L in L1, for h large enough we also have Jh(Eh) > Jh(L),
which contradicts the minimality of Eh . ��

As an immediate consequence of the above theorem we recover the following result,
first proved in [44].

Corollary 5.2. Let N = 2. Fix any m such that |m| < 1 − 2
π

. Then for small γ > 0, any
solution of

min

{
PT2(E) + γ

∫
T2

|∇vE |2 dx : E ⊂ T
2, |E | = m + 1

2

}

belongs to Lm, that is, it is lamellar.

Proof. The proof follows from Theorem 5.1 and from the fact that if |m| < 1 − 2
π

, then
the lamellar sets of Lm are the unique global minimizers of the periodic isoperimetric
problem in T

2, as proved in [22] (see also [8]). ��
The corollary above holds only for N = 2, where the minimality range of lamellar

sets is completely determined. For N = 3, to the best of our knowledge the global
(with uniqueness) minimality of Lm is known only in the case m = 0 (see [21]). In the
following theorem we show that the result still holds for m sufficiently close to 0.

Theorem 5.3. There exists ε > 0 such that if m ∈ (−ε, ε) the lamellar sets in Lm are
the unique solutions to the corresponding periodic isoperimetric problem in T

3.

Proof. We argue by contradiction assuming that there exist mh → 0 and a sequence Eh
of global minimizers of

min
{

PT3(E) : E ⊂ T
3, |E | = mh + 1

2

}
(5.3)

such that Eh �∈ Lmh . As before, we may assume that the sequence Eh converges in L1

to a global minimizer of (5.3) with mh replaced by 0. By the result of [21] (see also
[8, Thm. 4.3]) we may assume that Eh → L = T

2 × [0, 1
2 ] in L1 (up to translation

and relabeling of coordinates). Moreover, arguing as in Proposition 2.7, one can show
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that there exists λ > 0 independent of h such that each Eh is also a minimizer of the
unconstrained penalized problem

min
{

PT3(E) + λ
∣∣∣|E | − mh + 1

2

∣∣∣ : E ⊂ T
3
}
.

Thus, in particular, all sets Eh areω-minimizers of the perimeter with the sameω = 4πλ
3 .

Therefore, by Theorem 4.2 we deduce that for h large ∂Eh = {x + ψh(x)e3 : x ∈ ∂L},
with ψh → 0 in C1(∂L). By adding the constant −mh

2 to ψh only on the upper part of
∂L , we obtain the boundary of a new set E ′

h with the same perimeter as Eh and volume
1
2 . But then,

PT3(Eh) = PT3(E ′
h) > PT3(L),

by the minimality of L . On the other hand, using the fact that all strips have the same
perimeter, PT3(Eh) ≤ PT3(L) by the minimality of Eh . This contradiction concludes
the proof. ��
Remark 5.4. Note that the argument used in the proof of the previous theorem shows
that in any dimension the values of m such that the corresponding strip is the unique
minimizer of the perimeter form an open set.

As before we have the following corollary.

Corollary 5.5. Let N = 3. There exists m0 > 0 and γ0 > 0 such that for |m| < m0 any
solution of

min

{
PT3(E) + γ

∫
T3

|∇vE |2 dx : E ⊂ T
3, |E | = m + 1

2

}

belongs to Lm, provided that γ ≤ γ0.

Proof. The result follows immediately from Theorem 5.3 arguing as in the proof of
Theorem 5.1. ��

We now conclude this section with a result concerning the local minimality of lamel-
lar configurations with multiple strips. To this aim, given m ∈ (−1, 1) and an integer
k > 1, we set Lk := T

N−1 × ∪k
i=1[ i−1

k , i−1
k + m+1

2k ] and denote by Lm,k the collection
of all sets which may be obtained from Lk by translations and relabeling of coordinates.

Proposition 5.6. Fix m ∈ (−1, 1) and γ > 0. Then there exists an integer k0 such
that for k ≥ k0 all sets in Lm,k are isolated local minimizers of (2.5), according to
Definition 2.4.

Proof. First, observe that each Lk is a critical point for J . By Theorem 1.1, it is enough
to show that for k large enough ∂2 J (Lk)[ϕ] > 0 for all ϕ ∈ T ⊥(∂Lk). In fact, by
an argument of [28] it is enough to consider ϕ ∈ H1(∂Lk) with zero average on each



550 E. Acerbi, N. Fusco, M. Morini

connected component of ∂Lk . Then

∂2 J (Lk)[ϕ] =
∫
∂Lk

|Dτ ϕ|2 dHN−1

+ 8γ
∫
∂Lk

∫
∂Lk

G(x, y)ϕ(x)ϕ(y)dHN−1(x) dHN−1(y)

+ 4γ
∫
∂Lk

∂νvLkϕ
2 dHN−1

≥
∫
∂Lk

|Dτ ϕ|2 dHN−1 − 4γ ‖∇vLk ‖L∞
∫
∂Lk

ϕ2 dHN−1.

Note that vLk (x) = vLk (xN ) = 1
k2 vL(kxN ) and thus ‖∇vLk ‖L∞ = C

k . Hence, the result
follows using the Poincaré inequality. ��

6. The Neumann Problem

A variant of our result, which is important in the applications, is the Neumann problem:
as before we consider the functional

JN (E) := P�(E) + γ
∫
�

|∇vE |2 dx (6.1)

and the function

uE = χE − χ�\E , m = −
∫
�

uE dx,

but the condition on vE is now⎧⎨
⎩

−�vE = uE − m in �∫
�

vE dx = 0,
∂vE

∂ν
= 0, on ∂�.

As in (2.3) we have∫
�

|∇vE |2 dx =
∫
�

∫
�

G(x, y)uE (x)uE (y) dxdy,

where G is the solution of⎧⎨
⎩

−�yG(x, y) = δx − 1
|�| in �,∫

�

G(x, y) dy = 0, ∇yG(x, y) · ν(y) = 0, if y ∈ ∂�.

As in the periodic case, if E is a sufficiently smooth (local) minimizer of the functional
(6.1), then it satisfies the Euler-Lagrange equation

H∂E (x) + 4γ vE (x) = λ for all x ∈ ∂E ∩�,
and moreover ∂E must meet ∂� orthogonally (if at all), see [9, Rem. 2.8]. However,
in this paper we shall only deal with case ∂E ∩ ∂� = ∅. We shall refer to any suffi-
ciently smooth set satisfying the Euler-Lagrange equation as a regular critical set for
the functional (6.1).
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Note that, unlike in the periodic case, the functional JN is not translation invariant,
therefore we don’t need to consider the distance α defined in (1.3). Precisely, we say
that a set E ⊂⊂ � is a local minimizer if there exists δ ≥ 0 such that

JN (F) ≥ JN (E) for all F ⊂ �, |F | = |E |, and |E�F | ≤ δ.

If the inequality is strict whenever |E�F | > 0, we say that E is an isolated local
minimizer.

Provided that ∂E does not meet ∂�, the regularity result stated in Theorem 2.8 for the
periodic case still holds in the Neumann case, without any change in the proof; similarly,
if � : � × (−1, 1) → � is a C2-flow, defining the second variation of JN at E as in
Section 3, the representation formula in Theorem 3.1 holds. Therefore, we consider the
same quadratic form ∂2 JN (E) defined in (3.4).

Since the problem is not translation invariant anymore, the spaces T (∂E), T ⊥(∂E),
and the decomposition (3.6) are no longer needed. Therefore, we say that JN has positive
second variation at the critical set E if

∂2 JN (E)[ϕ] > 0 for all ϕ ∈ H̃1(∂E) \ {0}.
As in Lemma 3.6, we immediately have that

m0 := inf
{
∂2 JN (E)[ϕ] : ϕ ∈ H̃1(∂E), ‖ϕ‖H1 = 1

}
> 0. (6.2)

We now state the main result of the section.

Theorem 6.1. Let E ⊂⊂ � be a regular critical set with positive second variation. Then
there exist C, δ > 0 such that

JN (F) ≥ JN (E) + C |E�F |2,
for all F ⊂ �, with |F | = |E | and |E�F | < δ.

The proof of the result is very similar to the one of Theorem 1.1 with several sim-
plifications due to the fact that JN is not translation invariant. We give only an outline
of the proof, indicating the main changes. As in the periodic case, we start by a local
minimality result with respect to small W 2,p perturbations. More precisely, we have the
following counterpart to Theorem 3.9:

Theorem 6.2. Let p > max{2, N − 1}, and let E ⊂⊂ � be a regular critical set for JN
with positive second variation. Then there exist δ > 0,C0 > 0 such that

JN (F) ≥ JN (E) + C0|E�F |2,
whenever F ⊂ T

N satisfies |F | = |E | and ∂F = {x +ψ(x)ν(x) : x ∈ ∂E} for some ψ
with ‖ψ‖W 2,p(∂E) ≤ δ.

Sketch of the proof. Since the functional is not translation invariant we don’t need
Lemma 3.8, and inequality (3.38) proved in Step 1 of the proof of Theorem 3.9 simplifies
to

inf
{
∂2 JN (F)[ϕ] : ϕ ∈ H̃1(∂F), ‖ϕ‖H1(∂F) = 1

}
≥ m0

2
,

where m0 is the constant defined in (6.2). The proof of this inequality goes exactly as
before.

Coming to Step 2 of the proof of Theorem 3.9, we don’t need (3.44) and thus we
don’t need to replace F by a suitable translated F −σ . Instead, we only need to observe
that (3.46) is still satisfied and that the rest of the proof remains unchanged. ��
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Next we observe that the statement of Theorem 4.3 and its proof remain unchanged,
provided we choose δ0 such that Iδ0(E) ⊂⊂ �.

We are now left with the last step of the proof of Theorem 6.1.

Proof of Theorem 6.1. We want to pass from the L∞-local minimality to the L1-local
minimality. This can be done arguing by contradiction as in the proof of Theorem 1.1, by
assuming that there exists a sequence Eh ⊂ �, |Eh | = |E |, such that εh := |Eh�E | →
0 and

JN (Eh) ≤ JN (E) +
C0

4
|Eh�E |2,

where C0 is as in the statement of Theorem 6.2. Then, one replaces the sequence Eh
with a sequence of minimizers Fh of the penalized functionals

JN (F) +�1

√(|F�E | − εh
)2 + εh +�2

∣∣|F | − |E |∣∣,
for suitable �1 and �2 chosen as in the proof of Theorem 1.1.

Exactly as before, one can prove that χFh → χE in L1. An obvious modification of
the argument in Step 1 of the proof of Theorem 4.3 shows that the sets Fh are �-min-
imizers of the area functional for some � > 0 independent of h. Then, Theorem 4.2
yields that Fh → E in C1,α for all α ∈ (0, 1

2 ). In particular, Fh ⊂⊂ � for h large
enough. The rest of the proof goes unchanged. ��

As in the previous section we may consider the Ohta-Kawasaki energy, rewritten
from (1.1) in terms of u, v as

Eε(u) = ε

∫
�

|∇u|2 dx +
1

ε

∫
�

(u2 − 1)2 dx + γ0

∫
�

|∇v|2 dx,

where γ0 = 16γ /3 and v is the solution to

⎧⎨
⎩

−�v = u − m in �∫
�

v dx = 0,
∂v

∂ν
= 0, on ∂�.

Fix m ∈ (−1, 1). We say that a function u ∈ H1(�) is an isolated local minimizer for
the functional Eε with prescribed volume fraction m, if −∫

�
u dx = m and there exists

δ > 0 such that

Eε(u)<Eε(w) for all w ∈ H1(�) s.t. −
∫
�

w dx =m and 0 < ‖u − w‖L1(�) ≤ δ.

Using [25, Thm. 2.1] in place of [8, Prop. 3.2] and the minimality result of Theorem 6.1
we get:

Theorem 6.3. Let E be a regular critical set for the functional JN with positive second
variation and uE = χE −χ�\E . Then there exist ε0 > 0 and a family {uε}ε<ε0 of isolated
local minimizers of Eε with prescribed volume m = −∫

�
uE dx such that uε → uE in

L1(�) as ε → 0.
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Remark 6.4. (Existence of many droplet stable configurations for the Ohta-Kawasaki
energy in two and three dimensions). Let � be a bounded smooth open set in R

3. In
[39, Thms. 2.1 and 2.2] the authors construct a stable critical configuration for the sharp
interface functional (6.1) with a many droplet pattern. More precisely, for any k ∈ N

they show the existence of a parameter range for γ (see [39, Eq. (2.12)]) such that JN
admits a critical set, with positive second variation, made up of k connected components
that are close to small balls compactly contained in �. Theorem 6.3 then applies and
yields the existence of isolated local minimizers of the Ohta-Kawasaki energy Eε with a
many droplet pattern for small values of ε. A similar two-dimensional construction, to
which Theorem 6.3 applies as well, has been carried out in [38].
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7. Appendix

This section is devoted to the computation of the second variation and to the proof of
two auxiliary results.

Proof of Theorem 3.1. We set

E(t) := PTN (Et ) and F(t) :=
∫

TN
|∇vt |2 dx . (7.1)

Arguing as in Step 3 of the proof of [5, Theorem 3.6] (see also [42, Sect. 9]) we get

E ′′(0) =
∫
∂E

(
|Dτ (X · ν)|2 − |B∂E |2(X · ν)2

)
dHN−1

+
∫
∂E

H
(

H(X · ν)2 + Z · ν − 2Xτ · Dτ (X · ν) + B∂E [Xτ , Xτ ]
)

dHN−1,

(7.2)

where Z := ∂2�

∂t2 (x, 0) = DX [X ] and H stands for H∂E . On the other hand, by

[9, Eq. (2.67)]

F ′′(0) = 8γ
∫
∂E

∫
∂E

G(x, y)
(
X · ν)(x)(X · ν)(y)dHN−1(x) dHN−1(y)

+4γ
∫
∂E

div(vX)(X · ν) dHN−1. (7.3)

Note that
∫
∂E

div(vX)(X · ν) dHN−1

=
∫
∂E

∇v · X (X · ν) dHN−1 +
∫
∂E
v(div X)X · ν dHN−1
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=
∫
∂E
∂νv(X · ν)2 dHN−1 +

∫
∂E

(
Dτ v · Xτ

)
X · ν dHN−1

+
∫
∂E
v(div X)X · ν dHN−1

=
∫
∂E
∂νv(X · ν)2 dHN−1 −

∫
∂E
v divτ

(
Xτ (X · ν)) dHN−1

+
∫
∂E
v(div X)X · ν dHN−1, (7.4)

where in the last equality we integrated by parts. Finally, we claim that

H(X · ν)2 + Z · ν − 2Xτ · Dτ (X · ν) + B∂E [Xτ , Xτ ]
= (X · ν) div X − divτ

(
Xτ (X · ν)). (7.5)

Notice that the thesis follows from (7.1)–(7.5). Hence, it remains to show that (7.5)
holds. To this aim, we observe that

Xτ · Dτ (X · ν) = Xτ · D(X · ν) = ν · DX [Xτ ] + X · Dν[Xτ ]
= ν · DX [Xτ ] + Xτ · Dν[Xτ ] = ν · DX [Xτ ] + B∂E [Xτ , Xτ ].

Therefore, from the last equality, recalling that Z = DX [X ], we have that

H(X · ν)2 + Z · ν − 2Xτ · Dτ (X · ν) + B∂E [Xτ , Xτ ]
= H(X · ν)2 + ν · DX [X ] − Xτ · Dτ (X · ν)− ν · DX [Xτ ]
= H(X · ν)2 + ν · DX [(X · ν)ν] − Xτ · Dτ (X · ν)
= H(X · ν)2 + (X · ν)(div X − divτ X)− Xτ · Dτ (X · ν). (7.6)

On the other hand,

divτ
(
Xτ (X · ν)) = Xτ · Dτ (X · ν) + (X · ν) divτ Xτ

= Xτ · Dτ (X · ν) + (X · ν) divτ X − (X · ν) divτ
(
(X · ν)ν)

= Xτ · Dτ (X · ν) + (X · ν) divτ X − H(X · ν)2.
Thus, claim (7.5) follows combining the above identity with (7.6). ��
Lemma 7.1. Under the assumptions of Theorem 3.9, given q ≥ 1, there exist δ,C > 0
such that if ‖ψ‖W 2,p(∂E) ≤ δ, then for all t ∈ [0, 1],

‖X‖Lq (∂Et ) ≤ C‖X · νEt ‖Lq (∂Et ), ‖Dτt X‖L2(∂Et )
≤ C‖X · νEt ‖H1(∂Et )

, (7.7)

where X is defined by (3.19).

Proof. Given ε > 0, by (3.12) it follows that there exists δ > 0 such that if
‖ψ‖W 2,p(∂E) ≤ δ, then

‖ν − νEt ‖L∞(∂Et ) ≤ ε.

Moreover, setting νσ := ∇dσ|∇dσ | , by (3.20) we have that X = (X · νσ )νσ . Moreover, from
the above inequality and (3.13), we get

‖νσ − νEt ‖L∞(∂Et ) ≤ 2ε. (7.8)
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Thus, we have
∣∣Xτt

∣∣ = ∣∣X − (X · νEt )νEt
∣∣ = ∣∣(X · νσ )νσ − (X · νEt )νEt

∣∣
≤ ∣∣(X · νEt )(νσ − νEt )

∣∣ +
∣∣X · (νσ − νEt )νσ

∣∣ ≤ 4ε|X |. (7.9)

Hence, the first inequality in (7.7) follows.
We now prove the second estimate in (7.7). Recalling (7.8), we have
∣∣Dτt Xτt

∣∣ = ∣∣Dτt X − Dτt

(
(X · νEt )νEt

)∣∣ = ∣∣Dτt

(
(X · νσ )νσ

)− Dτt

(
(X · νEt )νEt

)∣∣
≤ ∣∣Dτt

(
(X · νEt )(νσ − νEt )

)∣∣ +
∣∣Dτt

(
X · (νσ − νEt )νσ

)∣∣
≤ Cε

(∣∣Dτt X
∣∣ +
∣∣Dτt

(
X · νEt

)∣∣) + C |X |(∣∣Dτt νσ
∣∣ +
∣∣Dτt ν

Et
∣∣).

From this inequality, taking ε (and in turn δ) sufficiently small, also by (7.9), we deduce
that

∣∣Dτt Xτt

∣∣ ≤ C
∣∣Dτt

(
X · νEt

)∣∣ + C |X · νEt |(∣∣Dτt νσ
∣∣ +
∣∣Dτt ν

Et
∣∣).

Integrating this inequality, we obtain

∥∥Dτt Xτt

∥∥2
L2(∂Et )

≤ C
∥∥Dτt

(
X · νEt

)∥∥2
L2(∂Et )

+ C
∫
∂Et

|X · νEt |2[∣∣Dτt νσ
∣∣ +
∣∣Dτt ν

Et
∣∣]2 dHN−1

≤ C
∥∥X · νEt

∥∥2
H1(∂Et )

+ C
∥∥X · νEt

∥∥2

L
2p

p−2 (∂Et )

∥∥∣∣Dτt νσ
∣∣

+
∣∣Dτt ν

Et
∣∣∥∥2

L p(∂Et )
≤ C

∥∥X · νEt
∥∥2

H1(∂Et )
,

where the last inequality follows from the Sobolev Embedding Theorem and the assump-
tion p > max{2, N − 1}. ��

The next lemma is a consequence of the classical L p elliptic theory.

Lemma 7.2. Let E be a set of class C2 and let Eh be a sequence of sets of class C1,α

for some α ∈ (0, 1) such that

∂Eh = {x + ψh(x)ν(x) : x ∈ ∂E},
where ψh → 0 in C1,α(∂E). Assume also that H∂Eh ∈ L p(∂Eh) and that

H∂Eh

(· + ψh(·)ν(·)
)→ H∂E (·) in L p(∂E). (7.10)

Then ψh → 0 in W 2,p(∂E).

Proof. We only sketch the proof: by localization, as in the proof of (4.10) we may
reduce to the case when both ∂E and all ∂Eh are graphs of functions g, gh in a cylin-
der C = B ′ × (−L , L), where B ′ ⊂ R

N−1 is a ball centered at the origin. From our
assumptions we have that g ∈ C2(B ′) and

gh → g ∈ C1,α(B ′) , div

( ∇x ′ gh√
1 + |∇x ′ gh |2

)
→ div

( ∇x ′ g√
1 + |∇x ′ g|2

)
in L p(B ′) .
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Standard elliptic regularity gives that gh is bounded in W 2,p in a smaller ball B ′′, thus
we may carry out the differentiation and using the C1 convergence of gh to g we are led
to

Ai j (x
′)∇2

i j gh → Ai j (x
′)∇2

i j g in L p(B ′′) ,
where

A = I − ∇x ′ g ⊗ ∇x ′ g

1 + |∇x ′ g|2 .

As before, standard elliptic estimates imply the strong (local) convergence in L p of
∇2

x ′ gh . ��
Remark 7.3. If in the above lemma we replace (7.10) by

sup
h

‖H∂Eh ‖L p(∂Eh) < ∞,

then the same argument shows that the functions ψh are equibounded in W 2,p(∂E).
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