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Abstract: We conduct the multifractal analysis of self-affine measures for “almost all”
family of affine maps. Besides partially extending Falconer’s formula of Lq -spectrum
outside the range 1 < q ≤ 2, the multifractal formalism is also partially verified.

1. Introduction

Multifractal analysis in R
d aims at describing the geometry of Hölder singularities for

positive Borel measures. Specifically, given a compactly supported positive Borel mea-
sure μ on R

d , one is interested in the Hausdorff dimensions of the level sets

E(μ, α) :=
{

x ∈ R
d : lim

r→0

logμ(Br (x))

log r
= α

}
(α ≥ 0),

where Br (x) stands for the Euclidean closed ball with radius r centered at x . According
to heuristic arguments developed by physicists [28,29], in the presence of self-similarity,
one should have

dimH E(μ, α) = inf
q∈R

(αq − τ(μ, q)), (1.1)

(a negative dimension meaning that E(μ, α) = ∅) where τ(μ, ·) is the Lq -spectrum
defined as

τ(μ, q) = lim inf
r→0

log sup
∑

j μ(Br (x j ))
q

log r
,

the supremum being taken over all families of disjoint balls {Br (x j )} j with radius r and
centers x j ∈ supp(μ).

When equality (1.1) holds, one says that the multifractal formalism holds for μ at α.
So far the multifractal structures of the so-called self-similar measures and more gener-
ally self-conformal measures and Gibbs measures on self-conformal sets or conformal
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repellers have been studied intensively, the validity of the multifractal formalism being
observed over wide or even maximal ranges of exponents α for large subclasses of these
measures (see, e.g., [8,10,11,19,21,26,35,39,42,43,45–48,51] and the references in
[26]).

Much less is known for self-affine measures (to be defined below), except when
they are supported on self-affine Sierpinski sponges, or on invariant subsets of such
sponges satisfying specification property [3,4,34,38,44]. However, for such measures,
one knows that in general the previous multifractal formalism fails, but a refined one
(which is more related to Hausdorff measures and introduced independently in [6] and
[43]) holds. This is closely related to the fact that the Hausdorff and box dimension of
self-affine Sierpinski sponges do not coincide in general.

This paper studies the validity of the multifractal formalism for “almost all” self-
affine measures. First of all, let us recall the definition of self-affine measures. Let
S1, . . . , Sm : R

d → R
d be a family of contracting mappings. Such a family is known

as an iterated function system (IFS). It is well known [30] that there exists a unique
non-empty compact set F ⊂ R

d , called the attractor of the IFS, satisfying

F =
m⋃

i=1

Si (F).

Moreover, for any probability vector (p1, . . . , pm) (that is, pi > 0 and
∑m

i=1 pi = 1),
there exists a unique Borel probability measure μ supported on F such that

μ =
m∑

i=1

piμ ◦ S−1
i .

Here we assume that S1, . . . , Sm are affine transformations, in which case, F is called
a self-affine set, andμ is called a self-affine measure (self-similar measures correspond to
the particular case where the Si are similitudes). In particular, we let Si = Ti + ai , where
T1, . . . , Tm are non-singular contracting linear mappings and a1, . . . , am are transla-
tion parameters. In [13] Falconer obtained a formula for the Hausdorff dimension and
box-counting dimension of the attractor of the IFS {Ti + ai }m

i=1 for almost all parameter
(a1, . . . , am) ∈ R

md in the sense of md-dimensional Lebesgue measure, under an addi-
tional assumption that ‖Ti‖ < 1/3 for all i ; these dimensions coincide. Later, Solomyak
[50] proved that the assumption ‖Ti‖ < 1/3 for all i can be weakened to ‖Ti‖ < 1/2
for all i .

In [15], Falconer obtained the formula of the Lq -spectrum of the self-affine measure
associated to the IFS {Ti + ai }m

i=1 and the probability vector (p1, . . . , pm) for 1 < q ≤ 2
and almost all (a1, . . . , am) ∈ R

md , still in the sense of md-dimensional Lebesgue
measure and under the assumption ‖Ti‖ < 1/2 for all i .

Before stating Falconer’s formula, let us first introduce some definitions. Let T be a
non-singular linear mapping from R

d to R
d . The singular values α1 ≥ α2 ≥ · · · ≥ αd

of T are the positive square roots of the eigenvalues of T ∗T .

Definition 1.1 [13]. The singular value function φs(T ) is defined for s > 0 by

φs(T ) =
⎧⎨
⎩
α1 . . . αk−1α

s−k+1
k , if k − 1 < s ≤ k ≤ d,

(α1 . . . αd)
s/d , if s ≥ d.

In particular, set φ0(T ) = 1.
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Fix a probability vector (p1, . . . , pm) and non-singular contractive linear transfor-
mations T1, . . . , Tm from R

d to R
d . For a = (a1, . . . , am) ∈ R

md , letμa denote the self-
affine measure associated with the IFS {Ti +ai }m

i=1 and (p1, . . . , pm). For k ∈ N, we write
for brevity�k := {1, . . . ,m}k . For I = i1 . . . ik ∈ �k , denote TI := Ti1 ◦. . .◦Tik , pI :=
pi1 . . . pik . For q ≥ 0, define

D(q) =

⎧⎪⎪⎨
⎪⎪⎩
(q − 1) inf

{
s ≥ 0 : ∑∞

k=1
∑

I∈�k

(
φs(TI )

)1−q pq
I < ∞

}
, if 0 ≤ q < 1,

0, if q = 1,

(q − 1) sup
{

s ≥ 0 : ∑∞
k=1
∑

I∈�k

(
φs(TI )

)1−q pq
I < ∞

}
, if q > 1,

(1.2)

and

τ(q) =
{
(q − 1)min

{
D(q)
q−1 , d

}
, if q �= 1,

0, if q = 1.
(1.3)

We remark that D and τ are continuous and piecewise concave over (0,∞). More
precisely, D and τ are concave on (1,∞), they are also concave on the subintervals Jk
of (0, 1), k = 0, 1, . . . , d, where Jk = {q ∈ (0, 1) : D(q)/(q − 1) ∈ (k, k + 1)} for
k ≤ d − 1 and Jd = {q ∈ (0, 1) : D(q)/(q − 1) > d} (see Appendix A). Hence the
one-sided derivatives of D and τ exist for any q > 0.

Now Falconer’s result can be stated as follows:

Theorem 1.2 ([15]). If ‖Ti‖ < 1/2 for all 1 ≤ i ≤ m, then for Lmd-a.e. a ∈ R
md, the

Lq-spectrum of μa is

τ(μa, q) = τ(q), 1 < q ≤ 2.

In [15], Falconer raised some open problems, for instance, how to extend the above
formula outside the range 1 < q ≤ 2 and how to analyze the multifractal structure of
μa for Lmd -a.e. a ∈ R

md . The main purpose of this paper is to study these problems.
Our main result is the following. It will be completed with some results for q ≥ 2 in

Sect. 6 (see Theorems 6.2–6.4).

Theorem 1.3. Assume that ‖Ti‖ < 1/2 for all 1 ≤ i ≤ m. Let q ∈ (0, 2), q �= 1.

(i) Let α ∈ {D′(q−), D′(q+)}, where D′(q±) denote the one-sided derivatives of D
at q. Assume that 0 < q < 1, D(q)/(q − 1) < 1 and αq − D(q) ≤ 1. Then for
Lmd-a.e. a ∈ R

md , τ (μa, q) = τ(q) = D(q), and furthermore, E(μa, α) �= ∅ and

dimH E(μa, α) = αq − τ(q).

(ii) Let q ∈ (1, 2). Assume that Ti (i = 1, . . . ,m) are of the form

Ti = diag(ti,1, ti,2, . . . , ti,d)

with 1
2 > ti,1 > ti,2 > . . . > ti,d > 0. Assume furthermore that D(q)/(q − 1) ∈

(k, k + 1) for some integer 0 ≤ k ≤ d − 1 (in this case α := D′(q) exists) and
αq − D(q) ∈ (k, k + 1).

– If k = 0, then for Lmd-a.e. a ∈ R
md , E(μa, α) �= ∅ and

dimH E(μa, α) = αq − τ(q).
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– If k > 0, then for Lmd-a.e. a ∈ R
md , E(μa, α) �= ∅ and

dimH E(μa, α) = αq − τ(q),

where E(μa, α) :=
{

x ∈ R
d : lim infr→0

logμ(Br (x))
log r = α

}
.

We remark that the functions τ and D can be determined explicitly in some special
case.

Example 1.4. Assume that T1 = T2 = · · · = Tm = diag(t1, t2, . . . , td) with

1

2
> t1 > t2 > · · · > td .

Denote A(q) := (∑m
i=1 pq

i

)1/(q−1)
. Then by Definitions (1.2)–(1.3), for q > 0,

τ (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(q) = log
∑m

i=1 pq
i

log t1
if A(q) ≥ t1,

D(q) = log
∑m

i=1 pq
i

log tk+1
+ (q − 1)

(
k − log(t1 . . . tk)

log tk+1

)

if t1 . . . tk+1 ≤ A(q) < t1 . . . tk for some 1 ≤ k ≤ d − 1,

d(q − 1) if A(q) < t1 . . . td .

Remark 1.5. We remark that in Example 1.4, τ ′(q+) > τ ′(q−) at those points q ∈ (0, 1)
such that A(q) = t1 . . . tk for some k ∈ {1, 2, . . . , d − 1}. Indeed, if such q exists, a
direct calculation shows that

τ ′(q+)− τ ′(q−) =
(

log
∑m

i=1 pq
i

q − 1
−
(

log
m∑

i=1

pq
i

)′) ·
(

1

log tk+1
− 1

log tk

)
> 0,

using the strict convexity of the function x �→ log
∑m

i=1 px
i on (0,∞) and q < 1;

therefore τ is not concave on any neighborhood of q. In this case, Falconer’s formula
τ(μa, t) = τ(t) in Theorem 1.2 can not be extended to all t ∈ (0, 1), because τ(μa, t)
should be concave over R. A right formula for τ(μa, t) is expected. In Example 6.7, we
provide such a formula for certain non-overlapping planar IFS.

The paper is organized as follows. In Sect. 2, we present some definitions and known
results about the sub-additive thermodynamic formalism; we also present some known
dimensional results about the projections of ergodic measures on typical self-affine sets.
In Sect. 3, we give a formula for the derivative of D(q) using the sub-additive thermo-
dynamic formalism. In Sect. 4, we show that for a class of self-affine IFS on R

d , any
associated self-affine measure is either singular or equivalent to the restricted d-dimen-
sional Lebesgue measure on the attractor. In Sect. 5 we prove Theorem 1.3 and related
results. In Sect. 6, we prove an extension of Falconer’s formula for the Lq -spectrum
and give some complement to Theorem 1.3. In Sect. 7 we give further extensions of our
results. In Appendix A we provide a proof of the concavity of the functions τ and D
over (1,∞), as well as a proof of their concavity over the subintervals intervals of (0, 1)
over which D(q)/(q − 1) lies between two consecutive integers in [0, d].
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2. Preliminaries

2.1. The sub-additive thermodynamic formalism. In this subsection, we present some
definitions and known results about the sub-additive thermodynamic formalism on full
shifts.

Let m ≥ 2. Let (�, σ ) denote the one-sided full shift space over the alphabet
{1, . . . ,m} (cf. [7]). Let M(�, σ ) denote the collection of σ -invariant Borel proba-
bility measures on � endowed with the weak star topology. For η ∈ M(�, σ ), let
hη(σ ) denote the measure-theoretic entropy of η with respect to σ (cf. [7]).

A sequence � = {ψn}∞n=1 of continuous functions on � is said to be a sub-additive
potential if

ψn+m(x) ≤ ψn(x) + ψm(σ
n x), ∀x ∈ �, m, n ∈ N.

More generally, � = {ψn}∞n=1 is said to be an asymptotically sub-additive potential if
for any ε > 0, there exists a sub-additive potential � = {φn}∞n=1 on � such that

lim sup
n→∞

1

n
sup
x∈�

|ψn(x)− φn(x)| ≤ ε.

Now let � = {ψn}∞n=1 be an asymptotically sub-additive potential on �. The topo-
logical pressure P(σ,�) of � is defined as

P(σ,�) := lim sup
n→∞

1

n
log
∑
I∈�n

sup
x∈[I ]

exp(ψn(x)),

where�n := {1, . . . ,m}n and [I ] = {x = (xi )
∞
i=1 ∈ � : x1 . . . xn = I } for I ∈ �n . For

η ∈ M(�, σ ), set

�∗(η) = lim
n→∞

1

n

∫
ψn(x) dη(x).

The following variational principle was proved in [9,24] in a more general setting.

Proposition 2.1. P(σ,�) = sup{hη(σ ) +�∗(η) : η ∈ M(�, σ )}.
We remark that the variational principle for sub-additive potentials has been studied in

the literature under additional assumptions on the corresponding sub-additive potentials
(see e.g. [5,14,25,37]).

Let I(�) denote the collection of η ∈ M(�, σ ) such that

hη(σ ) +�∗(η) = P(σ,�).

Then I(�) �= ∅ (see e.g., [24, Thm. 3.3]). Each element of I(�) is called an equilibrium
state for �.

Lemma 2.2 ([24], Thm. 3.3(i)).I(�) is a non-empty compact convex subset ofM(�, σ ).
Moreover, any extreme point of I(�) is an ergodic measure on �.

We end this subsection by mentioning the following property of �∗; for a proof, see
[24, Prop. A.1(2)].

Lemma 2.3. The map �∗ : M(�, σ ) → R ∪ {−∞} is upper semi-continuous.
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2.2. Projections of ergodic measures on typical self-affine sets. In this subsection, we
introduce a result of Jordan, Pollicott and Simon [33] for self-affine IFS, which plays a
key role in the proof of Theorem 1.3.

Let m ≥ 2 and T1, . . . , Tm be non-singular linear transformations from R
d to R

d .
For a = (a1, . . . , am) ∈ R

md , let πa : � → R
d be the coding mapping associated

with the IFS {Ti + ai }m
i=1, that is,

πa(x) = lim
n→∞ Sx1 ◦ Sx2 ◦ . . . ◦ Sxn (0), (2.1)

where Si := Ti + ai . It is not hard to see that πa(�) is just the attractor of the IFS
{Ti + ai }m

i=1. For s ≥ 0 and η ∈ M(�, σ ), set

φs∗(η) = lim
n→∞

1

n

∫
logφs(Tx |n) dη(x), (2.2)

where Tx |n := Tx1 . . . Txn for x = (xi )
n
i=1 ∈ � and φs(·) denotes the singular value

function (see Definition 1.1). Since φs is sub-multiplicative in the sense that φs(AB) ≤
φs(A)φs(B) for any d × d real matrices A, B (cf. [13, Lem. 2.1]), the limit in (2.2)
exists. The following definition was introduced in [33] in a slightly different but equiv-
alent form.

Definition 2.4. For an ergodic measure η on �, the Lyapunov dimension of η (associ-
ated with T1, . . . , Tm), denoted as dimLY η, is defined by dimLY η = s, where s is the
unique non-negative value so that hη(σ ) + φs∗(η) = 0.

Let us give another definition.

Definition 2.5. Let ξ be a Borel probability measure on R
d .

(i) The Hausdorff dimension of ξ is defined as

dimH ξ = inf{dimH F : F ⊂ R
d is Borel with ξ(Rd\F) = 0}.

(ii) Say that ξ is exactly dimensional if there is a constant c ≥ 0 such that

lim
r→0

log ξ(B(z, r))

log r
= c for ξ -a.e z ∈ R

d .

It is well known [53] that if ξ is exactly dimensional, then dimH ξ = c. Now we can
state the following projection result of Jordan, Pollicott and Simon [33].

Theorem 2.6 ([33]). Assume that ‖Ti‖ < 1/2 for 1 ≤ i ≤ m. Let η be an ergodic
measure on �. Then for Lmd-a.e a ∈ R

md ,

(i) dimH η ◦ (πa)−1 = min{dimLY η, d}.
(ii) If dimLY η ∈ [0, 1], then η ◦ (πa)−1 is exactly dimensional.

(iii) If dimLY η > d, then η ◦ (πa)−1 � Ld .

We remark that Theorem 2.6(ii) was only implicitly proved in [33, Thm. 4.3]. After
we completed the first version of this paper, Thomas Jordan pointed to us that the
assumption dimLY η ∈ [0, 1] in Theorem 2.6(ii) can be removed, that is, for any ergodic
measure η on �, η ◦ (πa)−1 is exactly dimensional for Lmd -a.e a ∈ R

md ; the proof is
done by taking a minor change in the proof of [33, Thm. 4.3] for the upper bound [32].
We remark that this result was proved earlier by Falconer and Miao [17] in the special
case that η is a Bernoulli product measure or a Gibbs measure. However if T1, . . . , Tm
are commutative, then η ◦ (πa)−1 is exactly dimensional for any ergodic measure η on
� and any a ∈ R

md (cf. [23, Thm. 2.12]).
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3. A Formula for the Derivative of D(q)

Assume that T1, . . . , Tm are contractive non-singular linear mappings from R
d to R

d ,
and let (p1, . . . , pm) be a probability vector. Let D(q) be defined as in (1.2). It is not
hard to see that for q > 0, q �= 1, D(q) is the unique value s ∈ R so that

lim
n→∞

1

n
log
∑
I∈�n

φs/(q−1)(TI )
1−q pq

I = 0. (3.1)

Define f ∈ C(�) by

f (x) = log px1 for x = (xi )
∞
i=1 ∈ �.

For q > 0, q �= 1, assume that
{
(1 − q) logφD(q)/(q−1)(Tx |n)

}∞
n=1

is an asymptotically

sub-additive potential on �.
(3.2)

Then by (3.1),

P(σ,Gq) = 0, (3.3)

where P denotes the pressure function (see Sect. 2), Gq := {gn,q}∞n=1 is a potential
defined by

gn,q(x) = (1 − q) logφD(q)/(q−1)(Tx |n) + q
n−1∑
k=0

f (σ k x). (3.4)

By the assumption (3.2), Gq is asymptotically sub-additive.

Remark 3.1. (i) The assumption (3.2) always holds when 0 < q < 1, since φs is sub-
multiplicative for any s ≥ 0 in the sense that φs(AB) ≤ φs(A)φs(B) (cf. [13]).

(ii) When q > 1, (3.2) holds if T1, . . . , Tm satisfy some additional assumption, for
instance, all Ti are the same, or each Ti is of the form

Ti = diag(ti,1, ti,2, . . . , ti,d) with ti,1 > ti,2 > · · · > ti,d > 0.

By (3.3) and Proposition 2.1, we have

Lemma 3.2. Let q > 0, q �= 1. Assume that (3.2) holds. Then

0 = sup

{
hη(σ ) + (1 − q)φD(q)/(q−1)∗ (η) + q

∫
f dη : η ∈ M(�, σ )

}
,

where φs∗(·) is defined as in (2.2). Moreover,

hη(σ ) + (1 − q)φD(q)/(q−1)∗ (η) + q
∫

f dη = 0, ∀η ∈ I(Gq),

where I(Gq) denotes the collection of the equilibrium states of the potential Gq
(cf. Sect. 2.1).
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For η ∈ M(�, σ ), denote

λi (η) := lim
n→∞

1

n

∫
logαi (Tx |n) dη(x), i = 1, . . . , d, (3.5)

where αi (A) denotes the i th singular value of A. We write λ0(η) = 0 for convention. It
is easy to see that λi (η) = φi∗(η)−φi−1∗ (η) for 1 ≤ i ≤ d. In particular, if s ∈ [k, k + 1)
for some integer 0 ≤ k ≤ d − 1, then

φs∗(η) = λ1(η) + · · · + λk(η) + (s − k)λk+1(η) = φk∗(η) + (s − k)λk+1(η). (3.6)

Lemma 3.3. Let η be an ergodic measure on �. Then for η-a.e x ∈ �,

lim
n→∞

logαi (Tx |n)
n

= λi (η), i = 1, . . . , d.

Proof. Let s ≥ 0. Since φs is sub-multiplicative, by Kingman’s sub-additive ergodic
theorem (cf. [52, Thm. 10.1]),

lim
n→∞

logφs(Tx |n)
n

= φs∗(η) for η-a.e. x ∈ �.

Now Lemma 3.3 follows from the fact that logαi (A) = logφi (A) − logφi−1(A) for
i = 1, . . . , d. ��

In the following proposition, we give a formula for the derivative of D(q).

Proposition 3.4. Let q > 0, q �= 1. Assume that (3.2) holds. If D(q)
q−1 ∈ (k, k + 1) for

some integer 0 ≤ k ≤ d − 1, then

D′(q−) ≥ sup
η∈I(Gq )

∫
f dη − φk∗(η)
λk+1(η)

+ k,

D′(q+) ≤ inf
η∈I(Gq )

∫
f dη − φk∗(η)
λk+1(η)

+ k.

(3.7)

In particular, if in addition D′(q) exists, then

D′(q) =
∫

f dη − φk∗(η)
λk+1(η)

+ k, ∀η ∈ I(Gq). (3.8)

Proof. First fix η ∈ I(Gq). By (3.6), we have

(1 − q)φD(q)/(q−1)∗ (η) = (1 − q)(φk∗(η)− kλk+1(η))− D(q)λk+1(η).

Combining this with Lemma 3.2 yields

− D(q)λk+1(η) + q A + B = 0, (3.9)

where

A :=
∫

f dη − φk∗(η) + kλk+1(η), B := hη(σ ) + φk∗(η)− kλk+1(η).
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For small ε ∈ R, apply Lemma 3.2 (in which q is replaced by q + ε) to obtain

−D(q + ε)λk+1(η) + (q + ε)A + B ≤ 0. (3.10)

Subtracting (3.9) from (3.10) yields

(D(q)− D(q + ε))λk+1(η) + εA ≤ 0.

Hence

D(q + ε)− D(q)

ε
≤ A

λk+1(η)
if ε > 0, and

D(q + ε)− D(q)

ε
≥ A

λk+1(η)
if ε < 0.

Letting ε → 0, we obtain

D′(q+) ≤ A

λk+1(η)
and D′(q−) ≥ A

λk+1(η)
.

Letting η run over I(Gq), we obtain (3.7). It implies that if D′(q) exists, then (3.8)
holds. ��

As the main result of this section, we have

Proposition 3.5. Let q > 0, q �= 1.

(i) If 0 < q < 1 and D(q)
q−1 ∈ (0, 1), then

D′(q−) = sup
η∈I(Gq )

∫
f dη

λ1(η)
, D′(q+) = inf

η∈I(Gq )

∫
f dη

λ1(η)
. (3.11)

Furthermore, forα ∈ {D′(q+), D′(q−)}, there exists an ergodic measureη ∈ I(Gq)

such that α =
∫

f dη
λ1(η)

.
(ii) Assume that Ti (i = 1, . . . ,m) are of the form

Ti = diag(ti,1, ti,2, . . . , ti,d) (3.12)

with ti,1 > ti,2 > · · · > ti,d > 0. If k < D(q)
q−1 < k+1 for some integer 0 ≤ k ≤ d−1,

then D′(q) exists and there exists an ergodic measure η ∈ I(Gq) such that then

D′(q) =
∫

f dη − φk∗(η)
λk+1(η)

+ k. (3.13)

Proof. We first prove (i). Assume that 0 < q < 1 satisfying that D(q)/(q −1) ∈ (0, 1).
By continuity, there exists a neighborhood� of q so that� ⊂ (0, 1) and D(t)/(t −1) ∈
(0, 1) for any t ∈ �. Let (qn) ⊂ � be a sequence so that limn→∞ qn = q. Take
ηn ∈ I(Gqn ). By (3.3), (Gqn )∗(ηn) + hηn (σ ) = 0. Taking a subsequence if necessary
we may assume that ηn converges to some η ∈ M(�, σ ) in the weak-star topology. We
claim that η ∈ I(Gq) and lim supn→∞ λ1(ηn) = λ1(η).
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To prove the claim, we notice that the map μ �→ λ1(μ) is upper semi-continuous on
M(�, σ ). This follows from Lemma 2.3, in which we take� = {logφ1(Tx |n)}∞n=1. For
t ∈ � and μ ∈ M(�, σ ), by (3.4), we have

(Gt )∗(μ) = −D(t)λ1(μ) + t
∫

f dμ.

Hence

lim sup
n→∞

(Gqn )∗(ηn) = −D(q) lim sup
n→∞

λ1(ηn) + q
∫

f dη

≤ −D(q)λ1(η) + q
∫

f dη = (Gq)∗(η).

Meanwhile lim supn→∞ hηn (σ ) ≤ hη(σ ) by the upper semi-continuity of h(·)(σ ). It
follows that

(Gq)∗(η) + hη(σ ) ≥ lim sup
n→∞

((Gqn )∗(ηn) + hηn (σ )) = 0.

However, by Proposition 2.1 and (3.3), 0 = P(σ,Gq) ≥ (Gq)∗(η) + hη(σ ). Hence we
have (Gq)∗(η) + hη(σ ) = 0 = (Gqn )∗(ηn) + hηn (σ ). Thus η ∈ I(Gq), and moreover,
lim supn→∞ λ1(ηn) = λ1(η).

Since D is concave in a neighborhood of q (see Proposition A.1), we can take two
sequences (sn), (tn) such that sn ↑ q, tn ↓ q and D′(sn), D′(tn) exist. Then D′(q−) =
limn→∞ D′(sn) and D′(q+) = limn→∞ D′(tn). Take η′

n ∈ I(Gsn ). Taking a subse-
quence if necessary, we may assume that η′

n converges to some η ∈ M(�, σ ) in the
weak-star topology. By the above claim, we have η ∈ I(Gq) and lim supn→∞ λ1(η

′
n) =

λ1(η). Hence by Proposition 3.4,

D′(q−) = lim
n→∞ D′(sn) = lim

n→∞

∫
f dη′

n

λ1(η′
n)

=
∫

f dη

λ1(η)
.

Combining this with (3.7) yields D′(q−) = supμ∈I(Gq )

∫
f dμ

λ1(μ)
. Similarly we can show

that D′(q+) = infμ∈I(Gq )

∫
f dμ

λ1(μ)
.

Now let α ∈ {D′(q−), D′(q+)}. Define

Iα =
{
μ ∈ I(Gq) :

∫
f dμ

λ1(μ)
= α

}
.

The arguments in the last paragraph imply that Iα �= ∅. Furthermore one can check that
Iα is compact and convex. We are going to show that Iα contains at least one ergodic
measure. Without loss of generality, we assume that α = D′(q−). By the Krein-Milman
theorem (cf. [12, p. 146]), Iα contains at least one extreme point, denoted by ν. Let
ν = pν1 + (1 − p)ν2 for some 0 < p < 1 and ν1, ν2 ∈ M(�, σ ). Then

P(σ,Gq) = hν(σ ) + (Gq)∗(ν)
= p(hν1(σ ) + (Gq)∗(ν1)) + (1 − p)(hν2(σ ) + (Gq)∗(ν2)).

By Proposition 2.1, ν1, ν2 ∈ I(Gq). Since

α = sup
η∈I(Gq )

∫
f dη

λ1(η)
=
∫

f dν

λ1(ν)
= p
∫

f dν1 + (1 − p)
∫

f dν2

pλ1(ν1) + (1 − p)λ1(ν2)
,
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we must have ν1, ν2 ∈ Iα . Since ν is an extreme point of Iα , we have ν1 = ν2 = ν. It
follows that ν is an extreme point of M(�, σ ), i.e., ν is ergodic. Therefore Iα contains
an ergodic measure. This finishes the proof of (i).

Now we turn to the proof of (ii). Under the additional assumption (3.12) on Ti ’s, we
can adapt the proof of (i) to show that if D(q)/(q−1) ∈ (k, k+1) for some 0 ≤ k ≤ d−1,
then

D′(q−) = sup
η∈I(Gq )

∫
f dη − φk∗(η)
λk+1(η)

+ k, D′(q+) = inf
η∈I(Gq )

∫
f dη − φk∗(η)
λk+1(η)

+ k.

(3.14)

Indeed, under this new assumption on Ti ’s, we see that the potential Gq = {gn,q} is
additive in the sense that gn,q = ∑n−1

i=0 h(σ i x) for some continuous function h on �.
Moreover, h(x) depends only on the first coordinate of x . Therefore the maps μ �→
λk(μ), μ �→ φk∗(μ) are continuous over M(�, σ ). Based on this fact, (3.14) can be
proved in a way similar to that of (i). We ignore the details. Since h(x) only depends on
the first coordinate of x, h is Hölder continuous. Therefore I(Gq) is a singleton con-
sisting of an ergodic measure (see, e.g., [7, Thm. 1.2]). This together with (3.14) proves
(3.13). ��
Remark 3.6. Assume that Ti , i = 1, . . . ,m, satisfy the following irreducibility condi-
tion: there is no proper subspace V �= {0} of R

d so that Ti (V ) ⊂ V . Then φ1 satisfies
certain quasi-multiplicative property which guarantees that I(Gq) is a singleton (and

hence D′(q) exists by Proposition 3.5(i)) provided that 0 < q < 1 and D(q)
q−1 ∈ (0, 1).

More generally, when 0 < q < 1 and D(q)
q−1 ∈ (k, k + 1), D′(q) exists if Ti , i = 1, . . . ,m

satisfy the so-called C(k + 1) condition introduced in [18]. This can be proved in a way
similar to [22, Prop. 1.2], or by simply using [20, Thm. 5.5].

4. Equivalence of Certain Self-Affine Measures to the Lebesgue Measure

Our multifractal analysis will need the first part of the following Proposition 4.1, which
deals with the comparison between the Lebesgue measure and projections of certain
ergodic measures on attractors of self-affine IFS with positive Lebesgue measure; we
do not only consider Bernoulli products measures because our main results extend to
Gibbs measures (see Sect. 7). The first case considered in Proposition 4.1 is essentially
a restatement of a result obtained by Shmerkin in [49, Prop. 22(3)], while the second
one is a nontrivial improvement of [49, Prop. 22(3)], in which only the case d ≤ 2 was
treated. In fact in Proposition 22 of [49] Shmerkin only considered self-affine measures,
but he mentioned as a remark that his results are valid for the class of ergodic measures
we consider. Though the second case considered in Proposition 4.1 will not be used in
this paper, we think it is worth keeping it in this paper due to the importance of such
results in the general ergodic theory of self-affine IFS, and also because the method
differs from that used by Shmerkin, by avoiding to refer to general results on density
bases. We will also use this approach to give an alternative proof of the first case of
Proposition 4.1 when d ≤ 2.

Let {Si = Ti + ai }m
i=1 be an affine IFS on R

d with the attractor F . Assume that
Ld(F) > 0. Let Ld

F denote the restriction of Ld on F , i.e., Ld
F (A) = Ld(A ∩ F) for

any Borel set A ⊂ R
d .
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Let π = πa : � → R
d be defined as in (2.1). Let η ∈ M(�, σ ) and μ = η ◦ π−1.

Say that Ld
F is equivalent to μ if for any Borel set A ⊂ R

d ,Ld
F (A) = 0 if and only if

μ(A) = 0.

Proposition 4.1. Assume that one of the following conditions fulfills:

(i) The Ti are diagonal;
(ii) T1 = · · · = Tm.

Assume that η is ergodic satisfying

η(B) > 0 �⇒ η(i B) > 0 for all 1 ≤ i ≤ m

for any Borel set B ⊂ �, where i B := σ−1(B) ∩ [i]. Then μ is either singular to Ld
F ,

or equivalent to Ld
F .

Our approach to Proposition 4.1 extends some ideas used in [40], where Mauldin and
Simon [40] established the first results of this kind for linear IFS and Bernoulli product
measures on R.

First we introduce some notation. Suppose R is a rectangle in R
d parallel to the axes,

i.e. R has the form

R =
d∏

i=1

[xi − ai , xi + ai ], where ai > 0.

For t > 0, we denote

t R =
d∏

i=1

[xi − tai , xi + tai ].

Also we denote

‖R‖ = max
1≤i≤d

ai .

Lemma 4.2. Suppose {Ri }i∈F is a countable family of rectangles in R
1 or R

2 with edges

parallel to the axes. Assume that
sup j ‖R j‖
inf j ‖R j‖ < ∞. Then there exists a partition {F1,F2}

of F such that for i = 1, 2, there exists F̃i ⊂ Fi satisfying that

R j ( j ∈ F̃i ) are disjoint, and
⋃
j∈F̃i

M R j ⊃
⋃
j∈Fi

R j ,

where M = 3 · sup j ‖R j‖
inf j ‖R j‖ .

Proof. We only treat the case d = 2. For convenience, for each rectangle R (with edges
parallel to the axes), we use ai (R), i = 1, 2, to denote the length of the semi-axes of R
along the xi direction.

Partition F into

F1 = { j ∈ F : a1(R j ) = ‖R j‖} and

F2 = F\F1 = { j ∈ F : a1(R j ) < a2(R j ) = ‖R j‖}.
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Without loss of generality we prove the result for the case i = 1. For j ∈ F1, denote
F1( j) = { j ′ ∈ F1 : R j ∩ R j ′ �= ∅}. Also denote a = sup j∈F1

a2(R j ).
Choose F1

1 a maximal family in F1 such that the rectangles R j , j ∈ F1
1 are disjoint,

and for each j ∈ F1
1 we have a/2 < a2(R j ) ≤ a. By construction, for each j1 ∈ F1

1 we
have

M R( j1) ⊃
⋃

j∈F1( j1)

R j ,

so ⋃
j1∈F1

1

M R( j1) ⊃
⋃

j1∈F1
1

⋃
j∈F1( j1)

R j ⊃
⋃

j∈F1: a/2<a2(R j )≤a

R j ,

the last inclusion follows from the maximality of F1
1 .

Suppose that for k ≥ 1 we have built a subfamily Fk
1 of F1 such that the rectangles

R j , j ∈ Fk
1 , are disjoint and
⋃

jk∈F k
1

M R( jk) ⊃
⋃

jk∈F k
1

⋃
j∈F1( jk )

R j ⊃
⋃

j∈F1:a/2k<a2(R j )≤a

R j . (4.1)

If there is no j ∈ F1 such that a2(R j ) ≤ a/2k or
⋃

jk∈F k
1
F1( jk) = F1, we set Fk+1

1 =
Fk

1 . Otherwise, let F ′′
1 be a maximal subfamily of F ′

1 = F1\⋃ jk∈F k
1
F1( jk) of disjoint

rectangles R j for which a′/2 < a2(R j ) ≤ a′, where a′ = sup j ′∈F ′
1

a2(R j ′) ≤ a/2k .

Then setting Fk+1
1 = Fk

1 ∪ F ′′
1 we have

⋃
jk∈F k+1

1

M R( jk+1) ⊃
⋃

jk+1∈F k+1
1

⋃
j∈F1( jk+1)

R j ⊃
⋃

j∈F1:a/2k+1<a2(R j )≤a

R j .

This yields by induction a non-decreasing sequence of subfamilies Fk
1 of F1 such that

the R j , j ∈ Fk
1 , are disjoint and satisfy (4.1). Consequently F̃1 =⋃k≥1 Fk

1 is suitable.
��

Lemma 4.3. Let C be a cube in R
d . Let {Tj } j∈F be a countable family of affine map-

pings from R
d to itself, with the same linear part T . Then there exists F̃ ⊂ F such

that

Tj (C) ( j ∈ F̃) are disjoint, and
⋃
j∈F̃

Tj (2C) ⊃
⋃
j∈F

Tj (C).

Proof. It is easy to see that if Ti (C) ∩ Tj (C) �= ∅ then Ti (2C) ⊃ Tj (C). Taking F̃ ,
a maximal subfamily of F such that the parallelepipeds Ti (C), i ∈ F̃ , are pairwise
disjoint, we are done.

Proof of Proposition 4.1 (Case (i) with d ≤ 2 and case (ii) in general). We first show
that μ is either singular or absolutely continuous with respect to Ld

F (this actually holds
for all IFS rather than affine IFS). This fact is known when η is a Bernoulli product mea-
sure [30,31]. Now we consider the general case that η is an ergodic measure. Assume
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that μ is not absolutely continuous with respect to Ld
F . Then there is a Borel set A ⊂ F

such that Ld(A) = 0 but μ(A) > 0. Define W = π−1(A). Then η(W ) = μ(A) > 0.
Since η is ergodic, we have η

(⋃∞
n=1 σ

−nW
) = 1 (cf. [52, Thm. 1.5(iii)]). Denote

W̃ :=⋃∞
n=1 σ

−nW . Then

π(W̃ ) =
∞⋃

n=1

⋃
1≤i1,...,in≤m

Si1...in (A).

Since S1, . . . , Sm are contractive, we have Ld(Si1...in (A)) ≤ Ld(A) = 0, and thus
Ld(π(W̃ )) = 0. However, μ(π(W̃ )) = η ◦ π−1(π(W̃ )) ≥ η(W̃ ) = 1. Hence μ is
singular with respect to Ld

F . Up to now we have shown the claim thatμ is either singular
or absolutely continuous with respect to Ld

F .
Assume that the conclusion of Proposition 4.1 does not hold. Then μ is absolutely

continuous with respect to Ld
F , but Ld

F is not absolutely continuous with respect to μ.
Hence there exists a Borel set A ⊂ F with Ld

F (A) > 0, but μ(A) = 0.
Note that μ satisfies the following relation for all k ≥ 1:

μ(A) = η ◦ π−1(A) =
∑

1≤i1,i2,...,ik≤m

η([i1 · · · ik] ∩ σ−kπ−1(S−1
i1...ik

(A))),

from which we obtain that for any 1 ≤ i1, i2, . . . , ik ≤ m,

η([i1 · · · ik] ∩ σ−kπ−1(S−1
i1...ik

(A))) = 0,

and thus η(π−1(S−1
i1...ik

(A))) = 0 (by the assumption on η). Hence

μ(S−1
i1...ik

(A)) = 0.

Denote

� =
( ∞⋃

k=1

⋃
1≤i1,i2,...,ik≤m

S−1
i1...ik

(A)
)

∪ A.

Then μ(�) = 0, but Ld
F (�) > 0.

In the following, we will show that Ld
F (F\�) = 0, which leads to μ(F\�) = 0

(since μ � Ld
F ), and thus μ(F) = μ(�) + μ(F\�) = 0, a contradiction. Denote

�c = F\�. Then Si (�
c) ⊂ �c for all 1 ≤ i ≤ m.

Assume on the contrary that Ld
F (�

c) > 0.
Now we prove the following general fact: if a Borel subset E of F is such that

Si (E) ⊂ E for all 1 ≤ i ≤ m and Ld(E) > 0, then Ld
F (F\E) = 0. In the case of

E = �c, this yields F\� has zero Ld measure, i.e.� has zero Ld
F measure, contradict-

ing the assumption Ld
F (�) > 0.

For 0 < r < 1, define

Ar =
{

i1i2 . . . ik ∈ �∗ : ‖Si1...ik ‖ ≤ r, ‖Si1...ik−1‖ > r
}
,

where �∗ =⋃∞
k=0{1, . . . ,m}k .
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Without loss of generality, assume that F is contained in the unit cube C = [0, 1]d

in R
d .

Let x ∈ F . Denote

Ar,x = {I ∈ Ar : Br (x) ∩ SI (F) �= ∅}.
Then

B2
√

dr (x) ⊃
⋃

I∈Ar,x

SI (C).

Suppose that the assumptions of Proposition 4.1 are fulfilled. Then by Lemmas 4.2
(applied in the case (i) and when d ≤ 2) and 4.3 (applied in the case (ii)), there exists
a constant M > 0 (M = 3λ−1, where λ is the smallest eigenvalue among those of
T1, . . . Tm in case (i),M = 2 in case (ii)), a partition {A1

r,x , A2
r,x } of Ar,x , and for

i = 1, 2, a subfamily Ãi
r,x of Ai

r,x such that

SI (C), I ∈ Ãi
r,x , are disjoint and⋃

I∈Ãi
r,x

M SI (C) ⊃
⋃

I∈Ai
r,x

SI (C).

Therefore,

∑
I∈Ãi

r,x

Ld(SI (C)) ≥ 1

Md
Ld
( ⋃

I∈Ai
r,x

SI (C)
)
,

and (the sets SI (E), I ∈ Ãi
r,x , are necessarily pairwise disjoint)

Ld
( ⋃

I∈Ar,x

SI (E)
)

≥
∑

I∈Ãi
r,x

Ld(SI (E)) ≥ Ld(E)

Ld(C)
∑

I∈Ãi
r,x

Ld(SI (C))

≥ Ld
F (E)

Md
Ld
( ⋃

I∈Ai
r,x

SI (C)
)
.

Denote c̃ = Ld
F (E)

Md
. Summing the above inequality over i ∈ {1, 2} and using the

subadditivity of Ld we get

2Ld
( ⋃

I∈Ar,x

SI (E)
)

≥ c̃ Ld
( ⋃

I∈Ar,x

SI (C)
)

≥ c̃ Ld
( ⋃

I∈Ar,x

SI (F)
)
. (4.2)

If x is a Lebesgue density point of F , then when r is sufficiently small,

Ld(Br (x) ∩ F) ≥ 1

2
rd ,

hence

Ld
( ⋃

I∈Ar,x

SI (F)
)

≥ Ld
(

Br (x) ∩
⋃

I∈Ar,x

SI (F)
)

≥ 1

2
rd . (4.3)
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Thus

Ld
(

B2
√

dr (x) ∩ E
)

≥ Ld
(

B2
√

dr (x) ∩
⋃

I∈Ar,x

SI (E)
)

≥ Ld
( ⋃

I∈Ar,x

SI (E)
)

≥ c̃

2
Ld
( ⋃

I∈Ar,x

SI (F)
)

( by 4.2)

≥ c̃

4
rd ( by 4.3).

Consequently, every Lebesgue point of F is a point of density in E . This implies that
F\E has zero Ld measure. ��

5. The Proof of Theorem 1.3

First we consider the most general case that T1, …, Tm are non-singular linear mappings
from R

d to R
d satisfying ‖Ti‖ < 1/2 for 1 ≤ i ≤ m.

The following lemma was proved by Falconer (see [15, Thm. 6.2 (a)]).

Lemma 5.1 (Thm. 6.2 (a) of [15]). Let q > 0, q �= 1. For all a ∈ R
md, we have

τ(μa, q)/(q − 1) ≤ τ(q)/(q − 1).

Definition 5.2 For any Borel probability measure ξ on R
d and z ∈ supp(ξ), the local

upper and lower dimensions of ξ at z are defined respectively by

d(ξ, z) := lim sup
r→0

log ξ(Br (z))

log r
, d(ξ, z) := lim inf

r→0

log ξ(Br (z))

log r
.

If d(ξ, z) = d(ξ, z), we use d(ξ, z) to denote the common value, and call it the local
dimension of ξ at z.

Lemma 5.3. For any β ∈ R and q > 0,

dimH {z ∈ R
d : d(μa, z) ≤ β} ≤ βq − τ(μa, q),

where we take the convention dimH ∅ = −∞.

Proof. The lemma actually holds for any compactly supported Borel probability mea-
sure on R

d . It can be proved by using a simple box-counting argument. For details, see
e.g., Prop. 2.5(iv) in [43]. ��
Lemma 5.4. Let a ∈ R

md . For any Borel set A ⊂ R
d and any i1, . . . , in ∈ {1, . . . ,m},

μa(A) ≥ pi1 . . . pinμ
a
((

Si1 ◦ . . . ◦ Sin

)−1
(A)
)
.

Proof. Iterating the self-similar relation μa =∑m
i=1 piμ

a ◦ S−1
i for n times, we have

μa =
∑

p j1 . . . p jnμ
a ◦ (S j1 ◦ . . . ◦ S jn

)−1
,

where the sum is taken over all tuples ( j1, . . . , jn) ∈ {1, . . . ,m}n . Now Lemma 5.4
follows. ��
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Proposition 5.5. Let T1, …, Tm be non-singular linear mappings from R
d to R

d satis-
fying ‖Ti‖ < 1/2 for 1 ≤ i ≤ m. Let q ∈ (0, 1) and α ∈ {D′(q−), D′(q+)}. Assume
that D(q)/(q − 1) < 1 and αq − D(q) ≤ 1. Then for Lmd-a.e. a ∈ R

md , τ (μa, q) =
τ(q) = D(q), E(μa, α) �= ∅ and furthermore,

dimH E(μa, α) = αq − τ(q).

Proof. Since D(q)/(q − 1) < 1 ≤ d, by (1.3), we have τ(q) = D(q). Let α ∈
{τ ′(q+), τ ′(q−)}. Then by Proposition 3.5(i), there exists an ergodic measure η ∈ I(Gq)

such that

α =
∫

f dη

λ1(η)
. (5.1)

This together with (3.9) yieldsαq−τ(q) = − hη(σ )
λ1(η)

. Sinceαq−τ(q) ≤ 1 by assumption,
due to (5.1) and Definition 2.4, we have

dimLY η = αq − τ(q) ≤ 1. (5.2)

Take a ∈ R
md so that η ◦ (πa)−1 is exactly dimensional and dimH η ◦ (πa)−1 =

αq − τ(q). By Theorem 2.6, the set of such points a has the full md-dimensional
Lebesgue measure. Take a large R so that B(0, R) contains the attractor of the IFS
{Si = Ti + ai }m

i=1. (Here and afterwards, we also write B(z, r) for Br (z).) Then for any
x = (xi )

∞
i=1 ∈ � and n ∈ N, by Lemma 5.4 we have

μa (B (πax, 2R‖Tx |n‖)) ≥ px |n μa
(

S−1
x |n B
(
πax, 2R‖Tx |n‖))

≥ px |n μa(B(0, R)) = px |n, (5.3)

where in the second inequality we have used an easily checked fact

Sx |n(B(0, R)) ⊂ B(πax, 2R‖Tx |n‖).
By (5.3), we have

d(μa, πax) ≤ lim sup
n→∞

log px |n
log ‖Tx |n‖ , x ∈ �.

By Kingman’s sub-additive ergodic theorem and (5.1), we have

d(μa, πax) ≤
∫

f dη

λ1(η)
= α for η-a.e x ∈ �. (5.4)

Take a strictly increasing sequence (αn) so that limn→∞ αn = α. Then by Lemmas
5.3–5.1, for each n,

dimH {z ∈ R
d : d(μa, z) ≤ αn} ≤ αnq − τ(μa, q) < αq − τ(q). (5.5)

Since η ◦ (πa)−1 is exactly dimensional and dimH η ◦ (πa)−1 = αq − τ(q), we must
have

η ◦ (πa)−1{z ∈ R
d : d(μa, z) ≤ αn} = 0, n = 1, 2, . . . ; (5.6)
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for otherwise if the left-hand side of (5.6) is greater than 0, then

dimH {z ∈ R
d : d(μa, z) ≤ αn} ≥ dimH η ◦ (πa)−1 = αq − τ(q),

which contradicts (5.5). Hence

η ◦ (πa)−1{z ∈ R
d : d(μa, z) < α} = 0.

Equivalently, we have

η{x ∈ � : d(μa, πax) < α} = 0.

This combining with (5.4) yields

η{x ∈ � : d(μa, πax) = α} = 1.

Hence

dimH {z ∈ R
d : d(μa, z) = α} ≥ dimH η ◦ (πa)−1 = αq − τ(q).

However by Lemma 5.3, αq − τ(μa, q) is an upper-bound for the left-hand side of
the above inequality, therefore we must have αq − τ(μa, q) ≥ αq − τ(q). But by
Lemma 5.1, we have τ(μa, q) ≥ τ(q) (noting that q < 1). Thus we have the equalities
τ(μa, q) = τ(q) and

dimH {z ∈ R
d : d(μa, z) = α} = αq − τ(q).

This finishes the proof of Proposition 5.5. ��
In the reminder part of this section, we shall put more assumption on the linear maps

Ti (1 ≤ i ≤ m).

Proposition 5.6. Assume that Ti (i = 1, . . . ,m) are of the form

Ti = diag(ti,1, ti,2, . . . , ti,d)

with 1
2 > ti,1 > ti,2 > · · · > ti,d > 0. Let q ∈ (1, 2). Assume that there exists an integer

k ∈ {0, . . . , d − 1} such that

D(q)/(q − 1) ∈ (k, k + 1) and αq − D(q) ∈ (k, k + 1),

where α = D′(q).

• If k = 0, then for Lmd-a.e. a ∈ R
md , E(μa, α) �= ∅ and

dimH E(μa, α) = αq − τ(q).

• If k > 0, then for Lmd-a.e. a ∈ R
md , E(μa, α) �= ∅ and

dimH E(μa, α) = αq − τ(q).
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Proof of Proposition 5.6. First consider the case that k = 0. In this case, we can take a
proof essentially identical to that of Proposition 5.5. The main difference lying here is
that we directly assume that τ(μa, q) = τ(q) (since q ∈ (1, 2), by Theorem 1.2, the set
of all such a has the full md-dimensional Lebesgue measure).

Next we consider the case that 1 ≤ k ≤ d − 1. Let μ denote the Bernoulli product
measure

∏∞
i=1{p1, . . . , pm} on �. Since q > 1 and D(q)/(q − 1) > k, by Lemma 3.2,

we have

hμ(σ ) + (1 − q)φk∗(μ) + q
∫

f dμ < hμ(σ ) + (1−q)φD(q)/(q−1)∗ (μ) + q
∫

f dμ≤0.

Hence hμ(σ ) + (1 − q)φk∗(μ) + q
∫

f dμ < 0, thus hμ(σ ) + φk∗(μ) > 0 (noting that∫
f dμ = −hμ(σ )). By Definition 2.4, we have

dimLY μ > k. (5.7)

By Proposition 3.5(ii), there exists an ergodic measure η on � such that

α =
∫

f dη − φk∗(η)
λk+1(η)

+ k.

This together with (3.9) yields

αq − D(q) = hη(σ ) + φk∗(η)
−λk+1(η)

+ k.

Since by assumption αq − D(q) ∈ (k, k + 1), by Definition 2.4, we have

dimLY η = αq − D(q) > k. (5.8)

Let �k be the canonical projection from R
d to R

k defined by (y1, y2, . . . , yd) �→
(y1, . . . , yk). For a = (a1, . . . , am) ∈ R

md , denote

πa
k := �k ◦ πa.

It is easy to see that πa
k is the coding map associated with the new IFS {T̃i +�k(ai )}m

i=1,
where T̃i = diag(t1, . . . , tk). According to (5.7)–(5.8), we have also dimLY μ > k,
dimLY η > k (associated with {T̃i }m

i=1). Thus by Theorem 2.6, for Lmd -a.e a ∈ R
md ,

both η◦(πa
k )

−1 andμ◦(πa
k )

−1 are absolutely continuous to the k-dimensional Lebesgue
measure, and hence by Proposition 4.1, η ◦ (πa

k )
−1 � μ ◦ (πa

k )
−1 (since μ ◦ (πa

k )
−1 is

equivalent to the restriction of Ld on Fa, where Fa = πa(�)).
Now fix a = (a1, . . . , am) ∈ R

md so that η ◦ (πa
k )

−1 and μ ◦ (πa
k )

−1 are equivalent
and τ(μa, q) = τ(q). We have the following.

Lemma 5.7. Let � = diamFa, where Fa = πa(�). For any δ > 0, we have η(Aδ) = 0,
where

Aδ :=
{

x ∈ � : μa(B(πax,
√

d�αk+1(Tx |n))) ≤ px |n exp(−nφk∗(η) + nkλk+1(η)− δn)

for all large enough n
}
.



492 J. Barral, D.-J. Feng

We will give the proof of the above lemma a little bit later. Now we use it to complete
the proof of Proposition 5.6. Since η(Aδ) = 0, we have for η-a.e. x ∈ X,

logμa(B(πax,
√

d�αk+1(Tx |n)))
logαk+1(Tx |n)

≤ log(px |n exp(−nφk∗(η) + nkλk+1(η)− δn))

logαk+1(Tx |n)
for infinitely many n. Then applying Kingman’s sub-additive ergodic theorem and letting
δ → 0, we obtain

d(μa, πax) ≤
∫

f dη − φk∗(η)
λk+1(η)

+ k = α for η-a.e x ∈ �.
This plays a similar role as (5.4) in Proposition 5.5. To complete the proof, we can use
the same argument as in the proof of Proposition 5.5 (the only difference here is that we
already have the equality τ(μa, q) = τ(q).). ��
Proof of Lemma 5.7. For z = (z1, . . . , zd) ∈ R

d and t1, . . . , td > 0, denote

W (z; t1, . . . , td) :=
d∏

i=1

[zi − ti , zi + ti ],

W̃ ((z1, . . . , zk); t1, . . . , tk) :=
k∏

i=1

[zi − ti , zi + ti ].

In particular, for r > 0, denote Qr (z) :=∏d
i=1[zi − r, zi + r ]. It is clear that

Qr (z) ⊂ B(z,
√

dr), ∀ z ∈ R
d , r > 0. (5.9)

Now fix δ > 0. Denote

A′ :=
{

x ∈ � : μa(Q�αk+1(Tx |n)(π
ax)) ≤ px |n exp

(
n(1 + δ)(kλk+1(η)− φk∗(η))

)

for large enough n
}
.

By (5.9), we have Aδ ⊂ A′. Hence to show η(Aδ) = 0, it suffices to show that η(A′) = 0.
Notice that for any x ∈ � and n ∈ N,

S−1
x |n(Q�αk+1(Tx |n)(π

ax))

= W

(
πaσ n x; �αk+1(Tx |n)

α1(Tx |n)
,
�αk+1(Tx |n)
α2(Tx |n)

, . . . ,
�αk+1(Tx |n)
αd(Tx |n)

)

⊃ W

(
πaσ n x; �αk+1(Tx |n)

α1(Tx |n)
,
�αk+1(Tx |n)
α2(Tx |n)

, . . . ,
�αk+1(Tx |n)
αk(Tx |n)

, �, . . . , �

)
.

It follows that

μa
(

Q�αk+1(Tx |n)(π
ax)
)

≥ px |n μa
(

S−1
x |n(Q�αk+1(Tx |n)(π

ax))
)

(by Lemma 5.4)

≥ px |n μa
(

W

(
πaσ n x; �αk+1(Tx |n)

α1(Tx |n)
,
�αk+1(Tx |n)
α2(Tx |n)

, . . . ,
�αk+1(Tx |n)
αk(Tx |n)

, �, . . . , �

))
.

= px |n μa
k

(
W̃

(
πa

k σ
n x; �αk+1(Tx |n)

α1(Tx |n)
,
�αk+1(Tx |n)
α2(Tx |n)

, . . . ,
�αk+1(Tx |n)
αk(Tx |n)

))
, (5.10)

here we write for brevity μa
k := μ ◦ (πa

k )
−1.
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For n ∈ N, let �n denote the set of x ∈ � such that

�αk+1(Tx |n)
αi (Tx |n)

≥ exp( j (1 + δ/2)(λk+1(η)− λi (η))), ∀ i = 1, . . . , k.

Then by Lemma 3.3, limn→∞ η
(⋂∞

j=n � j

)
= 1.

Furthermore denote

A′
n =
{

x ∈ � : μa
(

B(πax,
√

d�αk+1(Tx |n))
)

≤ px |n exp
(

n(1 + δ)(kλk+1(η)− φk∗(η))
)}
,

un,i = exp (n(1 + δ/2)(λk+1(η)− λi (η))) , i = 1, . . . , k.

Cn =
{

x ∈ � : μa
k (W̃ (πa

k σ
n x; un,1, . . . , un,k)) ≤ exp(n(1 + δ)(kλk+1(η)− φk∗(η)))

}
.

By (5.10), we have A′
n ∩�n ⊂ Cn .

To complete our proof, we need some further notation. For n ∈ N, denote

Rn :=
{

k∏
i=1

[hi un,i/2, (hi + 1)un,i/2) : h1, . . . , hk ∈ Z

}
.

Clearly, Rn is a partition of R
k by rectangles of edge lengths un,1, …, un,k . For any

w ∈ R
k , let Rn(w) denote the element in Rn that containsw. Notice that for any R ∈ Rn,

Lk(R) =
k∏

i=1

un,i = exp(n(1 + δ/2)(kλk+1(η)− φk∗(η))).

It follows that if w ∈ πa
k (�) satisfies

μa
k(W̃ (w; un,1, . . . , un,k)) ≤ exp

(
n(1 + δ)(kλk+1(η)− φk∗(η))

)
,

then

μa
k(Rn(w)) ≤ μa

k(W̃ (w; un,1, . . . , un,k))

≤ Lk(Rn(w)) exp
(

nδ/2(kλk+1(η)− φk∗(η))
)

= Lk(Rn(w))β
n,

where β := exp(δ/2(kλk+1(η)− φk∗(η))) ∈ (0, 1). It follows that

Cn ⊂ σ−n ◦ (πa
k )

−1(�n),

where

�n :=
⋃

R,

in which the union is taken over the collection of R ∈ Rn so that R ∩ πa
k (�) �= ∅ and

μa
k(R) ≤ Lk(R)βn . Note that

μa
k(�n) ≤

∑
R∈Rn : R∩πa

k (�) �=∅
Lk(R)βn ≤ (2�)kβn, (5.11)



494 J. Barral, D.-J. Feng

where � = diam(Fa). Meanwhile A′
n ∩�n ⊆ Cn and Cn ⊂ σ−n ◦ (πa

k )
−1(�n), we have

A′
n ∩�n ⊂ σ−n ◦ (πa

k )
−1(�n).

By the invariance of η, we have η(A′
n ∩�n) ≤ η(σ−n ◦ (πa

k )
−1(�n)) = η◦ (πa

k )
−1(�n).

Since η ◦ (πa
k )

−1 � μa
k and limn→0 μ

a
k(�n) = 0 (by (5.11)), we have limn→∞ η(A′

n ∩
�n) = 0. Therefore

lim
n→∞ η

⎛
⎝ ∞⋂

j=n

(A′
j ∩� j )

⎞
⎠ = 0.

Note that
⋂∞

j=n A′
j ⊂ (
⋂∞

j=n(A
′
j∩� j ))∪(�\⋂∞

j=n � j ), and limn→∞ η
(⋂∞

j=n � j

)
= 1. It follows that η(

⋂∞
j=n A′

j ) = 0 and

η(A′) = η

⎛
⎝ ∞⋃

n=1

∞⋂
j=n

A′
j

⎞
⎠ = 0,

as desired. ��
Proof of Theorem 1.3. It follows directly from Propositions 3.5–5.5–5.6. ��

6. Extension of Falconer’s Formula for q > 2 and Complements to Theorem 1.3

Let T1, . . . , Tm be non-singular linear transformations from R
d to R

d and (p1, . . . , pm)

a probability vector. For a = (a1, . . . , am) ∈ R
md , let μa denote the self-affine measure

associated with the IFS {Ti + ai }m
i=1 and (p1, . . . , pm). We begin from the following

lemma.

Lemma 6.1. Suppose that ‖Ti‖ < 1/2 for all 1 ≤ i ≤ m. Then, for every q > 2, for
Lmd-a.e. a ∈ R

md , we have τ(μa, q) ≥ min((q − 1)u(q), d), where

u(q) = sup
{

s ≥ 0 :
∞∑

k=0

∑
I∈�k

(
φs(q−1)(TI )

)−1
pq

I < ∞
}
. (6.1)

Proof. Fix q > 2. Let s ∈ (0, d/(q − 1)) so that s(q − 1) is non-integral. We adapt an
idea used in [1] for determining the Lq -spectrum of projected measures. Fix ρ > 0 and
ε ∈ (0, 1). Let B(0, ρ) stand for the closed ball of radius ρ centered at 0 in R

md . Let
μ denote the Bernoulli product measure on � with the weight (p1, . . . , pm). Clearly
μa = μ ◦ (πa)−1. For r > 0, we have∫

B(0,ρ)

∫
μa(B(z, r))q−1dμa(z)da =

∫
B(0,ρ)

∫
�

μa(B(πax, r))q−1dμ(x) da

=
∫
�

∫
B(0,ρ)

( ∫
�

1{|πa y−πax |≤r}dμ(y)
)q−1

da dμ(x)

≤
∫
�

∫
B(0,ρ)

( ∫
�

rs

|πa y − πax |s dμ(y)
)q−1

da dμ(x)

≤
∫
�

( ∫
�

( ∫
B(0,ρ)

rs(q−1)

|πa y − πax |s(q−1)
da
)1/(q−1)

dμ(y)
)q−1

dμ(x),
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where we use Minkowski’s inequality in the last inequality. By [15, Lem. 2.1],∫
B(0,ρ)

1

|πa y − πax |s(q−1)
da ≤ C

φs(q−1)(Tx∧y)

for some C = C(ρ, s(q − 1)) > 0. Hence we have∫
B(0,ρ)

∫
μa(B(z, r))q−1dμa(z)da

≤ Crs(q−1)
∫
�

( ∫
�

(
φs(q−1)(Tx∧y)

)−1/(q−1)dμ(y)
)q−1

dμ(x)

≤ Crs(q−1)
∫
�

( ∞∑
k=0

(
φs(q−1)(Tx |k)

)−1/(q−1)
μ([x |k])

)q−1
dμ(x)

≤ MCrs(q−1)
∫
�

( ∞∑
k=0

(
φs(q−1)(Tx |k)

)−1
μ([x |k])(q−1)(1−ε))dμ(x)

(by Hölder’s inequality)

= MCrs(q−1)
∞∑

k=0

∑
I∈�k

(
φs(q−1)(TI )

)−1
μ([I ])q−(q−1)ε,

where M = supx∈�
(∑∞

k=0 μ([x |k])ε(q−1)/(q−2)
)(q−2)/(q−1)

< ∞.

Now, let 0 < s1 < s0. Set γ = (s0 − s1)(q − 1). Given ε′ > 0, for each I ∈ �∗ such
that μ([I ]) > 0, we have

(
φs1(q−1)(TI )

)−1
μ([I ])q−ε′

(
φs0(q−1)(TI )

)−1
μ([I ])q

= φs0(q−1)(TI )

φs1(q−1)(TI )
μ([I ])−ε′

≤ α1(TI )
γ μ([I ])−ε′ ≤ (2−γ c−ε′)|I |,

where c = min1≤i≤m pi . Suppose that ε′ is so small that 2−γ c−ε′ < 1 and set ε =
ε′/(q − 1). If s0 < min(u(q), d/(q − 1)) and s1(q − 1) is not an integer, we deduce
from the above estimates that

sup
r>0

∫
B(0,ρ)

∫
μa(B(z, r))q−1dμa(z)da

rs1(q−1)
< ∞.

This implies that for all s′
1 < s1,∫

B(0,ρ)

∑
n≥1

∫
μa(B(z, 2−n))q−1dμa(z)

2−ns′
1(q−1)

da < ∞,

hence, for Lmd -almost every a ∈ B(0, ρ), we have

lim inf
n→∞

−1

n log(2)
log
∫
μa(B(z, 2−n))q−1dμa(z) ≥ s′

1(q − 1).

Moreover, the left-hand side in the previous inequality is nothing but τ(μa, q). Since s′
1

and s1 can be taken arbitrarily close to min(u(q), d/(q − 1)) (as long as s1(q − 1) is not
an integer) and ρ is arbitrary, we get the desired lower bound for τ(μa, q). ��
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Let D(·) and τ(·) be defined as in (1.2)–(1.3). By Lemma 6.1, we can extend Fal-
coner’s formula of τ(μa, q) as follows.

Theorem 6.2. Suppose that ‖Ti‖ < 1/2 for all 1 ≤ i ≤ m.

(1) For Lmd-a.e. a ∈ R
md we have τ(μa, q) = τ(q) for all q in the following set:

[2, sup{t : D(t)/(t − 1) ≤ 1, τ (t) ≤ 1}]. (6.2)

This set is a non-empty interval for instance if τ ′(1+) ≤ 1, in which case it contains
[2, 1 + 1/τ ′(1+)].

(2) If the Ti are similitudes, then for Lmd-a.e. a ∈ R
md we have τ(μa, q) = τ(q) for

all q ∈ [2,max{q : τ(q) ≤ d}].
Proof. By continuity of the functions τ(μa, ·) and τ(·), it is enough to prove the result
for a fixed q and Lmd -almost every a.

(1) Let q be a point in the interval given as in (6.2). Since q −1 ≥ 1, D(q)/(q −1) ≤ 1
implies that D(q) = τ(q) ≤ 1. Thus max(D(q), D(q)/(q − 1)) ≤ 1, so for
all 0 < s ≤ D(q) and I ∈ �∗ we have φs(q−1)(TI ) = (φs(TI ))

q−1 by def-
inition of the singular value functions φs . Hence (q − 1)u(q) = D(q), where
u(q) is defined as in (6.1). Therefore τ(q) = D(q) = (q − 1)u(q). This gives
the conclusion thanks to Lemma 6.1 and Lemma 5.1. Finally, if τ ′(1+) ≤ 1 and
q ≤ 1 + 1/τ ′(1+), by concavity of τ we have τ(q) ≤ τ ′(1+)(q − 1) ≤ 1, and also
we have τ(q)/(q − 1) = D(q)/(q − 1) ≤ 1.

(2) Let q ≥ 2 so that τ(q) ≤ d. Since Ti are similitudes, we have φs(q−1)(TI ) =
(φs(TI ))

q−1 for all I ∈ �∗ and s > 0. By (6.1), (q − 1)u(q) = D(q). Since
τ(q) ≤ d ≤ d(q − 1), we have τ(q) = D(q) = (q − 1)u(q). By Lemma 6.1,
τμa(q) ≥ min(τ (q), d) = τ(q) for Lmd -almost all a ∈ R

md . This together with
Lemma 5.1 yields the desired result. ��

As an application of Theorem 6.2, we have the following two theorems.

Theorem 6.3. The conclusions of Theorem 1.3(ii) extend to those q ≥ 2 such that
D(q) < q − 1 and τ(q) < 1.

Theorem 6.4. Suppose that the maps Ti (1 ≤ i ≤ m) are similitudes with ‖Ti‖ < 1/2.
Denote qmax = max(2,max{q > 0 : τ(q) ≤ d}). Then the following properties hold.

(1) For all q > 0, D(q) is the analytic solution of the equation
∑m

i=1 pq
i ‖Ti‖−t = 1.

(2) Suppose D′(1) ≥ d. Let s = inf{D(q)/(q − 1) : 1 < q ≤ 2}.
• If s ≥ d, then qmax = 2 and for Lmd-a.e. a ∈ R

md:

τ(μa, q) = d(q − 1) for all q ∈ [0, qmax].
• If s < d then qmax > 2 and for Lmd-a.e. a ∈ R

md:

τ(μa, q) =
{

d(q − 1) if q ∈ [0, qmin),

D(q) if q ∈ [qmin, qmax],
where qmin = inf{q > 1 : D(q)/(q − 1) < d}; moreover, the multifractal
formalism holds for μa at all α ∈ {d} ∪ [D′(qmax), D′(qmin)].
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(3) If D′(1) < d, then qmax > 2. Let q̃min = inf{q > 0 : D′(q)q − D(q) ≤ d}. For
Lmd-a.e. a ∈ R

md ,

τ (μa, q) =
⎧⎨
⎩

d + D(q̃min)

q̃min
q − d if q ∈ [0, q̃min),

D(q) if q ∈ [q̃min, qmax].

Moreover, the multifractal formalism holds forμa at all α ∈ [D′(qmax), D(1)]. Also,
for each α ∈ (D′(1), D′(q̃min)], for Lmd-a.e. a ∈ R

md, the multifractal formalism
holds at α.

Remark 6.5. (1) By [19] we know that for all a ∈ R
md , the self-similar measure μa

obeys the multifractal formalism at each α of the form τ ′(μa, q), with q > 1.
Moreover, the measure μa is exact dimensional by [23], so the multifractal for-
malism holds at α = dimH μa. Theorem 6.4 gives precision on the value of the
Lq -spectrum and the validity of the multifractal formalism. When D′(1) > d and
inf{D(q)/(q − 1) : 1 < q ≤ 2} < d, for Lmd -a.e. a ∈ R

md the measure μa

is absolutely continuous with respect to Lebesgue measure and has a non-trivial
Lq -spectrum. This fact is already noticed in [21].

(2) Theorem 6.4 takes a form similar to that of the result obtained in [2] for the orthogo-
nal projections of Gibbs measures on R

d to almost every linear subspace of a given
dimension between 1 and d, when d ≥ 2.

Proof of Theorem 6.3. The proof is similar to the proof of Theorem 1.3(i), except that
we already know the value of τ(μa, q) thanks to Theorem 6.2. ��
Proof of Theorem 6.4. (1) This is clear.
(2) If D′(1) > d, then by Theorem 1.2, for Lmd -a.e. a ∈ R

md we have τ(μa, q) = d(q−
1) on a neighborhood of 1+; if D′(1) = d, either D is linear equal to d(q −1), or it is
strictly concave and still by Theorem 1.2, for Lmd -a.e. a ∈ R

md we have τ(μa, q) =
D(q) on a neighborhood of 1+. Consequently, in both cases τ ′(μa, 1+) = d, so since
τ(μa, ·) is concave τ(μa, 0) ≥ −d and τ(μa, 1) = 0, we must have τ(μa, q) =
d(q − 1) over [0, 1].
Now, if s ≥ d then D(q) ≥ d(q − 1) for all q ∈ (1, 2], so by Theorem 1.2, for
Lmd -a.e. a ∈ R

md we have τ(μa, q) = d(q − 1) = τ(q) for q ∈ [1, 2], hence
qmax = 2.
If s < d, we have τ(2) = D(2) < d(2−1) = d, so qmax > 2. The value of τ(μa, ·)
over [1, qmin) and [qmin, qmax] is obtained again thanks to Theorems 1.2 and 6.2.
For the validity of the multifractal formalism, at α = d it comes from the fact that
τ ′(μa, 1) exists and equals d (see [41]).
Since τ(μa, ·) coincides with D and τ over the open interval (qmin, qmax), we can use
[19] and Remark 6.5 to have the validity of the multifractal formalism, for Lmd -a.e.
a ∈ R

md , for all α ∈ (D′(qmax), D′(qmin)). If α = D′(qmin) = τ ′(μa, qmin+), we
have αqmin − D(qmin) ≤ d and we can use the same proof as that of Theorem 1.3(ii)
when k = 0, since now the singular values function φs(T ) simplifies to be α1(T )s

for all s > 0 and is multiplicative. We can do the same at α = D′(qmax).
(3) By concavity of D, we have τ(q) = D(q) ≤ D(1)(q −1) < d(q −1) for all q > 1,

so qmax > 2. Moreover, by using Theorem 1.2 as above we get that for Lmd -a.e.
a ∈ R

md , we have τ(μa, q) = D(q) on [1, qmax]. The validity of the multifractal
formalism over [D′(qmax), D′(1)] is obtained as above over [D′(qmax), D′(q̃min)].
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The inequality D′(1) < d also implies q̃min ∈ [0, 1). Moreover, if q ∈ (q̃min, 1), by
concavity of D, D′(q)q−D(q) < d implies that D(q) > d(q−1), so that τ(q) = D(q);
consequently, by Lemma 5.1 we have τ(μa, q) ≥ D(q) for Lmd -a.e. a ∈ R

md , for all
q ∈ [q̃min, 1). Then, we can use the same argument as that used to prove Theorem 1.3(i)
(noting again that the singular values function simplifies to beα1(T )s) to get that for each
α = D′(q), q ∈ [q̃min, 1), we have αq − D(q) ≤ dim E(μa, D′(q)) ≤ αq − τ a(q) ≤
αq − D(q), for Lmd -a.e. a ∈ R

md .
This yields that for Lmd -a.e. a ∈ R

md , τ (μa, q) = D(q) for all q ∈ [q̃min, 1]. Now,
if q̃min > 0, then by definition of q̃min the tangent to D at (q̃min, D(q̃min)) crosses the
y-axis at (0,−d), so since τ(μa, ·) is concave and τ(μa, 0) ≥ −d, τ (μa, ·) must take
the linear expression of the statement over [0, q̃min). ��

In the remainder of this section, we provide a formula of the Lq -spectrum for certain
“almost all” non-overlapping planar self-affine measures over a range ⊇ [0, 2].
Definition 6.6. Following [27], we say that an IFS {Si }m

i=1 on R
2 satisfies the rectangu-

lar open set condition (ROSC) if there exists an open rectangle R = (0, r1)× (0, r2)+ v
such that Si (R) (1 ≤ i ≤ m) are disjoint subsets of R.

Example 6.7. Assume that T1 = T2 = . . . = Tm = diag(t1, t2) with 1/2 > t1 > t2. Let
p = (p1, . . . , pm) be a probability vector. For

c = ((a1, b1), . . . , (am, bm)) ∈ R
2m,

letμc denote the self-affine measure associated with the IFS {Ti + (ai , bi )}m
i=1 on R

2 and
the probability vector p. Denote by V the set of points c ∈ R

2m so that {Ti + (ai , bi )}m
i=1

satisfies the ROSC. By [27, Thm. 2], for any c ∈ V ,

τ(μc, q) = τ(νa, q)

(
1 − log t1

log t2

)
+

log
∑m

i=1 pq
i

log t2
, ∀ q > 0, (6.3)

where νa denotes the self-similar measure associated with the IFS {t1x + ai }m
i=1 and

p, τ (νa, q) denotes the Lq -spectrum of νa. Denote by B(q) = log
∑m

i=1 pq
i /log t1. Let

qmax = max{2, q1}, where q1 is the unique positive number satisfying B(q1) = t1.
By Theorem 6.4, if B ′(1) ≥ 1, then for Lm-a.e a ∈ R

m, τ (νa, q) = q − 1 for every
0 ≤ q ≤ 1; meanwhile if B ′(1) < 1, then for Lm-a.e a ∈ R

m,

τ (νa, q) =
{

B ′(q0)q − 1 if q ∈ [0, q0],
B(q) if q ∈ (q0, 1],

where q0 := inf{q > 0 : B ′(q)q − B(q) ≤ 1}. Furthermore, by Theorem 6.2, we have
for Lm-a.e a ∈ R

m ,

τ(νa, q) = max{B(q), q − 1}, ∀ q ∈ (1, qmax). (6.4)

Now one obtains the exact formula of τ(μc, q) by (6.3) for Lm-a.e c ∈ V and every
q ∈ [0, qmax].
Remark 6.8. According to the formula (6.4) in Example 6.7, it is easy to see that for
each q ∈ (1, 2), one can choose m ∈ N, t1 ∈ (0, 1/2) and p = (p1, . . . , pm) so that
for Lm-a.e a ∈ R

m, τ (νa, q) is not differentiable at q. Hence for any q ∈ (1, 2), there
exists a self-similar measure on R whose Lq spectrum is not differentiable at q.
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7. Final Remarks

In this section we first give two remarks about the extensions of our results.

(i) All the results presented in this paper hold if we replace the Bernoulli measure
μ by a Gibbs measure associated to a potential satisfying the bounded distortion
property. This is due to the almost multiplicative property of such a measure. The
corresponding expression of D(q) can be found in [15].

(ii) Our results can be partially extended to the projections of Bernoulli measures and
Gibbs measures on the model of randomly perturbed self-affine attractors introduced
in [33]. For such a construction, the condition ‖Ti‖ < 1/2 for all 1 ≤ i ≤ m can
be relaxed to ‖Ti‖ < 1 for all 1 ≤ i ≤ m. Moreover, Falconer’s formula extends to
[2,∞) [16]. Then, mimicking the proofs written in the present paper, Theorem 1.3(i)
holds as well as Theorem 1.3(ii) for all q > 2 under the constraint that k = 0. We
don’t know whether this extension can pass to k > 0, because it seems non trivial
to transpose the arguments developed in Proposition 4.1 and Lemma 5.7 in relation
with the equivalence to the Lebesgue measure for the measures under consideration.
In the special case of almost self-similar measures, the validity of Falconer’s formula
over [2,∞) implies that the results of Theorem 6.4 hold if, when D′(1) ≥ 1, one
sets qmax = ∞ and s = inf{D(q)/(q − 1) : q > 1}.

In the end, we point out that in a related paper [36] Jordan and Simon studied the
multifractal structure of Birkhoff averages on almost all self-affine sets.

Acknowledgements. Feng was partially supported by the RGC grant and the Focused Investments Scheme in
CUHK.

Appendix A. Concavity Properties of the Functions D and τ

It follows from the study of the Lq -spectrum of almost self-affine measures achieved in
[16] that τ is concave over (1,∞). However, this fact is not obtained directly from the
definition of D(q). Our Theorem 1.3(i) requires concavity properties of D for q ∈ (0, 1)
which cannot be reached by the approach used in [16]. In the following we provide a
proof of these properties, and for the sake of completeness, a direct proof of the concavity
of τ over (1,∞).

Proposition A.1. The mapping D is concave over the intervals of those q �= 1 such that
D(q)/(q − 1) ∈ (k, k + 1) for some integer 0 ≤ k ≤ d − 1.

Proposition A.2. The mapping τ is concave over (1,∞).

Proof of Proposition A.1. It is clear from (3.1) and the fact that both pI and φs(s > 0)
are bounded away from 0 and ∞ by geometric sequences that D(q) is continuous. So
if 0 ≤ k ≤ d − 1 is an integer, the set Jk of those q ∈ (0, 1) such that D(q)/(q − 1) ∈
(k, k + 1) is an interval, as well as the set J ′

k of those q ∈ (1,∞)with the same property.
Let us deal with Jk . The case of J ′

k is similar. Fix q, q ′ ∈ Jk and λ ∈ (0, 1). Pick s, s′
so that D(q)/(q − 1) < s < k + 1, D(q ′)/(q ′ − 1) < s′ < k + 1. Then

lim sup
n→∞

1

n
log
∑
I∈�n

φs(TI )
1−q pq

I ≤ 0,

lim sup
n→∞

1

n
log
∑
I∈�n

φs′
(TI )

1−q ′
pq ′

I ≤ 0.
(A.1)
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Define

qλ = (1 − λ)q + λq ′, sλ = (1 − λ)(q − 1)s + λ(q ′ − 1)s′

qλ − 1
.

If we prove that

lim sup
n→∞

1

n
log
∑
I∈�n

φsλ(TI )
1−qλ pqλ

I ≤ 0, (A.2)

then by definition of D(qλ), we have

D(qλ)

qλ − 1
≤ sλ = (1 − λ)(q − 1)s + λ(q ′ − 1)s′

qλ − 1

for all s, s′ has above, so

D(qλ) ≥ (1 − λ)D(q) + λD(q ′).

Now we prove (A.2). By construction we have k < sλ < k + 1, so

∑
I∈�n

φsλ(TI )
1−qλ pqλ

I =
∑
I∈�n

(
φs(TI )

1−q pq
I

)1−λ(
φs′
(TI )

1−q ′
pq ′

I

)λ

≤
( ∑

I∈�n

φs(TI )
1−q pq

I

)1−λ( ∑
I∈�n

φs′
(TI )

1−q ′
pq ′

I

)λ
,

where the second inequality comes from Hölder’s inequality. This together with (A.1)
yields (A.2). ��
Lemma A.3. Let q0 > 1 such that D(q0)/(q0−1) = k for some integer k ∈ {1, 2, . . . , d}.
Then

D(q)

q − 1
≤ k if q > q0 and

D(q)

q − 1
≤ k if q < q0.

Proof. First assume that q > q0. To show that D(q)/(q − 1) ≤ k, it suffices to show
that

∀ δ > 0,
∑
I∈�n

φk(TI )
1−q pq

I ≥ e−nδ for large enough n. (A.3)

Assume that (A.3) does not hold., i.e. there exists δ > 0 such that
∑
I∈�n

φk(TI )
1−q pq

I < e−nδ infinitely often (i.o).

Note that
∑

I∈�n
pI = 1. Take λ ∈ (0, 1) such that (1 − λ)q + λ = q0. Then, by the

Hölder inequality
∑
I∈�n

φk(TI )
(1−λ)(1−q) p(1−λ)q

I pλI ≤ e−n(1−λ) · 1λ i.o.,
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i.e. ∑
I∈�n

φk(TI )
1−q0 pq0

I ≤ e−n(1−λ) i.o.,

a contradiction with our assumption on D(q0)/(q0 − 1).
Next assume that q < q0. To show that D(q)/(q − 1) ≥ k, it suffices to show that

∀ δ > 0,
∑
I∈�n

φk(TI )
1−q pq

I ≤ enδ for large enough n.

To see this, since D(q0)/(q0 − 1) = k, we have∑
I∈�n

φk(TI )
1−q0 pq0

I ≤ enδ for large enough n.

Take λ ∈ (0, 1) such that (1 − λ)q0 + λ = q. Then, by the Hölder inequality∑
I∈�n

φk(TI )
(1−λ)(1−q0) p(1−λ)q0

I pλI ≤ en(1−λ) · 1λ,

i.e. ∑
I∈�n

φk(TI )
(1−q0) pq0

I ≤ en(1−λ),

if n is large enough, as desired. ��
Remark A.4. The same argument (with k replaced by any positive number s shows that
q �→ D(q)/(q − 1) is non-increasing on (1,∞).

Proof of Proposition A.2. Due to Proposition A.1, it suffices to show that

(1) If
D(q0)

q0 − 1
∈ {1, 2, . . . , d − 1} for some q0 > 1, then D′(q0+) ≤ D′(q0−).

(2) If
D(q0)

q0 − 1
= d for some q0 > 1, then D′(q0+) ≤ d (by Lemma A.3, τ(q) = d(q−1)

if 1 < q < q0).

Let us first prove (1). Assume on the contrary that (1) does not hold, i.e. D′(q0+) >
D′(q0−). Then there exists a small ε > 0 such that

D(q0) <
1

2
D(q0 + ε) +

1

2
D(q0 − ε),

and

D(q0 + ε)

q0 + ε − 1
≤ k ≤ D(q0 − ε)

q0 − ε − 1
< k + 1 (by Lemma A.3).

Let s1 = D(q0 + ε)

q0 + ε − 1
and s2 = D(q0 − ε)

q0 − ε − 1
, q1 = q0 +ε, q2 = q0 −ε. Then, for all δ > 0

and i ∈ {1, 2}, ∑
I∈�n

φsi (TI )
1−qi pqi

I ≤ enδ for large enough n.
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By the Hölder inequality, we have
∑
I∈�n

φs1(TI )
(1−q1)/2 pq1/2

I φs2(TI )
(1−q2)/2 pq2/2

I ≤ enδ,

i.e. ∑
I∈�n

φs1(TI )
(1−q1)/2φs2(TI )

(1−q2)/2 pq0
I ≤ enδ,

Note that

φs1(TI )
(1−q1)/2φs2(TI )

(1−q2)/2

= (α1α2 · · ·αk)
(1−q1)/2α

(s1−k)(1−q1)/2
k · (α1α2 · · ·αk)

(1−q2)/2α
(s2−k)(1−q2)/2
k+1

(where αi = αi (TI ))

= (α1α2 · · ·αk)
1−q0α

(s1−k)(1−q1)/2
k α

(s2−k)(1−q2)/2
k+1

≥ (α1α2 · · ·αk)
1−q0α

(s1−k)(1−q1)/2
k+1 α

(s2−k)(1−q2)/2
k+1 (using (s1 − k)(1 − q1) ≥ 0)

= (α1α2 · · ·αk)
1−q0α

− D(q1)+D(q2)
2 −k(1−q0)

k+1

≥ (α1α2 · · ·αk)
1−q0α

−(D(q0)+γ )−k(1−q0)

k+1 (with γ � δ)

= (α1α2 · · ·αk)
1−q0α

−γ
k+1

≥ φk(TI )
1−q0 · enγ ′

(with γ ′ � δ).

Therefore, ∑
I∈�n

φk(TI )
(1−q0) pq0

I ≤ e−n(γ ′−δ) (with γ ′ � δ)

for large enough n, a contradiction. This proves (1).
Next we show (2). To see this, recall that D(q0)/(q0−1) = d and D(q)/(q−1) ≤ d if

q > q0. Now, since D(q)/(q−1) is non increasing over (1,∞), either D(q)/(q−1) = d
in a right neighborhood of q0, or D(q)/(q−1) < d for all q > q0, and by Proposition A.1
D is concave on a right neighborhood of q0. Thus the inequality D(q)/(q − 1) ≤ d for
q > q0 implies D′(q0+) ≤ d.
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