
Digital Object Identifier (DOI) 10.1007/s00220-013-1682-5
Commun. Math. Phys. 320, 679–722 (2013) Communications in

Mathematical
Physics

The Influence of Fractional Diffusion in Fisher-KPP
Equations

Xavier Cabré1,�, Jean-Michel Roquejoffre2,��

1 ICREA and Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647,
08028 Barcelona, Spain. E-mail: xavier.cabre@upc.edu

2 Institut de Mathématiques, Université de Toulouse et CNRS (UMR 5219), 118 Route de Narbonne,
31062 Toulouse, France. E-mail: roque@mip.ups-tlse.fr

Received: 28 February 2012 / Accepted: 19 August 2012
Published online: 9 March 2013 – © Springer-Verlag Berlin Heidelberg 2013

Abstract: We study the Fisher-KPP equation where the Laplacian is replaced by the
generator of a Feller semigroup with power decaying kernel, an important example being
the fractional Laplacian. In contrast with the case of the standard Laplacian where the
stable state invades the unstable one at constant speed, we prove that with fractional
diffusion, generated for instance by a stable Lévy process, the front position is expo-
nential in time. Our results provide a mathematically rigorous justification of numerous
heuristics about this model.

1. Introduction

Let f be a function satisfying

f ∈ C1([0, 1]) is concave, f (0) = f (1) = 0, and f ′(1) < 0 < f ′(0). (1.1)

We may take for instance f (u) = u(1 − u). In Remark 3.5 we present a larger class of
nonlinearities f for which all our results also hold. We are interested in the large time
behavior of solutions u = u(t, x) to the Cauchy problem{

ut + Au = f (u) in (0, +∞) × R
n

u(0, ·) = u0 in R
n, 0 ≤ u0 ≤ 1,

(1.2)

where A is the infinitesimal generator of a Feller semigroup. Important examples are
A = −� (the classical Laplacian) and A = (−�)α with α ∈ (0, 1) (the fractional Lapla-
cian). Given λ ∈ (0, 1), we want to describe how the level sets {x ∈ R

n : u(t, x) = λ}
spread as time goes to +∞.
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When A = −� is the standard Laplacian, the equation becomes

ut − �u = f (u) in (0, +∞) × R
n, (1.3)

and the following result of Aronson and Weinberger [1] describes the evolution of com-
pactly supported data.

Theorem 1.1 ([1]). Let u be a solution of (1.3) with u(0, ·) �≡ 0 compactly supported
in R

n and satisfying 0 ≤ u(0, ·) ≤ 1. Let c∗ = 2
√

f ′(0). Then,

a) if c > c∗, then u(t, x) → 0 uniformly in {|x | ≥ ct} as t → +∞,
b) if c < c∗, then u(t, x) → 1 uniformly in {|x | ≤ ct} as t → +∞.

In addition, (1.3) admits planar traveling wave solutions connecting 0 and 1, that is,
solutions of the form u(t, x) = φ(x · e + ct) with

− φ′′ + cφ′ = f (φ) in R, φ(−∞) = 0, φ(+∞) = 1. (1.4)

The constant c∗ in Theorem 1.1 is the smallest possible speed c in (1.4) for a planar
traveling wave to exist. In addition, Komogorov, Petrovskii, and Piskunov [13] showed
that the solution of (1.3) for n = 1 and with initial datum the Heaviside function
H(x) = χ(0,∞)(x) converges as t → +∞ to a traveling wave with speed c = c∗.

Our results, already announced in [5], show that this situation changes drastically as
soon as the Laplacian is replaced for instance by the fractional Laplacian (−�)α with
α ∈ (0, 1). The equation then becomes

ut + (−�)αu = f (u) in (0, +∞) × R
n . (1.5)

Solutions for the standard heat equation correspond to expected values for particles
moving under a Brownian process. Instead, for α ∈ (0, 1), the fractional Laplacian is
the generator for a stable Lévy process —a jump process. It is reasonable to expect
that the existence of jumps (or flights) in the diffusion process will accelerate the inva-
sion of the unstable state u = 0 by the stable one, u = 1. This has been sustained in
the literature, see [16,7,8] among others, through the linearization of the equation at
the leading edge of the front, as well as through numerical simulations. These heuristics
predict that the front position will be exponential in time —in contrast with the classical
case where it is linear in time by Theorem 1.1. The purpose of our work is to provide
a rigorous mathematical justification of this fact, and to give an accurate localisation of
the level sets of u in the particular case α = 1/2 and f (u) = u − u2. In particular, the
leading edge analysis is not accurate enough.

Reaction equations with fractional diffusion appear in physical models —for instance
of turbulence, plasmas, and flames— when the diffusive phenomena are not properly
described by Gaussian (that is, Brownian) processes. See for example [16] for a descrip-
tion of some of these models. Equation (1.5) also appears in population dynamics, where
it can be obtained in a certain space-time regime as the asymptotic of an integro-differ-
ential model; see [2]. The classical heat equation (1.3) can be obtained from the same
asymptotic model in a different space-time regime; see [13].
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We consider a larger class of operators than fractional Laplacians. We are given a
continuous function p = p(t, x), with t > 0 and x ∈ R

n , such that

• 0 < p ∈ C((0, +∞) × R
n) and

∫
Rn

p(t, x) dx = 1 for all t > 0. (1.6)

• p(t, ·) ∗ p(s, ·) = p(t + s, ·) for all (s, t) ∈ (0,∞)2. (1.7)

• There exist α ∈ (0, 1) and B > 1 such that, for t > 0 and x ∈ R
n,

B−1

t
n

2α (1 + |t− 1
2α x |n+2α)

≤ p(t, x) ≤ B

t
n

2α (1 + |t− 1
2α x |n+2α)

. (1.8)

We assume no further regularity on p than continuity. Given a function u0 ∈ L∞(Rn)

and t > 0, we define

Tt u0(x) := (p(t, ·) ∗ u0) (x) =
∫

Rn
p(t, y)u0(x − y) dy.

Clearly, the family Tt of bounded linear contractions of L∞(Rn) is a semigroup. When
considered in the Banach space Cu,b(R

n)of uniformly continuous and bounded functions
in R

n , the semigroup is a strongly continuous semigroup (also called a C0 semigroup)
and therefore admits an infinitesimal generator −A, defined by

−Au = lim
t↓0

Tt u − u

t

for those u ∈ Cu,b(R
n) for which the limit exists in the uniform convergence norm. The

subspace of such functions is called the domain of A and denoted by D(A). Since the
semigroup is strongly continuous, it is well known that D(A) is a dense subspace of
Cu,b(R

n).
Given u0 ∈ L∞(Rn) the function u = u(t, x) := Tt u0(x) is the mild solution (see

Sect. 2) of the evolution problem

{
ut + Au = 0 in (0, +∞) × R

n,

u(0, ·) = u0 in R
n .

The function p is called the kernel of the semigroup; it is also called the transition
probability function. The operator A is said to be the infinitesimal generator of a Feller
semigroup — since 0 ≤ u0 ≤ 1 leads to 0 ≤ Tt u0 ≤ 1. This property will lead to a
maximum principle for A.

The power decay assumption in (1.8) will be crucial for the results of this paper. The

assumption in (1.8) concerning the dependence of the bound on t− 1
2α x is related with

the self-similarity or scale invariance of the underlying Markov process —an hypothesis
often called “stability”. Indeed, if one assumes that

p(t, x) = a(t)−n p(1, a(t)−1x)

for some function a = a(t) and for all t > 0, then there exists a constant α ∈ (0, 1] such
that a(t) = t

1
2α —as in (1.8); see [15].
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When A = (−�)α is the fractional Laplacian and p = pα , defined for 0 < α < 1
as follows, all assumptions (1.6), (1.7), and (1.8) are satisfied. If u ∈ C2(Rn) has suf-
ficiently slow growth at infinity —for instance |u(x)| ≤ C(1 + |x |γ ) with γ < 2α—
then

(−�)αu(x) = Cn,α P.V .

∫
Rn

u(x) − u(y)

|x − y|n+2α
dy,

where P.V . stands for principal value and the constant Cn,α is adjusted for the symbol
of (−�)α to be |ξ |2α . Its transition probability function p satisfies{

p(t, x) = pα(t, x) = t− n
2α pα(1, t− 1

2α x),

lim|y|→∞ |y|n+2α pα(1, y) = cn,α

for some positive constant cn,α , and thus condition (1.8) is satisfied; see for instance [14].
We have that pα(t, ·) = F−1(e−t |ξ |2α

), where F−1 denotes inverse Fourier transform.
For α = 1/2, p1/2 admits the explicit expression

p1/2(t, x) = Bn
t

(t2 + |x |2)(n+1)/2
= Bn

tn(1 + |t−1x |2)(n+1)/2
,

where Bn = 
( n+1
2 )π− n+1

2 is chosen to ensure property (1.6) above.
More examples of semigroups as above are available in Bony-Courrège-Priouret [3].

This paper, among many other things, characterizes the integral operators satisfying a
maximum principle; see Remark 2.5 below.

Our first result concerns a class of initial data in R
n , possibly discontinuous, which

includes compactly supported functions. We show that the position of all level sets moves
exponentially fast in time.

Theorem 1.2. Let n ≥ 1, α ∈ (0, 1), f satisfy (1.1), and p be a kernel satisfying
(1.6)–(1.7)–(1.8).

Let σ∗ = f ′(0)
n+2α

. Let u be a solution of (1.2), where u0 �≡ 0, 0 ≤ u0 ≤ 1 is measurable,
and

u0(x) ≤ C |x |−n−2α for all x ∈ R
n

and for some constant C. Then,

a) if σ > σ∗, then u(t, x) → 0 uniformly in
{|x | ≥ eσ t

}
as t → +∞,

b) if σ < σ∗, then u(t, x) → 1 uniformly in
{|x | ≤ eσ t

}
as t → +∞.

Part b) on convergence towards 1 is the delicate part of the theorem. A simpler result
—and first step towards the previous theorem— is the following.

Lemma 1.3. Under the assumptions of Theorem 1.2, for every σ < σ∗ there exists
ε ∈ (0, 1) and t > 0 such that

u(t, x) ≥ ε for all t ≥ t and |x | ≤ eσ t . (1.9)

Even if this lemma concerns initial data decaying at infinity, from it we can easily
deduce the nonexistence of traveling waves (under no assumption of their behavior at
infinity, as in the following statement).
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Proposition 1.4. Let n ≥ 1, α ∈ (0, 1), f satisfy (1.1), and p be a kernel satisfying
(1.6)–(1.7)–(1.8).

Then, there exists no nonconstant traveling wave solution of (1.2). That is, all solu-
tions of (1.2) taking values in [0, 1] and of the form u(t, x) = ϕ(x + te), for some vector
e ∈ R

n, are identically 0 or 1. Equivalently, the only solutions ϕ : R
n → [0, 1] of

Aϕ + e · ∇ϕ = f (ϕ) in R
n (1.10)

are ϕ ≡ 0 and ϕ ≡ 1.

The last statement on the elliptic equation (1.10) has an analogue for the Laplacian.
As shown in [1], if |e| < 2

√
f ′(0) then Eq. (1.10) with α = 1 admits the constants 0

and 1 as only solutions taking values in [0, 1].
We already announced our results in [5]. Also for α ∈ (0, 1), Berestycki, Rossi,

and the second author [2] have proved that there is invasion of the unstable state by the
stable one. For a large class of nonlinearities, Engler [9] has proved that the invasion has
unbounded speed. Here we prove that for KPP nonlinearities the position of the front
is exponential in time. For another type of integro-differential equations Garnier [10]
also establishes that the position of the level sets move exponentially in time. Finally,
exponentially propagating solutions exist in the standard KPP equations as soon as the
initial datum decays algebraically; this fact has been noticed by Hamel and Roques [11].

When A = −�, the minimal speed c∗ appears when linearizing around the leading
edge of the front, that is, at u = 0. In fact, since f is concave, the solution u of

ut − �u = f ′(0)u and u(0, ·) = u(0, ·) in R
n

is a supersolution of (1.2). Looking at the particular case u(0, ·) = δ0, the Dirac mass

at 0, we obtain u(t, x) = (4π t)− n
2 e f ′(0)t− |x |2

4t . Thus, u = λ if |x | = 2
√

f ′(0)t + o(t).
Let us make the same heuristic argument —already done for instance in [7,8,16]—

when 0 < α < 1 and (1.8) holds. Now the solution u of

ut + Au = f ′(0)u and u(0, ·) = δ0 in R
n

is

u(t, x) = e f ′(0)t p(t, x).

Estimate (1.8) gives that u = λ if |t− 1
2α x |n+2α = t− n

2α e f ′(0)t O(1), that is, if

|x | = t
1

n+2α eσ∗t O(1), where σ∗ = f ′(0)

n + 2α
(1.11)

is the same exponent as in Theorem 1.2. However, our two next results show that line-
arizing at the front edge is not as accurate in the presence of fractional diffusion as it is
for Brownian diffusion.

First, we will see that the exponent σ∗ in (1.11) is not the right one for nondecreasing
initial data in R. The front will propagate faster, in fact with an exponent larger than σ∗.
Thus, the mass located far away from the edge of the front (that is, the mass at +∞
present in a nondecreasing solution) does play a role in the front speed. This is due to
the jumps in the underlying Lévy process.

Second, even that σ∗ is the precise exponent for compactly supported data, the factor

t
1

n+2α in (1.11) is not correct. It does not appear in the correct expression for the position
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of the front, at least for n = 1 and A = (−�)1/2; see Theorem 1.6. Contrary to the
situation in the previous paragraph, here the front travels slower than the linear leading
edge prediction. This is not a surprise: it is typical of the behaviour of Fisher-KPP type
fronts. In the case α = 1 with, say, n = 1 and f (u) = u −u2, even that the leading edge
analysis predicts the correct location of the front (if s(t) is the first point where u takes
the value 1/2, then s(t) ∼ 2t as t → +∞, as can easily be computed from the Gaussian
kernel), a purely linear analysis would predict s(t) = 2t − 1

2 lnt + O(1), whereas the
correct expansion is s(t) = 2t − 3

2 lnt + O(1) (Bramson [4]).
In one space dimension, it is of interest to understand the dynamics of nondecreasing

initial data. As mentioned before, for the standard Laplacian the level sets of u travel
with the speed c∗, provided that u(0, ·) decays sufficiently fast at −∞. In the fractional
case, the mass at +∞ has an effect and what happens is not a mere copy of the result
of Theorem 1.2 for compactly supported data. The mass at +∞ makes the front travel
faster to the left, indeed with a larger exponent than σ∗. In the following theorem, we
may take the initial datum to be for instance u0(x) = H(x), the Heaviside function, or
even u0(x) = l H(x) for any constant l ∈ (0, 1].
Theorem 1.5. Let n = 1, α ∈ (0, 1), f satisfy (1.1), and p be a kernel satisfying
(1.6)–(1.7)–(1.8).

Let σ∗∗ = f ′(0)
2α

. Let u be a solution of (1.2), where 0 ≤ u0 ≤ 1 is measurable and
nondecreasing, u0 �≡ 0, and

u0(x) ≤ C(−x)−2α if x < 0

for some constant C. Then,

a) if σ > σ∗∗, u(t, x) → 0 uniformly in
{

x ≤ −eσ t
}

as t → +∞,
b) if σ < σ∗∗, u(t, x) → 1 uniformly in

{
x ≥ −eσ t

}
as t → +∞.

Note that

σ∗∗ = f ′(0)

2α
>

f ′(0)

1 + 2α
= σ∗,

where σ∗ is the exponent in Theorem 1.2 for n = 1 and compactly supported data.
Notice also the slower power decay assumed in the initial condition with respect to
Theorem 1.2. One could wonder whether a model with such features is physically, or
biologically relevant. In fact, this behaviour is consubstantial to fast diffusion, and the
model may be relevant to explain fast recolonisation events in ecology; see a discussion
in [11].

Our final result concerns the case n = 1, A = (−�)1/2, f (u) = u(1 − u), and

initial data decaying fast enough at ±∞. It shows that the factor t
1

n+2α = t
1
2 in (1.11)

does not appear in the front position.

Theorem 1.6. Let n = 1, A = (−�)1/2, and f (u) = u(1 − u). That is, we consider
the problem {

ut + (−�)1/2u = u(1 − u) in (0, +∞) × R,

u(0, ·) = u0 in R.
(1.12)

Let u be a solution of (1.12), where 0 ≤ u0 ≤ 1 is measurable, u0 �≡ 0, and

u0(x) ≤ C |x |−2 = C |x |−n−2α for all x ∈ R

and for some constant C.
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Then, for all λ ∈ (0, 1) there exists a constant Cλ > 1 and a time tλ (both depending
only on u0 and λ) such that, for all t > tλ,

{|x | > Cλet/2} ⊂ {u < λ} and {|x | <
1

Cλ

et/2} ⊂ {u > λ}. (1.13)

As a consequence, if t > tλ then

{u(t, ·) = λ} ⊂ [−Cλet/2,− 1

Cλ

et/2] ∪ [ 1

Cλ

et/2, Cλet/2]

and {u(t, ·) = λ} intersects both intervals.

Remark 1.7. Jones’ symmetrization result [12] for the Laplacian also applies to Eq. (1.5)
for all α ∈ (0, 1). Its statement in the present situation is the following. Let u be a solution
of (1.5) such that u(0, ·) �≡ 0 has compact support in R

n and satisfies 0 ≤ u(0, ·) ≤ 1.
Let λ ∈ (0, 1), t > 0, and x0 ∈ R

n be such that u(t, x0) = λ and ∇x u(t, x0) �= 0. Then,
the normal line to the level set {x ∈ R

n : u(t, x) = λ} through the point x0 intersects
the convex hull of the support of the initial datum u(0, ·).

Thus, the level sets of solutions with compactly supported initial data look more and
more spherical as t increases. Jones’ beautiful proof combines the maximum principle
and Hopf’s lemma with reflections along hyperplanes. All these tools are also available
for the fractional Laplacian.

Let us briefly discuss the main ideas in the proofs of our results. The supersolutions
obtained by solving ut + Au = f ′(0)u give an upper bound for the position (in norm)
of the level sets. This leads immediately to parts a) of Theorems 1.2 and 1.5.

Part b) on convergence towards 1 is the delicate point and it is done in two steps. The
first one is the content of Lemma 1.3 above. Its lower bound (1.9) is accomplished by
constructing solutions of the equation

vt + Av = f (δ)

δ
v

which take values in (0, δ) —and, as a consequence of the concavity of f , are subso-
lutions of (1.2). This is done truncating an initial datum v0 at a level ε, where ε < δ,
i.e., considering min (v0, ε). We then solve the linear equation above for v with this new
datum, up to the time T where v takes the value δ. At this point we compute how the
level sets have propagated. We then truncate v(T, ·) at the level ε as before, and we
iterate this procedure.

The convergence towards 1 is shown using (1.9) and a subsolution taking values in
[ε, 1] built through the linear equation

wt + Aw = f (ε′)
1 − ε′ (1 − w)

for some 0 < ε′ < ε and an initial condition involving |x |γ , with γ ∈ (0, 2α). Here
again we use the concavity of f to ensure that f (ε′)(1 − ε′)−1(1 − w) ≤ f (w) for
w ∈ [ε, 1].

The proof of Theorem 1.6 on the level sets of solutions in the case n = 1 and
A = (−�)1/2 uses some of the previous results and, in addition, more precise sub and
supersolutions of the form
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v(t, x) = a

(
1 +

|x |2
b(t)2

)−1

,

for certain constants a and functions of time b = b(t).
The plan of the paper is the following. In Sect. 2 we prove several results on the

semigroup Tt , especially several maximum and comparison principles, as well as some
upper and lower bounds on the flow. Section 3 is devoted to prove Proposition 1.4 on
traveling waves and Theorem 1.2 on solutions with 0 limit at infinity. Section 4 concerns
Theorem 1.5 on increasing solutions in R. Finally, Sect. 5 establishes Theorem 1.6 on
precise bounds for the level sets.

2. The Semigroup and its Generator: Maximum Principles and Bounds

In this section we prove several results regarding the semigroup

Tt u0(x) :=
∫

Rn
p(t, y)u0(x − y) dy =

∫
Rn

p(t, x − y)u0(y) dy (2.1)

for u0 ∈ L∞(Rn). We refer to [6,17,18] as good monographs in the subject; the last one
puts especial emphasis on Feller semigroups. Through the paper, all that we assume is
that the continuous function p satisfies (1.6)–(1.7)–(1.8).

Let us mention here an important situation in which such functions or kernels p
arise. Let ({Xt }t≥0, Px ) be a Markov process on R

n with transition probability func-
tion Pt (x, dy). The quantity

∫
E Pt (x, dy) is the probability that a particle, initially at x ,

belongs to a Borel set E at time t . If Pt (x, dy) has a density p(t, x, y) and the process is
invariant under translations, p(t, x, y) = p(t, x − y), then the semigroup property for
(2.1) is just the conditioned probabilities formula. This is the framework when p is the
classical heat or Gaussian kernel (the Markov process is then the Wiener or Brownian
process), and also when p = pα is the kernel for the fractional Laplacian (−�)α (we
then have the symmetric 2α-stable Lévy process).

2.1. The semigroup in C0(R
n), in Cu,b(R

n), and in Xγ . Even though the semigroup is
well posed in L∞(Rn), for some proofs it will be important to have it defined in some
Banach spaces of functions where the semigroup is strongly continuous. We recall that
a strongly continuous semigroup in a Banach space X is a family {Tt }t>0 of bounded
linear operators on X such that Tt+s = Tt Ts for all positive s and t , and such that

lim
t↓0

‖Tt u − u‖ = 0 for every u ∈ X,

where ‖ · ‖ is the norm in X .
Given the definition (2.1) of our semigroup, the last condition concerns the quantity

(Tt u − u)(x) =
∫

Rn
p(t, y) {u(x − y) − u(x)} dy.

Using (1.8) and making the change of variables t− 1
2α y = y, we obtain

|(Tt u − u)(x)| ≤
∫

Rn

B

1 + |y|n+2α
|u(x − t

1
2α y) − u(x)| d y. (2.2)
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We write it as the sum of two integrals, one in a sufficiently large ball and the other in
its complement. In this way we see that, in order to have this quantity tend to 0 as t → 0
uniformly in x ∈ R

n , it suffices for u to be bounded and uniformly continuous in R
n .

Therefore we will work in the spaces

Cu,b(R
n) = {u : R

n → R : u is bounded and uniformly continuous in R
n}

and

C0(R
n) = {u is continuous in R

n and u(x) → 0 as |x | → ∞} ⊂ Cu,b(R
n).

Note that, for u ∈ C0(R
n), the continuity of u and its 0 limit at ∞ guarantee the bound-

edness and the uniform continuity of u. Both are Banach spaces with the L∞(Rn) (or
uniform convergence) norm.

Next we will define a family of Banach spaces Xγ , with 0 ≤ γ < 2α, for which
Cu,b(R

n) = X0. Later we will check that Tt maps Xγ into itself. In particular, we will
have that

Tt Cu,b(R
n) ⊂ Cu,b(R

n).

Using in addition that

|Tt u(x)| ≤
∫

Rn

B

1 + |y|n+2α
|u(x − t

1
2α y)| d y,

it is easy to verify the 0 limit at infinity for Tt u whenever u ∈ C0(R
n). That is:

Tt C0(R
n) ⊂ C0(R

n)

for all t > 0.
Moreover, since both Cu,b(R

n) and C0(R
n) carry the L∞ norm, Tt is a contraction

in both spaces, i.e., ‖Tt‖ ≤ 1. Note also that

Tt 1 = 1.

Finally (and this is the property for a semigroup to be called a Feller semigroup), we
have:

if 0 ≤ u ≤ 1, then 0 ≤ Tt u ≤ 1.

We will need to use some unbounded comparison functions. Thus, we have to set up
the semigroup (and make it to be strongly continuous) in a larger Banach space contain-
ing unbounded functions. For 0 ≤ γ < 2α, we consider functions u : R

n → R such
that

|u(x)| ≤ C(1 + |x |γ ) in R
n for some constant C (2.3)

and such that ⎧⎨
⎩

for every ε > 0 there exists δ > 0 such that:

if x ∈ R
n and |z| ≤ δ, then

|u(x + z) − u(x)|
1 + |x |γ ≤ ε.

(2.4)

We define

Xγ := {u : R
n → R : u satisfies (2.3) and (2.4)}
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endowed with the norm

‖u‖Xγ := sup
x∈Rn

|u(x)|
1 + |x |γ .

Note that X0 = Cu,b(R
n). With this norm, we clearly have the continuous inclusions

C0(R
n) ⊂ Cu,b(R

n) ⊂ Xγ .

In addition, Xγ ⊂ C(Rn) —the space of continuous, possibly unbounded, functions
in R

n .
We will also use that the functions

wγ ∈ Xγ , where wγ (x) = |x |γ for x ∈ R
n,

and

Wγ ∈ Xγ , where Wγ (x) = (x−)γ for x ∈ R

and x− = max(−x, 0) is the negative part of x . For this, simply use the inequalities
|x + z|γ − |x |γ ≤ |z|γ if γ ≤ 1 and |x + z|γ − |x |γ ≤ γ |x + z|γ−1|z| if γ > 1.

We need to verify that Xγ is a Banach space. Let {uk} be a Cauchy sequence in Xγ .
It has a pointwise limit u which clearly satisfies (2.3). Now, given ε > 0, to control the
quantity in (2.4), we add and subtract the term (uk(x + z) − uk(x))/(1 + |x |γ ). Since
|uk(x) − u(x)|/(1 + |x |γ ) ≤ ε for k large enough, it remains to control the term

|u(x + z) − uk(x + z)|
1 + |x |γ = |u(x + z) − uk(x + z)|

1 + |x + z|γ
1 + |x + z|γ

1 + |x |γ .

Now, we simply use that if |z| ≤ 1 then 1 + |x + z|γ ≤ 1 + 2γ (|x |γ + |z|γ ) ≤ (1 + 2γ )(1 +
|x |γ ).

Next, we verify that

Tt : Xγ → Xγ is a bounded linear map and ‖Tt‖Xγ ≤ Cγ (1 + t
γ
2α ) (2.5)

for some constant Cγ independent of t . Indeed, making the change of variables as in
(2.2), we have

|Tt u(x)|
1 + |x |γ ≤

∫
Rn

B

1 + |y|n+2α

|u(x − t
1

2α y)|
1 + |x − t

1
2α y|γ

1 + |x − t
1

2α y|γ
1 + |x |γ d y. (2.6)

The last factor 1 + |x − t
1

2α y|γ ≤ 1 + 2γ (|x |γ + t
γ
2α |y|γ ), and note that the function

y �→ (1 + |y|γ )/(1 + |y|n+2α) is integrable. Thus, Tt u satisfies (2.3). To verify (2.4) for
Tt u, we write

|Tt u(x + z) − Tt u(x)|
1 + |x |γ ≤

∫
Rn

B

1 + |y|n+2α

|u(x + z − t
1

2α y) − u(x − t
1

2α y)|
1 + |x |γ d y,

and we conclude as before multiplying and dividing by 1 + |x − t
1

2α y|γ . Thus, we have
proved assertion (2.5).
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Finally, we check that {Tt }t>0 is a strongly continuous semigroup in Xγ . We have

|Tt u(x) − u(x)|
1 + |x |γ ≤

∫
Rn

B

1 + |y|n+2α

|u(x − t
1

2α y) − u(x)|
1 + |x |γ d y.

Given ε > 0, the numerator in the second factor in the integral is controlled by C(1 +

|x |γ + |x − t
1

2α y|γ ). Thus, when integrating in {|y| > A} the result is smaller than ε if
we take A large enough —since y �→ (1 + |y|γ )/(1 + |y|n+2α) is integrable. Finally, for

the integral in {|y| ≤ A}, we take t small enough to ensure t
1

2α y ≤ δ (where δ is as in
(2.4)), and the integral becomes smaller than a constant times ε.

Remark 2.1. Note that, for 0 < γ < 2α, Tt : Xγ → Xγ is a bounded linear map (see
(2.5)), but not necessarily a contraction. Instead, we have that Tt : Cu,b(R

n) → Cu,b(R
n)

and Tt : C0(R
n) → C0(R

n) are contractions for all t > 0.
Recall also that Tt : L∞(Rn) → L∞(Rn) also form a semigroup of contractions, but

not a strongly continuous semigroup.

2.2. The generator of the semigroup. Given a strongly continuous semigroup in a
Banach space X , one can define its (infinitesimal) generator −A by

− Au = lim
t↓0

Tt u − u

t
for u ∈ D(A) ⊂ X, (2.7)

where the domain D(A) of A (or −A) is the subspace of X defined by

D(A) := {u ∈ X for which the limit in X as t ↓ 0in (2.7) exists}.
We will denote by

D0(A) ⊂ Du,b(A) ⊂ Dγ (A)

the domain of the generator −A of {Tt } in the Banach spaces C0(R
n), Cu,b(R

n), and
Xγ , respectively. The inclusions of these three domains are clear because of previous
considerations.

To verify that a certain function belongs to D(A) may not be an easy task. However,
the following is a general fact that will be very useful later; see Lemmas 2.2 and 2.3
below. For every strongly continuous semigroup {Tt } in a Banach space X , we have:

for all u ∈ X and 0 ≤ a < b,∫ b

a
Tsu ds ∈ D(A) and A

∫ b

a
Tsu ds = Tau − Tbu. (2.8)

Before verifying this, note that the function s ≥ 0 �→ Tsu ∈ X is continuous (and
therefore locally integrable) thanks to the strong continuity of the semigroup. Note also
that from (2.8) we deduce that

D(A) is a dense subspace of X,
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since t−1
∫ t

0 Tsu ds ∈ D(A) tends to u in X as t ↓ 0. Now, to verify (2.8), take 0 < t <

b − a and note that

Tt − Id

t

∫ b

a
Tsu ds = 1

t

∫ b+t

a+t
Tsu ds − 1

t

∫ b

a
Tsu ds

= 1

t

∫ b+t

b
Tsu ds − 1

t

∫ a+t

a
Tsu ds −→ Tbu − Tau (2.9)

as t ↓ 0.
Similar kinds of arguments establish also the following two general results (see

Sect. 1.2 of [17]). First, the generator A is a closed linear operator. Second, and impor-
tant for later purposes:

if u ∈ D(A), then {t �→ Tt u} ∈ C1([0,∞); X), Tt u ∈ D(A) for all t ≥ 0, and
d

dt
(Tt u) + ATt u = 0 for all t ≥ 0.

Let us now recall two important properties of A which follow easily from its definition
(2.7) and the fact that Tt is the convolution with a probability kernel.

We have the following maximum principle:

if u ∈ Dγ (A) satisfies u ≤u(x0) in R
n for some x0 in R

n, then Au(x0)≥0. (2.10)

Recall that here γ < 2α, that Dγ (A) ⊂ Xγ is the domain of A in Xγ , and that functions
in Xγ are continuous but may be unbounded. Thus, we are assuming that this particular
u ∈ Xγ is bounded above and achieves its maximum. Statement (2.10) follows from
(Tt u − u)(x0) = ∫

Rn p(t, y){u(x0 − y) − u(x0)} dy ≤ 0 for all t > 0.
The operator A annihilates constant functions and it is invariant by translations:

A1 ≡ 0 and (Au)(x + x0) = (Au(· + x0))(x) for all u ∈ Dγ (A), x0 ∈ R
n, x ∈ R

n .

The previous maximum principle (and also an important extension to prove our
results, Proposition 2.8) apply to functions in the domain of A. This will be sufficient
for our results once we show the existence of “enough” initial conditions belonging to
the domain of A. We do this in the following lemmas. An alternative approach would
be that of Subsect. 2.6, in which we prove the needed maximum principle for “weak”
or mild solutions. If one chooses this alternative approach, the previous considerations
on the initial data being in the domain of A may be avoided.

We can now exhibit initial conditions in the domain of A whose nonlinear flow will
stay below the flow of the given arbitrary initial condition. We start with the case of data
in C0(R

n).

Lemma 2.2. Let n ≥ 1, α ∈ (0, 1), and p be a kernel satisfying (1.6)–(1.7)–(1.8). Let
0 ≤ u0 ≤ 1 be measurable in R

n and u0 �≡ 0.
Then, for some constant c > 0 depending on u0,

T2u0 ≥ c
∫ 2

1
p(s, ·) ds and

∫ 2

1
p(s, ·) ds ∈ D0(A).

In addition,
∫ 2

1 p(s, x) ds ≤ C |x |−n−2α for all x ∈ R
n, for some constant C > 0.

Regarding the semigroup in Cu,b(R), we have:



Fisher-KPP Equations with Fractional Diffusion 691

Lemma 2.3. Let n = 1, α ∈ (0, 1), and p be a kernel satisfying (1.6)–(1.7)–(1.8). Let
0 ≤ u0 ≤ 1 be measurable and nondecreasing, with u0 �≡ 0. Let

P(t, x) :=
∫ x

−∞
p(t, y) dy.

Then, for some constant c > 0 depending on u0,

T2u0 ≥ c
∫ 2

1
P(s, ·) ds and

∫ 2

1
P(s, ·) ds ∈ Du,b(A).

In addition,
∫ 2

1 P(s, x) ds ≤ C(−x)−2α for all x < 0, for some constant C > 0.

Therefore, given initial data satisfying the hypotheses of Theorems 1.2 or 1.5, we have
built smaller initial data (after time 2) satisfying the same hypotheses of the theorems
and belonging to the domain of the semigroup. They will be useful to give pointwise
sense to Au(t)(x) after running the nonlinear problem and, hence, useful to apply an
easy maximum principle proved in Subsect. 2.5 below.

Let us denote

q(t, x) := 1

t
n

2α (1 + |t− 1
2α x |n+2α)

= t

t
n

2α
+1 + |x |n+2α

. (2.11)

Proof of Lemma 2.2. We claim that, for some constant c > 0 depending only on n
and α,

TtχB1(0)(x) ≥ B−1(q(t, ·) ∗ χB1(0))(x)

≥ c
1

t
n

2α (1 + |t− 1
2α x |n+2α)

= c q(t, x) for |x | ≥ 1, t > 0, (2.12)

where χB1(0) denotes the indicator function of the unit ball.
Indeed, by (1.8) we have

TtχB1(0)(x) ≥ B−1
∫

B1(0)

t− n
2α

1 + (t− 1
2α |x − y|)n+2α

dy.

In the integral, |y| ≤ 1 ≤ |x | —we are taking |x | ≥ 1 by hypothesis. Thus, |x − y| ≤
|x | + |y| ≤ 2|x | and the integrand is larger than or equal to t− n

2α (1 + (t− 1
2α 2|x |)n+2α)−1,

which proves (2.12).
Now, notice that T1u0 = p(1, ·) ∗ u0 is a positive continuous function. Hence,

T1u0 ≥ cχB1(0) for some positive constant c. Thus, T2u0 = T1T1u0 ≥ T1cχB1(0). This
fact, the lower bound (2.12) with t = 1, and the standing upper bound (1.8) for p in
terms of q lead to the lower bound for T2u0 of the lemma.

The statement that
∫ 2

1 p(s, ·) ds belongs to D0(A) is a particular case of the general
fact (2.8) for strongly continuous semigroups. Note here that∫ 2

1
p(s, ·) ds =

∫ 1

0
Tτ p(1, ·) dτ.

Finally, the upper bound for
∫ 2

1 p(s, ·) ds follows from (1.8). ��
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Proof of Lemma 2.3. We claim that, for some constant c > 0 depending only on α,

Ttχ(0,+∞)(x) ≥ B−1(q(t, ·) ∗ χ(0,+∞))(x)

≥ B−1c (1 + |t− 1
2α x |)−2α for x < 0, t > 0. (2.13)

Indeed, simply note that, since x < 0,

Ttχ(0,+∞)(x) ≥ B−1
∫ +∞

0

t− 1
2α

1 + (t− 1
2α |x − y|)1+2α

dy

= B−1
∫ +∞

−x

t− 1
2α

1 + (t− 1
2α z)1+2α

dz = B−1
∫ +∞

−t−
1

2α x

dz

1 + z1+2α

≥ c (1 + |t− 1
2α x |)−2α.

The rest of the proof is identical to that of the previous lemma. Just note that

P(t + s, ·) = Tt P(s, ·) (2.14)

for all positive s and t , and hence
∫ 2

1 P(s, ·) ds = ∫ 1
0 Tτ P(1, ·) dτ . ��

Remark 2.4. Let n ≥ 1, α ∈ (0, 1), and p be a kernel satisfying (1.6)–(1.7)–(1.8). Since
{Tt } is a strongly continuous semigroup of contractions both in C0(R

n) and in Cu,b(R
n),

a general result of semigroup theory (see Proposition 3.4.3 of [6]) guarantees that its
infinitesimal generator −A is a m-dissipative operator.

In particular, given any g ∈ C0(R
n) (respectively, g ∈ Cu,b(R

n)) and any λ > 0, the
elliptic equation

Au + λu = g in R
n (2.15)

admits a unique solution u ∈ D0(A) ⊂ C0(R
n) (respectively, u ∈ Du,b(A) ⊂

Cu,b(R
n)). It is given explicitly by the formula

u =
∫ +∞

0
e−λt Tt g dt,

that is,

u(x) =
∫ +∞

0

∫
Rn

e−λt p(t, x − y)g(y) dt dy.

It is simple to check that u, defined in this way, belongs to the domain of A and satisfies
(2.15) (see Prop. 3.4.3 of [6]). For the uniqueness statement, note that, for all s > 0 and
all u ∈ Cu,b(R

n),∥∥∥−s−1(Tsu − u) + λu
∥∥∥∞ ≥

∥∥∥(λ + s−1)u
∥∥∥∞ −

∥∥∥s−1Tsu
∥∥∥∞

≥
∥∥∥(λ + s−1)u

∥∥∥∞ −
∥∥∥s−1u

∥∥∥∞ = λ ‖u‖∞ .

By letting s ↓ 0, if u ∈ Du,b(A) then ‖Au + λu‖∞ ≥ λ‖u‖∞. In particular, if u solves
(2.15) with g ≡ 0, then u ≡ 0.
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Remark 2.5. Under the additional assumption that C∞
c (Rn) (i.e., C∞ functions with

compact support) is contained in D(A) (that we do not make in this paper), [3] (see The-
orems IX and XIV) characterized the generators A of Feller semigroups. Restricted to
C∞

c (Rn), A is the sum of a local diffusion (second-order) operator and an integro-differ-
ential operator of Lévy type. See also Thm. 9.4.1 of [18]. In particular, [3] characterizes
the integral operators satisfying the maximum principle.

2.3. The nonlinear problem. Comparison principle. Throughout this section, A is the
generator of a strongly continuous semigroup in a Banach space X .

We recall the notion of mild solution for the nonhomogeneous linear problem{
ut + Au = h(t) in (0, T ),

u(0) = u0,
(2.16)

where T > 0, u0 ∈ X , and h ∈ C([0, T ]; X) are given. The mild solution of (2.16)
(see [17]) is given explicitly by Duhamel’s principle (or formula of the variation of
constants):

u(t) = Tt u0 +
∫ t

0
Tt−s h(s) ds

for all t ∈ [0, T ]. One easily checks that u ∈ C([0, T ]; X).
We now turn to the nonlinear problem. Let G : [0,∞) × X → X, G = G(t, u) be

a function satisfying

G ∈ C1([0,∞) × X; X) and

G(t, ·) is globally Lipschitz in X uniformly in t ≥ 0. (2.17)

Given any T > 0, we are interested in the nonlinear problem{
ut + Au = G(t, u) in (0, T ),

u(0) = u0,
(2.18)

for a given u0 ∈ X . In our case (in which X is a subspace of Cu,b(R
n)), G will be given

by

G(t, u)(x) := g(t, x, u(x)), (2.19)

where g : [0,∞) × R
n × R → R is a given nonlinearity. We say that u ∈ C([0, T ]; X)

is a mild solution of (2.18) if

u(t) = Tt u0 +
∫ t

0
Tt−s G(s, u(s)) ds (2.20)

for all t ∈ [0, T ].
Note that the map Nu0 : C([0, T ]; X) → C([0, T ]; X) given by

Nu0(u)(t) := Tt u0 +
∫ t

0
Tt−s G(s, u(s)) ds (2.21)

is Lipschitz in C([0, T ]; X) with Lipschitz constant

‖Nu0‖Lip ≤ T M Lipu(G), (2.22)
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where Lipu(G) denotes the Lipschitz constant of G in u, and M := supt∈[0,T ] ‖Tt‖.
Recall that for any strongly continuous semigroup, we have that ‖Tt‖ ≤ Ceωt for some
constants C and ω; see Thm. 2.2 in Chap. 1 of [17]. Using (2.22) (also for the maps Nu0

defined in C([0, τ ]; X) with τ < T ) and expression (2.20), it follows by induction that
(Nu0)

k is Lipschitz in C([0, T ]; X) with Lipschitz constant {T M Lipu(G)}k/k!, where
k is any positive integer. This constant is less than 1 if we take k large enough. Now, by
an easy extension of the contraction principle, not only (Nu0)

k but also Nu0 has a unique
fixed point. Thus, there exists a unique mild solution u of (2.18) for every T > 0. It
is also easy to see that it is given by the limit of the iterates (Nu0)

i (v), i ∈ Z
+, of any

given element v ∈ C([0, T ]; X). In particular, taking v = v(t) ≡ u0, we have

u = lim
i→+∞(Nu0)

i (u0). (2.23)

Given 0 < T < T ′, the mild solution in (0, T ′) must coincide in (0, T ) with the mild
solution in this interval, by uniqueness. Thus, under assumption (2.17), the mild solution
of (2.18) extends uniquely to all t ∈ [0,∞), i.e., it is global in time. This applies, in
particular, to the linear problem ut + Au = au, with a ∈ R, in the Banach space Xγ .

Next, a useful fact for several future purposes. We claim that if u0 ∈ X, u is the mild
solution of (2.18), and a ∈ R, then

ũ(t) := eat u(t) (2.24)

is the mild solution of {
ũt + Aũ = G̃(t, ũ) in (0, T ),

ũ(0) = u0,
(2.25)

where

G̃(t, ũ) := aũ + eat G(t, e−at ũ). (2.26)

Note that G̃ also satisfies (2.17), as G does.
To verify this fact, denote h(s) := G(s, u(s)) and use (2.20) with t replaced

by s, i.e., u(s) = Tsu0 +
∫ s

0 Ts−τ h(τ ) dτ . Hence, for 0 ≤ s ≤ t, Tt−su(s) =
Tt u0 +

∫ s
0 Tt−τ h(τ ) dτ . We now multiply by aeas , integrate in s, and use that the function∫ s

0 Tt−τ h(τ ) dτ is differentiable in s in order to integrate by parts. We have∫ t

0
aeas Tt−su(s) ds =

∫ t

0
aeas Tt u0 ds +

∫ t

0
ds aeas

∫ s

0
dτ Tt−τ h(τ )

= (eat − 1)Tt u0 + eat
∫ t

0
dτ Tt−τ h(τ ) −

∫ t

0
ds eas Tt−s h(s)

= eat u(t) − Tt u0 −
∫ t

0
ds eas Tt−s h(s). (2.27)

This is equivalent to what we needed to show:

ũ(t) := eat u(t) = Tt u0 +
∫ t

0
ds eas Tt−s (au(s) + h(s)).

In particular, if g(t, x, u) = au, then u(t) = eat Tt u0 is the mild solution of (2.18)–
(2.19) for all T > 0. This follows after considering (2.24)–(2.25)–(2.26) with a replaced
by −a, since in this case G̃ = 0.
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We now apply all these facts to problem (1.2). Recall our standing assumption (1.1)
for the nonlinearity f . Now, we extend f outside [0, 1] to ensure that

f ∈ C1(R) is globally Lipschitz and f ′ is uniformly continuous in R. (2.28)

We work in the Banach spaces

X = C0(R
n) and X = Cu,b(R

n).

Taking G(t, u)(x) := f (u(x)) we can verify (2.17). We use that f ′ is uniformly con-
tinuous to check that the map u ∈ Cu,b(R

n) �→ f (u) ∈ Cu,b(R
n) is continuously

differentiable. We also use f (0) = 0 to ensure u ∈ C0(R
n) �→ f (u) ∈ C0(R

n). Thus,
by the previous considerations, there is a unique mild solution u of{

ut + Au = f (u) in (0,∞) × R
n,

u(0, ·) = u0 in R
n,

(2.29)

for data u0 in any of both Banach spaces.
We now claim the following comparison principle. Assume that f1 and f2 satisfy

(2.28) and f1 ≤ f2 in R. We then have:

if u1(0, ·) ≤ u2(0, ·) belong to Cu,b(R
n), then u1(t, ·) ≤ u2(t, ·) (2.30)

for all t ∈ [0,∞), where u1 and u2 are the respective mild solutions of the nonlinear
problem (2.29) with f and u0 replaced by fi and ui (0, ·).

This is verified as follows. Take a := max{Lip( f1), Lip( f2)} to ensure that

g̃i (t, ũ) := aũ + eat fi (e
−at ũ)

are nondecreasing in ũ. We know that the mild solution to problem (2.25) with T =
∞, G̃ = g̃i and initial data ui (0, ·) is given by ũi (t) = eat ui (t). Hence, (2.30) is
equivalent to

ũ1(t, ·) ≤ ũ2(t, ·) for all t ∈ [0,∞).

Now, by (2.23), it is enough by induction to show that N1(w̃1)(t) ≤ N2(w̃2)(t) for
all t ∈ [0,∞) whenever w̃1(t) ≤ w̃2(t) for all t ∈ [0,∞). Here Ni denotes the map
(2.21) with g replaced by g̃i and u0 replaced by ui (0, ·). This fact is obvious since
u1(0, ·) ≤ u2(0, ·), g̃i are nondecreasing in ũ, f1 ≤ f2, and Tt is order preserving.

As a consequence of this comparison principle, the solution u of (1.2) satisfies 0 ≤
u ≤ 1 in all [0, +∞) × R

n for every u0 ∈ Cu,b(R
n) with 0 ≤ u0 ≤ 1. We simply use

that u ≡ 0 and u ≡ 1 are solutions of the same problem with smaller and bigger initial
data, respectively.

Remark 2.6. If the initial datum belongs to the domain of A, we have further regularity
in t of the mild solution u = u(t). This follows from Theorem 1.5 in Sect. 6.1 of [17]
and its proof; see also Definition 2.1 in Sect. 4.2 of [17]. Under hypothesis (2.17) (here
the continuous differentiability of G with values in X is important), the mild solution u
of (2.18) satisfies

u ∈ C1([0, T ); X) and u([0, T )) ⊂ D(A) if u0 ∈ D(A), (2.31)

and it is a classical solution, i.e., a solution satisfying (2.18) pointwise for all t ∈ (0, T ).
In particular, this is the case for the linear problem, G(t, u) = au.

As a consequence, if the initial datum u0 in (1.2) belongs to the domain D0(A) (respec-
tively, Du,b(A)), then the mild solution u of (1.2) satisfies (2.31) (with D(A) = D0(A),
respectively D(A) = Du,b(A)) and it is a classical solution.
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Finally, we need the following proposition describing the solution of (1.2) corre-
sponding to nondecreasing initial conditions in R with a limit l ∈ (0, 1] at +∞. To prove
it we will use the function

V1(x) :=
∫ 2

1
ds

∫ x

−∞
dy p(s, y).

It agrees with the function
∫ 2

1 P(s, ·) ds considered in Lemma 2.3. By that lemma and
by (2.14) and (2.9), we know that

V1 ∈ Du,b(A) and AV1 = P(1, ·) − P(2, ·) ∈ C0(R). (2.32)

In addition, it is clear that

lim
x→−∞ V1(x) = 0 and lim

x→+∞ V1(x) = 1. (2.33)

Proposition 2.7. Let n = 1, α ∈ (0, 1), f satisfy (1.1), and p be a kernel satisfying
(1.6)–(1.7)–(1.8). Let u0 ∈ Du,b(A) satisfy 0 ≤ u0 ≤ 1,

lim
x→−∞ u0(x) = 0 and lim

x→+∞ u0(x) = l,

where 0 < l ≤ 1 is a constant. Let u be the mild solution of (1.2). Let φl = φl(t) be the
solution of

φ′
l = f (φl) in [0,∞), φl(0) = l.

Then, the function

v(t, x) := u(t, x) − φl(t)V1(x) satisfies v ∈ C1([0,∞); C0(R)).

In particular, limx→−∞ u(t, x) = 0 and limx→+∞ u(t, x) = φl(t), both uniformly in
t ∈ [0, T ], for every T .

Note that the limits at ±∞ claimed for the solution are a consequence of the state-
ment v(t) ∈ C0(R). In addition, since f (φ) � | f ′(1)|(1 − φ) near φ = 1, we have that
φl(t) � 1 − ce−| f ′(1)|t for t large, with c a positive constant.

Proof of Proposition 2.7. Consider v = v(t, x) as in the statement of the proposition.
Since we assume u0 ∈ Du,b(A), by Remark 2.6 the solution u is classical. Since in
addition V1 ∈ Du,b(A) by (2.32), we have

(vt + Av)(t, x) = f (u(t, x)) − f (φl(t))V1(x) − φl(t)AV1(x)

= f (v(t, x) + φl(t)V1(x)) − f (φl(t))V1(x) − φl(t)AV1(x).

Therefore, v solves {
vt + Av = g(t, x, v) in (0,∞),

v(0) = u0 − lV1,
(2.34)

where

g(t, x, v) := f (v + φl(t)V1(x)) − f (φl(t))V1(x) − φl(t)AV1(x)

for t ∈ [0,∞), x ∈ R, and v ∈ R.
Let X = C0(R) and G defined by G(t, v)(x) = g(t, x, v(t, x)). Using that f (0) = 0,

(2.32), and (2.33), one checks that G : [0,∞) × C0(R) → C0(R) and that G satis-
fies (2.17) with Lipschitz constant Lip( f ). Thus, by previous considerations in this
subsection, v is the unique classical solution of (2.34) in X = C0(R). In particular,
v ∈ C1([0,∞); C0(R)). From this, the last statement of the proposition follows easily.

��
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2.4. The nonlinear problem for discontinuous initial data. Comparison Principle. Even
though our semigroup is not strongly continuous in L∞(Rn), here we show that, for ini-
tial datum u0 ∈ L∞(Rn), our nonlinear problem (1.2) admits a unique mild solution
which is global in time. In addition, the comparison principle of the last subsection still
holds for bounded (perhaps discontinuous) initial data.

One starts writing the notion of a mild solution of (1.2):

u(t, x) = (Tt u0)(x) +
∫ t

0
Tt−s f (u(s, x)) ds

=
∫

Rn
dy p(t, x − y)u0(y) +

∫ t

0
ds

∫
Rn

dy p(t − s, x − y) f (u(s, y)),

for t ∈ (0, T ) and x ∈ R
n , where u0 ∈ L∞(Rn) is given. Since the map given by the

right-hand side is not continuous in time with values in L∞(Rn), we now work in the
Banach space L∞((0, T )× R

n). The map is clearly Lipschitz in L∞((0, T )× R
n) with

Lipschitz constant T Lip( f ). By the same variant of the contraction principle used in the
previous subsection, we conclude the existence and uniqueness of a global in time mild
solution of (1.2) with

u ∈ L∞((0, T ) × R
n) for all T > 0.

To prove the comparison principle —as stated in the previous subsection— we pro-
ceed in the same way as there. The only point to check is the statement about the mild
solution for the new function (2.24) and nonlinearity (2.26). The argument is the same
as there since we can integrate by parts in (2.27) due to the absolute continuity of∫ s

0 dτ Tt−τ h(τ ) in s, which allows to use the fundamental theorem of calculus.
As a consequence of this comparison principle, if u is the mild solution of (1.2)

with n = 1 and u0 ∈ [0, 1] measurable and nondecreasing (recall that this means
u0(· + x0) − u0 ≥ 0 a.e. in R, for all x0 > 0), then u(t, ·) is nondecreasing for all t > 0.
This follows from the fact that both u(·, · + x0) and u are mild solutions of (1.2) and the
first one has a larger or equal initial datum. As a consequence, u(·, · + x0) ≥ u a.e., as
claimed.

2.5. A maximum principle. The following is a maximum principle needed in the next
section to prove the convergence of solutions of (1.2) towards 1. It is stated here for
classical subsolutions, for which the proof is very simple. This will suffice for our pur-
poses —even though we will need to work a little more and change some initial data to
have classical solutions. Anyhow, in the next subsection we prove the same result for
mild solutions, but the proof is more involved.

Recall that Xγ is the Banach space defined in Subsect. 2.1. It is crucial for our pur-
poses to have this maximum principle in the space Xγ containing certain unbounded
functions; in the way that we will proceed, Cu,b(R

n) would not suffice. However, note
that the proposition also holds in Cu,b(R

n) = X0.

Proposition 2.8. Let n ≥ 1, α ∈ (0, 1), 0 ≤ γ < 2α, and p be a kernel satisfying
(1.6)–(1.7)–(1.8).

Let v ∈ C1([0,∞); Xγ ) satisfy v(t, ·) ∈ Dγ (A) for all t > 0, and let c be a contin-
uous function in (0,∞) × R

n which is bounded in (0, T ) × R
n for all T > 0. Assume

in addition:
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a) v(0, ·) ≤ 0 in R
n,

b) for all T > 0, we have lim sup|x |→∞ v(t, x) ≤ 0 uniformly in t ∈ [0, T ],
c) if (t, x) ∈ (0,∞) × R

n and v(t, x) > 0, then (vt + Av)(t, x) ≤ c(t, x)v(t, x).

Then, v ≤ 0 in all of (0,∞) × R
n.

Proof. Since v ∈ C([0,∞); Xγ ), v is a continuous function in [0,∞) × R
n . Arguing

by contradiction, assume that v > 0 somewhere in [0, T ] × R
n , for some T > 0. Let

w(t, x) := e−atv(t, x), where a is a constant such that a > ‖c‖L∞((0,T )×Rn).

We have that w > 0 somewhere in [0, T ]×R
n . By assumption b), w is bounded above

in [0, T ] × R
n and achieves its positive maximum at some point (t0, x0) ∈ [0, T ] × R

n .
By a) we have t0 > 0. Since w ∈ C1([0,∞); Xγ ), we have that w(·, x0) = w(·)(x0) is
differentiable in (0, t0] and achieves its maximum in this interval at t0. Thus,

wt (t0, x0) ≥ 0. (2.35)

On the other hand, by hypothesis, w(t0, ·) belongs to Dγ (A) and achieves its maxi-
mum in R

n at x0. Thus, by (2.10),

Aw(t0, x0) ≥ 0.

From this, (2.35), and hypothesis c) (note that v(t0, x0) > 0), we deduce

0 ≤ (wt + Aw)(t0, x0) = e−at0(vt + Av)(t0, x0) − ae−at0v(t0, x0)

≤ e−at0 {c(t0, x0) − a} v(t0, x0) < 0

since v(t0, x0) > 0 and c − a < 0 in (0, T ] × R
n (recall that c is continuous in

(0, T ] × R
n). This is a contradiction. ��

We will use the previous result in the situations given by the following two lemmas.
In this first one, we will take r(t) = aeνt in our application, with a and ν positive
constants.

Lemma 2.9. Let n ≥ 1, α ∈ (0, 1), 0 ≤ γ < 2α, and p be a kernel satisfying (1.6)–
(1.7)–(1.8).

Let v ∈ C1([0,∞); Xγ ) satisfy v(t, ·) ∈ Dγ (A) for all t > 0, and let c be a con-
tinuous function in (0,∞) × R

n which is bounded in (0, T ) × R
n for all T > 0. Let

r : [0, +∞) → [0, +∞) be a continuous function and define

�r = {
(t, x) ∈ (0,∞) × R

n : |x | < r(t)
}
.

Assume in addition:

a) v(0, ·) ≤ 0 in R
n, (2.36)

b) v ≤ 0 in
(
(0,∞) × R

n) \ �r , (2.37)

c) vt + Av ≤ c(t, x)v in �r . (2.38)

Then, v ≤ 0 in all of (0,∞) × R
n.

The lemma follows immediately from Proposition 2.8.
For increasing solutions in R, we will use instead the following result. Note that here

we assume c ≤ 0. In our future application, we will take x(t) = −beσ ′t in the next
lemma, with b and σ ′ positive constants.
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Lemma 2.10. Let n = 1, α ∈ (0, 1), 0 ≤ γ < 2α, and p be a kernel satisfying
(1.6)–(1.7)–(1.8).

Let v ∈ C1([0,∞); Xγ ) satisfy v(t, ·) ∈ Dγ (A) for all t > 0, and let c ≤ 0 be a
nonpositive continuous function in (0,∞) × R which is bounded in (0, T ) × R for all
T > 0. Let x : [0, +∞) → R be a continuous function, and define

� = {(t, x) ∈ (0,∞) × R : x > x(t)} .

Assume in addition, for some constant δ > 0,

a) v(0, ·) ≤ 0 in R, (2.39)

b1) v ≤ 0 in ((0,∞) × R) \ �, (2.40)

b2) for all T > 0, lim sup
x→+∞

v(t, x) ≤ δ uniformly in t ∈ [0, T ], (2.41)

c) vt + Av ≤ c(t, x)v in �. (2.42)

Then, v ≤ δ in (0, +∞) × R.

The lemma follows immediately from Proposition 2.8 applied to ṽ := v − δ. It
satisfies ṽt + Aṽ = vt + Av ≤ cv = cṽ + cδ ≤ cṽ in {ṽ > 0}, since c ≤ 0 and
{ṽ > 0} ⊂ {v > 0} ⊂ �.

2.6. A Kato type inequality for mild solutions and applications. With the results in this
subsection —which are not needed to complete the proofs of our main theorems— one
may treat the initial data in the proofs of our main theorems as they are, without hav-
ing to change the data to belong to D(A). Recall that in the maximum principle of the
previous subsection its proof used crucially the solution to be classical and belong to
D(A). In this section we establish that maximum principle, Proposition 2.8, for mild
solutions; no assumption on the solution being in D(A) is made. In addition, the proof
in this subsection does not require hypothesis b) of Proposition 2.8 on the limits of v as
|x | → ∞. The statement is the following.

Proposition 2.11. Let n ≥ 1, α ∈ (0, 1), 0 ≤ γ < 2α, and p be a kernel satisfying
(1.6)–(1.7)–(1.8).

Let v ∈ C([0,∞); Xγ ) be the mild solution of vt + Av = h in (0,∞), v(0, ·) = v0,
where v0 ∈ Xγ and h ∈ C([0,∞); Xγ ). Let c be a continuous function in (0,∞) × R

n

which is bounded in (0, T ) × R
n for all T > 0. Assume in addition:

i) v(0, ·) ≤ 0 in R
n .

ii) if (t, x) ∈ (0,∞) × R
n and v(t, x) > 0, then h(t, x) ≤ c(t, x)v(t, x).

Then, v ≤ 0 in all of (0,∞) × R
n.

From this result, to be proved later in this subsection, one deduces the analogues of
Lemmas 2.9 and 2.10 for mild solutions in the same way as in the previous subsection.

To prove Proposition 2.11, we need to establish an inequality of Kato type for mild
solutions. In the stationary case and for functions in the domain of A it states the fol-
lowing: {

if ϕ : R → R is C1 and convex, v ∈ Dγ (A), and ϕ(v) ∈ Dγ (A),

then Aϕ(v) ≤ ϕ′(v)Av in R
n .

(2.43)
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Its proof is simple. First notice that, by Jensen’s inequality,

(Ts ϕ(v))(x) =
∫

Rn
p(s, x − y)ϕ(v(y)) dy

≥ ϕ

(∫
Rn

p(s, x − y)v(y) dy

)
= ϕ(Tsv(x))

and therefore

(Tsϕ(v) − ϕ(v))(x) ≥ ϕ(Tsv(x)) − ϕ(v(x)) ≥ ϕ′(v(x)) (Tsv − v)(x) (2.44)

for all s > 0. Dividing by s and taking the limits as s → 0 (which we assume to exist),
we deduce (2.43).

When A = −� and v ∈ L1 is a distributional solution of −�v = h, (2.43) was first
proved by Kato.

The following result states the analogue of (2.43) for mild solutions in the spaces
Xγ . Recall that X0 = Cu,b(R

n); in this space we simply ask the function ϕ to be C1

and convex. Instead, for 0 < γ < 2α, in addition we need to assume that ϕ′ is bounded
in R. This is to ensure that ϕ(v) ∈ Xγ whenever v ∈ Xγ —recall the functions in Xγ

may be unbounded if γ > 0. Instead, ϕ being C1 and convex suffices to ensure that
ϕ(v) ∈ Cu,b(R

n) whenever v ∈ Cu,b(R
n).

Proposition 2.12. Let n ≥ 1, α ∈ (0, 1), 0 ≤ γ < 2α, and p be a kernel satisfying
(1.6)–(1.7)–(1.8).

Let 0 < T ≤ +∞ and v ∈ C([0, T ); Xγ ) be the mild solution of vt + Av = h in
[0, T ], v(0, ·) = v0, where v0 ∈ Xγ and h ∈ C([0, T ]; Xγ ). Let ϕ : R → R be a C1

convex function. If γ > 0 assume in addition that ϕ′ is bounded.
Then, ϕ(v) ∈ C([0, T ); Xγ ) satisfies ϕ(v)t + Aϕ(v) ≤ ϕ′(v)h in the following mild

sense:

ϕ(v(t)) ≤ Tt ϕ(v0) +
∫ t

0
Tt−s {ϕ′(v(s))h(s)} ds in R

n for all t ∈ [0, T ]. (2.45)

Remark 2.13. When γ = 0 and thus X0 = Cu,b(R
n), we have that ϕ′(v)h ∈

C([0, T ); Cu,b(R
n)) (simply use that ϕ′(v) is uniformly continuous since v is bounded)

and (2.45) is all understood in Cu,b(R
n). When 0 < γ < 2α, even if ϕ′ is bounded,

ϕ′(v)h might not verify (2.4) and hence not belong to Xγ . However, |ϕ′(v)h| ≤ C |h|
for some constant C and thus

Tt−s {ϕ′(v(s))h(s)} =
∫

Rn
p(· − y)ϕ′(v(s, y))h(s, y) dy

is well defined since |p(·−y)ϕ′(v(s, y))h(s, y)| is integrable in y; see (2.6). The remain-
ing integral in ds is also well defined.

We need to establish the inequalities (2.45) from the hypothesis

v(t) = Ttv0 +
∫ t

0
Tt−s h(s) ds for all t ∈ [0, T ]. (2.46)
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For this, as usual in Kato type inequalities, we need to regularize the weak (here mild)
solution in an appropriate way taking into account the operator A. Recall that, by (2.8),
for all w ∈ Xγ and δ > 0 we have

wδ :=
∫ δ

0
Tτw dτ ∈ Dγ (A) and Awδ = 1

δ
(w − Tδw).

In addition, wδ → w in Xγ as δ ↓ 0.

Proof of Proposition 2.12. We use the previous regularization to define, for every
t ∈ [0, T ], the functions vδ(t) := (v(t))δ and hδ(t) := (h(t))δ . Note that hδ ∈
C([0, T ]; Xγ ), hδ(t) ∈ Dγ (A) for all t ∈ [0, T ], and

Ahδ = 1

δ
(h − Tδh) ∈ C([0, T ]; Xγ ) ⊂ L1([0, T ]; Xγ ).

Since in addition vδ(0) ∈ Dγ (A), Corollary 2.6 in Sect. 4.2 of [17] gives the existence
of a classical solution u to{

ut + Au = hδ(t) in (0, T ),

u(0) = vδ(0); (2.47)

this is shown verifying that, under the above properties of hδ , the right hand side of
(2.46), with h replaced by hδ and v0 by vδ(0), is C1 in t . Thus, u ∈ C([0, T ]; Xγ ) ∩
C1([0, T ); Xγ ) satisfies u(t) ∈ Dγ (A) for all t ∈ [0, T ) and (2.47) is satisfied point-

wise in [0, T ). In particular, u is the mild solution of (2.47). But applying
∫ δ

0 dτ Tτ on
Eq. (2.46), we see that vδ is the mild solution of (2.47). Thus, vδ = u solves (2.47) in
the classical sense; in particular

(vδ)t + Avδ = hδ in (0, T ). (2.48)

Since ϕ(vδ(t)) ∈ Xγ for all t (as discussed in Remark 2.13), we can define

ϕδ,ε(t) := {ϕ(vδ(t))}ε =
∫ ε

0
Tτ ϕ(vδ(t)) dτ (2.49)

for δ and ε positive. We apply (2.44) with v replaced by vδ and obtain

Ts ϕ(vδ) − ϕ(vδ) ≥ ϕ′(vδ) (Tsv
δ − vδ).

As pointed out in Remark 2.13, ϕ′(vδ) (Tsv
δ − vδ) could not belong to Xγ when γ > 0.

However, its absolute value is bounded by C |Tsv
δ −vδ|, which satisfies (2.3) and thus we

may act the convolution semigroup on this function. Applying
∫ ε

0 dτ Tτ on the previous
inequality and dividing by s, we deduce

Tsϕ
δ,ε − ϕδ,ε

s
≥

∫ ε

0
Tτ

{
ϕ′(vδ)

Ts vδ − vδ

s

}
dτ.

We now let s ↓ 0 (also use that ϕ′(vδ) is bounded and that (Ts vδ − vδ)/s converges in
Xγ ) to deduce

Aϕδ,ε ≤
∫ ε

0
Tτ

{
ϕ′(vδ) Avδ

}
dτ =

∫ ε

0
Tτ

{
ϕ′(vδ) (hδ − (vδ)t )

}
dτ,

where in the last equality we have used (2.48).
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Since vδ(t) is differentiable in t , the right-hand side of (2.49) also is differentiable in
t and we have (ϕδ,ε)t = ∫ ε

0 Tτ

{
ϕ′(vδ)(vδ)t

}
dτ . Adding this to the previous inequality

and defining

(ϕδ,ε)t + Aϕδ,ε =: gδ,ε, (2.50)

we find

(ϕδ,ε)t + Aϕδ,ε = gδ,ε ≤
∫ ε

0
Tτ

{
ϕ′(vδ)hδ

}
dτ.

Hence, since (2.50) also holds in the mild sense, we have

ϕδ,ε(t) = Tt ϕδ,ε(0) +
∫ t

0
ds Tt−s gδ,ε(s)

≤ Tt ϕδ,ε(0) +
∫ t

0
ds Tt−s

∫ ε

0
dτ Tτ {ϕ′(vδ(s))hδ(s)}

in R
n for all t ∈ [0, T ]. Finally, since ϕ′(vδ(s))hδ(s) ∈ C(Rn), letting ε ↓ 0 we deduce

(pointwise in R
n)

ϕ(vδ(t)) ≤ Tt ϕ(vδ(0)) +
∫ t

0
ds Tt−s{ϕ′(vδ(s))hδ(s)}.

Letting δ ↓ 0 and using dominated convergence, we conclude

ϕ(v(t)) ≤ Tt ϕ(v0) +
∫ t

0
ds Tt−s{ϕ′(v(s))h(s)}.

This is the statement (2.45) of the proposition. ��
Using the proposition we can now prove the maximum principle for mild solutions.

Proof of Proposition 2.11. Let ϕ : R → R be a C1 convex function such that

ϕ ≡ 0 in (−∞, 0), ϕ > 0 in (0, +∞), and 0 ≤ ϕ′ ≤ 1 in R.

For instance, we may take ϕ ≡ 0 in (−∞, 0) and ϕ(u) = u2

u+1 in [0, +∞).
Since v ∈ C([0,∞); Xγ ), v is a continuous function in [0,∞) × R

n . Arguing by
contradiction, assume that v > 0 somewhere in [0, T ] × R

n , for some T > 0. Let

w(t, x) := e−atv(t, x), where a is a constant such that a ≥ ‖c‖L∞((0,T )×Rn).

Since v ∈ C([0, T ); Xγ ) is the mild solution of vt +Av = h(t) in [0, T ], v(0, ·) = v0,
(2.24)–(2.25)-(2.26) give that w ∈ C([0, T ); Xγ ) is the mild solution of wt + Aw =
e−at {−av(t) + h(t)} in [0, T ], w(0, ·) = v0.

Therefore, by Proposition 2.12, we have that

ϕ(w(t)) ≤ Tt ϕ(v0) +
∫ t

0
Tt−s {ϕ′(w(s))e−as(−av(s) + h(s))} ds (2.51)

in R
n for all t ∈ [0, T ]. But v0 ≤ 0 by hypothesis i) in the proposition, and thus

ϕ(v0) ≡ 0. In addition, ϕ′(w(s))(x) = 0 whenever w(s)(x) ≤ 0. If w(s)(x) > 0, then
also v(s)(x) > 0 and by hypothesis ii), we have h(s, x) ≤ c(s, x)v(s, x) ≤ av(s, x),
and thus −av(s, x) + h(s, x) ≤ 0. Finally, ϕ′(w(s)) ≥ 0 in all of R

n .
We conclude that ϕ′(w(s))e−as(−av(s) + h(s)) ≤ 0 in all of R

n , and by (2.51) that
ϕ(w(t)) ≤ 0 in R

n for all t ∈ [0, T ]. This leads to w(t) ≤ 0, and thus v(t) ≤ 0 in R
n for

all t ∈ [0, T ]. This contradicts our initial assumption: v > 0 somewhere in [0, T ]× R
n .
��
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2.7. Bounds on the semigroup. Next, a well-known simple lemma. For completeness,
we include its proof below.

Lemma 2.14. Let u ∈ L1(Rn) and v ∈ L∞(Rn) be positive, radially symmetric, and
nonincreasing functions in R

n, where u ∈ C1 has its radial derivative u′ ∈ L1(Rn).
Then, u ∗ v is also positive, radially symmetric, and nonincreasing.

Proof. Denote the convolution by

w(x) :=
∫

Rn
u(|x − y|)v(|y|) dy,

clearly a positive and radially symmetric function. We compute

∇w(x) · x =
∫

Rn
u′(|x − y|) (x − y) · x

|x − y| v(|y|) dy =
∫

Rn
u′(|z|) z · x

|z| v(|x − z|) dz.

In {x · z ≤ 0} we make the change ξ = −z and obtain∫
{x ·z≤0}

u′(|z|) x · z

|z| v(|x − z|) dz =
∫

{x ·ξ≥0}
u′(|ξ |)−x · ξ

|ξ | v(|x + ξ |) dξ.

Thus,

∇w(x) · x =
∫

{x ·z≥0}
u′(|z|) x · z

|z| {v(|x − z|) − v(|x + z|)} dz.

We conclude noticing that the first factor is nonpositive, while the second and third are
nonnegative since v is radially nonincreasing and |x −z|2 ≤ |x +z|2 in the set {x ·z ≥ 0}.

��
The next lemma will help us handle the C0(R

n) initial data in Theorem 1.2.

Lemma 2.15. Let n ≥ 1, α ∈ (0, 1), γ ∈ (0, 2α), and p be a kernel satisfying (1.6)–
(1.7)–(1.8). Recall that B is the constant in (1.8). Then, for some positive constants
c, C, cγ , and Cγ depending only on n, α, and B, and also on γ in the case of cγ and
Cγ , we have:

a) Let a0 > 0, r0 ≥ 1, and

v0(x) =
{

a0|x |−n−2α for |x | ≥ r0,

a0r−n−2α
0 for |x | ≤ r0.

Then,

Ttv0(x) ≤ C(1 + r−2α
0 t)a0|x |−n−2α for all t > 0, x ∈ R

n,

and

Ttv0(x) ≥ B−1(q(t, ·) ∗ v0)(x)

≥ c
t

t
n

2α
+1 + 1

a0|x |−n−2α if t > 0, |x | ≥ r0,

where q is the function defined in (2.11).
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b) Let wγ (x) = |x |γ . Then,

Ttwγ (x) ≤ Cγ (|x |γ + t
γ
2α ) for all t > 0, x ∈ R

n,

and

Ttwγ (x) ≥ cγ |x |γ if t > 0, |x | ≥ t
1

2α .

Proof. We start proving a). The quantity Ttv0(x) is comparable, up to multiplicative
constants, to the integral

I :=
∫

Rn

t− n
2α

1 + (t− 1
2α |x − y|)n+2α

v0(y) dy. (2.52)

We start with the upper bound. In (2.52) we integrate first in B|x |/2(0) and then in
R

n\B|x |/2(0). In B|x |/2(0), we have |x − y| ≥ |x | − |y| ≥ |x |/2, and thus the integral
is bounded above by

I1 := t− n
2α

1 + (t− 1
2α |x |/2)n+2α

∫
B|x |/2(0)

v0(y) dy.

Now,
∫

Br0 (0)
v0(y) dy = a0 r−n−2α

0 Crn
0 = Ca0 r−2α

0 . In case r0 < |x |/2, the remaining

term in the integral over B|x |/2(0) is also estimated by

∫
B|x |/2(0)\Br0 (0)

v0(y) dy = C
∫ |x |/2

r0

a0 r−n−2αrn−1dr ≤ Ca0 r−2α
0 .

Hence,

I1 ≤ t− n
2α

(t− 1
2α |x |/2)n+2α

Ca0 r−2α
0 = Ct r−2α

0 a0|x |−n−2α. (2.53)

For the integrand in (2.52) over R
n\B|x |/2(0), note that v0(y) ≤ a0(|x |/2)−n−2α in this

set. Thus, the integral over this set is bounded above by

Ca0|x |−n−2α

∫
Rn

t− n
2α

1 + (t− 1
2α |x − y|)n+2α

dy = Ca0|x |−n−2α

∫
Rn

d y

(1 + |y|)n+2α
.

Therefore, we have the upper bound Ca0|x |−n−2α .
Putting this together with (2.53), we conclude

Ttv0(x) ≤ C(1 + r−2α
0 t)a0|x |−n−2α.

Next, we show the lower bound. We assume |x | ≥ r0 ≥ 1. We have

Ttv0(x) ≥ B−1
∫

B1(x)

t− n
2α

1 + (t− 1
2α |x − y|)n+2α

v0(y) dy.
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In the set of integration |y| ≤ |x | + 1 ≤ |x | + r0 ≤ 2|x |, and thus v0(y) ≥ v0(2|x |) =
a0(2|x |)−n−2α . Finally, since∫

B1(0)

t

t
n

2α
+1 + |z|n+2α

dz ≥ t

t
n

2α
+1 + 1

∫
B1(0)

dz,

we conclude the statement in the lemma.
We now prove part b). The quantity Ttwγ (x) is comparable to

∫
Rn

t− n
2α

1 + (t− 1
2α |x − y|)n+2α

|y|γ dy. (2.54)

For the upper bound, we make the change of variables y = t− 1
2α (x − y) and notice that

|y|γ ≤ (|x | + t
1

2α |y|)γ . Thus (2.54) is smaller than

Cγ

∫
Rn

1

1 + |y|n+2α
(|x |γ + t

γ
2α |y|γ ) d y ≤ Cγ (|x |γ + t

γ
2α )

since γ < 2α.

For the lower bound, we assume |x | ≥ t
1

2α . We estimate (2.54) from below by the
same integral in y ∈ B|x |/2(x). Here, |y| ≥ |x | − |x |/2 = |x |/2. Making the change of

variables y = t− 1
2α (x − y), we minorize (2.54) by

(|x |/2)γ
∫

{|y|<t−
1

2α |x |/2}
d y

1 + |y|n+2α
.

Since |x | ≥ t
1

2α by hypothesis, the last integral is larger than or equal to a positive
constant. ��

The previous lemma has the following counterpart for nondecreasing initial data
in R.

Lemma 2.16. Let n = 1, α ∈ (0, 1), γ ∈ (0, 2α), and p be a kernel satisfying (1.6)–
(1.7)–(1.8). Recall that B is the constant in (1.8). Then, for some positive constants
c, C, cγ , and Cγ depending only on α and B, and also on γ in the case of cγ and Cγ ,
we have:

a) Let a0 > 0 and x0 ≤ −1. Let

V0(x) =
{

a0|x |−2α for x ≤ x0,

a0|x0|−2α for x ≥ x0.

Then,

Tt V0(x) ≤ C(1 + |x0|−2αt)a0|x |−2α if t > 0, x < 2x0,

and

Tt V0(x) ≥ c
t

t
1

2α
+1 + 1

a0|x |−2α if t > 0, x < x0.
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b) Let Wγ (x) = (x−)γ , where x− denotes the negative part of x. Then,

cγ (|x |γ + t
γ
2α ) ≤ Tt Wγ (x) ≤ Cγ (|x |γ + t

γ
2α ) if t > 0, x < 0.

Proof. We start proving a). First, the upper bound. Consider x < 2x0 < 0, then

Tt V0(x) ≤ B
∫ +∞

−∞
t− 1

2α

1 + (t− 1
2α |x − y|)1+2α

V0(y) dy

= B
∫ x/2

−∞
t− 1

2α

1 + (t− 1
2α |x − y|)1+2α

V0(y) dy

+B
∫ +∞

x/2

t− 1
2α

1 + (t− 1
2α |x − y|)1+2α

V0(y) dy

≤ Ca0|x/2|−2α

∫ x/2

−∞
t− 1

2α dy

1 + (t− 1
2α |x − y|)1+2α

+Ca0|x0|−2α

∫ +∞

x/2

t− 1
2α dy

1 + (t− 1
2α |x − y|)1+2α

.

We conclude by noticing that

∫ x/2

−∞
t− 1

2α dy

1 + (t− 1
2α |x − y|)1+2α

≤
∫ +∞

−∞
d y

1 + y1+2α
= C

and

∫ +∞

x/2

t− 1
2α dy

1 + (t− 1
2α |x − y|)1+2α

=
∫ +∞

−t−1/(2α)x/2

d y

1 + y1+2α
≤ Ct |x |−2α.

Next, the lower bound. Since x < x0 ≤ −1, we have

Tt V0(x) ≥ B−1
∫ x

x−1

t− 1
2α

1 + (t− 1
2α |x − y|)1+2α

a0

|y|2α
dy

≥ B−1 a0

(2|x |)2α

∫ 1

0

t− 1
2α

1 + (t− 1
2α z)1+2α

dz,

where we have used |y| = −y ≤ 1 − x ≤ −x − x = −2x = 2|x | in the last bound.
Finally, using 0 ≤ z ≤ 1 in the last integral, we conclude the lower bound.

We now prove b). The upper bound is a consequence of the upper bound in part b)
of Lemma 2.15. For the lower bound, since x < 0 note that
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Tt Wγ (x) ≥ B−1
∫ 0

−∞
t− 1

2α

1 + (t− 1
2α |x − y|)1+2α

|y|γ dy

≥ B−1
∫ x−t

1
2α

x−(2t)
1

2α

t− 1
2α

1 + (t− 1
2α |x − y|)1+2α

|y|γ dy

≥ cγ

∫ x−t
1

2α

x−(2t)
1

2α

t−
1

2α |y|γ dy ≥ cγ |x − t
1

2α |γ ≥ cγ (|x |γ + t
γ
2α ),

since |x − t
1

2α | = |x | + t
1

2α . This concludes the proof. ��

3. Initial Data with Compact Support

To prove part b) (the convergence towards 1) of Theorem 1.2, we will need the following
key lemma.

Lemma 3.1. Let n ≥ 1, α ∈ (0, 1), f satisfy (1.1), and p be a kernel satisfying (1.6)–
(1.7)–(1.8). Recall that B is the constant in (1.8). Then, for every 0 < σ <

f ′(0)
n+2α

, there
exist t0 ≥ 1 and 0 < ε0 < 1 depending only on n, α, B, f , and σ , for which the
following holds.

Given r0 ≥ 1 and 0 < ε ≤ ε0, let a0 > 0 be defined by a0r−n−2α
0 = ε and let

v0(x) =
{

a0|x |−n−2α for |x | ≥ r0,

ε = a0r−n−2α
0 for |x | ≤ r0.

Then, the mild solution v of (1.2) with initial condition v0 satisfies

v(kt0, x) ≥ ε for |x | ≤ r0eσkt0

and k ∈ {0, 1, 2, 3, . . .}.
Proof. The lemma being of course true for k = 0, let us prove it for k = 1. Let δ ∈ (0, 1)

be sufficiently small such that

σ <
1

2

(
σ +

f ′(0)

n + 2α

)
<

1

n + 2α

f (δ)

δ
≤ f ′(0)

n + 2α
. (3.1)

We take t0 ≥ 1 sufficiently large, depending only on n, α, B, f and σ , such that

⎛
⎝c

t0

t
n

2α
+1

0 + 1

⎞
⎠

1
n+2α

e
1
2

(
σ+ f ′(0)

n+2α

)
t0 ≥ eσ t0 , (3.2)

where c > 0 is the constant in the lower bound in part a) of Lemma 2.15. In particular,
c depends only on n, α, and B. Define now 0 < ε0 < δ by

ε0 = δe− f ′(0)t0 .

Recall that, in what follows, we are given r0 ≥ 1 and ε such that

0 < ε ≤ ε0 < δ.
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Let

w := e( f (δ)/δ)t Ttv0.

It satisfies

wt + Aw = f (δ)

δ
w, w(0, ·) = v0

in the mild sense. Since v0 ≤ ε in R
n , we also have Ttv0 ≤ ε in R

n for all t > 0.
Now, for t ≤ t0, 0 ≤ w ≤ e( f (δ)/δ)t0ε ≤ e f ′(0)t0ε0 = δ. Since ( f (δ)/δ)w ≤ f (w) for
0 ≤ w ≤ δ, we have that w is a mild subsolution of (1.2) in [0, t0] × R

n . Thus, by the
comparison principle of Subsect. 2.3, we have

v(t0, ·) ≥ w(t0, ·) ≥ w(t0, ·) in R
n, (3.3)

where

w(t, x) := B−1e( f (δ)/δ)t (q(t, ·) ∗ v0)(x)

and q was defined in (2.11). We will use that w(t, ·) is radially nonincreasing by
Lemma 2.14.

By the lower bound in part a) of Lemma 2.15, we have

v(t0, x) ≥ w(t0, x) ≥ w(t0, x) ≥ e( f (δ)/δ)t0 c
t0

t
n

2α
+1

0 + 1
a0|x |−n−2α for |x | ≥ r0.

(3.4)

Let us define r1 > 0 by

e( f (δ)/δ)t0 c
t0

t
n

2α
+1

0 + 1

a0

rn+2α
1

= ε. (3.5)

Since a0 = εrn+2α
0 , we get

r1 = r0

⎛
⎝c

t0

t
n

2α
+1

0 + 1

⎞
⎠

1
n+2α

e
1

n+2α
( f (δ)/δ)t0 .

By (3.2) and the second inequality in (3.1), we have

r1 ≥ r0eσ t0 > r0. (3.6)

Now, since r1 > r0, (3.4) and (3.5) lead to v(t0, x) ≥ w(t0, x) ≥ a1|x |−n−2α for
|x | ≥ r1, where a1 := εrn+2α

1 . Since w is radially nondecreasing by Lemma 2.14,
(3.3)-(3.4)-(3.5) lead to v(t0, x) ≥ w(t0, x) ≥ w(t0, r1) ≥ ε for |x | ≤ r1.

Thus, v(t0, ·) ≥ v1 where v1 is given by the expression for v0 in the statement of the
lemma with (r0, a0) replaced by (r1, a1). Note that r1 ≥ r0 ≥ 1.

Therefore, we can repeat the argument above successively, now with initial times
t0, 2t0, 3t0, . . . and radius r1, r2, r3, . . ., and obtain

v(kt0, x) ≥ ε for |x | ≤ rk,

for all k ∈ {0, 1, 2, 3, . . .}. Since

rk ≥ r0eσkt0

by (3.6), the statement of the lemma follows. ��
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Corollary 3.2. Let n ≥ 1, α ∈ (0, 1), f satisfy (1.1), p be a kernel satisfying (1.6)–
(1.7)–(1.8), and 0 < σ <

f ′(0)
n+2α

. Let t0 ≥ 1 be the time given by Lemma 3.1.
Then, for every measurable initial datum u0 with 0 ≤ u0 ≤ 1 and u0 �≡ 0, there exist

ε ∈ (0, 1) and b > 0 (both depending on u0) such that

u(t, x) ≥ ε for all t ≥ t0 and |x | ≤ beσ t ,

where u is the mild solution of (1.2) with u(0, ·) = u0.

Proof. Since u is a supersolution of the homogeneous problem (the problem with f = 0),
we have that u(t0/2, ·) ≥ Tt0/2u0 > 0 in R

n , since u0 �≡ 0. Thus, since Tt0/2u0 is a
positive continuous function in R

n , we have u(t0/2, ·) ≥ ηχB1(0) in R
n for some constant

η > 0. Therefore,

u(t0/2 + t, ·) ≥ Tt
(
ηχB1(0)

) ≥ v(t, ·) := B−1η q(t, ·) ∗ χB1(0) in R
n, (3.7)

where q was defined in (2.11). We will use that v(t, ·) is radially nonincreasing by
Lemma 2.14.

To bound v by below, we use the second inequality in (2.12) with t ∈ [t0/2, 3t0/2].

We take x ∈ R
n with |x | ≥ t

1
2α

0 ≥ 1 to have t
n

2α
+1 + |x |n+2α ≤ C |x |n+2α for such t and x .

We deduce

v(t, x) ≥ a0|x |−n−2α for t ∈ [t0/2, 3t0/2] and |x | ≥ r0 := t
1

2α

0 , (3.8)

for some a0 > 0. We make a0 smaller, if necessary, to have that ε := a0r−n−2α
0 ≤ ε0,

where ε0 is given by Lemma 3.1. Since v is radially nonincreasing, from (3.7) and (3.8)
we deduce

u(t0/2 + t, ·) ≥ v(t, ·) ≥ v0 in R
n, for all t ∈ [t0/2, 3t0/2] ,

where v0 is the initial condition in Lemma 3.1.
Thus, we can apply Lemma 3.1 to get a lower bound for u(·+τ0, ·) for all τ0 ∈ [t0, 2t0].

Since {τ0 + kt0 | k = 0, 1, 2, . . . and τ0 ∈ [t0, 2t0]} cover all [t0,∞), we deduce

u(t, x) ≥ ε if t ≥ t0 and |x | ≤ r0e−σ2t0 eσ t

by taking t = τ0 + kt0 and using |x | ≤ r0e−σ2t0 eσ t ≤ r0e−στ0 eσ t = r0eσkt0 . This last
statement proves the corollary taking b = r0e−σ2t0 . ��

Using Corollary 3.2 we can easily deduce Proposition 1.4 on nonexistence of traveling
waves.

Proofs of Lemma 1.3 and Proposition 1.4. We apply Corollary 3.2 with σ replaced by
σ ′, where σ ′ ∈ (σ, f ′(0)/(n +2α)). Since eσ t ≤ beσ ′t for t large (where b is the constant
in the statement of Corollary 3.2), we deduce the statement of Lemma 1.3, i.e.,

u(t, x) ≥ ε for t ≥ t and |x | ≤ eσ t .

We can now prove Proposition 1.4. That is, all solutions u of (1.2) with values in
[0, 1] and of the form u(t, x) = ϕ(x + te), for some vector e ∈ R

n , are identically 0 or 1.
Indeed, assume that u �≡ 0 and replace the initial datum ϕ(x) for u by the smaller one

min{ϕ(x), |x |−n−2α}. The mild solution for this new initial condition is smaller than u
and satisfies, by Lemma 1.3, the conclusion of the lemma for any given σ < σ∗. Hence,
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we also have that ϕ(x + te) = u(t, x) ≥ ε if |x | ≤ eσ t and t ≥ t . As a consequence,
ϕ(y) ≥ ε if |y − te| ≤ |y| + t |e| ≤ eσ t and t ≥ t . But, given any y ∈ R

n , the two last
inequalities are true for t large enough. We deduce that ϕ ≥ ε in all of R

n , and hence
u ≥ ε in all of (0,∞) × R

n .
Note now that f (s) ≥ f (ε)

1−ε
(1 − s) for all s ∈ [ε, 1]. Thus, u ≥ v, where v is the

solution of the linear problem{
vt + Av = f (ε)

1−ε
(1 − v) in (0,∞) × R

n,

v(0, ·) = ε in R
n .

Its solution is explicit,

v(t, x) = v(t) = 1 − (1 − ε)e− f (ε)
1−ε

t .

Since v → 1 as t → +∞, we have that u → 1 uniformly in R
n as t → +∞. Therefore,

since u(t, x) = ϕ(x + te) = u(T, x + (t − T )e), letting T → ∞ we conclude u ≡ 1.
��

Next, we have to prove the convergence to 1 behind the front. Once we know that the
solution remains larger than a small positive constant behind the front, the proof of the
convergence towards 1 is dimension independent. We write this step in the following,
which will be very useful also when proving the precise level set bounds of Theorem 1.6.

To simplify the proof, we assume the initial datum to belong to the domain Du,b(A).
The lemma, however, holds without this assumption thanks to the more involved maxi-
mum principle of Subsect. 2.6; see Remark 3.4 below.

Lemma 3.3. Let n ≥ 1, α ∈ (0, 1), f satisfy (1.1), and p be a kernel satisfying (1.6)–
(1.7)–(1.8). Let u be a solution of (1.2) with 0 ≤ u ≤ 1 such that u(0, ·) ∈ Du,b(A)

and

u ≥ ε for all t ≥ t0 and |x | ≤ aeνt , (3.9)

for some positive constants ε ∈ (0, 1), a, ν, and t0. Then, we have:

i) For all λ ∈ (0, 1) there exist constants tλ > t0 and Cλ > 0 such that

u ≥ λ for all t ≥ tλ and |x | ≤ 1

Cλ

eνt . (3.10)

ii) For every σ ∈ (0, ν), u(t, x) → 1 uniformly in
{|x | ≤ eσ t

}
as t → +∞.

Note that in (3.9) and (3.10) we have the same exponent ν in the exponential. This
will be a key point to establish Theorem 1.6 concerning the bounds on the level sets with
the exact exponent (in the exponential).

Remark 3.4. The statement of Lemma 3.3 will suffice for our purposes. However, the
lemma also holds without the assumption u(0, ·) ∈ Du,b(A). This assumption on the
initial datum being in the domain allows to use the simple maximum principle of Prop-
osition 2.8 and its immediate consequence: Lemma 2.9.

The lemma holds without the assumption u(0, ·) ∈ Du,b(A) since we can apply
instead the maximum principle of Proposition 2.11, which gives that Lemma 2.9 also
holds without the hypothesis on v(t, ·) ∈ Dγ (A) for all t > 0.
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To prove Lemma 3.3, we need to use a comparison function modeled by wγ (x) =
|x |γ . Thus, we consider the semigroup in the space Xγ introduced in Subsect. 2.1. To
use the simple maximum principles of Subsect. 2.5 for classical solutions, instead of
using as initial datum wγ (x) = |x |γ we use the function

w̃γ (x) =
∫ 1

0
Tswγ ds, (3.11)

which belongs to Dγ (A) as pointed out in (2.8).

In addition, since Tt w̃γ (x) = ∫ t+1
t Tswγ ds, using the bounds in part b) of

Lemma 2.15, we deduce

Tt w̃γ (x) ≤ Cγ (|x |γ + (t + 1)
γ
2α ) for all t > 0, x ∈ R

n, (3.12)

and

Tt w̃γ (x) ≥ cγ |x |γ if t > 0, |x | ≥ (t + 1)
1

2α . (3.13)

The constants Cγ and cγ depend only on n, α, B, and γ .

Proof of Lemma 3.3. Since u(0, ·) ∈ Du,b(A), for any γ ∈ (0, 2α) the mild solution
u satisfies u ∈ C1([0,∞); Xγ ), u([0,∞)) ⊂ Du,b(A) ⊂ Dγ (A), and it is a classical
solution (see Remark 2.6). By hypothesis, for every t1 ∈ [t0,∞) (to be chosen later),

ε ≤ u ≤ 1 in �r := {
t > t1 , |x | < r(t) := aeνt} . (3.14)

Since f is concave and f (0) = f (1) = 0, for every 0 < ε′ < ε we have

f (s) ≥ f (ε′)
1 − ε′ (1 − s) for all s ∈ [ε, 1]. (3.15)

We take ε′ ∈ (0, ε) small enough so that

0 < qε′ := f (ε′)
1 − ε′ < 2αν.

With this choice of ε′, we take γ defined by

0 < γ := qε′

ν
< 2α.

Note that by (3.14) and (3.15), we have

(∂t + A)(1 − u) = − f (u) ≤ −qε′(1 − u) in �r . (3.16)

We now use as comparison function the solution w of{
wt + Aw = −qε′w in [t1,∞) × R

n,

w(t1, x) = 1 + 1
cγ aγ w̃γ (x) for x ∈ R

n,

where w̃γ ∈ Xγ has been defined in (3.11). Here, a is the constant in (3.14) and cγ the
constant in (3.13). The solution in the space Xγ of this linear problem is given by

w(t, x) = e−qε′ (t−t1)
{

1 +
1

cγ aγ
Tt−t1w̃γ (x)

}
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for t ≥ t1 and x ∈ R
n . Since w̃γ ∈ Dγ (A), the solution w is classical; in particular,

w ∈ C1([t1,∞); Xγ ) and w([t1,∞)) ⊂ Dγ (A).
We apply Lemma 2.9 to

v := (1 − u) − w,

with initial time t1, c(t, x) ≡ −qε′ , and |x | ≤ r(t) := aeνt in (3.14). We know that
v ∈ C1([t1,∞); Xγ ) and v([t1,∞)) ⊂ Dγ (A).

Condition (2.36) with t = 0 replaced by t = t1, i.e., v ≤ 0 for t = t1 in R
n , holds

since 1 − u ≤ 1 ≤ w for t = t1.
To verify (2.37), we take t1 ≥ t0 large enough to guarantee aeνt ≥ (t + 1)

1
2α ≥

(t − t1 + 1)
1

2α for t ≥ t1. Thus, the lower bound in (3.13) gives that if t ≥ t1 and
|x | ≥ r(t), then Tt−t1w̃γ (x) ≥ cγ |x |γ ≥ cγ aγ eγ νt . Hence,

w(t, x) ≥ e−qε′ t eqε′ t1 eγ νt ≥ e(γ ν−qε′ )t = 1 ≥ 1 − u(t, x) if t ≥ t1 and |x | ≥ r(t).

Finally, (2.38) clearly holds since, by (3.16),

vt + Av = − f (u) + qε′w ≤ −qε′(1 − u − w) = −qε′v in �r .

Therefore, by Lemma 2.9, v ≤ 0 in [t1,∞) × R
n for some t1 taken to be large enough.

Thus, using also the upper bound (3.12), we conclude

1 − u(t, x) ≤ w(t, x) = e−qε′ (t−t1)
{

1 +
1

cγ aγ
Tt−t1w̃γ (x)

}

≤ e−qε′ (t−t1)
{

1+Ca,γ (|x |γ +(t − t1 + 1)
γ
2α )

}
in R

n, if t ≥ t1, (3.17)

for some constant Ca,γ depending on a and γ .
From this bound, we deduce the two statements of the lemma. First, to prove part i),

in the new region
{

t ≥ tλ, |x | ≤ C−1
λ eνt

}
(where tλ and Cλ are to be chosen next), we

have

(1 − u)(t, x) ≤ e−qε′ (t−t1)
{

1 + Ca,γ (C−γ
λ eγ νt + (t + 1)

γ
2α )

}
= eqε′ t1

{
e−qε′ t + Ca,γ C−γ

λ + Ca,γ (t + 1)
γ
2α e−qε′ t

}
≤ 1 − λ

2
+ eqε′ t1Ca,γ C−γ

λ ≤ 1 − λ

if we take both tλ and Cλ large enough. Thus, u ≥ λ in this region, as claimed.
Inequality (3.17) also shows part ii) of the lemma, that is, the uniform convergence

of u towards 1 in the region
{|x | ≤ eσ t

}
when σ < ν. Simply use that γ σ < γ ν = qε′ .

��
We can finally establish our first main result.

Proof of Theorem 1.2. Part a) is simple. Since f (s) ≤ f ′(0)s for all s ∈ [0, 1], we have
that u ≤ v, where v is the solution of vt + Av = f ′(0)v with initial condition u0. It is
given by

v(t, x) = e f ′(0)t Tt u0(x).
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Since u0(x) ≤ min(1, C |x |−n−2α), the upper bound in part a) of Lemma 2.15 leads to
Tt u0(x) ≤ Ct |x |−n−2α for t ≥ 1 and x ∈ R

n . Thus,

u(t, x) ≤ v(t, x) ≤ Cte f ′(0)t |x |−n−2α for all t ≥ 1 and x ∈ R
n .

From this, statement a) in the theorem follows immediately. Indeed, for |x | ≥ eσ t and t
large enough, we deduce

u(t, x) ≤ Cte f ′(0)t e−(n+2α)σ t −→ 0 as t ↑ ∞,

since σ > f ′(0)/(n + 2α).
To prove part b) of the theorem, note that it suffices to establish it for the solution of

(1.2) with a smaller initial datum than u(2, ·), i.e., u at time 2. We replace u(2, ·) at time 2
by the smaller initial datum u0 := c

∫ 2
1 p(s, ·)ds. By Lemma 2.2, u0 ≤ T2u0 ≤ u(2, ·),

and hence, u(t, ·) ≤ u(t + 2, ·) for all t > 0, where u is the solution with initial datum
u0. In addition, by the same lemma, u0 ∈ D0(A) ⊂ Du,b(A), and this will allow us to
apply Lemma 3.3 to u. Now, given σ < σ∗, take σ ′ such that

0 < σ < σ ′ <
f ′(0)

n + 2α
.

We first apply Corollary 3.2 to u with σ replaced by σ ′. We obtain

u ≥ ε if t ≥ t0 , |x | ≤ beσ ′t ,

for some constants b > 0 and t0. Hence, we can apply Lemma 3.3 to u with ν re-
placed by σ ′. Part ii) of the lemma gives the desired convergence of u (and hence of u)
towards 1. ��
Remark 3.5. All the results in our paper hold for a larger class of nonlinearities than
those satisfying (1.1). It suffices to make the more general assumptions

f ∈ C1([0, 1]), f > 0 in (0, 1), f (0) = f (1) = 0, f ′(1) < 0 < f ′(0), (3.18)

and

f (s) ≤ f ′(0)s for s ∈ [0, 1]. (3.19)

Note that here f is not necessarily concave —in contrast with (1.1)— but (3.19) is
assumed. Let us next explain which small changes must be done in our proofs of Sect. 3
(the same changes apply for Sect. 4) to cover this larger class of nonlinearities.

The above assumptions on f guarantee the following facts. First, there exist θ ∈ (0, 1]
and a nonlinearity f̃ such that

f̃ ∈ C1([0, θ ]), f̃ (0) = f̃ (θ) = 0, ( f̃ )′(0) = f ′(0),

f ≥ f̃ > 0 in (0, θ), and f̃ is concave in [0, θ ]. (3.20)

This is easily seen by taking f̃ (with f̃ (0) = 0) to be the primitive of the function
h(s) := min[0,s] f ′. Note that h is continuous and nonincreasing and that h ≤ f ′ in
[0, 1].
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A second property that we need is the following. For every ε ∈ (0, 1), there exists
qε > 0 such that

f (s) ≥ qε(1 − s) for s ∈ [ε, 1]. (3.21)

This is easily seen by noticing that f (s)/(1 − s) is a continuous function in [ε, 1] taking
the value − f ′(1) > 0 at s = 1, and being positive in [ε, 1) by (3.18). Thus, we take
qε := mins∈[ε,1] f (s)/(1 − s).

Now, since Lemma 3.1 applies not only to solutions but also to supersolutions, and
it concerns only their small levels, we can replace the given nonlinearity f satisfying
(3.18) and (3.19) by f̃ satisfying (3.20). Now f̃ is concave in [0, θ ] and the proof of
Lemma 3.1 works with f̃ . Note also that ( f̃ )′(0) = f ′(0).

Next, the proofs of Lemma 1.3, Proposition 1.4, and Lemma 3.3 only require (3.21)
on the nonlinearity f .

Finally, the proof of part a) in Theorem 1.2 requires (3.19).

4. Nondecreasing Initial Data

The plan is the same as that of Sect. 3. To prove part b) of Theorem 1.5, we need a key
lemma similar to Lemma 3.1.

Lemma 4.1. Let n = 1, α ∈ (0, 1), f satisfy (1.1), and p be a kernel satisfying (1.6)–
(1.7)–(1.8). Recall that B is the constant in (1.8). Then, for every 0 < σ <

f ′(0)
2α

, there
exist t0 ≥ 1 and 0 < ε0 < 1 depending only on α, B, f , and σ , for which the following
holds.

Given x0 ≤ −1 and 0 < ε ≤ ε0, let a0 > 0 be defined by a0|x0|−2α = ε, and let

V0(x) =
{

a0|x |−2α for x ≤ x0,

ε = a0|x0|−2α for x ≥ x0.

Then, the mild solution v of (1.2) with initial condition V0 satisfies

v(kt0, x) ≥ ε for x ≥ x0eσkt0

and k ∈ {0, 1, 2, 3, . . .}.
Proof. The result being true for k = 0, let us prove it for k = 1. Let δ ∈ (0, 1) be
sufficiently small such that

σ <
1

2

(
σ +

f ′(0)

2α

)
<

1

2α

f (δ)

δ
≤ 1

2α
f ′(0). (4.1)

We take t0 ≥ 1 sufficiently large, depending only on α, B, f and σ , such that

⎛
⎝c

t0

t
1

2α
+1

0 + 1

⎞
⎠

1
2α

e
1
2

(
σ+ f ′(0)

2α

)
t0 ≥ eσ t0 , (4.2)

where c > 0 is the constant in the lower bound in part a) of Lemma 2.16. In particular,
c depends only on α and B. Define now 0 < ε0 < δ by

ε0 = δe− f ′(0)t0 .
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Recall that, in what follows, we are given x0 ≤ −1 and ε such that

0 < ε ≤ ε0 < δ.

Let

w := e( f (δ)/δ)t Tt V0.

It satisfies

wt + Aw = f (δ)

δ
w, w(0, ·) = V0

in the mild sense. Since V0 ≤ ε in R, we also have Tt V0 ≤ ε in R for all t > 0.
Now, for t ≤ t0, 0 ≤ w ≤ e( f (δ)/δ)t0ε ≤ e f ′(0)t0ε0 = δ. Since ( f (δ)/δ)w ≤ f (w)

for 0 ≤ w ≤ δ, we have that w is a mild subsolution of (1.2) in [0, t0] × R. Thus,
v(t0, ·) ≥ w(t0, ·) in R. By the lower bound in part a) of Lemma 2.16, we have

v(t0, x) ≥ w(t0, x) ≥ e( f (δ)/δ)t0 c
t0

t
1

2α
+1

0 + 1

a0

|x |2α
for x ≤ x0. (4.3)

Let us define x1 < 0 by

e( f (δ)/δ)t0 c
t0

t
1

2α
+1

0 + 1

a0

|x1|2α
= ε. (4.4)

Since a0 = ε|x0|2α , we get

x1 = x0

⎛
⎝c

t0

t
1

2α
+1

0 + 1

⎞
⎠

1
2α

e
1

2α

f (δ)t0
δ .

By (4.2) and the second inequality in (4.1), we have

x1 ≤ x0eσ t0 < x0. (4.5)

Now, since x1 < x0, (4.3) and (4.4) lead to v(t0, x) ≥ a1|x |−2α for x ≤ x1, where
a1 := ε |x1|2α . Since v is nondecreasing in x (see the last comment in Subsect. 2.4), we
also have v(t0, x) ≥ a1|x1|−2α = ε for x ≥ x1.

Thus, v(t0, ·) ≥ V1 where V1 is given by the expression for V0 in the statement of
the lemma with (x0, a0) replaced by (x1, a1). Note that x1 ≤ x0 ≤ −1.

Therefore, we can repeat the argument above successively, now with initial times
t0, 2t0, 3t0, . . . and points x1, x2, x3, . . ., and get that

v(kt0, x) ≥ ε for x ≥ xk

for all k ∈ {0, 1, 2, 3, . . .}. Since

xk ≤ x0eσkt0

by (4.5), the statement of the lemma follows. ��
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Corollary 4.2. Let n = 1, α ∈ (0, 1), f satisfy (1.1), p be a kernel satisfying (1.6)–
(1.7)–(1.8), and 0 < σ <

f ′(0)
2α

. Let t0 ≥ 1 be the time given by Lemma 4.1.
Then, for every measurable nondecreasing initial datum u0 with 0 ≤ u0 ≤ 1 and

u0 �≡ 0, there exist ε ∈ (0, 1) and b > 0 (both depending on u0) such that

u(t, x) ≥ ε for all t ≥ t0 and x ≥ −beσ t ,

where u is the mild solution of (1.2) with u(0, ·) = u0.

Proof. Since u is a supersolution of the homogeneous problem (the problem with f = 0)
and u0 �≡ 0, we have that u(t0/2, ·) ≥ Tt0/2u0 > 0 in R. Since u is nondecreasing in x
(see Subsect. 2.4), u(t0/2, x) ≥ u(t0/2, 0) ≥ Tt0/2u0(0) =: η > 0 for all x ≥ 0 (recall
that Tt0/2u0 is a continuous positive function). Thus, u(t0/2, ·) ≥ ηχ(0,∞) in R, for some
constant η > 0. The second inequality in (2.13) now gives, for t > 0 and x ≤ 0,

u(t0/2 + t, x) ≥ ηTtχ(0,∞)(x) ≥ ηB−1c(1 + t−
1

2α |x |)−2α.

We deduce

u(t0/2 + t, x) ≥ a0|x |−2α for t ∈ [t0/2, 3t0/2] and x ≤ x0 := −t
1

2α

0 ≤ −1,

for some a0 > 0. We make a0 smaller, if necessary, to have that ε := a0|x0|−2α ≤ ε0,
where ε0 is given by Lemma 4.1. Since u is nondecreasing, we deduce

u(t0/2 + t, ·) ≥ V0 in R for all t ∈ [t0/2, 3t0/2] ,

where V0 is the initial condition in Lemma 4.1.
Thus, we can apply Lemma 4.1 to get a lower bound for u(·+τ0, ·) for all τ0 ∈ [t0, 2t0].

Since {τ0 + kt0 | k = 0, 1, 2, . . . and τ0 ∈ [t0, 2t0]} cover all [t0,∞), we deduce

u(t, x) ≥ ε if t ≥ t0 and x ≥ x0e−σ2t0 eσ t

by taking t = τ0 + kt0 and using (recall here that x0 < 0) that x ≥ x0e−σ2t0 eσ t ≥
x0e−στ0 eσ t = x0eσkt0 . This last statement proves the corollary taking b = |x0|e−σ2t0 .

��
We can now give the proof of Theorem 1.5. Note that the previous lemma and cor-

ollary are crucial to guarantee that u ≥ ε for x ≥ −beσ t . Thus, in this region f (u) is
greater than a positive linear function vanishing at u = 1. This will lead to the exponential
convergence to 1 in the region.

To show this and prove part b) of Theorem 1.5, we need to use a comparison func-
tion modeled by Wγ (x) = (x−)γ . Thus, we consider the semigroup in the space Xγ

introduced in Subsect. 2.1. To use the simple maximum principles of Subsect. 2.5 for
classical solutions, instead of using as initial datum Wγ (x) = (x−)γ we use the function

W̃γ (x) =
∫ 1

0
Ts Wγ ds, (4.6)

which belongs to Dγ (A) as pointed out in (2.8).

In addition, since Tt W̃γ (x) = ∫ t+1
t Ts Wγ ds, using the bounds in part b) of

Lemma 2.16, we deduce

Tt W̃γ (x) ≤ Cγ (|x |γ + (t + 1)
γ
2α ) for all t > 0, x < 0, (4.7)
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and

Tt W̃γ (x) ≥ cγ |x |γ for all t > 0, x < 0. (4.8)

The constants Cγ and cγ depend only on α, B, and γ .

Proof of Theorem 1.5. Part a) is simple. Since f (s) ≤ f ′(0)s for all s ∈ [0, 1], we have
that u ≤ v, where v is the solution of vt + Av = f ′(0)v with initial condition u0. It is
given by

v(t, x) = e f ′(0)t Tt u0(x).

We know that u0(x) ≤ C0|x |−2α for some constant C0; we may assume C0 > 1. Taking
x0 := −C1/(2α)

0 < −1, we have u0 ≤ 1 = C0|x0|−2α , and thus u0 ≤ V0 in R, where
V0 is the function in part a) of Lemma 2.16. The upper bound in part a) of Lemma 2.16
leads to Tt u0(x) ≤ Ct |x |−2α for t ≥ 1 and x < 2x0. Thus,

u(t, x) ≤ v(t, x) ≤ Cte f ′(0)t |x |−2α

for t ≥ 1 and x < 2x0. From this bound, statement a) in the theorem follows immedi-
ately. Indeed, for x ≤ −eσ t and t large enough, we deduce

u(t, x) ≤ Cte f ′(0)t e−2ασ t −→ 0 as t ↑ ∞,

since σ > f ′(0)/(2α).
To prove part b) of the theorem, note that it suffices to establish it for the solution of

(1.2) with a smaller initial datum than u(2, ·), i.e., u at time 2. We replace u(2, ·) at time 2
by the smaller initial datum u0 := c

∫ 2
1 P(s, ·)ds. By Lemma 2.3, u0 ≤ T2u0 ≤ u(2, ·),

and hence, u(t, ·) ≤ u(t + 2, ·) for all t > 0, where u is the solution with initial datum
u0. In addition, by the same lemma, u0 ∈ Du,b(A), and this will allow us to apply
Lemma 2.10 to u. To simplify notation, in the rest of the proof we denote the solution
u(t, ·) by u(t, ·).

Since now u(0, ·) ∈ Du,b(A), the mild solution u satisfies u ∈ C1([0,∞); Xγ ) and
u([0,∞)) ⊂ Du,b(A) ⊂ Dγ (A) for any γ ∈ (0, 2α), and it is a classical solution (see
Remark 2.6).

Now, given σ < σ∗∗, take σ ′ such that

0 < σ < σ ′ <
f ′(0)

2α
.

We apply Corollary 4.2 to u with σ replaced by σ ′. We obtain, for any t1 ≥ t0 (t0 is
given by the corollary),

ε ≤ u ≤ 1 in � :=
{

t > t1, x > x(t) := −beσ ′t
}

, (4.9)

for some positive constants ε and b. Since f is concave and f (0) = f (1) = 0, for every
0 < ε′ < ε we have

f (s) ≥ f (ε′)
1 − ε′ (1 − s) for all s ∈ [ε, 1]. (4.10)
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We take ε′ ∈ (0, ε) small enough so that

0 < qε′ := f (ε′)
1 − ε′ < 2ασ ′.

With this choice of ε′, we take γ defined by

0 < γ := qε′

σ ′ < 2α.

Note that by (4.9) and (4.10), we have

(∂t + A)(1 − u) = − f (u) ≤ −qε′(1 − u) in �. (4.11)

We now use as comparison function the solution w of{
wt + Aw = −qε′w in [t1,∞) × R,

w(t1, x) = 1 + 1
cγ bγ W̃γ (x) for x ∈ R,

where W̃γ ∈ Xγ has been defined in (4.6). Here, b is the constant in (4.9) and cγ the
constant in (4.8). The solution in the space Xγ of this linear problem is given by

w(t, x) = e−qε′ (t−t1)
{

1 +
1

cγ bγ
Tt−t1 W̃γ (x)

}

for t ≥ t1 and x ∈ R. Since W̃γ ∈ Dγ (A), the solution w is classical; in particular,
w ∈ C1([t1,∞); Xγ ) and w([t1,∞)) ⊂ Dγ (A).

We apply Lemma 2.10 to

v := (1 − u) − w,

with initial time t1, c(t, x) ≡ −qε′ < 0, and x(t) := −beσ ′t in (4.9). We know that
v ∈ C1([t1,∞); Xγ ) and v([t1,∞)) ⊂ Dγ (A).

Condition (2.39) with t = 0 replaced by t = t1, i.e., v ≤ 0 for t = t1 in R, holds
since 1 − u ≤ 1 ≤ w for t = t1.

To verify (2.40), we use the lower bound in (4.8). For t ≥ t1 and x ≤ x(t) < 0, we
have Tt−t1 W̃γ (x) ≥ cγ |x |γ ≥ cγ bγ eγ σ ′t . Hence,

w(t, x) ≥ e−qε′ t eqε′ t1 eγ σ ′t ≥ e(γ σ ′−qε′ )t = 1 ≥ 1 − u(t, x) if t ≥ t1 and x ≤ x(t).

To verify (2.41), we use Proposition 2.7. Let l := limx→+∞ u(t1, x). Since φl(t) is
nondecreasing in t , the proposition gives that lim supx→+∞(1 − u)(t, x) = 1 − φl(t) ≤
1 − φl(t1) =: δ uniformly in t ∈ [t1, T ] for all T > t1. We apply Lemma 2.10 with this
choice of δ.

Finally, (2.42) clearly holds since, by (4.11),

vt + Av = − f (u) + qε′w ≤ −qε′(1 − u − w) = −qε′v in �.

Therefore, by Lemma 2.10, for all t1 ≥ t0 we have v ≤ δ = 1−φl(t1) in [t1,∞)×R.
Thus, using the upper bound (4.7), we conclude

1 − u(t, x) ≤ 1 − φl(t1) + w(t, x)

= 1 − φl(t1) + e−qε′ (t−t1)
{

1 +
1

cγ bγ
Tt−t1 W̃γ (x)

}

≤ 1 − φl(t1) + e−qε′ (t−t1)
{

1 + Cb,γ (|x |γ + (t − t1 + 1)
γ
2α )

}
if t ≥ t1 and x < 0, for some constant Cb,γ depending only on α, B, b and γ .
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This inequality shows part b) of the theorem, that is, the uniform convergence of u
towards 1 in the region

{
x ≥ −eσ t

}
. Indeed, given ε > 0 choose t1 ≥ t0 large enough

such that 1−φl(t1) < ε; recall that the solution of the ODE, φl(t), tends to 1 as t → ∞.
With this choice of t1, the remaining term of the above bound is also smaller than ε for
t large enough; simply use that γ σ < γσ ′ = qε′ . This ends the proof of Theorem 1.5.

��

5. Level Set Bounds in R when A = (−�)1/2

In this section we consider n = 1, A = (−�)1/2, and f (u) = u(1−u), that is, equation

ut + (−�)1/2u = u(1 − u) in (0, +∞) × R. (5.1)

The transition kernel p1/2 is known explicitly, even in dimension n. It is given by

p1/2(t, x) = Bnt−n
(
1 + t−2r2

)− n+1
2 = Bnt (t2 + r2)− n+1

2 , where r = |x | and Bn =

( n+1

2 )π− n+1
2 is a positive constant. Thus, we have

(−�)1/2 p1/2 = −∂t p1/2

= Bn

{
nt−n−1

(
1 + t−2r2

)− n+1
2 − (n + 1)t−n

(
1 + t−2r2

)− n+3
2

t−3r2
}

= Bnt−n−1
(

1 + t−2r2
)− n+3

2
{

n
(

1 + t−2r2
)

− (n + 1)t−2r2
}

= Bnt−nt−1
(

1 + t−2r2
)− n+3

2
{

n − t−2r2
}

.

From this we deduce that, given a constant b > 0,

(−�)1/2
(

1 + b−2r2
)− n+1

2 = b−1
(

1 + b−2r2
)− n+3

2
{

n − b−2r2
}

in R
n . (5.2)

Consider now, on the model of p1/2, a function u of the form

u(t, x) = a

(
1 +

r2

b(t)2

)− n+1
2

with b = b(t) to be chosen later. Using (5.2), we compute ut + (−�)1/2u − u(1 − u)

in R
n :

ut = a
(

1 + b−2r2
)− n+3

2
(n + 1)b−3b′r2,

(−�)1/2u = a
(

1 + b−2r2
)− n+3

2
b−1

(
n − b−2r2

)
,

u(1 − u) = a
(

1 + b−2r2
)− n+1

2
{

1 − a
(

1 + b−2r2
)− n+1

2
}

= a
(

1 + b−2r2
)− n+3

2
{

1 + b−2r2 − a
(

1 + b−2r2
)− n−1

2
}

.
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Thus, we have

a−1
(

1 + b−2r2
) n+3

2
{

ut + (−�)1/2u − (u − u2)
}

= nb−1 − 1 + a
(

1 + b−2r2
)− n−1

2
+ b−3r2 {

(n + 1)b′ − 1 − b
}
. (5.3)

We wish the above function u to serve as a sub or a supersolution depending on its
parameters. We have:

Lemma 5.1. Let n = 1. For a > 0 and b0 > 1, let

ua,b0(t, x) := a

(
1 +

x2{
(1 + b0)et/2 − 1

}2

)−1

for t > 0, x ∈ R.

Then,

a) If a ≤ b0−1
b0

, then ua,b0 is a subsolution of (5.1),
b) If a ≥ 1, then ua,b0 is a supersolution of (5.1).

Proof. Let b(t) = (1 + b0)et/2 − 1. Note that 2b′(t) = (1 + b0)et/2 = 1 + b(t). Thus,
by (5.3),

a−1
(

1 + b(t)−2x2
)2 {

ut + (−�)1/2u − (u − u2)
}

= b(t)−1 − 1 + a.

Now, since b(t) ≥ b0 for all t > 0, the last expression satisfies b(t)−1 − 1 + a ≤
b−1

0 − 1 + a = a − b0−1
b0

≤ 0 under the assumption in part a).

Finally, since b(t)−1 − 1 + a ≥ −1 + a ≥ 0 under the assumption in part b). ��
Using this result and also our key Lemma 3.3, we can finally give the

Proof of Theorem 1.6. Let λ ∈ (0, 1). We start proving the inclusion

{|x | > Cλet/2} ⊂ {u(t, ·) < λ} for all t > 0

if Cλ is chosen large enough. We simply use the explicit supersolution ua,b0 of Lemma 5.1
for some appropriate a ≥ 1 and b0 > 1. Take it at time t = 0:

ua,b0(0, x) = a

(
1 +

x2

b2
0

)−1

≥
(

1 +
x2

b2
0

)−1

≥ b2
0

2
|x |−2 if |x | ≥ b0.

Recall that we assume u0(x) ≤ C |x |−2. Thus u0 ≤ ua,b0(0, ·) for |x | ≥ b0 if we take
b0 > 1 large enough (independently of a ≥ 1, that we can still choose). Now, by taking
a ≥ 1 large enough we also have u0 ≤ ua,b0(0, ·) in {|x | ≤ b0}, and hence in all of R.

We apply the comparison principle of Subsect. 2.4. Since 0 ≤ u ≤ 1, 0 ≤ ua,b0 ≤ a,
and a ≥ 1, here we change f given by f (u) = u − u2 outside [0, a] to have hypothesis
(2.28) on the new f . The comparison principle gives that u(t, x) ≤ ua,b0(t, x) for all
(t, x), that is,

u(t, x) ≤ a

(
1 +

x2(
(1 + b0)et/2 − 1

)2

)−1

.
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Hence, if u(t, x) ≥ λ then

1 +
x2(

(1 + b0)et/2 − 1
)2 ≤ a

λ

and thus |x | ≤ (1 + b0)
√

a/λ et/2.
Next, we prove the other inclusion in (1.13):

{|x | <
1

Cλ

et/2} ⊂ {u(t, ·) > λ} for t > tλ, (5.4)

if tλ and Cλ are chosen large enough. Clearly, it suffices to prove this statement for the
solution of (1.2) with a smaller initial datum than u(2, ·), i.e., u at time 2. We replace
u(2, ·) by the smaller initial datum u0 := c

∫ 2
1 p(s, ·)ds at time 2. By Lemma 2.2,

u0 ≤ T2u0 ≤ u(2, ·), and hence, u(t, ·) ≤ u(t + 2, ·) for all t > 0, where u is the
solution with initial datum u0. In addition, by the same lemma, u0 ∈ D0(A) ⊂ Du,b(A),
and this will allow us to use Lemma 3.3 to u. To simplify notation, we denote u(t, ·)
again by u(t, ·).

Now we use crucially Lemma 3.3 with ν = 1/2 in its statement. It requires the initial
datum to belong to the domain, as we have in the present situation. It gives that (5.4)
will hold for every λ ∈ (0, 1) (for some tλ depending on λ) once we have proved it for
one level set λ = ε ∈ (0, 1). Hence, we can choose λ = ε as small as needed in (5.4).

Note that Corollary 3.2 gives the analogue of (5.4) with et/2 replaced by eσ t for every
σ < 1/2 (and some λ = ε small enough). To prove (5.4) with σ = 1/2 we need to be
more precise and we use a subsolution from Lemma 5.1.

Since u(1, ·) > 0 is a positive continuous function in all of R, it is larger than a
small positive constant times the characteristic function of the unit interval. Thus, (2.12)
applied with initial time 1 gives

u(t, x) ≥ 4c
1

(t − 1){1 + (t − 1)−2x2} for all t > 1, |x | > 1,

for some constant c > 0 depending on u0. Now, since t − 1 ≥ t/2 for t ≥ 2, we have
that u(t, x) ≥ 4c/(t{1 + (t − 1)−2x2}) ≥ c/(t{1 + t−2x2}) for all t ≥ 2 and |x | > 1.
Therefore, for all T ≥ 2 we have

u(T, x) ≥ c

T

1

1 + T −2x2 for all x ∈ R, (5.5)

for some positive constant c = c(T ) (depending on T and u0) taken to be small enough
to guarantee (5.5) also for |x | ≤ 1. Taking c smaller if necessary, we may assume

c < T − 1.

From now on we fix one time T ≥ 2 and the constant c = c(T ) in (5.5). We could
take T = 2 for instance. We place a subsolution ua,b0(0, ·) of Lemma 5.1 below u(T, ·).
Note here the difference of times, 0 and T , for both functions. We simply take a = c

T

and b0 = T . Since a = c
T < T −1

T = b0−1
b0

, we have that uc/T,T is a subsolution. Note
that

u(T, x) ≥ c

T

1

1 + T −2x2 = uc/T,T (0, x) for all x ∈ R
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thanks to (5.5). Thus, for t ≥ T and all x ∈ R, we have

u(t, x) ≥ uc/T,T (t − T, x) = c/T

1 + x2

{(1+T )e(t−T )/2−1}2

.

Hence, if |x | ≤ et/2 and t is large enough, we have u(t, x) > ε for t large enough, for
some constant ε > 0. ��
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