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Abstract: We use the framework of Quot schemes to give a novel description of the
moduli spaces of stable n-pairs, also interpreted as gauged vortices on a closed Riemann
surface � with target Matr×n(C), where n ≥ r . We then show that these moduli spaces
embed canonically into certain Grassmann manifolds, and thus obtain natural Kähler
metrics of Fubini–Study type. These spaces are smooth at least in the local case r = n.
For abelian local vortices we prove that, if a certain “quantization” condition is satisfied,
the embedding can be chosen in such a way that the induced Fubini–Study structure
realizes the Kähler class of the usual L2 metric of gauged vortices.

1. Introduction

Gauged vortices are configurations of static, stable fields arising in various classical
field theories on a Riemann surface �. These objects were first studied as topologi-
cal solitons of the abelian Higgs model, for which vortex solutions have a distinctive
particle-like behavior — they are labelled by divisors on �, which specify the precise
locations of the cores of individual objects superposing nonlinearly to yield each vortex
configuration [JT]. In this setting, there is typically a moduli space of all vortices with
a given topology, modelled on the space of effective divisors with a fixed degree. This
is a smooth manifold endowed with a complex structure induced from the one specified
on �. More recently, models for vortices with nontrivial internal structure have been
considered, but in the various generalizations it has remained a challenge to understand
the corresponding moduli spaces in a satisfactory way.

We shall focus on vortices on a closed Riemann surface � with target (or internal)
space consisting of the vector space Matr×n(C) of complex r ×n matrices, where n ≥ r .
These have been called nonabelian vortices in the literature, even though the special sit-
uation r = 1 corresponds to an abelian gauge theory. If n > r , one sometimes speaks of
semilocal vortices, whereas n = r is known as the local case. The geometric framework
is as follows. Let e2 be any positive real number. Assume that we fix a Kähler form ω�
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on �, as well as a hermitian metric on a complex vector bundle E −→ � of rank r . A
vortex is a pair (A, φ) consisting of a unitary connection A on the bundle, together with
a section φ of the direct sum E⊕n −→ �, satisfying the vortex equations

∂̄Aφ = 0, (1.1)

∗FA + e2μ ◦ φ = 0. (1.2)

Here, ∂̄A denotes the holomorphic structure [DK] on E⊕n defined by the connection A
and the complex structure on �, ∗ is the Hodge star of the Kähler metric associated to
ω�, FA := dA + 1

2 [A, A] is the curvature of A and μ denotes a moment map

μ : Matr×n(C) −→ u(r)∗ ∼= u(r)

of the hamiltonian action of the reduced structure group U(r) on the fibers of E⊕n −→ �

by multiplication on the left. We use the Killing form on u(r) to identify the Lie alge-
bra with its dual. Notice that μ is specified only up to addition of scalar matrices, and
following standard conventions we shall write

μ(w) = −
√−1

2
(ww† − τ Ir ),

where τ is a fixed real number and Ir is the r × r identity matrix.
The vortex equations (1.1)–(1.2) first appeared in the work [BDW2] of Bertram,

Daskalopoulos and Wentworth computing the Gromov–Witten invariants of Grassman-
nians: the moduli space of holomorphic maps from a compact Riemann surface to a
Grassmannian embeds into the moduli space of stable holomorphic n-pairs. The latter
can be identified with the space of gauge-equivalence classes of solutions to the vortex
equations above, under suitable stability criteria depending on the parameter τ and the
topology. This is an example of what is generically known as the Hitchin–Kobayashi
correspondence, which goes back to [UY]. Among other things, the authors of [BDW2]
described how the moduli space of vortices changes birationally when the parameter τ
crosses certain critical values, a phenomenon familiar from earlier work of Thaddeus
on moduli of stable pairs [Th]. There is also a useful description of the moduli spaces
via infinite-dimensional symplectic reduction (in the spirit of [AB]), which naturally
produces a Kähler structure from the L2 inner product on the space of fields; for abelian
vortices, this was described by García-Prada in [Ga]. By now, a whole body of rather
well-established technology that reproduces results of this type has been developed for
objects that are analogous to vortices on the gauge-theory side of the Hitchin–Kobayashi
correspondence, and n-pairs on the other side. The objects on the algebraic-geometric
side are often referred to by the name of augmented bundles, of which Higgs bundles
and coherent systems are other important examples; we refer the reader to [BDGW] for
a clear overview.

Physicists have also been interested in the generalized vortex equations (1.1)–(1.2).
Their solutions realize certain configurations of branes in string theory on the one hand,
and also feature in models for confinement in QCD [EINOS,To]. Here, one focus of
interest is to obtain descriptions of the moduli spaces as explicit as possible, including
concrete parametrizations, as well as to understand natural Hamiltonian systems on the
moduli spaces or their cotangent bundles. Much of the work done assumes � = C, for
which there is nothing like a Hitchin–Kobayashi correspondence, but alternative con-
structions have been proposed which rely on certain mathematical conjectures. More
recently, Baptista presented a rigorous description of the moduli space of local vortices
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when � is compact, describing a stratification of the moduli spaces in terms of spaces
of internal structures [Ba1]. From Baptista’s description, holomorphic matrices repre-
senting vortex solutions up to unitary gauge transformations can be readily constructed.
From our perspective, his work has the slight disadvantage of depending on auxiliary
structure, namely the choice of an inner product on C

n , and it is also difficult to see how
the different strata are patched together.

In this paper, we make use of the Hitchin–Kobayashi correspondence of [BDW2] to
describe moduli spaces of solutions to the vortex equations (1.1)–(1.2) modulo gauge
equivalence,

M� = M�(n, r, d), (1.3)

where d = deg(E) is the degree of E −→ �, in terms of certain Quot schemes
parametrizing holomorphic n-pairs. The idea of Quot (or quotient) schemes goes back
to Grothendieck [Gr] and has had numerous applications to moduli problems. Given a
coherent sheaf and a polynomial, the Quot scheme is a projective scheme of finite type
that parametrizes all quotients of the given sheaf for which the Hilbert polynomial [EH]
is the given polynomial.

Starting with an ample line bundle L −→ �, we shall produce a holomorphic
embedding of the moduli space M� into a Grassmann manifold; it follows that M�

is projective. A Hermitian structure on L then induces a Kähler metric of Fubini–Study
type on the moduli space. The perspective of Quot schemes has the advantage of being
global in nature, and also well-suited to address general questions such as smoothness.
We shall also see how it allows a straightforward calculation of the dimension. These
properties can also be recovered from more general results scattered in the literature on
Gromov–Witten invariants [OT,BDW2].

The simplest example of our class of embeddings into Grassmann manifolds occurs
when we set n = r = 1; more background on the geometry of the moduli space
of vortices in this well-studied case shall be given in Sect. 5.1 below. Then we have
M�

∼= Symd(�), where d = deg(E) is the vortex number [Br1]. In this setting, one
might hope that a suitable choice of hermitian metric on L will induce a Fubini–Study
metric which is related to the usual L2 metric on the moduli space of vortices. We shall
show that, if a certain quantization condition holds, then it turns out that the two cor-
responding Kähler structures are cohomologous; this is the content of our Theorem 5.1
below. The Kähler class of the moduli space of local abelian vortices was calculated in
[MN].

2. Stability and the Hitchin–Kobayashi Correspondence

Let � be a compact connected Riemann surface of genus g. Fix a Kähler form ω� on
�, so ω� is a positive (1, 1)-form; it is automatically closed. We will denote by

Vol(�) :=
∫
�

ω� (2.1)

the total area of the surface determined by ω� .
We briefly sketch the results in [BDW2] establishing the Hitchin–Kobayashi cor-

respondence between solutions of (1.1)–(1.2) up to gauge transformations, and stable
n-pairs (E, s) up to isomorphism. We begin by recalling the following
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Definition 2.1. An n-pair on the Riemann surface � is a pair of the form (E, s), where
E −→ � is a holomorphic vector bundle and s ∈ H0(�, E⊕n). Two n-pairs (E, s)
and (E ′, s′) are said to be isomorphic if there is an isomorphism of holomorphic vector
bundles ψ : E −→ E ′ over � such that ψ∗s′ = s.

In this paper, we will denote by r = rk(E) the rank of a fixed class of vector bundles
E over �, when no confusion will arise.

The basic mechanism of the correspondence is modeled on Donaldson’s famous
proof of the Narasimhan–Seshadri theorem [D]. Suppose that we are given an n–pair
(E, s). A holomorphic vector bundle E −→ � with a Hermitian structure has a unique
connection A preserving the Hermitian structure whose (0, 1)-part coincides with the
Dolbeault operator defining the holomorphic structure; this connection A is known as
the Chern connection [A, pp. 191–192, Prop. 5], [CCL, p. 273]. For a C∞ section φ of
E⊕n −→ �, the pair (A, φ) is a solution of (1.1) if and only if φ is holomorphic. So
we start by taking φ = s ∈ H0(�, E⊕n). Complex gauge transformations preserve
Eq. (1.1), and one can ask whether the complex gauge orbit through this initial pair
(A, φ = s) contains a solution of Eq. (1.2), which itself is invariant only under uni-
tary gauge transformations. The answer is that this occurs if and only if the n–pair
(E, s) is τ–stable in a sense that we will explain shortly, for the value of τ appearing in
Eq. (1.2). This solution is unique up to unitary gauge transformations, and therefore we
obtain an injective map from the moduli space of τ -stable n–pairs to the moduli space
of vortices. Conversely, a vortex (A, φ) in this geometric setting determines an n–pair:
E is the bundle where each component of φ takes values, with holomorphic structure
on E determined by the connection A and the complex structure on �. Clearly, one
obtains isomorphic n-pairs (E, φ) when the original vortex (A, φ) undergoes unitary
gauge transformations, and one can check that they are still τ–stable.

The stability condition that is appropriate to relate n-pairs and vortices was spelled
out in [BDW2,BDGW], using the analysis for stable pairs in [Br2]. Fixing τ , one says
that an n-pair (E, φ) is τ -stable if the following two conditions hold:

(i) 4π deg(E ′)/rk(E ′) < τe2 Vol(�) for all holomorphic subbundles E ′ ⊆ E , and
(ii) 4π deg(E/Es)/rk(E/Es) > τe2 Vol(�) for all holomorphic subbundles Es � E

containing all the component sections of s.

(Vol(�) is defined in (2.1); unlike [BDW2,BDGW], we do not require this area to be
normalized.) Notice that, when E ′ = E , condition (i) is necessary for vortex solutions
to exist for a given τ : this follows from integrating Eq. (1.2) over �.

Now suppose that n ≥ r = rk(E), and that φ ∈ H0(�, E⊕n) has maximal rank
generically on�. Then there is no proper subbundle of E containing all the components
of φ, and the second condition above is empty. Going through the argument in the proof
of Proposition 3.14 in [BDW2], one can show that, under the same assumptions, the
inequality

τe2 Vol(�) > 4π deg(E) (2.2)

is equivalent to the first condition for τ -stability. Throughout this paper, when the topol-
ogy of E −→ � has been fixed, as well as a Kähler structure on �, we shall only deal
with the vortex equations (1.1)–(1.2) with values of τ satisfying (2.2). Then we can focus
purely on n-pairs and their algebraic geometry to describe the moduli spaces in (1.3).
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3. Holomorphic Sections of a Direct Sum

We shall from now on take the algebraic-geometric point of view on the moduli space
of vortices provided by the Hitchin-Kobayashi correspondence explained in Sect. 2.

As before, let E −→ � be a holomorphic vector bundle of rank r . Choose an integer
n ≥ r . Let

s ∈ H0(�, E⊕n) ∼= H0(�, E)⊕n (3.1)

be a holomorphic section. Let si ∈ H0(�, E) be the image of s for the projection
E⊕n −→ E to the i th factor. So, s = (s1 , . . . , sn). Let

fs : O⊕n
� −→ E (3.2)

be the homomorphism defined by (x ; c1 , · · · , cn) −→ ∑n
i=1 ci · si (x), where x ∈ �

and ci ∈ C. The image im( fs) is locally free; however, im( fs) need not be a subbundle
of E .

Definition 3.1. Let

H0(�, E⊕n)0 ⊂ H0(�, E⊕n)

be the subset consisting of sections s as in (3.1) such that the rank of the vector bundle
im( fs) is r (the rank of E).

It is easy to see that H0(�, E⊕n)0 is a Zariski open subset of H0(�, E⊕n) (but it
can be empty). Note that it corresponds to the subset of holomorphic sections defining
stable n-pairs (E, s), as described in Sect. 2: if s ∈ H0(�, E⊕n)0, then the quotient
E/im( fs) is either zero, or it is a torsion sheaf supported at finitely many points.

Take any s ∈ H0(�, E⊕n)0. Let

K := ker( fs) ⊂ O⊕n
�

be the kernel of the homomorphism fs in (3.2). Consider the dual homomorphism

(O⊕n
� )∗ ∼= O⊕n

� −→ K∗

to the inclusion map K ↪→ O⊕n
� . So K∗ is a quotient bundle of O⊕n

� .
We have a short exact sequence of coherent sheaves on �,

0 −→ E∗ f ∗
s−→ O⊕n

� −→ K∗ ⊕ T =: Q −→ 0, (3.3)

where T is either a torsion sheaf supported on finitely many points of �, or T = 0; in
fact, T is isomorphic to the quotient sheaf E/im( fs) (but there is no canonical isomor-
phism).

Since E∗ is a subsheaf of a trivial vector bundle, it follows that the degree of E∗ is
never positive; hence we will require throughout that

d := deg(E) = −deg(E∗) ≥ 0. (3.4)

We now introduce an ample line bundle L −→ � over the surface where the vortices
live. (For the purposes of the present section, this line bundle plays an auxiliary role, and
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its choice does not affect any of the results.) Since 
 := deg(L) is necessarily positive,
there is an integer

δE ∈ N (3.5)

such that, for all δ ≥ δE ,

H1(�, E∗ ⊗ L⊗δ) = 0, (3.6)

and the natural evaluation homomorphism

H0(�, E∗ ⊗ L⊗δ)⊗C O� −→ E∗ ⊗ L⊗δ (3.7)

is surjective. The second condition means that the vector bundle E∗ ⊗ L⊗δ is generated
by its global holomorphic sections. We emphasize that at this stage δE depends on the
holomorphic vector bundle E . The Riemann–Roch theorem yields

dim H0(�, E∗ ⊗ L⊗δ)− dim H1(�, E∗ ⊗ L⊗δ) = r
δ − d + r(1 − g) (3.8)

and this determines the dimension of H0(�, E∗ ⊗ L⊗δ) whenever δ ≥ δE , by (3.6).
Suppose that an integer δ is fixed, satisfying δ ≥ δE . Tensoring (3.3) with L⊗δ , we

obtain the short exact sequence of coherent sheaves

0 −→ E∗ ⊗ L⊗δ −→ (L⊗δ)⊕n −→ Q ⊗ L⊗δ −→ 0. (3.9)

This will give rise to a long exact sequence of cohomology groups

0 −→ H0(�, E∗ ⊗ L⊗δ) −→ H0(�, (L⊗δ)⊕n)
Q−→ H0(�, Q ⊗ L⊗δ) −→ 0,

(3.10)

where the right-exactness follows from (3.6).
Consider the quotient map Q : H0(�, (L⊗δ)⊕n) −→ H0(�, Q ⊗ L⊗δ) in (3.10).

The subsheaf

E∗ ⊗ L⊗δ ⊂ (L⊗δ)⊕n

in (3.9) can be reconstructed from Q, and from it the morphism fs in (3.2), by a procedure
that we will now describe.

Let

K̂ := ker Q

be the kernel of the quotient map, and let

S ⊂ (L⊗δ)⊕n (3.11)

be the subsheaf generated by the sections lying in the subspace K̂. From the exactness
of the sequence (3.10) we know that K̂ coincides with the subspace

H0(�, E∗ ⊗ L⊗δ) ↪→ H0(�, (L⊗δ)⊕n)

determined by the section s ∈ H0(�, E⊕n)0. Also, the holomorphic vector bundle
E∗ ⊗ L⊗δ is generated by its global sections (recall that the homomorphism in (3.7) is
surjective). Consequently, the subsheaf S in (3.11) coincides with the subsheaf

E∗ ⊗ L⊗δ ⊂ (L⊗δ)⊕n
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in (3.9). In other words, we have reconstructed the subsheaf E∗ ⊗L⊗δ of (L⊗δ)⊕n from
the quotient vector space H0(�, (L⊗δ)⊕n)/H0(�, E∗ ⊗ L⊗δ), or equivalently from
the linear map Q in (3.10).

Let E ′ −→ � be a holomorphic vector bundle, s ∈ H0(�, (E ′)⊕n)0 (see Defini-
tion 3.1) be such that

H1(�, (E ′)∗ ⊗ L⊗δ) = 0,

and also assume that (E ′)∗⊗L⊗δ is generated by its global sections. LetQ′ be the quotient
of O⊕n

� constructed from E ′ just as Q is constructed from E (see (3.3)). Then Q′ ⊗L⊗δ
is a quotient of (L⊗δ)⊕n . If the two quotients H0(�, Q ⊗ L⊗δ) and H0(�, Q′ ⊗ L⊗δ)
of H0(�, (L⊗δ)⊕n) coincide, then the subsheaf E∗ ⊗L⊗δ of (L⊗δ)⊕n (see (3.9)) coin-
cides with the subsheaf (E ′)∗ ⊗ L⊗δ constructed as in (3.9) using E ′. Indeed, this
follows from the above observation that we can reconstruct the subsheaf E∗ ⊗ L⊗δ
of (L⊗δ)⊕n from the quotient map Q : H0(�, (L⊗δ)⊕n) −→ H0(�, Q ⊗ L⊗δ)
in (3.10).

We put down the observations above in the form of what we will call a “reconstruc-
tion” lemma:

Lemma 3.2. The quotient H0(�, (L⊗δ)⊕n) −→ H0(�, Q⊗L⊗δ) in (3.10) uniquely
determines the subsheaf

E∗ ⊗ L⊗δ ⊂ (L⊗δ)⊕n

in (3.9).

Remark 3.3. Consider the subsheaf E∗ ⊗ L⊗δ ⊂ (L⊗δ)⊕n in Lemma 3.2. Its dual
E ⊗ (L∗)⊗δ is a quotient of ((L⊗δ)⊕n)∗ = ((L∗)⊗δ)⊕n . Tensoring this quotient homo-
morphism

((L∗)⊗δ)⊕n −→ E ⊗ (L∗)⊗δ

with the identity homomorphism of L⊗δ , we get back the homomorphism

fs : (O�)
⊕n −→ E

used to construct the quotient in (3.10). So the quotient effectively determines the n-pair.

Proposition 3.4. Fix a positive integer r , a nonnegative integer d and an integer n ≥ r .
Given an ample line bundle L −→ �, there is an integer δn,r,d such that for any n-pair
(E , s) with rk(E) = r, deg(E) = d and

s ∈ H0(�, E⊕n)0

(see Definition 3.1), and any integer δ ≥ δn,r,d ,

• the homomorphism in (3.7) is surjective, and
• (3.6) holds.
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Proof. The strategy of the proof is to first show, using the idea of Quot scheme, that
all such pairs of the given numerical type form a bounded family; then the proof is
completed using upper semicontinuity for dimension of cohomology.

Take a pair (E , s), where E −→ � is a holomorphic vector bundle of rank r and
degree d, and

s ∈ H0(�, E⊕n)0.

The vector bundle E∗ is a subsheaf of O⊕n
� of rank r and degree −d (see (3.3)). There-

fore, all possible pairs (E∗ , f ∗
s ) (see (3.3)) are parametrized by a projective scheme T

over C of finite type [HL, p. 40, Thm. 2.2.4] (set S in [HL, Thm. 2.2.4] to be a point).
Now from upper semicontinuity of dimension of H1 we conclude that there is an integer
k0, that depends only on n, r and d, such that for all (E , s) of the above type and all
δ ≥ k0,

H1(�, E∗ ⊗ L⊗δ) = 0.

Take any point x ∈ �. Consider the short exact sequence of sheaves

0 −→ E∗ ⊗ L⊗δ ⊗ O�(−x) −→ E∗ ⊗ L⊗δ −→ (E∗ ⊗ L⊗δ)x −→ 0.

Let

H0(�, E∗ ⊗ L⊗δ) −→ (E∗ ⊗ L⊗δ)x −→ H1(�, E∗ ⊗ L⊗δ ⊗ O�(−x))

(3.12)

be the corresponding long exact sequence in cohomology. From (3.12) we conclude
that if

H1(�, E∗ ⊗ L⊗δ ⊗ O�(−x)) = 0, (3.13)

then the homomorphism H0(�, E∗ ⊗ L⊗δ) −→ (E∗ ⊗ L⊗δ)x in (3.12) is surjective.
Therefore, given (E∗ , f ∗

s ), if (3.13) holds for all x ∈ �, the homomorphism in (3.7)
is surjective.

Now all possible pairs (E∗ , f ∗
s ) (see (3.3)) are parametrized by a projective scheme

over C (see above). From upper semicontinuity of dimension of H1, we conclude again
that there is an integer k1 such that, for all (E , s) of the type in the statement of the
proposition, and all δ ≥ k1, the homomorphism in (3.7) is surjective.

Consequently, the integer

δn,r,d := max{k0 , k1}, (3.14)

which depends only on r, d and n, has the property that for all δ ≥ δn,r,d , and for any
pair (E , s) of the type in the statement of the proposition, the homomorphism in (3.7)
is surjective, and (3.6) holds. This completes the proof of the proposition. ��

Note that in Proposition 3.4 we assume the degree d to be nonnegative because of
the inequality in (3.4).
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4. Embedding in a Grassmannian

As in Sect. 3, fix a positive integer r , a nonnegative integer d and an integer n ≥ r ,
specifying the topology of E −→ � and the number of copies of E in a direct sum.
For a given ample line bundle L −→ � of degree 
, fix also an integer δ ≥ δn,r,d ,
where δn,r,d is as in Proposition 3.4, cf. (3.14). Notice that we can always set δ to be the
minimal δn,r,d ensuring that both (3.6) is surjective and the vanishing in (3.7) holds, and
in fact we will be doing so by default. A consequence of our previous discussion is that


δ ≥ d

r
+ g − 1; (4.1)

this follows from Eqs. (3.8) and (3.6).
At this point, we shall introduce metric structures on the basic objects that we have

been considering in the previous section. We equip � with a Kähler metric ω� , and the
ample line bundle L −→ � in Sect. 3 with a hermitian structure hL. If the Kähler class
[ω�] ∈ H2(�, R) is integral, which amounts to∫

�

ω� ∈ Z,

it is rather natural to require (L, hL), together with its Chern connection ∇L, to be a pre-
quantization of the Kähler structure on �, in the sense that its curvature is proportional
to the Kähler form as

F∇L = 2π
√−1 · ω�; (4.2)

but for now we need not impose this condition. Consider the vector space

H0(�, (L⊗δ)⊕n) ∼= H0(�, L⊗δ)⊕n .

The hermitian structure hL on L together with the Kähler form ω� on � define an L2

inner product on H0(�, (L⊗δ)⊕n).
Let

Gr := Gr(H0(�, (L⊗δ)⊕n) , r(
δ − g + 1)− d) (4.3)

be the Grassmannian of subspaces of H0(�, (L⊗δ)⊕n) of dimension r(
δ− g + 1)− d
(see (3.8) and (3.10)). The inner product on H0(�, (L⊗δ)⊕n) defines a Fubini–Study
Kähler form on Gr. Indeed, for any subspace

H0(�, (L⊗δ)⊕n) ⊃ V ∈ Gr,

we have

TV Gr = V ∗ ⊗ (H0(�, (L⊗δ)⊕n)/V ),

where TV Gr is the holomorphic tangent space at the point V of Gr. The L2 inner prod-
uct we have on H0(�, (L⊗δ)⊕n) defined above induces inner products on both V and
H0(�, (L⊗δ)⊕n)/V . Therefore, we get an inner product on TV Gr. It is easy to see that
the hermitian structure on Gr constructed in this way is actually Kähler.

Another way of describing this Kähler structure is to consider the Fubini–Study
metric on the projective space of lines in

∧r(
δ−g+1)−d H0(�, (L⊗δ)⊕n),

P(∧r(
δ−g+1)−d H0(�, (L⊗δ)⊕n)),
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induced by the inner product on H0(�, L⊗δ). The Plücker map [GH]

P : Gr −→ P(
∧r(
δ−g+1)−d

H0(�, (L⊗δ)⊕n)), (4.4)

defined by

Gr � spanC{s1, . . . , sr(
δ−g+1)−d} −→ s1 ∧ · · · ∧ sr(
δ−g+1)−d ,

embeds Gr as a complex submanifold of the target. The above Kähler structure on Gr
coincides with the restriction of the Fubini–Study metric on the projective space to the
image of P .

Let

M� := M�(n, r, d) (4.5)

be the moduli space of isomorphism classes of all n-pairs (E , s), on � where the holo-
morphic bundle E −→ � has rank r and degree d, and

s ∈ H0(�, E⊕n)0.

We now claim that we have an embedding

ϕ : M� −→ Gr (4.6)

that sends any (E , s) to the subspace H0(�, E∗⊗L⊗δ) ⊂ H0(�, (L⊗δ)⊕n) in (3.10),
where Gr is defined in (4.3). Note that (3.6) and (3.8) together imply that H0(�, E∗ ⊗
L⊗δ) has dimension r(
δ − g + 1)− d, and this means that ϕ is well defined. The map
ϕ is also injective from Lemma 3.2 and Remark 3.3. In this way, the moduli space M�

can be regarded as a closed subvariety of the Grassmannian Gr in (4.3).
One advantage of our description of the moduli space M� is that one can address

its smoothness in a straightforward way. Take any point z := (E , s) ∈ M� of the
moduli space. Let

0 −→ E∗ f ∗
s−→ O⊕n

� −→ K∗ ⊕ T =: Q −→ 0

be the short exact sequence constructed in (3.3) from the n-pair (E , s). The tangent
space to M� at the point z := (E , s) has the following description:

TzM� = H0(�, Hom(E∗ ,Q)) = H0(�, E ⊗ Q). (4.7)

The obstruction to smoothness of M� at z is given by

Ext1O�
(E∗ ,Q),

where Ext1O�
is the global Ext. Since E∗ is a vector bundle,

Ext1O�
(E∗ ,Q) = H1(�, E∗ ⊗ Q∗). (4.8)

In the local case, where n = r := rk(E), the quotients Q in (3.3) are torsion sheaves
supported on finitely many points of �. In that case, E∗ ⊗ Q∗ is a torsion sheaf, and
hence

H1(�, E ⊗ Q) = 0.
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Therefore, from (4.8) we conclude Ext1O�
(E∗ ,Q) = 0 if n = r , implying that the

variety M� is smooth if n = r .
Since the map ϕ in (4.6) embeds M� in Gr as a complex submanifold, we can obtain

Kähler structures on the moduli space M� by restricting a Kähler form on the Grass-
mann manifold Gr to it. In the following, we shall denote by ωGr the Kähler form on the
moduli space M� obtained by pulling back the Fubini–Study 2-form on Gr described
above, using the embedding ϕ. In the next section, we will see when it will be possible
to make ωGr cohomologous to the usual Kähler structure ωL2 on the moduli space of
vortices, in the abelian case where the Kähler class [ωL2 ] is known.

Although the Kähler form ωL2 depends on both the metric on � and a Hermitian
metric on the vector bundle E −→ �, there is a natural splitting ωL2 = ω1 +ω2, where
ω1 is a closed (1, 1)-form depending only on ω� (see [MN] for the abelian case). A
natural question to ask is how ω1 is related to ωGr when the prequantization condition
(4.2) is imposed. This is one issue that we plan to address in future work.

5. Abelian Local Vortices: n= r = 1

It is natural to ask whether the Kähler formωGr on the vortex moduli space M� induced
from the embedding ϕ into the Grassmannian manifold, as described in Sect. 4, is related
to the L2 Kähler structure inherited naturally from the gauge theory, which is of interest
to physicists. We shall address this issue in the present section, but our discussion will
be restricted to the case of abelian local vortices, where n = 1, r = 1. So throughout
this section we will be assuming that

M� = M�(1, 1, d).

5.1. Some background on the geometry of the abelian local case. Let us briefly recall
how the Kähler structures ωL2 on M� arise in the abelian local case. There are many
alternative descriptions of the L2 metrics of vortices, but here we will concentrate on
a particularly insightful one given by García-Prada in [Ga], which uses infinite-dimen-
sional symplectic geometry. The space of fields appearing as variables in the vortex
equations (1.1)–(1.2) is A × C, where A is the space of unitary connections on the line
bundle E −→ � and C = C∞(�, E) is the vector space of smooth sections of this
bundle. Any two connections differ by a global real 1-form on � with values on the Lie
algebra u(1) ∼= √−1 ·R, so A is an affine space modelled on the vector space1(�,R).
Thus in fact A × C is a complex manifold with complex structure induced from the one
on �:

( Ȧ, φ̇) −→ (∗A ,
√−1 φ̇). (5.1)

The component of this map in the first factor is the Hodge star operator on � acting on
1-forms, which squares to −id1(�), whereas the component in the second factor is the
complex structure on the fibers of the bundle E −→ �.

There is an action of the gauge group Aut�(E) ∼= C∞(�,U(1)) on fields (A, φ) ∈
A × C, namely

(A, φ) −→ (A − u−1du, uφ), (5.2)
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where u ∈ Aut�(E). This action turns out to be hamiltonian with respect to a natural
product symplectic form,

ωA + ωC, (5.3)

defined on the space of fields. The factor denoted by ωA in (5.3) is the Atiyah–Bott
structure [AB] on the space of connections A, while ωC is the natural symplectic struc-
ture (of constant coefficients, hence closed) on C produced out of the Kähler structure
on � and the hermitian metric on E . The latter is usually simply called the L2 structure
(on C), since it is associated to the metric

||φ̇||2L2 =
∫
�

(φ̇, φ̇)hEω�

defined for all sections φ̇ ∈ C∞(�, E) ∼= TφC, for any φ ∈ C. The complex structure
(5.1) on the space of fields A × C preserves (5.3), so one can regard this space as a
Kähler manifold.

The first vortex equation (1.1) is invariant under the complex structure (5.1), so the
infinite-dimensional submanifold N of solutions to this equation (pairs (A, φ), where
φ is a holomorphic section for the holomorphic structure on E −→ � associated to the
connection A, cf. [DK]) has an induced Kähler structure, which is again preserved by the
Aut�(E)-action (5.2). It turns out that the left-hand side of the second vortex equation
(1.2) is a moment map for this action. So the moduli space of solutions of both (1.1) and
(1.2), where the action of the group of gauge transformations is quotiented out, can be
understood as the infinite-dimensional Meyer–Marsden–Weinstein quotient

M� = N //Aut�(E). (5.4)

This receives a symplectic structure, denoted as ωL2 , and which is usually referred to as
the L2 structure on the moduli space of vortices M� . In fact, this argument is formal,
since we are dealing with an infinite-dimensional quotient, but the intuitive picture just
given is confirmed by the analysis carried out in [BD1,BD2,Ga], which is itself quite
insightful. The Kähler form ωL2 satisfies the properties

p∗ωL2 = i∗(ωA + ωC), i : N ↪→ A × C,

where p denotes the projection from N to the space of Aut�(E)-orbits.
Under the stability condition (2.2), Bradlow [Br1] and García-Prada [Ga] showed

that the quotient M� in (5.4) can be identified with the d th symmetric power of �

M�
∼= Symd(�) := �d/Sd (5.5)

as a complex manifold. This space parametrizes effective divisors of degree d, inter-
preted as portrayals of vortex locations on �. But the symplectic structure ωL2 on M�

turns out to be much more difficult to describe explicitly.
When comparing ωL2 with ωGr, the most basic question to ask is whether the two are

cohomologous (up to a scalar multiple, say) for any choice of the data. The answer to this
question is trivially affirmative if g = 0, since then Symd(�) ∼= P

d and H2(Pd , Z) ∼=
Z, so the interesting setting for this question is g ≥ 1. Then the cohomology ring of
Symd(�) is more complicated; the intersection

H1,1(Symd(�),C) ∩ H2(Symd(�), Z), (5.6)
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where the Kähler classes of the moduli space are contained, turns out to be a rank two
lattice. The Kähler class [ωL2 ] has been computed as [MN,Ba2]

[ωL2 ] =
(
πτVol(�)− 4π2d

e2

)
η +

2π2

e2 σ ; (5.7)

a description of the generators η and σ of (5.6) will be given in Sect. 5.3. It is remarkable
that this formula involves so little detail on the geometrical data needed to set up the
vortex equations and to define the L2 metric. In the following, we shall be interested in
calculating the Kähler class [ωGr] and relating it with [ωL2 ]. The result (5.7) has been
used to compute the symplectic volume of the moduli space [MN] and the total scalar
curvature [Ba2] — such quantities carry only cohomological information.

5.2. Description of the embedding. In the abelian local case, we can describe the embed-
ding (4.6) constructed in Sect. 4 more explicitly. More precisely, we will be interested
in characterizing the composition P ◦ϕ, where P is the Plücker embedding (4.4). Given
the result (5.5), the map we are interested in is

P ◦ ϕ : Symd(�) −→ P(∧
δ−g−d+1 H0(�, L⊗δ)), (5.8)

where P andϕ are constructed in (4.4) and (4.6), respectively. We shall give a description
of the holomorphic line bundle on Symd(�) associated to this projective embedding.

Let p1 (respectively, p2) be the projection of Symd(�)×� to Symd(�) (respectively,
�). Let also

�0 ⊂ Symd(�)×�

be the tautological divisor consisting of all points (z , x) ∈ Symd(�) × � such that
x ∈ z.

Consider the line bundle p∗
2L⊗δ on Symd(�)×�, and the torsion sheaf defined by

B := p∗
2L⊗δ/(p∗

2L⊗δ ⊗ OSymd (�)×�(−�0)) −→ Symd(�)×�.

The support of B is �0, which is finite over Symd(�) of degree d. Hence the direct
image

p1∗B −→ Symd(�)

is a vector bundle of rank d. So
∧d p1∗B is a line bundle over Symd(�).

We have a canonical isomorphism of line bundles over Symd(�)

∧d
p1∗B ∼= (P ◦ ϕ)∗OP(∧
−g−d+1 H0(�,L⊗δ))(1), (5.9)

where P ◦ ϕ is the map in (5.8), and

OP(∧
−g−d+1 H0(�,L⊗δ))(1) −→ P(∧
−g−d+1 H0(�, L⊗δ))

is the tautological line bundle. This means that the embedding (5.8) is associated to the
complete linear system corresponding to the holomorphic line bundle

∧d p1∗B −→
Symd(�).
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5.3. Representability of the L2 Kähler structure. Our main goal in this section is to
prove the following representability result:

Theorem 5.1. Consider the embedding (5.8), constructed from an ample line bundle
L −→ � of degree 
 and an integer δ > δ1,1,d , where δ1,1,d is as in Proposition 3.4 and
d > 1. Then the Fubini–Study metric on Symd(�) (obtained by pulling back the usual
Fubini–Study metric using this map) is cohomologous to a multiple of the L2-metric of
vortices on the line bundle E −→ � exactly when

q := τe2

4π
Vol(�) ∈ N, (5.10)

and the integers 
, δ are chosen such that


δ = q + g − 1. (5.11)

This result means that, at least in the abelian local case, the Kähler structure ωGr on
M� discussed in Sect. 4 provides a realization of the Kähler class of the L2 geometry
of vortices if (5.10) and (5.11) hold. Note that the condition (5.10) is rather natural from
the point of view of geometric quantization, as it implies that the symplectic structure

e2

2π2 ωL2 is (pre)quantizable in the sense of Weil:

[
e2

2π2 ωL2

]
∈ H2(M�, Z). (5.12)

(From (5.7), it follows that the Weil quantization condition (5.12) is equivalent to q ∈
1
2 N.) It would be very striking if the full L2 geometry were to be described by a Fubini–
Study structure, but we will not attempt to address this question here. Even in the case
g = 0, for which the representability of [ωL2 ] in the sense we are using is trivial, this
question has not yet been settled rigorously.

To set the stage for the proof of Theorem 5.1, we introduce the following curves on
Symd(�), regarded as the space of degree d effective divisors on �:

�∅ := {dx | x ∈ �},
�p := {p + (d − 1)x | x ∈ �}, for p ∈ �.

We shall denote their homology classes by

�0 = [�∅] and �1 = [�p],
respectively. (Clearly, the homology class represented by �p is independent of p ∈ �
because we are assuming that � is connected.) Let us also set

d0 := deg(P ◦ ϕ(�∅)), (5.13)

d1 := deg(P ◦ ϕ(�p)) (5.14)

to be the degrees of the images of the curves above by the map (5.8), whose target is a
complex projective space of dimension

N =
(

δ − g + 1

d

)
− 1.
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We first claim that the integers d, g, d0 and d1 determine the cohomology class

[(P ◦ ϕ)∗ωFS] ∈ H1,1(Symd(�)) ∩ H2(Symd(�), Z).

To describe this, we start by recalling the basic result [M],

Hk(Symd(�), Z) ∼= Hk(�d , Z)Sd , k ∈ N.

The intersection of cohomology groups in (5.6) is generated over Z by the cohomology
classes of degree two [MN]

η =
d∑

i=1

βi and σ =
g∑

j=1

σ j . (5.15)

Here, the cohomology classes βi come from the fundamental class β ∈ H2(�, Z);
more precisely, βi = π∗

i β, where πi : �d −→ � denotes the projection to the i th

factor. Moreover, we denote

σ j := ξ jξ j+g, where ξ j =
d∑

k=1

α j,k, 1 ≤ j ≤ 2g, (5.16)

and the α j,k are classes of degree one which come from the middle cohomology of �,
namely

α j,k = π∗
k α j .

In this expression, the α j denote elements in a standard basis of H1(�, Z), satisfying
[F]

αiα j = 0 i �= j ± g,

αiαi+g = −αi+gαi = β 1 ≤ i ≤ g.

So we may write

(P ◦ ϕ)∗[ωFS] = Cηη + Cσ σ, (5.17)

where η and σ are the generators in (5.15). Our task is to obtain the coefficients Cη,Cσ ∈
Z as functions of d, g, d0 and d1.

Lemma 5.2. The duality pairing on Symd(�) satisfies:

〈η,� j 〉 = d − j and 〈σ,� j 〉 = (d − j)2g for j ∈ {0, 1}.
Proof. The pairings for j = 0 can be reduced to computations in the cohomology ring
of Symd(�), which has been given a presentation in [M, (6.3)]. In fact, the statement
in reference [M] is not totally accurate — we refer the reader to Sect. 2 of [BT] for the
corrected result. For our purposes, it will suffice to state that H∗(Symd(�), Z) is gen-
erated by the classes η in (5.15) and ξ j in (5.16), j = 1, . . . , 2g, which supercommute
according to the parity of their degrees; in particular, one has

ησ j = σ jη, j = 1, . . . , g,
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where σ j were defined in (5.16), since η and ξ j commute. The extra relations among
the generators can be expressed as follows: given three disjoint subsets,

I1, I2, J ⊂ {1, . . . , g}
and a nonnegative integer r satisfying [BT, (2.3)]

r ≥ d − |I1| − |I2| − 2|J | + 1,

there is a nontrivial relation

ηr
∏

i1∈I1

ξi1

∏
i2∈I2

ξi2+g

∏
j∈J

(η − σ j ) = 0. (5.18)

For d ≥ 1, we have the relation

ηd−1σ = gηd . (5.19)

This follows from summing the relations

ηd−1σ j = ηd , j = 1, . . . , g (5.20)

over j . Notice that (5.20) can be obtained from (5.18) by taking r = d − 1, J = { j}
and I1 = I2 = ∅.

Another relation contained in (5.18) is that, for i �= j and d > 1,

ηd−2σiσ j = ηd−1(σi + σ j )− ηd; (5.21)

this one is obtained by setting r = d − 2, J = {i, j} and I1 = I2 = ∅. Since σ 2
j = 0

from the anticommutativity of the ξ j ’s (for each j = 1, . . . , g), we also have that

ηd−2σ 2 = 2
∑

1≤i< j≤g

ηd−2σiσ j

= 2
∑

1≤i< j≤g

ηd−1(σi + σ j )− g(g − 1)ηd (5.22)

= g(g − 1)ηd . (5.23)

Step (5.22) made use of (5.21), whereas (5.23) used (5.20).
Another useful result by Macdonald [M, (15.4)] is that the Poincaré dual of the

homology class �0, for d > 1, is given by

PD(�0) = d(d + (g − 1)(d − 1))ηd−1 − d(d − 1)ηd−2σ. (5.24)

This can be applied to calculate

〈η,�0〉 = d
∫

Symd�

(d + (d − 1)(g − 1))ηd − (d − 1)ηd−1σ

= d
∫

Symd�

(d + (d − 1)(g − 1)− (d − 1)g)ηd (5.25)

= d
∫

Symd�

ηd

= d. (5.26)
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The second step (5.25) used (5.19), whereas the last step (5.26) follows from the fact
that ηd is the fundamental class of Symd(�).

Using (5.24) once again, we can write

〈σ,�0〉 = d
∫

Symd�

(d + (d − 1)(g − 1))σηd−1 − (d − 1)σηd−2σ

= d
∫

Symd�

((d + (d − 1)(g − 1))g − (d − 1)g(g − 1))ηd

= d2g, (5.27)

where (5.27) is a consequence of (5.20) and (5.23).
Now consider the map ι : � −→ �p given by

x −→ p + (d − 1)x ∈ Symd(�),

which is a biholomorphism. We have

ι∗η = (d − 1)β (5.28)

and

ι∗ξ j = (d − 1)α j , j = 1, . . . , 2g,

which in turn implies

ι∗(ξ jξ j+g) = (d − 1)2α jα j+g = (d − 1)2β, j = 1, . . . , g.

It follows that

ι∗σ = (d − 1)2gβ. (5.29)

So we can finally compute

〈η,�1〉 =
∫
�p

η

=
∫
�

ι∗η

= (d − 1)
∫
�

β

= d − 1

using (5.28), and likewise, from (5.29),

〈σ ,�1〉 = (d − 1)2g.

This completes the proof of the lemma. ��
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Since

〈(P ◦ ϕ)∗[ωFS], � j 〉 = d j for j = 0, 1,

the constants Cη and Cσ in (5.17) can be determined by solving a linear system whose
coefficients are the four pairings in Lemma 5.2. The solution is

Cη = d2d1 − (d − 1)2d0

d(d − 1)
, (5.30)

Cσ = (d − 1)d0 − dd1

d(d − 1)g
, (5.31)

and this establishes our claim.
We want to compare the resulting Kähler class (5.17) with the Kähler class [ωL2 ] in

(5.7) associated to the L2 metric of vortices. The next task is to determine the degrees
d0 and d1 defined in (5.13)–(5.14), in terms of the basic topological data.

Lemma 5.3. d j = (d − j)(
δ + (d − j − 1)(g − 1)− j) for j ∈ {0, 1}.
Proof. Let

ψ : � −→ Symd(�) (5.32)

be the morphism defined by x −→ dx . Note that d0 in (5.13) is the degree of

(P ◦ ϕ ◦ ψ)∗OP(∧
δ−g−d+1 H0(�,L⊗δ))(1),

where P ◦ ϕ is the morphism in (5.8).
Let K� be the holomorphic cotangent bundle of �.
Take any point x ∈ �. We have a natural filtration of coherent sheaves

Lδ ⊗ O�(−dx) ⊂ Lδ ⊗ O�((1 − d)x) ⊂ · · · ⊂ Lδ ⊗ O�(−i x)

⊂ Lδ ⊗ O�((1 − i)x) ⊂ · · · ⊂ Lδ ⊗ O�(−x) ⊂ Lδ.

For any 1 ≤ i ≤ d, the quotient Lδ ⊗O�((1 − i)x)/Lδ ⊗O�(−i x) is the torsion sheaf
Lδx ⊗ (K ⊗(i−1)

� )x supported at x . Consequently, we have a canonical identification

(P ◦ ϕ ◦ ψ)∗OP(∧
δ−g−d+1 H0(�,L⊗δ))(1)x = Ldδ
x ⊗ (K ⊗d(d−1)/2

� )x

(see (5.9)), where ψ is the map in (5.32). Moving x over �, this isomorphism produces
an isomorphism of line bundles

(P ◦ ϕ ◦ ψ)∗OP(∧
δ−g−d+1 H0(�,L⊗δ))(1) = Ldδ
x ⊗ (K ⊗d(d−1)/2

� ).

Since deg(K�) = 2(g −1), this immediately implies that d0 = d(
δ+ (g −1)(d −1)).
Fix a point p ∈ �. Let

ψ1 : � −→ Symd(�) (5.33)

be the morphism defined by x −→ p + (d − 1)x . Note that d1 in (5.14) coincides with

deg((P ◦ ϕ ◦ ψ1)
∗OP(∧
δ−g−d+1 H0(�,L⊗δ))(1)),

where P ◦ ϕ is the morphism in (5.8).
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For notational convenience, the line bundle Lδ ⊗ O�(−p) will be denoted by ζ .
As before, take any point x ∈ �. We have a natural filtration of coherent sheaves

ζ ⊗ O�((1 − d)x) ⊂ ζ ⊗ O�((2 − d)x) ⊂ · · · ⊂ ζ ⊗ O�(−x) ⊂ ζ.

For any 1 ≤ i ≤ d − 1, the quotient ζ ⊗ O�((1 − i)x)/Lδ ⊗ O�(−i x) is the torsion
sheaf ζx ⊗ (K ⊗(i−1)

� )x supported at x . Consequently, we have a canonical identification

(P ◦ ϕ ◦ ψ1)
∗OP(∧
δ−g−d+1 H0(�,L⊗δ))(1)x = ζ⊗(d−1)

x ⊗ (K ⊗(d−1)(d−2)/2
� )x ⊗ L⊗δ

p ,

(see (5.9)), where ψ1 is the map in (5.33). Fixing an isomorphism of the line L⊗δ
p

with C (recall that p is fixed), and moving x over �, the above isomorphism gives an
isomorphism of line bundles

(P ◦ ϕ ◦ ψ1)
∗OP(∧
δ−g−d+1 H0(�,L⊗δ))(1) ∼= ζ⊗(d−1)

x ⊗ (K ⊗(d−1)(d−2)/2
� ).

Since deg(ζ ) = 
δ−1, this implies that d1 = (
δ−1)(d −1)+ (g −1)(d −1)(d −2).
��

Proof of Theorem 5.1. Using Lemma 5.3 in (5.30) and (5.31), we find

Cη = 
δ − d − g + 1,

Cσ = 1,

which are integers as expected. Comparing with the coefficients of η and σ in (5.7), the
formula (5.11) for the quantity q in Theorem 5.1 immediately follows. The quantization
condition (5.10) results from all the other terms in (5.11) being integers. ��

Note that when the inequality (2.2) ensuring stability is saturated, in the situation

τ → 4πd

e2Vol(�)
, (5.34)

which is called the limit of “dissolved” vortices by Manton and Romão in [MR], the
quantization condition (5.10) is automatically satisfied with q = d. Then imposing the
condition (5.11) implies that (4.1) also becomes an equality, which unfortunately makes
the Grassmannian (4.3) collapse. The nontrivial situation closest to this collapse would
be to consider

τ = 4π(d + 1)

e2Vol(�)
⇒ q = d + 1,

for which the Grassmannian (4.3) is a projective space; if the area of � is taken to be
large, this value of τ will still be close to the critical value (5.34). In this context (pro-
vided δ1,1,d does not turn out to be too large), the geometry of the Kähler structure ωGr
we introduced in Sect. 4, assuming 
δ = d + g, should give an approximation of the
L2 geometry of the moduli spaces, as an extension of the work by Baptista and Manton
[BM] in the case g = 0.
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