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Abstract: We derive and study supergravity BPS flow equations for M5 or D3 branes
wrapping a Riemann surface. They take the form of novel geometric flows intrinsically
defined on the surface. Their dual field-theoretic interpretation suggests the existence
of solutions interpolating between an arbitrary metric in the ultraviolet and the con-
stant-curvature metric in the infrared. We confirm this conjecture with a rigorous global
existence proof.

1. Introduction

Geometric flow equations are a central subject in modern differential geometry and topol-
ogy. They also arise naturally in quantum field theory as renormalization group (RG)
equations in theories whose coupling space is parametrized by a Riemannian manifold.
A prototypical example is Ricci flow [1,2], which independently appeared in quantum
field theory (in Friedan’s thesis [3]) just before being introduced by Hamilton as a tool
to attack the geometrization conjecture for three-manifolds [4]. Ricci flow describes the
one-loop RG evolution for the metric of the target manifold M of a two-dimensional
sigma-model. Under certain assumptions, and after appropriate rescaling, solutions of
Ricci flow tend to a constant curvature metric on M. Physically, this canonical metric
is interpreted as an infrared (IR) stable fixed point; the metric moduli are irrelevant in
the RG sense, and they are washed out by the flow.

Here we introduce and study a new class of geometric flows which arise as holographic
BPS flows for certain supersymmetric large N field theories. We restrict to flows defined
on a closed Riemann surface C; the very interesting extension to three-manifolds will be
presented elsewhere [5]. The dual interpretation of the flows as field-theory RG flows
suggests that they should uniformize the surface, that is, for fixed complex structure
on C there should exist a solution interpolating between an arbitrary metric on C in the
ultraviolet (UV) and the attractor metric of constant curvature in the IR. We confirm this
expectation by rigorous mathematical argument.



430 M. T. Anderson, C. Beem, N. Bobev, L. Rastelli

We emphasize from the outset that our flow equations, while certainly related to the
physics of renormalization, have a rather different flavor from flows, such as Ricci flow,
that admit a more direct field-theoretic RG interpretation. Indeed our flow equations are
second-order (elliptic) in RG time, rather than first-order (parabolic) and we study them
as a boundary-value problem with prescribed UV and IR behavior. This is a familiar
predicament. Quite generally, if one regards supergravity flow equations as defining an
initial-value problem, one needs to constrain the UV data such that the evolution does
not lead to unphysical singularities. This is very difficult, and in practice it is more
convenient to study instead a boundary value problem with specified UV and IR data.
However, this is not in the spirit of the Wilsonian RG, where for all initial UV data there
is a well-defined physical flow.

Our initial motivation comes from physics. We want to test a crucial assumption of
the beautiful recent work on four-dimensional N = 2 supersymmetric quantum field
theories “of class S” [6–8]. These are the theories conjectured to arise by compactif-
ication on a Riemann surface C of the famous six-dimensional (2, 0) superconformal
field theory (SCFT). The appropriate partial topological twist ensures that N = 2 super-
symmetry is preserved in the four non-compact dimensions for arbitrary metric on C.
Then in the IR the theory must flow to a four-dimensional N = 2 SCFT. The complex
structure moduli space of C is identified with the space of exactly marginal couplings
of the four-dimensional SCFT, but the conformal factor of the metric is believed to be
RG-irrelevant and thus forgotten in the IR. This is the assumption that we set out to
check.

As a Lagrangian description of the (2, 0) theory is presently lacking, we do not know
how to approach this question in general. Fortunately, a simplification occurs for large
N , where N is the rank of the Lie algebra AN that characterizes the (2, 0) theory. In this
limit we can appeal to the Ad S/CFT correspondence, which states that the (2, 0) AN
theory is dual to eleven-dimensional supergravity in an Ad S7 × S4 background. In fact
for our purposes, it is sufficient to consider the consistent truncation of eleven-dimen-
sional supergravity to seven-dimensional gauged supergravity.1 Then the hypothesis that
we would like to check can be rephrased in the language of the “holographic RG”. One
singles out a radial coordinate to play the role of RG time and writes the supergravity
BPS equations as evolution equations with respect to this coordinate. The solutions of
interest interpolate between an asymptotically locally Ad S7 background in the UV and
the background Ad S5 ×C (where C has fixed constant negative curvature) in the IR. The
expectation is that such a solution exists for arbitrary choice of UV metric on C.

At first sight, the supergravity BPS equations look like a complicated coupled system,
but remarkably they can be reduced to the very elegant equation (3.8):

∂2
ρeΦ + (∂2

x + ∂2
y )Φ = m2eΦ.

This is a single elliptic flow equation for a scalar field Φ intrinsically defined on the
surface! In terms of the original variables, Φ is a linear combination of the conformal
factor of the metric on C and of one of the scalars fields of the gauged supergravity.
We can also think of it more covariantly as an equation for an auxiliary metric on C,
of which Φ is the conformal factor, see (B.3). The equation admits an exact solution,

1 This truncation necessitates the restriction that C be closed. While there is a rich generalization to punc-
tured surfaces [9], it is technically much simpler for us to study to the case with no punctures. We also generally
assume that C has genus g > 1. This is a less essential restriction: the equations we derive actually describe
the low-genus cases as well, though the corresponding flows are singular.
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which equates to the previously known solution where C is taken to have constant cur-
vature throughout the flow [10]. Linearizing around this constant-curvature flow, it is
easy to demonstrate that for infinitesimal perturbations of the UV metric there is always
a solution flowing to the attractive fixed point in the IR. Much less trivially, we are able
to give a rigorous global existence proof. The proof is based on degree-theoretic tech-
niques used in proving existence results for nonlinear elliptic equations. For a survey
of this area of nonlinear functional or global analysis, see [11]. Such methods can be
used, for instance, to give a relatively simple proof of the uniformization theorem for
surfaces of higher genus [12]. The proof here is more difficult, since it involves flows
with substantially different behaviors in the UV and IR.

We perform a similar analysis for a few other cases of physical interest. The first
variation on our theme is to consider a different partial topological twist of the (2, 0)
theory compactified on C, such that only N = 1 supersymmetry is preserved in four
dimensions. In fact there is a whole family of possible twists that preserve N = 1 super-
symmetry, and here we restrict to the simplest case, already discussed in [10]; a more
comprehensive discussion will appear elsewhere [13]. Another variation is to take as the
starting point N = 4 super Yang-Mills (SYM), a four-dimensional SCFT, rather than
the six-dimensional (2, 0) theory. We consider compactifications of N = 4 SYM on
C with partial topological twists that preserve either (4, 4) or (2, 2) supersymmetry in
the two non-compact dimensions. For all of these cases, the holographic RG equations
reduce to a single scalar equation on C.

The example of the (4, 4) twist of N = 4 SYM is somewhat special, since one does
not expect the IR theory to have a well-defined vacuum state [10], and correspondingly
one finds no Ad S3×C solution in the dual supergravity. On the other hand, both the (2, 0)
theory with N = 1 twist and N = 4 SYM with the (2, 2) twist flow in the IR to SCFTs
in four and two dimensions, respectively. As before, the field-theoretic expectation is
that memory of the UV metric on C is lost in the IR. This is confirmed by the analysis
of the corresponding scalar flow equations (3.37) and (4.10) which, despite looking less
elegant than (3.8), have very similar behavior.

The organization of the paper is as follows. In Sect. 2, we review the construction of
the field theories of interest by partial twisting of maximally supersymmetric theories.
We then recall the realization of these field theories on the worldvolumes of D3 and M5
branes wrapping supersymmetric cycles in Calabi-Yau manifolds. In Sects. 3 and 4, we
go about finding the gravity duals to the partially twisted (2, 0) and N = 4 SYM field
theories, respectively, and reduce the problem in each case to a single elliptic geometric
flow equation on the Riemann surface. We also perform a linearized analysis of these
flow equations, interpret the results using Ad S/CFT and show that the constant curvature
metric on the Riemann surface is a local IR attractor of the flow equations. In Sect. 5,
we provide a global proof that the geometric flows in question uniformize any metric
on the Riemann surface for a correct choice of additional boundary data. We further
explore the flow of the area of C with respect to the auxiliary metric, and find that it
decreases monotonically. Many technical details of the computations are reported in the
appendices.

2. Field Theory, Branes, Supergravity

We begin by reviewing the field theories of interest, their realization on the worldvo-
lumes of M5 and D3 branes, and our approach to constructing their gravity duals. The
bulk of the material in this section has appeared previously, in particular in [10] (see also
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[14,15]). However, as the analysis in the present work is somewhat more involved than
that of [10], we place special emphasis on symmetries as the basic guiding principle: the
symmetries of the partially twisted field theory can be used to systematically determine
the geometry of the brane construction, which in turn completely fixes the Ansatz for
the supergravity analysis.

2.1. Partially twisted field theories. We study the (2, 0) theory of AN type in d = 6
dimensions and N = 4 SYM with SU (N ) gauge group in d = 4 dimensions, defined
on a spacetime of the form

R
1,d−3 × C, (2.1)

with C a compact Riemann surface of genus g > 1. Supersymmetry would normally
be broken explicitly and completely by the curved background due to the absence of
covariantly constant spinors. This situation can be remedied if the theory is (partially)
twisted [16,17]. Because we consider geometries with product metrics where only a two-
dimensional factor is curved, the structure group of the spacetime manifold naturally
reduces according to

SO(1, d − 1) → SO(1, d − 3)× SO(2)C . (2.2)

A choice of twist is a choice of Abelian subgroup SO(2)′C ⊂ SO(2)C × G R , with G R
the R-symmetry group of the d-dimensional field theory, such that some of the super-
charges are invariant under SO(2)′C . For the theories at hand, the R-symmetry group G R
is SO(5) or SO(6) and there exist a number of inequivalent ways to choose the group
SO(2)′C so that some supersymmetry is preserved. We restrict our attention to two twists
for each theory. We now review these twists and mention some standard facts about the
resulting (d − 2)-dimensional theories.

2.1.1. Twists of the (2, 0) SCFT in six dimensions. The Poincaré supercharges of the
(2, 0) superconformal algebra transform in the 4 ⊗ 4 of the maximal bosonic subgroup
SO(1, 5) × SO(5)R and respect a symplectic-Majorana constraint. Because only an
Abelian factor of the structure group is being twisted, it is sufficient to consider the
maximal torus of the R-symmetry group, SO(5)R . In particular, if we think of SO(5)R
as rotations of R

5
x1−5

, then we define U (1)R,12 × U (1)R,34 ⊂ SO(5)R as the sub-
groups which rotate the (x1, x2) and (x3, x4) planes independently. Under the subgroup
SO(1, 3)× SO(2)C × U (1)R,12 × U (1)R,34 ⊂ SO(1, 5)× SO(5)R , the supercharges
decompose as

4 ⊗ 4 →
[
(2, 1) 1

2
⊕ (1, 2)− 1

2

]
⊗

[
( 1

2 ,
1
2 )⊕ (− 1

2 ,
1
2 )⊕ ( 1

2 ,− 1
2 )⊕ (− 1

2 ,− 1
2 )

]
, (2.3)

and satisfy a reality constraint coming from the symplectic-Majorana condition. Thus,
under a U (1) subgroup generated by a Lie algebra element t ′ = tC +at12 +bt34 (the t’s on
the right-hand side being the generators of SO(2)C , U (1)12, and U (1)34, respectively),
the supercharges transform with charges ± 1

2 ± a
2 ± b

2 . For any choice of a and b such
that a ±b = ±1 there are at least four real, invariant supercharges, so at low energies the
theory enjoys four-dimensional N = 1 supersymmetry. In the special case when either
a or b is zero, the supersymmetry is enhanced to N = 2 in four dimensions.2

2 The discussion of twisting here is purely local. In particular, when the twisted theory is defined on a
curved background with nontrivial topology there are global obstructions to the procedure outlined except at
discrete values of a and b. This becomes manifest in Sect. 2.2, where the obstructions are geometrized.
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The first twist studied corresponds to the choice a = 1 and b = 0. We refer to this as
the “1/2 BPS twist”. It has been argued in [6] that these twisted compactifications of the
(2, 0) theory flow to four-dimensional SCFTs of class S [7,8]. One key aspect of any
theory of class S is that it has a moduli space which is equivalent to the complex structure
moduli space of an associated Riemann surface – the “UV curve”. In [6], the UV curve
was identified with the Riemann surface C on which the (2, 0) theory is compactified,
and it was conjectured that under the subsequent RG flow to a four-dimensional fixed
point, all metric data for C except for the complex structure are irrelevant. The arguments
for this picture are compelling. For example, the space of marginal deformations in the
four-dimensional theory leaves no room for additional geometric degrees of freedom,
and BPS quantities in the twisted six-dimensional theory are determined by the complex
structure alone. Nevertheless, the hard-boiled skeptic cannot rule out the existence of
disconnected components in space of IR fixed points.

The second twist considered corresponds to the choice a = b = 1/2, which is the
“1/4 BPS twist”. These theories have been considered in [18], where they were iden-
tified as the end point of an RG flow triggered by a mass deformation of the N = 2
theory of class S for the same UV curve. It was further argued that the moduli space of
these theories is the combined space of complex structures and flat SU (2) bundles on
the UV curve. Locally, this moduli space is just the product of the complex structure
moduli space with the space of SU (2) Wilson lines for the UV curve.

2.1.2. Twists of N = 4 SYM in four dimensions. The Poincaré supercharges of N = 4
SYM transform in the [(2, 1) ⊕ (1, 2)] ⊗ 4 of SO(1, 3) × SU (4)R with a Majorana
constraint. As in the case of the (2, 0) theory, it is sufficient to consider a maximal
torus of SU (4)R ∼= SO(6)R , which we regard as independent rotations of three planes
in R

6
x1−6

. Under the subgroup SO(1, 1) × SO(2)C × U (1)12 × U (1)34 × U (1)56, the
supercharges decompose as

[
(2, 1) ⊕ (1, 2)

]
⊗ 4

→
[
(± 1

2 ,± 1
2 )

]
⊗

[
( 1

2 ,
1
2 ,

1
2 )⊕ (− 1

2 ,− 1
2 ,

1
2 )⊕ (− 1

2 ,
1
2 ,− 1

2 )⊕ ( 1
2 ,− 1

2 ,− 1
2 )

]
.

(2.4)

If we consider the U (1) subgroup generated by a Lie algebra element t ′ = tC + a t12 +
b t34 + c t56, it is straightforward to check that at least two real supercharges are invari-
ant for a ± b ± c = ±1. This is enhanced to four invariant supercharges if a, b, or c
vanish, and eight invariant supercharges if only one of a, b, and c is non-zero. These
classes of twists give rise to theories which flow to two-dimensional theories preserving
N = (0, 2), N = (2, 2), and N = (4, 4) supersymmetry, respectively. We focus on the
two latter cases as the additional supersymmetry leads to nice simplifications.

First we consider the “1/2 BPS twist” with (a, b, c) = (0, 0, 1). Since N = 4 SYM
has a Lagrangian description, the resulting twisted field theory can be studied quite
explicitly, and in [19] it was argued that the IR fixed point is a sigma model with target
space the hyper-Kähler moduli space MH (C) of solutions to the Hitchin equations. This
sigma model explicitly depends only on the complex structure on C, and so is insen-
sitive to the conformal factor of the metric. Then we study the “1/4 BPS twist” with
(a, b, c) = ( 1

2 ,
1
2 , 0). This is related to the Donaldson-Witten twist of N = 2 theories

in four dimensions where N = 4 SYM is treated as an N = 2 theory with an adjoint
hypermultiplet.
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2.2. Brane realization. The maximally supersymmetric theories of interest – i.e., the
AN−1 (2, 0) theory and SU (N ) N = 4 SYM – arise in M-theory and string theory on
the worldvolumes of stacks of N M5 and D3 branes, respectively. Their partially twisted
relatives are also realized by branes wrapping supersymmetric cycles in special holon-
omy manifolds [17]. The explicit construction of the field theories in terms of wrapped
branes is useful because there is a direct translation from the brane-geometric construc-
tions of a field theory (which should be thought of as specifying its UV behavior) to
boundary conditions for the dual supergravity solution.

As we are interested in the field theory limit of the brane dynamics, we should imag-
ine the relevant supersymmetric cycles occurring in some compact, special holonomy
manifold at large volume. In the large-volume limit, the branes only probe an infini-
tesimal neighborhood of the supersymmetric cycle, so the geometry can be modeled
as a non-compact manifold which is a vector bundle over C, where the fiber is R

5 in
the case of M5 branes and R

6 in the case of D3 branes.3 These fibers are precisely the
vector spaces which appeared previously in Sect. 2.1 representing the field-theoretic
R-symmetry groups.

Accordingly, in the case of the 1/2 BPS twist of both M5 and D3 theories, only a
one-complex-dimensional subspace of the transverse space is fibered nontrivially over
C. This amounts to the statement that C is a holomorphic curve in a local Calabi-Yau
two-fold of the form

X1/2 = L → C, (2.5)

where L represents a holomorphic line bundle. The requirement that the R-symmetry
component of the twisted rotation group acts on the preserved supercharges with equal
and opposite charge to the untwisted rotation group specifies that this line bundle is in
fact the holomorphic cotangent bundle T �C(1,0).4 This is the unique line bundle L which
admits a hyper-Kähler metric, and so leads to a theory with N = 2 supersymmetry.

In the case of the 1/4 BPS twists, there is a nontrivial C
2 bundle over C, and the

twisted rotation group acts distinctly on the two C-factors. This situation arises when C
is a holomorphic curve in a local Calabi-Yau three-fold of the form

X1/4 = L1 ⊕ L2 → C. (2.6)

As mentioned in Sect. 2.1, a variety of choices can be made for the line bundles L1
and L2 so that the resulting geometry is locally Calabi-Yau (which in turn ensures that
supersymmetry on the branes is preserved).5 We focus on the case where the R-symme-
try factor of the twisted rotation group acts identically on the two line bundles, with half
the weight of the action of the ordinary rotation group. In short, we set L1 = L2 ≡ L1/4

with L⊗2
1/4 = T �C(1,0).6

3 It is not necessary for the total space of this vector bundle to have a Ricci-flat metric, but only that such
a metric exists in a neighborhood of the zero section of the vector bundle. This is because in the low energy
limit, the tension of the branes effectively becomes infinite.

4 The choice of holomorphic, as opposed to anti-holomorphic, cotangent bundle is merely a convention.
5 The holomorphic structure on the C

2 bundle does not have to factorize in general, so there are geometries
which are not sums of holomorphic line bundles. In the 1/4 BPS twisted theory studied here, the holomorphic
structure can be deformed to an unfactorized one by turning on SU (2)Wilson lines on C – see [18]. The story
for more general twists preserving four supercharges is currently under investigation [13].

6 There are, of course, 2g different choices for L1/4 which satisfy this condition. However, since we work
on the covering space of C and performing a quotient without additional action on sections of these line bun-
dles, we choose the spin structure corresponding to periodic boundary conditions. We thank Eva Silverstein
for pointing out this ambiguity.



Holographic Uniformization 435

2.3. Supergravity ansätze. We are studying theories whose microscopic behavior is
controlled by maximally supersymmetric theories with well-known supergravity duals.
Consequently, it is straightforward to fix the asymptotic form of the dual supergravity
backgrounds. Here we outline precisely the Ansätze which provide the starting point
for our calculations. We first describe the backgrounds dual to the twisted M5 brane
theories. For the twisted D3 brane theories the procedure is analogous and is described
succinctly.

2.3.1. M5 brane ansätze. The AN−1 (2, 0) theory is dual at large N to eleven-dimen-
sional supergravity in an Ad S7 × S4 background, where the S4 factor can be thought of
as the boundary of the transverse R

5 to a stack of N M5 branes. From the brane con-
struction of the partially twisted (2, 0) theory, we see that the large N dual should be an
eleven-dimensional supergravity background which is asymptotically locally Ad S7×S4,
but for which the topology at fixed value of the radial coordinate is an S4 fibration over
R

1,3 ×C. The S4 fibration at the boundary is determined by the R
5 fibration in the brane

construction (i.e., the complex structure of the noncompact Calabi-Yau). Fortunately,
there is a consistent truncation of eleven-dimensional supergravity on S4 to the low-
est Kaluza-Klein modes on the S4 given by the maximal gauged supergravity in seven
dimensions [20,21]. Since the boundary conditions involve only the lowest Kaluza-Klein
modes, the existence of the consistent truncation guarantees that we can work entirely in
the language of the lower-dimensional gauged supergravity, and that all of the solutions
we obtain can be uplifted to solutions of eleven-dimensional supergravity using explicit
formulae from [20,21] (see also [22]). In fact, the uplifted flow solutions will be of the
geometric type identified as “wrapped M5-brane spacetimes” in [23].

The maximal gauged supergravity in seven dimensions has an ordinary SO(5) gauge
group (dual to the R-symmetry) and an SO(5)c composite gauge group [24]. The field
content includes the metric, the SO(5) gauge field, fourteen scalars parametrizing the
coset SL(5,R)/SO(5)c and five three-form potentials transforming in the 5 of the SO(5)
gauge group. There are also four spin-3/2 fields and sixteen spin-1/2 fields transforming
in the 4 and 16 of SO(5)c, respectively. The complete action and supersymmetry vari-
ations of this theory were derived in [24]. The bulk fields which are needed to match
the partial twists of the (2, 0) theory at the boundary lie in a simple truncation of this
theory to the metric, two Abelian gauge fields in the Cartan of the SO(5) gauge group
(encoding the fibration of the S4, which has a reduced U (1) × U (1) structure), and
two scalars which parameterize squashing deformations of the four-sphere.7 This is pre-
cisely the truncation of [25], but note that it is not the bosonic part of a non-maximal
supergravity. However it has been shown that every solution of the equations of motion
of the truncated theory solves the equations of motion of the maximal theory [22,25].

It is now straightforward to write down the most general Ansatz appropriate to our
construction. The seven-dimensional metric takes the form

ds2 = e2 f (−dt2 + dz2
1 + dz2

2 + dz2
3) + e2hdr2 + y−2e2g(dx2 + dy2), (2.7)

where f , g, and h are functions of r and of the coordinates (x, y), which take values
on the upper half-plane H = {(x, y) | y > 0}.8 In order to obtain a compact Riemann

7 There is also a three-form gauge potential in this truncation, but it vanishes identically for all solutions
discussed in the present work.

8 For appropriate choices of the function g and the range of (x, y), this Ansatz is compatible with the
Riemann surface C having low genus (g = 0, 1). Indeed, the derivations found in Appendix A are sufficient
to describe these cases.
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surface parameterized by (x, y), we impose a quotient by a discrete (Fuchsian) subgroup
Γ ⊂ P SL(2,R), the automorphism group of the hyperbolic plane. The functions f ,
g, and h must be invariant under Γ . In addition to the metric, there may be nontrivial
(r, x, y)-dependent profiles for the two Abelian gauge fields and two real scalars in the
truncation,

A(i) = A(i)x dx + A(i)y dy + A(i)r dr, λi = λi (x, y, r), i = 1, 2. (2.8)

These bosonic fields must also transform covariantly under Γ .
As mentioned above, the asymptotic form of this Ansatz is fixed by the brane construc-

tion of the boundary theory. Specifically, the metric functions should have the following
UV behavior as r → 0,

f (x, y, r), h(x, y, r) → − log r + · · · ,
g(x, y, r) → − log r + g0(x, y) + · · · , (2.9)

where · · · represents terms which vanish as r → 0. The asymptotic behavior of the
bosonic fields is given by

λi → 0 + · · · ,
A(i)r → 0 + · · · , (2.10)

A(i)x,y → a(i)ωxy
x,y + · · · ,

where ωμ is the spin connection in seven dimensions. The constants a(i) are determined

by the choice of twist, and the condition (2.10) for the gauge fields A(i)x,y encodes the fact
that at the boundary the S4 fibration is completely specified by the structure of the tan-
gent bundle to C. To be precise, in the 1/2 BPS twist, the correct choice is a(1) = 1/2m,
a(2) = 0, while for the 1/4 BPS twist we take a(1) = a(2) = 1/4m, where m is the
gauge coupling of the gauged supergravity.9

Moreover, the twists in question preserve additional symmetries which lead to sim-
plifications for the bosonic scalar fields. In the case of the 1/2 BPS twist, there is an
SU (2) global symmetry coming from the fact that the transverse R

5 has an R
3 factor

which is fibered trivially. This leads to the simplification

2λ1 + 3λ2 = 0, A(2) = 0, (2.11)

which can be consistently imposed as a truncation at the level of the equations of motion.
In the 1/4 BPS twist, there is an extra Z2symmetry which exchanges L1 and L2 in the
geometry (2.6). This implies the additional relation

λ1 = λ2, A(1) = A(2), (2.12)

which again leads to a consistent truncation of the equations of motion.

9 The appearance of the parameter m may look strange, since one might expect these values to match
those of the parameters a and b which appeared in the discussion of Sect. 2.1.1. This is a consequence of the
standard normalization for gauge fields in gauged supergravity which differs by a factor of 2m from the more
geometric normalization in which the gauge fields can be naturally interpreted as connections on principle
bundles.
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2.3.2. D3 brane ansätze. For the twisted D3 brane backgrounds, we have a very similar
story. At large N and large ’t Hooft coupling, N = 4 SYM with SU (N ) gauge group
is dual to type IIB supergravity in Ad S5 × S5, with the S5 thought of as the boundary
of the transverse R

6 to a stack of N D3 branes. We expect the twisted theory to be
dual to a background which is asymptotically locally Ad S5 × S5 with the spacetime
topology at fixed value of the radial coordinate given by an S5 fibration over R

1,1 × C.
The asymptotic S5 fibration is determined by the R

6 fibration in the brane construction.
It is again sufficient to work in a gauged supergravity description. The maximal

gauged supergravity in five dimensions was constructed in [26–28] where the full action
and supersymmetry variations were derived, and it is believed to be a consistent trun-
cation to the lowest Kaluza-Klein modes of type IIB supergravity on S5. This has not
been proven explicitly, but in the present work we do not need the full structure of the
theory. Rather, we content ourselves to work with the subsector studied in [22]. This
is a truncation of the maximal theory to the metric, three Abelian gauge fields in the
Cartan of the SO(6) gauge group, and two real, neutral scalars. It can be shown to be a
consistent truncation of the maximally supersymmetric supergravity to the bosonic part
of an N = 2 gauged supergravity coupled to two vector multiplets (see [29] for a recent
discussion of this truncation). For this truncation, it has been shown that all solutions can
be uplifted to solutions of type IIB supergravity, and there exist explicit uplift formulae
[22]. In fact, all of the solutions discussed in the present work can be written as explicit
solutions of type IIB supergravity, and they will be of the geometric type identified as
“wrapped D3-brane geometries” in [30].

The Ansatz for the twisted D3 brane solutions takes a form analogous to that of the
twisted M5 solutions. The five-dimensional metric is

ds2 = e2 f (−dt2 + dz2) + e2hdr2 + y−2e2g(dx2 + dy2), (2.13)

and there are now three Abelian gauge fields and two real scalars,

AI = AI
x dx + AI

ydy + AI
r dr, I = 1, 2, 3,

φ1(x, y, r), φ2(x, y, r).
(2.14)

All functions in this Ansatz depend on (x, y, r) and two-dimensional Poincaré invariance
is manifest.

The behavior at r → 0 is controlled by the corresponding twist of N = 4 SYM. The
metric functions have the following asymptotics:

f (x, y, r), h(x, y, r) → − log r + · · · ,
g(x, y, r) → − log r + g0(x, y) + · · · , (2.15)

while the bosonic fields obey

φ1,2 → 0 + · · · ,
AI

r → 0 + · · · , (2.16)

AI
x,y → a(I )ωxy

x,y + · · · .
In this gauged supergravity, the effective gauge coupling is set to one, and the values of
the constants a(I ) are those of the constants a, b, and c which appeared in Sect. 2.1.2.
In particular, for the 1/2 BPS twist we have a(1) = a(2) = 0 and a(3) = 1, while for the
1/4 BPS twist we take a(1) = a(2) = 1/2 and a(3) = 0.
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For these choices of twists the backgrounds enjoy additional global symmetries which
imply further constraints on the bosonic fields. Specifically, the presence of a Z2 sym-
metry of the geometry which descends to the N = 2 gauged supergravity implies a
global relation

φ2 = 0, A1 = A2. (2.17)

For the 1/2 BPS twist, this implies A1 = A2 = 0, while for the 1/4 BPS twist it yields
A3 = 0. These are both consistent truncations from the U (1)3 gauged supergravity to
theories with only a single gauge field and scalar. We are now prepared to derive the
conditions for the backgrounds just discussed to preserve the appropriate amount of
supersymmetry.

3. Holographic Flows for Twisted M5 Branes

Our goal is to derive flow equations which describe the supersymmetric evolution of
the background fields of Sect. 2.3.1 as a function of the radial coordinate and to under-
stand their late-time, or IR, behavior as a function of the boundary metric on C (the
function g0(x, y) in (2.9)). The flow equations are determined by the condition that
the bosonic background be invariant under an appropriate number of supersymmetry
transformations, i.e., by the condition that the variations of all fermionic fields vanish in
the background. The relevant supersymmetry variations for the fermionic fields in the
truncated maximally supersymmetric gauged supergravity are given by [24,25]

δψμ =
[
∇μ + m(A(1)μ Γ

12 + A(2)μ Γ
34) + m

4 e−4(λ1+λ2)γμ + 1
2γμγ

ν∂ν(λ1 + λ2)
]
ε

+ 1
2γ

ν
(

e−2λ1 F (1)μν Γ
12 + e−2λ2 F (2)μν Γ

34
)
ε,

δχ(1) =
[

m
4 (e

2λ1 − e−4(λ1+λ2))− 1
4γ

μ∂μ(3λ1 + 2λ2)− 1
8γ

μνe−2λ1 F (1)μν Γ
12

]
ε,

δχ(2) =
[

m
4 (e

2λ2 − e−4(λ1+λ2))− 1
4γ

μ∂μ(2λ1 + 3λ2)− 1
8γ

μνe−2λ2 F (2)μν Γ
34

]
ε.

(3.1)

The parameter m is proportional to the gauge coupling constant of the supergravity and
is inversely proportional to the scale of Ad S7. The analysis of these BPS conditions is
described in detail in Appendix A. The results are remarkably simple for both choices of
twist. The full solutions to the BPS constraints are encoded in the solution to a system of
two coupled partial differential equations (PDEs) for the metric function g and a linear
combination of the scalar fields λi . We first discuss the resulting flows for the 1/2 BPS
twist.

3.1. Half BPS flows. For this choice of twist, the Ansatz from Sect. 2.3.1 imposes the
relation

2λ1 + 3λ2 = 0, A(2) = 0, (3.2)

and we work in terms of a reduced set of bosonic fields defined as

λ ≡ λ2, A ≡ A(1). (3.3)
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Applying the conditions for unbroken supersymmetry as described in Appendix A, we
find that the supersymmetric background is determined by the solution to the following
system of PDEs:

∂ρλ = − 2m
5 + 2m

5 e−5λ + 1
5m eλ−2g (1 +Δ(g + 2λ)) ,

∂ρg = 3m
10 + m

5 e−5λ − 2
5m eλ−2g (1 +Δ(g + 2λ)) ,

(3.4)

with Δ ≡ y2(∂2
x + ∂2

y ). The radial variable ρ is defined in (A.14). These flow equations
can be further simplified by defining10

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 4λ(ρ, x, y), (3.5)

with respect to which Eqs. (3.4) can be rewritten as

∂2
ρeϕ +Δϕ + 2 − m2eϕ = 0, (3.6)

along with a condition for λ as a simple function of ϕ,

e−5λ = 1
2m (m + ∂ρϕ). (3.7)

There are a couple of curiosities to be noted about Eq. (3.6). First off, in terms of
Φ(ρ, x, y) = ϕ(ρ, x, y)− 2 log y, the equation becomes

(∂2
x + ∂2

y )Φ + ∂2
ρeΦ = m2eΦ. (3.8)

For m = 0 this is the continuum SU (∞) Toda equation (also known as the Heavenly
Equation, or Plebanski’s Heavenly Equation). It is integrable and has been extensively
studied (see, e.g., [31–33]). Since the parameter m is inversely proportional to the scale
of Ad S7, we necessarily have m �= 0. We do not know whether the equation with
m �= 0 inherits any nice properties from the m = 0 case. The SU (∞) Toda equation
also appears in the analysis of [34 and 9], where the role of the variable ρ is played
by one of the coordinates on the topological four-sphere in the eleven-dimensional
solution. In addition, (3.8) is time-reversal (ρ-reversal) invariant. This will not be the
case for the other flows that we derive, and we do not know the repercussions of this
symmetry.

In the remainder of this section, we perform a concrete analysis of the local properties
of solutions to (3.6). We study the linearized behavior of solutions in the IR and UV, and
also perform a perturbative analysis of solutions which are globally very close to the
exact solutions of [10]. The analysis paints a picture where solutions behave as unifor-
mizing flows for the metric on C locally around the constant curvature metric. However,
we find that the question of global behavior is intractable using direct methods. Section 5
contains a more abstract analysis of the global space of solutions, culminating in a proof
that the flow equations we have derived are globally uniformizing.

10 In fact, we would like to think of ϕ as the conformal factor for an auxiliary metric on C. While it does
not describe an actual metric which appears in the supergravity setting, it is in some sense the “right” metric
from the point of view of the flow equations.
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3.1.1. Infrared analysis. To begin, we determine the set of four-dimensional conformal
fixed points in the IR. Such a conformal point should be described by a supergravity
background of the form Ad S5 × C, so in particular ϕ(ρ, x, y) should be constant with
respect to ρ, and we are looking for fixed points of (3.6) and (3.7). A fixed point of (3.6)
satisfies

e−ϕ(2 +Δϕ)− m2 = 0. (3.9)

This is the Liouville equation for the function Φ/2, which makes it clear that the only
solution is

eϕir = 2

m2 . (3.10)

Combining this with (3.7) (and (A.8)–(A.11)) yields the fixed point values for all the
background functions,

eg = 21/10

m
, eλ = 21/5, e f = eh = 23/5

m

1

r
. (3.11)

We conclude that even when the metric on C is allowed to vary arbitrarily, the only
N = 2 Ad S5 vacua are those studied in [10], for which the metric has constant negative
curvature.

We can study the perturbative behavior of these solutions around the IR fixed point.11

This tells us about the late-time behavior of solutions which flow to the conformal fixed
point (3.11). In particular, we anticipate that there should be linearized solutions in the
IR for which the conformal factor is approaching its fixed point value from arbitrary
directions in the space of metrics on C.

We work with (3.6) and study the expansion

ϕ = ϕir + εϕ̃(ρ, x, y), (3.12)

to leading order in the infinitesimal parameter ε. We do not explicitly unpack our solu-
tions in terms of the function f , g, h, and λ, but instead limit our discussion to ϕ, which
can be treated as a proxy for the behavior of the metric function g and the scalar λ. To
linear order in ε, ϕ̃(ρ, x, y) solves

∂2
ρϕ̃ + m2

2 Δϕ̃ − m2ϕ̃ = 0. (3.13)

This is a linear PDE which we can solve by expanding ϕ̃ in eigenfunctions of the
Laplacian on the Riemann surface

ϕ̃ =
∞∑

n=0

ϕ̃n(ρ)Y
(n)(x, y). (3.14)

Since the Riemann surface is compact and hyperbolic, we have

ΔY (n)(x, y) = −μnY (n)(x, y), μ0 = 0, μn > 0, n > 1. (3.15)

11 By virtue of (A.12) and (A.14), the IR (r → ∞) corresponds to ρ → −∞, and the UV (r → 0)
corresponds to ρ → +∞.
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Inserting the expansion (3.14) into Eq. (3.13), we find the most general solution,

ϕ̃n(ρ) = aneα
(+)
n mρ + bneα

(−)
n mρ, (3.16)

where

α(±)n = ±
√

1 + 1
2μn, (3.17)

and an and bn are free coefficients. For the solution to be regular in the IR, all of the
bn must vanish. This leaves infinitely many solutions which approach the Ad S5 fixed
point in the IR but for which the metric on C is perturbed in the UV in an arbitrary
way. This confirms our expectations that there should exist flows approaching the Ad S5
fixed point from all directions in the space of metrics on C, and we interpret all of these
modes as irrelevant operators in the IR SCFT which may be turned on along the RG flow
from six dimensions depending on the metric on C in the UV. The modes with bn �= 0,
however, take the solution away from the Ad S5 fixed point in the IR. We expect these
modes to generically be unphysical, with possible exceptions which we discuss briefly in
Sect. 3.1.2. We conclude that in the neighborhood of the fixed point, the BPS flow equa-
tions exhibit an attractor type behavior in the space of metrics on C.

3.1.2. Ultraviolet analysis. To perform a perturbative analysis in the UV, it is conve-
nient to define a new radial variable ζ = e− m

2 ρ . We can solve the system of coupled
PDEs (3.4) perturbatively for ζ → 0 and find

g(ρ, x, y) ≈ − log(ζ ) + g0(x, y) + g2(x, y)ζ 2 + g4�(x, y)ζ 4 log ζ

+ g4(x, y)ζ 4 + O(ζ 5),

λ(ρ, x, y) ≈ λ2(x, y)ζ 2 + λ4�(x, y)ζ 4 log ζ + λ4(x, y)ζ 4 + O(ζ 5),

(3.18)

where

λ2(x, y) = 1
5m2 e−2g0(x,y)(1 +Δg0(x, y)),

g2(x, y) = 3λ2(x, y), g4�(x, y) = 1
2λ4�(x, y),

λ4�(x, y) = − 2
5m2 e−2g0(x,y)Δ(g2(x, y) + 2λ2(x, y)),

g4(x, y) = 1
2λ4(x, y)− 1

4m4 e−4g0(x,y)(1 +Δg0(x, y))2

+ 1
4m2 e−2g0(x,y)Δ(g2(x, y) + 2λ2(x, y)).

(3.19)

The functions g0(x, y) and λ4(x, y) are undetermined and represent the two functional
degrees of freedom in the choice of boundary conditions for the second-order PDEs.
The function g0(x, y) is the metric on the Riemann surface in the UV.

To build some intuition about the meaning of the function λ4(x, y) it is useful to
consider solutions of the form (3.18) which are independent of x and y – i.e., those
which were studied in [10]. A scalar φ in asymptotically locally Ad S7 space which is
dual to an operator of dimension D and which depends only on the radial variable has
the following UV behavior:

φ(ζ ) ∼ φsζ
6−D + · · · + φvζ

D + · · · , (3.20)
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where φs is related to the source and φv to the vev of the dual operator (see, e.g., [35]).
We conclude that the scalar λ is dual to an operator Oλ of dimensions D = 4 in the
(2, 0) CFT, and for solutions with no dependence on the coordinates (x, y), there is a
source for Oλ which is fixed by the curved geometry, whereas the vev for the operator
appears as a free parameter. It is a well-known difference between holographic RG flows
and Wilsonian RG that in the gravitational setting, one must specify both sources and
vets in the UV to formulate an initial value problem. This introduces the complication
that in general, an arbitrary choice of the vevs will be unphysical [36]. Nevertheless, it
was argued in [10] that these flows are indeed physical for any (constant) choice of λ4,
with the flow reaching the Ad S5 fixed point only if λ4 = 0, and otherwise leading to a
singular flow which was interpreted as being dual to either the Coulomb or Higgs phase
of the field theory, depending on the sign.

In backgrounds for which the fields have nontrivial profiles on the boundary of Ad S7
the holographic dictionary is not straightforward, and we cannot offer precise state-
ments about the field theory interpretation of the function λ4(x, y).12 However, it stands
to reason that for fixed g0(x, y), there exists a specific choice of λ4(x, y) which corre-
sponds to the configuration where the branes are unperturbed in the transverse directions
and so there is a flow to the Ad S5 fixed point. We then expect a one-dimensional family
of values for λ4(x, y), generalizing the constant values in the (x, y)-independent case,
which lead to flows representing non-zero, physical vevs for the operator Oλ. We expect
flows for generic values of g0(x, y) and λ4(x, y) to be unphysical, as they would imply
the existence of field theory vacua with arbitrary (x, y)-dependent expectation values
for Oλ. It would be interesting to understand whether one could determine the physically
admissible values of λ4(x, y) by imposing a criterion for allowable singularities such as
that of [34 or 10].

3.1.3. Exact solution and fluctuations. The discussions above demonstrate that super-
symmetric flows exist for any boundary metric g0(x, y) in the UV, and that additionally
supersymmetric flows exist which approach the constant curvature solution in the IR
from all directions in the space of metrics on C. In this section we study explicit flows
which interpolate between the two sets of asymptotics. The key fact that facilitates this
analysis is that the flow equation (3.6) admits an exact solution under the assumption
that ϕ is a function of ρ alone. This is the solution found by Maldacena and Núñez in
[10], which we denote by the subscript “mn”:

eϕmn = emρ + 2 + Ce−mρ

m2 . (3.21)

Here, C is an integration constant which is proportional to the parameter λ4 in (3.18)
and represents the expectation value of the operator Oλ.13 The flow ends at an Ad S5
fixed point only for C = 0. For C �= 0, one finds Coulomb/Higgs branch flows which
diverge in the IR.

Thus we can study small perturbations of the exact solution (3.21) for all values of
ρ. Such a perturbed solution takes the form

ϕ(ρ, x, y) = ϕmn (ρ) + εϕ̃(ρ, x, y). (3.22)

12 We thank Balt van Rees for numerous helpful discussions of the subtleties associated with the holographic
dictionary in such cases.

13 There is another integration constant parameterizing the freedom to shift ρ by a constant amount. It is set
to zero without loss of generality.
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The fluctuation term ϕ̃(ρ, x, y) can be expanded as

ϕ̃(ρ, x, y) =
∑

n

ϕ̃n(ρ)Y
(n)(x, y), (3.23)

where Y (n)(x, y) are defined in (3.15). It is also convenient to define a new radial var-
iable η = emρ , where the IR now corresponds to η → 0 and the UV to η → ∞. With
these definitions the linearization of (3.6) for the functions ϕ̃n(ρ) is

(η3 + 2η2 + Cη)
d2ϕ̃n

dη2 + (3η2 + 2η − C)
dϕ̃n

dη
− (2 + μn)ϕ̃n = 0. (3.24)

This equation admits an exact solution when C = 0, i.e., when there is an Ad S5 fixed
point in the IR.14 The solution can be written in terms of hypergeometric functions

ϕ̃n(η) = A(n)1
2σn

ησn
2 F1[−σn, 2 − σn; 1 − 2σn;−η/2]

+A(n)2
ησn

2σn
2 F1[σn, 2 + σn; 1 + 2σn;−η/2], (3.25)

where A(n)1 and A(n)2 are integration constants and we have defined

σn =
√

1 + 1
2μn ≥ 1. (3.26)

The solutions with A(n)1 �= 0 are singular near η = 0, so we set A(n)1 = 0.
To get a better understanding of the physics of the linearized solution, it is helpful to

write the functions g and λ as

λ = λmn (ρ) + ελ̃(ρ, x, y), g = gmn (ρ) + εg̃(ρ, x, y), (3.27)

and then expand λ̃(ρ, x, y) and g̃(ρ, x, y) in harmonics on the Riemann surface

λ̃ =
∑

n

�n(ρ)Y
(n)(x, y), g̃ =

∑
n

γn(ρ)Y
(n)(x, y). (3.28)

The solutions for �n(η) and γn(η) can be obtained from the exact solution for ϕ̃n(η).
The result, after applying standard identities for hypergeometric functions, is

�n = B(n)
ησn

η2 + 3η + 2
2 F1[σn, σn − 1; 2σn + 1;−η/2], (3.29)

γn = B(n)
5(σn − 1)

4(2σ 2
n + σn)

η1+σn

2 + η
2 F1[σn + 1, σn; 2σn + 2;−η/2]

−B(n)
4σn + 5(1 + η)

2σn(2 + η)(1 + η)
ησn

2 F1[σn, σn − 1; 2σn + 1;−η/2], (3.30)

14 There are exact solutions for other special values of C but we do not study them since these flows are
singular.
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Fig. 1. The functions γn(η) (left) and �n(η) (right) for B(n) = 1 and μn = (1, 2, 3, 4, 5, 6) (corresponding
to increasing magnitude of the curve)

where the new integration constants B(n) are proportional to A(n)2 . The solutions for �n

and γn with B(n) = 1 and a range of values for μn are plotted in Fig. 1. The expansion
of �n in the UV (η → ∞) and IR (η → 0) is

�n|η→∞ ≈ B(n)
(

2σn−1Γ (2σn + 1)

Γ (σn)Γ (σn + 2)

1

η
+ O(log(η)η−2)

)
,

�n|η→0 ≈ B(n)
(

1

2
ησn −

(
3

4
+
σn(σn − 1)

4(2σn + 1)

)
ησn+1 + O(ησn+2)

)
.

(3.31)

Similarly, the UV/IR expansions of γn are

γn|η→∞ ≈ −5 B(n) 2σn−2

σ 2
n

(
Γ (2σn + 1)

Γ (σn)Γ (σn + 2)
+ O(η−1)

)
,

γn|η→0 ≈ B(n)
(

1 +
5

4σn

)
ησn + O(ησn+1).

(3.32)

Thus, these are interpolating solutions which fit the asymptotic expansions (3.16) and
(3.18) with matching conditions

an = B(n)
(

4 +
5

2σn

)
,

g0(x, y) = −5
∞∑

n=0

B(n)
2σn−2Γ (2σn + 1)

σ 2
nΓ (σn)Γ (σn + 2)

Y (n)(x, y).

(3.33)

The coefficients B(n) parameterize a neighborhood of the constant conformal factor for
the boundary metric on C, and these interpolating flows demonstrate the conjectured
uniformizing behavior for the metric in this neighborhood.

3.2. Quarter BPS flows. Turning to the 1/4 BPS twist, the appropriate truncation of the
seven-dimensional supergravity fields from Sect. 2.3.1 is

A ≡ A(1) = A(2), φ ≡ −2λ1 = −2λ2. (3.34)
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The conditions for backgrounds respecting this truncation to preserve one quarter of
the maximal supersymmetry are derived in Appendix A. When these conditions are
reformulated as flow equations intrinsic to the Riemann surface C, the resulting PDEs
are

∂ρφ = − 2m
5 + 2m

5 e−5φ + 1
10m e−3φ−2g (1 +Δ(g + 4φ)) ,

∂ρg = m
10 + 2m

5 e−5φ − 2
5m e−3φ−2g (1 +Δ(g + 4φ)) ,

(3.35)

with the new radial variable ρ defined in (A.31). As a second-order PDE for

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 8φ(ρ, x, y), (3.36)

these flow equations assume the form

Δϕ + ∂2
ρeϕ − eϕ

(
1
2 (∂ρϕ)

2 − m∂ρϕ + 3m2

2

)
+ 2 = 0. (3.37)

The scalar field φ is determined by ϕ(ρ, x, y),

e−5φ = 1
4m

(
3m + ∂ρϕ

)
. (3.38)

It is notable that while the first-order equations (3.35) are schematically similar to (3.4),
the second-order equation (3.6) appears much simpler than its 1/4 BPS analogue (3.37).
This foreshadows our inability to find any analytic solutions of (3.37). Nevertheless, we
are still able to perform a global analysis of solutions to (3.37) in Sect. 5.

3.2.1. Infrared analysis. The unique Ad S5 vacuum in this truncation is determined by
the constant solution of (3.37),

eϕir = 4

3m2 . (3.39)

The background fields then take fixed point values

eg =
(

3

4

)3/10 1

m
, eφ =

(
4

3

)1/5

, e f = eh = 34/5

23/5m

1

r
. (3.40)

We consider the following infinitesimal perturbation around the IR fixed point:

ϕ = ϕir + εϕ̃(ρ, x, y). (3.41)

To leading order in ε, the perturbation ϕ̃(ρ, x, y) then obeys

∂2
ρϕ̃ + m∂2

ρϕ̃ − 3m2

2 ϕ̃ + 3m2

4 Δ(ϕ̃) = 0. (3.42)

By expanding ϕ̃(ρ, x, y) in harmonics on the Riemann surface as in (3.14), we find the
following solutions for ϕ̃n(ρ):

ϕ̃n(ρ) = aneα
(+)
n ρ + bneα

(−)
n ρ, (3.43)

where

α(±)n = − 1
2 ± 1

2

√
7 + 3μn . (3.44)

Regularity of the solution in the IR requires that bn = 0 for all n.



446 M. T. Anderson, C. Beem, N. Bobev, L. Rastelli

10 5 5 10

5

10

15

Fig. 2. A numerical solution for ϕ(ρ) for 1/4 BPS M5 brane backgrounds. In the IR, the function approaches
a constant, while in the UV, it diverges linearly (logarithmically in r )

3.2.2. Ultraviolet analysis. Defining ζ = e− m
2 ρ , the perturbative solution to Eqs. (3.35)

in the UV (ζ → 0) is given by

g(ρ, x, y) ≈ − log(ζ ) + g0(x, y) + g2(x, y)ζ 2 + g4�(x, y)ζ 4 log ζ

+ g4(x, y)ζ 4 + O(r5),

φ(ρ, x, y) ≈ φ2(x, y)ζ 2 + φ4�(x, y)ζ 4 log ζ + φ4(x, y)ζ 4 + O(r5),

(3.45)

where

φ2(x, y) = 1
10m2 e−2g0(x,y)(1 +Δg0(x, y)),

g2(x, y) = 6φ2(x, y), g4�(x, y) = φ4�(x, y),

φ4�(x, y) = 1
5m4 e−4g0(x,y)(1 +Δg0(x, y))2

− 1
5m2 e−2g0(x,y)Δ(g2(x, y) + 4φ2(x, y)),

g4(x, y) = φ4(x, y)− 3
8m4 e−4g0(x,y)(1 +Δg0(x, y))2

+ 1
4m2 e−2g0(x,y)Δ(g2(x, y) + 4φ2(x, y)).

(3.46)

The undetermined function g0(x, y) is the conformal factor of the metric on C and
can be chosen arbitrarily. The function φ4(x, y) is related to the vev of the dimension
four operator Oφ dual to the supergravity scalar φ. For fixed g0(x, y), we expect generic
values of φ4(x, y) to be unphysical, and for a unique value of φ4(x, y) to lead to an
Ad S5 vacuum in the IR.

The absence of an analytic, constant-curvature flow equivalent to (3.21) in this case
inhibits a direct study of the uniformizing behavior of these flows. However, when the
background fields depend only on ρ, Eqs. (3.35) do admit numerical solutions for which
g(ρ) and φ(ρ) have the prescribed asymptotic behavior of (3.40) and (2.9)–(2.10). A
numerical solution is presented in Fig. 2. The existence of such a solution is important
for the discussion in Sect. 5.
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4. Holographic Flows for Twisted D3 Branes

The analysis of partially twisted D3 branes on C closely parallels that of M5 branes.
We look for flow equations which control the behavior of the background functions
in the Ansätze of Sect. 2.3.2. The problem is formulated in terms of the five-dimen-
sional N = 2 supergravity discussed in [22], and the supersymmetry variations for the
fermions are given in [37],

δψμ =
[
∇μ + i

8 X I (γ
νρ
μ − 4δνμγ

ρ)F I
νρ + 1

2 X I VIγμ − 3i
2 VI AI

μ

]
ε,

δλ( j) =
[

3
8 (∂φ j X I )F

I
μνγ

μν + 3i
2 VI ∂φ j X I − i

4δ jk∂μφkγ
μ
]
ε, j = 1, 2,

(4.1)

where we define

X1 ≡ e
− φ1√

6
− φ2√

2 , X2 ≡ e
− φ1√

6
+ φ2√

2 , X3 ≡ e
2φ1√

6 ,

VI = 1
3 , X I = 1

3 (X
I )−1.

(4.2)

Supersymmetric backgrounds of the N = 2 theory preserve at most eight supercharges,
and we study solutions which preserve only two, corresponding to (0, 2) supersymmetry
in two dimensions. This is because the N = 2 supergravity is a truncation of the maxi-
mally supersymmetric gauged supergravity for which the only visible supersymmetries
are those generated by the spinor transforming with charges ( 1

2 ,
1
2 ,

1
2 ) under the U (1)3

Cartan of SO(6)R (see (2.4)). Both twists we study should preserve exactly two of these
supercharges, but in the maximal gauged supergravity there are additional preserved
supersymmetries which act identically on the fields in our truncation.

4.1. N = (4, 4) flows. To find a BPS flow that preserves half of the maximum super-
symmetry (i.e., 8 real supercharges) one should set

φ2 = 0, α ≡ 1√
6
φ1, A(1) = A(2) = 0, A ≡ A(3). (4.3)

The system of coupled PDEs intrinsic to C is derived in Appendix A and is given by

∂ρα = 2 − 2e3α − e−α−2g(1 +Δ(g − α)),

∂ρg = 2 + e3α − e−α−2g(1 +Δ(g − α)).

(4.4)

This system of equations can be rewritten as a single second-order PDE,

∂2
ρeϕ − 6∂ρeϕ + 9Δϕ + 18 = 0, (4.5)

where

ϕ(ρ, x, y) ≡ 2g(ρ, x, y)− 2α(ρ, x, y), (4.6)

and the scalar α is determined according to

e3α = 1
6∂ρϕ. (4.7)

As mentioned in Sect. 2.1.2, the 1/2 BPS twist of N = 4 SYM flows to an IR CFT
which is a sigma model onto the Hitchin moduli space MH (C). It was pointed out in
[10] that because this is a non-compact target space, one does not expect a normalizable,
conformally invariant ground state for the theory, i.e., there should be no Ad S3 region
in the gravity solution. This is also manifest in (4.7) which does not admit a constant
solution for ϕ with finite α.
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4.2. N = (2, 2) flows. To find gravity backgrounds dual to the 1/4 BPS twist of N = 4
SYM, one should set

φ2 = 0, α ≡ 1√
6
φ1, A ≡ A(1) = A(2), A(3) = 0. (4.8)

The system of coupled PDEs intrinsic to C is

∂ρα = −2 + 2e−3α + 1
2 e−α−2g(1 +Δ(g + 2α)),

∂ρg = 1 + 2e−3α − e−α−2g(1 +Δ(g + 2α)).
(4.9)

While the second-order PDE that governs the flow is

∂2
ρeϕ − 1

2 eϕ(∂ρϕ)
2 + 9Δϕ + 18 − 18eϕ = 0, (4.10)

where we have defined

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 4α(ρ, x, y). (4.11)

The scalar α is related to ϕ via

e−3α = 1
12 (6 + ∂ρϕ). (4.12)

The global properties of this equation are studied in more detail in Sect. 5. Using (4.9)
one can show that the metric on the Riemann surface in the UV can be arbitrary. For the
(x, y)-independent solution, the UV asymptotic analysis of the system of flow equations
was performed in Appendix A of [10] and we do not repeat it here. It is important to
note that this linearized UV analysis suggests that in the dual twisted theory there is an
operator of dimension two that triggers the RG flow.

4.2.1. Infrared analysis. The constant solution of (4.10) is given by

eϕir = 1, (4.13)

which implies the existence of a unique Ad S3 vacuum with the following scalar and
metric functions:

eα = 21/3, eg = 2−2/3, e f = eh = 2−2/3 1

r
. (4.14)

To study the BPS flow equations perturbatively around this fixed point, we write

ϕ = ϕir + εϕ̃(ρ, x, y). (4.15)

After expanding (4.10) to linear order in ε one finds the following equation for ϕ̃:

∂2
ρϕ̃ − 18 ϕ̃ + 9 Δϕ̃ = 0. (4.16)

This equation can be solved by expanding in harmonics on the Riemann surface as
defined by (3.15),

ϕ̃ =
∞∑

n=0

ϕ̃n(ρ)Y
(n)(x, y). (4.17)
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Fig. 3. A numerical solution for ϕ(ρ) for N = (2, 2) D3 brane solutions. In the IR, the function approaches
a constant, while in the UV, it diverges linearly (logarithmically in r )

Solving for ϕ̃n(ρ) then yields

ϕ̃n(ρ) = aneβ
(+)
n ρ + bneβ

(−)
n ρ, (4.18)

where

β(±)n = ±3
√

2 + μn . (4.19)

As is by now familiar, regularity of the solution requires that the coefficients bn vanish.
We finally note that there are numerical solutions to Eqs. (4.10) that depend only on

ρ (see Fig. 3). These solutions manifest the IR and UV behavior described by (4.14) and
(2.15)–(2.16), and their existence is important for the global analysis in the next section.

5. Global Analysis

In this section, we prove that there exist solutions to Eqs. (3.6), (3.37), and (4.10) for
arbitrarily prescribed initial data in the UV which are asymptotic to the standard (x, y)-
independent solution in the IR. We first describe in general terms a standard methodology
for solving such problems, and then discuss the details for each specific case.

To begin, let M be a manifold with boundary.15 Consider a real, scalar function
ϕ ∈ C∞(M) and a nonlinear (elliptic) PDE in ϕ,

Ψ : C∞(M) → C∞(M). (5.1)

The basic issue is the solvability of the Dirichlet problem for Ψ , i.e., given boundary
data ϕ0 ∈ C∞(∂M), finding a scalar function ϕ such that

Ψ (ϕ) = 0, ϕ|∂M = ϕ0. (5.2)

In the case of a boundary at infinity, the boundary value(s) must be understood asymptot-
ically. Let M be the on-shell moduli space of solutions ϕ to Ψ (ϕ) = 0. The solvability
of the Dirichlet problem above is equivalent to the surjectivity of the boundary map

Π : M → C∞(∂M), Π(ϕ) = ϕ|∂M . (5.3)

15 The main example at hand is M = R × C, so the boundary may be an asymptotic boundary.
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Before turning to the general approach for the infinite-dimensional setting, let us con-
sider a toy model of finite-dimensional manifolds. Let π : N d

1 → N d
2 be a smooth map

between compact d-manifolds (without boundary). A standard way to prove that π is
surjective is to calculate the (mod 2) degree deg(π) ∈ Z2, defined as follows [38]. Let
q ∈ N2 be any regular value of π , i.e., the derivative Dpπ : Tp N1 → Tq N2 is surjective
for any p in the fiber Fq = π−1(q). The regular value property and compactness of N1
imply that the cardinality #Fq is finite and deg(π) ≡ #Fq (mod 2). That the degree is
independent of the choice of regular value q can be reasoned as follows. For q1 �= q2
both regular values of π , consider a generic path γ ⊂ N2 which joins them. Then the
inverse image π−1(γ ) ⊂ N1 is a collection of one-manifolds – paths or circles {σi } with
endpoints in the fibers Fq1 and Fq2 . Those σi which are open paths either join a point
in Fq1 with a point in Fq2 , or begin and end in a fixed fiber Fqi . Since all points in the
fibers are accounted for in this way, the cardinality mod 2 is independent of the choice
of regular value q. If π is not surjective, any point q /∈ im(π) is a regular value of π (by
definition) and #π−1(q) = 0. Thus it follows that if deg π �= 0, then π is surjective.
The concept of degree above can be extended to a Z-valued degree given appropriate
orientations, but we forgo such issues here.

Under certain conditions, a similar methodology can be applied for infinite-dimen-
sional (function) spaces. The Z2 degree is then known as the Smale degree [39], and is
closely related to the Leray-Schauder degree. For general background in related topics of
nonlinear functional analysis or global analysis, see [11,40,41]. The general procedure
has the following three parts.

Local theory. Prove that the on-shell moduli space M is a smooth, infinite-dimensional
(Banach or Hilbert) manifold, and that the boundary map Π in (5.3) is a smooth Fred-
holm map with Fredholm index zero. The issue of whether M is a manifold is equivalent
to the issue of “linearization stability”, i.e., at any solution ϕ of (5.2), any solution ϕ̃ to
the linearized equation DΨϕ(ϕ̃) = 0 is tangent to a curve ϕt of solutions of the nonlinear
equation (5.2). The usual method to prove that M is a smooth manifold is to use the
“regular value theorem”, (a version of the implicit function theorem): M = Ψ−1(0) is
a manifold if 0 is a regular value of Ψ , (the derivative DΨ is surjective at any point
in M).

The Fredholm property means that the linearization, or derivative map, DΠ ≡ DϕΠ
at any point ϕ ∈ M has finite-dimensional kernel and cokernel, and the range of DΠ is
closed. The Fredholm index is defined as

ind(DΠ) = dim (ker (DΠ))− codim(im(DΠ)). (5.4)

For example, self-adjoint operators have index zero. The requirement of Fredholm index
zero essentially means that DΠ is an isomorphism modulo finite-dimensional factors
of equal dimension. The manifold property of M and the Fredholm property of Π are
closely related, and usually treated concurrently. These properties depend on choosing
suitable function spaces (degrees of smoothness) in which to carry out the analysis; one
typically chooses spaces in which there are good elliptic regularity properties.

Compactness. The moduli space M and space of boundary data C∞(∂M) are non-com-
pact and infinite-dimensional. The key ingredient needed for the degree to continue to
make sense is that the boundary map (5.3) is a proper map: if K is any compact set in
the target C∞(∂M), then the inverse imageΠ−1(K) is a compact set in M. This means
that for ϕ(i) ∈ M a sequence of solutions with boundary data ϕ(i)0 , convergence of the
boundary data implies convergence of the solutions. In essence, this is the statement
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that the boundary data ϕ0 controls the bulk solution ϕ withΠ(ϕ) = ϕ0, and in practice,
this amounts to proving “a priori estimates” for ϕ in terms of ϕ0. If Π is proper, then
#Π−1(ϕ0) is finite.

Degree Calculation. If the first two steps can be carried out, then the Smale degree
degΠ ∈ Z2 is well-defined. The argument in the toy model above then works in the
same way for infinite-dimensional manifolds [39]. To prove surjectivity of Π in (5.3),
one then needs to show that

degΠ = 1. (5.5)

This is typically done by showing that there is a standard solution ϕss – e.g., the (x, y)-
independent solutions for the flows we consider here – and then showing that this solution
is the unique solution with its boundary data and that ϕss is a regular point of Π . This
establishes the surjectivity of Π .16

The local theory part of the proof is essentially linear analysis, dealing with linear
elliptic boundary value problems (possibly degenerate at the boundary). The compact-
ness issue is usually more subtle and depends crucially on the nonlinear structure of the
equations. The degree calculation is also global. For a detailed study of related but more
complicated (i.e., tensor-type) boundary value problems for Ad S Einstein metrics (with
Euclidean signature) using the method above, see [42].

A simpler version of this process, known as the “method of continuity” in elliptic
PDE, is sometimes employed to prove similar global existence (and uniqueness) results.
For instance, the solution of the Calabi conjecture uses the continuity method [43].
However, it is doubtful that this method can be used to handle the equations treated here.

5.1. Half BPS M5 brane flows. Our first application of the process described above is
to Eq. (3.6),

Δϕ + 2 + (eϕ)′′ = eϕ, (5.6)

with M = R × C, where (C, γ ) is a compact Riemann surface of genus g > 1 with
fixed metric γ of constant scalar curvature R = −2. We denote by Δ the Laplacian
with respect to γ , and a prime denotes differentiation with respect to the R-coordinate
ρ. Compared to Sect. 3 we have fixed the normalization m = 1.

The standard solution ϕss is given by (3.21) with the constant of integration set to
zero,

eϕss = 2 + eρ. (5.7)

The Dirichlet problem in question is then the solvability of (5.6) for functions ϕ satis-
fying

eϕ−ρ → ϕ0, ρ → +∞,

eϕ → 2, ρ → −∞,
(5.8)

for any ϕ0 ∈ C∞(C). These boundary conditions define the asymptotic boundary
map Π .

16 Note that the process described here establishes global existence of solutions to (5.2), but does not prove
global uniqueness (injectivity of Π ). The boundary map Π may or may not be a global diffeomorphism.
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Local theory. Consider the differential operator

Ψ (ϕ) = e−ϕss [Δϕ + 2 + (eϕ)′′ − eϕ]. (5.9)

The moduli space M of solutions of (5.6) satisfying boundary conditions (5.8) is given
byΨ−1(0). We show that the linearization L ≡ DΨ is surjective at any solution ϕ ∈ M.
The regular value theorem then implies that M is a smooth manifold.

The regular value theorem requires working in Banach (or Hilbert) spaces, although
with a more technical setup one could work in Fréchet spaces such as C∞. As in
Sect. 3.1.2, we define ζ = e−ρ/2, and solutions ϕ of (5.6) with C∞ boundary value
ϕ0 have an asymptotic expansion at ρ → +∞ of the following form (cf. [44,45] for
proofs of the existence of the expansion),

e−ϕss eϕ ≈ ϕ0 + ϕ1ζ + ϕ2ζ
2 + ϕ3ζ

3 + ϕ4�(log ζ )ζ 4 + ϕ4ζ
4 + · · · . (5.10)

This is a polyhomogeneous expansion, in powers of ζ and log ζ , with a log term appear-
ing at fourth order. For the moment, we work below that order, and define ϕ ∈ C̃3,α(M)
if eϕ−ϕss is a C3,α smooth function of (ζ, x, y), for (x, y) coordinates on C and (say)
ρ > −1. For ρ < 1, set ζ = eρ/2 = e−|ρ|/2 and require that ϕ is a C3,α function of
(ζ, x, y) with eϕ → 2 as ρ → −∞. Here C3,α is the Hölder function space with mod-
ulus α ∈ (0, 1). These function spaces are used since they are well-behaved under the
action of elliptic operators. We denote by T C̃3,α(M) the corresponding tangent space.

If ϕ̃ is a variation of ϕ, then eϕ−ϕss +εϕ̃ = eϕ−ϕss (1 + εϕ̃ + · · · ), so that ϕ̃ has the
expansion

ϕ̃ ≈ ϕ̃0 + ϕ̃1ζ + ϕ̃2ζ
2 + ϕ̃3ζ

3 + ϕ̃4�(log ζ )ζ 4 + ϕ̃4ζ
4 + · · · . (5.11)

As in Sect. 3.1.1, there is also an asymptotic expansion at ρ → −∞ with decay rates
determined by the eigenvalues of the Laplacian Δ. The leading order decay falls off as
eρ , so in particular ϕ̃0 = 0 at ρ → −∞.

The linearization L ≡ DΨϕ at a solution ϕ is

L : T C̃3,α(M) → T C̃1,α(M),

L(ϕ̃) = e−ϕss [Δϕ̃ + eϕϕ̃′′ + 2(eϕ)′ϕ̃′ − (Δϕ + 2)ϕ̃].
(5.12)

Then M ⊂ C̃3,α(M) is a manifold if L is surjective at any ϕ ∈ M, i.e., the equation

L(ϕ̃) = ξ, (5.13)

can be solved for arbitrary ξ ∈ T C̃1,α with ϕ̃ ∈ T C̃3,α .
To prove this, we first show that the operator

L0 : T C̃3,α
0 (M) → T C̃1,α(M) (5.14)

is a Fredholm linear map, where the subscript denotes boundary ϕ̃0 = 0 at ρ → ±∞.
In the UV, (5.12) has the asymptotic form

L(ϕ̃) ≈ ζ 2Δϕ̃ + 1
4ϕ0(ζ

2 ¨̃ϕ − 3ζ ˙̃ϕ)− ζ 2(Δϕ + 2)ϕ̃, (5.15)

where a dot denotes differentiation with respect to ζ . This is a so-called “totally degen-
erate” elliptic operator (cf. [46]). The associated “indicial operator” is the ODE obtained
by dropping (x, y)-dependent and lower order terms, and is given by 1

4ϕ0(ζ
2 ¨̃ϕ − 3ζ ˙̃ϕ).
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The indicial roots are then zero and four; these are the exponents k such that ϕ̃ = ζ k

solves ζ 2 ¨̃ϕ − 3ζ ˙̃ϕ = 0. Standard theory for such elliptic operators (cf. [44–46]) gives
the Fredholm property of L in (5.15).

Similarly, at the IR end ρ → −∞, setting ζ = e−|ρ|/2 and imposing the boundary
condition eϕ → 2, the operator L has the form

L(ϕ̃) ≈ 2Δϕ̃ + (ζ 2 ¨̃ϕ + ζ ˙̃ϕ)− 4ϕ̃. (5.16)

This operator is “totally characteristic”, with indicial roots ±2; equivalently, this is a
Laplace-type operator on a cylinder R×C. Again, standard Fredholm theory applies for
this cylindrical end (cf. [47,45]). This gives the Fredholm property for L0 in (5.14) on
either end [ρ0,+∞) or (−∞, ρ0] with, say, standard fixed Dirichlet data ϕ|ρ=ρ0 = 0 on
the surface Cρ0 = {ρ0} × C. Taking ρ0 → −∞ implies the Fredholm property for the
full operator L0.

A simple computation shows that the linearization L0,ss at the standard solution ϕss
is self-adjoint, with respect to the weight e2ϕss . Thus the Fredholm index of L0,ss is zero.
This holds then for all linearizations L0 in (5.14), by invariance of the Fredholm index
under deformation.

The arguments above prove that with zero boundary values for ϕ̃, (5.13) can be solved
for ξ in a space of finite codimension. Now let the boundary values ϕ̃0 in (5.11) range
over all of C3,α(C). We claim that (5.13) is then solvable for any ξ . To see this, consider
the following integration by parts:

∫

C(−ρ,ρ)
e2ϕss 〈L(ϕ̃),� 〉 =

∫

C(−ρ,ρ)
e2ϕss 〈ϕ̃, L∗(�)〉 +

∫

Cρ
e2ϕss B(ϕ̃,�), (5.17)

where C(−ρ,ρ) = (−ρ, ρ)×C, and L∗ is the adjoint operator (with respect to the weight
e2ϕss ) given by17

L∗(�) = e−ϕssΔ� + e−2ϕss (eϕ+ϕss�)′′ − 2e−2ϕss ((eϕ)′eϕss�)′ − e−ϕss (Δϕ + 2)�.

(5.18)

The boundary term B(ϕ̃,�) is a first order differential operator on ϕ̃, � . Now if L in
(5.13) is not surjective, then there exists � which is L2-orthogonal to imL , and hence
the left-hand side of (5.17) vanishes, for all choices of ϕ̃. Since ϕ̃ is arbitrary, this implies

L∗(�) = 0, (5.19)

and moreover, letting ρ → +∞,

ζ 4� → 0 as ρ → +∞, (5.20)

for ζ as in (5.10). The operator L∗ is elliptic, and (5.20) implies that both Dirichlet and
Neumann boundary data, i.e., the full Cauchy data, for� vanish at ρ → +∞. All terms
in the formal expansion (5.11) for� vanish, cf. the discussion below. In such situations,
a standard unique continuation theorem for scalar elliptic PDE (cf. [48]) implies that
� = 0, and hence L is in fact surjective.

This proves that the moduli space M ⊂ C̃3,α(M) is a smooth Banach manifold.
Clearly,

T M = ker (L) . (5.21)

17 It is easily checked that L = L∗ at ϕ = ϕss .
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Also DΠ(ϕ̃) = ϕ̃0, where L(ϕ̃) = 0 and with ϕ̃0 as in (5.11). The fact that the boundary
map Π is also Fredholm follows by standard linearity from the Fredholm property of
L in (5.14). Briefly, (5.14) implies that one can solve L(ϕ̃) = ξ , for arbitrary ξ in a
space Ξ of finite codimension, with boundary value ϕ̃0 = 0 at ρ → +∞. Choose now
an arbitrary boundary value ϕ̃0 and extend ϕ̃0 to a smooth function ϕ̃m

0 on M . Then
L(ϕ̃m

0 ) = g, for some function g, and up to a finite indeterminacy, g ∈ Ξ . For such
g ∈ Ξ , one may solve L(ϕ̃) = g with ϕ̃0 = 0. Then ξ = ϕ̃m

0 − ϕ̃ solves L(ξ) = 0, with
boundary value ϕ̃0. This shows that DΠ has finite-dimensional cokernel. The proof that
the range of DΠ is closed follows from elliptic regularity results. It also follows from
the fact that ind(L0) = 0 that ind(DΠ) = 0.

Using the boundary regularity results of [44,45] for the existence of the expansion
(5.10), it follows from the analysis above that the space M∞ of solutions which have
smooth polyhomogeneous C∞ expansions is a smooth Fréchet manifold, withΠ a Fred-
holm map to C∞(C). Thus, solutions ϕ̃ to L(ϕ̃) = 0 with Dirichlet boundary value ϕ̃0
in C∞(C) have the expansion (5.11). The coefficients ϕ̃0, ϕ̃4 are the “formally unde-
termined coefficients” (Dirichlet and Neumann boundary data), corresponding formally
to “source” and “vev” perturbations. All other coefficients are determined inductively
from these two. The same holds at the nonlinear level in the expansion (5.10).

Although the Dirichlet and Neumann terms ϕ̃0 and ϕ̃4 above are formally undeter-
mined, one is determined globally by the other via the Dirichlet-to-Neumann map (or
its inverse). Thus, specifying ϕ̃0 at ρ → +∞ together with the prescription ϕ̃ → 0 at
ρ → −∞ gives (generally) a unique solution to the linearized problem L(ϕ̃) = 0 with
this boundary data. The resulting solution ϕ̃ has an asymptotic expansion (5.11) (when
ϕ̃0 is C∞) and so the ϕ̃4 term is (globally) determined by ϕ̃0. Again, the same holds at
the nonlinear level.

Compactness. The main point in proving compactness is to derive the existence of (a
priori) bounds on the maximum and minimum of a solution ϕ in terms of bounds on its
boundary value ϕ0 at ρ → +∞, i.e., to show that ϕ is controlled by the boundary value
ϕ0. To obtain a lower bound, for instance, note that the evaluation of (5.6) at any interior
minimum point of ϕ implies that eϕ > 2. Since eϕ ≥ 2 at ρ → ±∞, it follows that

eϕ > 2 (5.22)

holds everywhere on M . Hence ϕ is uniformly bounded below.
To obtain an a priori upper bound, multiply (5.6) by an arbitrary function b = b(ρ).

Then

Δ(b ϕ) + b(eϕ)′′ = b(eϕ − 2). (5.23)

Now choose b so that

b + b′′ − 2 (b
′)2
b = 0. (5.24)

For such b, (5.23) can be rewritten as

Δ(b ϕ) + (b(eϕ − 2))′′ − 2(log b)′(b(eϕ − 2))′ = 0. (5.25)

At an interior maximum of b(eϕ − 2), the last term vanishes while the middle term is
negative. Since b = b(ρ), a maximum of b(eϕ − 2) occurs only at a maximum of ϕ on
Cρ for some ρ, so the first term is negative as well. Thus, by the maximum principle,
there are no interior maxima of b(eϕ−2). Exactly the same discussion holds for minima
in place of maxima.
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Now there are several solutions of (5.24). First, let

b = (cosh ρ)−1. (5.26)

Then b ∼ e−ρ at ρ → +∞, so that b(eϕ − 2) → ϕ0 as ρ → +∞. Also b → 0 at
ρ → −∞, so b(eϕ − 2) → 0 as ρ → −∞. It then follows from the above that

0 < b(eϕ − 2) ≤ max ϕ0, (5.27)

on all of M . This is the main a priori estimate. The boundary data ϕ0 controls the point-
wise size (L∞ norm) of any solution ϕ asymptotic to ϕ0. Using the asymptotic expansion
(3.39) for ρ → −∞ and the test function b = e−ρ in place of (5.26), a similar argument
shows that (5.27) may be improved to

min ϕ0 < e−ρ(eϕ − 2) < max ϕ0. (5.28)

Now suppose {ϕ(i)} is a sequence of solutions of (5.6) with a fixed boundary value
ϕ0 at ρ → +∞. By standard regularity theory for elliptic PDE, the sequence {ϕ(i)} is
compact (has convergent subsequences) if and only if it is bounded in L∞ [45,49,50].
This is given by (5.27) or (5.28). The same remarks hold if ϕ0 is replaced by a compact
family ϕ(i)0 → ϕ0. This establishes that the boundary map Π is proper.

Degree calculation. We now prove that the standard solution ϕss is the unique solution
with boundary value ϕ0 = 1, and moreover that this solution is a regular point of the
boundary mapΠ , i.e., the linearization DΠ is an isomorphism at ϕss . This implies that

deg Π = 1, (5.29)

and hence Π is surjective.
To see uniqueness of ϕss , first note that a simple computation shows the functions

b(c) = (cosh(ρ − c))−1 (5.30)

to satisfy (5.24), for any constant c. Thus, the discussion after (5.25) implies that the
same maximum principle holds for b(c)(eϕ − 2). Since b(c)(eϕ − 2) → 0 at ρ → −∞,
it follows that the maximum of b(c)(eϕ − 2) occurs at +∞, so

0 ≤ eϕ − 2

cosh(ρ − c)
≤ 2ec, (5.31)

on M , for all c. Taking c → −∞ then implies that globally

eϕ ≤ 2 + eρ = eϕss . (5.32)

On the other hand, integrating (5.6) over the level sets Cρ of ρ, and defining

A ≡
∫

Cρ
eϕ, (5.33)

one finds that 2 + A′′ = A, which is solved by A = 2 + c1eρ + c2e−ρ . As in (3.25),
the asymptotics at ρ → −∞ imply that c2 = 0, while the asymptotics at ρ → +∞ fix
c1 = ϕ0 = 1. Combining this with (5.32), it follows that

ϕ = ϕss , (5.34)

that is, the standard solution ϕss is the unique solution with ϕ0 = 1.
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To show that the standard solution is a regular point of the boundary map, consider
the linearization Lss of Ψ at ϕ = ϕss , given by

Lss(ϕ̃) = DΨϕss (ϕ̃) = e−ϕss [Δϕ̃ + eϕss ϕ̃′′ + 2(eϕss )′ϕ̃′ − 2ϕ̃]. (5.35)

Then ϕ̃ is in the kernel of DΠ at this point if and only if

Lss(ϕ̃) = Δϕ̃ + eϕss ϕ̃′′ + 2(eϕss )′ϕ̃′ − 2ϕ̃ = 0, (5.36)

with ϕ̃ → 0 at ρ → ±∞. It follows immediately from the maximum principle applied
to (5.36) that ϕ̃ = 0 on M . Thus kerDΠ = 0. Since the index of DΠ equals zero, DΠ
is an isomorphism. In particular ϕss is a regular point of Π and thus (5.29) follows.

Finally, note that it is not being claimed that kerDΠ = 0 at all solutions ϕ; it remains
unknown if DΠ is everywhere an isomorphism, i.e., whether Π is a diffeomorphism.
This is due to the fact that the factor (Δϕ + 2) of ϕ̃ in (5.12) does not have a definite sign
in general; its sign may change when the variation of ϕ over Cρ is large. This prohibits
the use of a maximum principle typically used to prove uniqueness of solutions.

5.2. Quarter BPS M5 brane flows. Consider now Eq. (3.37) with the normalization
m = 1:

Δϕ + 2 + (eϕ)′′ = 3
2 eϕ + eϕ( 1

2 (ϕ
′)2 − ϕ′). (5.37)

Here the standard solution ϕss is the one which depends only on ρ, with asymptotics

eϕss−ρ → 1, ρ → +∞,

ϕss → log 4
3 , ρ → −∞,

(5.38)

see Fig. 2.18 The same strategy which was employed above can be applied to the Dirichlet
problem for Eq. (5.37).

Local theory. The analysis of the local theory is exactly the same as before and so we will
be very brief. The analogous nonlinear operator Ψ in this setting has the linearization

L(ϕ̃) = e−ϕss [Δϕ̃ + eϕϕ̃′′ + 2(eϕ)′ϕ̃′ − eϕ(ϕ′ − 1)ϕ̃′ − (2 +Δϕ)ϕ̃]. (5.39)

This has exactly the same structure as the linearized operator of Sect. 5.1; the indicial
operator at the UV end is the same, with indicial roots zero and four, and the analysis
carries over to give the same manifold structure and Fredholm results.

Compactness. The standard minimum principle for Eq. (5.37) implies that ϕ has no
interior minima, and

eϕ ≥ 4
3 . (5.40)

The main issue is then to obtain an upper bound on ϕ in terms of the Dirichlet boundary
value ϕ0 at ρ → +∞.

Multiplying (5.37) by b = b(ρ) and carrying out the same manipulations as before,
with b a solution to (5.24), leads to

Δ(b ϕ) + (b(eϕ − 2))′′ − 2(log b)′(b(eϕ − 2))′ = b
2 eϕ(ϕ′ − 1)2 ≥ 0. (5.41)

18 A proof of the existence of ϕss can be given using the techniques below, but we forgo this here.
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At a maximum of b(eϕ −2), the left-hand side is non-positive, while the right-hand side
is positive. Choosing b = (cosh ρ)−1, it follows as before that

eϕ − 2 ≤ 2(max ϕ0) cosh ρ. (5.42)

This gives the main a priori upper bound on ϕ in terms of ϕ0. Via the same elliptic
boundary regularity results, this suffices to establish the properness of the boundary
map.

Degree calculation. From (5.39), the linearization L at the standard solution ϕss is given
by

Lss(ϕ̃) = e−ϕss [Δϕ̃ + eϕϕ̃′′ + 2(eϕ)′ϕ̃′ − eϕ(ϕ′ − 1)ϕ̃′ − 2ϕ̃]. (5.43)

Then ϕ̃ ∈ kerDΠ if and only if Lss(ϕ̃) = 0 and ϕ̃ → 0 at ρ → ±∞. Just as before,
the maximum principle implies that the only solution of Lss(ϕ̃) = 0 which vanishes at
±∞ is ϕ̃ = 0. Thus DΠ is an isomorphism, so ϕss is a regular point of Π .

We claim that ϕss is the only solution of (5.37) asymptotic to ϕ0 = 1 at ρ → +∞
and to log(4/3) at ρ → −∞. To prove this claim, let ϕ be any solution of (5.37) with
these asymptotics. Then ϕ − ϕss → 0 at both asymptotic boundaries. Evaluating (5.37)
on ϕ and ϕss and subtracting gives

Δ(ϕ − ϕss) + (eϕss )′′w + 2(eϕss )′w′ + eϕssw′′

= 3
2 eϕssw + eϕss ( 1

2 (ϕ
′)2 − ϕ′)w + 1

2 eϕss (ϕ′ − ϕss
′)(ϕ′ + ϕss

′ − 2), (5.44)

where w = eϕ−ϕss − 1, and w → 0 as ρ → ±∞. Consider the evaluation of (5.44) at
an interior maximum of w. On the first line, the first and fourth terms are non-positive
and the third vanishes. On the second line, the third term vanishes. This implies the
inequality

(eϕss )′′w ≥ 3
2 eϕssw + eϕss ( 1

2 (ϕss
′)2 − ϕss

′)w, (5.45)

where we have utilized the equality of ϕ′ and ϕss
′ at a maximum point. Using Eq. (5.37)

for the standard solution, this can be rewritten as

0 ≥ 2w. (5.46)

At an internal maximum,wmust take a value greater than its zero boundary value, so this
is a contradiction. Thus there is no interior maximum of ϕ − ϕss , so ϕ ≤ ϕss . The same
argument, evaluating at an interior minimum, gives ϕ ≥ ϕss . Thus, ϕ = ϕss , proving
uniqueness. Hence again deg Π = 1 and the boundary map Π is surjective.

5.3. Quarter BPS D3 brane flows. We now address Eq. (4.10),

9Δϕ + (eϕ)′′ = 18(eϕ − 1) + 1
2 eϕ(ϕ′)2. (5.47)

The standard solution ϕss is the solution depending only on ρ, with asymptotics

ϕss → 0, ρ → −∞,

eϕss−6ρ → 1, ρ → +∞,
(5.48)
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see Fig. 3 (again a proof of the existence of ϕss can be given using the techniques below).
We provide a brief discussion of the process described at the outset of this section as it
applies to Eq. (5.47).

Local theory. The local theory/manifold result is essentially the same as before. Calcu-
lating as in (5.39), the linearization of Ψ in this setting is

L(ϕ̃) = e−ϕss
(
9Δϕ̃ + eϕϕ̃′′ + (eϕ)′ϕ̃′ − (18ϕ̃ + 9Δϕ)

)
. (5.49)

Setting ζ = e−3ρ , solutions of Ψ (ϕ) = 0 and of L(ϕ̃) = 0 have polyhomogenous
expansions in powers of ζ and log ζ at ρ → +∞.

The indicial operator is 9ζ 2 ¨̃ϕ − 9ζ ˙̃ϕ with indicial roots zero and two. Thus, the
expansion of eϕ−ϕss is polyhomogenous in ζ , with Dirichlet and Neumann data (source
and vev) appearing at ζ -exponent zero and two, respectively. Again, everything in
Sect. 5.1 carries over to give the same manifold structure and Fredholm results.
Compactness. The same minimum principle as in Sect. 5.2 gives

eϕ ≥ 1. (5.50)

To obtain an upper bound depending only on the boundary value ϕ0, the same argu-
ment as following (5.23) can be applied. Multiplying (5.47) by b = b(ρ) and setting
w = eϕ − 1 gives

9Δ(b ϕ) + (bw)′′ − 2(log b)′(bw)′ = w(b′′ + 18b − 2 (b
′)2
b ) + 1

2 beϕ(ϕ′)2. (5.51)

At a critical point of log bw one finds

9Δ(b ϕ) + (bw)′′ − 2(log b)′(bw)′ = w(b′′ + 18b − 3
2
(b′)2

b − 1
2
(b′)2

b e−ϕ), (5.52)

where at an interior maximum of bw, the left-hand side of (5.52) is negative.
We now choose b(ρ) to solve

b′′ + 18b − 3
2
(b′)2

b − 1
2
(b′)2

b e−ϕint = 0, (5.53)

where eϕint (ρ) denotes the average value of eϕ on Cρ . Asymptotically, this equation
assumes the form

b′′ + 18b − 3
2
(b′)2

b = 0, (5.54)

which admits as a solution

b = (cosh 3ρ)−2. (5.55)

A solution b of (5.53) exists which has the same asymptotics as cosh−2(3ρ).
At a maximum of ϕ on Cρ , the value of ϕ is greater than the average value on the

Riemann surface, which by integrating (5.47) over C can be shown to be equal to the
value of ϕss at ρ,19

eϕ ≥ 1

Area(C)
∫

Cρ
eϕ = eϕint . (5.56)

19 Strictly, this may require a shift of the radial coordinate as it appears in the solution ϕss . This does not
affect the proof.
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Hence, at such a maximum of ϕ on Cρ ,

9Δ(b ϕ) + (bw)′′ − 2(log b)′(bw)′ > 0. (5.57)

It follows that b ϕ has no interior maxima, and hence

0 < b(eϕ − 1) ≤ max ϕ0. (5.58)

This is the main a priori upper bound on eϕ . Again, by elliptic boundary regularity, this
suffices to prove properness of the boundary map Π .

Degree calculation. The linearization Lss of Ψ at the standard solution is given by

Lss(ϕ̃) = e−ϕss
(
9Δϕ̃ + eϕss ϕ̃′′ + (eϕss )′ϕ̃′ − 18ϕ̃

)
. (5.59)

Again, the standard maximum principle argument shows that the only solution ϕ̃ to
Lss(ϕ̃) = 0 with ϕ̃ → 0 at ρ → ±∞ is ϕ̃ = 0. Thus the Lss is an isomorphism, so ϕss
is a regular point of Π .

The proof of uniqueness is also the same as in the previous cases. Let ϕ be any solu-
tion of (5.47) with the same asymptotics as the standard solution. Subtracting the two
equations for ϕ and ϕss , as in (5.44), yields

9Δ(ϕ − ϕss) + (eϕss )′′w + 2(eϕss )′w′ + eϕssw′′

= 18eϕssw + 1
2 eϕss (ϕ′)2w + 1

2 eϕss (ϕ′ + ϕss
′)(ϕ′ − ϕss

′). (5.60)

Carrying out exactly the same arguments as appear following (5.44) leads to the bound
0 ≥ 18w at any interior maximum point. Since w = eϕ−ϕss − 1 > 0 at such a point,
this is a contradiction. Hence,

ϕ ≤ ϕss (5.61)

holds everywhere. The same argument applied to any interior minimum point gives
ϕ ≥ ϕss everywhere. Hence, ϕ = ϕss , proving uniqueness. So again, deg Π = 1 and
the boundary map is surjective.

5.4. Area monotonicity. As we saw in the degree computation of Sect. 5.1, the geo-
metric flow equations simplify nicely upon integration over C. In this section we take
advantage of this simplification to prove that the area of the Riemann surface with metric

ds2
C = y−2eϕ(dx2 + dy2), (5.62)

decreases monotonically along the fixed point flows of Sect. 5. We solve the cases of 1/2
BPS flows explicitly, while the 1/4 BPS flows require a slightly more formal treatment.

Integrating the N = 2 M5 brane flow (3.6) over C produces the ODE

A′′ − A − 4πχ(C) = 0, (5.63)

where A(ρ) = ∫
Cρ exp(ϕ) is the area of the Riemann surface with respect to (5.62) and

χ(C) is its Euler character. The solution is given by

A(ρ) = c1eρ + c2e−ρ + 4πχ(C). (5.64)
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The solution with the correct asymptotics to interpolate from the six-dimensional fixed
point in the UV to the four-dimensional fixed point in the IR has c2 = 0. Thus the area
decreases monotonically until it reaches the fixed value at ρ → −∞.

The N = (4, 4) D3 flow (4.5) integrates to the following ODE:

A′′ − 4A′ − 36πχ(C) = 0. (5.65)

This admits the exact solution

A(ρ) = c1 + c2e4ρ − 9πχ(C)ρ. (5.66)

The area is again monotonically decreasing with ρ. As is expected, this solution does not
approach a fixed point in the IR, but rather becomes singular at finite ρ.20 Nevertheless,
from the field theoretic point of view this is a physical flow.

The flows preserving four supercharges do not simplify as nicely when integrated,
and we can treat them simultaneously. Both flows, (3.37), (4.10), are of the form

(eϕ)′′ + k0Δϕ + k1(e
ϕ)′ − k2(e

ϕ) + k3 = k4eϕ(ϕ′)2, (5.67)

with k1 ≥ 0 and k2−4 > 0. Integrating over C again eliminates the Laplacian term, but
now there is a more complicated inhomogeneity in the differential equation for the area,

A′′ + k1A′ − k2A − 2πk3χ(C) = I [ϕ], (5.68)

where I [ϕ] is the integrated version of the right-hand side of Eq. (5.67) and is non-neg-
ative (vanishing only when ϕ′ = 0 on C). The proof of Sect. 5 establishes the existence
of uniformizing flows which solve (5.67) and for which A diverges exponentially at
ρ → +∞ and approaches a fixed value at ρ → −∞. Here we prove that A(ρ) decreases
monotonically along these flows from the UV to the IR.

Note that for such a flow to be non-monotonic, it would have to either experience
a local maximum at a finite value of ρ or contain an inflection point at which A′ < 0.
To see that neither of these scenarios can arise, define Â = A + 2πk3

k2
χ(C), in terms of

which Eq. (5.68) simplifies to

Â′′ + k1Â′ − k2Â = I [ϕ]. (5.69)

Note that the lower bounds on eϕ derived in Sects. 5.2 and 5.3 imply that Â > 0 for all
ρ. The same requirements for monotonicity apply to the new function Â. For Â′ = 0,
the positivity of I [ϕ] and k2 imply that Â′′ > 0, so this can only be a local minimum.
Furthermore, at an inflection point of Â, one finds that Â′ > 0, so this does not affect
monotonicity. Thus A is a monotonic function of ρ for the 1/4 BPS uniformizing flows
as well.

This monotonicity has a similar flavor to the monotonic behavior of the c-function
used to prove the holographic c-theorem in [51,52], and it is tempting to identify A(ρ)
with a (d − 2)-dimensional c-function. Indeed, such a measure of (d − 2)-dimensional
degrees of freedom would diverge in the UV where the theory is actually d-dimensional.
It would be very interesting to derive more general monotonicity results for a function
that captures the evolution of the number of degrees of freedom for flows between
theories of different spacetime dimension.

20 When the function A is interpreted as the area of C, A → 0 is a singular limit. It should be noted that
the supergravity metric function g(ρ, x, y) itself becomes singular along this flow, cf., [10].
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6. Conclusions

We have initiated a program to use holographic BPS flows for supersymmetric wrapped
branes to derive and study novel geometric flows. By extending the analysis of [10]
to accommodate the presence of an arbitrary metric on the wrapped Riemann surface,
we have derived a new class of elliptic equations which control the BPS flow of the
conformal factor of said metric. These flow equations are particularly nice, and we have
proved that they admit solutions which interpolate from any asymptotic metric in the
“UV” to the constant negative curvature representative in the same conformal class in
the “IR”. In particular, this verifies a crucial conjecture from the work of [6].

In analogy with Wilsonian RG flow, it would be desirable to have holographic geo-
metric flow equations formulated as initial value flows without the complicating factor
of potentially unphysical boundary conditions. It may be that by a careful application
of the tools of holographic renormalization, along with input from the field theory, one
can find such a formulation for the restriction of the flows studied here to physical initial
values. Alternatively, by approaching the problem using equations of motion instead
of BPS equations, a more direct version of a holographic Wilsonian RG flow may be
attainable [53,54].

An obvious extension of our program is to the case of twisted compactification on
supersymmetric cycles of dimension greater than two. In particular, the solutions of
[55,56] should be generalizable in the same way. It could be of great interest to derive a
geometric flow on three-manifolds from M-theory in this way. The Ricci flow famously
encounters singularities at finite time in many cases (cf., [57]). One expects that a geo-
metric flow emerging from M-theory will either avoid or provide a physical prescription
for dealing with any finite-time singularities. This is currently under investigation in [5].

Finally, there are a number of natural generalizations of the present work within the
two-dimensional setting. We have restricted our attention to backgrounds which preserve
at least four supercharges because of certain technical simplifications which take place.
In particular, this meant that we ignored the third natural class of wrapped branes – M2
branes – because for M2 branes, flows with eight or four supersymmetries do not find
an Ad S2 fixed point in the IR [58]. There is also a (0, 2)-supersymmetric twist of the
D3 brane theory which we have neglected with an Ad S3 fixed point solution which was
described in [59]. It may be interesting to study these less-supersymmetric compactif-
ications and to understand whether the corresponding BPS flows display qualitatively
different behavior. Furthermore, by carrying out the BPS flow analysis in ten or eleven
dimensions, it should be possible to incorporate punctures.
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A. Derivation of Flow Equations

In this appendix we provide a detailed account of the derivation of the flow equations
for the 1/2 BPS twist of the M5 brane theory, (3.4). We also provide a less thorough
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summary of the analogous derivation for the 1/4 BPS M5 brane background (3.35) and
for the 1/2 and 1/4 BPS D3 brane backgrounds (4.4), (4.9). Several equations from the
main text are repeated here to keep the derivation relatively self-contained.

A.1. M5 brane flows. The starting point is the Ansatz for the seven-dimensional gauged
supergravity background (2.7), (2.8),

ds2 = e2 f (−dt2 + dz2
1 + dz2

2 + dz2
3) + e2hdr2 + y−2e2g(dx2 + dy2),

A(i) = A(i)x dx + A(i)y dy + A(i)r dr, λi = λi (x, y, r), i = 1, 2.
(A.1)

As written, (x, y) are coordinates on the upper half-plane, and to obtain a background
with a compact C factor we impose a quotient by a Fuchsian subgroup Γ ⊂ P SL(2,R)
which acts on the upper half-plane as

z = x + iy → z̃ = az + b

cz + d
, ad − bc �= 0. (A.2)

Accordingly, the functions f , g, and h in (A.1) must be invariant under the action ofΓ .21

The supersymmetry variations for the relevant fermionic fields are given by [24,25],

δψμ =
[
∇μ + m(A(1)μ Γ

12 + A(2)μ Γ
34) + m

4 e−4(λ1+λ2)γμ + 1
2γμγ

ν∂ν(λ1 + λ2)
]
ε

+ 1
2γ

ν
(

e−2λ1 F (1)μν Γ
12 + e−2λ2 F (2)μν Γ

34
)
ε,

δχ(1) =
[

m
4 (e

2λ1 − e−4(λ1+λ2))− 1
4γ

μ∂μ(3λ1 + 2λ2)− 1
8γ

μνe−2λ1 F (1)μν Γ
12

]
ε,

δχ(2) =
[

m
4 (e

2λ2 − e−4(λ1+λ2))− 1
4γ

μ∂μ(2λ1 + 3λ2)− 1
8γ

μνe−2λ2 F (2)μν Γ
34

]
ε,

(A.3)

where the spin-1/2 fields χ(1) and χ(2) are certain linear combinations of the sixteen
spin-1/2 fields of the maximal theory – see [25] for more details.

We wish to find equations for the functions in (A.1) which guarantee the existence
of spinors for which the above supersymmetry variations vanish. For a given twist of
the boundary theory, we know that the generators of the preserved supersymmetries
should have fixed transformation properties under the symmetries of the supergravity
background. Specifically, consider the decomposition of a spinor according to

γx̂ ŷε = iαε, Γ 12ε = iβ1ε, Γ 34ε = iβ2ε, γr̂ε = ηε, (A.4)

with α, β1, β2, η = ±1.22 Then the discrete parameters α, β1,2 are identified as the
charges of the corresponding supersymmetry generators under U (1)C , U (1)12, and
U (1)34 as defined in Sect. 2.1.1. This implies that for the supercharges preserved by the

21 The constant negative curvature metric on the upper half-plane is given by y−2(dx2 +dy2) and is invariant
under all of P SL(2,R). The conformal factor eg should then be independently invariant under Γ .

22 The symplectic Majorana spinor ε is in the 4 of SO(5)c , Γ i are SO(5)c gamma matrices and γμ are
seven-dimensional spacetime gamma matrices. We use the standard notation γμ1...μp = γ[μ1 . . . γμp ] and
suppress all spinor indices. Hats indicate flat indices.
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1/2 BPS twist, α = β1, while for those preserved by the 1/4 BPS twist, α = β1 = β2.
After fixing these relations, there are still four (resp. two) choices of signs that can
be assigned in (A.4). However, each choice gives rise to the same equations for the
background fields in the appropriate Ansatz.

In addition, the supersymmetries preserved by the flow should be those which restrict
to Poincaré supersymmetries on the boundary at r → 0+ (as opposed to superconformal
symmetries). This fixes η = 1 [60]. Lastly, four-dimensional Poincaré invariance of the
backgrounds implies that the spinors are constant in the R

1,3 directions,

∂tε = ∂zi ε = 0. (A.5)

We note that in contrast to the solutions studied in [10], the present analysis allows for
∂xε �= 0 and ∂yε �= 0.

The conditions for the supersymmetry variations (A.3) to vanish are of two types. Van-
ishing of the variation of the dilatinos and the (t, z1, z2, z3) components of the gravitino
impose explicit conditions on the background fields. Alternatively, vanishing variations
of the (r, x, y) components of the gravitino imply that the spinor ε solves a certain sys-
tem of PDEs. Integrability of said system of PDEs imposes additional constraints on the
background fields.

A.1.1. N = 2 M5 branes. For the 1/2 BPS twisted M5 brane background, we impose
the additional simplification

2λ1 + 3λ2 = 0, A(2) = 0, (A.6)

and define

λ ≡ λ2, A ≡ A(1). (A.7)

To derive the BPS equations it is sufficient to take α = β1 = 1 in (A.4). Then the dilatino
variations lead to the equations

∂rλ + 2m
5 eh−3λ − 2m

5 eh+2λ + 2
5 y2eh−2g+3λFxy = 0,

(∂x + i∂y)λ + 2
5 e−h+3λ(Fyr − i Fxr ) = 0,

(A.8)

while vanishing of the gravitino variations (the (t, z1, z2, z3) components all produce
the same condition) requires

∂r
(

f − 1
2λ

)
+ m

2 eh+2λ = 0,

(∂x + i∂y)
(

f − 1
2λ

) = 0.
(A.9)

The differential equations for the spinor ε implied by the vanishing variations of the
(r, x, y) components of the gravitino are given by
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∂rε − 1
4

[
∂rλ + meh+2λ + i 4m Ar

]
ε

− 1
2 yeh−g

[
(∂x + i∂y)

(
h − 1

2λ
) − e−h+3λ(Fyr − i Fxr )

]
γ6ε = 0,

∂xε + 1
2

[
i
(
∂y g − y−1

)
+ i 4m Ax − 1

2 (∂x + i∂y)λ + ie−h+3λFxr

]
ε

+ 1
2 y−1eg−h

[
∂r

(
g − 1

2λ
)

+ m
2 eh+2λ − y2eh+3λ−2g Fxy

]
γ6ε = 0,

∂yε + i
2

[
−∂x g + 4m Ay + 1

2 (∂x + i∂y)λ + e−h+3λFyr

]
ε

+ i
2 y−1eg−h

[
∂r

(
g − 1

2λ
)

+ m
2 eh+2λ − y2eh+3λ−2g Fxy

]
γ6ε = 0.

(A.10)

In order for these equations to admit solutions, they should be integrable and
P SL(2,R) covariant.23 Integrability imposes the following constraints on the back-
ground geometry and fields:

∂r (g + 2λ) + meh−3λ − m
2 eh+2λ = 0,

∂r∂y(g + 2λ) + 2m Fr x = 0,

∂r∂x (g + 2λ)− 2m Fr y = 0,

(∂2
x + ∂2

y )(g + 2λ) + 1
y2 − 2m Fxy = 0.

(A.11)

These equations can be dramatically simplified and cast into a form which looks intrinsic
to the geometry of the Riemann surface C. In particular, Eqs. (A.11) fix Fr x , Fr y , and
Fxy in terms of λ, f , h, and g. Then (A.9) imply that

f (r, x, y)− 1
2λ(r, x, y) = F(r), h(r, x, y) + 2λ(r, x, y) = H(r), (A.12)

with F(r) and H(r) being real functions of the radial variable only which satisfy

F ′(r) = −m
2 exp H(r). (A.13)

This means that F(r) is a monotonic function of r and we can define a new radial variable
ρ according to

ρ ≡ 2
m F(r), ∂ρ = −e−H(r)∂r . (A.14)

In terms of the new radial variable, the full solution to the BPS equations is determined
by a solution to the following flow equations for the conformal factor g on C and the
scalar λ,

∂ρλ = − 2m
5 + 2m

5 e−5λ + 1
5m eλ−2g (1 +Δ(g + 2λ)) ,

∂ρg = 3m
10 + m

5 e−5λ − 2
5m eλ−2g (1 +Δ(g + 2λ)) ,

(A.15)

23 It is actually not quite necessary that the equations be covariant under P SL(2,R). In principle, the flow
could be covariant only with respect to the appropriate subgroup Γ ⊂ P SL(2,R), or worse, the complex
structure moduli of C could vary along the flow. Fortunately, things turn out in the nicest possible way and
everything is covariant.
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where we have introduced the Laplace operator on C with respect to the metric of constant
scalar curvature R = −2,

Δ ≡ y2(∂2
x + ∂2

y ). (A.16)

While this is a vast improvement over (A.15), these flow equations are still rather com-
plicated and can be simplified even further. After defining

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 4λ(ρ, x, y), (A.17)

we find that

e−5λ = 1
2m (m + ∂ρϕ), (A.18)

where ϕ(ρ, x, y) is determined by the following second-order equation:

∂2
ρeϕ +Δϕ + 2 − m2eϕ = 0 (A.19)

A.1.2. N = 1 M5 branes. The 1/4 BPS twist of the M5 brane theory leads to a different
truncation of the seven-dimensional supergravity fields,

A ≡ A(1) = A(2), φ ≡ −2λ1 = −2λ2, (A.20)

and we consider a supersymmetry variation with α = β1 = β2 = 1 in (A.4). An anal-
ysis similar to the one performed for M5 branes with N = 2 supersymmetry yields the
equations for a supersymmetric background,

∂rφ + 2m
5 eh−φ − 2m

5 eh+4φ + 2
5 y2eh+φ−2g Fxy = 0, (A.21)

(∂x + i∂y)φ − 2
5 e−h+φ(Fr y − i Fr x ) = 0, (A.22)

∂r ( f − φ) + m
2 eh+4φ = 0, (A.23)

∂x ( f − φ) = ∂y ( f − φ) = 0, (A.24)

∂r (g + 4φ) + 2meh−φ − 3m
2 eh+4φ = 0, (A.25)

∂r∂y(g + 4φ) + 4m Fr x = 0, (A.26)

∂r∂x (g + 4φ)− 4m Fr y = 0, (A.27)

(∂2
x + ∂2

y )(g + 4φ) + y−2 − 4m Fxy = 0. (A.28)

Equations (A.21) and (A.22) come from the dilatino variation, (A.23) and (A.24) from
the (t, z1, z2, z3) components of the gravitino variation, and (A.25)–(A.28) are the inte-
grability conditions for the PDEs which ε must solve. These equations can again be
reformulated as a flow intrinsic to C. The result is the following system of equations in
terms of a new radial variable,

∂ρφ = − 2m
5 + 2m

5 e−5φ + 1
10m e−3φ−2g (1 +Δ(g + 4φ)) ,

∂ρg = m
10 + 2m

5 e−5φ − 2
5m e−3φ−2g (1 +Δ(g + 4φ)) .

(A.29)



466 M. T. Anderson, C. Beem, N. Bobev, L. Rastelli

The new radial variable can be defined by using (A.23) and (A.24) to show that

f (r, x, y)− φ(r, x, y) = F(r), h(r, x, y) + 4φ(r, x, y) = H(r), (A.30)

in terms of which ρ is defined by

ρ ≡ 2
m F(r), ∂ρ = −e−H(r)∂r . (A.31)

One can rewrite the system of two coupled PDEs (A.29) as a single nonlinear second-
order PDE. Defining

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 8φ(ρ, x, y), (A.32)

it follows that

e−5φ = 1
4m

(
3m + ∂ρϕ

)
, (A.33)

where ϕ(ρ, x, y) solves the following elliptic PDE:

Δϕ + ∂2
ρeϕ − eϕ

(
1
2 (∂ρϕ)

2 − m∂ρϕ
)

+ 2 − 3m2

2 eϕ = 0 (A.34)

A.2. D3 brane flows. The Ansatz for the twisted D3 brane solutions is analogous to the
one for the twisted M5 solutions. The five-dimensional metric, the three Abelian gauge
fields and two real scalars take the form

ds2 = e2 f (−dt2 + dz2) + e2hdr2 + y−2e2g(dx2 + dy2),

AI = AI
x dx + AI

ydy + AI
r dr, I = 1, 2, 3,

φ1(x, y, r), φ2(x, y, r).

(A.35)

The coordinates (x, y) are again coordinates on the upper half-plane with a quotient by a
discrete subgroup of P SL(2,R) imposed. All background fields must be invariant under
the action of this discrete group. The supersymmetry transformations of the fermionic
fields of the supergravity are (see [37] and Appendix A of [10] for more details),

δψμ =
[
∇μ + i

8 X I (γ
νρ
μ − 4δνμγ

ρ)F I
νρ + 1

2 X I VIγμ − 3i
2 VI AI

μ

]
ε,

δχ( j) =
[

3
8 (∂φ j X I )F

I
μνγ

μν + 3i
2 VI ∂φ j X I − i

4δ jk∂μφkγ
μ
]
ε, j = 1, 2,

(A.36)

where we have defined

X1 ≡ e
− φ1√

6
− φ2√

2 , X2 ≡ e
− φ1√

6
+ φ2√

2 , X3 ≡ e
2φ1√

6 ,

VI = 1
3 , X I = 1

3 (X
I )−1.

(A.37)

Since we are using an N = 2 truncation of the full gauged supergravity, only a
fraction of the maximal possible supersymmetry is visible. The spinors in (A.36) cor-
respond to the ( 1

2 ,
1
2 ,

1
2 ) component of the decomposition (2.4). In the language of this
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truncation the desired solutions preserve two real supercharges. In order for these to be
the supersymmetries preserved by the twisted field theory, the spinors should obey the
following constraints24

γr̂ε = ε, γx̂ ŷε = −iε, ∂tε = ∂zi ε = 0. (A.38)

Note that the radius of Ad S5 is fixed to one and that we allow ∂xε �= 0 and ∂yε �= 0.

A.2.1. N = (4, 4) D3 branes. For BPS solutions that preserve half of the maximum
supersymmetry one should set

φ2 = 0, α ≡ 1√
6
φ1, A(1) = A(2) = 0, A ≡ A(3). (A.39)

With this simplification the analysis of the supersymmetry constraint is very similar to
the case of N = 2 M5 branes. First we impose the vanishing of the dilatino variations
in (A.36), which leads to the following differential equations

∂rα + 2
3 eh−α − 2

3 eh+2α − 1
3 y2eh−2α−2g Fxy = 0,

∂xα + 1
3 e−h−2αFr y = 0, ∂yα − 1

3 e−h−2αFr x = 0.
(A.40)

The vanishing of the (t, z) components of the gravitino variation in (A.36), implies

∂r
(

f + 1
2α

)
+ eh−α = 0,

∂x
(

f + 1
2α

) = ∂y
(

f + 1
2α

) = 0.
(A.41)

As in the case of N = 2 M5 branes, the (r, x, y) components of the gravitino variation
lead to PDEs which should be satisfied by the spinor ε. Integrability of this system of
equations requires that the following constraints be satisfied by the background func-
tions,

∂r (g − α) + eh+2α = 0,

∂r∂y(g − α) + Fr x = 0,

∂r∂x (g − α)− Fr y = 0,

(∂2
x + ∂2

y )(g − α) + y−2 − Fxy = 0.

(A.42)

One can simplify the system of BPS equations and reduce it to a system of two coupled
PDEs intrinsic to C,

∂ρα = 2 − 2e3α − e−α−2g(1 +Δ(g − α)),

∂ρg = 2 + e3α − e−α−2g(1 +Δ(g − α)).
(A.43)

To derive this system we have utilized a new radial variable

ρ ≡ 1
3 F(r), ∂ρ = −3 e−H(r)∂r , (A.44)

24 γμ are the five-dimensional gamma matrices and we suppress spinor indices.
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where we have used

f (r, x, y) + 1
2α(r, x, y) = F(r), h(r, x, y)− α(r, x, y) = H(r). (A.45)

One can find a further simplification of Eqs. (A.43) and after defining

ϕ(ρ, x, y) ≡ 2g(ρ, x, y)− 2α(ρ, x, y), (A.46)

reduce them to a single PDE that governs the flow:

∂2
ρeϕ − 6∂ρeϕ + 9Δϕ + 18 = 0 (A.47)

A.2.2. N = (2, 2)D3 branes. To get a BPS flow that preserves a quarter of the maximal
supersymmetry we set

φ2 = 0, α ≡ 1√
6
φ1, A ≡ A(1) = A(2), A(3) = 0. (A.48)

The dilatino variation yields

∂rα + 2
3 eh−α − 2

3 eh+2α + 1
3 y2eh+α−2g Fxy = 0,

∂xα − 1
3 e−h+αFr y = 0, ∂yα + 1

3 e−h+αFr x = 0.
(A.49)

The (t, z) components of the gravitino variation lead to

∂r ( f − α) + eh+2α = 0,

∂x ( f − α) = ∂y ( f − α) = 0.
(A.50)

The integrability conditions for the PDEs for the spinor ε coming from the (r, x, y)
components of the gravitino variation reduce to the following differential equations for
the background fields

∂r (g + 2α) + 2eh−α − eh+2α = 0,

∂r∂y(g + 2α) + 2Fr x = 0,

∂r∂x (g + 2α)− 2Fr y = 0,

(∂2
x + ∂2

y )(g + 2α) + y−2 − 2Fxy = 0.

(A.51)

Using these BPS equations one can define a new radial variable in a similar way as for
the other flows above. First use

f (r, x, y)− α(r, x, y) = F(r), h(r, x, y) + 2α(r, x, y) = H(r), (A.52)

and then define the radial variable ρ implicitly

ρ ≡ 1
3 F(r), ∂ρ = −3 e−H(r)∂r . (A.53)

With this new variable at hand one can readily derive a system of coupled PDEs intrinsic
to C,

∂ρα = −2 + 2e−3α + 1
2 e−α−2g(1 +Δ(g + 2α)),

∂ρg = 1 + 2e−3α − e−α−2g(1 +Δ(g + 2α)).
(A.54)
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The second-order elliptic PDE that governs the flow can be derived in terms of the new
function

ϕ(ρ, x, y) ≡ 2g(ρ, x, y) + 4α(ρ, x, y). (A.55)

It takes the following form:

∂2
ρeϕ − 1

2 eϕ(∂ρϕ)
2 + 9Δϕ + 18 − 18eϕ = 0 (A.56)

B. Covariant Flow Equations

The flow equations derived in this paper can be rewritten as covariant geometric flows.
For all of the flows, the function ϕ can be interpreted as the conformal factor of an
auxiliary metric on the Riemann surface C,

d̃s
2
C = y−2eϕ(dx2 + dy2) = eΦ(dx2 + dy2). (B.1)

This metric coincides with the restriction of the gauged supergravity metric in (2.7) and
(2.13) to C in the UV, and in the IR up to a scale factor. Denoting the metric components
on this Riemann surface by gi j , the Ricci tensor is

Ri j = − 1
2 (∂

2
x + ∂2

y )Φ δi j . (B.2)

The four second-order PDEs (A.19), (A.34), (A.47), and (A.56) can be rewritten as
follows:

M5 branes with 1/2 BPS twist

∂2
ρgi j − 2Ri j − m2gi j = 0. (B.3)

M5 branes with 1/4 BPS twist

∂2
ρgi j − 2Ri j − 3m2

2 gi j − 1
4∂ρgk

i ∂ρgkj + m∂ρgi j = 0. (B.4)

D3 branes with 1/2 BPS twist

∂2
ρgi j − 18Ri j − 6∂ρgi j = 0. (B.5)

D3 branes with 1/4 BPS twist

∂2
ρgi j − 18Ri j − 18gi j − 1

4∂ρgk
i ∂ρgkj = 0. (B.6)

These covariant flow equations could form the starting point for a new, “holographic”
proof of the uniformization theorem. Furthermore, it would be interesting to study these
flow equations on higher-dimensional manifolds, and to compare the naïve general-
ization to the flows for three-manifolds which may be derived from an appropriate
generalization of [55,56] (see [5]).
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