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Abstract: In this paper we build the renormalization horseshoe for the circle homeomor-
phisms, which are C2+α-smooth everywhere except for one point, and at that point have a
jump in first derivative. We also show that two such homeomorphisms are C1-smoothly
conjugate for a certain class of rotation numbers, which include non-Diophantine num-
bers with arbitrarily high rate of growth.

1. Introduction

The main aim of this paper is to present an almost complete renormalization theory
for circle homeomorphisms with break points. Nonlinear circle homeomorphisms with
breaks were introduced about 20 years ago. Those are homeomorphisms which are
smooth everywhere except at a single point where the first derivative has a jump dis-
continuity. The motivation was mainly based on a rich renormalization behavior such
maps exhibit, having many properties normally associated with “criticality”: singularity
of the invariant measure, nontrivial scalings, prevalence of periodic trajectories in one-
parameter families etc (see [1] for more details). Another motivation is related to a recent
interest in so-called generalized, or nonlinear, interval exchange transformations [2]. It
is well-known that circle rotation can be considered as interval exchange of two inter-
vals. The “generalized” version of it will be a circle homeomorphism. While matching
conditions for the images of the end points are natural, the matching conditions on the
derivatives are not. Thus one ends up with a circle homeomorphism with two break
points. However, since two break points belong to the same trajectory, the map can be
easily conjugated to a break map with exactly one break point. This shows that break
homeomorphisms can be considered as first non-trivial examples of generalized interval
exchanges. While rigidity analysis in the break case can provide certain intuition for the
case of “genuine” interval exchanges, we must also emphasize a significant difference.
Namely, two piecewise-smooth irrational circle homeomorphisms are topologically con-
jugate provided that they are combinatorially equivalent. This is in general not true for
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interval exchange transformations [3]. In other words, Denjoy’s theory holds only in the
case of circle homeomorphisms.

Renormalization approach, which plays a central role in the modern theory of dynami-
cal systems, can be considered as the main tool in establishing rigidity results. The rigidity
theory aims at proving the smoothness of conjugacy between two dynamical systems,
which a priori are only topologically equivalent. In the context of circle dynamics it
means that two maps with the same irrational rotation number and the same local struc-
ture of their singular points must be smoothly conjugate to each other. In most cases
one also has to impose certain Diophantine conditions on the rotation number. The main
step in proving rigidity is convergence of renormalizations. Herman’s theory [4] deals
with the classical case of smooth diffeomorphisms, where renormalizations approach a
family of linear maps with slope 1. On the other end, a highly nontrivial renormalization
behavior was discovered for critical circle maps. There is strong numerical evidence that
renormalizations behave universally for maps with the same order of critical points and
the same irrational rotation number, although at present rigorous results are available
only in the case when the order of the critical points is an odd integer ([5,6]). By a
rather standard argument, the convergence of renormalizations implies the smoothness
of conjugacy for rotation numbers of bounded type, and can be extended further to a
broader class of rotation numbers. In the case of C∞-smooth circle diffeomorphisms
this class consists of Diophantine numbers [7]. It is interesting that in the case of critical
circle maps the C1-rigidity holds for all irrational rotation numbers [8].

Circle maps with breaks form another interesting setting. In this case the local struc-
ture of the break point is determined by fixing the ratio of left and right derivatives at
it. This parameter, which is obviously invariant under smooth changes of coordinates,
play the same role as the order of critical point for critical circle maps. Namely, one can
expect that renormalizations of two maps with the same irrational rotation number and
the same ratio of the corresponding left and right derivatives, are getting exponentially
close to each other. It was known for a long time [9] that in the case of maps with
breaks renormalizations converge to a two-parameter family of linear-fractional maps.
This essentially reduces analysis to a study of renormalizations for this canonical family.
Such an analysis is the main result of the present paper. We prove that the corresponding
two-dimensional transformation has strong hyperbolic properties, which allows us to
construct the full renormalization horseshoe. Previously, hyperbolicity has been proved
only in the case of rotation numbers with periodic continued fraction expansion [1]. Such
maps correspond to periodic orbits for renormalizations. Here we prove that maps with
a given irrational rotation number form a stable manifold in terms of renormalizations.
Our approach is based on two ingredients. We first construct cones containing the stable
manifolds, and then use the exact symmetry to prove uniform convergence of renor-
malizations. Finally, we prove that under certain technical conditions on the rotation
numbers renormalizations for general diffeomorphisms with breaks converge to the ren-
ormalization horseshoe, which implies rigidity for the corresponding rotation numbers.

The structure of this paper is following. In Sect. 2 we present the basic renormalization
construction for orientation-preserving circle homeomorphisms and, more generally, for
so-called commuting pairs. In Sect. 3 we define circle diffeomorphisms with breaks and
describe the properties of their renormalizations. Section 4 gives the complete description
of the uniformly hyperbolic horseshoe in the two-dimensional invariant manifold con-
sisting of linear-fractional commuting pairs, to which the sequences of renormalizations
converge. In Sect. 5 we fit together the hyperbolic dynamics inside the linear-fractional
manifold and the convergence of renormalizations to that manifold in order to prove the
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exponential convergence of renormalizations; in Sect. 6 we derive the C1-rigidity result
for circle diffeomorphisms with breaks from the convergence of renormalizations by
means of the Conditional Theorem proved in [8].

The results presented in this paper were first announced in [10], see also [11,12].
By the end of this Introduction, the authors feel obliged to issue a warning that the

mathematics of this paper includes lots of lengthy rational expressions. We used a com-
puter algebra system to maintain them effectively, and advise an interested reader to do
the same.

2. Two Notions of Renormalizations

2.1. Renormalizations of circle homeomorphisms. Let T be an orientation preserving
homeomorphism of the unit circle T

1 = R/Z. Its rotation number ρ is defined up to an
integer constant as ρ = ρ(T ) = limm→∞(Lm

T x)/m, where LT is a lift of T from T
1

to the real line R (the limit does not depend on x ∈ R). The notion of renormalization
we use is related to the expansion of ρ in the form of continued fraction. The latter is
defined as

ρ = [k1, k2, . . . , kn, . . .] = 1

k1 +
1

k2 +
1

· · ·
kn +

1

· · ·

, (1)

where the sequence of positive integers kn , n ≥ 1, called partial quotients, can be either
finite or infinite, in which two cases the right-hand side of (1) corresponds to either a
rational number which can be calculated directly, or an irrational number given by a limit
for the sequence of rational convergents (or, just convergents) pn/qn = [k1, k2, . . . , kn]
(here pn and qn are co-prime positive integers). The continued fraction expansion for
rotation number

ρ(T ) = [k1, k2, . . . , kn, . . . ] (2)

is defined by (1) almost uniquely, where ‘almost’ concerns the rational numbers: they
can be expanded in two different ways, namely as [k1, k2, . . . , kn], kn ≥ 2, or as
[k1, k2, . . . , kn − 1, 1]. For convenience, we also define p0 = 0, q0 = 1 and p−1 = 1,
q−1 = 0.

Given a circle homeomorphism T with irrational ρ(T ), one may consider the marked
trajectory (i.e. the trajectory of the marked point) ξi = T iξ0 ∈ T

1, i ≥ 0, and pick out
of it the sequence of the dynamical convergents ξqn , n ≥ 0, indexed by the denomina-
tors of the consecutive rational convergents to ρ(T ). The well-understood arithmetical
properties of rational convergents and the combinatorial equivalence of all the circle
homeomorphisms with a fixed irrational rotation number imply that the dynamical con-
vergents approach the marked point, alternating their order in the following way:

ξq−1 < ξq1 < ξq3 < · · · < ξq2m+1 < · · · < ξ0 < · · · < ξq2m < · · · < ξq2 < ξq0

(here we conventionally use ξq−1 = ξ0−1). Let us define the nth renormalization segment

Δ
(n)
0 as the circle arc [ξ0, ξqn ] if n is even and [ξqn , ξ0] if n is odd.



350 K. Khanin, A. Teplinsky

The iterates T qn and T qn−1 restricted to Δ
(n−1)
0 and Δ

(n)
0 respectively are nothing else

but two continuous components of the first-return map for T on the segment Δ
(n−1)

0 =
Δ

(n−1)
0 ∪ Δ

(n)
0 . The consecutive images of Δ

(n−1)
0 and Δ

(n)
0 until the return to Δ

(n−1)

0
cover the whole circle without overlapping beyond their endpoints, thus forming the nth

dynamical partition of T
1:

Pn = {Δ(n−1)
i , 0 ≤ i < qn} ∪ {Δ(n)

i , 0 ≤ i < qn−1}, (3)

where Δ
(n)
i stands for T iΔ

(n)
0 . In particular, we use the fact that

qn−1∑

i=0

|Δ(n−1)
i | < 1.

For n ≥ 0, the nth renormalization of an orientation-preserving homeomorphism T
of the unit circle T

1 with rotation number (2) with respect to a marked point ξ0 ∈ T
1

is a pair of functions ( fn, gn) obtained from the mappings T qn and T qn−1 , restricted to
Δ

(n−1)
0 and Δ

(n)
0 respectively, by rescaling the coordinates:

fn = rn ◦ T qn ◦ r−1
n gn = rn ◦ T qn−1 ◦ r−1

n ,

where rn is an affine change of coordinates that sends ξqn−1 to −1 and ξ0 to 0.

2.2. Renormalization of commuting pairs. The sequence of renormalizations defined in
previous paragraph may be obtained by means of another approach.

We say that two real functions F and G form a commuting pair (F, G), if the follow-
ing conditions hold: F(0) ≥ 0, G(0) ≤ 0, F and G are defined, continuous and strictly
increasing on the segments [G(0), 0] and [0, F(0)] respectively, and commute at zero,
i.e. F(G(0)) = G(F(0)).

The Farey iteration of a commuting pair (F, G) such that F(G(0)) < 0 is the com-
muting pair (F, F ◦ G).

A commuting pair (F, G) is said to be normalized if G(0) = −1, so that F is defined
on [−1, 0]. For a pair of functions (F, G) such that G(0) 	= 0 we define its normali-
zation as (F, G) = (ν−1 ◦ F ◦ ν, ν−1 ◦ G ◦ ν), where ν(z) = −G(0)z. A normalized
commuting pair (F, G) is called degenerate if F(0) = 0 (then G is defined at zero only,
and G(0) = F(−1) = −1).

The main notations for sets. The set of all normalized commuting pairs (F, G) (in
the sequel we call them just ‘pairs’) is denoted by P. Let Ṗ = P\Z, where Z is
the set of all degenerate pairs. Define the ‘layers’ Πk ⊂ P, 0 ≤ k < ∞, by the
condition Fk(−1) ≤ 0 < Fk+1(−1); their ‘interiors’ Π̇k , k ≥ 0, by the condition
Fk(−1) < 0 < Fk+1(−1); and the separating ‘hypersurfaces’ γ1/k , 1 ≤ k < ∞, by
the condition Fk(−1) = 0. Also define the set Π∞ of all pairs (F, G) ∈ P such that
Fi (−1) < 0 for all i ≥ 0, the set γ0 = γ1/∞ of all pairs (F, G) ∈ Π∞ such that
min{F(z) − z} = 0, and the set Π̇∞ such that min{F(z) − z} < 0. In terms of graphs
of functions, the sets Π∞, γ0 and Π̇∞ correspond to the cases when the graph of F
has a common point with, touches, or crosses the diagonal (i.e. the graph of the identity
map) respectively. Obviously, the decomposition P = ⋃

0≤k≤∞ Πk is disjoint, as are
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the decompositions Πk = Π̇k ∪ γ1/k , 1 ≤ k ≤ ∞ (and for k = 0 we have Π0 = Π̇0).
Let S = P\ (Π0 ∪ γ1) (the set of pairs (F, G) such that F(−1) < 0), S = S ∪ γ1
(pairs such that F(−1) ≤ 0) and Ṡ = S\Z (pairs such that F(−1) < 0, F(0) > 0).

The switch operator S : Ṗ → Ṗ defined as S(F, G) = (G, F) effectively swaps F
and G. It is easy to see that this operator is an involution (S2 = Id) and maps the sets Ṡ
and Π0 onto each other.

The Farey step operator F : S → P is defined as F(F, G) = (F, F ◦ G). Obvi-
ously, F(Π̇k) ⊂ Π̇k−1, k ≥ 1; F(γ1/k) ⊂ γ1/(k−1), k ≥ 2; F(Π∞) ⊂ Π∞; and F = Id
on Z. Starting with a pair in S, the operator F can be iterated a number of times, but
on some step the trajectory may fall out of S. The Farey step is not defined for the
‘runaway’ pair (F, G) ∈ Ṗ\S = Π0 ∪ γ1, but in the generic case this will mean that
(F, G) ∈ Π0, and the switch operator S will carry the trajectory back into S. This
consideration suggests the following concept of renormalization in S that is principal
for our work.

The renormalizing operator on pairs (shortened as ‘renorm-operator’) R :
S\Π∞ → S is defined as R(F, G) = (Fk ◦ G, F) for (F, G) ∈ Πk , k ≥ 1. Indeed,
the domain of R is decomposed as S\Π∞ = ⋃

k≥1 Πk . A pair from the domain of
R is called renormalizable, while the positive integer k = k(F, G) ≥ 1 such that
(F, G) ∈ Πk is referred to as the renormalization height of this pair. Naturally, the pairs
from Π∞ are called non-renormalizable, and their height is ∞. Notice, that renormal-
izable pairs are those for which F has no fixed points in [−1, 0].

It is easy to see that on Π̇k , 1 ≤ k < ∞, the following representation is valid:
R = S ◦ Fk . On the other hand, R(γ1/k) ⊂ Z, 1 ≤ k < ∞.

A pair (F, G) is called infinitely renormalizable, if Rn(F, G) ∈ S\Π∞ for all n ≥ 0.
The set of all such pairs we denote by R. Now, it is easy to check that every renormal-
ization ( fn, gn) (defined in the previous subsection) of a circle homeomorphism T with
irrational rotation number belongs to R, and that the sequence of those renormalizations
forms a trajectory of the renorm-operator:

R( fn, gn) = ( fn+1, gn+1). (4)

It is possible to define rotation number ρ(F, G) ∈ [0, 1] for a pair (F, G) ∈ S,
substituting its consecutive renormalization heights for partial quotients due in a con-
tinued fraction expansion: ρ(F, G) = [k1, k2, ...], where kn = k(Rn−1(F, G)). This
expansion lasts while Rn−1(F, G) 	∈ Π∞, so it can appear to be empty, finite or infinite
assigning zero, rational or irrational value to ρ(F, G) respectively. Notice that rotation
numbers ρ = 0 and ρ = 1 are different in this context: the first one corresponds to the
non-renormalizable set Π∞, while the second one determines a subset in Π1.

For irrational ρ ∈ (0, 1) let us denote by γρ the set of all pairs with rotation number
ρ. (Notice, that all the pairs from γ1/k have rotation number 1/k, 1 ≤ k ≤ ∞, but not
all pairs with ρ = 1/k belong to γ1/k .) Obviously, R = ⋃

ρ∈(0,1)\Q γρ .
Since Gauss transformation G acts as the left unit shift on the continued fraction:

G[k1, k2, . . . , kn, . . . ] = [k2, k3, . . . , kn, . . . ], we may state that

ρ(R(F, G)) = Gρ(F, G), (F, G) ∈ S\Π∞.

For a renormalization ( fn, gn) we have ρ( fn, gn) = ρn = Gn(ρ(T )).
The above constructions allow one to consider a sequence of renormalizations

( fn, gn) built for a circle homeomorphism T as a trajectory of the (infinite-dimen-
sional) dynamical system (S;R). In the next section we will investigate the hyperbolic
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properties of this operator being restricted to the subspace of pairs, which correspond to
circle diffeomorphisms with breaks.

Notice that (S;R) is not quite a dynamical system in the classical sense, because
R is not defined over the whole set S. Nevertheless, classical concepts are being easily
generalized to this type of “leaking” systems. Just keep in mind that trajectories of our
system can be finite: they terminate when falling into Π∞.

3. Diffeomorphisms with Breaks: the Settings

A circle homeomorphism T is called a diffeomorphism of smoothness C2+α , α ∈ (0, 1),
with a break at a point ξ0, if the following conditions hold:

1) T ∈ C2+α(ξ0, ξ0 + 1);
2) infξ 	=ξ0 T ′(ξ) > 0;
3) there exist non-equal one-sided derivatives T ′(ξ0+) and T ′(ξ0−).

The term size of break refers to the number c =
√

T ′(ξ0−)
T ′(ξ0+)

. For a diffeomorphism with
a break, the size of break is positive and not equal to 1 by the definition above.

Let us define the set of pairs that corresponds to the set of diffeomorphisms of smooth-
ness C2+α with breaks of size c. To do this, consider firstly the set Ṗ2+α

c ⊂ Ṗ of all non-
degenerate pairs (F, G), both entries of which are C2+α-smooth, their first derivatives
are positive over the segments of definition, and satisfy the condition c2 = F ′(0)G ′(F(0))

G ′(0)F ′(−1)
.

Secondly, consider the set Z2+α
c ⊂ Z of all degenerate pairs (F, G) such that F is

smooth on [−1, 0], has positive derivative and satisfies c2 = F ′(0)
F ′(−1)

. It is natural to

put P2+α
c = Ṗ2+α

c ∪ Z2+α
c and introduce the whole line of notations by the template

∗2+α
c = ∗ ∩ P2+α

c , where ∗ stands for a subset of P defined in the previous section. It is

easy to check that F(S2+α
c ) ⊂ P2+α

c , S(Ṗ2+α
c ) = Ṗ2+α

1/c , R(S
2+α

c \Π2+α∞,c) ⊂ S2+α
1/c and

R(γ 2+α
1/k,c) ⊂ Z2+α

1/c . The switch from size of break c to 1/c each time R acts on a pair

with break implies the necessity either to consider the spaces P2+α
c and P2+α

1/c together

or study the action of R2 on (twice renormalizable pairs from) S2+α
c . Notice that the set

R2+α
c is invariant w.r.t. R2.

The canonical lift. For a given pair (F, G) ∈ S 2+α
c \Z2+α

c , consider a real function
determined by the equalities

HF,G(w) =
⎧
⎨

⎩
m + H (1)

F,G(w − m), w ∈ [m − 1, m + φ(F−1(0))),

m + 1 + H (2)
F,G(w − m), w ∈ [m + φ(F−1(0)), m),

m ∈ Z,

where

H (1)
F,G = φ ◦ F ◦ φ−1, H (2)

F,G = φ ◦ G ◦ F ◦ φ−1,

and φ(z) = (F(0)+1)z
2F(0)+(F(0)−1)z is a linear-fractional map that sends −1, 0 and F(0) to −1, 0

and 1 respectively. It is easy to see that H (2)
F,G(0) = H (1)

F,G(−1) and H (2)
F,G(φ(F−1(0))) =

H (1)
F,G(φ(F−1(0)))− 1, therefore HF,G is continuous on R and satisfies the equivalence

HF,G(w + 1) = HF,G(w) + 1, thus it is a lift for a certain circle homeomorphism. Let us
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call HF,G the canonical lift for a pair (F, G). We will denote the circle homeomorphism
determined by the canonical lift by the same letter HF,G and refer to it as the homeo-
morphism generated by the pair (F, G). Due to combinatorial properties of trajectories
(which are the same for a homeomorphism as for the corresponding rigid rotation), we
have ρ(HF,G) = limi→+∞ Hi

F,G(0)/ i = ρ(φ ◦ F ◦ φ−1, φ ◦ G ◦ φ−1) = ρ(F, G) ∈
[0, 1].
Remark 1. Notice that a homeomorphism HF,G generated by (F, G) ∈ Ṡ2+α

c has, gen-
erally speaking, two breaks rather than one, but they belong to the same trajectory, and
the product of their sizes is equal to c.

Remark 2. We cannot give a conceptual explanation why is it so convenient to con-
sider this particular lift as the canonical one for the case of circle diffeomorphisms with
breaks. Our techniques work with this lift, while they do not work with other construc-
tions, which we have tested (including the one used in [1]). The problem of producing a
convenient circle homeomorphism from a given commuting pair seems to be important.
We would like to mention in this connection a natural construction by Yampolsky [13]
related to the so-called cylinder renormalization for holomorphic commuting pairs.

Next we introduce the family of pairs of linear-fractional functions given in the form

Fa,v,c(z) = a + cz

1 − vz
, Ga,v,c(z) = −c + z

c − c−1−v
a z

. (5)

It is also convenient to assume G0,c−1,c(0) ≡ −1, so that for each size of break c we
have a single degenerate pair in the family (5), namely with a = 0, v = c − 1.

This family plays an important role in the theory of circle diffeomorphisms with
breaks because it is invariant w.r.t. R (up to non-renormalizable pairs), and the ren-
ormalizations ( fn, gn) of such a diffeomorphism with an irrational rotation number
converge exponentially fast to the family (5) as n → +∞ (we will give the precise
statement in a moment).

Let T be an arbitrary circle diffeomorphism of smoothness C2+α with a break of the
size c and irrational rotation number. Denote c(n) = c for n even, c(n) = 1/c for n odd
and

a(n) = |ξqn − ξ0|
|ξqn−1 − ξ0| , b(n) = |ξqn+qn−1 − ξ0|

|ξqn−1 − ξ0| , v(n) = c(n) − a(n) − b(n)

b(n)
. (6)

The following statements are proved in [9]:

(A) | log(T qn )′(ξ)| ≤ VarT1 log T ′ (the total variation of log T ′ over T
1);

(B) |a(n) + b(n)mn − c(n)| ≤ Cλn , where mn ∈ [C−1, C];
(C) ‖ fn − Fa(n),v(n),c(n)‖C2([−1,0]) ≤ Cλn , ‖gn − Ga(n),v(n),c(n)‖C1([0,a(n)]) ≤ Cλn ,

where the constants C > 0 and λ ∈ (0, 1) do not depend on n.

4. Renormalization in the Linear-Fractional Family

4.1. Basic two-dimensional coordinate system. Since renormalizations of diffeomor-
phisms with breaks converge to the family (5), we need to study the action of renorm-
operator on pairs from that family. For every particular c it is convenient to identify a
point (a, v) on the R

2 plane with the corresponding pair of functions (Fa,v,c, Ga,v,c),
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as soon as the latter is defined. Denote by Pc the sets of all points (a, v) ∈ R
2 such that

(Fa,v,c, Ga,v,c) belongs to P, and similarly define the other sets with index c such as
Sc, Rc and γ1/k,c, 1 ≤ k ≥ ∞, etc. For points in Sc, the rotation number ρ(a, v, c) =
ρ(Fa,v,c, Ga,v,c) is defined.

One can easily calculate that Zc = {(0, c − 1)}, Ṡc = {(a, v) : 0 < a < c, v + a −
c + 1 > 0}, γ1,c = {(a, v) : a = c, v > −1}, Π0,c = {(a, v) : a > c, v > −c/a} and
accordingly construct Sc = Ṡc ∪ Zc, Sc = Sc ∪ γ1,c and Pc = Sc ∪ Π0,c. (Notice
that Sc is the closure of Sc in Pc, but not in R

2.)
In Fig. 1, we show the key lines in the (a, v)-plane used to define the sets mentioned

above and those that we will mention in the following subsections.
It is easy to check that the Farey step operator maps Sc to Pc, the switch operator

maps Ṗc onto Ṗ1/c, and the renorm-operator maps Sc\Π∞,c to S1/c (we shall pres-
ently check that Rc maps the whole set

⋃
1≤k<∞ γ1/k,c into the single degenerate point

(0, 1/c − 1) ∈ S1/c). Let us denote these operators, restricted to the above-listed sets
(in R

2), by Fc, Sc, and Rc respectively. In this section, we shall study the appropriate
2D dynamics and describe the horseshoe hyperbolic structure they produce.

It is easy to check that

Fc(a, v) =
(

v + 1

c − a
a,

c − a

v + 1
v

)
, Sc(a, v) =

(
1

a
,
v + 1 − c

c

)
.

A direct calculation shows that their Jacobians

det
∂Fc(a, v)

∂(a, v)
= c + av

(v + 1)(c − a)
, det

∂Sc(a, v)

∂(a, v)
= − 1

ca2 (7)

are positive and negative respectively. This important property allows us to calculate
images of given domains under the action of the Farey step or the switch operator by
calculating just the images of boundaries, and state that the restricted mappings are
one-to-one as soon as it is true for the boundaries.

The renorm-operator acts ([9,1]) as

Rc(a, v) =
(

−1

a
Fk

a,v,c(−1),
1

c

(
1 − vFk

a,v,c(−1)
)

− 1

)
,

(a, v) ∈ Πk,c, 1 ≤ k < ∞. (8)

We have Fk
a,v,c(−1) = 0 for (a, v) ∈ γ1/k,c, hence Rc

(⋃
1≤k<∞ γ1/k,c

) ={(
0, 1

c − 1
)}

, and this justifies our setup of the degenerate point in Sc. One may think
of R acting on the family (5) as the two operators Rc and R1/c acting in turns, sending
a point from Sc to S1/c and back respectively. The composition R1/c ◦ Rc = R2 maps
twice-renormalizable points from Sc to Sc, and the set Rc is invariant w.r.t. R2.

Denote the canonical lift for the linear-fractional family as Hc(w; a, v) =
HFa,v,c,Ga,v,c (w). It is obvious that Hc : R × (Sc\{(0, c − 1)}) �→ R is a continuous
function, and therefore the rotation number ρ(a, v, c) = ρ(Hc(·; a, v)) is continuous
on Sc\{(0, c − 1)}. (In fact, it is continuous on the whole set Sc, as it follows from our
analysis below.)
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−1 c−1

c

v

a

−1 c−1

c

a

v

Fig. 1. The boundaries of the domains mentioned throughout Sect. 4 in the cases c < 1 (left) and c > 1
(right), namely a = 0, a = c, v = 0, v = c − 1, a = c − 1 − v, av = −c, av = c(c − 1 − v), 4av = (c − 1)2

(for c > 1 only) and 4c(v − c + 1) = (1 − c)2a (for c < 1 only). Also shown is one of the curves γ (the
thinner one), for which the inequalities (9) hold. The gray domains are the sets Ďc (see Subsect. 4.5)

For the smooth components of Hc we get the following expressions:

H (1)
c (w; a, v) = A1 + B1w

C1 + D1w
, w ∈

[
−1,− a + 1

c + 1 + (c − a)

]
,

H (2)
c (w; a, v) = A2 + B2w

C2 + D2w
, w ∈

[
− a + 1

c + 1 + (c − a)
, 0

]
,

where A1 = (a + 1)2, B1 = (a + 1)(c + 1 + (c − a)), C1 = (a + 1)2, D1 = 1 − 4va −
a2 + 2ca − 2c; A2 = (a + 1)2(c − a), B2 = (a + 1)(c − a + a2 − 3ca − 2cva), C2 =
(a+1)(−a2+ac−a−2av−c), D2 = a3+2va2−3ca2+2cva2+4c2a−a−2va−2cva−c.

4.2. The geometry of the main sets in (a, v)-coordinates. It follows from the results
of [1], Sect. 3.2, that the set Π∞,c of points in Sc with rotation number 0 is the single
degenerate point (0, c − 1) for c < 1 and

Π∞,c =
{
(a, v) : max{0, c − v − 1} < a ≤ (c − 1)2

4v
, v >

c − 1

2

}
∪ {(0, c − 1)}

for c > 1. Accordingly, γ0,c = {(0, c − 1)} for c < 1 and γ0,c = {(a, v) : a =
(c − 1)2/(4v), v > (c − 1)/2} for c > 1 (Fig. 1).

The following proposition lists the rest of the information we get about the geometry
of the sets of points (a, v) ∈ Sc with constant rotation numbers and the sets γ1/k,c. In
what follows we define some sets in Sc, which can be given as graphs of functions in
the form a = γ (v), v > −1. With a slight abuse of notations, we denote such sets the
same as those functions (namely as γ with different indices).

Proposition 1. The set γρ,c of points with irrational rotation number ρ ∈ (0, 1) is a
continuous graph of the form a = γρ,c(v), v > −1.

The set of points with rational rotation number p/q ∈ (0, 1) is a strip

Γp/q,c = {(a, v) : γ
(1)
p/q,c(v) ≤ a ≤ γ

(2)
p/q,c(v), v > −1},
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where γ
(1)
p/q,c < γ

(2)
p/q,c are continuous functions of v > −1. Moreover, we have γ1/k,c =

γ
(2)
1/k,c for c < 1 and γ1/k,c = γ

(1)
1/k,c for c > 1, 2 ≤ k < ∞.

The set of points with rotation number 1 is the ray γ1,c for c > 1 and the strip

Γ1,c = {(a, v) : γ
(1)
1,c (v) ≤ a ≤ c, v > −1} for c < 1, where γ

(1)
1,c (v) < c is a

continuous function of v > −1.
Let γ stand for one of the following sets: γρ,c, where ρ ∈ (0, 1)\Q; γ

(1)
p/q,c, where

p/q ∈ (0, 1); γ
(2)
p/q,c, where p/q ∈ (0, 1); γ1/k,c, where 2 ≤ k < ∞; or γ

(1)
1,c , where

c < 1. For any two different points (a1, v1), (a2, v2) ∈ γ , the following Lipschits-type
inequalities hold:

− 1 <
a2 − a1

v2 − v1
< 0. (9)

The described graphs a = γ (v), v > −1, are all ordered in accordance with their first
lower index, i.e. γρ,c < γ

(1)
p/q,c for ρ < p/q etc.

We will prove this proposition in the next subsection.

4.3. Proof of Proposition 1. To study the geometry of the sets γρ,c, we use the following
idea. It is a well-known fact that the rotation number is a monotone function of circle
homeomorphism in the following sense: if HΩ , Ω ∈ [A, B], is a continuous one-param-
eter family of lifts of circle homeomorphisms such that HΩ(w) is non-decreasing w.r.t.
Ω for any fixed w ∈ R, then ρ(HΩ) is a continuous and non-decreasing function of Ω .
Moreover, if HΩ(w) is strictly increasing w.r.t. Ω for any fixed w ∈ T

1, then ρ(HΩ)

is strictly increasing at its irrational values. Thus, if the canonical lift Hc(w; a, v) is
strictly monotone along a certain curve in Ṡc, then this curve cannot have more than
one common point with any of the sets γρ,c, ρ ∈ (0, 1)\Q.

To establish monotonicity of the canonical lift, we will differentiate its smooth com-
ponents in certain directions.

Lemma 1. For (a, v) ∈ Ṡc, we have

∂ H (1)
c (w; a, v)

∂v
> 0 for all w ∈

[
−1,− a + 1

c + 1 + (c − a)

)
,

∂ H (2)
c (w; a, v)

∂v
> 0 for all w ∈

(
− a + 1

c + 1 + (c − a)
, 0

]
,

while at w = − a+1
c+1+(c−a)

both derivatives vanish.

Proof. The derivative ∂ H (1)
c (w;a,v)

∂v
= −4wa(a+1)P1

Q2
1

, where P1 = (−1+a −2c)w−(a +1)

and Q1 = (a2 + 4va − 2ca + 2c − 1)w − (a + 1)2. Obviously, −4wa(a + 1)/Q2
1 > 0

for all w ∈ [−1,−(a + 1)/(c + 1 + (c − a))], (a, v) ∈ Ṡc. The value of P1 at w = −1
is 2a(a + 1)(c − a) > 0, and its value at w = −(a + 1)/(c + 1 + (c − a)) is 0. Since P1
is linear w.r.t. w, the statement follows.

Next, ∂ H (2)
c (w;a,v)

∂a = 2a(a+1)(c−a)P2
Q2

2
, where P2 = (a + 2ca − 1)(−1 + a − 2c)w2 −

2(a−1)(a +1)(c+1)w+(a +1)2 and Q2 = (a3−3ca2 +2a2v+2a2vc+4c2a−a−2va−
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2vac−c)w−a3 −2a2 +ca2 −2a2v−a−2va−c. Since 2a(a +1)(c−a)/Q2
2 is positive,

it is enough to check the sign of P2. The value of P2 at w = −(a + 1)/(c + 1 + (c − a))

is 0, and its value at w = 0 is (a + 1)2. Now notice that P2/w
2 is a quadratic polynomial

w.r.t. 1/w, the parabola looks upwards, and the vertex 1/w = (c + 1)(a − 1)/(a + 1)

lies to the right from the interval (−∞,−(c + 1 + (c − a))/(a + 1)] of our interest. The
proof is complete.

Corollary 1. Hc(w; a, v) is non-decreasing, and its second iterate Hc(Hc(w; a, v); a, v)

is strictly increasing, for every w ∈ R along every line a = const in Ṡc as v increases.

In the sequel, ∇ denotes the gradient vector w.r.t. the variables (a, v).

Lemma 2. For (a, v) ∈ Ṡc, we have

−−−−→
(1,−1) · ∇(a,v)H (1)

c (w; a, v) > 0 for all w ∈
[
−1,− a + 1

c + 1 + (c − a)

]
,

−−−−→
(1,−1) · ∇(a,v)H (2)

c (w; a, v) > 0 for all w ∈
[
− a + 1

c + 1 + (c − a)
, 0

]
.

Proof. The derivative
−−−−→
(1,−1)·∇H (1)

c (w; a, v) = −4wP1
Q2

1
, where P1 = (2ca2 +a−a2v−

a3 +2c2 −v−2vc)w+a3 +2a2 +2ca +a2v−v+a +2c and Q1 = (−1+4va +a2 −2ca +
2c)w−1−2a −a2. We have −4w/Q2

1 > 0 for all w ∈ [−1,−(a +1)/(c +1+ (c−a))].
The value of P1 at the point w = −1 is 2(a2 + c)(v + a − c + 1) > 0, and its value at
w = −(a + 1)/(c + 1 + (c − a)) is 2(c + 1)(a + 1)(c + va)/(c + 1 + (c − a)) > 0. Since
P1 is linear w.r.t. w, the statement follows.

Next,
−−−−→
(1,−1) ·∇H (2)

c (w; a, v) = 2(v+a−c+1)P2
Q2

2
, where P2 = (−2ca +a4 +c+4a2vc+

a2 −4c2a3 + 2c2a2 + 2c2 + 2a4c + 4a2vc2 −4ca3 + 3ca2 −2a3)w2 −2(c + 1)(a −1)(a +
1)(a2 + c)w + (a + 1)2(a2 + c) and Q2 = (a3 −3ca2 + 2a2v + 2a2vc −a + 4c2a −2va −
2vca − c)w − a3 − 2a2v − 2a2 + ca2 − a − 2va − c. Since 2(v + a − c + 1)/Q2

2 > 0,
it is enough to check that P2 > 0. The value of P2 at w = −(a + 1)/(c + 1 + (c − a))

is 4ca(a + 1)2(c + 1)(c + va)/(c + 1 + (c − a))2 > 0, and its value at w = 0 is
(a + 1)2(a2 + c) > 0. Now notice that P2/w

2 is again a quadratic polynomial w.r.t. 1/w,
the parabola looks upwards, and the vertex 1/w = (c + 1)(a − 1)/(a + 1) lies to the
right from the interval (−∞,−(c + 1 + (c − a))/(a + 1)] of our interest. The proof is
complete.

Corollary 2. Hc(w; a, v) is strictly increasing for every w ∈ R along every line a +v =
const in Ṡc as a increases.

Since
−−−→
(1, 0) = −−−→

(0, 1) +
−−−−→
(1,−1), the next statement follows easily from Lemmas 1

and 2.

Corollary 3. Hc(w; a, v) is strictly increasing w.r.t. a in Ṡc for any fixed v > −1,
w ∈ R.

We need one more lemma, this time concerning the ‘devil staircase’ structure of
dependence of rotation number ρ(a, v, c) on a.

Lemma 3. Assume the values of c 	= 1 and v > −1 to be fixed.
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The rotation number ρ(a, v, c) is a continuous non-decreasing function in a such
that the preimages of irrational numbers ρ ∈ (0, 1) are single values a = γρ,c(v),
and the preimages of rational numbers p/q ∈ (0, 1) are closed segments a ∈
[γ (1)

p/q,c(v), γ
(2)
p/q,c(v)] of non-zero length. The preimage of rotation number 1 is the

single value a = c for c > 1 and a segment a ∈ [γ (1)
1,c (v), c] of non-zero length for

c < 1.
For every 2 ≤ k < ∞, there exists a single value a = γ1/k,c(v) such that (a, v) ∈

γ1/k,c; moreover, we have γ1/k,c(v) = γ
(2)
1/k,c(v) for c < 1 and γ1/k,c(v) = γ

(1)
1/k,c(v)

for c > 1.
The values γρ,c(v) and γ

(i)
p/q,c(v), i ∈ {1, 2}, are ordered in accordance with their

first lower index.

Proof. Let us fix some c 	= 1 and v > −1.
From the description of γ1,c we know that the upper boundary for a in Sc is c, and

that ρ(c, v, c) = 1. We start with showing that ρ(a, v, c) → 0 as a tends to its lower
boundary in Sc, which is max{0, c − 1 − v} (notice that for c > 1 and v > (c − 1)/2
a stronger property holds: ρ(a, v, c) = 0 as soon as a ≤ (c − 1)2/(4v) due to the
description of γ0,c). The difference

H (1)
c (−1; a, v) − (−1) = 2a(a + 1 + v − c)

(c + av) + a(v + a − c + 1)
> 0

tends to zero as a → max{0, c − 1 − v}. On the other hand, the derivative

∂ H (1)
c (w; a, v)

∂w
= 4(a + 1)2(c + av)

((−1 + 4av + a2 − 2ac + 2c)w − 1 − 2a − a2)2 > 0

is bounded in Ṡc for every fixed v. Indeed, the nominator is obviously bounded, while
the denominator is separated from zero by a positive constant (for w = −1 the denomi-
nator is equal to 4((c+av)+a(v+a−c+1))2 ≥ 4(c+av)2 ≥ min{4c2(v+1)2, 4c2} > 0
and for w = 0 it is (a + 1)4 ≥ 1 > 0). It follows that the renormalization height of
(a, v), which is less by one than a number of iterates of H (1)

c (·; a, v) required to move
the point −1 beyond 0, tends to +∞ as a → max{0, c − 1 − v}, and thus the rotation
number tends to zero indeed.

The continuity of ρ(·, v, c), the equality ρ(c, v, c) = 1 and the fact we proved in
the previous paragraph imply that all numbers from (0, 1] have non-empty preimag-
es in (max{0, c − 1 − v}, c]. Corollary 3 implies that ρ(a, v, c) is non-decreasing for
a ∈ (max{0, c − 1 − v}, c], and that it is strictly increasing at its irrational values. Thus
the preimages of irrational numbers are single values, while the preimages of rational
numbers from (0, 1] are either single values or closed segments.

We have ρ(a, v, c) = p/q ∈ (0, 1) if and only if the q th iterate (Hc(·; a, v))q − p has
a fixed point. Let it have a fixed point. Since (Hc(·; a, v))q − p has a break of non-unit
size, its graph does not coincide with the identity line. Assume that this graph has a point
located above (below) the identity line. Corollary 3 implies that (Hc(·; a, v))q − p is
strictly increasing w.r.t. a, hence for small enough negative (positive) increment δa the
function (Hc(·; a + δa, v))q − p has a fixed point too. Thus the preimages of rational
numbers from (0, 1) are closed segments [γ (1)

p/q,c(v), γ
(2)
p/q,c(v)] of non-zero length. For
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the case of rotation number 1 we already know a value of a that has it, namely a = c,
since (c, v) ∈ γ1,c. For w ∈ [−1, 0] we have

Hc(w; c, v) − 1 = H (2)
c (w; c, v) = 1 + w

1 + (1 − c)w
,

and the second derivative

∂2 Hc(w; c, v)

∂w2 = 2(c − 1)c

(1 + (1 − c)w)3

has the sign of c − 1. It follows that w = −1 and w = 0 are fixed points for the map
Hc(·; c, v) − 1, while for w ∈ (−1, 0) its graph lies below the identity line in the case
of c > 1 and above that line in the case of c < 1. Therefore, due to Corollary 3, in the
first case a small decrease in a will leave no fixed points on R, while in the second case
at least two fixed points will be located on (−1, 0).

Now let us look at the sets γ1/k,c, 2 ≤ k < +∞, defined by the property
Fk

a,v,c(−1) = 0. The fixed points of the lift H = (Hc(·; a, v))k − 1 in this case are
wi = (Hc(·; a, v))i (0), i ∈ Z, the function H is linear-fractional on every segment
[wi , wi+1], the one-sided derivatives of H at wi , i ∈ Z, do not depend on i (they are
equal to the product of the corresponding one-sided derivatives of Hc(·; a, v) at w j ,
0 ≤ j < k), and at each point wi , i ∈ Z, the function H has a break of size c. It follows
that between each pair of its neighboring fixed points the function H is convex (i.e.
H ′′ > 0) in the case of c > 1 and concave in the case of c < 1. Corollary 3 hereby
implies the second statement of the lemma.

The last one follows from the same corollary.

Proof (Proof of Proposition 1). Let us notice that all the sets γ listed in the last
statement of the proposition share the following common property: if a point (a, v)

belongs to γ , and (a′, v′) is another point such that the second iterate of the canonical
lift (Hc(w; a′, v′))2 is greater (smaller) than (Hc(w; a, v))2 for every w ∈ T

1, then
(a′, v′) 	∈ γ .

Corollaries 1 and 2 taken together imply that, given an arbitrary point (a, v) ∈ γ ,
for any point (a′, v′) 	= (a, v) inside the angle {(a′, v′) : a′ ≤ a, a′ + v′ ≤ a + v} we
have (Hc(w; a′, v′))2 < (Hc(w; a, v))2 and therefore (a′, v′) 	∈ γ . Similarly, for any
point (a′′, v′′) 	= (a, v) inside the angle {(a′′, v′′) : a′′ ≥ a, a′′ + v′′ ≥ a + v} we have
(Hc(w; a′′, v′′))2 > (Hc(w; a, v))2 and therefore (a′′, v′′) 	∈ γ as well. The inequalities
(9) follow.

The rest of the statements of this proposition are implied by Lemma 3 and the conti-
nuity of ρ in v.

4.4. Absorbing areas. Let us introduce the set Dc = {(a, v) : 1/2 ≤ v/(c − 1) <

1, c(c − v − 1)/v ≤ a ≤ c} and its closure Dc = Dc ∪ {(a, c − 1) : a ∈ [0, c]} ⊂ Sc
(see Fig. 1 for easy visualization of those sets). The following proposition shows that
these sets are absorbing areas for the dynamics determined by the renorm-operator R.

Proposition 2. For any c 	= 1 we have Rc(Dc\Π∞,c) ⊂ D1/c. Any trajectory of R2 =
R1/c ◦ Rc in Rc eventually falls into Dc and stays there forever afterwards.
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Proof. In [1], Sect. 3.4, it was proved that any trajectory of R2 in Rc eventually falls
into the set Φc = {(a, v) ∈ Sc : 0 ≤ v/(c − 1) ≤ 1} (to be precise, they did not include
(0, c − 1) into Φc, while we do) and stays there forever afterwards. Since Dc ⊂ Φc,
showing that Rc(Φc\Π∞,c) ⊂ D1/c and Rc(Rc ∩ Dc) ⊂ D1/c will prove the proposi-
tion.

A direct calculation shows that Fc(Φc ∩ Sc) = {(a, v) ∈ Pc : 0 ≤ v/(c − 1) ≤
1, a ≤ c(c − v − 1)/v}, and the intersection of this set with Sc is still included into Φc.
Therefore, for 1 ≤ k < ∞ we have Fk

c (Π̇k,c) ⊂ Fc(Φc ∩ Sc) ∩ Π0,c = {(a, v) : 0 ≤
v/(c−1) ≤ 1, c < a ≤ c(c−v−1)/v} = {(a, v) : 0 ≤ v/(c−1) ≤ 1/2, c < a ≤ c(c−
v − 1)/v}. Another direct calculation shows that Sc({(a, v) : 0 ≤ v/(c − 1) ≤ 1/2, c ≤
a ≤ c(c −v −1)/v}) = D1/c\{(0, 1/c −1)}, hence Rc(a, v) = S ◦Fk(a, v) ∈ D1/c as
soon as (a, v) ∈ Π̇k,c, 1 ≤ k < ∞. For (a, v) ∈ ⋃

1≤k<∞ γ1/k,c we have already shown

that Rc(a, v) = (0, 1/c − 1) ∈ D1/c. thus we have proved that Rc(Φc\Π∞,c) ⊂ D1/c.
To prove that Rc(Rc ∩ Dc) ⊂ D1/c, it is enough to look at the expression (8) for

(a′, v′) = Rc(a, v) and notice that v′ = 1/c − 1 would imply vFk
a,v,c(−1) = 0, but

neither v = 0 nor (a, v) ∈ γ1/k,c can happen in Rc ∩ Dc.

We have shown that, after a finite number of steps the trajectory of the renorm-oper-
ator enters one of the two triangular-shaped domains Dc and D1/c, and stays in their
union forever. The renorm-operators Rc and R1/c map Dc and D1/c inside each other. In
the next subsection we will uncover a surprising symmetry in their actions that produces
the hyperbolic horseshoe.

4.5. Symmetric properties of the renorm-operator. In this subsection we introduce an
explicit time-reverse symmetry provided by an involution Tc (see below). This symmetry
plays a very important role in our further analysis. It represents a hidden symmetry in
the renormalization dynamics, which looks rather mysterious in the coordinates (a, v).
It has much more transparent meaning in the nonlinearity coordinates (x, y) introduced
later in Subsect. 4.6.

On the domain Ψc = {(a, v) : a > 0, 0 < v/(c − 1) < 1}, consider the map

Tc(a, v) =
(

av

c − 1 − v
, c − 1 − v

)
, det

∂Tc(a, v)

∂(a, v)
= v

v − c + 1
< 0.

Obviously, Tc is an involution of Ψc in the usual sense: T 2
c = Id.

Notice that Tc maps the domain Ψc ∩Pc onto itself, too. The Farey step is one-to-one
on Ψc ∩ Sc, and a direct calculation shows that the equality

F−1
c = Tc ◦ Fc ◦ Tc (10)

holds on the set Tc(Ψc ∩ Sc) = Fc(Ψc ∩ Sc) = {(a, v) ∈ Pc : a < c(c − 1 − v)/v}.
In accordance with the subdivision of Ψc∩Pc into the sequence of domains Ψc∩Π̇k,c,

0 ≤ k ≤ ∞, and separating arcs Ψc ∩ γ1/k,c, 1 ≤ k ≤ ∞, the involution Tc induces the
subdivision of Ψc ∩Pc into the sequence of domains Ω̇l,c = Tc(Ψc ∩ Π̇l,c), 0 ≤ l ≤ ∞,
and separating curves β1/ l,c = Tc(Ψc ∩ γ1/ l,c), 1 ≤ l ≤ ∞. (Notice, that the sets
Ψc ∩ Π̇∞,c; Ψc ∩ γ0,c; Ω̇∞,c; and β0,c are empty in the case c < 1.)

Lemma 4. Fc(Π̇k,c ∩ Ω̇l,c) = Π̇k−1,c ∩ Ω̇l+1,c for 1 ≤ k < ∞, 0 ≤ l < ∞.
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Proof. It is easy to see that Fc(Π̇k,c ∩ Ψc) = Π̇k−1,c ∩ Fc(Ψc ∩ Sc) = Π̇k−1,c ∩
Ψc\(Ω̇0,c ∪ β0,c), and (10) implies that Fc(Ω̇k−1,c ∩ Sc) = Ω̇k,c, 1 ≤ k < ∞. The
statement of the lemma follows.

Remark 3. Proposition 4 that will be proved later in this section implies in particular that
the curve β1,c = {(a, v) : a = c(c − v − 1)/v, 0 < v/(c − 1) < 1} (which includes
one of the boundaries of Dc) intersects each of the curves γ1/k,c, 1 ≤ k < ∞, at a
single point. This fact implies that all the sets Π̇k,c ∩ Ω̇l,c, 1 ≤ k < ∞, 0 ≤ l < ∞
are quadrilateral cells of a planar grid created by two transversal sequences of simple
curves

{
γ1/k,c

}
k and

{
β1/ l,c

}
l .

To formulate the next proposition, we introduce some further notations.
A direct calculation shows that Sc ◦Tc = T1/c ◦Sc. It is easy to check that Tc maps Dc

onto S1/cD1/c, and the composition Ic = Sc ◦Tc : Ψc → Ψ1/c given by the expressions

Ic(a, v) =
(

c − 1 − v

av
,−v

c

)
, det

∂Ic(a, v)

∂(a, v)
= c − 1 − v

a2cv
> 0,

maps Dc onto D1/c and is an involution in the sense that I1/c ◦ Ic = Id.
The set Dc is subdivided into the sequence of curvilinear quadrilaterals Π̇+

k,c =
Dc ∩ Π̇k,c, 1 ≤ k ≤ ∞, and the separating arcs γ +

1/k,c = Dc ∩ γ1/k,c, 2 ≤ k ≤ ∞.
On the other hand, it is subdivided into the transversal sequence of curvilinear triang-
ulars Π̇−

k,c = I1/c(Π̇
+
k,1/c) = S1/c(Π0,c ∩ Ω̇k,c), 1 ≤ k ≤ ∞, and the separating arcs

γ −
1/k,c = I1/c(γ

+
1/k,1/c), 2 ≤ k ≤ ∞.

Notice that the sets Π̇+∞,c and γ +
0,c are empty for c < 1, while Π̇−∞,c and γ −

0,c are

empty for c > 1. For c < 1 the set γ −
0,c = {(a, v) : a ∈ (0, c], v = (1−c)2

4c a + c − 1} is a

straight segment and Π̇−∞,c is a right triangle with sides γ −
0,c, v = c − 1 and a = c.

Generally speaking, a point (a, v) ∈ D1/c has infinitely many preimages with respect
to Rc in Sc, but only one of them lies in Dc. Since Dc is an absorbing area, we are
interested exactly in that preimage. In this sense, the inverse map for Rc may be defined
uniquely. The following proposition states that the restriction of the renorm-operator R
to the (non-connected) area

⋃
1≤k<∞ Π̇+

k,c is invertible and conjugate with the inverse

one by an involution. Notice that the involution that conjugates Rc with R−1
c is written

explicitly in surprisingly simple form and does not depend on renormalization height
at a particular point, while the operators themselves do depend on that height, and the
explicit expressions for them become more and more complicated as the height grows.

Proposition 3. For every 1 ≤ k < ∞, the renorm-operator Rc is a one-to-one map
from Π̇+

k,c onto Π̇−
k,1/c; moreover, R−1

c = I1/c ◦ Rc ◦ I1/c, where by R−1
c we mean the

uniquely defined inverse operator from
⋃

k≥1 Π̇−
k,1/c ⊂ D1/c onto

⋃
k≥1 Π̇+

k,c ⊂ Dc.

Proof. Applying k times Lemma 4 for a set Π̇+
k,c = Π̇k,c ∩ Ω̇0,c, we get Fk

c (Π̇+
k,c) =

Π0,c ∩ Ω̇k,c = S1/c(Π
−
k,1/c), hence Rc(Π̇

+
k,c) = Π̇−

k,1/c is indeed a one-to-one map.

The conjugacy follows from (10): R−1
c = (Sc ◦ Fk

c )−1 = F−k
c ◦ S1/c = (Tc ◦ Fk

c ◦
Tc) ◦ S1/c = (Tc ◦ S1/c) ◦ (Sc ◦ Fk

c ) ◦ (Tc ◦ S1/c) = I1/c ◦ Rc ◦ I1/c independently on
k ≥ 1.
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This symmetry allows us to define for any point (a, v) ∈ Dc its ‘two-sided’ rota-
tion number. The generalized rotation number for (a, v) ∈ Dc is the pair of numbers
(ρ−(a, v, c), ρ+(a, v, c)) (which we call the forward and backward rotation numbers
respectively), where ρ+(a, v, c) = ρ(a, v, c) and ρ−(a, v, c) = ρ(Ic(a, v), 1/c). It is
convenient to write down a generalized rotation number as a bi-infinite (in irrational
case) sequence of positive integers

(ρ−(a, v, c), ρ+(a, v, c)) = [. . . , k−2, k−1, k0, k1, k2, . . . ],
where ρ(a, v, c) = [k1, k2, . . . ] is the forward and ρ−(a, v, c) = [k0, k−1, k−2, . . . ] is
the backward rotation number.

By the end of this subsection let us strengthen the second statement of Proposition 2.
Denote by Ďc the set Dc\Π̇−∞,c in the case of c < 1 and the set Dc\Π̇+∞,c in the case of

c > 1. It is easy to check that Ic(Ďc) = Ď1/c. The next statement easily follows from
Propositions 3 and 2.

Corollary 4. For any c 	= 1 we have Rc(Rc ∩ Ďc) ⊂ Ď1/c. Any trajectory of R2 =
R1/c ◦ Rc in Rc eventually falls into Ďc and stays there forever afterwards.

4.6. The alternative (x, y)-coordinate system in Dc. Here we introduce the alternative
coordinates

(x, y) = πc(a, v) =
(

av,
v + 1 − c

ca

)
, det

∂(x, y)

∂(a, v)
= v − (c − 1)/2

ac
. (11)

The geometric sense of the variables x and y is the following. If we normalize the first
entry Fa,v,c of a pair (Fa,v,c, Ga,v,c) ∈ Ṗc by means of a linear change of variable that
sends 0 and F(0) into 0 and 1 respectively, we obtain a linear-fractional function

Mx,c : t �→ 1 + ct

1 − xt
.

The similar manipulation with the second entry Ga,v,c produces a function My,1/c :
t �→ 1+t/c

1−yt . Thus, x and y may be considered as independent parameters characterizing

the nonlinearity for the two entries of a commuting pair from Ṗc. It is therefore not
surprising that the Farey step F preserves x and the switch S interchanges the values of
x and y. What is surprising, however, is that the involution Tc on Ψc preserves both x and
y! (All three properties can be checked by direct calculation.) Since πc is one-to-one on
both sets {(a, v) ∈ Ψc, 0 < v/(c − 1) < 1/2} and {(a, v) ∈ Ψc, 1/2 < v/(c − 1) < 1},
which is easy to check in view of (11), and Tc maps them one onto another, then πc on
Ψc is two-fold, bent along the ray v = (c − 1)/2, a > 0.

It is easy to check that πc maps Dc one-to-one onto the right triangle with sides
x = 0, y = 0 and x − c3 y = c(c − 1) (notice that πc gets ‘corrupted’ at the degenerate
point a = 0, v = c − 1, stretching it onto the whole x = 0, y ∈ [0, (1 − c)/c2] side
of that triangle). We will preserve the notations for the sets and maps inside Dc in the
coordinates (x, y) with omission of ‘πc’, indicating instead the current set of variables as
the set of arguments when needed (for example, Rc(x, y) will mean πc(Rc(π

−1
c (x, y)))

etc).
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One can calculate that π−1
c on Dc is given by

a = c − 1

2cy

(
−1 +

√

1 +
4cxy

(c − 1)2

)
, v = c − 1

2

(
1 +

√

1 +
4cxy

(c − 1)2

)
.

Lemma 5. For any (x, y) ∈ Dc we have Ic(x, y) = (y, x). For any (x, y) ∈ Dc\Π∞,c
we have Rc(x, y) = (x ′, y′) with y′ = x.

Proof. The statement concerning Ic can be checked by direct calculation, and the one
about Rc follows from the above-mentioned properties of F and S: F preserves x , and
S interchanges x and y.

Notice that γ0,c for c > 1 in (x, y)-coordinates is a straight line given by x = (c −
1)2/4. Hence the domain Ďc is a triangle with the sides x−c3 y = c(c−1), x = (c−1)2/4
and y = 0 in the case c > 1 and a triangle with the sides x − c3 y = c(c − 1), x = 0 and
y = (1/c − 1)2/4 (which is γ −

0,c) in the case c < 1. The two triangles are, of course,
symmetric w.r.t. the identity line, and Ic is the symmetry.

In view of Lemma 5 it is natural to study the metrical properties of Rc on Dc in the
metric

dc[(x, y), (x̃, ỹ)] = |x − x̃ | + |y − ỹ|.

The following statement establishes crucial Lipschits properties for the curves listed
in Proposition 1 inside the domain Ďc expressed in (x, y)-coordinates.

Proposition 4. Consider any two points (x1, y1), (x2, y2) ∈ Ďc belonging to one of the
following sets: γρ,c, where ρ ∈ (0, 1)\Q; γ

(1)
p/q,c, where p/q ∈ (0, 1); γ

(2)
p/q,c, where

p/q ∈ (0, 1); γ1/k,c, where 2 ≤ k < ∞; or γ
(1)
1,c , where c < 1. Then |x2 − x1| <

Bc|y2 − y1|, where Bc = c3 for c > 1 and Bc ∈ (0, c3) for c < 1 does not depend on
the choice of the points.

4.7. Proof of Proposition 4. We will exploit the same idea as in the proof of Propo-
sition 1. Let us do some settings before we start. The set Ďc can be parameterized in
different ways. With parameters (a, v) the commuting pairs from Ďc are written in terms
of rational functions. An alternative parameterization for Ďc is (x, y). Let us introduce
two more variables:

s = x − c3 y, s̄ = x + c3 y.

Any two of the coordinate systems (a, v), (x, y), (a, s), and (a, s̄) on Ďc are con-
jugate by a C∞ bijective change of variables. We will use the same letter Hc to denote
the corresponding functions in different coordinate systems on Ďc, specifying the set
of variables we are looking at as the set of arguments of Hc(w; ·, ·). Notice, that the 3D
manifold R×Ďc is split into domains by the surfaces w = m and w = φ(F−1

a,v,c(0))+m,
m ∈ Z, and Hc is C2+α-smooth on the closures of these domains.
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Lemma 6. For a point (a, s) ∈ Ďc\γ1,c we have

∂ H (1)
c (w; a, s)

∂a
> 0 for all w ∈

[
−1,− a + 1

c + 1 + (c − a)

]
,

∂ H (2)
c (w; a, s)

∂a
> 0 for all w ∈

[
− a + 1

c + 1 + (c − a)
, 0

]
.

Proof. We have v = c3−c2−sa
c2−a2 , hence H (1)

c (w; a, s) = A1+B1w
C1+D1w

, H (2)
c (w; a, s) =

A2+B2w
C2+D2w

, where A1 = (c2 − a2)(a + 1)2, B1 = (c2 − a2)(a + 1)(c + 1 + (c − a)),

C1 = (c2−a2)(a+1)2, D1 = −a2−2c3a+c2+4c2a+a4−a2c2−2a3c+2a2c−2c3+4a2s;
A2 = (a + 1)2(a + c)(c −a)2, B2 = (a + 1)(3a3c + a2c2 − 2c4a − c3a + a3 −a4 − c2a +
c3−a2c+2a2cs), C2 = (a +1)(a4 −a3c+a3−a2c2 +a2c−c3a +c2a−c3 +2a2s), D2 =
c2a−3c3a2−3a3c2+3a4c−a5+2c4a+2c4a2+a3+a2c−c3−2a2c2+2a2(c+1)(1−a)s.

The derivative ∂ H (1)
c (w;a,s)

∂a = −4wP1
Q2

1
, where P1 = 2a(−a4 +c2 +c3a +2c3 +a3c)sw+

c(−5c3a2+a2c+3a4c2−a4c+c4−4c3a3−2a5+c3−2c4a+a2c2+8a3c2−c4a2)w+2a(a+
1)(a3 +c2)s +c(a +1)(2a4 −3a3c2 +3a3c−5a2c2 +a2c−c3a +c4a +c3 +c4) and Q1 =
4a2sw+(−a2−2c3a+c2+4c2a+a4−a2c2−2a3c+2a2c−2c3)w+(a+1)2(c−a)(a+c).
Let us fix arbitrary a ∈ (0, c). It is easy to check that for points in Ďc\γ1,c we have s ∈
[a(c − 1), c(c − 1)] for c > 1 and s ∈ [

c(c − 1), (a + (1 − c)(c2 − a2)/(4c))(c − 1)
]

for c < 1. Since −4w/Q2
1 is strictly positive, and P1 is linear w.r.t. both s and w, it is

enough to check that P1 > 0 at the following corner points: w = −1, s = c(c − 1);
w = −(a +1)/(c +1+ (c−a)), s = c(c−1); w = −1, s = a(c−1) for c > 1; w = −1,
s = (a + (1 − c)(c2 − a2)/(4c))(c − 1) for c < 1; and w = −(a + 1)/(c + 1 + (c − a)),
s = a(c − 1) (accidentally, this point works for c < 1 as well). Substitution shows that
indeed at those points P1 gets the positive values: 4a(c − a)2c2(a + 1)2; 2(1 + c)(a +
1)2(c−a)2(a+c)c2/(c+1+(c−a)); 2a(c−a)2(a+c)(2a2(c−1)+a(2c−1)+c2a+2c2);
a(c−a)2(ac + (c−a)+ c)(a + c)(2a2c + 2(c−a)(c +a)+ c2a + 4ac + (c−a)+ c3)/(2c);
and 2(c + 1)(a + 1)(c − a)2(a + c)2(ac + c − a)/(c + 1 + (c − a)) respectively.

Next, ∂ H (2)
c (w;a,s)

∂a = 2a P2/Q2
2, where P2 = (a + 1)2(c − a)(c(−2a3 − a2 + 3a2c2 −

4a2c−3ac +c3a +4c2a +2c3)− (2a3 +a2 +a2c +ac +c2a +2c2)s)−2(c +1)(a −1)(a +
1)(c−a)(c(−2a3−a2+3a2c2−4a2c−3ac+c3a+4c2a+2c3)−(2a3+a2+a2c+ac+c2a+
2c2)s)w+(c(10a3c2−6a4c2 +a3+2a2c+2a4c−3a5c2 +12c4a4−6a5c3+2a2c2−3a5−
3c2a−2a3c5−4c6a+4c5−4c3a+2a6−2c3a3 +4ca6−14a4c3 +2c4−10c3a2 +4c4a2 +
17c4a3−2c5a+c4a−4a2c5)+(−3a5c−2c3+a3+c2a+4c5a−4c4a2+a3c+5c3a+c3a3−
2a2c2+2a6−6a5c2−3a5−6c4a3+3a3c2−4c4+2c4a+4ca6+6a4c)s+4a3c(c+1)s2)w2

and Q2 = −(a+1)(a4+a3−a3c−a2c2+a2c−c3a+c2a−c3)+(−3a4c−2c4a+2a2c2−
c2a +3a3c2 +c3 −a2c−a3 −2c4a2 +3c3a2 +a5)w−2a2(a +1)s +2a2(c +1)(a −1)sw.
Since 2a/Q2

2 is positive, it is enough to check that P2 > 0. Let us fix arbitrary a ∈ (0, c).
The value of P2 at w = −(a +1)/(c+1+(c−a)) is 4ac(c+1)(a +1)2 L/(c+1+(c−a))2,
where L = (s − c2 + a − ac + a2)(a2c + a2s − c3a + c2a − c3); the value of P2 at
w = 0 is (a + 1)2 R/(2a), where R = 2a(c − a)(−(2a3 + a2 + a2c + ac + c2a +
2c2)s − c(2a3 − 3a2c2 + a2 + 4a2c + 3ac − c3a − 4c2a − 2c3)) is exactly the value
of P1 at w = −1, which was shown in the previous paragraph to be positive. Notice
that L is quadratic w.r.t. s. The derivative d L

ds is equal to −(a + 1)(c − a)(a2 + c2) at
s = c(c − 1), and −(a2 + ca + c − a)(c − a)(a + c) at s = a(c − 1); since these both
values are negative, then the vertex of L lies beyond the segment of our interest. At the
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endpoints s = c(c − 1) and s = a(c − 1) we have L = (a + 1)2(c − a)2c2 > 0 and
L = (c − a)2(a + c)2(ac + c − a) > 0 respectively. Thus, both L and R are positive
at any point (a, s) in Ďc\γ1,c. Now we fix s, too, and notice that P2/w

2 is a quadratic
polynomial w.r.t. 1/w, whose vertex 1/w = (1 + c)(a − 1)/(a + 1) lies beyond the
interval (−∞,−(c + 1 + (c − a))/(a + 1)] of our interest. The proof is complete.

Lemma 7. Let A = A(w, a, c) be the linear function in w that is equal to a at w = −1
and equal to 1 at w = −(a + 1)/(c + 1 + (c − a)).

For a point (a, s) ∈ Ďc\(Γ1,c\γ (1)
1,c ), c < 1, the quantities

1

(−w)A
· ∂ H (1)

c (w; a, s)

∂a
for w ∈

[
−1,− a + 1

c + 1 + (c − a)

]
,

1

a
· ∂ H (2)

c (w; a, s)

∂a
for w ∈

[
− a + 1

c + 1 + (c − a)
, 0

]

are bounded and separated from zero by positive constants depending on c only.

Proof. It follows from Proposition 1 that inside the set Ďc\(Γ1,c\γ (1)
1,c ), c < 1, the quan-

tity c − a is separated from zero by a positive constant depending on c only. Having that
in mind, we will look through the proof of Lemma 6 once again.

First, let us check that Q1 and Q2 from that proof are bounded and separated from
zero. They are linear w.r.t. both s and w, hence it is enough to check the corners. At
the points w = −1, s = c(c − 1); w = −(a + 1)/(c + 1 + (c − a)), s = c(c − 1);
w = −1, s = a(c − 1); and w = −(a + 1)/(c + 1 + (c − a)), s = a(c − 1) the
values of Q1 are 2(a + 1)(a2 + c2)(c − a); 4(a + 1)2c2(c − a)/(c + 1 + (c − a));
2(c + a)(a2 + ac + c − a)(c − a); and 4(a + 1)(a + c)(ac + c − a)(c − a)/(c + 1 + (c − a))

respectively. At the points w = 0, s = c(c − 1); w = −(a + 1)/(c + 1 + (c − a)),
s = c(c − 1); w = 0, s = a(c − 1); and w = −(a + 1)/(c + 1 + (c − a)), s = a(c − 1)

the values of Q2 are (a + 1)2(a2 + c2)(c − a); 2c3(a + 1)3(c − a)/(c + 1 + (c − a));
(a+1)(a2+ac+c−a)(a+c)(c−a); and 2c(a+1)2(a+c)(ac+c−a)(c−a)/(c+1+(c−a))

respectively. It is easy to see that all the listed values are indeed bounded and separated
from zero.

Next, let us show that P1/A is bounded and separated from zero. We do not need to
write down the expression for A explicitly. Since both P1 and A are linear w.r.t. w, it is
enough to check the endpoints w = −1 and w = −(a+1)/(c+1+(c−a)). From the proof
of Lemma 6 it is evident that P1/a at w = −1 and P1 at w = −(a + 1)/(c + 1 + (c − a))

are bounded and separated from zero.
Finally, it is easy to check along the lines of the proof of Lemma 6 that P2 is bounded

and separated from zero. (The only tricky step appears when we revisit the last state-
ment in that proof, namely considering P2/w

2 as a parabola w.r.t. 1/w, since we have
divided and multiplied P2 by w2, which may be close to zero. It is true however that
P2 at w = 0 is separated from zero, and the same is true for the parabola P2/w

2,
1/w ∈ (−∞,−(c + 1 + (c − a))/(a + 1)]. Since the derivative ∂

∂w
P2 is bounded, we

can find a constant δ = δ(c) > 0 such that P2 is separated from zero on the whole
interval w ∈ [−δ, 0], and for w ∈ [−(a + 1)/(c + 1 + (c − a)),−δ) it will be greater
than δ2 · P2/w

2.)
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Lemma 8. For a point (a, s̄) ∈ Ďc\γ1,c we have

∂ H (1)
c (w; a, s̄)

∂a
> 0 for all w ∈

[
−1,− a + 1

c + 1 + (c − a)

]
,

∂ H (2)
c (w; a, s̄)

∂a
> 0 for all w ∈

[
− a + 1

c + 1 + (c − a)
, 0

]
.

Proof. We have v = (c3 − c2 + s̄a)/(c2 + a2), hence H (1)
c (w; a, s̄) = A1+B1w

C1+D1w
,

H (2)
c (w; a, s̄) = A2+B2w

C2+D2w
, where A1 = (c2 +a2)(a+1)2, B1 = (c2 +a2)(a+1)(c+1+(c−

a)), C1 = (c2 +a2)(a+1)2, D1 = a2−2ac3 +c2 +4c2a−a4−a2c2 +2ca3−2ca2−2c3−
4a2s̄; A2 = (a +1)2(c2 +a2)(c−a), B2 = (a +1)(−3ca3 +a2c2 −2c4a−c3a−a3 +a4 −
c2a+c3+a2c−2ca2s̄), C2 = (a+1)(−a4+a3c−a3−a2c2−a2c−c3a+c2a−c3−2a2s̄),
D2 = c2a − 3c3a2 + 5a3c2 − 3a4c + a5 + 2c4a + 2c4a2 − a3 − a2c − c3 − 2a2c2 +
2a2(c + 1)(a − 1)s̄.

The derivative ∂ H (1)
c (w;a,s̄)

∂a = −4wP1/Q2
1, where P1 = 2a(−a4 − c2 − c3a − 2c3 +

a3c)s̄w + c(c − a)(2a4 + 3a3c2 − 3a3c − a2c3 + 5a2c2 + ca − 2c3a + c2a + c2 + c3)w +
2a(a +1)(a3 −c2)s̄ +c(a +1)(2a4 +3a3c2 −3a3c+5a2c2 −a2c−c3a +c4a +c3 +c4) and
Q1 = 4a2s̄w+(−a2+2c3a−c2−4c2a+a4+a2c2−2a3c+2a2c+2c3)w−(a+1)2(a2+c2).
Let us fix arbitrary a ∈ (0, c). It is easy to check that for points in Ďc\γ1,c we have
s̄ ∈ [a(c − 1),−c(c − 1)] for c < 1 and s̄ ∈ [−(c + 1)(c − 1)/2, a(c − 1)] for c > 1.
Since −4w/Q2

1 is strictly positive, and P1 is linear w.r.t. both s̄ and w, it is enough
to check that P1 > 0 at the following corner points: w = −1, s̄ = a(c − 1); w =
−(a + 1)/(c + 1 + (c − a)), s̄ = a(c − 1); w = −1, s̄ = −c(c − 1) for c < 1; w = −1,
s̄ = −(c + 1)(c − 1)/2 for c > 1; and w = −(a + 1)/(c + 1 + (c − a)), s̄ = −c(c − 1)

(accidentally, this point works for c > 1 as well). Substitution shows that at those points
P1 gets the positive values: 2a(a2 + c2)(2a3c + 2a2c + (2a2 + c2a + a + 2c2)(c − a));
2(c + 1)(a + 1)(a2 + c2)2(ac + c − a)/(c + 1 + (c − a)); 4ac((ac2 + a2c2 + a4 + a3)(1 −
c) + a2(c − a)2 + c(c2 − a2) + 2a2c2(a + 1)); a(2a4c + a4c2 + c3 + a3 + 2a4 + 3a2c3 +
a3c3 + 3c3a + a3c + c4a + (2 + a)c(c − a)4 + c(c + a4 + 4ca + a2c)(c − a)); and
2(c + 1)(a + 1)(a2 + c2)c(2a2 + (a + 1)c(c − a)) respectively.

Next, ∂ H (2)
c (w;a,s̄)

∂a = 2a P2/Q2
2, where P2 = (a + 1)2(c(2a4 − 4ca3 + a3 + 3a3c2 −

2ca2 −2a2c3 +8a2c2 +3c2a +ac4 −4ac3 +2c4)+(2a4 +a3 −ca3 −c2a +ac3 +2c3)s̄)−
2(1 + c)(a −1)(a + 1)(c(2a4 −4ca3 + a3 + 3a3c2 −2ca2 −2a2c3 + 8a2c2 + 3c2a + ac4 −
4ac3 + 2c4) + (2a4 + a3 − ca3 − c2a + ac3 + 2c3)s̄)w + (c(−4a2c4 − 19a3c4 − 11ac4 +
3c2a + a3 − 2a2c2 + 2ac3 + 2ca3 − 2ca2 − 3a5 − 14a3c2 + 10ca4 + 14a2c3 + 6a4c2 −
6ca5 + 2a6 + 2c4 + 6a3c5 − 9c2a5 − 2c5a + 12a2c5 + 14a4c3 + 6a5c3 − 12a4c4 + 4ca6 +
4c5 −4c6a)+ (7a3c3 + 2a2c2 −2c4a + 4a2c4 + 6a3c4 +a3 + 2a6 +a3c2 −6c2a5 −5c3a +
2c3 − c2a − 4c5a + 4c4 − 3a5 + 4ca6 + a3c + 6a4c − 3a5c)s̄ + 4a3c(c + 1)s̄2)w2 and
Q2 = −(a+1)(a4−ca3 +a3 +a2c2 +ca2 +ac3−c2a+c3)+(2ac4 +2a2c4−3ca4−ca2−
3a2c3 +c2a −2a2c2 −a3 +5a3c2 +a5 −c3)w−2a2(a +1)s̄ +2a2(1+c)(a −1)s̄w. Since
2a/Q2

2 is positive, it is enough to check that P2 > 0. Let us fix arbitrary a ∈ (0, c). The
value of P2 at w = −(a + 1)/(c + 1 + (c − a)) is 4ac(c + 1)(a + 1)2 L/(c + 1 + (c − a))2,
where L = (s̄ + c2 + a −ac + a2)(a2s̄ + c3 −c2a + ac3 + ca2); the value of P2 at w = 0 is
(a + 1)2 R/(2a), where R = 2a(c(−4ac3 + 2c4 − 2a2c3 + 3a3c2 − 2a2c1 + ca2 + 3ac2 +
8a2c2−4a3c1 +2a4 +c4a)+(a3−c2a+ac3−ca3 +2a4 +2c3)s̄) is exactly the value of P1
at w = −1, which was shown in the previous paragraph to be positive. Notice that L is
quadratic w.r.t. s. The derivative d L

ds̄ is equal to (ac +c−a +a2)(a2 +c2) at s̄ = a(c−1),
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and 3ca2 + a3 + a(c + a)(c − a)2 + c2(c − a) at s̄ = −c(c − 1); since both values are
positive, then the vertex of L lies beyond the segment of our interest. At the endpoints
s̄ = a(c−1); s̄ = −c(c−1) for c < 1; and s̄ = −(c+1)(c−1)/2 for c > 1 the values of
L are positive: (a2 +c2)2(ac+c−a); (c+a(1−c)+a2)(a2(1−c)+a2 +c(c−a)+c2a) and
((a+1)2 +(a+c)2)(2c2(c−a)+ac2(c−a)+a2 +ac3 +2ca2)/4 respectively. Thus, both L
and R are positive at any point (a, s) in Ďc\γ1,c. Now we fix s, too, and notice that P2/w

2

is again a quadratic polynomial w.r.t. 1/w, whose vertex 1/w = (1+c)(a−1)/(a+1) lies
beyond the interval (−∞,−(c+1+(c−a))/(a+1)] of our interest. The proof is finished.

Lemma 9. For a point (a, s̄) ∈ Ďc\(Γ1,c\γ (1)
1,c ), c < 1, the quantities

1

(−w)A
· ∂ H (1)

c (w; a, s̄)

∂a
for w ∈

[
−1,− a + 1

c + 1 + (c − a)

]
,

1

a
· ∂ H (2)

c (w; a, s̄)

∂a
for w ∈

[
− a + 1

c + 1 + (c − a)
, 0

]
,

are bounded and separated from zero by positive constants depending on c only (here
A is the same as in Lemma 7).

Proof. We look through the proof of Lemma 8 again, having in mind that c − a is
separated from zero.

Let us check that Q1 and Q2 from the proof of Lemma 8 are bounded and separated
from zero. They are linear w.r.t. both s and w, hence it is enough to check the corners.
At the points w = −1, s = −c(c − 1); w = −(a + 1)/(c + 1 + (c − a)), s = −c(c − 1);
w = −1, s = a(c − 1); and w = −(a + 1)/(c + 1 + (c − a)), s = a(c − 1) the values
of Q1 are 8ca2 + 2(a + 1)(a + c)(c − a)2; (8a2 + c(a + 1)(c − a))/(c + 1 + (c − a));
2(ac+(c−a)+a2)(c2+a2); and 4(a+1)(ac+(c−a))(c2+a2)/(c+1+(c−a)) respectively.
At the points w = 0, s = −c(c − 1); w = −(a + 1)/(c + 1 + (c − a)), s = −c(c − 1);
w = 0, s = a(c −1); and w = −(a + 1)/(c + 1 + (c −a)), s = a(c −1) the values of Q2
are (a+1)(4ca2+(a+1)(a+c)(c−a)2); 2c2(a+1)2(2a2+c(a+1)(c−a))/(c+1+(c−a));
(a +1)(ac + (c−a)+a2)(c2 +a2); and 2c(a +1)2(ac + (c−a))(c2 +a2)/(c +1+ (c−a))

respectively. It is easy to see that all the listed values are indeed bounded and separated
from zero.

Showing that P1/A and P2 are bounded and separated from zero is similar to the
proof of the corresponding fact in Lemma 7.

Lemma 10. Let (x, y) ∈ Ďc\γ1,c, c > 1, or (x, y) ∈ Ďc\(Γ1,c\γ (1)
1,c ), c < 1. There

exist constants Bc ∈ (0, c3) for c < 1 and Bc = c3 for c > 1 such that the derivatives

−−−−→
(Bc, 1) · ∇(x,y)H (1)

c (w; x, y) for w ∈
[
−1,− a + 1

c + 1 + (c − a)

]
,

−−−−→
(Bc, 1) · ∇(x,y)H (2)

c (w; x, y) for w ∈
[
− a + 1

c + 1 + (c − a)
, 0

]
,

−−−−−→
(Bc,−1) · ∇(x,y) H (1)

c (w; x, y) for w ∈
[
−1,− a + 1

c + 1 + (c − a)

]
,

−−−−−→
(Bc,−1) · ∇(x,y) H (2)

c (w; x, y) for w ∈
[
− a + 1

c + 1 + (c − a)
, 0

]

are positive in the case of c > 1 and negative in the case of c < 1.
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Proof. It is easy to see that

−−−→
(c3, 1) · ∇(x,y) H (i)

c (w; x, y) = c3 ∂ H (i)
c (w; x, s)

∂x

= c3 ∂ H (i)
c (w; a, s)

∂a
: ∂x(a, s)

∂a
, i ∈ {1, 2};

−−−−−→
(c3,−1) · ∇(x,y) H (i)

c (w; x, y) = c3 ∂ H (i)
c (w; x, s̄)

∂x

= c3 ∂ H (i)
c (w; a, s̄)

∂a
: ∂x(a, s̄)

∂a
, i ∈ {1, 2}.

We have x = a(c2(c − 1) − as)/(c2 − a2) and x = a(c2(c − 1) + as̄)/(c2 + a2),
therefore ∂x(a,s)

∂a = c2((c − 1)(c2 + a2) − 2as)/(c2 − a2)2 and ∂x(a,s̄)
∂a = c2(2as̄ + (c −

1)(c − a)(c + a))/(c2 + a2)2.
In the case of c > 1, we have s ∈ [a(c − 1), c(c − 1)] and s̄ ∈ [−c(c − 1)(c −

a)/(c + a), a(c − 1)], hence ∂x(a,s)
∂a ≥ c2(c − 1)/(c + a)2 > 0 and ∂x(a,s̄)

∂a ≥ c2(c −
1)(c − a)/((c2 + a2)(c + a)) > 0. The result follows from Lemmas 6 and 8.

In the case of c < 1, the quantity c − a is separated from zero. We similarly obtain
the inequalities ∂x(a,s)

∂a ≤ c2(c − 1)/(c + a)2 < 0 and ∂x(a,s̄)
∂a ≤ c2(c − 1)(c − a)/((c2 +

a2)(c +a)) < 0, but now they imply that both ∂x(a,s)
∂a and ∂x(a,s̄)

∂a are separated from zero
(by negative constants). It is obvious that these derivatives are (negatively) bounded,
too. It follows therefore from Lemmas 7 and 9 that there exists such εc > 0 that the
quantities

c3(−w)A

(
(1 − εc)

1

(−w)A

∂ H (1)
c (w; a, s)

∂a
: ∂x(a, s)

∂a

− εc
1

(−w)A

∂ H (1)
c (w; a, s̄)

∂a
: ∂x(a, s̄)

∂a

)

for w ∈ [−1,−(a + 1)/(c + 1 + (c − a))] and

c3a

(
(1 − εc)

1

a

∂ H (2)
c (w; a, s)

∂a
: ∂x(a, s)

∂a
− εc

1

a

∂ H (2)
c (w; a, s̄)

∂a
: ∂x(a, s̄)

∂a

)

for w ∈ [−(a + 1)/(c + 1 + (c − a)), 0] are both negative. But they are exactly equal

to
−−−−→
(Bc, 1) · ∇(x,y) H (i)

c (w; x, y), i ∈ {1, 2}, where Bc = (1 − 2εc)c3. For
−−−−−→
(Bc,−1) ·

∇(x,y)H (i)
c (w; x, y), i ∈ {1, 2}, the proof is similar.

Corollary 5. In the case of c > 1, Hc(w; x, y) is strictly increasing for every w ∈ R

along every line x + c3 y = const and every line x − c3 y = const in Ďc\γ1,c as x
increases.

In the case of c < 1, Hc(w; x, y) is strictly decreasing for every w ∈ R along every
line x + Bc y = const and every line x − Bc y = const in Ďc\(Γ1,c\γ (1)

1,c ) as x increases,

where Bc ∈ (0, c3).
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Proof (Proof of Proposition 4). This proof is similar to the proof of the inequalities in
Proposition 1. Just notice that the condition (x, y) ∈ γ , where γ is one of the listed sets,
implies that (x, y) ∈ Ďc\γ1,c in the case of c > 1 and (x, y) ∈ Ďc\(Γ1,c\γ (1)

1,c ) in the
case of c < 1. It follows from Corollary 5 that, given an arbitrary point (x, y) ∈ γ , for any
point (x ′, y′) 	= (x, y) such that either x ′ − Bc y′ ≤ x − Bc y and x ′ + Bc y′ ≤ x + Bc y, or
x ′−Bc y′ ≥ x−Bc y and x ′+Bc y′ ≥ x+Bc y, we have either Hc(w; x ′, y′) < Hc(w; x, y)

for all w ∈ R, or Hc(w; x ′, y′) > Hc(w; x, y) for all w ∈ R, and therefore (x ′, y′) 	∈ γ .
The inequalities follow.

4.8. Hyperbolicity. The transformation R2 = R1/c ◦ Rc of the domain Ďc has strong
hyperbolic properties. Namely, it contracts the domain along the family of curves {γρ,c}
and stretches it along the transversal family I1/c({γρ,1/c}).

Theorem 1. For every 0 < c 	= 1 there exists a constant μc ∈ (0, 1) such that for any
two points (x, y), (x̃, ỹ) ∈ Ďc with the same irrational rotation number the following
inequality holds:

dc[R2
c(x, y),R2

c(x, y)] ≤ μc dc[(x, y), (x̃, ỹ)].

Proof. Denote (x0, y0) = (x, y), (x1, y1) = Rc(x0, y0), (x2, y2) = R1/c(x1, y1), and
(x̃0, ỹ0) = (x̃, ỹ), (x̃1, ỹ1) = Rc(x̃0, ỹ0), (x̃2, ỹ2) = R1/c(x̃1, ỹ1). Due to Lemma 5
and Proposition 4, we have

|x2 − x̃2| < Bc|y2 − ỹ2| = Bc|x1 − x̃1| < Bc B1/c|y1 − ỹ1| = Bc B1/c|x0 − x̃0|,
|y2 − ỹ2| = |x1 − x̃1| < B1/c|y1 − ỹ1| = B1/c|x0 − x̃0| < B1/c Bc|y0 − ỹ0|,

therefore dc[(x2, y2), (x̃2, ỹ2)] ≤ μcdc[(x0, y0), (x̃0, ỹ0)], where μc = Bc B1/c < 1.

Theorem 1 means that for every c 	= 1 the operator R2 is uniformly hyperbolic on Ďc
in the metric dc. The curves {γρ,c}ρ 	∈Q are its stable manifolds andI1/c{γρ,1/c∩Ḋ1/c}ρ 	∈Q

are the unstable ones. The intersection points of stable and unstable curves, i.e., ele-
ments of the set Ac = (Rc ∩ Ďc) ∩ I1/c(R1/c ∩ Ď1/c), are exactly those points, whose
generalized rotation numbers expansions are infinite both to the left and to the right.
Thus, the set Ac is mapped onto A1/c by Rc in one-to-one fashion, and the correspond-
ing left shift in generalized rotation numbers represents classical symbolic dynamics
on the horseshoe-type hyperbolic set. The closure Āc is a Cantor set of zero Lebesgue
measure. The latter statement follows easily from the fact proved in [9]: for every vertical
line v = const, the set of values of a corresponding to irrational rotation numbers has
zero one-dimensional Lebesgue measure.

5. Beyond the Linear-Fractional Family

In this section we consider renormalizations for general circle maps with breaks. As we
have pointed out, such renormalizations approach the linear-fractional family (5) (see
the statements (B) and (C) in Sect. 3).
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5.1. Half-bounded rotation numbers. Let us denote by Mo and Me the classes of all
rotation numbers ρ = [k1, k2, ...], for which the subsequences of partial quotients kn
with odd and with even indices n respectively are bounded:

Mo = {ρ : (∃C > 0) (∀m ∈ Z+) k2m−1 ≤ C},
Me = {ρ : (∃C > 0) (∀m ∈ Z+) k2m ≤ C}.

In this section we consider a circle diffeomorphism T with a break of size c and rotation
number ρ such that either c > 1 and ρ ∈ Me, or c < 1 and ρ ∈ Mo. The subsequent
renormalizations ( fn, gn) ∈ S2+α

c(n) . The renormalization height kn can be arbitrary large

for the values of n such that c(n) > 1, while it is bounded for n such that c(n) < 1.

5.2. Limiting bounds on renormalizations.

Proposition 5. There exists a constant ε = ε(T ) > 0 such that for large enough n the

following bounds hold: 1) a(n) ∈ (ε, c(n) − ε), 2) v(n)

c(n)−1
∈ (ε, 1 − ε).

Proof. 1) In the case c(n) < 1 the value of a(n) cannot be too small since f ′
n and g′

n are
bounded due to (A) (see Sect. 3), and the renormalization height kn+1 is bounded due to
our settings.

Suppose that c(n) > 1 and the value of a(n) is very small (in other words, fn(0) is
very close to zero). Then b(n) is separated from zero due to (B), and therefore v(n) is
bounded. The first derivative f ′

n(0) is close to F ′
a(n),v(n),c(n) (0) = c(n) + a(n)v(n), which

is in turn close to c(n) > 1. The second derivative f ′′
n (0) is close to F ′′

a(n),v(n),c(n) (0) =
2v(n)(c(n) + a(n)v(n)), which is bounded. It follows that fn(z∗) = z∗ at some point z∗ in
vicinity of zero, so ρ( fn, gn) = 0, which contradicts irrationality of ρ(T ).

We have proved in both cases that a(n) is separated from zero.
Suppose that c(n) − a(n) is negative or close to zero. We have c(n) − a(n) > −Cλn

due to (B), hence c(n) − a(n) is close to zero. Again due to (B), b(n) is small. Notice now
that a(n+1) ≤ b(n)/a(n) by definition (6), therefore a(n+1) appears to be small, which
contradicts what we have shown in the first part of this proof.

Thus the statement is proved. Its obvious corollary is that

a(n+1)a(n) ∈ (μ, 1 − μ) (12)

with some μ > 0.
2) One may calculate that v(n+1) = a(n)(c(n+1) − a(n+1))/ fn(−a(n+1)a(n)) − 1 =

c(n+1)(1 + a(n+1)a(n)v(n)) − 1 + O(λn) due to (C) and the statement 1).
Hence, the following property takes place:

v(n+2)

c(n+2) − 1
=(a(n+2)a(n+1))(a(n+1)a(n))

v(n)

c(n) − 1
+
(

1 − (a(n+2)a(n+1))
)

+O(λn). (13)

In view of (12), it is easy to see that if the value of v(n)

c(n)−1
is negative, then in two steps

it will be raised by an increment greater than a positive constant (which can be taken

arbitrary close to 1 − μ). And once v(n)

c(n)−1
is non-negative, in two steps it will become

(and stay forever) greater than that positive constant.
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Having rewritten the property (13) as

1 − v(n+2)

c(n+2) − 1
= (a(n+2)a(n+1))

(
(a(n+1)a(n))

(
1 − v(n)

c(n) − 1

)

+ (1 − (a(n+1)a(n)))

)
+ O(λn),

we similarly prove that 1 − v(n)

c(n)−1
is separated from zero by a positive constant.

Proposition 6. The point (a(n), v(n)) belongs to the O(λn)-neighborhood of the set Ďc(n) ,
where λ ∈ (0, 1) is from (C).

Proof. We assume that n is large enough, so that the estimates from Proposition 5 hold.
First let us derive that (a(n+1), v(n+1)) belongs to the O(λn)-neighborhood of Dc(n+1) . We
have to show that

a(n+1) ≥ c(n+1)(c(n+1) − v(n+1) − 1)

v(n+1)
+ O(λn). (14)

Let c(n) > 1. Since b(n+1) = fn(−a(n)a(n+1))/a(n), the statement (C) implies that

v(n+1) = c(n+1)−1+c(n+1)a(n+1)a(n)v(n)+O(λn). It follows that c(n+1)−v(n+1)−1
a(n+1) − v(n+1)

c(n+1) =
c(n) − 1 − a(n)v(n)(c(n+1) + a(n+1)) + O(λn). Since a(n+1) = − f

kn+1
n (−1)

a(n) ≤ − fn(−1)

a(n) =
c(n)−a(n)

a(n)(1+v(n))
+ O(λn), one has a(n)v(n)(c(n+1) + a(n+1)) ≤ v(n)

1+v(n) (c
(n) − a(n)) + v(n) a(n)

c(n) +

O(λn). The last expression (the terms before O(λn)) is strictly increasing in v(n), and

its value at v(n) = c(n) − 1 is c(n) − 1 therefore c(n+1)−v(n+1)−1
a(n+1) − v(n+1)

c(n+1) ≥ O(λn), and

(14) follows (because v(n+1) < 0). For c(n) < 1 the proof is the same up to the change
of the inequality signs.

Thus we proved that (a(n), v(n)) is O(λn)-close to Dc(n) . In view of the bounds given

by Proposition 5 this implies that for large enough n one has v(n)

c(n)−1
∈ ( 1

2 + ε, 1 − ε)

for some ε > 0. Let c(n) > 1. Since ρn is irrational and due to (C) one has z <

fn(z) ≤ Fa(n),v(n),c(n) (z) + O(λn) for all z ∈ [−1, 0], in particular for z0 = − c(n)−1
2v(n) . But

Fa(n),v(n),c(n) (z0) = z0 + ( c(n)+1
2 )−1(a(n) − (c(n)−1)2

4v(n) ), hence a(n) − (c(n)−1)2

4v(n) ≥ O(λn),

which implies that (a(n), v(n)) is O(λn)-close to Ďc(n) .

Finally, for c(n+1) < 1 one has v(n+1)−c(n+1)+1
c(n+1)a(n+1) = a(n)v(n) + O(λn) ≥ (c(n)−1)2

4 +

O(λn) = (c(n+1)−1)2

4(c(n+1))2 +O(λn), which implies that (a(n+1), v(n+1)) is O(λn)-close to Ďc(n+1) .

5.3. Silly and clever projections. Let us denote Φε
c = {(a, v) : ε < a < c − ε, ε <

v/(c − 1) < 1 − ε, v + a − c + 1 > ε}, ε > 0. It follows from Propositions 5 and 6
that for arbitrary T (satisfying our settings for this section), after certain relaxation time
n0 = n0(T ), the projection (a(n), v(n)) of a renormalization ( fn, gn) to the linear-frac-
tional subspace Sc(n) belongs to Φε

c(n) . However, the rotation number ρ(a(n), v(n), c(n)),
generally speaking, does not equal ρn = ρ( fn, gn) = Gn(ρ(T )). This is the reason why
we call (a(n), v(n)) ∈ Sc(n) the silly projection of ( fn, gn) ∈ S2+α

c(n) . The idea is to point
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out the clever projection (a(n)∗ , v
(n)∗ ) ∈ γρn ,c(n) ∩ Ďc(n) by shifting the point (a(n), v(n))

a little bit.
Namely, let us define the projector operator P fn = (a(n)∗ , v

(n)∗ ) by the following
rule: a(n)∗ = γρn ,c(n) (v(n)), v

(n)∗ = v(n) in the case when (γρn ,c(n) (v(n)), v(n)) ∈ Ďc(n) ,

otherwise let (a(n)∗ , v
(n)∗ ) be the closest to (γρn ,c(n) (v(n)), v(n)) intersection point of the

curve a = γρn ,c(n) (v) with the boundary of Ďc(n) .

Remark 4. Notice that every curve a = γρ,c(n) (v) with irrational ρ intersects the set Ďc(n)

over some interval of non-zero length in v, so there are exactly two intersection points
of such a curve with the boundary of Ďc(n) , and the intersection is uniformly transversal.
Since we are going to prove presently that γρn ,c(n) (v(n)) is O(λn)-close to a(n), and by

Proposition 6 this implies that the point (γρn ,c(n) (v(n)), v(n)) is O(λn)-close to Ďc(n) ,
there will be no doubt of which intersection point is the closest one, and the closest point
is always uniquely defined.

Remark 5. Formally, P should be defined as an operator acting from S2+α
c to Sc, but the

image of a pair (F, G) ∈ S2+α
c does not depend on G. Also note that we will actually

apply P only to the renormalizations of given T with large enough n.

In this subsection we prove that the silly and clever projections are O(λn)-close.

Lemma 11. There exists a constant hc,ε > 0 such that for any (a, v) ∈ Φε
c we have

∂ H (i)
c (w;a,v)

∂a ≥ hc,ε, i ∈ {1, 2}.

Proof. The explicit expressions for H (i)
c (w; a, v), i ∈ {1, 2}, were given in Subsect. 4.1.

The derivative ∂ H (1)
c (w;a,v)

∂a = −4wP1
Q2

1
, where P1 = ((−a2 −1−2c)v−2ca +2c2)w +

(−1 + a2)v + 2ca + 2c and Q1 = (−1 + 4va + a2 −2ca + 2c)w−1−2a −a2. Obviously,
Q1 is bounded and so −4w/Q2

1 > 0 is separated from zero for w ∈ [−1,−(a + 1)/(c +
1 + (c − a))]. At the point w = −1 we have P1 = 2a(c + av) + 2c(v + a − c + 1), and at
w = −(a + 1)/(c + 1 + (c − a) we have P1 = 2(c + 1)(a + 1)(c + av)/(c + 1 + (c − a)).
Both are separated from zero by positive constants depending on c and ε only (notice
that c + av lies between c and c2). Since P1 is linear w.r.t. w, the statement of the lemma
for i = 1 is proved.

Next, ∂ H (2)
c (w;a,v)

∂a = 2P2
Q2

2
, where P2 = 4a2c(c + 1)v2w2 + (2c2a2 + 2c2 + 2a4c −

4c3a2 + a2 + a4 + c − 2a3 + 7a2c − 2ca)vw2 + c(4a3c + c − 6c2a2 − 2c2 − 3ca2 + 1 −
3a2 + 2a3 + 6ca)w2 − 2(c + 1)(a − 1)(a + 1)(a2 + c)vw − 2c(c + 1)(a − 1)(a + 1)(2a −
c + 1)w + (a + 1)2(a2 + c)v + c(a + 1)2(2a − c + 1) and Q2 = −(a + 1)(a2 − ca + a + c)+
(3a2c − a + a3 + 4c2a − c)w − 2a(a + 1)v + 2a(1 + c)(a − 1)vw. Since Q2 is bounded,
then 2/Q2

2 > 0 is separated from zero. At the point w = −(a + 1)/(c + 1 + (c − a))

we have P2 = 4ca(1 + c)(1 + a)2(v + a − c + 1)(c + av)/(c + 1 + (c − a))2, and at
w = 0 we have P2 = (a + 1)2(a(c + av) + c(v + a − c + 1)). Both values are positive
and separated from zero. Now we fix v and notice that P2/w

2 is a quadratic polynomial
w.r.t. 1/w, the parabola looks upwards, and the vertex 1/w = (1 + c)(a − 1)/(a + 1)

lies beyond the interval (−∞,−(c + 1 + (c − a))/(a + 1)] of our interest, therefore
1/w = −(c + 1 + (c −a))/(a + 1) is the point of its global minimum. To finish the proof,
we notice that ∂

∂w
P2 is bounded, hence there exists a constant δ > 0 such that P2 is
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separated from zero over w ∈ [−δ, 0], while for w ∈ [−(a + 1)/(c + 1 + (c − a)),−δ]
we have P2 ≥ δ2 · P2/w

2 with the same result. The proof is finished.

Corollary 6. For any a1 < a2 and v such that (a1, v), (a2, v) ∈ Φε
c the inequality

Hc(w; a2, v) − Hc(w; a1, v) ≥ hc,ε(a2 − a1) (15)

holds true for all w ∈ T
1.

Lemma 12. There exists C1 = C1(T ) > 0 such that

|H fn ,gn (w) − Hc(n) (w; a(n), v(n))| ≤ C1λ
n .

Proof. Recall that Hc(n) (w; a(n), v(n)) is equal to φ ◦ Fa(n),v(n),c(n) ◦ φ−1 over [−1, φ

(F−1
a(n),v(n),c(n) (0))] and equals 1+φ◦Ga(n),v(n),c(n)◦Fa(n),v(n),c(n)◦φ−1 over [φ(F−1

a(n),v(n),c(n)

(0)), 0], with φ(z) = (a(n)+1)z
(2a(n)+(a(n)−1))z

.

On the other hand, H fn ,gn equals φ ◦ fn ◦ φ−1 on [−1, φ( f −1
n (0))] and 1 + φ ◦ gn ◦

fn ◦ φ−1 on [φ( f −1
n (0)), 0] (here φ is the same since fn(0) = a(n)).

The statement of the lemma follows from (C) and Proposition 5 due to the fact that the
derivatives of φ, Fa(n),v(n),c(n) and Ga(n),v(n),c(n) are bounded and separated from zero by

positive constants. Notice that the interval between φ(F−1
a(n),v(n),c(n) (0)) and φ( f −1

n (0))

is less than Cλn , while Hc(n) (w; a(n), v(n)) and H fn ,gn (w) are both continuous and
increasing, therefore their closeness over that interval follows from their closeness at its
endpoints.

Lemma 13. There exists C2 = C2(T ) > 0 such that |γρn ,c(n) (v(n)) − a(n)| ≤ C2λ
n.

Proof. Let us denote Δa = a(n) − γρn ,c(n) (v(n)) > 0 and assume that Δa > 0 (for the
opposite case the proof is similar). Since (a(n), v(n)) ∈ Φε

c(n) for large enough n, at least

a half of the segment [γρn ,c(n) (v(n)), a(n)]× {v(n)} lies inside Φ
ε/2
c(n) , therefore Lemma 12

and Corollary 6 imply

H fn ,gn (w) ≥ Hc(n) (w; a(n), v(n)) − C1λ
n

≥ Hc(n) (w; γρn ,c(n) (v
(n)), v(n)) + hc(n), ε

2

Δa

2
− C1λ

n

for all w ∈ [−1, 0]. It follows that Δa ≤ 2
h C1λ

n , where h = h(T ) = min{hc, ε
2
,

h 1
c , ε

2
} > 0, since otherwise there would be H fn ,gn (w) > Hc(n) (w; γρn ,c(n) (v(n)), v(n))

for all w, and therefore ρ( fn, gn) > ρ(γρn ,c(n) (v(n)), v(n)), while in fact both values are
equal. The statement of Lemma holds with C2 = 2C1/h.

Proposition 7. a(n)∗ − a(n) = O(λn), v
(n)∗ − v(n) = O(λn).

Proof. Follows immediately from the definition of P , Lemma 13 and Proposition 6.
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5.4. Renormalization of projection and projection of renormalization.

Proposition 8. The points P fn+1 and Rc(n)P fn in Ďc(n+1) are O(λn)-close.

Proof. We restrict our attention to n large enough, so that both (a(n), v(n)) and (a(n)∗ , v
(n)∗ )

lie within Φε
c(n) for some ε = ε(T ) > 0 due to Propositions 5 and 7. Hence the values a(n),

c(n) −a(n), a(n)∗ , c(n) −a(n)∗ and v(n)/(c(n) −1) are positive, bounded and separated from
zero by constants independent on n. Let us denote (ā(n+1), v̄(n+1)) = Rc(n) (a(n)∗ , v

(n)∗ ) ∈
Ďc(n+1) . We intend to show that the points (ā(n+1), v̄(n+1)) and (a(n+1)∗ , v

(n+1)∗ ) = P fn+1
are O(λn)-close.

Denote (x (n), y(n)) = πc(a(n), v(n)), (x̄ (n+1), ȳ(n+1)) = πc(ā(n+1), v̄(n+1)),
(x (n)∗ , y(n)∗ ) = πc(a

(n)∗ , v
(n)∗ ), (x (n+1)∗ , y(n+1)∗ ) = πc(a

(n+1)∗ , v
(n+1)∗ ).

In the proof of Proposition 6 we saw that v(n+1) = c(n+1)(1 + a(n)a(n+1)v(n)) − 1 +
O(λn), hence y(n+1) = x (n)+O(λn). By Lemma 5, ȳ(n+1) = x (n)∗ , therefore Proposition 7
(used once for n and once for n + 1) implies y(n+1)∗ − ȳ(n+1) = O(λn).

Now, the most important ‘geometric’ step. On the one hand, the slope of the curve
γρn+1,c(n+1) satisfies the bound Δv

Δa < −1 due to Proposition 1). On the other, the line

y = ȳ(n+1), i.e. v−c(n+1)+1
c(n+1)a

= ȳ(n+1), has the constant slope dv
da = ȳ(n+1)c(n+1) that lies

between 0 and c(n)−1 since (x̄ (n+1), ȳ(n+1)) ∈ Dc(n+1) , and thus is separated from −1 by a

constant independent on n. The slope of the line y = y(n+1)∗ is close to that of y = ȳ(n+1)

and thus is separated from −1, too. So the lines y = ȳ(n+1) and y = y(n+1)∗ are transversal
to γρn+1,c(n+1) uniformly in n. It follows that the estimate y(n+1)∗ − ȳ(n+1) = O(λn) implies
the same order of closeness for the intersection points of those lines with γρn+1,c(n+1) ,

which are exactly (ā(n+1), v̄(n+1)) and (a(n+1)∗ , v
(n+1)∗ ).

Since the metrics in coordinates (a, v) and (x, y) are equivalent on the setDc(n)∩Φε
c(n) ,

we have the following

Corollary 7. There exists C = C(T ) > 0 such that

dc(n+1)[P fn+1,Rc(n)P fn] ≤ Cλn .

5.5. Exponential convergence of renormalizations. Let T̃ be a circle diffeomorphism
with break of the same size c and the same (half-bounded) rotation number ρ as T .
Denote ( f̃n, g̃n) the nth renormalization of T̃ .

Lemma 14. There exists A = A(ε, c) > 0 such that

‖Fa,v,c − Fã,ṽ,c‖C2 ≤ A(|a − ã| + |v − ṽ|)
for any (a, v), (ã, ṽ) ∈ Φε

c .

Proof. The claim of the lemma follows from the representation

Fa,v,c(z) − Fã,ṽ,c(z) = (a − ã)
1

1 − ṽz
+ (v − ṽ)

z(a + cz)

(1 − ṽz)(1 − vz)
,

since 1 − vz and 1 − ṽz are both separated from zero, and all the variables are bounded.
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Theorem 2. There exist constants C = C(T, T̃ ) > 0 and λ1 ∈ (0, 1) such that

‖ fn − f̃n‖C2 ≤ Cλn
1 .

Proof. Due to the statement (C) and Lemma 14 we have

‖ fn − f̃n‖C2 ≤ C
(
λn + dc(n)[P fn,P f̃n]

)
.

Theorem 1 and Corollary 7 imply

dc(n)[P fn,P f̃n] ≤ Cλn + μc(n)dc(n)[P fn−2,P f̃n−2].

Telescoping the last estimate leads to dc(n)[P fn,P f̃n] = O
(∑n/2

i=0 μi
cλ

n−2i
)

, which is

O(λn
1) for any λ1 > max{λ,

√
μc}.

6. The Rigidity Theorem

Finally we are going to show the smoothness of the conjugacy of two circle diffeomor-
phisms with breaks with the same size of break and the same irrational rotation number
of a half-bounded type. This result was announced first in [10].

Theorem 3. Let T and T̃ be two circle diffeomorphisms with breaks of the same size c
and the same rotation number ρ ∈ Me in the case of c > 1, or ρ ∈ Mo in the case of
0 < c < 1. There exists an orientation-preserving C1-smooth circle diffeomorphism φ

such that

φ ◦ T ◦ φ−1 = T̃ . (16)

To prove this theorem, we use the theory developed in [8], namely the following
statement proved there:

Conditional Theorem. Suppose that for two circle diffeomorphisms T and T̃ with sin-
gularities (in particular of the break type) the following conditions hold:

1) ρ(T ) = ρ(T̃ ) is irrational;
2) there exists a vector K = (K1, K2, K3, K4) such that the renormalizations fn and

f̃n are K-regular uniformly in n;
3) the systems of dynamical partitions Pn and P̃n are exponentially refining;
4) there exist constants C > 0 and λ1 ∈ (0, 1) such that ‖ fn − f̃n‖C2 ≤ Cλn

1 .

Then T and T̃ are C1-smoothly conjugate in the sense of (16).

The regularity conditions of 2) are the following. Given a vector with positive compo-
nents K = (K1, K2, K3, K4) and a strictly increasing real function f ∈ C2+α([−1, 0])
such that f (z) > z for each z ∈ [−1, 0], we say that f is K-regular, if:

i) ‖ f ‖2+α ≤ K1;
ii) the set M f,K2 = {z ∈ [−1, 0], f (z) − z < K2} is either an open interval or empty

(in particular, this implies f (−1) ≥ K2 − 1 and f (0) ≥ K2);

iii) d2 f
dz2 (z) > K3 for each z ∈ M f,K2 ;

iv) d f
dz (z) > K4 for each −1 ≤ z < −K 2

2 .
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The refining partitions of 3) are defined as follows. A system of dynamical parti-
tions of the circle (3) is called exponentially refining if there exist constants C > 0 and
0 < β < 1 such that |I | ≤ Cβn−m |J | for any I ∈ Pn and J ∈ Pm such that I ⊂ J .

Let us check the conditions of Conditional Theorem.

1) This one is a part of our settings.
2) The regularity conditions obviously hold for Fa,v,c such that (a, v) ∈ Φε

c . Therefore
the statement (C) and Propositions 5 and 6 imply that both fn and f̃n are bounded
in C2-norm and satisfy ii)-iv). The only thing remaining to be proved is the Hölder
condition on f ′′

n and f̃ ′′
n , which is the subject of Lemma 15 just below.

3) Follows from (A).
4) This is our Theorem 2.

So, all that remains to prove Theorem 3 is the following statement.

Lemma 15. There exists CH > 0 such that the estimate | f ′′
n (z)− f ′′

n (w)| ≤ CH|z −w|α
holds for all z, w ∈ [0, 1].
Proof. In terms of T the estimate of the lemma is equivalent to the following:

|(T qn )′′(η0) − (T qn )′′(ζ0)| ≤ CH
|η0 − ζ0|α
|Δ(n−1)

0 |1+α

for all η0, ζ0 ∈ Δ
(n−1)
0 . Let ηi = T iη0, ζi = T iζ0, i ≥ 0. From the formal expansion

(T j )′′(θ0) = (T j )′(θ0)
∑ j−1

i=0
T ′′(θi )
T ′(θi )

(T i )′(θ0), θi = T iθ0, one gets the equality

(T qn )′′(η0) − (T qn )′′(ζ0) = (
(T qn )′(η0) − (T qn )′(ζ0)

) qn−1∑

i=0

T ′′(ηi )

T ′(ηi )
(T i )′(η0)

+(T qn )′(ζ0)

qn−1∑

i=0

(
T ′′(ηi )

T ′(ηi )
− T ′′(ζi )

T ′(ζi )

)
(T i )′(η0)

+(T qn )′(ζ0)

qn−1∑

i=0

T ′′(ζi )

T ′(ζi )

(
(T i )′(η0) − (T i )′(ζ0)

)
. (17)

Let us estimate the three summands in (17) separately. Since f ′′
n is bounded, one

has |(T qn )′(η0) − (T qn )′(ζ0)| = |η0 − ζ0|O(|Δ(n−1)
0 |−1). It is easy to see that

| log(T i )′(θ0) − log(T i )′(θ ′
0)| ≤ VarT1 log T ′ for any θ0, θ

′
0 ∈ Δ

(n−1)
0 , hence

(T i )′(θ0) ∼ |Δ(n−1)
i |

|Δ(n−1)
0 | , 0 ≤ i < qn . Also, T ′′/T ′ is bounded on T

1. It follows that
∣∣∣
∑qn−1

i=0
T ′′(ηi )
T ′(ηi )

(T i )′(η0)

∣∣∣ = O(|Δ(n−1)
0 |−1), and so for the first summand in (17) we

have
∣∣∣
(
(T qn )′(η0) − (T qn )′(ζ0)

)∑qn−1
i=0

T ′′(ηi )
T ′(ηi )

(T i )′(η0)

∣∣∣ = O
( |η0−ζ0|

|Δ(n−1)
0 |2

)
, which is also

O
( |η0−ζ0|α

|Δ(n−1)
0 |1+α

)
since |η0 − ζ0| ≤ |Δ(n−1)

0 |.
For the terms in the second summand we have

∣∣∣ T ′′(ηi )
T ′(ηi )

− T ′′(ζi )
T ′(ζi )

∣∣∣ = O(|ηi − ζi |α)

because T ′′/T ′ is C2+α-smooth beyond the break; and |ηi −ζi ||η0−ζ0| ∼ |Δ(n−1)
i |

|Δ(n−1)
0 | ∼ (T i )′(η0)
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as before, hence
∣∣∣(T qn )′(ζ0)

∑qn−1
i=0

(
T ′′(ηi )
T ′(ηi )

− T ′′(ζi )
T ′(ζi )

)
(T i )′(η0)

∣∣∣ = O
( |η0−ζ0|α

|Δ(n−1)
0 |1+α

maxi

|Δ(n−1)
i |α

)
, which is obviously O

( |η0−ζ0|α
|Δ(n−1)

0 |1+α

)
.

Concerning the last summand in (17), one has (T i )′(η0) − (T i )′(ζ0) =
(T i )′′(θ0)(η0−ζ0) for some θ0 ∈ Δ

(n−1)
0 , but we have already proved that |(T i )′′(θ0)|=

|(T i )′(θ0)| ·
∣∣∣
∑i−1

k=0
T ′′(θk )
T ′(θk )

(T k)′(θ0)

∣∣∣=O
( |Δ(n−1)

i |
|Δ(n−1)

0 |2
)

, 0 ≤ i < qn . Now it follows easily

that the last summand in (17) satisfies
∣∣∣(T qn )′(ζ0)

∑qn−1
i=0

T ′′(ζi )
T ′(ζi )

((T i )′(η0)−(T i )′(ζ0))

∣∣∣=
O

( |η0−ζ0|
|Δ(n−1)

0 |2
)

, which is also O
( |η0−ζ0|α

|Δ(n−1)
0 |1+α

)
.

Thus Theorem 3 is proved.
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