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Abstract: Let Dt, 0 � t � 1 be a 1-parameter family of Dirac type operators on a
two-dimensional disk with m − 1 holes. Suppose that all operators Dt have the same
symbol, and that D1 is conjugate to D0 by a scalar gauge transformation. Suppose
that all operators Dt are considered with the same elliptic local boundary condition.
Our main result is a computation of the spectral flow for such a family of operators.
The answer is obtained up to multiplication by an integer constant depending only
on the number of holes in the disk. This constant is calculated explicitly for the case
of the annulus (m = 2).
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1. Introduction

This paper deals with Dirac type operators on compact planar domains. We consider
such operators with self-adjoint locally elliptic local boundary conditions.1 The paper
is focused not on individual operators, but on paths in the space of such operators. We
consider only paths connecting two operators conjugate by a scalar gauge transformation
(so, they are loops up to a scalar gauge transformation). Such paths have a well known
invariant, the spectral flow, which counts with signs the number of eigenvalues passing
through zero from the start of the path to its end (the eigenvalues passing from negative
values to positive ones are counted with the plus sign, and eigenvalues passing in the
other direction are counted with the minus sign). The paper is devoted to the problem of
computation of the spectral flow in the situation when all operators along a given path
have the same symbol and the same boundary condition.

Because these results are potentially useful for the physics of condensed matter, the
author has attempted to avoid advanced mathematical terminology and to explain the
results and the ideas behind their proofs in a way accessible to non-mathematicians. For
the same reason, the case of classical Dirac operators (Theorems 1 and 2) is treated before
dealing with the more general case of Dirac type operators on domains equipped with an
arbitrary metric. Note that physicists sometimes use more general boundary conditions
than the ones considered in this paper. For example, the so-called armchair boundary
conditions for graphene are of the type considered in this paper, but the zigzag bound-
ary conditions for graphene are not. While it is not completely obvious, the boundary
conditions considered in this paper are just other forms of the locally elliptic boundary
conditions usually used in physics, as explained in Sect. 9. Besides, we explain in Sect. 9
how the spectral flow can be computed in terms of the general boundary problem for
two-dimensional spinors considered by Akhmerov and Beenakker in [1]. As illustration
we show that the spectral flow vanishes if the boundary condition does not break time
reversal symmetry.

We start with the following situation. Let X be a compact planar domain bounded
by m smooth curves (topologically it is a disk withm− 1 holes). Our operators act on
spinor-valued functions, which we identify with column vectors of two complex-valued
functions:

u =

(
u+

u−

)
, u± : X → C.

A Dirac operator acting on spinor functions has the form

D = D +

(
0 q̄(x)
q(x) 0

)
, D = −i

(
0 ∂1 − i∂2

∂1 + i∂2 0

)
,

where q is a smooth function from X to C, x = (x1, x2) ∈ X, ∂i = ∂/∂xi. Our focus
is on 1-parameter families Dt of such operators parameterized by t ∈ [0, 1]. In such a

1 In particular, boundary conditions defined by general pseudo-differential operators are not allowed.
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family the first term D involving derivatives is always the same, but in the second term
the function q is allowed to change continuously with t, i.e. q = qt, where t ∈ [0, 1].
In agreement with the above, we assume that D1 = μD0μ

−1 for some smooth scalar
gauge transformation μ : X → U(1).

All operatorsDt are considered with the same boundary condition of the form i(n1+
in2)u

+ = B(x)u−, where n = (n1,n2) is the outward conormal to the boundary, and
B is a real-valued smooth function without zeros, defined on the boundary of X. Our
first main result, Theorem 1, asserts that the spectral flow of such a family of operators
is equal to cm

∑m
j=1 bjμj, where cm is an integer constant depending onm only, μj is

the degree of the restriction of μ to the jth connected boundary component, bj = 1 if B
is negative on the jth boundary component, and equal to 0 otherwise.

After considering this most special and very important situation, we turn our attention
to the situation of Dirac operators acting on N-dimensional spinor functions

u =

(
u+

u−

)
, u± : X → C

N,

where, as before, X is a compact planar domain bounded bym smooth curves. A Dirac
operator acting on N-dimensional spinor functions has the form

D = D +Q(x), D = −i (σ1∂1 + σ2∂2) ,

where

σ1 =

(
0 IN
IN 0

)
, σ2 =

(
0 −iIN
iIN 0

)
,

IN is theN×N unit matrix, andQ(x) is a complex self-adjoint 2N×2Nmatrix smoothly
dependent on x ∈ X. Again, our focus is on 1-parameter families Dt of such operators
parameterized by t ∈ [0, 1]. In such a family the first term D involving derivatives is
always the same, but in the second term the matrixQ is allowed to change continuously
with t, i. e.Q = Qt, where t ∈ [0, 1]. We assume thatD1 = μD0μ

−1 for some smooth
scalar gauge transformation μ : X → U(1), where U(1) is identified with the subgroup
of U(2N) consisting of diagonal matrices with equal diagonal elements.

All operatorsDt are considered with the same boundary condition i(n1 +in2)u
+ =

B(x)u−, whereB is a smooth map from the boundary to the space of complex self-adjoint
invertibleN×Nmatrices. Note that a local boundary condition is locally elliptic if and
only if it can be written in such a form with B(x) invertible at any x; this boundary
condition is self-adjoint if and only if B(x) is self-adjoint at any x.

Our second main result, Theorem 2, asserts that the spectral flow of such a family of
operators is equal to cm

∑m
j=1 bjμj, where cm is the same constant as in Theorem 1 (in

particular, cm does not depend on the dimension N), μj is the degree of the restriction
of μ to the jth boundary component (this restriction gives us a map from the circle to
the circle because μ is a scalar gauge transformation), and bj is the number of negative
eigenvalues of B(x) (counted with multiplicities) on the jth boundary component.

Theorem 3 extends Theorem 2 to a still more general class of operators. These Dirac
type operators involve in their definition an arbitrary (not necessarily flat) metric on X,
and have principal symbol defined by a Clifford multiplication which does not necessar-
ily agree with this metric. While considering an arbitrary metric is important for some
physical applications, considering Clifford multiplication which does not agree with the
metric on X does not seem necessary. Nevertheless, we take care of this more general
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case because the proofs of our results crucially depend on it. Moreover, we cannot prove
Theorems 1 and 2 without proving Theorem 3 first.

Notice that scalar gauge transformations μ : X → U(1) leave invariant every local
boundary condition, as well as the first term D of the operator D+Q(x):μ(D+Q)μ−1 =
D +Q ′ for some functionQ ′(x). So any operatorD0 can be connected with the conju-
gate operator D1 = μD0μ

−1 by the path (D +Qt(x)) with fixed boundary condition.
On the contrary, non-scalar gauge transformations μ : X → U(2N) do not have such
properties, so the problem of computing the spectral flow cannot be stated in such a
form as described above. If we allow general non-scalar gauge transformations, then
we have to allow paths of operators (Dt) and of boundary conditions (Bt) with Bt and
the symbol of Dt being dependent on t. Some results about this more general case are
outlined in Sect. 8.

In this paper the spectral flow is computed only up to multiplication by an integer
constant cm depending only on m. For a disk with one hole (m = 2) the eigenvectors
and hence the spectral flow are calculated explicitly in a special case; this is sufficient to
determine c2; it turns out that c2 = 1 (see Theorem 4). In the case ofm > 2 such explicit
computations are hardly possible, but from the very beginning of her work the author
conjectured that cm = 1 for all m; a partial motivation for this conjecture is provided
in Sect. 7. After the preprint version [15] of this paper was distributed, M. I. Katsnel-
son and V. E. Nazaikinski posted preprint [11], in which they proved, in particular, this
conjecture of the author.

It was pointed out by one of the referees, that the works of T. Yoshida [18], L. Nicolae-
scu [13], and B. Booss-Bavnbek and K. Furutani [4] allow the results of this paper to be
interpreted as an alternative way to compute the Maslov index of corresponding family
of the Cauchy data spaces intersected with the trace of the domain at the boundary.

Part I. The Spectral Flow for Dirac Operators.

2. The Spectral Flow

LetH be a complex separable Hilbert space, (At), t ∈ [0, 1] be a continuous 1-parameter
family of bounded self-adjoint (or, what is the same, Hermitian) Fredholm operators in
H. Every At has real spectrum. The neighbourhood of zero in this spectrum is discrete
and changes continuously with the variation of t. Hence one can count the net number
of eigenvalues of At passing through zero in the positive direction as t runs from 0 to
1, that is, the difference between the numbers of eigenvalues (counting multiplicities)
crossing zero in positive and negative directions. This net number is called the spectral
flow sf (At). A description of this notion can be found in [2,14].

The case whenA0 orA1 has zero eigenvalue requires some agreement on the count-
ing procedure; we use the following convention: take a small ε > 0 such that A0, A1
have no eigenvalues in the interval [−ε, 0), and define the spectral flow as the net number
of eigenvalues of At + εI which pass through zero.

Let now (At) be a 1-parameter family of (not necessarily bounded) self-adjoint Fred-
holm operators in H. For example, it can be a family of symmetric elliptic differential
operators At acting on sections of a Hermitian bundle E over a closed (that is, compact
without boundary) manifold X. The definition of the spectral flow can be adjusted to
this case, though more careful consideration is needed, particularly due to the presence
of various natural topologies on the space of such operators [5,6,12].
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When a manifold has non-empty boundary, we have to consider the family (At,Bt),
where At is a formally self-adjoint elliptic differential operator, and Bt is a “good”
(self-adjoint elliptic) boundary condition for At at any t. One can see the notion of
self-adjoint elliptic boundary value problem for operators of Dirac type in [8,9], and for
general first order elliptic operators in [7].

Such a differential operator At with boundary condition Bt defines an unbounded
self-adjoint Fredholm operator on L2(X,E), which has unbounded discrete real spec-
trum. Intuitively, the spectrum of (At,Bt) changes continuously with the variation of
t, so the definition of the spectral flow works in this case as well [5,6]. However, the
proof that the definition and the standard properties of the spectral flow are correct is
considerably more difficult in this case. The crucial ingredient is the continuity (in t)
of the family (At,Bt) in the space of unbounded self-adjoint Fredholm operators on
L2(X,E) with an appropriate metric. This was proved in [7] (see [7], Thm. 7.16). This
continuity property allows one to use the theory developed in [6,12] in full force. Our
proof of Theorem 3 (see Part II) depends crucially on this theory, and, in particular, on
Theorem 7.16 from [7]. The results of this theory needed for the proof of Theorem 3 are
isolated in Sect. 11 as properties (P0-P4).

Note that if the spectra of (A0,B0) and (A1,B1) are the same (isospectral operators),
which is the case in this paper, then there is another way to define the spectral flow of
(At,Bt). The set

{(t, λ) : λ is an eigenvalue of (At,Bt)}

can be uniquely represented as the union of the graphs of functions λi(t) such that
λi(t) � λj(t) for i � j. This collection of functions gives us a bijection (one-to-one
correspondence) of the spectrum of (A0,B0) to the spectrum of (A1,B1). If these two
spectra coincide as subsets of R then this correspondence gives us the shift of the spec-
trum on the integer number of positions. This number is the spectral flow of (At,Bt); it
is denoted by sf(At,Bt). It is worth noting that for the isospectral case one can replace
the level λ = 0 by any real number, and the difference between eigenvalues crossing the
level in positive and negative directions will be the same [2].

3. Dirac Operators: the Simplest Case

Suppose X is a compact planar domain bounded by m smooth curves (topologically it
is a disk withm− 1 holes). We will use the notations x = (x1, x2) ∈ X, ∂i = ∂/∂xi.

Let us consider the Dirac operator on X,

D = −i

(
0 ∂1 − i∂2

∂1 + i∂2 0

)
, (1)

acting on a spinor function u : X → C
2, u =

(
u+

u−

)
.

A Dirac operator with non-zero vector potential has the form

D = D +Q(x), where Q(x) =

(
0 q̄(x)
q(x) 0

)
,

q is a smooth function from X to C.
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Let μ : X → U(1) be a gauge transformation; we suppose that μ(x) ∈ C, |μ(x)| ≡ 1
for x ∈ X. Let us take a Dirac operator D0 = D + Q0(x) and connect it with the
conjugate operator

D1 = μD0μ
−1 = D +Q0 +

(
0 iμ−1 (∂1μ− i∂2μ)

iμ−1 (∂1μ+ i∂2μ) 0

)

by a one-parameter family of Dirac operators

Dt = D +Qt, where Qt(x) =

(
0 qt(x)

qt(x) 0

)
, (2)

qt is a smooth function from X to C continuously depending on t ∈ [0, 1],

q1 − q0 = iμ−1 (∂1μ+ i∂2μ) .

A self-adjoint locally elliptic2 local boundary condition for Dt has the form

in(x)u+ = B(x)u− on ∂X, (3)

where B : ∂X → R\ {0} is a smooth function defining the boundary condition, n =
(n1,n2) is the outward conormal to the boundary ∂X of X at point x, and we identify n
with the complex number n1 + in2 in (3).

Note that n1, n2 coincide with the components of the outward normal to ∂X for the
case of Euclidean metric considered both here and in the next section. In Sect. 5 we
consider the more general case of arbitrary metric on X, and the distinction between
normal and conormal becomes essential there.

Remark. D + Q(x) is the Dirac operator on the trivial 2-dimensional complex vector
bundle over X with compatible unitary connection defined by the function q(x). So the
change of qt with t is equivalent to a change of the connection.

The boundary condition (3) is gauge invariant with respect to conjugation byμ, while
D0 and D1 are conjugate by μ. So the operators D0, D1 with the same boundary con-
dition (3) are isospectral, and the spectral flow of the family Dt gives us a shift of the
spectrum of Dt when t runs from 0 to 1.

Theorem 1. The spectral flow of the family (Dt), t ∈ [0, 1], with boundary condition
(3) is equal to

cm

m∑

j=1

bjμj,

where cm is an integer constant depending onm only, μj is the degree of the restriction
of μ to ∂Xj,

bj =

{
1, if B < 0 on ∂Xj
0, if B > 0 on ∂Xj

.

Here ∂Xj are the connected components of the boundary of X, equipped with an orien-
tation in such a way that the pair (outward normal to ∂Xj, positive tangent vector to
∂Xj) has positive orientation on the plane (x1, x2) (see Fig. 1).

2 Another name for “locally elliptic boundary condition” is “Sapiro-Lopatinskii boundary condition”.
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X

n

Fig. 1. The case of two holes

Note that since B �= 0, it has definite sign at each boundary component ∂Xj, so the
constants bj are correctly defined. The restriction of μ to the jth connected component
of ∂X gives us a map from the circle ∂Xj to the circleU(1); μj is the degree of this map.

This theorem follows from a more general result which we formulate below. The
generalization goes in two directions: (1) we allow arbitrary dimension for the unknown
complex functions u−, u+, (2) we replace the Dirac operator by operators of a more
general form. The value of c2 is computed in Sect. 6.

Remark. Boundary condition (3) coincides with the boundary condition of Berry and
Mondragon for the “neutrino billiard” [3] up to replacement of B by B−1. In physi-
cal terms, a one-parameter family of Dirac operators (2) describes the situation of a
continuously varying magnetic field so that the following two conditions are fulfilled.

(1) the magnetic field at t = 1 coincides with the magnetic field at t = 0 all over the
interior of X,

(2) the fluxes through the jth hole at t = 1 and at t = 0 differ by an integer number
μj in the units of the flux quantum.

Suppose that j = m corresponds to the outer boundary component and that j =

1, . . . ,m − 1 enumerate the holes. Considering that μm = −
∑m−1

j=1 μj, we can refor-
mulate Theorem 1 as follows. The spectral flow of the family of operators (2) with
boundary condition (3) is equal to

cm

m−1∑

j=1

(bj − bm)μj.

Thus the variation of the magnetic field through the jth hole contributes to the value of
the spectral flow with coefficient cm(bj − bm).

If the signs of B are the same on all boundary components, then the spectral flow
is zero, no matter how the magnetic field is varied (if only conditions (1-2) above are
fulfilled). In the contrary, if B takes positive values on some boundary component and
negative values on another, then we can vary magnetic field so that the spectral flow
does not vanish.
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4. 2N-dimensional Dirac operators

Let X be as in the previous section. The standard 2N-dimensional Dirac operator has
the form

D = −i (σ1∂1 + σ2∂2) , where σ1 =

(
0 IN
IN 0

)
, σ2 =

(
0 −iIN
iIN 0

)
, (4)

IN is the N×N unit matrix.
We will consider operators of the form D = D +Q(x) acting on spinor functions

u =

(
u+

u−

)
, u± : X → C

N, (5)

whereQ is a smooth map from X to the space H(C2N) of complex self-adjoint (or, what
is the same, Hermitian) 2N× 2N matrices.

A self-adjoint local elliptic boundary condition for the operator D +Q has the form

in(x)u+ = B(x)u− on ∂X, (6)

where B is a smooth map from ∂X to the space of complex self-adjoint invertibleN×N
matrices, n = (n1,n2) is the outward conormal to ∂X at point x, and we identify nwith
the complex number n1 + in2.

The equivalent representation of the boundary condition (6) is(
i (n1σ1 + n2σ2) +

(
B−1 0

0 −B

))
u = 0 on ∂X. (7)

Theorem 2. Let Qt(x) be a continuous 1-parameter family of self-adjoint 2N × 2N
matrices smoothly dependent on x ∈ X such that D +Q1 = μ (D +Q0)μ

−1 for some
smooth gauge transformation μ : X → U(1). Let B be a smooth map from ∂X to the
space of complex self-adjoint invertible N ×N matrices. Then the spectral flow of the
family (D +Qt) with boundary condition (6) is equal to

cm

m∑

j=1

bjμj,

where cm is an integer constant depending onm only, μj is the degree of the restriction
of μ to the jth connected component ∂Xj of the boundary, bj is the number of negative
eigenvalues of B (counting multiplicities) on ∂Xj (this number is correctly defined due
to the nondegeneracy of B).

This result is a corollary of Theorem 3 from the next section.

5. Dirac Type Operators

Let X be a compact planar domain bounded by m smooth curves and equipped with a
Riemannian metric g (which is not necessarily flat).

We call a first order formally self-adjoint operatorD over X a Dirac type operator if
its symbol has the form

ρ =

(
ρ1
ρ2

)
= Φ(x)

(
σ1
σ2

)
, (8)
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whereΦ is a smooth map fromX to the group GL+(2, R) of real invertible 2×2 matrices
with positive determinant, and the matrices σ1, σ2 are defined by formula (4).

In other words, a Dirac type operator is an operator acting on spinor functions (5)
and having the following form:

D = DΦ, Q = −i (ρ1(x)∂1 + ρ2(x)∂2) + iRΦ(x) +Q(x), (9)

whereQ is a smooth map fromX to the space H(C2N) of complex self-adjoint 2N×2N
matrices,

RΦ =
1
2

[
(ρ1∂1 + ρ2∂2) + (ρ1∂1 + ρ2∂2)

t
]

(the superscript t denotes the operation of taking the formal adjoint operator). More
explicitly,

RΦ(x) = −
1
2

[∂1 (
√
gρ1) + ∂2 (

√
gρ2)] ∈ H(C2N),

where
√
g =

√
det(gij), the matrix (gij) is inverse to the matrix (gij) = (

〈
dxi,dxj

〉
g
),

√
g dx1dx2 is the volume element on X (of course, gij, gij, and

√
g depend on x).

By D = D X, g, N we denote the space of all operators having the form (9) for fixed
X, g, N. Note that a Dirac type operator (that is an element of D X, g, N) is uniquely
defined by the pair (Φ,Q).

A self-adjoint elliptic local boundary condition for Dirac type operator (9) has the
form

in ′(x)u+ = B(x)u− on ∂X, (10)

where B is a smooth map from ∂X to the space of complex self-adjoint invertibleN×N
matrices, the complex-valued functionn ′ on ∂X is defined by the formulan ′ = n ′

1+in ′
2

with (n ′
1,n ′

2) = (n1,n2)Φ, where n = (n1,n2) is the outward conormal to ∂X at
x ∈ ∂X. Recall that ni =

∑
gijn

j for the components
(
nj

)
of the normal to the

boundary.

Remark. Equation (10) is just another form of the equation

iρ+(x,n(x))u+ = B(x)u− on ∂X, (11)

where

ρ(x, ξ) =

(
0 ρ−(x, ξ)

ρ+(x, ξ) 0

)

denotes the symbol ξ1ρ1(x) + ξ2ρ2(x) of the operator D in the direction of a co-
vector ξ = (ξ1, ξ2). Considering that in our case the operator ρ+(x, ξ) is scalar, and
ρ+(x,n(x)) = n ′(x)IN, the boundary condition (11) may be written in simplified form
(10).
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By B = BX, N we denote the space of all smooth maps from ∂X to the space of
complex self-adjoint invertible N×N matrices.

Suppose thatD ∈ D, B ∈ B. We will write (D,B) for the operator (9) acting on the
domain

{
u ∈ C1(X, C2N) : restriction of u to ∂X satisfies boundary condition (10)

}
,

where C1(X, C2N) is the space of continuously differentiable functions from X to C
2N.

Such operators have the following properties:

1. For any D ∈ D, B ∈ B the operator (D,B) is an (unbounded) essentially self-
adjoint Fredholm operator, which has discrete real spectrum. All its eigenvectors
are smooth functions. (Lemma 1, Sect. 10)

2. Suppose Qt(x) is continuous on (t, x), D ∈ D, B ∈ B. Then all operators from
the family (D+Qt,B) have the same domain, and this family is norm continuous
in L2

(
X,g;C2N

)
. Therefore the spectral flow of the operator family (D+Qt,B)

is well defined ([12], Prop. 2.2).

Now we can formulate the main result of the present paper:

Theorem 3. Suppose that D ∈ D is a Dirac type operator (9), and let B ∈ B define
the boundary condition (10) for D. Suppose that Qt(x) is a continuous 1-parame-
ter family of self-adjoint 2N × 2N matrices smoothly dependent on x ∈ X such that
D+Q1 = μ (D+Q0)μ

−1 for some smooth gauge transformation μ : X → U(1). Then

sf (D+Qt,B)t∈[0,1] = cm

m∑

j=1

bjμj,

where cm is an integer constant depending on m only, bj is the number of negative
eigenvalues of B (counting multiplicities) on ∂Xj, μj is the degree of the restriction of
μ to ∂Xj, and ∂X is oriented as described in the statement of Theorem 1.

Note that constant cm in all Theorems 1-3 is the same.

Remark. Let S be a spinor bundle over X. Suppose that 〈 · , · 〉 is a Hermitian metric on
S compatible with its spinor structure, and that ∇ is a connection on S compatible with
its spinor structure and with the Levi-Civita connection on TX. The Dirac operator on S
in local coordinates has the formD = c(v)∇v + c(w)∇w, where (v,w) is a positively
oriented orthonormal basis in TxX, and c(v) denotes the action of a tangent vector v on
spinors.

The unitary skew-adjoint isomorphism Jx = c(v)c(w) of Sx does not depend on the
choice of a basis (v,w) in TxX and defines the bundle decomposition S = S+ ⊕ S−,
where S± are the subbundles of S such that S±

x are the eigenspaces of Jx corresponding
to its eigenvalues ∓i. Due to the triviality of TX and of any complex bundle over X, we
can fix some global positively oriented orthonormal basis field (v(x),w(x)) in TX and
some trivialization of S−. Let us extend the trivialization from S− to S so that the action
of the tangent vectors on the spinors in this trivialization has the form

c(v(x)) = −i

(
0 IN
IN 0

)
, c(w(x)) = −i

(
0 −iIN
iIN 0

)
.



Spectral Flow for Dirac Operators on Compact Planar Domains 395

Then sections u of the spinor bundle S can be identified with the column vectors (5) of
two functions u± : X → C

N, and the Dirac operator D acting on such column vectors
can be written in the formD = −i (ρ1∇1 + ρ2∇2). Here ρ1, ρ2 are defined by formula
(8) with Φ(x) being the transition matrix: (v,w) = (e1, e2)Φ(x), where we denote by
ei the vector (not the differential operator) ∂i to avoid misunderstanding.

So any Dirac operator over X has the form (9) with Φ(x) satisfying the condition
Φ(x)Φ∗(x) = (gij(x)) and with Q(x) a matrix of a very special kind. While allow-
ing arbitrary metric g and arbitrary Q(x) is important for some physical applications,
considering Clifford multiplication which does not agree with the metric on X (that is
a matrix function Φ(x) which does not satisfy the condition Φ(x)Φ∗(x) = (gij(x)))
does not seem necessary. Nevertheless, we take care of this more general case because
the proofs of our results crucially depend on it.

6. The Case of One Hole

Here we compute the spectral flow for the case when X has just one hole (m = 2), and
as a result find c2.

Theorem 4. c2 = 1.

Proof. By Theorem 3, the spectral flow does not depend on the geometry ofX and on the
choice ofD ∈ D, so it is sufficient to consider only the case when the computation is as
simple as possible. Let us take the annulusX = {(r,ϕ) : 1 � r � 2} in polar coordinates
(r,ϕ) on the plane, with the metric ds2 = dr2 + dϕ2, N = 1,

D=−i

(
0 ∂r − i∂ϕ

∂r + i∂ϕ 0

)
, μ=eiϕ, Qt =

(
0 it

−it 0

)
, B=

{
+1 at r=1
−1 at r=2 .

We obtain the following system for the eigenvector u and the eigenvalue λ of
(D+Qt,B):

⎧
⎨

⎩

(−i∂r + ∂ϕ − it)u+ = λu−

(−i∂r − ∂ϕ + it)u− = λu+

u+ = iu− at r = 1, 2
.

All the eigenvectors of (D +Qt,B) are smooth functions, so we can seek them in the
form u±(r,ϕ) =

∑
k∈Z

u±
k (r)eikϕ. Substituting it in the last system, we obtain

⎧
⎪⎨

⎪⎩

∂ru
+
k − (k− t)u+

k − iλu−
k = 0

∂ru
−
k + (k− t)u−

k − iλu+
k = 0

u+
k = iu−

k at r = 1, 2

.

Equivalently,
⎧
⎪⎨

⎪⎩

∂r

(
u+

k + iu−
k

)
= (k− t− λ)

(
u+

k − iu−
k

)
∂r

(
u+

k − iu−
k

)
= (k− t+ λ)

(
u+

k + iu−
k

)
u+

k − iu−
k = 0 at r = 1, 2

and ∂2
r

(
u+

k − iu−
k

)
=

(
(k− t)2 − λ2

) (
u+

k − iu−
k

)
. So we have the following cases:
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• either u+
k = u−

k ≡ 0,
• or k− t+ λ = 0, u−

k = const, u+
k = iu−

k ,

• or (k− t)2 − λ2 = −(πl)2, l ∈ Z\ {0}, u+
k − iu−

k = const ·
(
eπilr − e−πilr)

)
.

Therefore the set

Λ = {(t, λ) : λ is an eigenvalue of (D+Qt,B)}

can be represented as the union Λ = Λ1 ∪ Λ2, where Λ1 = {(t, λ) : λ− t ∈ Z} (with
multiplicities 1 for all eigenvalues), Λ2 is a subset of {(t, λ) : |λ| � π}.

If λj(t) are continuous functions from the interval [0, 1] to R such that λi(t) � λj(t)
for i � j and Λ ∩ {(t, λ) : 0 � t � 1} is the union of the graphs of functions λj(t), then
λj(t) = j+ t when −3 � j � 2 (up to a shift of the numeration). So

sf (D+Qt,B)t∈[0,1] = 1.

On the other hand, by Theorem 3,

sf (D+Qt,B)t∈[0,1] = c2 (b1μ1 + b2μ2) = c2μ2 = c2,

where by ∂X1, ∂X2 we denote the inner and the outer boundary circles respectively.
Therefore c2 = 1.

7. The Case of Several Holes

In the case of m > 2 such explicit computations as in the previous section are hardly
possible, but from the very beginning of her work the author conjectured that cm = 1
for all m; a partial motivation for this conjecture is provided in this section. After the
preprint version [15] of this paper was distributed, M. I. Katsnelson and V. E. Nazai-
kinski posted preprint [11], in which they proved, in particular, this conjecture of the
author.

Let us realizeX = Xh as (m−1) identical annuli arranged along a line and connected
by a band of the width h, with the corners smoothed out, as in Fig. 2.

Let us consider the process of continuous decreasing of the band’s width from h = 1
to h = 0; we suppose that the annuli do not change in this process. Let us fix some
function μ from X1 toU(1) and take qt = itμ−1 (∂1μ+ i∂2μ). Restricting μ and qt to
Xh, 0 < h � 1, we obtain the operator (2) on Xh. Let us define the boundary condition
by Bh = −1 on the inner part ∪j<m∂X

h
j of ∂Xh and Bh = +1 on the outer part ∂Xh

m

of ∂Xh.
By Theorem 1, sf (D+Qt) = cm

∑
j<m μj does not depend onh. It is natural to sug-

gest that the limit at h → +0 of the (constant) spectral flow of the family
(
D +Qt,Bh

)
for Xh is equal to the spectral flow of

(
D +Qt,B0

)
for the “limit” domain X0, which

is the disjoint union of m − 1 annuli, and the “limit” boundary condition B0 = −1 at
the inner boundary and B0 = +1 at the outer boundary of every annulus.

However, sf (D+Qt,B0) for such union is the sum of sf (D+Qt,B0) for the annuli,
and hence is equal to

∑
j<m c2μj = c2

∑
j<m μj.

Therefore, if the assumption on the limiting behavior of the spectral flow is true, then
cm = c2 for any m > 2.

Another way to have a look at the general case is to fix the outer boundary and to
increase the holes up to their merging, as in Fig. 3. Here we obtain the single annulus



Spectral Flow for Dirac Operators on Compact Planar Domains 397

hX

h1

Fig. 2. Contracting of the connecting band

hX1X

Fig. 3. Increasing of the holes

in the limit of h = 0, and the same result cm = 1 if the passage to the limit will be
justified.

Alternatively, we can combine these two methods to obtain arbitrary number m ′,
1 � m ′ � m− 1 of annuli in the end of the limit process, with the same result for cm.

8. General Case: First Order Elliptic Operators

The results of the present paper are concerned only with the case when X is a disk with
holes. An easy modification of the proof gives us the analogue of this result for the
case of a smooth compact oriented surface X with nonempty boundary, with the only
change being from cm to cm, g, where cm, g is an integer constant depending on the
number m of boundary components of X and on the genus g of X. However, this still
remains within a very restricted framework: all the operatorsDt are of Dirac type, both
the symbol of Dt and the boundary condition do not depend on t, and the conjugating
gauge transformation is scalar.

In fact, this result can be extended to a much more general case. Namely, let X be
a smooth compact surface, let (At) be a 1-parameter family of first order symmetric
elliptic differential operators acting on sections of a unitary vector bundle E over X,
and suppose that Lt is a subbundle of E|∂X which defines a self-adjoint elliptic local
boundary condition for At at any t. Suppose that (A1,L1) is conjugate to (A0,L0) by
some gauge transformation μ (that is μ is a unitary isomorphism of E, not necessarily
scalar). Then the operators (A1,L1), (A0,L0) are isospectral, and there arises the natural
question about the spectral flow of the family (At,Lt). This question will be considered
in a forthcoming paper [16]. In that paper we will prove that

sf (At,Lt)t∈[0,1] = cm, g

m∑

j=1

ϕj ,
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where cm, g is an integer depending on the numberm of boundary components ofX and
on the genus g of X,ϕj is an integer determined in a canonical way by the restriction to
the jth boundary component of the following data:
(1) the family (ρt), where ρt is the symbol of At;
(2) the family (Lt) of boundary conditions;
(3) the gauge transformation μ.

In particular, the spectral flow of (At,Lt) does not depend on the choice of operators in
the interior of X but only on the symbol of the operators on the boundary.

Theorem 3 of the present paper fits into this general result as follows: cm = cm, 0,
ϕj = bjμj. Recall that μj is determined by the restriction of μ to the jth boundary
component of X, and bj is determined by the restrictions of the boundary condition and
of the operator’s symbol to the jth boundary component.

9. The Spectral Flow for N = 2 in Terms of Condensed Matter Physics

In this section we compare our boundary condition (6) with “the general boundary condi-
tions for the Dirac equation” for 4-dimensional Dirac operators formulated by Akhmerov
and Beenakker in [1]. After that, we give some computations for the spectral flow in
terms of [1]. In particular, we show that the spectral flow vanishes in the case of time
reversal symmetry (under the assumption of local ellipticity of the boundary problem).

In this section we will temporarily use the notations from [1] in their original form
and will formulate our results in the same terms.

The long-wavelength and low-energy electronic excitations in graphene (a one-atom-
thick planar sheet of single carbon atoms that are densely packed in a honeycomb crystal
lattice) considered in [1] are described by the Dirac equationHΨ = εΨwith Hamiltonian

H = vτ0 ⊗ (σ · p) (12)

acting on a four-component spinor wave function Ψ = (ΨA,ΨB) (in our notations, Ψ is
a two-dimensional spinor function, ΨA = u+, ΨB = u−, N = 2). Here v is the Fermi
velocity, p = −i�h∇ is the momentum operator, σ · p = −i�h (σ1∇1 + σ2∇2), matrices
τi,σi are Pauli matrices in valley space and sublattice space, respectively:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, τi = σi.

The general energy-independent boundary condition posed in [1] has the form

Ψ = MΨ on the boundary, (13)

where M is a self-adjoint unitary 4 × 4 matrix depending on the point x ∈ ∂X and
anticommuting with the current operator vτ0 ⊗ (σ · nB). Here nB is the outward normal
to the boundary of X at x, so nB = (n1,n2) in our previous notations, and σ · nB =
n1σ1 + n2σ2.

Let us compare (13) with our boundary condition (6).
At first note that the condition “M is a self-adjoint unitary matrix anticommuting

with the current operator” means nothing but the condition of self-adjointness of the
boundary problem (13). The authors of [1] do not require local ellipticity of the bound-
ary condition; however, in the absence of local ellipticity the spectrum of the operator
is not expected to be discrete. The boundary condition (13) is both locally elliptic and
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self-adjoint if and only if the matrix function M(x) can be represented by a formula of
the form

M = I2N − 2

(
IN + B2 0

0 IN + B2

)−1 (
IN in̄B

−inB B2

)

for some complex self-adjoint invertibleN×Nmatrix function B(x). For such a matrix
function M the boundary condition (13) is equivalent to our boundary condition (7).

The set of all possible self-adjoint unitary 4 × 4 matrices anticommuting with the
current operator is parameterized in [1] by the following 4-parameter family:

M = sinΛ τ0 ⊗ (n1 · σ ) + cosΛ (ν · τ ) ⊗ (n2 · σ ), (14)

where Λ(x) is the “mixing angle”, ν(x), n1(x), n2(x) are unit vectors in R
3 ={

(x1, x2, x3)
}

such that n1 and n2 are mutually orthogonal and also orthogonal to the

boundary normal nB(x), (ν · τ ) =
∑3

i=1 ν
iτi, and (nj · σ ) are defined analogously.

Now we give a description of the ellipticity of the boundary problem (13) in terms ofΛ,
ν, n1, n2, and compute bj as functions of these parameters.

From now on we will suppose that the frame (nB, n1, n2) is positively oriented in R
3,

that is its orientation coincides with the orientation of the frame (e1, e2, e3) of basis coor-
dinate vectors. This is possible because parameters (Λ, n1, n2, ν) and (−Λ, −n1, n2, ν)
give us the same matrix M, so in the case of a negatively oriented frame (nB, n1, n2)
we can change the signs of n1 and Λ simultaneously to obtain the positive orientation
of the frame.

Let ϕ(x) be a function from the boundary to the circle R mod 2π such that n2 =
sinϕ · η+ cosϕ · e3, where e3 is the unit vector in R

3 in the direction of x3, η(x) is the
unit tangent vector to the boundary at x ∈ ∂X such that the pair (nB(x),η(x)) has the
positive orientation on the plane (x1, x2). Then n1 = cosϕ · η − sinϕ · e3, and M is
determined by the triple (Λ,ϕ, ν).

Proposition 1. The boundary condition (13) is locally elliptic for the Dirac operator
(12) if and only if Λ+ϕ �= 0 (modπ) and Λ−ϕ �= 0 (modπ) for any x ∈ ∂X.

In other words, the boundary condition is not locally elliptic if and only if n2 =
± sinΛη± cosΛe3 for some x ∈ ∂X and for some combination of signs ±.

Proposition 2. If the boundary condition (13) is locally elliptic for the Dirac operator
(12) then it is equivalent to the boundary condition

in(x)ΨA = B(x)ΨB

with the matrix B(x) defined as follows:

B = β+P+ + β−P−, where P± =
τ0 ± (ν · τ )

2
,

β+ = cot
Λ+ϕ

2
, β− = tan

Λ−ϕ

2
.

Here β± are the eigenvalues of B, P± are the orthogonal projections on the invariant
subspaces of B corresponding to the eigenvalues β±.

These propositions will be proved at the end of the section.
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Corollary 1. LetQt(x) be a continuous 1-parameter family of self-adjoint 4 × 4 matri-
ces smoothly dependent on x ∈ X such thatH+Q1 = μ (H+Q0)μ

−1 for some smooth
gauge transformationμ : X → U(1). Suppose that the boundary condition (13) is locally
elliptic for the Dirac operator (12). Then the spectral flow of the family (H+Qt) with
this boundary condition is described by the formulae

sf (H+Qt,M)t∈[0,1] = cm

m∑

j=1

bjμj,

where cm,μj are as in Theorem 2, bj depends only on the values ofΛ,ϕ on jth boundary
component:

bj =

⎧
⎪⎨

⎪⎩

0, if both Λ+ϕ, Λ−ϕ belong to the interval (0,π)
2, if both Λ+ϕ, Λ−ϕ belong to the interval (π, 2π)
1, if one of Λ+ϕ, Λ−ϕ belongs to the interval (0,π)

and another to the interval (π, 2π).

Proof. This follows immediately from Theorem 2 and Proposition 2.
Let us inspect closer the case of time reversal symmetry. The time reversal operator

in the valley isotropic representation is

T = −(τ2 ⊗ σ2)C,

with C the operator of complex conjugation [1]. The boundary condition preserves time
reversal symmetry if M commutes with T . This implies that the mixing angle Λ ≡ 0
[1]. By Proposition 1, in this case boundary problem (13) is locally elliptic if and only
if n2(x) is not vertical for all x ∈ ∂X. If this is fulfilled then Corollary 1 allows us to
compute the spectral flow regardless of other parameters:

Corollary 2 (The case of time reversal symmetry). LetQt(x), t ∈ [0, 1] be a continuous
1-parameter family of self-adjoint 2N×2Nmatrices smoothly dependent on x ∈ X such
thatH+Q1 = μ (H+Q0)μ

−1 for some smooth gauge transformation μ : X → U(1).
Suppose that boundary condition is defined by formulas (13), (14) with Λ ≡ 0, and
that for any x ∈ ∂X vector n2(x) is not vertical. Then the spectral flow of the family
(H+Qt) is zero.

Proof. By Corollary 1, bj = 1 for all j. So we obtain

sf (H+Qt)t∈[0,1] = cm

m∑

j=1

bjμj = cm

m∑

j=1

μj = 0.

Remark. Corollary 2 can be proved by other means as well, without use of Corollary
1 and of formula (14) but using Theorem 2 directly. Namely, let MΨ = Ψ be a locally
elliptic boundary condition for the Dirac operator (12) such that TMT−1 = M. First
note that the spectral flow of the family (H+Qt) is independent of the choice of con-
nection ∇, so we can assume that ∇i = ∂i. With this choice of connection, we have
THT−1 = H. Let Q ′

t(x) = TQt(x)T
−1, then

Q ′
1 −Q ′

0 = T(Q1 −Q0)T
−1 = T(μHμ−1 −H)T−1

= μ−1THT−1μ− THT−1 = μ ′Hμ ′−1 −H,
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where μ ′ = μ−1. By Theorem 2,

sf (H+Q ′
t,M) = cm

∑
bjμ

′
j = −cm

∑
bjμj = − sf (H+Qt,M),

where by sf (H + Qt,M) we denote the spectral flow of the family (H + Qt) with
boundary condition MΨ = Ψ. IfM commutes with T then

sf (T(H+Qt)T
−1, TMT−1) = sf (H+Q ′

t,M) = − sf (H+Qt,M). (15)

In Sect. 11 we prove the conjugacy invariance of the spectral flow under unitary iso-
morphisms of L2(X,g;C2N). Even though T is an antilinear isomorphism of the Hilbert
space L2(X,g;C4), the spectral flow still remains invariant under conjugation by T . This
can be proved using the uniqueness property of the spectral flow in the same manner
as Property (P4) in Sect. 11, taking into account that conjugation by T preserves self-
adjointness of operators in L2(X,g;C4). Thus sf (T(H + Qt)T

−1, TMT−1) coincides
with sf (H+Qt,M). Together with (15), this implies sf (H+Qt,M) = 0.

Proof of Proposition 1. By S = S(x) we denote the matrix (ν ·τ ) =
∑3

i=1 ν
iτi. In our

notations,

M = sinΛ · τ0 ⊗
(

− sinϕ −in̄ cosϕ
in cosϕ sinϕ

)
+ cosΛ · S⊗

(
cosϕ −in̄ sinϕ
in sinϕ − cosϕ

)

=

(
S1 −in̄S2
inS2 −S1

)
,

where S1 = − sinϕ sinΛ · I + cosϕ cosΛ · S, S2 = cosϕ sinΛ · I + sinϕ cosΛ · S,
I = I2 is the 2 × 2 identity matrix. Note that S2 = I for any ν, S2

1 + S2
2 = I for any ν,

ϕ, Λ.
The boundary conditionMΨ = Ψ is equivalent to the following system:

{
−in̄S2u

− = (I− S1)u
+

inS2u
+ = (I+ S1)u

− . (16)

This boundary problem is locally elliptic for the operator (12) if the linear space of the
solutions of this system has intersection zero with both spaces {u+ = 0} and {u− = 0}.
This condition is equivalent to the invertibility of S2. The matrix S has eigenvalues ±1,
so S2 has the eigenvalues cosϕ sinΛ± sinϕ cosΛ = sin(Λ±ϕ). Both eigenvalues of
S2 are nonzero if and only if Λ±ϕ �= 0 (modπ). This completes the proof.

Proof of Proposition 2. From (16) we have B = S−1
2 (I + S1). Taking into account the

identity S2 = I, we obtain

S−1
2 =

(
cos2ϕ sin2Λ− sin2ϕ cos2Λ

)−1
(cosϕ sinΛ · I− sinϕ cosΛ · S) ,

S−1
2 (I+S1) =

(
cos2ϕ sin2Λ−sin2ϕ cos2Λ

)−1
(sinΛ−sinϕ) (cosϕ · I+cosΛ · S)

=
sinΛ− sinϕ

sin(Λ+ϕ) sin(Λ−ϕ)
(cosϕ · I+ cosΛ · S).

The eigenvalues of S are ±1, so the eigenvalues of B are equal to

β± =
sinΛ− sinϕ

sin(Λ+ϕ) sin(Λ−ϕ)
(cosϕ± cosΛ). (17)
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From the last two formulas we have

B =
sinΛ− sinϕ

sin(Λ+ϕ) sin(Λ−ϕ)

(
(cosϕ+ cosΛ)

I+ S

2
+ (cosϕ− cosΛ)

I− S

2

)

= β+
I+ S

2
+ β−

I− S

2
= β+P+ + β−P−.

We can simplify (17) using sum-to-product trigonometric identities:

sinΛ− sinϕ
sin(Λ+ϕ) sin(Λ−ϕ)

=
2 sin Λ−ϕ

2 cos Λ+ϕ
2(

2 sin Λ+ϕ
2 cos Λ+ϕ

2

)(
2 sin Λ−ϕ

2 cos Λ−ϕ
2

)

=

(
2 sin

Λ+ϕ

2
cos

Λ−ϕ

2

)−1

,

cosϕ+ cosΛ = 2 cos
Λ+ϕ

2
cos

Λ−ϕ

2
, cosϕ− cosΛ = 2 sin

Λ+ϕ

2
sin
Λ−ϕ

2
.

Substituting this in (17), we obtain

β+ = cot
Λ+ϕ

2
, β− = tan

Λ−ϕ

2
.

This completes the proof.

Part II Proof of Theorem 3

Note that forD ′ = D+Q0,Q ′
t = Qt −Q0, we haveD+Qt = D ′ +Q ′

t withQ ′
0 = 0.

For this reason, in the proof we will restrict ourselves to the families Qt with Q0 = 0.

10. Two Technical Lemmas

First of all, we need to give some technical details. The reader interested only in the
ideas behind the proof can go directly to the next section.

Suppose D ∈ D, B ∈ B. We will write (D,B) for the operator D acting on the
following domain:

domain(D,B)

=
{
u ∈ L2

1

(
X; C

2N
)

: restriction of u to ∂X satisfies boundary condition (10)
}

.

(18)

Here L2
1

(
X; C

2N
)

is the first Sobolev space; its elements are functionsu ∈ L2
(
X; C

2N
)

such that ∂1u,∂2u ∈ L2
(
X; C

2N
)
. Strictly speaking, we use here not the restriction in

the usual sense (trace map u �→ u|∂X) but the extension by continuity of the trace
map C∞

(
X; C

2N
) → C∞

(
∂X; C

2N
)

to the bounded linear map from L2
1

(
X; C

2N
)

to
L2

1/2

(
∂X; C

2N
)

[7].

Note that the operator (D,B) defined here is the closure of the operator (D,B) defined
in Sect. 5 (see [7], Prop. 2.9). The use of non-closed operators in the first part of the
paper is explained by our intention to avoid the introduction of Sobolev spaces and of the
extension of the trace map as long as possible. Due to the following lemma, these two
definitions give us operators with the same eigenvectors, so the slight abuse of notation
does not cause any troubles.
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Lemma 1. For any D ∈ D, B ∈ B the operator (D,B) is a (unbounded) closed self-
adjoint Fredholm operator on L2

(
X,g;C2N

)
, which has the discrete real spectrum.

Moreover, all its eigenvectors are smooth functions.

Proof. Let B be a smooth function from ∂X to GL(N, C). Then for any D ∈ D, λ ∈ C

boundary condition (10) satisfies the Sapiro-Lopatinskii condition forD− λ: the inter-
sections of the subspace {u : in ′(x)u+ = B(x)u−} ⊂ C

2N both with {u : u− = 0}
and with {u : u+ = 0} are zero at any x ∈ ∂X. By Proposition 2.9 from [7], condition
(10) is a strongly regular boundary condition for D, so all eigenvectors of (D,B) in
L2

(
X,g;C2N

)
are smooth functions. By the same proposition, (D − λ,B) is a closed

Fredholm operator for any λ ∈ C, so the spectrum of (D,B) is discrete.
For any u,w ∈ L2

1

(
X,g;C2N

)
we have

〈Du,w〉L2 − 〈u,Dw〉L2 =

∫

X
(〈Du,w〉 − 〈u,Dw〉)√

g dx1dx2

= −i

∫

X
(∂1 〈√gρ1u,w〉 + ∂2 〈√gρ2u,w〉)dx1dx2

= −i

∫

X
d

(
〈√gρ1u,w〉dx2 − 〈√gρ2u,w〉dx1

)

= −i

∫

∂X

√
g

(
〈ρ1u,w〉dx2 − 〈ρ2u,w〉dx1

)

= −i

∫

∂X
〈(n1ρ1 + n2ρ2)u,w〉√

gds

= −

∫

∂X

〈(
in̄ ′u−

in ′u+

)
,

(
w+

w−

)〉 √
gds

=

∫

∂X

(〈
u−, in ′w+

〉
−

〈
in ′u+,w−

〉) √
gds,

where ds is the length element on ∂X. So for any u,w ∈ domain(D,B),

〈Du,w〉L2 − 〈u,Dw〉L2 =

∫

∂X

〈
u−, (B− B∗)w−

〉 √
gds,

and the operator (D,B) is symmetric on L2
(
X,g;C2N

)
if and only ifB(x) is self-adjoint

at any x.
Let now w ∈ domain(D,B)∗. By Proposition 2.9 from [7], domain(D,B)∗ is con-

tained in L2
1

(
X,g;C2N

)
, so we can use the computation above:

〈Du,w〉L2 − 〈u,Dw〉L2 =

∫

∂X

〈
u−, (in ′w+ − Bw−)

〉√
gds

for any u ∈ domain(D,B). Therefore, in ′w+ − Bw−|∂X = 0 for any w ∈
domain(D,B)∗, hence domain(D,B)∗ = domain(D,B), and (D,B) is self-adjoint on
L2

(
X,g;C2N

)
. All eigenvalues of a self-adjoint operator are real. This completes the

proof.

In the statement of Theorem 3 we used only norm continuous paths of operators
with fixed domain. But for the proof of Theorem 3 we have to deal with paths of a
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more general kind, when neither the symbol of the operator nor the boundary condition
are fixed any more. The paths we need for the proof are not norm continuous but only
graph continuous (note that by Proposition 2.2 from [12] any norm continuous path is
graph continuous as well). So further we will use the graph topology on the space of
closed densely defined self-adjoint operators on a separable Hilbert spaceH (in our case
H = L2

(
X,g;C2N

)
).

There are various definitions of the graph distance, all of which give the same graph
topology [6]. One can take dG(A,A ′) =

∥∥(A+ iI)−1 − (A ′ + iI)−1
∥∥, or alternatively

dG(A,A ′) = ‖PA − PA ′‖, where PA, PA ′ are the orthogonal projections of H × H
onto the graphs of A, A ′ respectively.

Let us introduce the following metrics in D and B:

d
(
DΦ, Q,DΦ ′, Q ′

)
=

∥∥Q−Q ′∥∥
C(X)

+
∥∥Φ−Φ ′∥∥

C1(X)

= max
x∈X

∥∥Q(x) −Q ′(x)
∥∥ + max

x∈X

( ∥∥Φ(x) −Φ ′(x)
∥∥ +

∥∥∂1Φ(x) − ∂1Φ
′(x)

∥∥
+

∥∥∂2Φ(x) − ∂2Φ
′(x)

∥∥)
,

d(B,B ′) =
∥∥B− B ′∥∥

C1(∂X)
= max

x∈∂X

(∥∥B(x) − B ′(x)
∥∥ +

∥∥∂sB(x) − ∂sB
′(x)

∥∥)
,

where s is the length parameter on ∂X. Here we use any of the standard norms on the
spaces B(CN) and B(C2N) of complexN×N and 2N×2Nmatrices, and on the space
B(R2) of real 2 × 2 matrices.

Note that
(
DΦt,Qt ,Bt

)
is a continuous path in D × B if and only ifQt(x),Φt(x),

Bt(x), and the first partial derivatives ofΦt(x), Bt(x) with respect to x are continuous
functions of (t, x).

Denote by HF(H) the space of closed self-adjoint (or, what is the same, Hermitian)
Fredholm operators on a separable Hilbert spaceH. We fix the graph topology on HF(H).
Nevertheless we will usually write “graph continuous” instead of just “continuous” for
the maps to HF(H) to avoid any misunderstanding.

By Lemma 1, we have the natural inclusion D × B ↪→ HF
(
L2

(
X,g;C2N

))
, which

carries a pair (D,B) ∈ D × B to the operator D with the domain (18).

Lemma 2. The natural inclusion D × B ↪→ HF
(
L2

(
X,g;C2N

))
is graph continuous.

Therefore, if t �→ (Dt,Bt) is a continuous path in D × B, then (Dt,Bt) defines
a graph continuous path in HF

(
L2

(
X,g;C2N

))
, and the spectral flow of the operator

family (Dt,Bt) is well defined.

Proof. Let us consider the smooth map

ψ : B(CN) → H(C2N), A �→ P =

(
IN −A

−A∗ A∗A

)(
IN +AA∗ 0

0 IN +A∗A

)−1

,

which carries A ∈ B(CN) into the orthogonal projection P of C
2N with Ker P ={

u = (u+,u−) : u+,u− ∈ C
N,u+ = Au−

}
. It induces the continuous map

ψ∗ : C1
(
∂X, B(CN)

)
→ C1

(
∂X, H(C2N)

)
.

Composing ψ∗ with the continuous map

D × B → C1
(
∂X, B(CN)

)
, (D,B) �→ −iρ+(x,n(x))−1B(x),
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we obtain the continuous map

Ψ : D × B → C1
(
∂X, H(C2N)

)
,

which carries (D,B) into the orthogonal projectionP ofL2
(
∂X, g|∂X ; C

2N
)

with kernel
defined by the boundary condition (10).3

By Proposition II.1.1 from [17], we have continuous inclusion of the Banach spaces

B
(
L2

1

(
∂X; C

2N
))

⊂ B
(
L2

1/2

(
∂X; C

2N
))

,

where B(V) denotes the space of bounded linear operators on a Banach space V , L2
r is

the (fractional) Sobolev space. Composing it with the natural continuous inclusion

C1
(
∂X, B(C2N)

)
⊂ B

(
L2

1

(
∂X; C

2N
))

,

we obtain that the map Ψ∗ : D × B → B
(
L2

1/2

(
∂X; C

2N
))

is continuous.

The natural map from D to the space of bounded linear operators from L2
1

(
X; C

2N
)

to L2
(
X; C

2N
)

is continuous too:
∥∥DΦ,Q−DΦ ′,Q ′

∥∥
1,0 �const

(∥∥Φ−Φ ′∥∥
C(X)

+‖RΦ−RΦ ′‖C(X)+
∥∥Q−Q ′∥∥

C(X)

)

� const
(∥∥Φ−Φ ′∥∥

C1(X)
+

∥∥Q−Q ′∥∥
C(X)

)
.

By Theorem 7.16 from [7] and by Lemma 1, this implies that the inclusion D×B ↪→
HF

(
L2

(
X,g;C2

))
is graph continuous. This completes the proof.

11. Basic Properties of the Spectral Flow

There can be different versions of the definition of the spectral flow when one or both of
the endpoints of the path is non-invertible. If a path is a loop up to a gauge transformation
as in the first part of the paper, then the value of the spectral flow is independent of the
choice of definition. But for the proofs below we have to fix some choice.

Definition. Let (At) be a 1-parameter graph continuous family of closed self-adjoint
Fredholm operators on a separable complex Hilbert space H. Take a small ε > 0
such that A0, A1 have no eigenvalues in the interval [−ε, 0). We put sf (At) equal to
sf (At + εI), where we use any of the (equivalent) definitions of the spectral flow for
the path of self-adjoint Fredholm operators with invertible endpoints from [6,12]. This
definition does not depend on the choice of ε.

We will need the following properties of the spectral flow.

(P0) Zero crossing. In the absence of zero crossing the spectral flow vanishes. More pre-
cisely, suppose γ : [0, 1] → D×B is the continuous path such that 0 is not an eigenvalue
of γ(t) for any t ∈ [0, 1]. Then sf (γ) = 0.

(P1) Homotopy invariance. The spectral flow along the continuous path γ : [0, 1] →
D × B does not change when γ changes continuously in the space of paths in D × B
with fixed endpoints (the same as the endpoints of γ).

3 Here we use the general formula for the orthogonal projection P with the kernel
{
u+ = Au−

}
for

arbitrary matrix A. Actually, in our case A = (in ′)−1B is normal: AA∗ = A∗A.
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In other words, for the continuous map h : [0, 1]× [0, 1] → D ×B such that hs(0) ≡
(D0,B0), hs(1) ≡ (D1,B1), we have sf (h0(t))t∈[0,1] = sf (h1(t))t∈[0,1].

(P2) Path additivity. Suppose γ : [a, c] → D × B is a continuous path, a � b � c.
Then sf (γ(t))t∈[a,c] = sf (γ(t))t∈[a,b] + sf (γ(t))t∈[b,c].

(P3) Additivity with respect to direct sum. Let N1, N2 be natural numbers,(
Di

t,Bi
t

)
be continuous paths in DNi

× BNi
. Then the spectral flow along the path(

D1
t ⊕D2

t,B1
t ⊕ B2

t

)
is equal to the sum of the spectral flows along the paths

(
D1

t,B1
t

)
and

(
D2

t,B2
t

)
.

(P4) Conjugacy invariance. Let J± : X → U(N) be unitaryN×N matrices smoothly

dependent on x ∈ X, set J =

(
J+ 0
0 J−

)
: X → U(2N), and let (Dt,Bt) be a smooth

path in D × B. Then sf (Dt,Bt) = sf (JDtJ
−1, J−BtJ

−1
− ).

More generally, ifH is a separable complex Hilbert space, J is an unitary isomorphism
of H, (At) is a 1-parameter graph continuous family of closed self-adjoint Fredholm
operators, then sf (At) = sf (JAtJ

−1).

Remark. Properties (P1) and (P2) imply that the spectral flow along the path is opposite
to the spectral flow along the same path passing in the opposite direction.

Proof. By Lemmas 1-2, the inclusion of D × B into HF
(
L2

(
X,g;C2N

))
is graph con-

tinuous. So it is sufficient to prove Properties (P0-P4) for graph continuous paths in the
space HF(H) of all closed self-adjoint Fredholm operators in a separable Hilbert space
H; this will imply Properties (P0-P4) for the paths in D × B.

The first three properties of the spectral flow for graph continuous paths in HF(H)
are proved in [6] (Prop. 2.2), taking into account the convention from Sect. 2 for the
case when γ(0) or γ(1) are non-invertible.

Properties (P3-P4) for graph continuous paths in HF(H) are obviously fulfilled for
the definition of spectral flow via spectral projections ([6], Def. 2.12). For the definition
of spectral flow via the Cayley transform ([6], Def. 2.2) they can be proved easily using
the uniqueness property of the spectral flow; we give here these proofs for complete-
ness (though the two definitions of spectral flow are equivalent [6], the proof of their
equivalence is not very simple).

To prove (P4), let us consider a unitary isomorphism J of a separable complex Hilbert
spaceH. To each graph continuous path (At) in HF(H) assign the integer sfnew(At) =
sf(JAtJ

−1). Then sfnew satisfies Concatenation, Homotopy and Normalization prop-
erties in the sense of [12]. By Theorem 5.9 from [12], this implies that sfnew equals sf
for the paths in HF(H) with invertible endpoints. Taking into account our convention
from Sect. 2 and choosing a small ε > 0 such that A0, A1 have no eigenvalues in the
interval [−ε, 0), we obtain

sf (JAtJ
−1) = sf (JAtJ

−1 + εI) = sfnew(At + εI) = sf (At + εI) = sf (At).

To prove (P3), consider graph continuous paths (At), (A ′
t) in HF(H), HF(H ′)

respectively. Suppose for a while that A0, A1, A ′
0, and A ′

1 are invertible. The path
(At ⊕ A ′

t)t∈[0,1] is homotopic to the concatenation of paths (At ⊕ A ′
0)t∈[0,1] and

(A1⊕A ′
t)t∈[0,1] in HF(H⊕H ′). The spectral flow of the path (At⊕A ′

0) in HF(H⊕H ′)
considered as a function of (At) satisfies Concatenation, Homotopy and Normali-
zation properties in the sense of [12], so by the uniqueness property of the spectral
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flow from [12] we have sf (At ⊕ A ′
0) = sf (At). Similarly, sf (A1 ⊕ A ′

t) = sf (A ′
t).

Therefore, sf (At ⊕ A ′
t) = sf (At) + sf (A ′

t) for any paths (At), (A ′
t) with invert-

ible endpoints. Taking into account our convention from Sect. 2, we obtain that
sf (At ⊕ A ′

t) = sf (At) + sf (A ′
t) for arbitrary paths (At), (A ′

t). This completes the
proof.

12. Independence of the Choice of the Family (Qt)

Let us prove that the spectral flow along (D+Qt,B) does not depend on the choice of
(Qt) when D, B, μ are fixed.

Let Qt, Q ′
t be two 1-parameter families of smooth maps from X to H(C2N) such

that Q0 = Q ′
0 = 0, Q1 = Q ′

1 = μDμ−1 −D.
The path D + Qt can be continuously changed to the path D + Q ′

t in the class of
paths in D with the fixed endpoints. For example, we can take the homotopy h(s, t) =
D+ (1 − s)Qt + sQ ′

t. By the homotopy invariance property (P1) of the spectral flow,
sf (D+Qt,B)t∈[0,1] = sf (D+Q ′

t,B)t∈[0,1].
Therefore, if Q0 = 0, Q1 = μDμ−1 −D then

sf (D+Qt,B)t∈[0,1] = F(X,g,N,D,B,μ)

for some integer-valued function F. Now we will investigate the properties of this func-
tion.

13. Independence of the Choice of Operator D

1. Suppose that D0 is homotopic to D1 in D, that is there exist a continuous 1-param-
eter family of Dirac type operators Ds connecting D0 with D1. We will show that
F(X,g,N,D0,B,μ) = F(X,g,N,D1,B,μ).

Let us consider the 2-parameter family of Dirac type operatorsDs,t = (1 − t)Ds +
tμDsμ

−1. Note that Ds,0 = Ds, Ds,1 = μDsμ
−1, Ds,t − Ds,0 = tQs, where

Qs = μDsμ
−1 −Ds is a 1-parameter family of 2N× 2N self-adjoint complex matri-

ces smoothly dependent on x ∈ X.
Let us define the path γ1 : [0, 3] → D by the formula

γ1(t) =

⎧
⎨

⎩

Dt,0, t ∈ [0, 1]
D1,t−1, t ∈ [1, 2]
D3−t,1, t ∈ [2, 3]

.

In other words, we sequentially go around the left, top and right sides of the rectangle on
Fig. 4 in a clockwise direction. The path γ1 can be continuously deformed to the path

0,0D

s,0D

1,0D

0,1D

s,1D

1,1DtD1,

( )tsγ

( )t0γ

( )tsγ

Fig. 4. Homotopy from γ0(t) to γ1(t)
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D0,t = D0 + tQ0 within the rectangle. For example, we can take as such a deformation
the family

γs(t) =

⎧
⎨

⎩

Dst,0, t ∈ [0, 1]
Ds,t−1, t ∈ [1, 2]
Ds(3−t),1, t ∈ [2, 3]

.

Then γ0(t) is the path (D0 + (t− 1)Q0)t∈[1,2] concatenated with two constant paths,
the spectral flows along which are zero by Property (P0).

By the homotopic invariance property of the spectral flow,

sf (γ1(t),B)t∈[0,3] = sf (γ0(t),B)t∈[0,3] = sf (D0 + tQ0,B)t∈[0,1].

On the other hand, the spectral flows along the first and the third parts of γ1 are mutually
reduced by (P4):

sf (γ(t),B)t∈[0,1] + sf (γ(t),B)t∈[2,3]

= sf (Ds,B)s∈[0,1] − sf (μDsμ
−1,B)s∈[0,1] = 0.

Therefore,

sf (D0 + tQ0,B)t∈[0,1] = sf (γ1(t),B)t∈[1,2] = sf (D1 + tQ1,B)t∈[0,1],

and F(X,g,N,D0,B,μ) = F(X,g,N,D1,B,μ).

2. Now we will simplify D step by step.
At first, we can continuously change D = DΦ,Q = −i (ρ1∂1 + ρ2∂2) + iRΦ(x) +

Q(x) to the operator DΦ, 0, for example, along the path DΦ,(1−s)Q.
Further, take a smooth map h : [0, 1] × GL+(2, R) → GL+(2, R) such that h(0, ·)

is the identity map, while the image of h(1, ·) is the group SO(2, R) of 2 × 2 orthogo-
nal real matrices with determinant equal to one (the existence of such a family is well
known in any dimension; this is an easy application of the Gram-Schmidt orthonormali-
sation procedure). The operatorDΦ, 0 can be continuously changed in D along the path
Dh(t,Φ), 0 to the operator DΦ ′, 0, where

Φ ′(x) =

(
cosϕ sinϕ

− sinϕ cosϕ

)
∈ SO(2, R)

for some smooth function ϕ from X to S1. So we have

F(X,g,N,DΦ,Q,B,μ) = F(X,g,N,DΦ ′, 0,B,μ).

On the other hand, DΦ ′, 0 can be represented as J−1DI, 0J, where I = I2 is the
identity 2 × 2 matrix and

J(x) =

(
J+ 0
0 J−

)
=

(
eiϕIN 0

0 IN

)
∈ U(2N).

LetQt be a 1-parameter family of self-adjoint 2N× 2N complex matrices such that
Q0 = 0, Q1 = μDΦ ′, 0μ

−1 −DΦ ′, 0. Applying Property (P4) of the spectral flow, we
obtain

F(X,g,N,DΦ ′, 0,B,μ)=sf (DΦ ′, 0 +Qt,B)=sf (J
(
DΦ ′, 0+Qt

)
J−1, J−BJ

−1
− )

= sf (DI, 0 + JQtJ
−1,B) = F(X,g,N,DI, 0,B,μ),
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because

JQ1J
−1 = μ

(
JDΦ ′, 0J

−1
)
μ−1 − JDΦ ′, 0J

−1 = μDI, 0μ
−1 −DI, 0.

Therefore, F(X,g,N,D,B,μ) does not depend on the choice of D ∈ D, so from now
on we will write F(X,g,N,B,μ) instead of F(X,g,N,D,B,μ).

14. Independence of the Metric and Invariance Under a Change of Variables

We prove here that F(X,g,N,B,μ) is independent of the choice of metric g onX, invari-
ant under the change of variables, and does not depend on the geometry of X, using the
fact that the number of holes is the only topological invariant of a disk with holes, and
that the spectral flow is conjugacy invariant and does not depend on the choice of the
operator.

Let X, X ′ be compact planar domains, each bounded bym smooth curves, and let g,
g ′ be Riemannian metrics on X, X ′ respectively.

As is well known, there exists an orientation-preserving diffeomorphism f : X ′ → X.4

We define θ as the smooth function fromX ′ to R
+ such that f∗ dvol = θ dvol ′, where

dvol, dvol ′ are volume elements on X, X ′ respectively.5

The diffeomorphism f defines a unitary isomorphism J from the Hilbert space
L2

(
X,g; C

2N
)

to the Hilbert space L2
(
X ′,g ′; C

2N
)
, u �→ √

θf∗u.6

The isomorphism J transforms the operator D ∈ D X, g, N with symbol ρ to a sym-
metric operator D ′ = JDJ−1 on X ′ with symbol ρ ′. For any x ′ ∈ X ′, x = f(x ′), any
cotangent vector ξ ∈ T∗

xX, ξ ′ = f∗ξ, we have ρ ′(x ′, ξ ′) = ρ(x, ξ), that is ρ ′(x ′) =(
∂x ′
∂x

)
ρ(x) =

(
∂x ′
∂x

)
Φσ in coordinate representation. The matrix

(
∂x ′
∂x

)
Φ(x) is con-

tained in GL+(2, R) for any x ∈ X, so D ′ ∈ DX ′, g ′, N.
Let μ be a smooth function from X to U(1). Taking the map μ ′ = f∗μ from X ′ to

U(1) and the map B ′ = ‖f∗n‖−1
g ′ f∗B from ∂X ′ to H(CN), we obtain

μ ′D ′μ ′−1 −D ′ = μ ′
(
JDJ−1

)
μ ′−1 − JDJ−1 = J

(
μDμ−1 −D

)
J−1.

So if Qt connects Q0 = 0 with Q1 = μDμ−1 − D, then Q ′
t = JQtJ

−1 connects
Q ′

0 = 0 with Q ′
1 = μ ′D ′μ ′−1 − D ′, and by the conjugacy invariance of the spectral

flow (P4), we have

sf (D+Qt,B) = sf
(
J(D+Qt)J

−1,B ′
)

= sf (D ′ +Q ′
t,B ′).

However, B ′ is homotopic to f∗B in BX ′, N, while the spectral flow of (D ′ +Q ′
t, B̃) is

invariant under the continuous change of B̃ in BX ′, N (this is verified in a way similar to

4 In other words, there exists a smooth one-to-one change of variables (x ′1, x ′2) = x ′ f→ x = (x1, x2)
with the smooth inverse and with positive Jacobian determinant det(∂x/∂x ′), which transforms X ′ onto X.

5 As usual, by f∗ we denote the homomorphism from differential forms (in particular, functions) on X to

differential forms on X ′, which is induced by f. In coordinate form, θ(x ′) =

√
g(f(x ′))√
g ′(x ′) det( ∂x

∂x ′ ).

6 That is (Ju)(x ′) =
√

θ(x ′)u(f(x ′)).
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the proof in Sect. 13). Therefore sf (D ′ +Q ′
t,B ′) = sf (D ′ +Q ′

t, f∗B), and finally we
obtain

F(X,g,N,B,μ) = F(X ′,g ′,N, f∗B, f∗μ). (19)

This completes the proof.
In particular, for any two metrics g, g ′ on the same X, using the identity diffeomor-

phism f, we have

F(X,g,N,B,μ) = F(X,g ′,N,B,μ).

From now on we will write F(N,B,μ) instead of F(X,g,N,B,μ).

15. Boundary Conditions

Let us investigate the dependence of F(N,B,μ) on B.
F(N,B,μ) does not change when B changes continuously in B; this is verified in a

way similar to the proof in Sect. 13.
Let bj be the number of negative eigenvalues of B (counting multiplicities) on ∂Xj.

We prove that the ordered set b̂ =
(
bj

)m
j=1 uniquely determines B up to continuous

variation of B in B.
Obviously, b̂ is invariant with respect to such variations, so we only have to prove that

any two B, B ′ with the same b̂ are homotopic. It is sufficient to prove that any smooth
mapA from the circle S1 to the space of complex self-adjoint invertibleN×Nmatrices
is homotopic (in the space of all such maps withC1-metric) to the constant map sending
S1 to the point (−Ik)⊕ IN−k ∈ H(CN), where k is the number of negative eigenvalues
of A(x), x ∈ S1.

1. Let us consider the continuous 1-parameter family As of smooth maps from S1 to
the space of complex self-adjoint invertible N × N matrices defined by the formula

As = A · ((1 − s)IN + sA2
)−1/2

. This expression is correct because (1 − s)IN + sA2

is self-adjoint and positive definite for any s ∈ [0, 1]. The family As gives us a defor-
mation from A = A0 to a smooth map A1 from S1 to the space of self-adjoint unitary
N×N matrices.

2. The connected component ofA1(x) in the space of self-adjoint unitaryN×Nmatri-
ces is diffeomorphic to the space GrC(k,N) of all k-dimensional linear subspaces of
C

N. This diffeomorphism is defined by the correspondenceU �→ Ker (IN +U), which
associates withU the invariant subspace V ⊆ C

N of U corresponding to eigenvalue −1
of U. The inverse diffeomorphism is defined by the formula V �→ U = (−I)V ⊕ IV⊥ .

The complex GrassmannianGrC(k,N) is known to be simply connected, so any two
continuous maps from the circle to GrC(k,N) are homotopic. Taking into account that
GrC(k,N) is a smooth manifold, we obtain that the space of smooth maps from the circle
to GrC(k,N) (with C1-metric) is path-connected. The same is true for the connected
component of the space of self-adjoint unitaryN×N matrices which is diffeomorphic
to GrC(k,N), so A can be continuously changed in the class of smooth maps to the
constant map x �→ (−Ik) ⊕ IN−k. This completes the proof.



Spectral Flow for Dirac Operators on Compact Planar Domains 411

16. Gauge Transformations

1. We will prove that F is linear in μ, that is F(N,B,μ1μ2) = F(N,B,μ1) + F(N,B,μ2)
for any smooth functions μ1,μ2 : X → U(1).

LetQi = μiDμ
−1
i −D. ThenQ1 +Q2 = (μ1μ2)D (μ1μ2)

−1 −D, so by definition
F(N,B,μ1μ2) is equal to the spectral flow along the path (D+ Pt,B)t∈[0,2], where
P0 = 0, P2 = Q1 +Q2. We can take Pt composed from two parts: from 0 to Q1 and
then from Q1 to Q1 +Q2, for example,

Pt =

{
tQ1, t ∈ [0, 1]
Q1 + (t− 1)Q2, t ∈ [1, 2]

.

Using Property (P2) of the spectral flow, we obtain

F(N,B,μ1μ2) = sf (D+ Pt,B)t∈[0,1] + sf (D+ Pt,B)t∈[1,2]

= sf (D+ tQ1,B)t∈[0,1] + sf ((D+Q1) + tQ2,B)t∈[0,1]

= F(N,B,μ1) + F(N,B,μ2),

so F is linear in μ.

2. Denote byM the set of equivalence classes of smooth functions μ : X → U(1), where
two functions are equivalent if one of them can be continuously changed to the other in
the space of smooth functions from X toU(1) (with C1-metric). We will considerM as
an Abelian group, where the group structure onM is induced by the group structure on
U(1). It is well known that

M =
{

(μ1, ..,μm) ∈ Z
m :

∑
μj = 0

}
,

with the group structure induced from Z
m, and the class of μ in M is defined by the

m-tuple μ̂ =
(
μj

)
, where μj is the degree of the restriction of μ to ∂Xj.

Let us prove that F(N,B,μ) depends only on the class of μ inM.
Suppose that μt is a continuous path in the space of smooth functions fromX toU(1)

such thatμ0(x) ≡ 1. By Part 1 of this section, it is sufficient to prove thatF(N,B,μ1) = 0.
Let us take Qt = μtDμt

−1 − D. Taking into account that Q1 = μ1Dμ
−1
1 − D, we

obtain F(N,B,μ1) = sf (D +Qt,B). But all the operators (D+Qt,B) are conjugate
to (D,B) by μt and therefore are isospectral. Let ε > 0 be such that (D,B) has no zero
eigenvalues in the interval [−ε, 0). Then sf (D+Qt,B) = sf (D+Qt + εI2N,B) = 0
by (P0) because all the operators (D+Qt + εI2N,B) have no zero eigenvalues. This
completes the proof.

17. Bilinearity

In the previous sections we have proven that F depends only on the integer numbersN,
b1, . . . ,bm,μ1, . . . ,μm. Now we will study this dependence more closely.

By S denote the set of all possible (m+ 1)-tuples (N,b1, . . . ,bm):

S =
{

(N,b1, . . . ,bm) ∈ Z
m+1 : N � 1, 0 � bj � N

}
.
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F defines the map from S×M to Z (which we denote by the same letter F for simplicity)
satisfying the following conditions:

F
(
N, b̂, μ̂⊕ μ̂ ′) = F

(
N, b̂, μ̂

)
+ F

(
N, b̂, μ̂ ′) ,

F
(
N+N ′, b̂⊕ b̂ ′, μ̂

)
= F

(
N, b̂, μ̂

)
+ F

(
N ′, b̂ ′, μ̂

)
,

where μ̂ =
(
μj

)
j=1...m, b̂ =

(
bj

)
j=1...m, symbol ⊕ denotes the componentwise addi-

tion. Indeed, the first equality was proved in Sect. 16, while the second equality follows
from Property (P3) of the spectral flow.

Hence F is a bilinear function, and therefore there is a homomorphism from Z
m+1 ⊗

M to Z such that F can be represented as the composition

S×M ↪→ Z
m+1 ×M → Z

m+1 ⊗M → Z, (20)

where the first arrow is induced by the natural embedding of S into Z
m+1, and the

second arrow is the canonical map of the direct product to the tensor product.
Let us consider operator (2) with boundary condition (3). If (D +Qt)u = 0 and

i (n1 + in2)u
+ = Bu− on ∂X, then

∫

∂X

〈
B(x)u−,u−

〉
ds=

∫

∂X

〈
i (n1 + in2)u

+,u−
〉
ds

=

∫

X

〈
(−i (∂1+i∂2)+qt)u

+,u−
〉
dx1dx2

−

∫

X

〈
u+, (−i (∂1 − i∂2)+qt)u

−
〉
dx1dx2 =0,

where ds is the length element on ∂X.
Suppose now that the sign of B is the same on all boundary components. Then

from the last equality we have u− ≡ 0 on ∂X, u+ = −i (n1 − in2)Bu
− ≡ 0 on

∂X. Thus u ≡ 0 on X by the weak inner unique continuation property of the Dirac
operator [8]. So (D +Qt,B) has no zero eigenvalues at any t, and by Property (P0)
sf (D +Qt,B) = 0. Finally we obtain F(1, 0̂, μ̂) = F(1, 1̂, μ̂) = 0 at any μ̂, where we
denote 0̂ = (0, . . . , 0) , 1̂ = (1, . . . , 1) ∈ Z

m.
Let us consider the groupM ′ which is the quotient of Z

m+1 by the subgroup spanned
by elements

(
1, 0̂

)
,
(
1, 1̂

) ∈ Z
m+1. Note that M ′ coincides with the quotient group

Z
m/

〈
1̂
〉
, so it is naturally isomorphic to the Abelian group Hom(M, Z) of all homo-

morphisms ofM to Z.
By previous arguments, there exists a homomorphism F̃ : M ′ ⊗M → Z such that F

is the composition of the following homomorphisms:

S×M ↪→ Z
m+1 ×M → Z

m+1 ⊗M → M ′ ⊗M F̃→ Z, (21)

where the first two arrows are the same as in (20), and the third arrow is induced by the
natural projection Z

m+1 → M ′.
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18. Invariance under the Action of Symmetric Group

Let Diff+(X) be the group of all diffeomorphisms of X preserving orientation, f ∈
Diff+(X). As was shown in Sect. 14, F (N, f∗B, f∗μ) = F(N,B,μ), and hence

F
(
N, f∗b̂, f∗μ̂

)
= F(N, b̂, μ̂),

where f∗ acts on b̂ and μ̂ by permutation of the coordinates, corresponding to the permu-
tation of the boundary components ofX by f. It is well known that any permutation of the
boundary components of X is realized by some element of Diff+(X). Thus F(N, b̂, μ̂)
is invariant under the action of symmetric group Sm (the group of permutations of m
elements) on

(
b̂, μ̂

)
by permutations of the coordinates.

All permutations of the coordinates leave the element 1̂ of Z
m invariant, so Sm acts

on M ′ = Z
m/

〈
1̂
〉

in exactly the same way, and F̃ is invariant under the action of Sm,
too.

Extending F̃ by linearity from M ′ ⊗ M to V ′ ⊗ V , V ′ = M ′ ⊗ C = C
m/

〈
1̂
〉
,

V = M⊗ C =
{
v ∈ C

m :
∑
vj = 0

}
, we obtain a homomorphism F̃C : V ′ ⊗ V → C,

coinciding with F̃ on the lattice M ′ ⊗M ⊂ V ′ ⊗ V . Obviously, F̃C is invariant with
respect to the action of Sm on V ′ ⊗ V as well.
V ′ and HomC(V , C) coincide as representations of Sm, so the vector space of all

invariant homomorphisms fromV ′⊗V to C is isomorphic to the vector space of all equi-
variant homomorphismsV → V . But the latter space is 1-dimensional by Schur’s lemma,
because V is an irreducible representation of Sm [10]. So F̃C (v ′ ⊗ v) = c

∑
j v

′
jvj for

some constant c ∈ C, and F(N, b̂, μ̂) = c
∑
bjμj, where c depends only onm.

On the other hand,F is integer-valued and, in particular,c = F (1, (0, 1), (−1, 1)) ∈ Z.
Finally, we obtain

sf (D+Qt,B)t∈[0,1] = cm

m∑

j=1

bjμj,

where cm is an integer constant depending on m only, and Theorem 3 is proved.
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