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Abstract: We study dimensions of strange non-chaotic attractors and their associated
physical measures in so-called pinched skew products, introduced by Grebogi and his
coworkers in 1984. Our main results are that the Hausdorff dimension, the pointwise
dimension and the information dimension are all equal to one, although the box-count-
ing dimension is known to be two. The assertion concerning the pointwise dimension is
deduced from the stronger result that the physical measure is rectifiable. Our findings
confirm a conjecture by Ding, Grebogi and Ott from 1989.

1. Introduction

In [1], Grebogi and coworkers introduced (a slight variation of) the system

Fκ : T
1 × [0, 1] → T

1 × [0, 1], Fκ(θ, x) = (θ + ρ mod 1, tanh(κx) · sin(πθ)),

(1.1)

with ρ ∈ R\Q and real parameter κ > 0, as a simple model for the existence of strange
non-chaotic attractors (SNA).1 Later, the term ‘pinched skew products’ was coined by
Glendinning [2] for a general class of systems sharing some essential properties of (1.1).
The object which is called an SNA in the above system is the upper bounding graph ϕ+

of the global attractor A := ⋂
n∈N

Fn
κ (T

1 × [0, 1]), which is given by

ϕ+(θ) := sup{x ∈ [0, 1] | (θ, x) ∈ A}. (1.2)

An illustration of this attractor is shown in Fig. 1.
Due to the monotonicity of the fibre maps Fκ,θ : x �→ tanh(κx) · sin(πθ), one can

verify that the function ϕ+ satisfies

Fκ,θ (ϕ
+(θ)) = ϕ+(θ + ρ mod 1). (1.3)

1 The model studied by Grebogi et al was a four-to-one extension of (1.1) with slightly different paramet-
risation.
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Fig. 1. Strange non-chaotic attractor in (1.2) with κ = 3 and ρ the golden mean

Consequently, the corresponding point set�+ := {(θ, ϕ+(θ)) | θ ∈ T
1} is Fκ -invari-

ant. Slightly abusing terminology, we will call both ϕ+ and�+ an invariant graph. Keller
showed in [3] that for κ > 2 in (1.1) the graph ϕ+ is LebT1 -almost surely strictly positive,
its Lyapunov exponent

λ(ϕ+) =
∫

log F ′
κ,θ (ϕ

+(θ)) dθ

is strictly negative and ϕ+ attracts LebT1×[0,1]-a.e. initial condition. Note that Birkhoff’s

Ergodic Theorem implies that limn→∞ 1
n log

(
Fn
κ,θ

)′
(ϕ+(θ)) = λ(ϕ+) for LebT1 -a.e.

θ ∈ T
1, where we let Fn

κ,θ = Fκ,θ+(n−1)ρ mod 1 ◦ . . . ◦ Fκ,θ .
The findings in [1] attracted substantial interest in the theoretical physics commu-

nity, and subsequently a large number of numerical studies confirmed the widespread
existence of SNA in quasiperiodically forced systems and explored their behaviour and
properties (see [4–6] for an overview and further references). For a long time, however,
rigorous results remained rare, and even basic questions are still open nowadays. In
particular, this concerns the dimensions and fractal properties of SNA, which are still
mostly unknown even for the original example by Grebogi et al. A numerical investi-
gation was carried out in [7], and the results indicated that the box dimension of the
attractor is two, whereas the information dimension should be one. For sufficiently large
κ , the conjecture on the box dimension was verified indirectly in [8], by showing that the
topological closure of �+ is equal to the global attractor A = {(θ, x) | 0 ≤ x ≤ ϕ+(θ)}
and therefore has positive two dimensional Lebesgue measure.

Our aim is to determine further dimensions of ϕ+ and the associated invariant mea-
sure μϕ+ , which is obtained by projecting the Lebesgue measure on the base T

1 onto
�+. For the Hausdorff dimension DH (see Sect. 2.2 for the definition), we have

Theorem 1.1. Suppose ρ in (1.1) is Diophantine and κ is sufficiently large. Then
DH (�

+) = 1. Furthermore, the one-dimensional Hausdorff measure of �+ is infinite.

This statement is a special case of Corollary 5.6, see Sect. 5. Here and in the results
below, the largness condition of κ depends on the constants of the Diophantine condition
on ρ.
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Remark 1.2. Our results in Sect. 5 also allow to treat examples with a higher dimensional
driving space, as given in Example 4.1. In these cases, the rotation on T

1 is replaced by a
rotation on T

D , and we obtain that the Hausdorff dimension of�+ is D. However, at least
for sufficiently large D the D-dimensional Hausdorff measure is finite, in contrast to the
case D = 1 (Proposition 5.3). We believe that for these examples the D-dimensional
Hausdorff measure is infinite only for D = 1 and finite for all D ≥ 2.

In order to obtain information on the invariant measure μϕ+ , we determine its point-
wise dimension given by

dμϕ+ (θ, x) = lim
ε→0

logμϕ+(Bε(θ, x))

log ε
.

A priori, it is not clear whether this limit exists, such that in general one defines the upper
and lower pointwise dimension by taking the limit superior and inferior, respectively
(see Sect. 2.2). Furthermore, even if the limit exists, it may depend on (θ, x). If the
pointwise dimension exists and is constant almost surely, the invariant measure is called
exact dimensional. It turns out that this is the case in the situation considered here. In
fact, we obtain the stronger result that μϕ+ is a rectifiabile measure, see Sect. 2.3 and
Theorem 5.5, and this directly implies

Theorem 1.3. Suppose ρ in (1.1) is Diophantine and κ is sufficiently large. Then for
μϕ+ -almost every (θ, x) ∈ T

1 × [0, 1], we have dμϕ+ (θ, x) = 1. In particular, μϕ+ is
exact dimensional.

For an exact dimensional measure μ, it is known that the information dimension D1
(see again Sect. 2.2 for the definition) coincides with the pointwise dimension. Hence,
we obtain

Corollary 1.4. Suppose ρ in (1.1) is Diophantine and κ is sufficiently large. Then
D1(μϕ+) = 1.

This confirms the conjecture made in [7]. Since the geometric mechanism for the
creation of SNA in pinched skew products is quite universal and can be found in similar
form in other types of systems, we expect our results to hold in further situations. For
example, this should be true for the SNA found in the Harper map, which describes the
projective action of quasiperiodic Schrödinger cocycles, and for SNA in the quasiperiod-
ically forced versions of the logistic map and the Arnold circle map. On a technical level,
these systems are much more difficult to deal with, and for this reason we refrain from
extending our analysis beyond pinched skew products here. Yet, combining our approach
with the methods developed in [9,10,14] should allow to produce similar results for the
mentioned examples. Apart from this, progress has also been made recently concerning
the existence of SNA in quasiperiodically forced unimodal maps [11–13]. Here, similar
results may be expected as well, but it is much less clear to what extent the presented
techniques can be adapted.

Our proof hinges on the fact that the SNAϕ+ can be approximated by the iterates of the
upper bounding line T

1 ×{1} of the phase space, whose geometry can be controlled quite
accurately. This observation has already been used in [8] and will be exploited further
here. An outline of the strategy is given in Sect. 3. In Sect. 4 we derive the required esti-
mates on the approximating curves, which are used to compute the Hausdorff dimension
and the pointwise dimension in Sect. 5.
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2. Preliminaries

2.1. Strange non-chaotic attractors. In the following, we provide some basics on SNA
in pinched skew products by sketching Keller’s proof for the existence of SNA [3]. More
precisely, according to [1] the upper bounding graph ϕ+ is called an SNA if it is non-
continuous and has a negative Lyapunov exponent, and we will mainly explain how to
obtain the non-continuity.

Let I = [0, 1] and T
D = R

D/ZD . A quasiperiodically forced interval map is a skew
product map of the form

T : T
D × I → T

D × I, (θ, x) �→ (ω(θ), Tθ (x)) ,

where ω : T
D → T

D, θ �→ θ + ρ mod 1 an irrational rotation. The maps Tθ : I → I
are called fibre maps. T is pinched if there exists some θ∗ ∈ T

D with #Tθ∗(I ) = 1.
We denote by T the class of quasiperiodically forced interval maps T which share

the following properties:

(T 1) the fibre maps Tθ are monotonically increasing;
(T 2) the fibre maps Tθ are differentiable and (θ, x) �→ T ′

θ (x) is continuous on T
D × I ;

(T 3) T is pinched;
(T 4) Tθ (0) = 0 for all θ ∈ T

D .

Note that the last item means that the zero line T
D × {0} is T -invariant. It is easy to

check that the maps Fκ defined in (1.1) belong to T .
An invariant graph is a measurable function ϕ : T

D → I which satisfies (1.3).
If all fibre maps are differentiable, the Lyapunov exponent of ϕ is given by λ(ϕ) :=∫
TD log T ′

θ (ϕ(θ)) dθ . The upper bounding graph ϕ+ is given by (1.2). Equivalently, it
can be defined by

ϕ+(θ) = lim
n→∞ T n

ω−n(θ)
(1),

where T n
θ = Tωn−1(θ) ◦ . . . ◦ Tθ . This means that the iterated upper bounding lines

ϕn(θ) := T n
ω−n(θ)

(1) (2.1)

converge pointwise and, by monotonicity of the fibre maps, in a decreasing way to ϕ+.
This fact will be crucial for our later analysis. A first consequence of this observation is
that, under some mild conditions, the Lyapunov exponent of ϕ+ is always non-positive.

Lemma 2.1 ([15, Lem. 3.5]). If θ �→ log
(
inf x∈I T ′

θ (x)
)

is integrable, then λ(ϕ+) ≤ 0.

Now, turning back to the maps Fκ defined in (1.1), the Lyapunov exponent of the
zero line is easily computed and one obtains

λ(0) = log κ − log 2.

Consequently, when κ > 2 this exponent is positive and therefore the upper bounding
graph cannot be the zero line. However, at the same time the pinching condition together
with the invariance of ϕ+ imply that ϕ+(θ) = 0 for a dense set of θ ∈ T

1. Hence, ϕ+

cannot be continuous.
Using the concavity of the fibre maps, it is further possible to show that ϕ+ is the only

invariant graph of the system (1.1) besides the zero line, that λ(ϕ+) is strictly negative
and that ϕ+ attracts LebT1×I -a.e. initial condition (θ, x), in the sense that

lim
n→∞ Fn

κ,θ (x)− ϕ+(θ + nρ mod 1) = 0.
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Finally, we note that to any invariant graph ϕ, an invariant measureμϕ can be associated
by

μϕ(A) := LebTD (π1(A ∩�))
for all Borel measurable sets A ⊆ T

D × I , where π1 : T
D × I → T

D is the projection
to the first coordinate.

2.2. Dimensions. Let X be a separable metric space. The diameter of a subset A ⊆ X
is denoted by diam(A). For ε > 0 a finite or countable collection {Ai } of subsets of X
is called an ε-cover of A if diam(Ai ) ≤ ε for each i and A ⊆ ⋃

i Ai .

Definition 2.2. For A ⊆ X, s ≥ 0 and ε > 0 define

Hs
ε(A) := inf

{
∑

i

(diam(Ai ))
s

∣
∣
∣
∣
∣
{Ai } is an ε-cover of A

}

.

Then

Hs(A) := lim
ε→0

Hs
ε(A)

is called the s-dimensional Hausdorff measure of A. The Hausdorff dimension of A is
defined by

DH (A) := sup{s ≥ 0 | Hs(A) = ∞}.
Definition 2.3. The lower and upper box-counting dimension of a totally bounded subset
A ⊆ X are defined as

DB(A) := lim inf
ε→0

log N (A, ε)

− log ε
,

DB(A) := lim sup
ε→0

log N (A, ε)

− log ε
,

where N (A, ε) is the smallest number of sets of diameter ε needed to cover A. If
DB(A) = DB(A), then their common value DB(A) is called the box-counting dimen-
sion (or capacity) of A.

In general, we have DH (A) ≤ DB(A). In the following, we will state some well
known properties of the Hausdorff measure and dimension that will be used later on.

Lemma 2.4 ([16]). Let X,Y be two separable metric spaces and let g : A ⊆ X → Y
be a Lipschitz continuous map with Lipschitz constant K . Then Hs(g(A)) ≤ K sHs(A)
and DH (g(A)) ≤ DH (A). Further, if g is bi-Lipschitz continuous, then DH (g(A)) =
DH (A).

Lemma 2.5 ([16]). The Hausdorff dimension is countably stable, i.e. DH
(⋃

i Ai
) =

supi DH (Ai ) for any sequence of subsets (Ai )i∈N with Ai ⊆ X.

In contrast to the last lemma, we have that the upper box-counting dimension is only
finitely stable and that DB(A) = DB

(
A
)
.
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Theorem 2.6 ([17]). Let X,Y be two separable metric spaces and consider the Carte-
sian product space X × Y equipped with the maximum metric. Then for A ⊆ X and
B ⊆ Y totally bounded we have

DH (A × B) ≤ DH (A) + DB(B).

Lemma 2.7. Let A ⊆ X be a lim sup set, meaning that there exists a sequence (Ai )i∈N

of subsets of X with

A = lim sup
i→∞

Ai =
∞⋂

i=0

∞⋃

k=i+1

Ak .

If
∑∞

i=1 diam(Ai )
s < ∞ for some s > 0, then Hs(A) = 0 and DH (A) ≤ s.

Proof. Since
∑∞

i=1 diam(Ai )
s < ∞, we have

∑∞
i=k diam(Ai )

s → 0 for k → ∞. That
means the diameter of the Ai ’s goes to 0 for i → ∞. Therefore, {Ai : i ≥ k} is an ε-
cover for k sufficiently large. This implies Hs

ε(A) ≤ ∑∞
i=k diam(Ai )

s → 0 for k → ∞.
Hence, Hs(A) = 0 and DH (A) ≤ s. �

For x ∈ X and ε > 0 we denote by Bε(x) the open ball around x with radius ε > 0.

Definition 2.8. Let μ be a finite Borel measure in X. For each point x in the support of
μ we define the lower and upper pointwise dimension of μ at x as

dμ(x) := lim inf
ε→0

logμ(Bε(x))

log ε
,

dμ(x) := lim sup
ε→0

logμ(Bε(x))

log ε
.

If dμ(x) = dμ(x), then their common value dμ(x) is called the pointwise dimension of
μ at x. We say that the measure μ is exact dimensional if the pointwise dimension exists
and is constant almost everywhere, i.e.

dμ(x) = dμ(x) =: dμ,

μ-almost everywhere.

Definition 2.9. The lower and upper information dimension of μ are defined as

D1(μ) := lim inf
ε→0

∫
logμ(Bε(x))dμ(x)

log ε
,

D1(μ) := lim sup
ε→0

∫
logμ(Bε(x))dμ(x)

log ε
.

If D1(μ) = D1(μ), then their common value D1(μ) is called the information dimension
of μ.

Theorem 2.10 ([18,20]). Suppose DB(X) < ∞. We have
∫

dμ(x) dμ(x) ≤ D1(μ) ≤ D1(μ) ≤
∫

dμ(x) dμ(x).

In particular, if μ is exact dimensional, then D1(μ) = dμ.

Note that also several other dimensions of μ coincide if μ is exact dimensional
[19–22].
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2.3. Rectifiable sets and measures. Here, we mainly follow [23].

Definition 2.11. For D ∈ N a Borel set A ⊆ X is called countably D-rectifiable if there
exists a sequence of Lipschitz continuous functions (gi )i∈N with gi : Ai ⊆ R

D → X
such that HD(A\⋃i gi (Ai )) = 0. A finite Borel measure μ is called D-rectifiable
if μ = � HD

∣
∣

A for some countably D-rectifiable set A and some Borel measurable
density � : A → [0,∞).

Note that, by the Radon-Nikodym theorem, μ is D-rectifiable if and only if μ is
absolutely continuous with respect to HD

∣
∣

A with A some countably D-rectifiable set.

Theorem 2.12 ([23, Thm. 5.4]). For a D-rectifiable measure μ = � HD
∣
∣

A we have

�(x) = lim
ε→0

μ(Bε(x))

VDεD
,

for HD-a.e. x ∈ A, where VD is the volume of the D-dimensional unit ball. The right
hand side of this equation is called D-density of μ.

This theorem implies in particular that the D-density exists and is positive μ-almost
everywhere for a D-rectifiable measure μ and this gives directly

Corollary 2.13. A D-rectifiable measureμ is exact dimensional with dμ = D1(μ) = D.

3. Outline of the Strategy

As we have mentioned in the Introduction, our main goal is to analyze the structure
of the upper bounding graphs ϕ+ when they are different from the zero line, and in
particular we want to determine the dimensions of these graphs and of their associated
invariant measures. However, the argument for the non-continuity of the invariant graphs
sketched in Sect. 2.1 is a ‘soft’ one and does not yield any quantitative information about
the structure of the invariant graphs. Hence, it is not clear how such an analysis can be
carried out.

However, as mentioned above the upper bounding graph ϕ+ can be approximated by
the iterated upper bounding lines ϕn defined in (2.1). It turns out that the geometry of
the lines ϕn can be controlled well, and this is the starting point of our investigation.
Figure 2 shows the first six iterates ϕ1, . . . , ϕ6. A clear pattern can be observed. Appar-
ently, when going from ϕn−1 to ϕn , the only significant change is the appearance of a
new ‘peak’ in a small ball In around the nth iterate τn = ωn(θ∗) of the pinching point
θ∗. Outside of In , the graphs seem to remain unchanged. Further, since every new peak
is the image of the previous one and due to the expansion around the 0-line, the peaks
become steeper and sharper in every step. As a consequence, the radius of the balls In
decreases exponentially.

Of course, this is a very rough picture, which can only hold in an approximate sense.
Due to the strict monotonicity of the fibre maps for all θ �= θ∗, the sequence ϕn is strictly
decreasing everywhere except on the countable set {τn | n ∈ N}, so the graphs have to
change at least a little bit outside of In . However, let us assume for the moment that the
above description was true and ϕn−1(θ) − ϕn(θ) = 0 for all θ /∈ In . In this case, the
graph ϕ+ is already determined on T

D \⋃∞
k=n Ik =: n after n steps and equals ϕn|n on

this set. However, as a finite iterate of T
D ×{1}, the function ϕn is Lipschitz continuous

and therefore its graph �n|n = {(θ, ϕn(θ)) | θ ∈ n} has Hausdorff dimension D.
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Fig. 2. The graphs of the first six iterated upper bounding lines of (1.1) with κ = 3 and ρ the golden mean

Due to the exponential decrease of the radius of the In , the set �∞ = T
D \ ⋃n∈N

n
is a lim sup set and has Hausdorff dimension zero by Lemma 2.7. It follows that �+ is
contained in the countable union

⋃
n∈N

�n|n ∪(�∞ ×[0, 1]) of at most D-dimensional
sets. By countable stability, this implies that the Hausdorff dimension of�+ is D. For the
pointwise dimension, a similar argument could be given but we will directly conclude
from the arguments sketched above that μϕ+ is D-rectifiable.

The remainder of this article is devoted to showing that these heuristics can be con-
verted into a rigorous proof, despite the fact that ‘nothing changes outside of In’ has to
be replaced by ‘almost nothing changes outside of In’.

4. Estimates on the Iterated Upper Bounding Lines

The purpose of this section is to obtain a good control on the behaviour and shape of
the iterated upper bounding lines. In order to derive the required estimates, we have to
impose a number of assumptions on the geometry of our systems. The hypotheses are
formulated in terms of C1-estimates, and it is easy to check that they are fulfilled by (1.1)
whenever κ is large enough (see Lemma 4.2 for details).

Let T ∈ T . Suppose there exist α > 2, γ > 0 and L0 ∈ (0, 1) such that for all
θ ∈ T

D ,

|Tθ (x)− Tθ (y)| ≤ α |x − y| , (4.1)

for all x, y ∈ [0, 1], and

|Tθ (x)− Tθ (y)| ≤ α−γ |x − y| , (4.2)

for all x, y ∈ [L0, 1]. Further, we assume there exists β > 0 such that for all x ∈ [0, 1],

|Tθ (x)− Tθ ′(x)| ≤ βd(θ, θ ′). (4.3)
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When T is differentiable in θ , we may for example take β = sup(θ,x) ‖∂θTθ (x)‖. As
above, we let τn := ωn(θ∗). We suppose the rotation vector ρ ∈ R

D is Diophantine,
meaning that there exist constants c > 0 and d > 1 such that

d(τn, θ∗) ≥ c · n−d , (4.4)

for all n ∈ N. In addition, we assume there are m ∈ N, a > 1 and 0 < b < 1 with

m > 22
(

1 + 1
γ

)
, (4.5)

a ≥ (m + 1)d , (4.6)

b ≤ c, (4.7)

d(τn, θ∗) > b for all n ∈ {1, . . . ,m − 1}, (4.8)

such that

Tθ (x) ≥ min{L0, ax} · min

{

1,
2

b
d(θ, θ∗)

}

, (4.9)

for all (θ, x) ∈ T
D × [0, 1]. We now let

T ∗ := {T ∈ T | T satisfies (4.1)–(4.9)} , (4.10)

where “satisfies (4.1)–(4.9)” should be understood in the sense of “there exist constants
α, γ , L0, β, c, d, m, a and b such that (4.1)–(4.9) are satisfied”.

Example 4.1. The following map is a simple extension of (1.1) with a higher-dimen-
sional rotation on the base:

Fκ : T
D × [0, 1] → T

D × [0, 1],

Fκ(θ, x) =
(

θ + ρ mod 1, tanh (κx) · 1

D
·

D∑

i=1

sin(πθi )

)

. (4.11)

Here θ = (θ1, . . . , θD).

As we show now, Fκ satisfies (4.1) – (4.9) for all sufficiently large κ .

Lemma 4.2. Let ρ satisfy the Diophantine condition (4.4) with constants c, d. Then
there exist constants D0 = D0(c, d) and κ0 = κ0(c, d, D) such that

• for all κ ≥ κ0 the map Fκ belongs to T ∗;
• if D ≥ D0, then the constants α, m and a can be chosen such that

D > m2 log(α/a). (4.12)

The additional condition (4.12) will be used to show that for sufficiently large D the
D-dimensional Hausdorff measure of the upper bounding graph ϕ+ of Fκ is finite, see
Proposition 5.3.
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Proof. We let α = κ , γ = 1
2 , L0 = log κ

κ
, β = π , m = 67, b = 1

2 minm−1
n=1 cn−d and

a = 2bκ
D(e+1/e)2

. Then we choose D0 = D0(c, d) such that for all D ≥ D0,

D > m2 log

(
D(e + 1/e)2

2b

)

, (4.13)

and κ0 = κ0(c, d, D) such that for all κ ≥ κ0,

κ ≥ 16 , (4.14)
2bκ

D(e + 1/e)2
≥ (m + 1)d , (4.15)

log κ

κ
≤ b tanh(1)

2D
. (4.16)

We have

[tanh(κx)]′ = 4κ

(eκx + e−κx )2
≤ κ (4.17)

for all x ≥ 0 and

0 ≤ 1

D

D∑

i=1

sin(πθi ) ≤ 1 (4.18)

for all θ ∈ T
D . Hence, (4.1) holds and since

F ′
κ,θ (x) ≤ F ′

κ,θ (L0) ≤ 4κ

(κ + 1/κ)2
≤ 4

κ
≤ κ−1/2 (4.19)

for all x ≥ L0, the same is true for (4.2). Equations (4.3) and (4.5) are easy to check,
and (4.4) holds by assumption. Equation (4.6) follows from (4.15), whereas (4.7) and
(4.8) are obvious from the choice of b and (4.4). In order to verify (4.9), note that
[tanh(κx)]′|x=1/κ = 4κ

(e+1/e)2
, such that by concavity and monotonicity,

tanh(κx) ≥
⎧
⎨

⎩

4κ
(e+1/e)2

· x if x ≤ 1/κ

tanh(1) if x > 1/κ
. (4.20)

Using (4.16) and the fact that
∑D

i=1 sin(πθi ) ≥ d(θ, θ∗), where θ∗ = 0, we obtain

Fκ,θ (x) ≥ min

{

tanh(1),
4κ

(e + 1/e)2
x

}

· 1

D
d(θ, θ∗)

≥ min

{
b tanh(1)

2D
,

2bκ

D(e + 1/e)2
x

}

· 2

b
d(θ, θ∗)

≥ min{L0, ax} · min

{

1,
2

b
d(θ, θ∗)

}

as required. Finally, since α/a = D(e+1/e)2

2b , condition (4.12) follows from (4.13). Note
that since b and m are constants only depending on c and d, the same is true for the
condition (4.13) on D0. �
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Remark 4.3. Given T ∈ T ∗, note that (4.9) implies

λ(0) ≥ log
2a

b
+
∫

TD
log d(θ, θ∗) dθ ≥ log

2a

b
− log 2 − 1.

Since a ≥ 23 by (4.6), this yields λ(0) > 0 and hence ϕ+(θ) > 0 for LebTD -almost
every θ .

In order to formulate the main results of this section, let j ∈ R and

r j := b

2
a− j−1

m .

Proposition 4.4. Let T ∈ T ∗. Given q ∈ N, the following hold:

(i) |ϕn(θ)− ϕn(θ
′)| ≤ βαnd(θ, θ ′) for all n ∈ N and θ, θ ′ ∈ T

D.
(ii) There exists λ > 0 such that if n ≥ mq + 1 and θ /∈ ⋃n

j=q Br j (τ j ), then

|ϕn(θ)− ϕn−1(θ)| ≤ α−λ(n−1).
(iii) There exists K > 0 such that if θ, θ ′ /∈ ⋃n

j=q Br j (τ j ), then |ϕn(θ) − ϕn(θ
′)| ≤

Kαmqd(θ, θ ′) for all n ∈ N.

For the proof, we need two preliminary statements. The first is a simple observation.

Lemma 4.5. Suppose (4.4) holds and let n, i ∈ N0 and n > 0. If d(τn, θ∗) ≤ b · a−i ,
then n ≥ ai/d .

Proof. Equation (4.4) implies c · n−d ≤ b · a−i , and using (4.7) we get n−d ≤ a−i . �
The second statement we need for the proof of Proposition 4.4 is an upper bound on

the proportion of time the backwards orbit of a point (θ, ϕn(θ)) ∈ �n spends outside of
the contracting region T

D × [L0, 1]. Given θ ∈ T
D and n ∈ N, let θk := ωk−n(θ) and

xk := ϕk(θk) for 0 ≤ k ≤ n. Note that thus xk = T k
θ0
(1) and T n−k

θk
(xk) = ϕn(θ). Let

sn
k (θ) := #{k ≤ j < n | x j < L0} and

sn
k (θ, θ

′) := #{k ≤ j < n | min{x j , x ′
j } < L0}

and note that sn
k (θ, θ

′) ≤ sn
k (θ) + sn

k (θ
′). We set sn

n (θ) := 0 and sn
n (θ, θ

′) := 0.

Lemma 4.6. Let T ∈ T ∗ and q, n ∈ N with n ≥ mq+1. Suppose that θ /∈ ⋃n
j=q Br j (τ j ).

Then for all t ≥ mq we have

sn
n−t (θ) ≤ 11t

m
.

Proof. We divide A = {1 ≤ k < n − q | xk < L0} into blocks B = {l + 1, . . . , p} with
0 ≤ l < p < n − q and the properties

(a) xl ≥ L0/a;

(b) xk < L0/a for all k ∈ {l + 1, . . . , p − 1};
(c) x p < L0;

(d) either x p ≥ L0/a or x p+1 ≥ L0 or p + 1 = n − q.
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Note that these blocks cover the whole set A, and they are uniquely determined
by the above requirements. Since we always start a new block when the ‘threshold’
L0/a is reached, we may have p = l ′ for two adjacent blocks B = {l + 1, . . . , p} and
B ′ = {l ′ + 1, . . . , p′}.

Now, we first consider a single block B = {l + 1, . . . , p}. We have θl ∈ Bb/2(θ∗),
because otherwise xl+1 ≥ L0 according to (4.9) and (a). Since xk+1 = Tθk (xk), we can
use (4.9) and (b) to obtain that for any k ∈ {l + 1, . . . , p − 1},

xk+1 ≥ axk min

{

1,
2

b
d(θk, θ∗)

}

.

Therefore, using (c),(a) and (4.9) again, we see that

1 >
x p

L0
≥ a p−l−1

p−1∏

k=l

min

{

1,
2

b
d(θk, θ∗)

}

. (4.21)

Now, note that

p−1∑

k=l

log min

{

1,
2

b
d(θk, θ∗)

}

≥ − (log a) ·
∞∑

i=1

i · #

{

l ≤ k < p

∣
∣
∣
∣

b

2
a−i ≤ d(θk, θ∗) <

b

2
a−i+1

}

.

Therefore, we can deduce from (4.21) that

p − l ≤
∞∑

i=1

i · #

{

l ≤ k < p

∣
∣
∣
∣

b

2
a−i ≤ d(θk, θ∗) <

b

2
a−i+1

}

=
∞∑

i=1

#

{

l ≤ k < p

∣
∣
∣
∣ d(θk, θ∗) <

b

2
a−i+1

}

. (4.22)

We turn to the estimate on A ∩ [n − t, n − q) (note that n − t < n − q). It may happen
that n − t is contained in a middle of a block B. In this case, we need two auxiliary
statements to estimate the length of this first block intersecting [n − t, n −q). Let j ∈ N

be such that (m − 3)( j − 1) < t ≤ (m − 3) j .

Claim 4.7. If j ′ ≥ 1 and d(θk, θ∗) ≥ ba− j ′/2 for all k = l, . . . , p − 1, then p − l ≤
j ′

1−2/m ≤ 3 j ′.

Proof. Due to (4.8), two consecutive visits in Bb/2(θ∗) are at least m times apart, whereas
two consecutive visits in Bba−i /2(θ∗) are at least ai/d times apart by Lemma 4.5. Hence,
we obtain from (4.22) that

p − l ≤ p − l

m
+ 1 +

j ′∑

i=2

(
p − l

a(i−1)/d
+ 1

)
(4.6)≤ 2(p − l)

m
+ j ′.

◦
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Claim 4.8. Suppose the block B = {l + 1, . . . , p} intersects [n − t, n − q) and t ≤
(m − 3) j . Then d(θk, θ∗) ≥ ba− j+1/2 for all k ∈ B.

Proof. Suppose for a contradiction that there exist j ′ ≥ j and k′ ∈ B with d(θk′ , θ∗) <
ba− j ′+1/2. If j ′ is chosen maximal, such that d(θk, θ∗) ≥ ba− j ′/2 for all k ∈ B,
then Claim 4.7 implies that #B ≤ 3 j ′. However, since θ /∈ ⋃n

k=q Brk (τk) we have

d(θk, θ∗) ≥ rn−k for all k ∈ {0, . . . , n − q} and this implies ba− j ′/2 ≥ rn−k′ , i.e.
k′ < n − mj ′. Therefore, n − t ≤ max B ≤ k′ + 3 j ′ < n − (m − 3) j ′, contradicting the
assumption on t . ◦

We can now complete the proof of the lemma. For all blocks B intersecting [n −
t, n − q), Claim 4.8 implies d(θk, θ∗) ≥ ba− j+1/2 for all k ∈ B, such that #B ≤ 3 j
by Claim 4.7. Hence, by the same counting argument as in the proof of Claim 4.7 and
summing up over all blocks, we obtain the following estimate from (4.22):

sn
n−t (θ) ≤ q + #(A ∩ [n − t, n − q))

≤ q + 3 j +
t

m
+ 1 +

j−1∑

i=2

t

a(i−1)/d
+ 1

≤ q + 4 j +
2t

m

(4.5)≤ 11t

m

(recall that t ≥ mq). �
This allows to turn to the

Proof of Proposition 4.4. (i) For all θ, θ ′ ∈ T
D , we have

∣
∣ϕ1(θ)− ϕ1(θ

′)
∣
∣

= ∣
∣Tω−1(θ)(1)− Tω−1(θ ′)(1)

∣
∣

(4.3)≤ βd(ω−1(θ), ω−1(θ ′)) = βd(θ, θ ′) (4.23)

and
∣
∣ϕn+1(θ)− ϕn+1(θ

′)
∣
∣ ≤ ∣

∣Tθn (xn)− Tθn (x
′
n)
∣
∣ +

∣
∣Tθn (x

′
n)− Tθ ′

n
(x ′

n)
∣
∣ . (4.24)

We claim that for all θ, θ ′ ∈ T
D ,

∣
∣ϕn(θ)− ϕn(θ

′)
∣
∣ ≤ β(αn − 1)d(θ, θ ′). (4.25)

For the proof of this assertion, we proceed by induction. Equation (4.25) holds for n = 1
because of (4.23) and the fact that α > 2. Moreover,

∣
∣ϕn+1(θ)− ϕn+1(θ

′)
∣
∣

(4.24)≤
∣
∣
∣Tω−1(θ)(ϕn(ω

−1(θ)))− Tω−1(θ)(ϕn(ω
−1(θ ′)))

∣
∣
∣

+
∣
∣
∣Tω−1(θ)(ϕn(ω

−1(θ ′)))− Tω−1(θ ′)(ϕn(ω
−1(θ ′)))

∣
∣
∣

(4.1),(4.3)≤ α|ϕn(θ
′)− ϕn(θ)| + βd(θ, θ ′)

(4.25)≤ (
αβ(αn − 1) + β

)
d(θ, θ ′) ≤ β(αn+1 − 1)d(θ, θ ′),

which proves (4.25) for n + 1.
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(ii) We fix n ∈ N and θ ∈ T
D . Let θk and xk be defined as above. If ϕk−1(θk)−ϕk(θk) =

0 for some k ∈ {1, . . . , n}, then ϕn−1(θn)− ϕn(θn) = 0. Thus, we may assume that the
distance is greater than 0 for all k. In this case, we have

ϕn−1(θ)− ϕn(θ) = (ϕ0(θ1)− ϕ1(θ1)) ·
n−1∏

k=1

ϕk(θk+1)− ϕk+1(θk+1)

ϕk−1(θk)− ϕk(θk)

≤
n−1∏

k=1

Tθk (ϕk−1(θk))− Tθk (ϕk(θk))

ϕk−1(θk)− ϕk(θk)
≤ αsn

1 (θ)−γ (n−1−sn
1 (θ)),

where we used (4.1) and (4.2). Since θ /∈ ⋃n
j=q Br j (τ j ), we can use Lemma 4.6 with

t = n − 1 to obtain |ϕn(θ)− ϕn−1(θ)| ≤ α−λ(n−1), where

λ := γ − 11

m
(1 + γ )

(4.5)
> 0.

(iii) We proceed by induction to show that for all θ, θ ′ ∈ T
D and n ∈ N we have

∣
∣ϕn(θ)− ϕn(θ

′)
∣
∣ ≤ β

(
n−1∑

k=0

α(1+γ )sn
n−k (θ,θ

′)−γ k

)

d(θ, θ ′). (4.26)

For n = 1 this is true because of (4.23). Further, since

sn+1
n (θ, θ ′) + sn

n−k(ω
−1(θ), ω−1(θ ′)) = sn+1

n−k(θ, θ
′), (4.27)

we have
∣
∣ϕn+1(θ)− ϕn+1(θ

′)
∣
∣

(4.24),(4.1)−(4.3)≤ α(1+γ )sn+1
n (θ,θ ′)−γ

∣
∣
∣ϕn(ω

−1(θ))− ϕn(ω
−1(θ ′))

∣
∣
∣ + βd(ω−1(θ), ω−1(θ ′))

(4.26),(4.27)≤ β

(
n∑

k=0

α(1+γ )sn+1
n+1−k (θ,θ

′)−γ k

)

d(θ, θ ′).

This completes the induction step, such that (4.26) holds for all n ∈ N.
Now, when θ, θ ′ /∈ ⋃n

j=q Br j (τ j ) and k ≥ mq, then sn
n−k(θ, θ

′) ≤ 22k
m by Lemma 4.6.

Consequently, (4.26) yields that

∣
∣ϕn(θ)− ϕn(θ

′)
∣
∣ ≤ β

⎛

⎝
mq−1∑

k=0

αk +
n−1∑

k=mq

α(1+γ )sn
n−k (θ,θ

′)−γ k

⎞

⎠ d(θ, θ ′)

≤ β

⎛

⎝αmq +
n−1∑

k=mq

α
−
(
γ− 22

m (1+γ )
)

k

⎞

⎠ d(θ, θ ′).

Because of (4.5), we have γ − 22
m (1 + γ ) > 0, and this implies |ϕn(θ) − ϕn(θ

′)| ≤
Kαmqd(θ, θ ′) with

K := β

(

1 +
α−mq

1 − α−(γ− 22
m (1+γ ))

)

.

�
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5. Dimensions of the Upper Bounding Graph and the Associated Physical
Measure

For T ∈ T ∗, we can now calculate the Hausdorff dimension of the upper bounding graph
ϕ+, or more precisely of the corresponding point set �+. We will also be able to draw
some conclusions regarding the Hausdorff measure of�+. To that end, we will partition
ϕ+ into countably many subgraphs. First, keeping the notation from the last section we
define a partition of T

D by subsets � j ⊂ T
D with j ∈ N0 ∪ {∞} as

�0 := T
D\

∞⋃

k= j0

Brk (τk) , (5.1)

� j := Br j+ j0−1(τ j+ j0−1)\
∞⋃

k= j+ j0

Brk (τk) , (5.2)

�∞ :=
∞⋂

i=0

∞⋃

k=i+1

Brk (τk) , (5.3)

where we choose j0 ∈ N large enough to ensure LebTD (� j ) > 0 for all j ∈ N0. This
works for j = 0 because

∑∞
k=1 LebTD (Brk (τk)) < ∞ and for j ∈ N because for all

j ′ > j with Br j (τ j ) ∩ Br j ′ (τ j ′) �= ∅, the Diophantine condition (4.4) and (4.7) yield

j ′ > v( j) with v( j) := a
j−1
dm + j.

Hence, we obtain LebTD (� j ) ≥ LebTD (Br j+ j0−1(τ j+ j0−1)) − ∑
j ′≥v( j+ j0−1)

LebTD (Br j ′ (τ j ′)), which is strictly positive if j0 ∈ N is sufficiently large. The cor-

responding subgraphs ψ j are defined by restricting ϕ+ to � j , i.e. ψ j := ϕ+
∣
∣
� j

.

Proposition 5.1. Let T ∈ T ∗. Then for all j ∈ N0 the graph � j is the image of a
bi-Lipschitz continuous function g j : � j → � j × [0, 1] and therefore DH (�

j ) = D.
Further, DH (�

∞) ≤ 1.

Proof. Consider the maps g j : � j → � j × [0, 1] : θ �→ (θ, ψ j (θ)). For all j ∈
N0 ∪ {∞} we have g j (� j ) = � j and dTD×[0,1](g j (θ), g j (θ

′)) ≥ d(θ, θ ′) for all
θ, θ ′ ∈ � j . Further, for all j ∈ N0 we have

dTD×[0,1](g j (θ), g j (θ
′)) ≤

(
1 + Kα( j+ j0)m

)
d(θ, θ ′),

for all θ, θ ′ ∈ � j . This is true because Proposition 4.4 (iii) implies that ϕn|� j
is Lips-

chitz continuous with Lipschitz constant Kα( j+ j0)m independent of n, and since ψ j =
limn→∞ ϕn|� j

we also get thatψ j is Lipschitz continuous with the same constant. This

means that g j is bi-Lipschitz continuous for any j ∈ N0, and therefore DH (�
j ) =

DH (� j ). Hence, DH (�
j ) = D for all j ∈ N0 because 0 < Leb(� j ) < ∞.

In order to complete the proof, we now show that DH (�
∞)≤1. Since�∞ is a lim sup

set and for all s>0 we have
∑∞

k=1 diam(Brk (τk))
s < ∞, we get that DH (�∞)≤ s for

all s>0, using Lemma 2.7. Hence, DH (�∞)=0. Furthermore,�∞ ⊂�∞ × [0, 1] and
therefore DH (�

∞)≤ DH (�∞)+ DB([0, 1])=1, applying Theorem 2.6. �
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Since the Hausdorff dimension is countably stable, we immediately obtain

Theorem 5.2. Let T ∈ T ∗. Then the Hausdorff dimension of the upper bounding graph
is D.

It remains to determine the D-dimensional Hausdorff measure of �+.

Proposition 5.3. Let T ∈ T ∗ and D > m2 log(α/a). Then the D-dimensional Haus-
dorff measure of �+ is finite.

Proof. Since DH (�
∞) ≤ 1, we have HD(�∞) = 0 for D > 1. Furthermore, we can

consider the maps g j from the last proposition as Lipschitz continuous maps from R
D

to R
D+1 and therefore we can use the Area formula (see for example [24, Chap. 3]) to

deduce

HD(� j ) ≤
√

1 + (Kα( j+ j0)m+1)2 LebRD (Br j+ j0−1(τ j+ j0−1))

= VD

(
b

2

)D √
1 + (Kα( j+ j0)m+1)2 a− D

m ( j+ j0−2).

When D > m2 log(α/a) this implies that HD(� j ) is decaying exponentially fast, and
therefore HD(�+) = ∑∞

j=0 HD(� j ) < ∞. �
Proposition 5.4. Let T ∈ T ∗ and D = 1. Then the one-dimensional Hausdorff measure
of �+ is infinite.

Proof. We show that there exists an increasing sequence of integers ( ji )i∈N such that
H1(� ji ) ≥ c+/6.

Suppose j1, . . . , jN are given. Our first goal is to find j > jN + j0 − 1 such that
there exists a point θ̃+ ∈ Br j (τ j ) with ϕ j (θ̃

+) ≥ 2c+/3. According to Remark 4.3, we
can find a θ+ ∈ T

1 with θ+ /∈ �′∞ := ⋂∞
i=0

⋃∞
k=i+1 B2rk (τk) and c+ := ϕ+(θ+) > 0.

Since θ+ /∈ �′∞, there exists q ∈ N such that θ+ /∈ ⋃∞
k=q B2rk (τk). Now, we can choose

n > max{ jN + j0 − 1,mq} such that for all j ≥ n,

1

6
c+ ≥ 1

1 − α−λ α
−λ j , (5.4)

v( j) ≥ m( j + 1) + 1, (5.5)

a
v( j)−1

m ≥ 6b

c+(1 − a−1/m)

(
1 + Kα( j+1)m+1

)
. (5.6)

Note that Brn (θ
+)∩⋃n

k=q Brk (τk) = ∅, which means that there exists a neighbourhood of
θ+ where we can apply Proposition 4.4 (ii) to all points of this neighbourhood. Since ϕn
is continuous and ϕn(θ

+) ≥ ϕ+(θ+) = c+, we can find δ ≤ rn such that ϕn(θ) > 5c+/6
for all θ ∈ Bδ(θ+). Now, let j ≥ n be the first time such that Bδ(θ+) ∩ Br j (τ j ) �= ∅.

Set R := Bδ(θ+)\Br j (τ j ) �= ∅. Then for all θ ∈ R we have θ /∈ ⋃n′
k=q Brk (τk) for all

n ≤ n′ ≤ j and therefore

j−1∑

k=n

α−λk ≥ ϕn(θ)− ϕ j (θ) >
5c+

6
− ϕ j (θ),

using n ≥ qm + 1 and Proposition 4.4 (ii). This implies ϕ j (θ) > 2c+/3 for all θ ∈ R,
using (5.4). Sinceϕ j is continuous, there exists a θ̃+ ∈ Br j (τ j ) such thatϕ j (θ̃

+) ≥ 2c+/3.
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Now, using Proposition 4.4 (i), we have that ϕ j is Lipschitz continuous with Lipschitz
constant βα j and therefore there exists an interval I ⊆ Br j (τ j ) such that ϕ j is greater
than c+/2 on I and

LebT1(I ) ≥ c+

6βα j
.

Because of (5.6), we have that LebT1(I\⋃∞
k= j+1 Brk (τk)) > 0 (note that β <

K ). Hence, using (5.5) plus Proposition 4.4 (ii) and (5.4) again, there exists θ ∈
I\⋃∞

k= j+1 Brk (τk) ⊂ � jN+1 such that ψ jN+1(θ) ≥ c+/3, where jN+1 := j − j0 + 1.
Finally, the application of (5.6) yields

H1(� jN+1) ≥ H1(ψ jN+1(� jN+1))

≥ c+

3
−
(

1 + Kα( j+1)m+1
)

LebT1

⎛

⎝
∞⋃

k= j+1

Brk (τk)

⎞

⎠ ≥ c+

6
.

�
We turn to the question of rectifiability. Note that by definition μϕ+ is absolutely

continuous with respect to HD
∣
∣
�+ .

Theorem 5.5. Let T ∈ T ∗. Then μϕ+ is D-rectifiable and dμϕ+ = D1(μϕ+) = D.

Proof. Observe that μϕ+(�∞) = 0. Therefore, μϕ+ is also absolutely continuous with
respect to HD

∣
∣
�+\�∞ and �+\�∞ = ⋃∞

j=0�
j is countably D-rectifiable, according

to Proposition 5.1. That means μϕ+ is D-rectifiable. Now, use Corollary 2.13 to obtain
the dimensional results for μϕ+ . �

Note that for D ≥ 2 we have HD(�∞) = 0, such that�+ is countably D-rectifiable.
The question whether �+ is countably 1-rectifiable for D = 1 remains open.

We can now apply the above results to the family Fκ defined in Example 4.1 to
obtain the following corollary, which contains Theorem 1.1 and 1.3 and Corollary 1.4
as a special case.

Corollary 5.6. Let Fκ be defined by (4.11). Then there exists a κ0 = κ0(c, d, D) such
that for all κ ≥ κ0,

• the upper bounding graph �+ of Fκ has Hausdorff dimension D;
• the D-dimensional Hausdorff measure of �+ is infinite if D = 1 and finite for D

sufficiently large;
• μϕ+ is exact dimensional with pointwise dimension D;
• the information dimension of μϕ+ is D;
• μϕ+ is D-rectifiable.

Finally, we close by addressing a further obvious question in our context, namely
that of the size of the set of ‘pinched points’ where the upper bounding graph ϕ+ equals
zero. Given T ∈ T , let

P :=
{
θ ∈ T

D | ϕ+(θ) = 0
}
.

Then P is residual in the sense of Baire [3], and therefore its box dimension and its
packing dimension are D. However, from the point of view of Hausdorff dimension, P
turns out to be small.
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Proposition 5.7. Let T ∈ T ∗. Then

P ⊆ �∞ ∪ {
ωn(θ∗) | n ∈ N

}
,

where �∞ is the set defined in (5.3). In particular, DH (P) = 0.

Proof. Suppose θ /∈ �∞ ∪{ωn(θ∗) | n ∈ N}. Let q ∈ N be such that θ /∈ ⋃∞
j=q Br j (τ j )

and fix any t ≥ mq. Let

ε := t
min
k=1

T k
ω−k (θ)

(L0).

Note that since θ /∈ {ωn(θ∗) | n ∈ N} we have ε > 0. Now, for any n > t Lemma 4.6
implies that sn

n−t (θ) ≤ 11t/m ≤ t/2. In particular, there exists l ∈ {n − t, . . . , n − 1}
such that xl = T l

ω−n(θ)
(1) ≥ L0. Hence,

ϕn(θ) = T n−l
ω−(n−l)(θ)

(xl) ≥ ε.

Since this holds for all n > t , we obtain ϕ+(θ) ≥ ε and thus θ /∈ P as required. The
statement on the Hausdorff dimension then follows from Lemma 2.7. �
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