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Abstract: We consider a class of singular Liouville equations on compact surfaces moti-
vated by the study of Electroweak and Self-Dual Chern-Simons theories, the Gaussian
curvature prescription with conical singularities and Onsager’s description of turbulence.
We analyse the problem of existence variationally, and show how the angular distribution
of the conformal volume near the singularities may lead to improvements in the Moser-
Trudinger inequality, and in turn to lower bounds on the Euler-Lagrange functional. We
then discuss existence and non-existence results.

1. Introduction

On a compact orientable surface (�, g) without boundary and with metric g we consider
the equation

− �gu =ρ

(
h(x)e2u

´
�

h(x)e2udVg
−a(x)

)
−2π

m∑
j=1

α j

(
δp j −

1

|�|
)

,

ˆ

�

a(x)dVg =1.

(1)

Here ρ is a positive parameter, a, h : � → R two smooth functions, h(x) > 0 for every
x ∈ �, α j > 0, p j ∈ � and |�| denotes the area of �, that is |�| = ´

�

dVg .

The analysis of (1) is motivated by the study of vortex type configurations (see
for example [4,11,26,62 and 24,33,47,54,60,61,64]) in the Electroweak theory of
Glashow-Salam-Weinberg [44], and in Self-Dual Chern-Simons theories [37,41,42].
We refer the reader to [25,68] and to the monographs [67,72] for further details and
an up to date set of references concerning these applications. Other classical problems
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call for the study of (1) such as the prescribed Gaussian curvature problem on surfaces
with conical singularities [5,21,69,70] and Onsager’s statistical mechanics description
of two-dimensional turbulence [15] in the presence of vortex sources [19]. Moreover the
study of (1) and of the corresponding Dirichlet problem (see (16) below) on bounded
domains 	 ⊂ R

2 has an independent interest related to the description of rotational
shear flows [71] and/or Euler flows in the presence of vortex sources [9]. It turns out that
the structure of the solutions’ set for these elliptic problems is extremely sensitive to the
data. For example it is well known (see Proposition 5.7 below) that if 	 is the unit ball
with just one singularity (i.e. m = 1) located at the origin and h ≡ 1, then we have non
existence of solutions for (16) with ρ ≥ 4π(1 + α1). On the other side, if either � ≡ S

2

or 	 is simply connected (at least to our knowledge, with few exceptions which will be
shortly discussed below), there are no general existence results at all for either (1) or
(16) with ρ > 4π . In any case there are still relatively few results at hand concerning
existence of a solution for (1) (some of which will be described in more detail below).
The reason for this gap consists essentially in the well known issue of non coercivity
of the variational functionals (see (6) below) associated to the study of these problems
when ρ ≥ 4π . It seems in particular that we have a quite unsatisfactory understanding
of some of these existence/non existence problems as for example a model case [9]
suggests that the Dirichlet problem on simply connected domains should admit at least
one solution for each ρ ∈ (0, 4π mini=1,...,m{1 +αi })\4πN. It is one of our motivations
to fill this gap here.

In [11] an existence theorem is proved via min-max methods for surfaces with positive
genus and for ρ ∈ (4π, 8π). More recently the latter result has been extended in [4,5],
still for positive genus, for ρ outside the discrete critical set (see (10) and Theorem 2.9
below) found in [11]. In [53] the case of arbitrary genus was treated, but only for α j ≤ 1
for all j and ρ ∈ (4π, 8π).

In [24] existence results are deduced by calculating the Leray-Schauder degree when
α j ≥ 1 for all j and ρ ∈ (4π, 8π). In [25,26] an on-going project to compute the
Leray-Schauder degree of the equation is presented, using refined blow-up analysis and
Lyapunov-Schmidt reductions, concerning the case α j ∈ N for all j . This approach has
been successful for the regular case, when all α j ’s are zero: a formula for the degree of
the equation has been derived in [22,23] building upon previous blow-up analysis and
quantization results in [14,45,46].

Necessary and sufficient conditions for the existence of a solution for the Dirichlet
problem in the critical case ρ = 4π in the presence of singularities on simply connected
domains has been recently found in [7] (see also [6]).

We also refer to [29,38] for some perturbative results providing solutions of multi-
bump type (via implicit function theorems) for special values of the parameter ρ for (1)
on bounded two dimensional domains with Dirichlet boundary conditions.

The goal of this paper is to prove a key inequality for treating (1) variationally in gen-
eral situations, and to present some applications to the existence problem in simple cases.
In particular 1) compared to [4,5 and 11] we remove the assumption on the genus; 2)
compared to [24 and 53] we also allow the α j ’s and ρ to be arbitrarily large; 3) compared
to [25,26] we do not require α j ∈ N: we notice that the structure of solutions to (1) might
change drastically depending on ρ when the coefficients α j are not integer, see Remark
1.3 (a), and that in some situations one might still have existence when the degree of the
equation vanishes (see [34]); 4) compared to [29,38 and 7], we allow generic values of
ρ. We also expect that our result, combined with those in [17], might allow to treat the
case of α’s with arbitrary sign, more relevant for geometric applications, as well as give
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precise homological information on the variational structure (about the latter issue, see
more comments after (10)).

Problem (1) admits an equivalent formulation with variational structure: letting
G p(x) denote the Green’s function of −�g on � with pole at p, i.e. the unique solution
to

− �gG p(x) = δp − 1

|�| on �, with
ˆ

�

G p(x) dVg = 0, (2)

by the substitution

u �→ u + 2π

m∑
j=1

α j G p j (x), h(x) �→ h̃(x) = h(x)e−2π
∑m

j=1 α j G p j (x)
, (3)

(1) transforms into an equation of the type

− �gu = ρ

(
h̃(x)e2u

´
�

h̃(x)e2udVg
− 1

|�|

)
on �. (4)

In general the constant 1
|�| in (4) is replaced by a smooth function ã(x) with

´
�

ã(x)dVg = 1: this term is indeed rather harmless, and we will not comment on
this issue any further.

Since G p has the asymptotic behavior G p j (x) 	 1
2π

log 1
d(x,p j )

near p j , by (3) the

function h̃ satisfies

h̃ > 0 on � \ ∪ j {p j }; h̃(x) 	 γ j d(x, p j )
2α j near p j (5)

for some constant γ j > 0, where d(·, ·) stands for the distance induced by g.
Problem (4) is the Euler-Lagrange equation of the functional

Iρ,α(u)=
ˆ

�

|∇gu|2dVg +2
ρ

|�|
ˆ

�

u dVg −ρ log
ˆ

�

h̃(x)e2udVg; u ∈ H1(�). (6)

One basic tool for treating such kind of functionals is the well known Moser-Trudinger
inequality

log
ˆ

�

e2(u−u)dVg ≤ 1

4π

ˆ

�

|∇gu|2dVg + C; u ∈ H1(�), u =
 

�

u dVg, (7)

see e.g. [39 and 56]. The value 1
4π

is sharp in (7), as one can insert in the above inequality
a test function like

ϕλ,x (y) = log
λ

1 + λ2dist (x, y)2 ; λ > 0, x ∈ �, (8)

and check that both sides diverge to infinity at the same rate. This function is usually
called a standard bubble, since the conformal metric g̃ = e2ϕλ,x endows � with a
spherical metric near x .
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In the presence of singularities, namely when a weight h̃ as in (5) multiplies the
exponential term, a modified sharp Moser-Trudinger inequality was derived in [20 and
70] (see also [18], or also [28,40] for extensions to general settings), and takes the form

log
ˆ

�

h̃e2(u−u)dVg ≤ 1

4π

1

min
{
1, min j {1 + α j }

}
ˆ

�

|∇u|2dVg + C. (9)

As one can see, the constant is bigger when one of the coefficients - say α j - is negative,

as h̃ is singular near α j . However, when all of the α j ’s are positive, as in the case we

are considering, the best constant remains 1
4π

. The fact that h̃ is equal to zero at all
singular points does not give a smaller constant, as one may initially expect: inserting in
the inequality a bubble at a regular point x does not pick up any effect of the vanishing
of h̃ near the p j ’s.

From (9) one has that Iρ,α is bounded from below for ρ < 4π , and hence one can
find solutions of (1) by globally minimizing Iρ,α , which is coercive, using the direct
methods of the calculus of variations. When ρ > 4π instead the situation becomes more
delicate, as inf Iρ,α = −∞: one might however try to obtain solutions as saddle points.
We describe next some previous results in the literature which rely on this strategy.

Even though Iρ,α(u) is not bounded below on H1(�), one might hope to find suit-
able conditions on u to recover some control. Calling A ⊆ H1(�) a set of functions
for which this lower bound holds, one can then try to show that A is always intersected
along a suitable family of min-max maps.

For the regular case of (1) such a lower bound was obtained in by W.Chen and C.Li
in [21] (extending previous results in [1 and 57] for the standard sphere) under the con-
dition that two subsets of � with positive mutual distance both contain a finite portion of
the total mass. Under such an assumption, one finds that the best constant in (7) can be
chosen arbitrarily close to 1

8π
: as a consequence, when ρ < 8π and when Iρ,α(u) is large

negative, e2u has to concentrate near a single point of � (similarly, if ρ < 4(k +1)π, e2u

concentrates near at most k points, as shown in [35]). This property was used in [32] to
obtain existence on surfaces of positive genus when ρ ∈ (4π, 8π), and in [34] (relying
on an argument in [35] for the Q-curvature prescription problem) for ρ �∈ 4πN on all
surfaces. The restriction ρ �∈ 4πN is a compactness condition which allows to apply the
deformation lemma, see [63,49] (see also [23,26] for some results concerning the case
ρ ∈ 4πN).

For the singular case, a related approach has been used in [11] where, through a
new quantization property (see Theorem 2.9) the result in [32] was extended to the case
of positive α j ’s (and, still, for positive genus). In particular, compactness is obtained
provided ρ �∈ α , where

α =
⎧⎨
⎩4kπ + 4π

∑
j∈J

(1 + α j ) | k ∈ N ∪ {0}, J ⊆ {1, . . . , m}
⎫⎬
⎭ . (10)

The latter existence result was later generalized in [4,5] to the case of arbitrarily large
(but positive) values of ρ.

The last two existence results however do not fully capture the variational features
of the presence of the singularities, from three different aspects. They do neither extend
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to the case of the sphere or to the case when some negative weights are present (which
could be relevant, we recall, for the Gaussian curvature prescription and to the study of
turbulent flows interacting with vortex sinks). Finally, the analysis is not sufficient if one
wants to fully characterize from the homological point of view the structure of sublevels
of Iρ,α , to compute for example the degree of the equation as it has been done in [52]
for the regular case.

An improvement of inequality (9), more intrinsically related to the presence of sin-
gularities, was derived in [36]: it was shown that for any α > −1 there exists Cα > 0
such that

log
ˆ

B
|x |2αe2(u−u)dVg ≤ 1

4(1 + α)π

ˆ

B
|∇gu|2dVg + Cα; u ∈ H1

r (B), (11)

where B is the unit ball of R
2 and H1

r the space of radial functions in B of class H1.
This result has a previous related counterpart in [55], where the case of curvatures with
Zk symmetry and polynomial decay in R

2 was considered, among others.
In [53] a general improvement (without assuming any symmetry) was found for

α ∈ (0, 1] and ρ ∈ (4π, 8π): recall that in this case, by the above discussion, a low
energy for u implies concentration of the volume near at most one point. The novelty in
[53] was to derive an extra characterization of this point, which takes into account both
the scale of concentration of the volume measure and its center of mass. More precisely,
it was proven that there exists a continuous map β from low sublevels of Iρ,α into B
such that if β(u) hits the singularity then (9) holds with 1

4π
replaced by 1+ε

4π(1+α)
, where

ε can be chosen arbitrarily small (see Proposition 2.7 for more details). Notice that this
condition relaxes the radiality in [36] to a two-dimensional constraint, and that it allows
an arbitrarily small scale of concentration at a single point (so [21] would not apply).
The condition α ≤ 1 is indeed sharp in this argument, as one can find counterexamples
for α > 1. We also refer to [54] where a somehow related strategy is used for Toda
systems (arising from non-abelian theories).

The main goal of this paper is to find a general condition to get an improved inequal-
ity for arbitrary α’s, with no symmetry requirements, and which is flexible enough to
be combined with min-max arguments. As we will describe, our approach combines
the scaling invariance properties in [53] and the possibility of volume concentration at
multiple points (as in [34,35]).

To explain this condition in more detail, suppose we are on the unit ball B of R
2 and

that we are dealing with only one singularity at the origin with weight α. Let f̃u denote
the probability measure on B,

f̃u = h̃(x)e2u

´
B h̃(x)e2udx

. (12)

Roughly speaking, our result can be interpreted as a version of the above concentration
property at finitely-many points in a complete setting, blowing-up the metric near the
singularity as g̃ = 1

|x |2 (dx)2 so that the Euclidean metric becomes cylindrical. To state
this property rigorously, assuming that ρ ∈ (4kπ, 4(k + 1)π), given δ > 0 small we
define

Jk,δ( f̃u) = sup
x1,...,xk �=0

ˆ

∪k
i=1 Bδ|xi |(xi )

f̃udx . (13)
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To describe our strategy, we first consider two alternatives which may occur: when
Jk,δ( f̃u) is close to 1 and when it is not.

When this quantity is close to 1, we are in a situation similar to Chen and Li’s
(but in the cylindrical metric). For the regular case, the argument in [34] (or in [35])
implies that if k small balls in B contain most of the volume (as in this first alterna-
tive), then it is possible to find a continuous map from these measures into the for-
mal barycenters of B of order k, namely the probability measures of the form Bk ={∑k

i=1 tiδxi : ti ≥ 0,
∑k

i=1 ti = 1, xi ∈ B
}

.

In our case, it is natural to incorporate the dilation invariance of the problem (corre-
sponding to a translation along the axis of the cylinder), and to project onto the barycen-
ters of order k of S1, which coincides with the cylinder factoring out the translations.

For doing this, we define the probability measure on the circle

μu(A) =
ˆ

Ã
f̃udx; A ⊆ S1, Ã = ∪t∈(0,1]t A. (14)

When Jk,δ( f ) is close to 1 then μu 	 ∑k
i=1 tiδθi (in the distributional sense) for some

ti ≥ 0 and some θi ∈ S1. The k-barycenters of S1, (S1)k , are known to be homotopically
equivalent to S2k−1, see Theorem 1.1 and Corollary 1.5 in [43]. It is however convenient
for us to understand this set in more detail, proving that it is indeed homeomorphic to
a (piecewise smooth) immersed sphere Sk in C

k with interior Uk being a neighborhood
of the origin, see Sect. 3. This is useful in order to construct a continuous projection of
a small neighborhood Nk of Sk onto Sk itself.

More precisely, let

Fk( f̃u) =
(ˆ

S1
z dμu,

ˆ

S1
z2dμu, . . . ,

ˆ

S1
zkdμu

)
(15)

map the probability measures on S1 into C
k . Using this map, we define Sk to be

Fk((S1)k), which can be seen to be homeomorphic to Sk : we check that in the first
alternative (Jk,δ( f̃u) close to 1) Fk( f̃u) lies in Nk , so we can project continuously onto
Sk 	 (S1)k .

We consider next the second of the two alternatives, namely when Jk,δ( f̃u) is bounded
away from 1. One thing to be immediately noticed is that while in a compact situation
one always obtains weak convergence of a sequence of probability measures to a prob-
ability measure, in the complete case some part of the mass (or the whole one) might
vanish (borrowing the terminology of concentration-compactness theory).

We show by a covering argument that if Jk,δ( f̃u) is bounded away from 1 then either
some volume concentrates near at least k + 1 well separated points with respect to the
cylindrical metric, or that some part of the measure spreads on the cylinder (giving rise
to a vanishing), see Lemma 4.2. In either case, using harmonic liftings and some argu-
ment in [53] (see Proposition 2.7) we show that the constant in (9) improves by a factor
min{1+k, 1+α}, see Proposition 4.1 (recall that α stands for the weight of the singularity
at the origin). One condition, easy to verify, which guarantees this improvement is the
vanishing of the moments of the measure μu up to order k, see Corollary 4.6. Qualita-
tively, this is quite similar to the requirement on β(u) in [53], see the comments after
(11). Furthermore, it would apply to a symmetric case as in [55], but it only imposes
finitely-many integral constraints on u.
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We employ the previously described inequality to find new existence results for (1)
and its analogous Dirichlet problem on bonded domains 	 ⊂ R

2, that is
⎧⎨
⎩

−�u = ρ
h̃e2u

´
B h̃e2udx

in 	

u = 0 on ∂	,

(16)

where, h̃(x) = h(x)e−2π
∑m

j=1 α j G p j ,0(x) for some strictly positive and smooth h on 	

and, for p ∈ 	, G p,0(x) denotes the Green’s function uniquely defined by

− �G p,0(x) = δp on 	, G p,0(x) = 0 on ∂	. (17)

Theorem 1.1. Let 	 ⊂ R
2 be an open and bounded domain, and let m �= 0. Then

problem (16) admits a solution for every ρ ∈ (0, 4π mini=1,...,m{1 + αi }) \ 4πN.

Theorem 1.2. Suppose � is a topological sphere, and let m ≥ 2. Then (1) has a solution
provided ρ ∈ (0, 4π mini=1,...,m{1 + αi }) \ 4πN.

Remark 1.3. (a) The upper bounds on ρ in Theorems 1.1 and 1.2 are sharp: in Sect. 5
we complement our results with Propositions 5.7 and 5.8, giving non existence for
larger values of ρ (for m = 1 in the unit ball or R

2 and for m = 2 on S2).
(b) We will prove in detail Theorem 1.1 only for simply connected domains and for

m = 1, since this case is the simplest one requiring our new estimates. We sketch
the argument for the other cases in Remark 5.6, since the proof adapts quite easily.
The counterpart of Theorem 1.2 for surfaces with positive genus (actually a more
general version of it, without upper bounds on ρ) was proved in [5]: in Remark 5.6
we will briefly discuss how our method can also be adapted to these surfaces when
ρ < 4π mini=1,...,m{1 + αi }.

To prove Theorem 1.1 we employ a min-max scheme which uses the formal barycen-
ters of S1. More precisely, let k be the unique integer for which ρ ∈ (4kπ, 4(k + 1)π).
Then, since Jk,δ( f̃u) separate from 1 leads to a lower bound for Iρ,α , the above discus-
sion suggests that if u has low energy, then the measure μu on S1 (see (14)) should be
close to some element of (S1)k in the distributional sense.

We build a min-max scheme based on this idea: starting from σ ∈ (S1)k , we define a
test function (see (63)) for which the associated conformal volume resembles σ , and on
which Iρ,α attains large negative values, see Lemma 5.1. Since (S1)k 	 S2k−1 (see the
comments before (15)), the family of these test functions forms a 2k − 1-dimensional
sphere in H1

0 (B), on which the supremum of Iρ,α is very low.
We then complete this family with a map from a topological ball in C

k into H1
0 (B),

and we consider the min-max value associated to this construction, see Proposition 5.2.
The improved inequality in Proposition 4.1 is used to show that the min-max value is
strictly larger than the maximal value at the boundary, otherwise by Proposition 3.1 we
would be able to find (naively) a retraction from the unit ball of C

k onto its boundary,
which is a contradiction. Details are given in Sect. 5.

The compactness issue due to a lack of knowledge about the Palais-Smale condition
can be tackled via by now standard means: varying the parameter ρ and reasoning as
in [49,63] it is possible to find ρn → ρ for which Iρn ,α has a bounded Palais-Smale
sequence and hence a solution. Convergence can then be proved using Theorem 2.9 and
Corollary 2.10.
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The proof of Theorem 1.2 can be handled using minor modifications: the main point
is that concentration of conformal volume may occur either near the singularity p1 or
near p2. The corresponding improved inequality is given in Proposition 5.3, where one
can see that both weights α1, α2 play a role. The proof of the non existence results in
Propositions 5.7 and 5.8 are shown using well-known Pohoz̆aev type identities (see also
the recent paper [16] for non existence results on surfaces with positive genus).

The paper is organized as follows. In Sect. 2 we list some preliminary results on
elementary inequalities, the Moser-Trudinger inequality and some of its improvements,
together with the compactness result from [11]. In Sect. 3 we show how to embed con-
tinuously the barycenters (S1)k into C

k using moments of measures on the unit circle,
and how to project continuously onto this image the family of functions for which Jk,δ is
close to 1. In Sect. 4 we then analyse the complementary situation, proving a dichotomy
result in Proposition 4.2 and then the improved inequality in both alternatives. In Sect. 5
we then prove both existence and non existence results.

2. Notation and preliminaries

This section contains some useful preliminary material, including elementary inequali-
ties, some variants of the Moser-Trudinger inequality from [21,34,35,53], and a com-
pactness results from [11].

We will deal with either compact Riemannian surfaces (�, g), with or without bound-
ary, or with the unit ball B of R

2. We let d(x, y) be the distance of two points x, y, while
Br (p) will stand for the open metric ball of radius r and center p. We also set, for
convenience

Br = {x ∈ B | dg(x, 0) < r}, and A(s, t) = {x ∈ B | s < dg(x, 0) < t}.

The symbol
ffl
	

u dVg denotes the average integral 1
|	|

´
	

u dVg . For α > 0 we set

kα = min {k ∈ N | k ≥ α}. (18)

If u ∈ H1(�) or u ∈ H1
0 (B), and if 	 has smooth boundary and is compactly contained

in the domain of u, we denote by H	(u) the harmonic extension of u inside 	, namely
we set

H	(u) =
{

v in 	;
u in � \ 	 (resp. B \ 	),

(19)

where v is the solution of
{

�gv = 0 in 	;
v = u on ∂	.

For two probability measures μ1, μ2 defined on B the Kantorovich-Rubinstein distance
is defined as

dK R(μ1, μ2) = sup
‖ f ‖Lip≤1

∣∣∣∣
ˆ

B
f dμ1 −

ˆ

B
f dμ2

∣∣∣∣ . (20)
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If h̃ is as in (5), for u of class H1 we will set

fu = h̃(x)e2u; f̃u = h̃(x)e2u

´
B h̃(x)e2udx

. (21)

We will use similar notations for functions which are defined on a compact surface �.
Generic large positive constants are always denoted by C, C̃ , etc.: even though we

allow constants to vary, we will often stress their dependence on other constants or
parameters, as we need sometimes to be careful in the ordering of their choices.

2.1. Some elementary inequalities. We begin with two elementary lemmas: the first
can be proved e.g. using Fourier analysis, while the second follows from Poincaré’s
inequality.

Lemma 2.1. Let p ∈ B, let s > 0, and suppose B2s(p) ⊆ B. For u ∈ H1(B2s(p)), let
HBs (p)(u) be as in (19). Then there exists a universal constant C0, independent of u, p
and s, such that

ˆ

Bs (p)

|∇HBs (p)(u)|2dx ≤ C0

ˆ

B2s (p)\Bs (p)

|∇u|2dx .

Remark 2.2. A similar result holds when u ∈ H1
0 (B), Bs(p)∩∂ B �= ∅ and d(p, ∂ B) <

s
2 , with s ≤ 1

4 : this condition controls from below the angle formed by ∂ Bs(p) and ∂ B
at their intersection points. Analogous statements can be also proved for small metric
balls on a given compact surface.

Lemma 2.3. Let p ∈ B, s > 0, and suppose Bs(p) ⊆ B. Let C0 be a fixed constant,

and suppose that Br (q) ⊆ Bs(p) with r ≥ C
−1
0 s, and d(Br (q), ∂ Bs(p)) ≥ C

−1
0 s. Let

u ∈ H1(Bs(p)): then there exists another constant C̃0, depending on C0 but independent
of s, q, r and u, such that

∣∣∣∣
 

∂ Br (q)

u dσ −
 

∂ Bs (p)

u dσ

∣∣∣∣ ≤ C̃0‖∇u‖L2(Bs (p)).

2.2. Improved Moser-Trudinger inequalities. We start by recalling the well known Mo-
ser-Trudinger inequality for surfaces with or without boundary (see e.g. [18,39,56]).

Proposition 2.4. Let � be a compact surface. Then

a) If � has no boundary,

log
ˆ

�

e2udVg ≤ 1

2π

ˆ

�

|∇gu|2dVg +2
 

�

u dVg +C for every u ∈ H1(�). (22)

b) If � has boundary,

log
ˆ

�

e2u dVg ≤ 1

4π

ˆ

�

|∇gu|2dVg + C for every u ∈ H1
0 (�). (23)
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As we remarked in the Introduction, the constant 1
4π

in (22) is sharp, as one can see
plugging in the inequality test functions as in (8).

The next result, proven in [21] for � = 1 and in [34,35] for general �, gives a criterion
for getting a smaller multiplicative constant in the Moser-Trudinger inequality. Basically,
it asserts that the more e2u is spread, the smaller constant can be chosen in (22). The
proof, not reported here, relies on localizing the Moser-Trudinger inequality (through
suitable cut-off functions) near the sets, called 	i ’s, on which there is concentration of
volume.

Proposition 2.5. Let � be a compact surface with no boundary, h̃ : � → R with
0 ≤ h̃(x) ≤ C0. Let 	1, . . . , 	�+1 be subsets of � with dist (	i ,	 j ) ≥ δ0 for some
δ0 > 0 if i �= j , and fix γ0 ∈ (0, 1

�+1

)
. Then, for any ε > 0 there exists a constant

C = C(C0, ε, δ0, γ0, �) such that

log
ˆ

�

fudVg ≤ C +
1 + ε

4(� + 1)π

ˆ

�

|∇gu|2dVg + 2
 

�

u dVg

for all functions u ∈ H1(�) satisfying
ˆ

	i

f̃udVg ≥ γ0, i = 1, . . . , � + 1. (24)

A similar result holds, without the average of u on the right-hand side, if � has boundary
and u ∈ H1

0 (�).

The case of surfaces with boundary is not explicitly written in [21] but their proof
can be adapted with minor changes to cover this situation as well. A useful corollary
of Proposition 2.5 is the following, which describes the set of functions for which the
Euler-Lagrange functional is large negative. For the proof, which uses Proposition 2.5
and a covering argument, see [34 and 35] (see also [21 or 32] for k = 1).

Corollary 2.6. Suppose ρ < 4(k + 1)π . Then, given any ε, r > 0 there exists L =
L(ε, r) > 0 such that

Iρ,α(u) ≤ −L ⇒
ˆ

∪k
j=1 Br (x j )

f̃u dVg > 1 − ε for some x1, . . . , xk ∈ �.

The next improved Moser-Trudinger inequality is established in [53], and exploits the
role played by the singularities in a more subtle way. While Proposition 2.5 is based
on the separation of concentration regions, Proposition 2.7 involves a separation in the
scales of concentration.

Proposition 2.7. Consider the case of one singularity at the origin in B (in our previous
notation, m = 1 and p1 = 0), and let α = α1. Let η be a small positive constant, and
fix τ > 0. Let u ∈ H1

0 (B), and suppose there exists s ∈ (0, 1
4

)
such that

ˆ

s<|x |<4s
|∇u|2dx ≤ η

ˆ

B
|∇u|2dx,

and such that
ˆ

|x |<s
f̃udx ≥ τ ;

ˆ

|x |>4s
f̃udx ≥ τ. (25)
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Then, there exists a universal constant C0 > 0 and C̃ = C̃(η, τ, α) (independent of s)
such that one has the inequality

(1+α) log
ˆ

B
fudx ≤ 1

4π

(
α

ˆ

|x |<2s
|∇u|2dx +

ˆ

|x |>2s
|∇u|2dx +C0η

ˆ

B
|∇u|2dx

)
+C̃.

Proof. The details of the proof can be found in Proposition 4.1 of [53]: for the reader’s
convenience, since we will also need some modified version of this result (see Remark
2.8) we will sketch here the main arguments.

First of all, we modify u in B4s \ Bs so it becomes constant in B3s \ B2s : precisely,
if we let

χs(r) = min

{
1

s
(r − s), 1,

1

s
(4s − r)

}
; û(s) =

 

B4s\Bs

u dx,

and define

ũ(x) =
{

χs(|x |)ûs + (1 − χs(|x |)) u(x) for x ∈ B4s \ Bs;
u(x) for x ∈ B \ (B4s \ Bs).

By Poincaré’s inequality and our assumptions we have that (choosing possibly a larger
universal C0)

ˆ

B4s\Bs

|∇ũ|2dx ≤ C0η

ˆ

B
|∇u|2dx . (26)

Hence, by the first inequality in (25), the asymptotics of h̃, a change of variables (a
dilation bringing B2s into B), by (23) (used on ũ − û(s)), and (26) one finds

log
ˆ

B
fudx ≤ 1

4π

(ˆ
Bs

|∇u|2dx + C0η

ˆ

B
|∇u|2dx

)
+ 2û(s) + 2(1 + α) log s + C̃.

(27)

Moreover one has
ˆ

B
fudx ≤ 1

τ

ˆ

B\B2s

fũdx =
ˆ

B\B2s

h̃

|x |4α
|x |4αe2ũdx ≤ C

s2α

ˆ

B\B2s

e2vdx, (28)

with v(x) = ũ(x) + 2αw(x), where

w(x) =
{

log(2s) x ∈ B2s,

log |x | x ∈ B \ B2s .

Notice that
ˆ

B\B2s

|∇v|2dx =
ˆ

B\B2s

|∇ũ|2dx + 4α2
ˆ

B\B2s

1

|x |2 dx

+4α

ˆ

B\B2s

〈∇ũ,∇(log |x |)〉dx .

We integrate by parts to obtain
ˆ

B\B2s

|∇v|2dx ≤
ˆ

B\B2s

|∇ũ|2dx + 8πα2 log
1

s
− 8πα

 

∂ B2s

ũ dσ + C̃. (29)
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Next, by using the second inequality in (25), (28), (23) for v and the fact that ũ ≡ û(s)
on ∂ B2s , we get

log
ˆ

B
fudx ≤ 2α log

1

s
+

1

4π

ˆ

B\B2s

|∇ũ|2dx + 2α2 log
1

s

−2αû(s) + C0η

ˆ

B
|∇u|2dx + C̃. (30)

By using (27) together with (30) we finally deduce

(1 + α) log
ˆ

B
fudx ≤ α

4π

ˆ

Bs

|∇u|2dx +
1

4π

ˆ

B\B3s

|∇u|2dx + C0η

ˆ

B
|∇u|2dx + C̃,

which is the desired conclusion. ��
Remark 2.8. (a) The above proposition also works when the center of the ball is shifted

by an amount of order of the radius. More precisely, if we have the same assumptions
of Proposition 2.7 replacing Bs (resp. B4s) by Bs(p) (resp. B4s(p)) with |p| ≤ Cs,
the same result will hold provided B4s(p) ⊆ B, and allowing the dependence of C̃
also on C . The proof follows the same lines as before (combined in particular with
Lemma 2.3) and requires minor adaptations from [53], where this case is treated on
compact surfaces.

(b) The same assertion as in the previous part of this remark holds if the condition
B4s(p) ⊆ B is replaced by d(p, ∂ B) ≤ s

2 (see Remark 2.2). To see this, one can
simply use a localization argument for (23) as in the proof in [21], see the comments
before Proposition 2.5.

2.3. Compactness of solutions. Concerning (4), we have the following result, proved in
[11] via blow-up analysis, extending previous theorems in [13,14 and 46] for the regular
case (see also [10] for the case of negative αi ’s).

Theorem 2.9. Let � be a compact surface, and let ui solve (4) with h̃ as in (5), ρ =
ρi , ρi → ρ, with α j > 0 and p j ∈ �. Suppose that

´
�

fui dVg ≤ C for some fixed
C > 0. Then along a subsequence uik one of the following alternatives holds:

(i) uik is uniformly bounded from above on �;

(ii) max�

(
2uik − log

´
�

fuik
dVg

)
→ +∞ and there exists a finite blow-up set S =

{q1, . . . , ql} ∈ � such that
(a) for any s ∈ {1, . . . , l} there exist xs

k → qs such that uik (xs
k ) → +∞ and uik →

−∞ uniformly on the compact sets of � \ S,
(b) ρik f̃uik

⇀
∑l

s=1 βsδqs in the sense of measures, with βs = 4π for qs �=
{p1, . . . , pm}, or βs = 4π(1 + α j ) if qs = p j for some j = {1, . . . , m}. In
particular one has that

ρ = 4πn + 4π
∑
j∈J

(1 + α j ),

for some n ∈ N ∪ 0 and J ⊆ {1, . . . , m} (possibly empty) satisfying n + |J | > 0,
where |J | is the cardinality of the set J .
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A similar result holds on bounded domains, for Dirichlet boundary data.

From the above result we obtain immediately the following corollary, which will be
useful to prove our existence results. Recall the definition of kα in (18) and of α in
(10).

Corollary 2.10. Consider problem (4) in B, with Dirichlet boundary data, and suppose
m = 1. Let ρ ∈ (4π, 4(kα + 1)π). Then the set of solutions is uniformly bounded in
C2(B) provided

ρ �= 4π(1 + α) and ρ �= 4kπ, k = 1, . . . , kα.

3. Momenta of Probability Measures and the Set of Formal Barycenters of S1

For fixed k ∈ N we denote by zk ∈ C
k the vector zk = (z1, . . . , zk), by Dk the following

subset of C
k :

Dk = {zk ∈ C
k | |z1| = |z2| = · · · = |zk| = 1},

and for R > 0,

B(k)
R = {zk ∈ C

k | |z1|2 + |z2|2 + · · · + |zk |2 < R2}.
We also set

R
(+)
k := {tk ∈ R

k : ti > 0, ∀ i = 1, . . . , k},
and

Sk :=
{

tk ∈ [0, 1]k :
k∑

i=1

ti = 1

}
,

◦
Sk :=

{
tk ∈ (0, 1)k :

k∑
i=1

ti = 1

}
.

For tk ∈ Sk we denote by σk an element in the space of k-barycenters of S1, that is

(S1)k � σk =
k∑

i=1

tiδθi , θi ∈ [0, 2π), ∀ i = 1, . . . , k,

and finally define Fk : (S1)k �→ C
k to be the following map,

Fk(σk) =
(ˆ

S1
z dσk,

ˆ

S1
z2dσk, . . . ,

ˆ

S1
zkdσk

)
.

Remark 3.1. In Propositions 3.1 and its proof, the convergence fn → σ ∈ (S1)k with
respect to the Kantorovich-Rubinstein metric is an abuse of notations (since the K-R
distance was defined for measures supported in B). The problem is solved just consider-
ing the fn to be defined in an open neighborhood of B and considering the convergence
of the measures induced by the fn as specified in (14).
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Proposition 3.1. There exist small constants δk, τk > 0 with the following property. If
δ ≤ δk there exists a continuous (with respect to the Kantorovich-Rubinstein distance)
map �k from the set of functions f ∈ L1,

´
B f dx = 1 satisfying

Jk,δ( f ) > 1 − τk, (31)

into Sk . Moreover, if fn → σ ∈ (S1)k in the Kantorovich-Rubinstein metric, then
�k( fn) → Fk(σ ).

The proof of Proposition 3.1 can be deduced as a direct consequence of the following:

Proposition 3.2. The map Fk realizes a homeomorphism (with respect to the Kantoro-
vich-Rubinstein metric) between (S1)k and a topological sphere Sk in C

k which bounds
a neighborhood Uk of 0 ∈ C

k .

We first use Proposition 3.2 to prove Proposition 3.1.

Proof of Proposition 3.1. It is straightforward to check that for δk, τk > 0 small enough
and for any δ ≤ δk then any f satisfying (31) is close (with respect to the Kantorovich-
Rubinstein metric) to a k-barycenter of S1, and hence it is mapped in some neighborhood
Nk of Sk .

By Theorem E.3 in [12], since Sk is a topological sphere, it is a retract of some
neighborhood of it in C

k . Choosing δk and τk possibly smaller, we find that Nk will be
contained in this neighborhood. The map �k is finally obtained as the composition of
Fk with the above retraction. ��

Proof of Proposition 3.2. For tk ∈ R
(+)
k ∪ Sk , let �k,tk

: C
k �→ C

k be defined by

�k,tk
(zk) =

⎛
⎜⎜⎜⎜⎜⎜⎝

t1z1 + t2z2 + · · · + tk zk

t1z2
1 + t2z2

2 + · · · + tk z2
k

...

t1zk
1 + t2zk

2 + · · · + tk zk
k

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Hence,

Fk

((
S1
)

k

)
= {�k,tk (Dk)

}
tk∈Sk

.

Let deg
(
�, B(k)

R , y
k

)
denote the topological degree (see for example [73]) of a map

� : C
k �→ C

k relative to B(k)
R with respect to y

k
∈ C

k . We have the following:

Lemma 3.3 (see Lemma 3.1 in [4]). For fixed tk ∈ R
(+)
k ,

deg
(
�k,tk

, B(k)
R , 0k

)
= k! holds. (32)
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Although Lemma 3.1 in [4] concerns the case R = 1 the proof provided there works
indeed for general R.

Let us consider the new variables wi = ti zi ∈ B(1)
1 , ∀ i ∈ {1, . . . , k}, so that for

tk ∈ ◦
Sk and zk ∈ Dk we have in particular ti = |wi | ∈ (0, 1) and wk ∈ B(k)

1 . Hence
�k,tk

takes the form

�k(wk) := �k,tk
(zk) =

⎛
⎜⎜⎜⎜⎜⎜⎝

w1 + w2 + · · · + wk
...

...
...

|w1|(1− j)w
j
1 + |w2|(1− j)w

j
2 + · · · + |wk |(1− j)w

j
k

...
...

...

|w1|(1−k)wk
1 + |w2|(1−k)wk

2 + · · · + |wk |(1−k)wk
k

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and we conclude that

Fk

((
S1
)

k

)
= {�k,tk (Dk)

}
tk∈Sk

≡ �k(∂Rk),

where

Rk = {wk ∈ C
k | |w1| + |w2| + · · · + |wk| < 1}.

We compute next a topological degree related to (32).

Lemma 3.4. We have

deg
(
�k,Rk, 0k

) = k!, (33)

and in particular �k(wk) = 0 ⇐⇒ wk = 0k .

Proof. By using Lemma 3.2 in [4] we see that it is enough to prove the assertion with
Rk replaced by B(k)

1 , that is

deg
(
�k, B(k)

1 , 0k

)
= k!.

In view of (32), for s ∈ [0, 1] we set

Hk (0k , 0) := 0k ,

Hk (wk , s)

:= 1

sk + (1 − s)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1 + w2 + · · · + wk
.
.
.

.

.

.

.

.

.

w1

⎛
⎝ w1√

s+(1−s)
∣∣w1

∣∣

⎞
⎠

j−1

+ w2

⎛
⎝ w2√

s+(1−s)
∣∣w2

∣∣

⎞
⎠

j−1

+ · · · + wk

⎛
⎝ wk√

s+(1−s)
∣∣wk

∣∣

⎞
⎠

j−1

.

.

.

.

.

.

.

.

.

w1

⎛
⎝ w1√

s+(1−s)
∣∣w1

∣∣

⎞
⎠

k−1

+ w2

⎛
⎝ w2√

s+(1−s)
∣∣w2

∣∣

⎞
⎠

k−1

+ · · · + wk

⎛
⎝ wk√

s+(1−s)
∣∣wk

∣∣2
⎞
⎠

k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the latter being defined for wk �= 0k . Clearly Hk is continuous and

Hk(wk, 1) = �k(wk) := �k,tk
(wk) |tk= 1

k k
, Hk(wk, 0) = �k(wk).
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Therefore, to obtain (33), we are left to prove that Hk(wk, s) �= 0k for any s ∈ [0, 1]
and for any wk ∈ ∂ B(k)

1 . More generally, we will show by induction that

if for some wk ∈ C
k and s ∈ [0, 1] it holds Hk(wk, s) = 0k , then wk = 0k . (P)k

We notice that for s = 1 this is Lemma 3.2 in [4]. (P)1 is trivially true, being H1(w1, s) =
w1. Now, suppose that for some k ≥ 2 (P)m holds for any m ≤ k − 1: then if by con-
tradiction there exist s ∈ [0, 1] and w

(1)
k ∈ C

k such that Hk(w
(1)
k , s) = 0k , we would

have that w
(1)
i �= 0 for all i ∈ {1, . . . , k}. Indeed otherwise, if for some i , w

(1)
i = 0,

holds then Hk−1(w
(1)
k−1,i ) = 0k , where w

(1)
k−1,i = (w

(1)
1 , . . . , w

(1)
i−1, w

(1)
i+1, . . . , w

(1)
k ) is

the (k −1)-tuple not including w
(1)
i . Hence (P)k−1 implies w

(1)
k−1,i = 0k−1 and we would

conclude that w
(1)
k = 0k which is of course a contradiction.

At this point we are allowed to define:

w̃
(1)
i := w

(1)
i√

s + (1 − s)
∣∣∣w(1)

i

∣∣∣
and ti :=

√
s + (1 − s)

∣∣∣w(1)
i

∣∣∣
sk + (1 − s)

, i = 1, . . . , k,

(34)

and conclude from the previous considerations that w̃(1)
k := (w̃

(1)
1 , . . . , w̃

(1)
k ) ∈ C

k\{0k}.
Of course tk ∈ R

(+)
k and since Hk(wk, s) = 0k if and only if �k(w̃

(1)
k ) = 0k we deduce

from Lemma 3.2 in [4] that w̃
(1)
k = 0k which is the desired contradiction. ��

Let �∗
k : R

2k �→ R
2k be the map �k when expressed in real coordinates and set

ϒk = {wk ∈ C
k | wi = w j , for some i �= j, {i, j} ⊆ {1, . . . , k}},

ϒ
(0)
k = {wk ∈ C

k | w j = 0, for some j ∈ {1, . . . , k}}.
We have the following result:

Lemma 3.5.

det
(
D�∗

k(Re(wk), Im(wk))
) �= 0, ∀wk /∈ ϒk ∪ ϒ

(0)
k holds. (35)

Proof. Setting w j = r j eiθ j , ∀ j = 1, . . . , k, it is straightforward to check that
det
(
D�∗

k

)
takes the form

det
(
D�∗

k(Re(wk), Im(wk))
) = rk

1 rk
2 · · · rk

k det
(

A2k(θk)
)
,

where

A2k(θk)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos (θ1) cos (θ2) · · · cos (θk) − sin (θ1) − sin (θ2) · · · − sin (θk)

sin (θ1) sin (θ2) · · · sin (θk) cos (θ1) cos (θ2) · · · cos (θk)

cos (2θ1) cos (2θ2) · · · cos (2θk) −2 sin (2θ1) −2 sin (2θ2) · · · −2 sin (2θk)

sin (2θ1) sin (2θ2) · · · sin (2θk) 2 cos (2θ1) 2 cos (2θ2) · · · 2 cos (2θk)
...

...
...

... · · · ...
...

cos (kθ1) cos (kθ2) · · · cos (kθk) −k sin (kθ1) −k sin (kθ2) · · · −k sin (kθk)

sin (kθ1) sin (kθ2) · · · sin (kθk) k cos (kθ1) k cos (kθ2) · · · k cos (kθk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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It follows immediately that wk /∈ ϒ
(0)
k is a necessary condition for (35) to be satisfied.

Next observe that det
(

A2k(θk)
) �= 0 whenever θi �= θ j , ∀ i �= j . In fact, letting

{vm}m=1,...,k be the complex row vectors

vm =
(

emiθ1 , . . . , emiθk
)

,

we see that A2k(θk) takes the form

A2k(θk) =

⎛
⎜⎜⎝

v1 i v1
v2 2 i v2
...

vk k ivk

⎞
⎟⎟⎠ .

Hence, if det
(

A2k(θk)
) = 0, then there exists λk ∈ C

k such that,

k∑
m=1

λm

(
vm

m i vm

)
= 02k,

which readily implies that the complex vectors {vm}m=1,...,k must be linearly dependent.
Since the matrix whose rows are {vm}m=1,...,k is the restriction to Dk of the Vander-
monde-type matrix defined by �k,tk

(zk) |tk=1k
, where 1k is the vector whose entries are

all 1, then a well known argument shows that necessarily θi = θ j for some i �= j .

Since the region C
k \
(
ϒk ∪ ϒ

(0)
k

)
is connected and det

(
D�∗

k(Re(wk), Im(wk))
)

is

continuous, it follows from Lemma 3.5 that det
(
D�∗

k

)
has in fact constant sign (unless

it is zero). In this situation, and by using (33), one can conclude (see [73] Vol. I, p. 639,
Prob. 14.3d and also Theorem 14A and Corollary 14.8) that for fixed bk ∈ C

k , the
Vandermonde-type system

�k(wk) = bk, (V )k(bk)

admits at least one and at most k! distinct solutions.
Hence �k(Rk) is open and we define Uk := �k(Rk) and Sk := ∂Uk . The under-

lying idea toward the conclusion of the proof is that σk ∈ (S1)k \ (S1)k−1 if and only
if tk ∈ ◦

Sk and θi �= θ j ∀ i �= j , that in terms of wk variables is equivalent to wk ∈
∂Rk \

(
ϒk ∪ ϒ

(0)
k

)
.

For i ∈ {1, . . . , k} let �i : C
k �→ C

k be the standard permutation map

�i (wk) = �i ((w1, . . . , wi , wi+1, . . . , wk)) = (w1, . . . , wi+1, wi , . . . , wk),

which is defined with the periodic condition (for fixed k ∈ N) k + 1 = 1. Clearly, for
fixed bk ∈ C

k , each one of the k! permutations of a given solution wk of (V )k(bk) will

yield a distinct solution whenever wk /∈ ϒk . If bk /∈ �k

(
ϒk ∪ ϒ

(0)
k

)
, then to each of the

corresponding k! distinct solutions w
(m)
k ∈ ∂Rk, ∀ m = 1, . . . , k!, there correspond

the same k-barycenter σk = F−1
k (bk) =

k∑
j=1

t jδθ j , where t j = |w(1)
j |, θ j = arg(w

(1)
j ).

Clearly Fk is continuous, so Lemma 3.5 and the Inverse Function Theorem together
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imply that F−1
k is locally of class C1 in Rk \�k

(
ϒk ∪ ϒ

(0)
k

)
. We conclude in particular

that F−1
k is well defined and continuous in Sk \ �k

(
ϒk ∪ ϒ

(0)
k

)
. Next, we analyze the

case ak ∈ �k

(
∂Rk ∩

(
ϒk ∪ ϒ

(0)
k

))
.

Claim. If ak ∈ �k

(
∂Rk ∩

(
ϒk ∪ ϒ

(0)
k

))
, then to every solution of �k(wk) = ak there

corresponds a unique k-barycenter σk ∈ (S1)k−1 ⊂ (S1)k . In particular F−1
k is well

defined and continuous on �k

(
∂Rk ∩

(
ϒk ∪ ϒ

(0)
k

))
.

Proof. We argue by induction and observe that for k = 2,

�2

(
∂R2 ∩

(
ϒ2 ∪ ϒ

(0)
2

))
=
{(

eiθ

e2iθ

)}
θ∈[0,2π)

holds.

It is readily seen that in fact to each a2 ∈ �2

(
∂R2 ∩

(
ϒ2 ∪ ϒ

(0)
2

))
there corre-

sponds a unique 2-barycenter σ2 ∈ (S1)1 ⊂ (S1)2. In particular F−1
2 is continuous

on

{(
eiθ

e2iθ

)}
θ∈[0,2π)

with respect to the Kantorovich-Rubinstein metric since in this

case we have

F−1
((

eiθ

e2iθ

))
= δθ .

Therefore, let us assume that the property in the statement of the claim holds for any
m ∈ {1, . . . , k − 1} and let us prove that it holds for m = k as well. Let wk ∈ ∂Rk ∩(
ϒk \ ϒ

(0)
k

)
be such that w1 = w2. Then set

w̃1 = 2w1, w̃�−1 = w�, ∀ � = 3, . . . , k.

Hence a k − 1-dimensional vector w̃k−1 is well defined satisfying w̃k−1 ∈ ∂Rk−1.
However it is not too difficult to verify that any other wk satisfying either wk ∈ ∂Rk ∩(
ϒk \ ϒ

(0)
k

)
and one of the

(k
2

)
constraints wi = w j for some i �= j or wk ∈ ∂Rk ∩

ϒk ∩ ϒ
(0)
k can be transformed in this way after an appropriate relabelling of the indices.

In particular a similar argument works for wk ∈ ∂Rk ∩
(
ϒ

(0)
k \ ϒk

)
. Hence

�k

(
∂Rk ∩

(
ϒk ∪ ϒ

(0)
k

))
= {�k(w̃k−1)

}
w̃k−1∈∂Rk−1

.

At this point let ak ∈ �k

(
∂Rk ∩

(
ϒk ∪ ϒ

(0)
k

))
and define ãk−1 ∈ C

k−1 to be the vector

whose entries are the first k − 1 entries of ak and �̃k−1(w̃k−1) the map whose rows are
the first k −1 rows of �k . By our discussion above and the induction assumption, to any
such ãk−1 there corresponds a unique (k −1)-barycenter σk−1 = σk−1(ãk−1) ∈ (S1)k−1
which can be obtained via any fixed solution of the system

�̃k−1(w̃k−1) = ãk−1.
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In particular the inverse map determined in this way is continuous. Finally, since w̃k−1 ∈
∂Rk−1, it follows from Lemma 3.4 that ãk−1 �= 0k−1. Hence, both the kth component of
ak and the (k − 1)-barycenter σk(ak) ≡ σk−1(ãk−1) in the pre-image of ak are fixed by
ãk−1, and therefore in particular the inverse map determined in this way is continuous.

��
We can now conclude the proof of Proposition 3.2. Putting ak ∈ ∂Rk , we set �sak

=
{sak}s∈[0,1] to be the ray joining together the origin 0k and ak . We conclude that if
�sak

∩ ϒk = ∅ (which is satisfied if and only if ak /∈ ϒk), then each bk ∈ �k(�sak
)

admits exactly k! distinct pre images and in particular that on any such �sak
, �k is

injective. It is straightforward to check by an induction argument as in the claim that in
fact �k is injective on �sak

for ak ∈ ϒk as well. Since �sak
is a continuous curve, we

see that �k(Rk) is foliated by
{
�k(�sak

)
}

ak∈∂Rk
. Hence Sk ≡ {

�k(�ak
)
}

ak∈∂Rk
≡

�k(∂Rk) = Fk((S1)k) is homeomorphic to a 2k − 1 dimensional sphere embedded
in C

k . ��

4. A General Improved Inequality

Throughout this section we work on the unit ball B and we assume that

m = 1, p1 = 0 ∈ B, α = α1 > 0.

The main result of this section is the following proposition, which will be useful to obtain
lower bounds on Iρ,α (see Corollary 4.5).

Proposition 4.1. Let ε > 0 and k ∈ {1, . . . , kα}. Suppose that δk and τk are so small
that Proposition 3.1 applies, and let δ ≤ δk . Then there exists a constant Cε,α,δk ,τk ,
depending only on ε, α, δk, τk , such that

log
ˆ

B
fudx ≤ 1 + ε

4π min{1 + k, 1 + α}
ˆ

B
|∇u|2dx + Cε,α,δk ,τk ,

for all functions u ∈ H1
0 (B) such that

Jk,δ( f̃u) ≤ 1 − τk .

The proof of the proposition is divided into several steps. We begin by choosing a
large constant C1, depending on ε and α, such that

1

log C1
= 1

32(kα + 1)2

ε

1 + C2
0

, (36)

where C0 is the constant in Lemma 2.1. First, we derive an alternative in case we are
under the assumptions of Proposition 4.1. Consider the cylindrical metric as described
in the Introduction, after Eq. (12). Proposition 4.2 asserts that if the conformal volume is
not concentrated near k points of the cylinder obtained from the blown-up metric, then
either part of it accumulates near k + 1 well separated regions, or part of it vanishes. By
this we mean that its integral over bounded sets in some region of the cylinder becomes
arbitrarily small. The division of the volume into N parts in ( j j) is technical and will
be needed in the next subsections.
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Proposition 4.2. Let C1 be as in (36), let k ∈ {1, . . . , kα} and let f ∈ L1(B) be such
that

´
B f dx = 1 and Jk,δ( f ) ≤ 1 − τk (τk and δ are as in Proposition 4.1). Then for

any σ0 > 0 there exists σ ∈ (0, σ0], depending on σ0, α and ε, but not on u, such that
the following alternative holds: either

(j) there exist k + 1 points {p1, . . . , pk+1} ⊂ B \ {0} such that
ˆ

B
(10C1k)−8|pi |(pi )

f dx ≥ σ, ∀ i = 1, . . . , k + 1, and

B(10C1k)−4|pi |(pi ) ∩ B(10C1k)−4|p j |(p j ) = ∅, ∀ i �= j, (37)

or
(jj) there exist 0 < r < R ≤ 1 such that

ˆ

A(r,R)

f dx ≥ τk

(10k)2 , (38)

and for any N ∈ N, N ≥ 4(k + 1), there exist r ≤ s1 < s2 < · · · < sN+1 ≤ R such that
ˆ

A(si ,si+1)

f dx = 1

N

ˆ

A(r,R)

f dx ∀ i = 1, . . . , N , (39)

and
ˆ

A( s
C1

,C1s)
f dx < σ0, ∀ s ∈

(
C1r,

R

C1

)
. (40)

Proof. We define for convenience

Ak = { f ∈ L1(B) | f > 0 a.e.,
ˆ

B
f dx = 1, Jk,δ( f ) ≤ 1 − τk},

and let

Ak,0 =
{

f ∈ L1(B) | ( j j) holds for some 0 < r < R ≤ 1
}

.

For each y �= 0 we denote mδ(y; f ) the integral

mδ(y; f ) =
ˆ

B
δ(10C1k)−6|y|(y)

f dx .

Consider the set

k :=
⎧⎨
⎩{x1, . . . , xk+1} ⊂ B \ {0} | xi ∈ B \

⋃
� �=i

B δ|x�|
2

(x�), i = 1, . . . , k.

⎫⎬
⎭ ,

and the number

σk(δ, σ0) := inf
f ∈Ak\Ak,0

sup

{
min

i=1,...,k+1
mδ(xi ; f ) | {x1, . . . , xk+1} ∈ k

}
.

��
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A main step in our proof is the following

Claim. σk(δ, σ0) > 0.

Proof of the Claim. Arguing by contradiction, for every n ∈ N there exists fn ∈ Ak \
Ak,0 such that

min
i=1,...,k+1

mδ(xi ; fn) ≤ 1

n
, ∀ {x1, . . . , xk+1} ∈ k . (41)

��
For later use we fix here a positive number 0 < ε0 <<

τk
(10k)210k . In the rest of this proof

we will freely pass to subsequences which will not be relabelled and make use of the
following:

Lemma 4.3. Suppose that
ˆ

A(r1,n ,r2,n)

fn dx ≥ τk

(10k)2 > 0, ∀n > ν0, (42)

for some r1,n < r2,n and ν0 ∈ N. If there exists 0 < δ0 ≤ 1
2 such that

ˆ

Bδ0 |xn |(xn)

fn dx → 0, n → +∞, ∀xn ∈ A(r1,n, r2,n), (43)

then there exists ν1 ∈ N such that fn ∈ Ak,0 for all n > ν1.

Proof of Lemma 4.3. We first prove that necessarily

r1,n

r2,n
→ +∞, n → +∞. (44)

We argue by contradiction and observe that then, up to the extraction of a subsequence,
we could find C > 0 such that

A(r1,n, r2,n) ⊆ A(r1,n, Cr1,n).

Observe that there exists m = m(C) ∈ N depending only on C such that

A(r, Cr) ⊆
m⋃

i=1

Bδ0|yi |(yi ), {yi }i=1,...,m ⊂ A(r, Cr).

Therefore, by using (42), (43) we obtain

τk

(10k)2 ≤
ˆ

A(r1,n ,r2,n)

fn dx ≤
m∑

i=1

ˆ

Bδ|xi,n |(xi,n)

fn dx ≤m o(1), n → +∞,

which is the desired contradiction.
Next observe that

´

A(s,t)
fn dx is a continuous function of s and t . Hence, for any

N ∈ N there exist {s1,n, s2,n, . . . , sN+1,n} such that

r1,n ≤ s1,n ≤ · · · ≤ sN+1,n ≤ r2,n,
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and
ˆ

A(si,n ,si+1,n)

fn dx = 1

N

ˆ

A(r1,n ,r2,n)

fn dx ≥
τk

(10k)2

N
, ∀ i = 1, . . . , N .

If for some i ∈ {1, . . . , N + 1}, along a subsequence we had
ˆ

A(
si,n
C1

,C1si,n)

fn dx ≥ σ0, ∀ n ∈ N

then, by applying (44) on A(
si,n
C1

, C1si,n), we would obtain

(C1)
2 = C1si,n

si,n
C1

→ +∞, n → ∞,

which is the desired contradiction. Therefore there exists ν1 ∈ N such that fn ∈ Ak,0
for any n > ν1. ��
Proof of the Claim Continued. There is no loss of generality in assuming

mδ(xk+1,n, fn) = min
i=1,...,k+1

mδ(xi ; fn). (45)

Clearly (41), (45) and the definition of σk(δ, σ0) imply that for any n ∈ N,

mδ(xk+1; fn) ≤ 1

n
, ∀xk+1 �= 0 s.t. xk+1 ∈ B \

⋃
i=1,...,k

B δ|xi,n |
2

(xi,n), (46)

with {x1,n, . . . , xk,n, xk+1} ∈ k . Set

Rn,(−) = min
i=1,...,k

|xi,n|
(

1 − δ

2

)
, rn,(+) = max

i=1,...,k
|xi,n|

(
1 +

δ

2

)
, ∀ n ∈ N,

and pick 0 < rn,(−) < Rn,(−), rn,(+) < Rn,(+) and ν ∈ N such that
ˆ

Brn,(−)

fn dx <
ε0

2
,

ˆ

B\BRn,(+)

fn dx <
ε0

2
, ∀ n > ν.

If either
´

A(rn,(−),Rn,(−))
fn dx ≥ τk

(10k)2 or
´

A(rn,(+),Rn,(+))
fn dx ≥ τk

(10k)2 for all n > ν0

for some ν0 ∈ N, since (46) ensures that (43) holds on both A(rn,(−), Rn,(−)) and
A(rn,(+), Rn,(+)), then Lemma 4.3 implies that fn ∈ Ak,0 for all n > ν1, which is a
contradiction. ��

Therefore, passing to a further subsequence if necessary, we can assume that
ˆ

A(rn,(−),Rn,(−))

fn dx <
τk

(10k)2 , and
ˆ

A(rn,(+),Rn,(+))

fn dx <
τk

(10k)2 ,

for any n ∈ N, and in particular
ˆ

A(Rn,(−),rn,(+))

fn dx ≥ 1 − 2
τk

(10k)2 − ε0 > 1 − τk

10k
, ∀ n ∈ N.
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Hence we conclude that
ˆ

A(Rn,(−),rn,(+))\ ⋃
i=1,...,k

B δ|xi,n |
2

(xi,n)

fn dx ≥
ˆ

A(Rn,(−),rn,(+))\ ⋃
i=1,...,k

Bδ|xi,n |(xi,n)

fn dx

≥ 1 − τk

10k
− (1 − τk) >

τk

2
, (47)

for all n ∈ N. On the other hand, we have the following:

Lemma 4.4. There exists C̃ ≥ 1 such that

rn,(+)

Rn,(−)

≤ C̃, ∀ n ∈ N.

Proof of Lemma 4.4. If the claim were false then, up to a relabelling of the indices, we
could find at least one index i = in ∈ {1, . . . , k − 1} such that

|x�,n| ≤ |xin ,n| < |xin+1,n| ≤ |xm,n|, ∀� ≤ in, ∀m ≥ in + 1,

with the property that, passing to a subsequence if necessary,

lim
n→+∞

|xin+1,n|
|xin ,n| = +∞. (48)

Set

Rn,0 = |xin+1,n|
(

1 − δ

2

)
, rn,0 = |xin ,n|

(
1 +

δ

2

)
, ∀ n ∈ N.

If
´

A(rn,0,Rn,0)
fn dx ≥ τk

(10k)2 for all n > ν0 for some ν0 ∈ N, since (46) and (48)
together ensure that (43) holds on A(rn,0, Rn,0), then once more Lemma 4.3 implies
that fn ∈ Ak,0 for all n > ν1, which is the desired contradiction. ��
End of the Proof of the Claim. We are going to use Lemma 4.4 together with (47) to
obtain a contradiction. In fact, observe that there exists � = �(δ, C̃) ∈ N depending only
on δ and C̃ such that

A(Rn,(−), rn,(+)) \
⋃

i=1,...,k

B δ|xi,n |
2

(xi,n) ⊆
�⋃

i=1

Bδ(10C1k)−6|yi,n |(yi,n),

where

{yi,n}i=1,...,� ⊂ A(Rn,(−), rn,(+)) \
⋃

i=1,...,k

B δ|xi,n |
2

(xi,n).

Hence (46) and (47) imply

τk

2
≤
ˆ

A(Rn,(−),rn,(+))\ ⋃
i=1,...,k

B δ|xi,n |
2

(xi,n)

fn dx ≤
�∑

i=1

mδ(yi,n; fn)≤� o(1), n → +∞,

which is the desired contradiction. ��
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End of the Proof of Proposition 4.2. We claim that σ = min{σk (δ,σ0)
2 , σ0} with δ =

δ̃k := 8(10C1k)−4 satisfies the required properties. In fact, let us first assume that

σk(δ̃k, σ0)

2
≤ σ0, that is σ = σk(δ̃k, σ0)

2
.

In this case, if f does not satisfy ( j j), then by definition of σk(δ̃k, σ0) there exist
{x1, . . . , xk+1} ∈ k , such that

ˆ

B
(10C1k)−8|xi |(xi )

f dx ≥
ˆ

B
δ̃k (10C1k)−6|xi |(xi )

f dx ≥ σk(δ̃k, σ0)

2
= σ, i =1, . . . , k+1.

(49)

Next, let us prove that

B δ|x�|
8

(x�) ∩ B δ|xm |
8

(xm) = ∅, ∀{�, m} ⊂ {1, . . . , k}, � �= m. (50)

If |x�| ≤ 2|xm | and x ∈ B δ|xm |
8

(xm), then

dg(x, x�) >
δ|xm |

2
− δ|xm |

8
= 3δ|xm |

8
>

δ|xm |
4

≥ δ|x�|
8

,

while if |x�| > 2|xm | and x ∈ B δ|xm |
8

(xm), then

dg(x, x�) > |x�| − |xm | − δ|xm |
8

>
δ|xm |

8
,

that is, (50) holds. Hence, if δ = δk we see that ( j) is satisfied with {p1, . . . , pk+1} =
{x1, . . . , xk+1} and the desired property holds with σ ≤ σ0.

On the other hand, if

σk(δ̃k, σ0)

2
> σ0, that is σ = σ0,

and ( j j) is not satisfied then by definition of σk(δ̃k, σ0) we can find {x1, . . . , xk+1}
as above such that both (49) and (50) with δ = δ̃k hold, so that ( j) is satisfied with
{p1, . . . , pk+1} = {x1, . . . , xk+1} and σ = σ0. This fact concludes the proof. ��

In the next subsections we prove Proposition 4.1 in both alternatives of Proposition 4.2
choosing σ0 as

σ0 = τk

100k2

ε

4(k + 1) log C1
. (51)
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4.1. Proof of Proposition 4.1 in case ( j j). We will argue that if a certain fixed amount
of conformal volume is diluted in a large portion of the cylinder, then we can divide it
into N parts, with N large enough, and choose the one with smallest Dirichlet energy
for using Lemma 2.1.

Letting r, R be as in ( j j), we choose a large number N , depending on kα and ε, such
that

N =
[

8(kα + 1)

ε

]
,

where the square bracket stands for the integer part.
We next choose r ≤ s1 < · · · < sN+1 ≤ R such that (39) and (40) hold. We notice

immediately that by the choice of N one has
ˆ

A(si ,si+1)

f̃udx ≥ ε

16(kα + 1)

τk

(10k)2 ; i = 1, . . . , N . (52)

We also claim that for every index i the intersection A
(

si
C1

, C1si

)
∩ A

(
si+1
C1

, C1si+1

)
is

empty. In fact, if this were not the case we would have by (40) and (51)

ε

16(kα + 1)

τk

(10k)2 ≤
ˆ

A(si ,si+1)

f̃udx ≤
ˆ

A
(

si
C1

,C1si

) f̃udx +
ˆ

A
(

si+1
C1

,C1si+1

) f̃udx

≤ ε

16(kα + 1)

2τk

(10k)2 log C1
,

which is a contradiction by the choice of C1. We can now choose an index i for which
ˆ

A(si /C1,C1si+1)

|∇u|2dx ≤ 2

N

ˆ

B
|∇u|2dx ≤ ε

4(kα + 1)

ˆ

B
|∇u|2dx . (53)

We can also choose s̃i ∈
[

2si
C1

,
si
2

]
and s̃i+1 ∈ [2si+1,

1
2 C1si+1

]
such that

ˆ

A(s̃i /2,2s̃i )

|∇u|2dx ≤ 4

log C1

ˆ

A(si /C1,C1si+1)

|∇u|2dx;
ˆ

A(s̃i+1/2,2s̃i+1)

|∇u|2dx ≤ 4

log C1

ˆ

A(si /C1,C1si+1)

|∇u|2dx,

so by (53) we have
ˆ

A(s̃i /2,2s̃i )

|∇u|2dx ≤ 4

log C1

ε

4(kα + 1)

ˆ

B
|∇u|2dx; (54)

ˆ

A(s̃i+1/2,2s̃i+1)

|∇u|2dx ≤ 4

log C1

ε

4(kα + 1)

ˆ

B
|∇u|2dx . (55)

We define then a new function ũ as the harmonic lifting of u inside Bs̃i (0): recalling the
definition in (19), we set

ũ(x) = HBs̃i
(u).
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By Lemma 2.1, (53) and (54) we have that

ˆ

B2s̃i+1

|∇ũ|2dx ≤ ε

2(kα + 1)

(
1 +

4C0

log C1

) ˆ
B

|∇u|2dx . (56)

We then apply Proposition 2.7 with s = s̃i+1/2, η = 4
log C1

ε
4(kα+1)

and τ = ε
16(kα+1)

τk
(10k)2

(see (52), (55) and the choice of s̃i+1) and use (56) to find

(1 + α) log
ˆ

B
fudx

≤ 1

4π

(
α

ˆ

Bs̃i+1/2

|∇u|2dx +
ˆ

B\Bs̃i+1/2

|∇u|2dx + C0η

ˆ

B
|∇u|2dx

)
+ C̃

≤ 1

4π

(
1 +

αε

2(kα + 1)

(
1 +

4C0

log C1

)
+ C0

4ε

4(kα + 1) log C1

) ˆ
B

|∇u|2dx + C̃

≤
(

1 +
αε

2(kα + 1)
+ C0

4ε(α + 1)

4(kα + 1) log C1

) ˆ
B

|∇u|2dx + C̃,

where C̃ depends on α and ε. By the choice of C1 the last formula implies

(1 + α) log
ˆ

B
fudx ≤ 1

4π
(1 + ε)

ˆ

B
|∇u|2dx + C̃,

and in turn

min{1 + k, 1 + α} log
ˆ

B
fudx ≤ 1

4π
(1 + ε)

ˆ

B
|∇u|2dx + C̃,

which concludes the proof.

4.2. Proof of Proposition 4.1 in case ( j). If p1, . . . , pk+1 are as in (37), then there exist
θi , i = 1, . . . , k + 1 such that

(10C1k)−6|pi |≤θi ≤ (10C1k)−5|pi |;
ˆ

B4θi (pi )\Bθi (pi )

|∇u|2dx ≤η

ˆ

B
|∇u|2dx,

(57)

where

η = 1

log(10kC1)
.

We can also assume that either B4θi (pi ) ⊆ B or that d(pi , ∂ B) ≤ 1
4θi (we require these

conditions in view of Remark 2.8).
We next select an index i such that

D := 1

4π

ˆ

Bθi (pi )

|∇u|2dx = min
i∈{1,...,k+1}

1

4π

ˆ

Bθi (pi )

|∇u|2dx,
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and then another index ĩ for which

D̃ := 1

4π

ˆ

Bθ
ĩ
(p

ĩ
)

|∇u|2dx = min
i �=i

1

4π

ˆ

Bθi (pi )

|∇u|2dx .

Below, we set for convenience

D1 = 1

4π

ˆ

∪k+1
i=1 Bθi (pi )

|∇u|2dx; D2 = 1

4π

ˆ

B\∪k+1
i=1 Bθi (pi )

|∇u|2dx,

and

D = 1

4π

ˆ

B
|∇u|2dx = D1 + D2.

Notice that, by our choices of i and ĩ, D and D̃ satisfy

D ≤ D1

k + 1
; D̃ ≤ D1 − D

k
. (58)

We then consider a modified function ǔ defined as

ǔ = H∪i �=i,ĩ Bθi (pi )(u).

Notice that, by construction and by Lemma 2.1, one has

1

4π

ˆ

B\Bθi (pi )

|∇ǔ|2dx ≤ D̃ + D2 + C0kηD, (59)

and also, by (37),

log
ˆ

B
fudx ≤ log

ˆ

Bθi

fǔdx + Cσ ; log
ˆ

B
fudx ≤ log

ˆ

B\B4θi

fǔdx + Cσ .

(60)

Using then (27) and (30) for ǔ, with Bs(pi ), s = θi , τ = σ , and taking Remark 2.8 into
account (in which we allow C to depend on ε, α but not on the pi ’s), from (60) we get

log
ˆ

B
fudx ≤ 1

4π

(ˆ
B

|∇ǔ|2dx + 2C0η

ˆ

B
|∇u|2dx

)
+ C̃, (61)

where C̃ depends on η, τ and α. From (59) we obtain

(α + 1) log
ˆ

B
fudx ≤ αD + D̃ + D2 + C0(k + 2)ηD + C̃.

Then by the second inequality in (58) one finds

(α + 1) log
ˆ

B
fudx ≤ αD +

D1 − D

k
+ D2 + C0(k + 2)ηD + C̃,



442 D. Bartolucci, A. Malchiodi

which implies

(α + 1) log
ˆ

B
fudx ≤ 1

k
D1 +

(
α − 1

k

)
D + D2 + C0kηD + C̃. (62)

If α ≤ 1 then necessarily k = 1, so the coefficient of D in the latter formula is negative
and can be discarded, yielding

(α+1) log
ˆ

B
fudx ≤ D1 + D2 + C0(k+2)ηD + C̃ ≤ D + C0kηD + C̃ ≤ (1+ε)D + C̃,

which gives the conclusion, by our choices of η and C1.
On the other hand, if α > 1 we have that α − 1

k > 0 and hence, since D < 1
k+1 D1

(see the first inequality in (58)), (62) gives

(α + 1) log
ˆ

B
fudx ≤

(
1

k
+

αk − 1

k

1

k + 1

)
D1 + D2 + C0kηD + C̃

≤ k + 1 + αk − 1

k(k + 1)
D1 + D2 + C0kηD + C̃

≤ α + 1

k + 1
D1 + D2 + εD + C̃.

If α ≤ k this implies

(α + 1) log
ˆ

B
fudx ≤ D1 + D2 + εD ≤ (1 + ε)D + C̃,

as desired.
If instead k < α we obtain

(k + 1) log
ˆ

B
fudx ≤ D1 +

k + 1

α + 1
D2 + εD ≤ (1 + ε)D + C̃,

which still gives the conclusion.
From the latter proposition we immediately deduce the following lower bound on Iρ ,
which can be obtained choosing ε > 0 small enough.

Corollary 4.5. Let δk and τk be so small that Proposition 3.1 applies, and let δ ≤ δk .
Let k ∈ {1, . . . , kα}: then there exists a constant Ck,α , depending only on k and α, such
that,

∀ ρ < 4π min{1 + k, 1 + α} it holds Iρ,α(u) ≥ −Ck,α,

for all functions u such that Jk,δ( f̃u) ≤ 1 − τk .

As a consequence of the last corollary and of Proposition 3.2 we obtain an explicit
condition which guarantees lower bounds on Iρ,α .

Corollary 4.6. Let δk and τk be so small that Proposition 3.1 applies, and let δ ≤ δk . Let
k ∈ {1, . . . , kα}, and let Fk denote the map in (15). Then there exists a constant Ck,α ,
depending only on k and α, such that,

∀ ρ < 4π min{1 + k, 1 + α} it holds Iρ,α(u) ≥ −Ck,α,

whenever Fk( f̃u) = 0.
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5. Proof of the Existence and Non-existence Results

In this section we provide applications of the improved inequality in Proposition 4.1 to
the existence of solutions to (1). We give full details in two simple cases, namely in the
unit ball with Dirichlet boundary data and one singularity, as well as on the sphere with
two singularities, see Remark 5.6 for more general situations. The variational argument
combines different known strategies, therefore we will be quite sketchy in some parts.

We then prove one may have non existence of solutions in case the assumptions on
ρ are dropped, showing that the hypotheses of Theorems 1.1 and 1.2 are sharp.

5.1. Proof of Theorem 1.1 (for m = 1 in simply connected domains). First of all, through
a Riemann map we can reduce ourselves to the case of the unit ball B with the singularity
at the origin. We let k be the unique integer for which ρ ∈ (4kπ, 4(k + 1)π), and we let
Fk denote the map in (15), which realizes a homeomorphism between (S1)k and Sk , see
Proposition 3.2.

Choose a non negative cut-off function χ such that{
χ ∈ C∞

c (B);
χ(x) ≡ 1 in B 3

4
,

and for σ =∑k
i=1 tiδθi ∈ (S1)k, λ > 0, we define the test function

ϕλ,σ (x) = χ(x) log
k∑

i=1

ti

(
λ

1 + λ2
∣∣y − 1

2 xi
∣∣2
)2

, xi = (cos θi , sin θi ). (63)

Reasoning as in [34] (see also [52] for a simpler proof of this estimate) one can obtain
the following result with minor modifications of the proof.

Lemma 5.1. Let ϕλ,σ be defined as in (63). Then as λ → +∞ one has

dK−R( f̃ϕλ,σ , σ̃ ) → 0, σ̃ =
k∑

i=1

tiδ 1
2 xi

, (64)

and

Iρ,α(ϕλ,σ ) → −∞
uniformly for σ ∈ (S1)k .

We next define the variational scheme which will allow us to find existence of solu-
tions. Recalling that Uk denotes the interior of Sk in C

k , consider the family of continuous
maps

Kλ,ρ =
{
h : Uk → H1

0 (B) : h(y) = ϕ
λ,F−1

k (y)
for every y ∈ Sk = ∂Uk

}
.

We define also the min-max value

Kλ,ρ = inf
h∈Kλ,ρ

sup
z∈Uk

Iρ,α(h(z)).

We have then the following result, which implies the conclusion of Theorem 1.1.
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Proposition 5.2. Under the assumptions of Theorem 1.1, if λ is sufficiently large then

Kλ,ρ > sup
y∈Sk

Iρ,α(ϕ
λ,F−1

k (y)
).

Moreover Kλ,ρ is a critical value of Iρ,α .

Proof. If C := Ck,α is as in Corollary 4.6, we let L = 4C , and choose λ to be so large
that

sup
y∈Sk

Iρ,α(ϕ
λ,F−1

k (y)
) < −L ,

which is possible in view of Lemma 5.1.
We are going to show that Kλ,ρ > − L

2 . Indeed, assume by contradiction that there
exists a continuous h0 such that

h0 ∈ Kλ,ρ and sup
z∈Uk

Iρ,α(h0(z)) ≤ −1

2
L . (65)

Then, by our choice of L , Corollary 4.5 and Proposition 3.1 would apply, yielding a
continuous map Fλ,ρ : Uk → Sk defined as the composition

Fλ,ρ = �k ◦ h0.

Notice that, since h0 ∈ Kλ,ρ, h0(·) coincides with ϕ
λ,F−1

k (·) on Sk = ∂Uk , so by (64)
we deduce that

Fλ,ρ |Sk is homotopic to I d|Sk : (66)

the homotopy is obtained by letting the parameter λ tend to +∞. Since Sk is homeomor-
phic to S2k−1, it is non contractible, and we obtain a contradiction to (66). This proves
Kλ,ρ > supy∈Sk

Iρ,α(ϕ
λ,F−1

k (y)
).

To check that Kλ,ρ is a critical level is rather standard, as one can use a monotonicity
method from [49,63]. Consider a sequence ρn → ρ and the corresponding functionals
Iρn ,α . All the above estimates, including also those from the previous sections, can be
worked out for Iρn ,α as well with minor changes, if n is large enough.

We then define the min-max value K̃λ,ρ := Kλ,ρ

ρ
, which corresponds to the functional

Iρ,α

ρ
. It is immediate to see that

ρ �→ K̃λ,ρ is monotone,

and that, reasoning as in [32], there exists a subsequence of (ρn)n such that Iρn ,α has a
critical point un at level Kλ,ρn . Then, applying Corollary 2.10 and passing to a further
subsequence, we obtain that un converges to a critical point u of Iρ,α at level Kλ,ρ . ��

5.2. Proof of Theorem 1.2 (for m = 2). The argument is very similar in spirit to the
previous case. We list the main changes which are necessary to deal with this situation,
especially for what concerns the improved Moser-Trudinger inequality.
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First of all, using again a Möbius map on S2, we can assume that the two singularities
p1 and p2 are antipodal, and coincide respectively with the south and the north pole of
S2, viewed as the standard sphere embedded in R

3.
Given a small δ > 0 we can define the following quantity, analogous to the one in

(13)

J̃k,δ( f̃u) = sup
x1,...,xk �={p1,p2}

ˆ

∪k
i=1 Bδ min{d(xi ,p1),d(xi ,p2)}(xi )

f̃udVg, (67)

as well as the measure on the unit circle (viewed as the (x, y) plane in R
3 intersected

with S2)

μ̃ f (A) =
ˆ

π̃−1(A)

f̃udVg; A ⊆ S1,

where π̃ : S2 \ {p1, p2} → S1 stands for the projection onto the equator along the
meridians.

Reasoning as in Sect. 3, if J̃k,δ( f̃u) > 1 − τk, δ ≤ δk , we can project continuously u
onto the k-barycenters of S1, (S1)k . For the case J̃k,δ( f̃u) ≤ 1−τk we have a counterpart
of Proposition 4.1.

Proposition 5.3. Let ε > 0, and let k ∈ {1, . . . , kα}. Let δk and τk be so small that
Proposition 3.1 applies, and let δ ≤ δk . Then there exists a constant Cε,α1,α2 , depending
only on ε, α1 and α2, such that

log
ˆ

S2
fudVg ≤ 1 + ε

4π min{1 + k, 1 + α1, 1 + α2}
ˆ

S2
|∇u|2dVg + Cε,α1,α2 + 2

 

S2
u dVg

for all functions u verifying

J̃k,δ( f̃u) ≤ 1 − τk .

To check this statement, one can reason as in the proof of Proposition 4.1, with two main
differences. The first is that the average of u on S2 should be added to the right-hand
side of the inequality, since there are no boundary data in this case (compare (22) and
(23)): it will not be a loss of generality to assume that

ffl
S2 u dVg = 0. The second is

that in case ( j) (resp. in case ( j j)) the points xi (resp. the region of vanishing for the
measure f̃u) can lie near either p1 or p2.

Suppose that ( j j) holds, and let pi be a point near which vanishing occurs. Then the
previous arguments yield the inequality

min{1 + k, 1 + αi } log
ˆ

S2
fudVg ≤ 1 + ε

4π

ˆ

S2
|∇u|2dVg + Cε,α1,α2 ,

which implies

min{1 + k, 1 + α1, 1 + α2} log
ˆ

S2
fudVg ≤ 1 + ε

4π

ˆ

S2
|∇u|2dVg + Cε,α1,α2 ,

namely the desired conclusion.
If ( j) holds instead, there will be k1 points among the xi ’s approaching p1, and k2

points which either lie in a fixed compact set of S2 \ {p1, p2} or approaching p2, with
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k1 + k2 = 1 + k. Applying Proposition 4.1 (twice, with B replaced by two spherical
caps whose union is S2 and whose boundaries are well separated from the points xi ) and
Lemma 2.3 one finds that

(min{k1, 1 + α1} + min{k2, 1 + α2}) log
ˆ

S2
fudVg ≤ 1 + ε

4π

ˆ

S2
|∇u|2dVg + Cε,α1,α2 .

Then it is enough to use the elementary inequality

min{1 + k, 1 + α1, 1 + α2} ≤ min{k1, 1 + α1} + min{k2, 1 + α2},
to obtain again the conclusion.

For θ1, . . . , θk ∈ S1 and for σ̂ = ∑k
i=1 tiδθi , the following test function replaces

ϕλ,σ in (63):

ϕ̂λ,σ̂ (x) = log
k∑

i=1

ti

(
λ

1 + λ2d(y, xi )2

)2

, xi = (cos θi , sin θi , 0) ∈ S2. (68)

One can then prove the counterpart of Lemma 5.1.

Lemma 5.4. Let ϕ̂λ,σ̂ be defined as in (68). Then as λ → +∞ one has

dK−R( f̃ϕ̂λ,σ̂
, σ̂ ) → 0, Iρ,α(ϕ̂λ,σ̂ ) → −∞ (69)

uniformly for σ̂ ∈ (S1)k .

In the above lemma, with an abuse of notation, we are identifying S1 as the equator
of S2. Considering now the class of continuous maps,

K̂λ,ρ =
{
h : Uk → H1

0 (B) : h(y) = ϕ̂
λ,F−1

k (y)
for every y ∈ Sk = ∂Uk

}
,

and the min-max value

K̂λ,ρ = inf
h∈K̂λ,ρ

sup
z∈Uk

Iρ,α(h(z)),

one has the counterpart of Proposition 5.2.

Proposition 5.5. Under the assumptions of Theorem 1.1, if λ is sufficiently large then

K̂λ,ρ > sup
y∈Sk

Iρ,α(ϕ̂
λ,F−1

k (y)
).

Moreover K̂λ,ρ is a critical value of Iρ,α .

Remark 5.6. As anticipated in Remark 1.3, the above min-max method can also be
applied to the case of more singularities, multiply connected domains or to surfaces
with positive genus, combining the present approach to the one in [5].

Regarding Theorem 1.1 for m ≥ 2 or domain 	 of R
2 which is not simply connected

we argue as follows. Choosing an index i for which αi = mini=1,...,m αi , one can find
a simple curve γ in 	 \ ∪i pi non contractible in 	 \ pi such that there is a continuous
map � : 	 \ pi → γ satisfying �|γ = I d|γ .
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On one hand, it is possible to associate to each f̃u, u ∈ H1
0 (	), a unit measure on

S1 via the push-forward of �, and hence introduce a counterpart of the map Fk . On the
other hand, one can use for the min-max scheme a test function as in (63), but with the
points xi distributed on γ .

The combination of these two facts allows to repeat the above procedure: in the case
of the sphere with m > 2 or for compact surfaces with positive genus one can argue
similarly.

5.3. A non existence result on the unit ball. Here we show that our theorem on simply
connected domains is sharp. Actually we provide a sketchy proof of the following well
known fact:

Proposition 5.7. If the following problem admits a solution u ∈ H1
0 (B),

{
−�u = ρ

|x |2αe2u
´

B |x |2αe2udx
in B

u = 0 on ∂ B,
(70)

then necessarily ρ < 4π(1 + α).

Proof. Set V (x) = ρ|x |2α
(´

B |x |2αe2udx
)−1

. By using the fact that u = 0 on ∂ B, then
the Pohoz̆aev identity for the equation in (70) reads

−1

2

ˆ

∂ B
(x, ν)(uν)

2dσ = 1

2

ˆ

∂ B
(x, ν)V e2udσ − 1

2

ˆ

B

[
2V e2u + 〈x,∇ log V 〉V e2u

]
dx,

where ν is the unit outer normal to ∂ B and uν = (ν,∇u). Since (x, ν) = 1 on ∂ B, the
Cauchy-Schwarz inequality then yields

− 1

4π

( ˆ

∂ B
uν dσ

)2

= −1

2

( ˆ

∂ B

dσ

(x, ν)

)−1 ( ˆ

∂ B
uν dσ

)2

≥ −1

2

ˆ

∂ B
(x, ν)(uν)

2dσ

= 1

2

ˆ

∂ B
(x, ν)V e2udσ − 1

2

ˆ

B

[
2V e2u + 〈x,∇ log V 〉V e2u

]
dx .

However (70) readily implies
( ´

∂ B uν dσ
)2 = ρ2, while we clearly have

´
B V e2udx =

ρ. At this point an explicit calculation yields

1

4π
ρ2 ≤ −1

2

ˆ

∂ B
(x, ν)V e2udσ +

1

2
2ρ +

1

2
2αρ < (1 + α)ρ,

and the conclusion follows. Observe that the sharpness of the strict inequality is due to
the negative sign of the first term on the right in the first inequality which in fact vanishes
along the well known radial and explicit solutions blowing up at the origin. ��
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5.4. A non existence result on S2 with two antipodal singularities. We generalize an
argument in [68] to obtain a non existence result for (1) in the case of the sphere with
two antipodal singularities.

Proposition 5.8. Let (�, g) = (S2, g0), where g0 is the standard round metric, let
a ≡ 1

|S2| , h ≡ 1, m = 2, let 0 < α1 < α2 < +∞ be the weights of two antipodal

singularities {p1, p2} ⊂ S2 which we assume to coincide with the south and north pole
respectively p1 = S, p2 = N.

Then a necessary condition for the solvability of (1) is that

either 0 < ρ < 4π(1 + α1), or 4π(1 + α2) < ρ < +∞. (71)

Proof. We will work in isothermal coordinates induced by the stereographic projection
� : S2 �→ R

2 satisfying �(S) = 0. The local expression of the unique solution of (2)
with p = p1 = S takes the form

GS(�−1(z)) = 1

4π
log

(
1 + |z|2

2|z|2
)

− 1

2π
log
( e

2

)
.

In particular the local expression of the Laplace-Beltrami operator for the standard metric
on S2 is

�g = e−v0�,

where � is the standard Laplace operator in cartesian coordinates in R
2 and v0 satisfies

v0(z) = 2 log

(
2

1 + |z|2
)

, −�v0 = 2ev0 in R
2.

Using these facts, and setting ρ = 2πβ, it is straightforward to check that u solves (1)
if and only if

v(z) = 2 u(�−1(z)) + GS(�−1(z)) +
β − α2

2
v0(z) + 2α1 log

( e

2

)

+(2 + α2 + α1 − β) log 2 + log (2ρ) − log
ˆ

S2
e2udVg0 ,

satisfies{
−�v = K (z)ev in R

2;´
R2 K (z)evdx = 4πβ,

where K (z) = |z|2α1

(1 + |z|2)2+α1+α2−β
. (72)

Therefore we see that the results in [27] can be applied to v to conclude
ˆ

R2
〈z,∇K (z)〉evdx = 4πβ(β − 2),

so that, by using the integral constraint in (72), an explicit evaluation shows

2(2 + α1 + α2 − β)

ˆ

R2

|z|2
1 + |z|2 K (z)evdx = 4πβ(2(1 + α1) − β). (73)
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Next, by writing |z|2
1+|z|2 = 1 − 1

1+|z|2 , and by using (73), we obtain the independent
constraint

2(2 + α1 + α2 − β)

ˆ

R2

1

1 + |z|2 K (z)evdx = 4πβ(2(1 + α2) − β). (74)

By using (73) and (74) together and by discussing the cases 2 + α1 + α2 − β � 0 it is
readily seen that if α1 < α2 then a necessary condition for the solvability of (72) (and
then of (1)) is (71).

Of course, by setting α1 = 0 we recover the non existence result obtained in [68] for
the case where only one singularity is considered. ��
Remark 5.9. (a) Concerning the case α1 = 0 it has been already observed in [68] that in

particular one obtains in this way another proof of the non-existence of conformal
metrics with constant Gaussian curvature on S2 with one conical singularity, see [69]
and the more recent paper [2]. Indeed we obtain another proof of the non-existence of
conformal metrics with constant Gaussian curvature on S2 with two conical singular-
ities of different orders α1 �= α2 which corresponds to the case 2 + α1 + α2 − β = 0.
In fact in this situation we see that (73) and (74) together imply α1 = α2, and in this
case solutions are classified explicitly, see [69] and [59]. The non-existence results
for 2 + α1 + α2 − β = 0 are associated with a well known problem, see [69], cor-
responding to the best pinching constants for these singular surfaces. The case with
negative singularities has been recently solved in [2] while, at least to our knowledge,
the positive case is still open.

(b) We expect that existence should hold in some cases for which ρ > 4π mini {1 + αi }.
For example we speculate that our method, with some extra work, could be adapted
to the following situation: m = 2, 4kπ ≤ α1, α2 < 4(k + 1)π for some k ∈ N and
ρ ∈ (4π max{1 + α1, 1 + α2}, 4(k + 1)π).
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