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Abstract: We consider the Landau Hamiltonian (i.e. the 2D Schrödinger operator with
constant magnetic field) perturbed by an electric potential V which decays sufficiently
fast at infinity. The spectrum of the perturbed Hamiltonian consists of clusters of eigen-
values which accumulate to the Landau levels. Applying a suitable version of the anti-
Wick quantization, we investigate the asymptotic distribution of the eigenvalues within a
given cluster as the number of the cluster tends to infinity. We obtain an explicit descrip-
tion of the asymptotic density of the eigenvalues in terms of the Radon transform of the
perturbation potential V .

1. Introduction and Main Results

1.1. Introduction. Let
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be the self-adjoint operator defined initially on C∞
0 (R

2), and then closed in L2(R2). The
operator H0 is the Hamiltonian of a non-relativistic spinless 2D quantum particle subject
to a constant magnetic field of strength B > 0. It is often called the Landau Hamiltonian
in honor of the author of the pioneering paper [23]. The spectrum of H0 consists of
the eigenvalues (called Landau levels) λq = B(2q + 1), q ∈ Z+ = 0, 1, 2, . . .. The
multiplicity of each of these eigenvalues is infinite, and so

σ(H0) = σess(H0) =
∞⋃

q=0

{λq}, λq = B(2q + 1).

Next, let V ∈ C(R2; R) satisfy the estimate

|V (x)| ≤ C〈x〉−ρ, x ∈ R
2, ρ > 1, (1.1)
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where 〈x〉 := (1 + |x|2)1/2. We also denote by V the operator of multiplication by V
in L2(R2). Consider the perturbed Landau Hamiltonian H = H0 + V . The spectrum
of H consists of eigenvalue clusters around the Landau levels. More precisely, we have
σess(H) = σess(H0) and so all eigenvalues of H in R\σess(H) have finite multiplicities
and can accumulate only to the Landau levels λq . Our first preliminary result says that
the eigenvalue clusters shrink towards the Landau levels as O(q−1/2) for q → ∞:

Proposition 1.1. Assume (1.1); then there exists C1 > 0 such that for all q ∈ Z+ one
has

σ(H) ∩ [λq − B, λq + B] ⊂ (λq − C1λ
−1/2
q , λq + C1λ

−1/2
q ). (1.2)

The proof is given in Sect. 4.

Remark 1.2. (i) Obviously, the above estimate O(λ−1/2
q ) for the width of the q th

cluster can also be written as O(q−1/2); however, as we will see, λq provides a
more natural scale than q.

(ii) Simple considerations (see Remark 3.2 in [22]) show that the estimate O(λ−1/2
q )

cannot be improved: the eigenvalue clusters have width ≥ cλ−1/2
q with c > 0

(unless V ≡ 0). This will also follow from the main result of this paper.
(iii) Proposition 1.1 was proven in [22] for V ∈ C∞

0 (R
2). The proof we give here not

only covers the case of more general potentials V , but also is based on different
ideas from those of [22].

1.2. Main result. Our purpose is to describe the asymptotic density of eigenvalues in
the q th cluster as q → ∞. Let 1O denote the characteristic function of the set O ⊂ R.
For q ∈ Z+ and O ∈ B(R), the Borel σ -algebra on R, set

μq(O) := rank 1
λ

−1/2
q O+λq

(H).

The measure μq is not finite, but if O is bounded, and its closure does not contain the
origin, we haveμq(O) < ∞ for q sufficiently large. In particular, for any fixed bounded
interval [α, β] ⊂ R\{0} we have

μq([α, β]) =
∑

λq +αλ−1/2
q ≤λ≤λq +βλ−1/2

q

dim Ker(H − λI ) < ∞ (1.3)

for all sufficiently large q. Below we study the asymptotics of the counting measure
μq as q → ∞. In order to describe the limiting measure, we need to fix some nota-
tion. We denote by T ⊂ R

2 the circle of radius one, centered at the origin. The circle
T is endowed with the usual Lebesgue measure normalized so that

∫
T

dω = 2π . For
ω = (ω1, ω2) ∈ T, we denote ω⊥ = (−ω2, ω1). We set

Ṽ (ω, b) = 1

2π

∫ ∞

−∞
V (bω + tω⊥)dt, ω ∈ T, b ∈ R.

Thus, Ṽ is (up to a factor) the Radon transform of V . In order to make our notation
more concise, we find convenient to introduce the Banach space Xρ of all potentials
V ∈ C(R2,R) that satisfy (1.1) equipped with the norm

‖V ‖Xρ = sup
x∈R2

〈x〉ρ |V (x)|. (1.4)
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Using this notation, by an elementary calculation one finds

|Ṽ (ω, b)| ≤ Cρ‖V ‖Xρ 〈b〉1−ρ, b ∈ R. (1.5)

Define the measure μ by

μ(O) = 1

2π

∣∣∣Ṽ −1(B−1O)
∣∣∣ , O ∈ B(R),

where | · | stands for the Lebesgue measure (on T × R). Evidently, for any interval
[α, β] ⊂ R\{0} we have μ([α, β]) < ∞. Moreover, estimate (1.5) implies that μ has a
bounded support in R, and∫

R

|t |
dμ(t) < ∞, ∀
 > 1/(ρ − 1). (1.6)

Our main result is:

Theorem 1.3. Let V ∈ C(R2) be a continuous function that satisfies (1.1). Then, for
any function � ∈ C∞

0 (R\{0}), we have

lim
q→∞ λ

−1/2
q

∫
R

�(λ)dμq(λ) =
∫

R

�(λ)dμ(λ). (1.7)

Remark 1.4. (i) The asymptotics (1.7) can be more explicitly written as

lim
q→∞ λ

−1/2
q Tr �(

√
λq(H − λq)) = 1

2π

∫
T

∫
R

�(BṼ (ω, b)) db dω. (1.8)

(ii) By standard approximation arguments, the asymptotics (1.7) can be extended to a
wider class of continuous functions �. Further, it follows from Theorem 1.3 that if
[α, β] ⊂ R\{0}, and μ({α}) = μ({β}) = 0, then

lim
q→∞ λ

−1/2
q μq([α, β]) = μ([α, β]).

However, the assumption μ({α}) = μ({β}) = 0 does not automatically hold, i.e.
in general the measure μ may have atoms. Indeed, a description of the class of
all Radon transforms Ṽ (ω, b) of functions V ∈ C∞

0 (R
2) is well known, see e.g.

[19, Thm. 2.10]. According to this description, if a ∈ C∞
0 (R) is an even real-val-

ued function, then Ṽ (ω, b) := a(b), b ∈ R, ω ∈ T, is a Radon transform in this
class. Of course, if the derivative a′(b) vanishes on some open interval, then the
corresponding measure μ has an atom.

(iii) If V ∈ C∞
0 (R

2), one can prove (see [22]) that the trace in the l.h.s. of (1.8) has a

complete asymptotic expansion in inverse powers of λ1/2
q , but the formulae for the

higher order coefficients of this expansion are not known.

1.3. Method of proof. Let Pq be the orthogonal projection in L2(R2) onto the subspace
Ker (H0 − λq I ). For 
 ≥ 1, let S
 be the Schatten-von Neumann class, with the norm
‖·‖
; the usual operator norm is denoted by ‖·‖.

We first fix a natural number 
 and examine the asymptotics of the trace in the l.h.s. of
(1.8) for functions � ∈ C∞

0 (R) such that �(λ) = λ
 for small λ. We have the following
(fairly standard) technical result:
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Lemma 1.5. For any integer 
 > 1/(ρ − 1), the operators (H − λq)

1(λq−B,λq +B)(H)

and (Pq V Pq)

 belong to the trace class and

Tr{(H − λq)

1(λq−B,λq +B)(H)} = Tr(Pq V Pq)


 + o(λ−(
−1)/2
q ), q → ∞. (1.9)

The proof of this lemma is given in Subsect. 4.3. This lemma essentially reduces the
question to the study of the asymptotics of traces of (Pq V Pq)


. Our main technical result
is the following statement:

Theorem 1.6. Let V satisfy (1.1) and let B0 > 0.

(i) For some C = C(B0), one has

sup
q≥0

sup
B≥B0

λ
1/2
q B−1‖Pq V Pq‖ ≤ C‖V ‖Xρ . (1.10)

(ii) For any real 
 > 1/(ρ − 1), we have Pq V Pq ∈ S
, and for some C = C(B0, 
),
the estimate

sup
q≥0

sup
B≥B0

λ
(
−1)/(2
)
q B−1‖Pq V Pq‖
 ≤ C‖V ‖Xρ (1.11)

holds true.
(iii) For any integer 
 > 1/(ρ − 1), we have

lim
q→∞ λ

(
−1)/2
q Tr(Pq V Pq)


 = B


2π

∫
T

∫
R

Ṽ (ω, b)
 db dω. (1.12)

Although in our main Theorem 1.3 the strength B of the magnetic field is assumed to
be fixed, we make the dependence on B explicit in the estimates (1.10), (1.11), as these
estimates are of an independent interest (see e.g. [10]), and can be used in the study of
other asymptotic regimes.

The proof of Theorem 1.6 consists of two steps. In Sect. 2 we establish the unitary
equivalence of the Berezin-Toeplitz operator Pq V Pq to a certain generalized anti-Wick
pseudodifferential operator (�DO) whose symbol VB is defined explicitly below in
(2.27). Further, in Sect. 3 we study this �DO, prove appropriate estimates, and analyze
its asymptotic behavior as q → ∞.

A combination of (1.9) and (1.12) essentially yields (1.7) for a function � ∈ C∞
0 (R)

such that �(λ) = λ
 for small λ. After this, the main result follows by an application of
the Weierstrass’ approximation theorem; this argument is given in Subsect. 4.4.

Remark 1.7. In [22] the limit (1.12) was computed for 
 = 1, 2, but the result was written
in a form not suggestive of the general formula.

1.4. Semiclassical interpretation. Consider the classical Hamiltonian function

H(ξ , x) = (ξ +
1

2
By)2 + (η − 1

2
Bx)2, ξ := (ξ, η) ∈ R

2, x := (x, y) ∈ R
2,

(1.13)

in the phase space T ∗
R

2 = R
4 with the standard symplectic form. The projections onto

the configuration space of the orbits of the Hamiltonian flow of H are circles of radius√
E/B, where E > 0 is the value of the energy corresponding to the orbit. The classical
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particles move along these circles with period TB = π/B. The set of these orbits can be
parameterized by the energy E > 0 and the center c ∈ R

2 of a circle. Let us denote the
path in the configuration space corresponding to such an orbit by γ (c, E, t), t ∈ [0, TB),
and set

〈V 〉(c, E) = 1

TB

∫ TB

0
V (γ (c, E, t))dt, TB = π/B. (1.14)

For an energy E > 0, consider the set ME of all orbits with this energy. The set ME is
a smooth manifold with coordinates c ∈ R

2. It can be considered as the quotient of the
constant energy surface

�E = {(ξ , x) ∈ R
4 | H(ξ , x) = E}

with respect to the flow of H. Restricting the standard Lebesgue measure of R
4 to �E

and then taking the quotient, we obtain the measure B dc1 dc2 on ME . An elementary
calculation shows that the r.h.s. of (1.8) can be rewritten as

1

2π

∫
T

∫
R

�(BṼ (ω, b))db dω = 1

2π
lim

E→∞
1√
E

∫
R2
�(

√
E 〈V 〉(c, E)) B dc1 dc2.

(1.15)

The basis of this calculation is the fact that as E → ∞, the radius
√

E/B of the circles
representing the classical orbits tends to infinity. Thus, the classical orbits approximate
straight lines on any compact domain of the configuration space.

Given (1.15), we can rewrite the main result as

lim
q→∞

1√
λq

Tr �(
√
λq(H −λq))= 1

2π
lim

E→∞
1√
E

∫
R2
�(

√
E 〈V 〉(c, E)) B dc1 dc2.

(1.16)

This agrees with the semiclassical intuition. Formula (1.16) corresponds to the well
known “averaging principle” for systems close to integrable ones. This principle states
that a good approximation is obtained if one replaces the original perturbation by the
one which results by averaging the original perturbation along the orbits of the free
dynamics. This method is very old; quoting V. Arnold [2, Sect. 52]: “In studying the
perturbations of planets on one another, Gauss proposed to distribute the mass of each
planet around its orbit proportionally to time and to replace the attraction of each planet
by the attraction of the ring so obtained”.

1.5. Related results.

1.5.1. Asymptotics for eigenvalue clusters for manifolds with closed geodesics. In spec-
tral theory, results of this type originate from the classical work by A. Weinstein [37]
(see also [9]). Weinstein considered the operator −�M + V , where�M is the Laplace-
Beltrami operator on a compact Riemannian manifold M with periodic bicharacteristic
flow (e.g. a sphere), and V ∈ C(M; R). In this case, all eigenvalues of �M have finite
multiplicities which however grow with the eigenvalue number. Adding the perturbation
V creates clusters of eigenvalues. Weinstein proved that the asymptotic density of eigen-
values in these clusters can be described by the density function obtained by averaging V



430 A. Pushnitski, G. Raikov, C. Villegas-Blas

along the closed geodesics on M. Let us illustrate these results with the case M = S
2.

It is well known that the eigenvalues of −�S2 are λq = q(q + 1), q ∈ Z+, and their
multiplicities are dq = 2q + 1. For V ∈ C(S2; R) set

Ṽ (ω) := 1

2π

∫ 2π

0
V (Cω(s))ds, ω ∈ S

2,

where Cω(s) ∈ S
2 is the oriented great circle orthogonal to ω, and s is the arc length on

this circle. Then for each � ∈ C∞
0 (S

2; R) we have

lim
q→∞

Tr �(−�S2 + V − λq)

dq
=

∫
S2
�(Ṽ (ω))d S(ω), (1.17)

where d S is the normalized Lebesgue measure on S
2. Since S

2 can be identified with
its set of oriented geodesics G, the r.h.s. of (1.17) can be interpreted as an integral with
respect to the SO(3)–invariant normalized measure on G. This result admits extensions
to the case M = S

n with n > 2, and, more generally, to the case where M is a compact
symmetric manifold of rank 1 (see [9,37]).

In more recent works [33,35,36], the relation between the quantum Hamiltonian of
the hydrogen atom and the Laplace-Beltrami operator on the unit sphere is exploited,
and the asymptotic distribution within the eigenvalue clusters of the perturbed Hamil-
tonian hydrogen atom is investigated. The asymptotic density of eigenvalues in these
clusters was described in terms of the perturbation averaged along the trajectories of the
unperturbed dynamics (i.e. the solutions to the Kepler problem).

Among the main technical tools used in [33,35,36] which originate from [15,34], are
the Bargmann-type representations of the particular quantum Hamiltonians considered,
implemented via the so-called Segal-Bargmann transforms. In our analysis generalized
coherent states and associated anti-Wick �DOs closely related to the Bargmann repre-
sentation and the Segal-Bargmann transform appear again in a natural way (see Sect. 2),
although their role is different from the one of their counterparts in [33,35,36].

Although this paper is inspired by [33,35–37], much of our construction (see Sect. 4)
is based on the analysis of [22]. In [22] it was proven that for V ∈ C∞

0 (R
2) the trace in the

l.h.s. of (1.12) has complete asymptotic expansions in inverse powers of λ1/2
q . However,

the coefficients of this expansion have not been computed explicitly; see Remark 1.7
above.

1.5.2. Strong magnetic field asymptotics. It is useful to compare our main result with
the asymptotics as B → ∞ of the eigenvalues of H . It has been found in [26] (see also
[21]) that

lim
B→∞ B−1 Tr �(H − λq) = 1

2π

∫
R2
�(V (x))dx =

∫
R

�(t)dm(t), (1.18)

where �∈C∞
0 (R\{0}), q ∈Z+, V ∈ L p(R2), p > 1, and m(O) := 1

2π

∣∣V −1(O)
∣∣ , O ∈

B(R). Similarly to Theorem 1.3, the proof of (1.18) is based on an analogue of Theorem
1.6 (i)–(ii) (see Lemma 2.12 below), and the asymptotic relations

lim
B→∞ B−1 Tr(Pq V Pq)


 = lim
B→∞ B−1 Tr Pq V 
Pq = 1

2π

∫
R2

V (x)
dx, q ∈ Z+,

(1.19)
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with V ∈ C∞
0 (R

2) and 
 ∈ N, close in spirit to (1.12). Since Bm([α, β]) =
1

2π

∣∣∣V −1
B ([α, β])

∣∣∣ , [α, β] ⊂ R\{0}, where VB (see (2.27)) is the symbol of the gen-

eralized anti-Wick �DO to which Pq V Pq is unitarily equivalent, we find that (1.18) is
again a result of semiclassical nature. However, (1.19) implies that in the strong magnetic
field regime the main asymptotic terms of Tr(Pq V Pq)


 and Tr Pq V 
Pq coincide, and
hence in the first approximation the commutators [V, Pq ] are negligible, while (1.12)
shows that obviously this is not the case in the high energy regime considered in the
present article. Therefore, Theorem 1.3 retains “more quantum flavor” than (1.18), and
hence its proof is technically much more involved.

1.5.3. The spectral density of the scattering matrix for high energies. In the recent work
[8] inspired by this paper, D. Bulger and A. Pushnitski considered the scattering matrix
S(λ), λ > 0, for the operator pair (−� + V,−�), where � is the standard Laplacian
acting in L2(Rd), d ≥ 2, and V ∈ C(Rd; R) is an electric potential which satisfies
an estimate analogous to (1.1). Although the methods applied in [8] are different from
ours, it turned out that the asymptotics as λ → ∞ of the eigenvalue clusters for S(λ)
are written in terms of the X -ray transform of V in a manner similar to (1.7).

2. Unitary Equivalence of Berezin-Toeplitz Operators and Generalized
Anti-Wick �DOs

2.1. Outline of the section. From a methodological point of view, this section plays a
central role in the proof of Theorem 1.3. Its principal goal is to establish the unitary equiv-
alence between the Berezin-Toeplitz operators Pq V Pq , q ∈ Z+, and some generalized
anti-Wick�DOs Opaw

q (VB)whose symbol VB is defined explicitly in (2.27). This equiv-
alence is proved in Theorem 2.11 below. The �DOs Opaw

q introduced in Subsect. 2.3,
are quite similar to the classical anti-Wick operators Opaw

0 (see [4, Chap. V, Sect. 2],
[29, Sect. 24]); the only difference is that the quantization Opaw

0 is related to coher-
ent states built on the first eigenfunction ϕ0 of the harmonic oscillator (2.4), while
Opaw

q , q ∈ N, is related to coherent states built on its q th eigenfunction ϕq .
In our further analysis of the operator Opaw

q (VB) performed in Sect. 3, we also heav-
ily use the properties of the Weyl symbol of this operator. Thus, in Subsect. 2.1 – 2.2 we
introduce the Weyl quantization Opw, and in Subsect. 2.4 we briefly discuss its relation
to Opaw

q . In particular, we show that Opaw
q (s) = Opw(s ∗ �q), where s is a symbol

from an appropriate class, and 2π�q is the Wigner function associated with ϕq , defined
explicitly in (2.13). Therefore, the Berezin-Toeplitz operator Pq V Pq , q ∈ Z+, with
domain Pq L2(R2), is unitarily equivalent to Opw(VB ∗�q) (see Corollary 2.13).

2.2. Weyl �DOs . Let d ≥ 1. Denote by S(Rd) the Schwartz class, and by S ′(Rd) its
dual class.

Proposition 2.1 [20, Lem. 18.6.1]. Let s ∈ S ′(R2d). Assume that ŝ ∈ L1(R2d), where
ŝ is the Fourier transform of s, introduced explicitly in (3.1) below. Then the operator
Opw(s) defined initially as a mapping from S(Rd) into S ′(Rd) by

(
Opw(s)u

)
(x)=(2π)−d

∫
Rd

∫
Rd

s

(
x +x ′

2
, ξ

)
ei(x−x ′)·ξu(x ′)dx ′dξ, x ∈ R

d , (2.1)
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extends uniquely to an operator bounded in L2(Rd). Moreover,

‖Opw(s)‖ ≤ (2π)−d‖ŝ‖L1(R2d ). (2.2)

Some of the arguments of our proofs require estimates which are more sophisticated
than (2.2). Let �(R2d), d ≥ 1, denote the set of functions s : R

2d → C such that

‖s‖�(R2d ) := sup
{α,β∈Z

d
+ | |α|,|β|≤[ d

2 ]+1}
sup

(x,ξ)∈R2d
|∂αx ∂βξ s(x, ξ)| < ∞.

Proposition 2.2 [6, Cor. 2.5 (i)]. There exists a constant c0 such that for any s ∈
�(R2d), d ≥ 1, we have

‖Opw(s)‖ ≤ c0‖s‖�(R2d ).

Further, if s ∈ L2(R2d), then, obviously, the operator Opw(s) belongs to the Hilbert-
Schmidt class, and

‖Opw(s)‖2
2 = 1

(2π)d

∫
R2d

|s(x, ξ)|2 dx dξ. (2.3)

Next, we describe the well known metaplectic unitary equivalence of Weyl�DOs whose
symbols are mapped into each other by a linear symplectic change of the variables.

Proposition 2.3 [11, Chap. 7, Thm. A.2]. Let κ : R
2d → R

2d , d ≥ 1, be a linear
symplectic transformation, s1 ∈ �(R2d), and s2 := s1 ◦ κ . Then there exists a unitary
operator U : L2(Rd) → L2(Rd) such that

Opw(s2) = U∗Opw(s1)U.

Remark 2.4. (i) The operator U is called the metaplectic operator corresponding to
the linear symplectic transformation κ . There exists a one-to-one correspondence
between metaplectic operators and linear symplectic transformations, apart from
a constant factor of modulus 1 (see e.g. [20, Thm. 18.5.9]). Moreover, every linear
symplectic transformation κ is a composition of a finite number of elementary lin-
ear symplectic maps (see e.g. [20, Lem. 18.5.8]), and for each elementary linear
symplectic map there exists an explicit simple metaplectic operator (see e.g. the
proof of [20, Thm. 18.5.9]).

(ii) Proposition 2.3 extends to a large class of not necessarily bounded operators. In
particular, it holds for Weyl �DOs with quadratic symbols.

2.3. Generalized anti-Wick �DOs. In this subsection we introduce generalized anti-
Wick�DOs . These operators are a special case of the�DOs with contravariant symbols
whose theory has been developed in [3]. Introduce the harmonic oscillator

h := − d2

dx2 + x2, (2.4)

self-adjoint in L2(R). It is well known that the spectrum of h is purely discrete and
simple, and consists of the eigenvalues 2q + 1, q ∈ Z+, while its associated real-valued
eigenfunctions ϕq , normalized in L2(R), could be written as

ϕq(x) := Hq(x)e−x2/2

(
√
π2qq!)1/2 , x ∈ R, q ∈ Z+, (2.5)
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where

Hq(x) := (−1)qex2/2
(

d

dx
− x

)q

e−x2/2, x ∈ R, q ∈ Z+, (2.6)

are the Hermite polynomials. Introduce the generalized coherent states (see e.g. [28])

ϕq;x,ξ (y) := eiξ yϕq(y − x), y ∈ R, (x, ξ) ∈ R
2, (2.7)

so that ϕq = ϕq;0,0. Note that if f ∈ L2(R), then

‖ f ‖2
L2(R)

= (2π)−1
∫

R2
|〈 f, ϕq;x,ξ 〉|2dxdξ, (2.8)

where 〈·, ·〉 denotes the scalar product in L2(R). Introduce the orthogonal projection

pq;x,ξ := |ϕq;x,ξ 〉〈ϕq;x,ξ | : L2(R) → L2(R), q ∈ Z+, (x, ξ) ∈ R
2. (2.9)

Let s ∈ L1(R2) + L∞(R2). Define

Opaw
q (s) := (2π)−1

∫
R2

s(x, ξ)pq;x,ξdxdξ

as the operator generated in L2(R) by the bounded sesquilinear form

Fq,s[ f, g] := (2π)−1
∫

R2
s(x, ξ)〈 f, ϕq;x,ξ 〉〈g, ϕq;x,ξ 〉dxdξ, f, g ∈ L2(R). (2.10)

We will call Opaw
q (s) the operator with anti-Wick symbol of order q equal to s. We

introduce these operators only in the case of dimension d = 1 since this is sufficient for
our purposes; of course, their definition extends easily to any dimension d ≥ 1.

Note that the quantization Opaw
q with q = 0 coincides with the standard anti-Wick

one (see e.g. [29, Sect. 24]). In the following lemma we summarize some elementary
basic properties of generalized anti-Wick �DOs which follow immediately from the
corresponding properties of general contravariant �DOs .

Lemma 2.5 [29, Sect. 24], [4, Sect. 5.3].

(i) Let s ∈ L∞(R2). Then we have

‖Opaw
q (s)‖ ≤ ‖s‖L∞(R2). (2.11)

(ii) Let s ∈ L
(R2) with 
 ∈ [1,∞). Then we have

‖Opaw
q (s)‖

 ≤ (2π)−1‖s‖
L
(R2)

. (2.12)

2.4. Relation between generalized anti-Wick and Weyl �DOs. For q ∈ Z+ set

�q(x, ξ) = (−1)q

π
Lq(2(x

2 + ξ2))e−(x2+ξ2), (x, ξ) ∈ R
2, (2.13)

where

Lq(t) := 1

q!et dq(tqe−t )

dtq
=

q∑
k=0

(
q

k

)
(−t)k

k! , t ∈ R, (2.14)

are the Laguerre polynomials.
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Lemma 2.6. For a fixed (x, ξ) ∈ R
2 we have pq;x,ξ = Opw(ςq;x,ξ ), where pq;x,ξ is the

orthogonal projection defined in (2.9), and

ςq;x,ξ (x ′, ξ ′) := 2π�q(x
′ − x, ξ ′ − ξ), (x ′, ξ ′) ∈ R

2. (2.15)

Proof. Using the well-known relation between the Schwartz kernel of a linear operator
and its Weyl symbol (see e.g [20, Eq. (18.5.4)”]), we find that the Weyl symbol ςq;x,ξ
of the projection pq;x,ξ satisfies

ςq;x,ξ (x ′, ξ ′) =
∫

R

e−ivξ ′
ϕq;x,ξ (x ′ + v/2)ϕq;x,ξ (x ′ − v/2)dv. (2.16)

By (2.5) and (2.7),
∫

R

e−ivξ ′
ϕq;x,ξ (x ′ + v/2)ϕq;x,ξ (x ′ − v/2)dv

= 1√
π2qq!

∫
R

eiv(ξ−ξ ′)Hq

(
x ′ 1

2
v−x

)
Hq

(
x ′− 1

2
v−x

)

×e−(x ′+ 1
2 v−x)2/2e−(x ′− 1

2 v−x)2/2dv. (2.17)

Changing the variable of integration v = 2(t + i(ξ − ξ ′)), and bearing in mind the parity
of the Hermite polynomial Hq , we get

∫
R

eiv(ξ−ξ ′)Hq(x
′+ 1

2
v−x)Hq(x

′− 1

2
v−x)e−(x ′+1

2 v−x)2/2e−(x ′−1
2 v−x)2/2dv

= 2(−1)qe−(x ′−x)2−(ξ ′−ξ)2
∫

R

e−t2
Hq(t−(x−x ′−i(ξ−ξ ′)))

×Hq(t +x−x ′+i(ξ−ξ ′))dt. (2.18)

Employing the relation between the Laguerre polynomials and the integrals of Hermite
polynomials (see e.g. [14, Eq. 7.377]), we obtain

∫
R

e−t2
Hq(t − (x − x ′ − i(ξ − ξ ′)))Hq(t + x − x ′ + i(ξ − ξ ′))dt

= √
π2qq!Lq(2((x

′ − x)2 + (ξ − ξ ′)2)). (2.19)

Putting together (2.16)–(2.19), we obtain (2.15). ��
Remark 2.7. Let ψ ∈ L2(R) and ‖ψ‖L2(R) = 1. Then the Weyl symbol of the rank-one
orthogonal projection |ψ〉〈ψ |, is called the Wigner function associated with ψ (see e.g.
[24, Def. 2.2]). Thus, Lemma 2.6 tells us, in particular, that 2π�q is the Wigner function
associated with ϕq .

Lemma 2.6 immediately entails the following

Corollary 2.8. Let s ∈ L1(R2) + L∞(R2). Then we have

Opaw
q (s) = Opw(�q ∗ s). (2.20)
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2.5. Metaplectic mapping of the operators H0, Pq and V . For x = (x, y) ∈ R
2, ξ =

(ξ, η) ∈ R
2, set

�B(x, ξ) :=
(

1√
B
(x − η),

1√
B
(ξ − y),

√
B

2
(ξ + y),−

√
B

2
(η + x)

)
. (2.21)

Evidently, the transformation �B is linear and symplectic. Define the unitary operator
UB : L2(R2) → L2(R2) by

(UBu)(x, y) :=
√

B

2π

∫
R2

eiφB (x,y;x ′,y′)u(x ′, y′)dx ′dy′, (2.22)

where

φB(x, y; x ′, y′) := B
xy

2
+ B1/2(xy′ − yx ′)− x ′y′.

Writing �B as a product of elementary linear symplectic transformations (see e.g.
[20, Lem. 18.5.8]), we can easily check that UB is a metaplectic operator corresponding
to �B . Note that

H ◦ �B(x, ξ) = B(ξ2 + x2), x = (x, y) ∈ R
2, ξ = (ξ, η) ∈ R

2,

where H is the Weyl symbol of the operator H0 defined in (1.13). On the other hand,
B(ξ2 + x2) is the Weyl symbol of the operator B(h ⊗ Iy) self-adjoint in L2(R2

x,y),
where h is the harmonic oscillator (2.4), acting in L2(Rx ), and Iy is the identity oper-
ator in L2(Ry). Denote by pq = |ϕq〉〈ϕq | = pq;0,0 the orthogonal projection onto
Ker (h − 2q − 1), q ∈ Z+. Applying Proposition 2.3 with κ = �B , and bearing in mind
Remark 2.4 (ii), we obtain the following

Corollary 2.9. (i) We have

U∗
B H0UB = B

(
h ⊗ Iy

)
, (2.23)

U∗
B PqUB = pq ⊗ Iy, q ∈ Z+. (2.24)

(ii) If V ∈ �(R2), then

U∗
B V UB = Opw(VB), (2.25)

where

VB(x, y; ξ, η) := V (B−1/2(x − η), B−1/2(ξ − y)), (x, y; ξ, η) ∈ R
4. (2.26)

Remark 2.10. Various versions of the symplectic transformation�B in (2.21) and the cor-
responding metaplectic operator UB in (2.22) have been used in the spectral theory of
the perturbations of the Landau Hamiltonian (see e.g. [18]). Of course, the close relation
between the Landau Hamiltonian H0 and the harmonic oscillator h is well-known since
the seminal work [23] where the basic spectral properties of H0 were first described.

2.6. Unitary equivalence of Pq V Pq and Opaw
q (VB). Set

VB(x, y) = V (−B−1/2 y,−B−1/2x), (x, y) ∈ R
2. (2.27)

Theorem 2.11. For any V ∈ L1(R2) + L∞(R2) and q ∈ Z+, we have

U∗
B Pq V PqUB = pq ⊗ Opaw

q (VB). (2.28)
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For the proof of Theorem 2.11 we need some well known estimates for Berezin-Toeplitz
operators:

Lemma 2.12 [25, Lem. 5.1], [13, Lem. 3.1]. Let V ∈ L
(R2), 
 ∈ [1,∞). Then
Pq V Pq ∈ S
(L2(R2)), and ‖Pq V Pq‖

 ≤ B

2π ‖V ‖

L
(R2)

, q ∈ Z+. Moreover, if

V ∈ L1(R2), then

Tr Pq V Pq = B

2π

∫
R2

V (x)dx, q ∈ Z+. (2.29)

Proof of Theorem 2.11. Assume at first V ∈ C∞
0 (R

2). Then, by (2.24), (2.25), and
(2.26),

U∗
B Pq V PqUB = (pq ⊗ Iy)Opw(VB)(pq ⊗ Iy). (2.30)

Let u ∈ S(R2). Set

uq(y) :=
∫

R2
u(x, y)ϕq(x)dx .

Then we have

〈U∗
B Pq V PqUBu, u〉L2(R2) = 〈Opw(VB)(ϕq ⊗ uq), (ϕq ⊗ uq)〉L2(R2)

= 1

(2π)2

∫
R6

VB((y1 + y2)/2 − ξ, η − (x1 + x2)/2) ei[(x1−x2)ξ+(y1−y2)η]

×ϕq(x1)uq(y1) ϕq(x2)uq(y2) dx1dx2 dy1dy2 dξdη

= 1

(2π)2

∫
R5

VB((y1 + y2)/2 − y′, η − η′) ei(y1−y2)η

×
(∫

R

ϕq(η
′ + v/2)ϕq(η

′ − v/2)eivy′
dv

)
uq(y1)uq(y2)dη

′dηdy′dy1dy2

= 1

2π

∫
R5
�q(y

′, η′)VB((y1 + y2)/2 − y′, η − η′)

×ei(y1−y2)ηuq(y1)uq(y2)dy1dy2dy′dηdη′

= 〈Opw(VB ∗�q)uq , uq〉L2(R) = 〈Opaw
q (VB)uq , uq〉L2(R)

= 〈(pq ⊗ Opaw
q (VB))u, u〉L2(R2). (2.31)

To obtain the first identity, we have utilized Corollary 2.9. To establish the second iden-
tity, we have used (2.1), (2.26), and (2.27). To get the third identity, we have changed the
variables x1 = η′ + v/2, x2 = η′ − v/2, ξ = y′. To obtain the fourth identity, we have
used (2.15)–(2.16) with ξ ′ = y′, x ′ = η′, and x = 0, ξ = 0, taking into account that
�q(η

′,−y′) = �q(y′, η′). To deduce the fifth identity, we have applied (2.1), bearing
in mind the symmetry of the convolution�q ∗ VB = VB ∗�q , and for the sixth identity,
we have applied (2.20) with s = VB . Finally, the last identity is obvious. Now, (2.31)
entails (2.28) in the case V ∈ C∞

0 (R
2).

Further, let V ∈ L1(R2), and pick a sequence {Vm} of functions Vm ∈ C∞
0 (R

2) such
that Vm → V in L1(R2) as m → ∞. Then by Lemma 2.12 and the unitarity of UB , we
have

lim
m→∞ ‖U∗

B Pq Vm PqUB − U∗
B Pq V PqUB‖1 = 0.
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Similarly, it follows from (2.12) with 
 = 1 and (2.20) that

lim
m→∞ ‖pq ⊗ Opaw

q (Vm,B)− pq ⊗ Opaw
q (VB)‖1 = 0.

Hence, (2.28) is valid for V ∈ L1(R2).
Finally, let now V = V1 + V2 with V1 ∈ L1(R2) and V2 ∈ L∞(R2). Denote by

χR the characteristic function of a disk of radius R > 0 centered at the origin. Then
V1 + χR V2 ∈ L1(R2). Evidently,

w-lim
R→∞ U∗

B Pq(V1 + χR V2)PqUB = U∗
B Pq V PqUB,

while (2.10) entails

w-lim
R→∞ pq ⊗ Opaw

q ((V1 + χR V2)B) = pq ⊗ Opaw
q (VB),

which yields (2.28) in the general case. ��
Combining Theorem 2.11 and Corollary 2.8, we obtain the following

Corollary 2.13. Let V ∈ L1(R2) + L∞(R2) and q ∈ Z+. Then we have

U∗
B Pq V PqUB = pq ⊗ Opw(VB ∗�q). (2.32)

Remark 2.14. To the authors’ best knowledge, the unitary equivalence between the Toep-
litz operators Pq V Pq , q ∈ Z+, and �DO with generalized anti-Wick symbols in the
context of the spectral theory of perturbations of the Landau Hamiltonian, was first
shown in [25]. Related heuristic arguments can be found in [7,28]. In the case q = 0 this
equivalence is closely related to the Segal-Bargmann transform in appropriate holomor-
phic spaces which, in one form or another, plays an important role in the semiclassical
analysis performed in [33–36]. Let us comment in more detail on this relation. The
Hilbert space P0 L2(R2) coincides with the classical Bargmann space

{
f ∈ L2(R2) | f (x) = e−B|x|2/4g(x),

∂g

∂x
+ i
∂g

∂y
= 0, x = (x, y) ∈ R

2
}
.

Then the Segal-Bargmann transform T0 : L2(R) → P0 L2(R2) is a unitary operator
with integral kernel

T0 := 1√
2

(
B

π

)3/4

e−B((x+iy+2t)2−2t2+|x|2)/4, x = (x, y) ∈ R
2, t ∈ R,

(see [24, Lem. 3.1]). Fix q ∈ Z+. Denote by Mq : L2(R) → (pq ⊗ Iy)L2(R2) the
unitary operator which maps u ∈ L2(R) into B1/4ϕq(x)u(B1/2 y), (x, y) ∈ R

2, and by
R : L2(R2) → L2(R2) the unitary operator generated by the rotation by angle π/2,
i.e. (Ru)(x, y) = u(y,−x), (x, y) ∈ R

2; note that [R, Pq ] = 0. Then we have

T0 = RUB M0.

From this point of view the operators Tq := RUB Mq , q ∈ N, could be called generalized
Segal-Bargmann transforms.
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3. Analysis of O pw(VB ∗ �q) and Proof of Theorem 1.6

3.1. Reduction of Opw(VB ∗ �q) to Opw(VB ∗ δ√2q+1). In the sequel we will use the
following notations. For k > 0, let δk be the δ-function in R

2 supported on the circle of
radius k centered at the origin. More precisely, the distribution δk ∈ S ′(R2) is defined
by

δk(ϕ) := 1

2π

∫ 2π

0
ϕ(k cos θ, k sin θ)dθ, ϕ ∈ S(R2).

Next, we denote by f̂ the Fourier transform of the distribution f ∈ S ′(Rd), unitary in
L2(Rd), i.e.

f̂ (ξ) := (2π)−d/2
∫

Rd
e−i x ·ξ f (x)dx, ξ ∈ R

d , (3.1)

for f ∈ S(Rd).

Lemma 3.1. Let V ∈ C∞
0 (R

2) and B0 > 0. Then for some constant C = C(B0) one
has

sup
q>0

sup
B≥B0

λ
3/4
q B−1‖Opw(VB ∗�q)− Opw(VB ∗ δ√2q+1)‖

≤ C
∫

R2
(|ζ |5/2 + |ζ |6)|V̂ (ζ )|dζ, (3.2)

sup
q>0

sup
B≥B0

λ
3/4
q B−1‖Opw(VB ∗�q)− Opw(VB ∗ δ√2q+1)‖2

≤ C

(∫
R2
(|ζ |5 + |ζ |12)|V̂ (ζ )|2dζ

)1/2

. (3.3)

The intuition behind this lemma is the convergence of �q to δ√2q+1 in an appropriate
sense as q → ∞. We also note the similarity between the definition of VB ∗ δk and the
“classical” formula (1.14). For brevity, we introduce the short-hand notations

sq := VB ∗�q , q ∈ Z+, tk := VB ∗ δk, k ∈ (0,∞). (3.4)

Proof. First we represent the symbols sq , tk in a form convenient for our purposes. For
sq we have

sq(z) =
∫

R2
eizζ �̂q(ζ )V̂B(ζ )dζ, z ∈ R

2. (3.5)

In the Appendix we will prove the formula

�̂q(ζ ) = (−1)q�q(2
−1ζ )/2, q ∈ Z+, ζ ∈ R

2. (3.6)

By (3.5), (3.6), and the definition (2.13) of �q ,

sq(z) = 1

2π

∫
R2

eizζ Lq(|ζ |2/2)e−|ζ |2/4V̂B(ζ )dζ.
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For tk we can write

tk(z) = 1

2π

∫
R2

eizζ J0(k|ζ |)V̂B(ζ )dζ, z ∈ R
2, (3.7)

since the integral representation for the Bessel function J0 can be written as

J0(k|ζ |) = 2πδ̂k(ζ ), ζ ∈ R
2. (3.8)

Thus (3.2) (resp. (3.3)) reduces to estimating the operator norm (resp. the Hilbert-
Schmidt norm) of the operator with the Weyl symbol

sq(z)− t√2q+1(z)=
1

2π

∫
R2

eizζ (Lq(|ζ |2/2)e−|ζ |2/4 − J0(
√

2q + 1|ζ |))V̂B(ζ )dζ, q ∈ Z+.

(3.9)

In what follows the estimate∣∣∣Lq(x)e
−x/2− J0(

√
(4q +2)x)

∣∣∣≤C(q−3/4x5/4+q−1x3), q ∈ N, x > 0, (3.10)

plays a key role. This estimate is probably well known to experts, but since we could
not find it explicitly in the literature, we include its proof in the Appendix.

Let us prove the estimate (3.2). Using the estimates (2.2) and (3.10), we obtain:

‖Opw(VB ∗�q)− Opw(VB ∗ δ√2q+1)‖ ≤ (2π)−1‖ŝq − t̂√2q+1‖L1(R2)

= (2π)−1
∫

R2
|Lq(|ζ |2/2)e−|ζ |2/4 − J0(

√
2q + 1|ζ |)||V̂B(ζ )|dζ

≤ C
∫

R2
(q−3/4|ζ |5/2 + q−1|ζ |6)|V̂B(ζ )|dζ. (3.11)

Recalling the definition (2.27) of VB , we obtain V̂B(ζ ) = BV̂1(B1/2ζ ), and so the l.h.s.
of (3.11) can be estimated by

C Bq−3/4
∫

R2
|ζ |5/2|V̂1(B

1/2ζ )|dζ + C Bq−1
∫

R2
|ζ |6|V̂1(B

1/2ζ )|dζ

= C B−5/4q−3/4
∫

R2
|ζ |5/2|V̂1(ζ )|dζ + C B−3q−1

∫
R2

|ζ |6|V̂1(ζ )|dζ.

This yields (3.2).
Next, let us prove the estimate (3.3). By (2.3) and the unitarity of the Fourier trans-

form,

‖Opw(sq − tk)‖2
2 = (2π)−1

∫
R2

|ŝq(ζ )− t̂√2q+1(ζ )|2dζ

= (2π)−1
∫

R2
|Lq(|ζ |2/2)e−|ζ |2/4 − J0(

√
2q + 1|ζ |)|2|V̂B(ζ )|2dζ.

Now using the estimate (3.10) again, we obtain (3.3) in a similar way to the previous
step of the proof. ��
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3.2. Norm estimate of Opw(VB ∗ δk).

Lemma 3.2. Let V (x) = 〈x〉−ρ, ρ > 1, and B0 > 0. Then

sup
k>0

sup
B>B0

k B−1/2‖Opw(VB ∗ δk)‖ < ∞.

Proof. By Proposition 2.2, it suffices to prove that for any differential operator L with
constant coefficients we have

sup
k>0

sup
B>B0

k B−1/2 sup
z∈R2

|(LVB ∗ δk)(z)| < ∞. (3.12)

Note that, by the standard symbol properties of 〈x〉−ρ , we have

|LVB(x)| ≤ CVB(x), x ∈ R
2,

where C depends only on B0 and L . Thus, it remains to prove that

sup
k>0

sup
B>B0

k B−1/2 sup
z∈R2

|(VB ∗ δk)(z)| < ∞. (3.13)

We have

VB(z) = (B−1|z|2 + 1)−ρ/2.
Take z = (r, 0), r ≥ 0. Then

(VB ∗ δk) (z) = 1

2π

∫ 2π

0
(B−1(k cos θ − r)2 + B−1(k sin θ)2 + 1)−ρ/2dθ

≤ 1

2π

∫ 2π

0
(B−1k2(sin θ)2+1)−ρ/2dθ= 2

π

∫ π/2

0
(B−1k2(sin θ)2+1)−ρ/2dθ

≤ 2

π

∫ π/2

0
(B−1k2(2θ/π)2 + 1)−ρ/2dθ

≤ 2

π

∫ ∞

0
(B−1k2(2θ/π)2 + 1)−ρ/2dθ

= 2B1/2

πk

∫ ∞

0
((2θ/π)2 + 1)−ρ/2dθ = C B1/2/k.

This yields

sup
z∈R2

|(VB ∗ δk)(z)| ≤ C B1/2k−1,

and (3.13) follows. ��

3.3. Asymptotics of traces.

Theorem 3.3. Let V ∈ C∞
0 (R

2). Then for each 
 ∈ N, 
 ≥ 2, we have

lim
q→∞ λ

(
−1)/2
q Tr

(
Opw(t√2q+1)

)
 = B


2π

∫
T

∫
R

Ṽ (ω, b)
 db dω. (3.14)

The proof is based on the following technical lemma.

Lemma 3.4. Let 
 ∈ N, 
 ≥ 2, f ∈ S(R2(
−1)), and let the function ϕ : T

 ×

R
2(
−1) → R be given by
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ϕ(ω, z) =

−1∑
j=1

z j · (ω j+1 − ω j ), (3.15)

where z = (z1, . . . , z
−1) ∈ R
2(
−1), ω = (ω1, . . . , ω
) ∈ T


 ⊂ R
2
, and · denotes the

scalar product in R
2. Then

lim
k→∞ k
−1

∫
R2(
−1)

∫
T


f (z)eikϕ(ω,z) dω dz

= (2π)
−1
∫

T

∫
R
−1

f (α1ω, α2ω, . . . , α
−1ω) dα1dα2 · · · dα
−1 dω. (3.16)

Proof. The proof consists in an application of the stationary phase method.
We use the following parametrisation of the variables ω, z:

ω
 = (cos θ, sin θ), θ ∈ [−π, π);
ω j = (cos(θ + θ j ), sin(θ + θ j )), θ j ∈ [−π, π), j = 1, . . . , 
− 1;
z j = α jω
 + β jω

⊥

 , α j , β j ∈ R, j = 1, . . . , 
− 1.

We write α = (α1, . . . , α
−1) ∈ R

−1, β = (β1, . . . , β
−1) ∈ R


−1, θ =
(θ1, . . . , θ
−1) ∈ [−π, π)
−1. Using this notation, we can rewrite the integral in the
l.h.s. of (3.16) as∫

R2(
−1)

∫
T


f (z)eikϕ(ω,z) dω dz

=
∫ π

−π

∫
(−π,π)
−1

∫
R
−1

∫
R
−1

F(α,β, θ , θ)eik�(α,β,θ) dβ dα dθ dθ, (3.17)

where

F(α,β, θ , θ) = f (α1ω
 + β1ω
⊥

 , . . . , α
−1ω
 + β
−1ω

⊥

 ),

and

�(α,β, θ) = α1(1 − cos θ1)− β1 sin θ1, if 
 = 2,

�(α,β, θ) = α
−1 − (α1 cos θ1 + β1 sin θ1)

+

−1∑
j=2

((α j−1 − α j ) cos θ j + (β j−1 − β j ) sin θ j ), if 
 ≥ 3.

Let us consider the stationary points of the phase function �. By a direct calculation,
∇�(α,β, θ) = 0 if and only if β = 0 and θ = 0. By a standard localisation argument,
it follows that the asymptotics of the integral (3.17) will not change if we multiply F
by a function χ = χ(β, θ), χ ∈ C∞(R
−1 × [−π, π)
−1), such that χ(β, θ) = 1 in
an open neighbourhood of the origin β = 0, θ = 0, and χ(β, θ) = 0 if |β| ≥ 1/2 or
|θ | ≥ π/2.

Let us write∫ π

−π

∫
(−π,π)
−1

∫
R
−1

∫
R
−1

F(α,β, θ , θ)χ(β, θ)eik�(α,β,θ) dβ dα dθ dθ

=
∫ π

−π

∫
R
−1

I (k;α, θ) dα dθ, (3.18)



442 A. Pushnitski, G. Raikov, C. Villegas-Blas

where

I (k;α, θ) =
∫
(−π,π)
−1

∫
R
−1

F(α,β, θ , θ)χ(β, θ)eik�(α,β,θ) dβ dθ .

Let us fix α, θ and compute the asymptotics of the integral I (k;α, θ) as k → ∞. A
direct calculation shows that the stationary phase equations

∂�

∂β j
= 0,

∂�

∂θ j
= 0, j = 1, . . . , 
− 1

are simultaneously satisfied on the support of χ if and only if β = 0, θ = 0. In order
to apply the stationary phase method, we need to compute the determinant and the sig-
nature (i.e. the difference between the number of positive and negative eigenvalues) of
the Hessian of�(α,β, θ) with respect to the variables β, θ . Let us denote this Hessian
by H(α). The 2(
− 1)× 2(
− 1) matrix H(α) can be represented in a block form

H(α) =
(

H11(α) H12(α)
H21(α) H22(α)

)
,

where

H11(α) :=
{
∂2�

∂βp∂βq
(α, 0, 0)

}
−1

p,q=1
, H12(α) :=

{
∂2�

∂βp∂θq
(α, 0, 0)

}
−1

p,q=1
,

H21(α) :=
{
∂2�

∂θp∂βq
(α, 0, 0)

}
−1

p,q=1
, H22(α) :=

{
∂2�

∂θp∂θq
(α, 0, 0)

}
−1

p,q=1
.

An explicit computation shows that

H11 = 0, H12 = {−δq,p + δq,p+1
}
−1

p,q=1 ,

H21 = H T
12, H22(α) = diag {α1, α2 − α1, . . . , α
−1 − α
−2} .

Hence,

det2(
−1)H(α) = det
−1(−H12 H21) = (−1)
−1;
in particular, our stationary point is non-degenerate.

In order to calculate the signature of H(α), note that since det H(α) �= 0 for all α
and H(α) depends smoothly (in fact, polynomially) on α, the signature is independent
of α. Some elementary analysis shows that sign H(0) = 0.

Now we can apply a suitable version of the stationary phase method (see e.g. [16,
Chap. 1] or [12, Chap. III, Sect. 2]) to calculate the asymptotics of I (k;α, θ). This yields

lim
k→∞ k
−1 I (k;α, θ) = (2π)
−1 F(α, 0, 0, θ).

Using, for example, the Lebesgue dominated convergence theorem, one concludes that
the above asymptotics can be integrated over α and θ , see (3.18). This yields the required
result (3.16). ��
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Proof of Theorem 3.3. We use the notation tk , see (3.4). Denote by tk,
 the Weyl symbol
of the operator (Opw(tk))
, i.e.

Opw(tk,
) = (Opw(tk))

, 
 = 2, 3, . . . .

By the standard Weyl pseudodifferential calculus (see e.g. [32, Chap. 7, Eq. (14.21)]),
for ζ
 ∈ R

2 we have

t̂k,
(ζ
) = (2π)−
+1
∫

R2(
−1)
t̂k(ζ
 − ζ
−1)t̂k(ζ
−1 − ζ
−2) · · · t̂k(ζ1)e

i
2

∑

j=2 σ(ζ j ,ζ j−1)dζ,

where σ(·, ·) is the symplectic form in R
2 × R

2, and ζ = (ζ1, . . . , ζ
−1). It follows that

Tr
(
Opw(tk)

)
 = Tr Opw(tk,
) = 1

2π

∫
R2

tk,
(x)dx = t̂k,
(0)

= (2π)−
+1
∫

R2(
−1)
t̂k(−ζ
−1)t̂k(ζ
−1 − ζ
−2) · · · t̂k(ζ1)

× exp(
i

2


−1∑
j=2

σ(ζ j , ζ j−1))dζ , (3.19)

where we use the convention that
∑
−1

j=2 = 0 if 
 = 2.
Recalling (3.8), (3.7), we get

t̂k(ζ ) = 1

2π
V̂B(ζ )

∫
T

e−ikωζ dω, ζ ∈ R
2,

and so, substituting into (3.19), we get

Tr
(
Opw(tk)

)
 =
∫

R2(
−1)

∫
T


f (ζ )eikϕ(ω,ζ ) dω dζ ,

where

f (ζ ) = (2π)−2
+1V̂B(−ζ
−1)V̂B(ζ
−1 − ζ
−2) · · · V̂B(ζ1) exp

⎛
⎝ i

2


−1∑
j=2

σ(ζ j , ζ j−1)

⎞
⎠ ,

and ϕ is given by (3.15). Applying Lemma 3.4, we obtain

lim
k→∞ k
−1 Tr

(
Opw(tk)

)


= (2π)−

∫

T

∫
R
−1

V̂B(−α
−1ω)V̂B((α
−1 − α
−2)ω) · · · V̂B((α2 − α1)ω)

×V̂B(α1ω) dα dω. (3.20)

It remains to transform the last identity into (3.14). We have

V̂B(αω) = B
∫

R

e−iαbB1/2
Ṽ1(ω, b) db,
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where, in accordance with (2.27), we use the notation V1(x, y) = V (−y,−x), (x, y) ∈
R

2. Therefore,

(2π)−

∫

T

∫
R
−1

V̂B(−α
−1ω)V̂B((α
−1−α
−2)ω) · · · V̂B((α2−α1)ω)V̂B(α1ω) dα dω

= B(1+
)/2

2π

∫
T

∫
R

Ṽ1(ω, b)
 db dω = B(1+
)/2

2π

∫
T

∫
R

Ṽ (ω, b)
 db dω. (3.21)

Now (3.14) follows from (3.20) and (3.21). ��

3.4. Proof of Theorem 1.6.

(i) First we observe that

‖Pq V Pq‖ ≤ ‖Pq〈·〉−ρ/2‖‖〈·〉ρV ‖‖〈·〉−ρ/2 Pq‖
≤ ‖V ‖Xρ‖Pq〈·〉−ρ/2‖‖〈·〉−ρ/2 Pq‖ = ‖V ‖Xρ‖Pq〈·〉−ρ Pq‖,

and so it suffices to consider the case V (x) = 〈x〉−ρ .
Next, by Corollary 2.13, we have

‖Pq V Pq‖ = ‖Opw(VB ∗�q)‖.
In order to estimate the norm of Opw(VB ∗ �q), we use Lemmas 3.1 and 3.2. We
note that for V (x) = 〈x〉−ρ, ρ > 1, we have V̂ ∈ L1 and

|V̂ (ζ )| ≤ CN |ζ |−N , |ζ | ≥ 1,

for all N ≥ 1 (see e.g. [31, Chap. XII, Lem. 3.1]). Thus, the integral in the r.h.s.
of (3.2) is convergent, and so the proof of (3.2) applies to V (x) = 〈x〉−ρ, ρ > 1.
Now, combining Lemmas 3.1 and 3.2, we get

sup
q≥0

sup
B≥B0

λ
1/2
q B−1‖Opw(VB ∗�q)‖

≤ sup
q≥0

sup
B≥B0

λ
3/4
q B−1‖Opw(VB ∗�q)− Opw(VB ∗ δ√2q+1)‖

+ sup
q≥0

sup
B≥B0

λ
1/2
q B−1‖Opw(VB ∗ δ√2q+1)‖ < ∞,

which proves the required estimate.
(ii) As in the proof of part (i), we may assume V (x) = 〈x〉−ρ . First let us consider the

case ρ > 2, 
 = 1. By Lemma 2.12 with 
 = 1 we have

B−1‖Pq V Pq‖1 = 1

2π

∫
R2

V (x)dx ≤ 1

2π
‖V ‖Xρ

∫
R2

〈x〉−ρdx,

which proves (1.11) in this case.
Let us consider the case of a general 
. For a fixed s > 1 and any 
 ∈ [1,∞], let

M (
)
q = B−1λ

1
2 − 1

2

q Pq〈·〉−s(1+ 1



)Pq ;
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for 
 = ∞, one should replace 1/
 by 0. By the previous step of the proof and part
(i) of the theorem,

sup
q≥0

sup
B≥B0

‖M (1)
q ‖1 ≤ C1 < ∞, sup

q≥0
sup

B≥B0

‖M (∞)
q ‖ ≤ C∞ < ∞,

where the constants C1, C∞ depend only on B0 and s. Applying the Calderon-Lions
interpolation theorem (see e.g. [27, Thm. IX.20]), we get

sup
q≥0

sup
B≥B0

‖M (
)
q ‖
 ≤ C1/


1 C (
−1)/
∞ < ∞

for all 
 ≥ 1. It is easy to see that the last statement is equivalent to (1.11).
(iii) First let us note that the case 
 = 1 is straightforward. Indeed, if the integer 
 = 1

is admissible, i.e. if 
 = 1 > 1/(ρ − 1), then ρ > 2, V ∈ L1(R2), and (2.29)
yields the identity

Tr Pq V Pq = B

2π

∫
R2

V (x)dx = B

2π

∫
T

∫
R

Ṽ (ω, b) db dω.

Thus, we may now assume 
 ≥ 2. We will first prove the required identity (1.12)
for V ∈ C∞

0 (R
2) and then use a limiting argument to extend it to all V ∈ Xρ .

Denote

γ
(V ) = B


2π

∫
T

∫
R

Ṽ (ω, b)
 db dω. (3.22)

By Corollary 2.13, we have

Tr(Pq V Pq)

 = Tr

(
Opw(VB ∗�q)

)

,

and Theorem 3.3 says

lim
q→∞ λ

(
−1)/2
q Tr

(
Opw(VB ∗ δ√2q+1)

)
 = γ
(V ).

Thus, it suffices to prove that

lim
q→∞ λ

(
−1)/2
q |Tr

(
Opw(VB ∗�q)

)
 − Tr
(
Opw(VB ∗ δ√2q+1)

)
| = 0. (3.23)

In order to prove (3.23), let us first display an elementary estimate

|Tr
(

A
1

)
− Tr

(
A
2

)
| ≤ 
max{‖A1‖
−1


 , ‖A2‖
−1

 }‖A1 − A2‖
; (3.24)

here 
 ∈ N and An ∈ S
, n = 1, 2. The estimate follows from the formula

A
1 − A
2 =

−1∑
j=0

A
− j−1
1 (A1 − A2)A

j
2

and the Hölder type inequality for the S
 classes.
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Next, using Corollary 2.13 and part (ii) of the theorem, we get

lim sup
q→∞

λ
(
−1)/(2
)
q ‖Opw(VB ∗�q)‖
 = lim sup

q→∞
λ
(
−1)/(2
)
q ‖Pq V Pq‖
 < ∞. (3.25)

Further, by estimate (3.3), using the assumption 
 ≥ 2, we get

lim sup
q→∞

λ
(
−1)/(2
)
q ‖Opw(VB ∗�q)− Opw(VB ∗ δ√2q+1)‖


≤ lim sup
q→∞

λ
1/2
q ‖Opw(VB ∗�q)− Opw(VB ∗ δ√2q+1)‖2 = 0. (3.26)

Combining (3.24), (3.25) and (3.26), we obtain (3.23) for V ∈ C∞
0 ; thus, (1.12) is

proven for this class of potentials.
It remains to extend (1.12) to all potentials V ∈ C(R2) that satisfy (1.1). For 
 >

1/(ρ − 1), denote

�
(V ) = lim sup
q→∞

λ
(
−1)/2
q Tr(Pq V Pq)


,

δ
(V ) = lim inf
q→∞ λ

(
−1)/2
q Tr(Pq V Pq)


.

Above we have proven that

�
(V ) = δ
(V ) = γ
(V ) (3.27)

for all potentials V ∈ C∞
0 (R

2); now we need to extend this identity to all V ∈ Xρ . From
(1.5) we obtain, similarly to (3.24),

|γ
(V1)− γ
(V2)| ≤ B


2π

∫
T

∫
R

|Ṽ1(ω, b)
 − Ṽ2(ω, b)
|dbdω

≤ B


2π
C max{‖V1‖
−1

Xρ
, ‖V2‖
−1

Xρ
}‖V1−V2‖Xρ

∫
T

∫
R

〈b〉(1−ρ)
db dω.

It follows that γ
 is a continuous functional on Xρ . Similarly, using (3.24) and part (ii)
of the theorem, we get

lim sup
q→∞

λ
(
−1)/2
q |Tr(Pq V1 Pq)


 − Tr(Pq V2 Pq)

|

≤ C max{‖V1‖
−1
Xρ
, ‖V2‖
−1

Xρ
}‖V1 − V2‖Xρ ,

and so the functionals �
, δ
 are continuous on Xρ . It follows that (3.27) extends by
continuity from C∞

0 to the closure X0
ρ of C∞

0 in Xρ . In order to prove (3.27) for all
V ∈ Xρ , one can argue as follows. For a given 
 > 1/(ρ − 1), choose ρ1 such that
1 < ρ1 < ρ and 
 > 1/(ρ1 − 1). Then Xρ ⊂ X0

ρ1
and by the same argument as above,

(3.27) holds true for all V ∈ X0
ρ1

. ��
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4. Proof of Proposition 1.1 and Theorem 1.3

As already indicated, this section heavily uses the construction of [22].

4.1. Proof of Proposition 1.1. Set R0(z) := (H0 − z I )−1. By the Birman-Schwinger
principle, if λ ∈ R\ ∪∞

q=0 {λq} is an eigenvalue of the operator H , then −1 is an eigen-

value of the operator |V |1/2 R0(λ)V 1/2. Hence, it suffices to show that for some C > 0
and all sufficiently large q, we have

‖|V |1/2 R0(λ)|V |1/2‖ < 1, for all λ ∈ [λq − B, λq + B], |λ− λq | > C√
q
. (4.1)

Choose m ∈ N sufficiently large so that ‖V ‖/λm < 1/2, and write R0(λ) as

R0(λ) =
q+m∑

k=q−m

Pk

λk − λ
+ R̃0(λ).

Then, for λ ∈ [λq − B, λq + B],

‖|V |1/2 R0(λ)|V |1/2‖ ≤
q+m∑

k=q−m

‖|V |1/2 Pk |V |1/2‖
|λk − λ| + ‖|V |1/2 R̃0(λ)|V |1/2‖.

By the choice of m, one has

‖|V |1/2 R̃0(λ)|V |1/2‖ ≤ ‖|V |1/2‖(1/λm)‖|V |1/2‖ = ‖V ‖/λm < 1/2.

On the other hand, by Theorem 1.6(i),

q+m∑
k=q−m

‖|V |1/2 Pk |V |1/2‖
|λk −λ| ≤(2m+1)O(q−1/2) max

q−m≤k≤q+m
|λk −λ|−1 = O(q−1/2)|λq −λ|−1.

Thus, we get (4.1) for sufficiently large C > 0. ��

4.2. Resolvent estimates. Let �q be a positively oriented circle of center λq and
radius B.

Lemma 4.1. Let V satisfy (1.1). Then for any 
 > 1, 
 > 1/(ρ − 1), one has

sup
z∈�q

‖|V |1/2 R0(z)|V |1/2‖
 = O(q−(
−1)/2
 log q), q → ∞, (4.2)

sup
z∈�q

‖|V |1/2 R0(z)‖2
 = O(q−(
−1)/4
 log q), q → ∞. (4.3)
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Proof. Let us prove (4.2). Using the estimate (1.11), we get for z ∈ �q :

‖|V |1/2 R0(z)|V |1/2‖
 ≤
∞∑

k=0

‖|V |1/2 Pk |V |1/2‖

|λk − z| ≤

∞∑
k=0

C(1 + k)−(
−1)/2


|λk − z|

≤ C
∫ q−1

0

(1 + x)−(
−1)/2


|B(2x + 1)− z| dx

+C
∫ ∞

q+1

(1 + x)−(
−1)/2


|B(2x + 1)− z| dx + O(q−(
−1)/2
)

= O(q−(
−1)/2
 log q),

as q → ∞. This proves (4.2). Using the fact that

‖|V |1/2 Pq‖2
2
 = ‖|V |1/2 Pq |V |1/2‖
,

one proves the estimate (4.3) in the same way. ��

4.3. Proof of Lemma 1.5. The fact that (Pq V Pq)

 ∈ S1 follows directly from

Theorem 1.6. Let, as above, �q be a positively oriented circle with the centre λq and
radius B. Let q be sufficiently large so that (see Proposition 1.1) the contour �q does
not intersect the spectrum of H . We will use the formula

(H − λq)

1(λq−B,λq +B)(H) = − 1

2π i

∫
�q

(z − λq)

R(z)dz, (4.4)

where R(z) = (H − z I )−1. Let us expand the resolvent R(z) in the r.h.s. of (4.4) in the
standard perturbation series:

R(z) = R0(z) +
∞∑
j=1

(−1) j R0(z)(V R0(z))
j . (4.5)

Let us discuss the convergence of these series for z ∈ �q , q large. Denote W =
|V |1/2, W0 = sign(V ). For j ≥ 
, we have

‖R0(z)(V R0(z))
j‖1 = ‖(R0(z)W )(W0W R0(z)W ) j−1W0(W R0(z))‖1

≤ ‖R0(z)W‖2
‖W R0(z)W‖ j−1

 ‖W R0(z)‖2
, j ≥ 
. (4.6)

Applying Lemma 4.1, we get that the series in the r.h.s. of (4.5) converges in the trace
norm for z ∈ �q and q sufficiently large (note that although the tail of the series converges
in the trace class, the series itself is not necessarily trace class).

Next, it is easy to see that the integrals

∫
�q

(z − λq)

R0(z)(V R0(z))

j dz
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with j < 
 vanish (since the integrand is analytic inside �q ). Thus, recalling (4.6), we
obtain that the operator (H − λq)


1(λq−B,λq +B)(H) belongs to the trace class and

Tr{(H − λq)

1(λq−B,λq +B)(H)}

= − 1

2π i

∞∑
j=

(−1) j

∫
�q

(z − λq)

 Tr[R0(z)(V R0(z))

j ]dz. (4.7)

Integrating by parts in each term of this series and computing the term with j = 
 by
the residue theorem, we obtain

Tr{(H − λq)

1(λq−B,λq +B)(H)}

= Tr(Pq V Pq)

 +




2π i

∞∑
j=
+1

(−1) j

j

∫
�q

(z − λq)

−1 Tr(V R0(z))

j dz. (4.8)

It remains to estimate the series in the r.h.s. of (4.8). This can be easily done by using
Lemma 4.1. Similarly to (4.6), we have

|Tr(V R0(z))
j | ≤ ‖W R0(z)W‖ j

j ≤ ‖W R0(z)W‖ j

 , j ≥ 
,

and so ∣∣∣∣∣
∫
�q

(z − λq)

−1 Tr(V R0(z))

j dz

∣∣∣∣∣ ≤ C1(C2q−(
−1)/2
 log q) j ,

for all sufficiently large q. Thus, the series in the r.h.s. of (4.8) can be estimated by

C1

∞∑
j=
+1

C j
2 q− 
−1

2
 j (log q) j .

For all sufficiently large q, this series converges and can be estimated as o(q−(
−1)/2). ��

4.4. Proof of Theorem 1.3. Let R ≥ C1 where C1 is the constant from Proposition 1.1.
Then

1[−R,R](λ1/2
q (H − λq)) = 1(λq−B,λq +B)(H), q ∈ Z+. (4.9)

Next, choose R ≥ C1 so large that supp� ⊂ [−R, R]. Let 
0 be an even natural number
satisfying 
0 > 1/(ρ − 1). Since �(λ) by assumption vanishes near λ = 0, the function
�(λ)/λ
0 is smooth. Applying the Weierstrass approximation theorem to this function
on the interval [−R, R], we obtain that for any ε > 0 there exist polynomials P+, P−
such that

P±(0) = P ′±(0) = · · · = P(
0−1)
± (0) = 0, (4.10)

P−(λ) ≤ �(λ) ≤ P+(λ), ∀λ ∈ [−R, R], (4.11)

P+(λ)− P−(λ) ≤ ελ
0 , ∀λ ∈ [−R, R]. (4.12)
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Thus, we can write

1[−R,R](λ)P−(λ) ≤ �(λ) ≤ 1[−R,R](λ)P+(λ),

for any λ ∈ [−R, R], and therefore

Tr{1[−R,R](λ1/2
q (H − λq)) P−(λ1/2

q (H − λq))} ≤ Tr �(λ1/2
q (H − λq))

≤ Tr{1[−R,R](λ1/2
q (H − λq)) P+(λ

1/2
q (H − λq))}.

By (4.9) it follows that for all sufficiently large q,

Tr{1(λq−B,λq +B)(H) P−(λ1/2
q (H − λq))} ≤ Tr �(λ1/2

q (H − λq))

≤ Tr{1(λq−B,λq +B)(H) P+(λ
1/2
q (H − λq))}. (4.13)

By Lemma 1.5 and Theorem 1.6(iii), we have

lim
q→∞ λ

−1/2
q Tr{1(λq−B,λq +B)(H) P±(λ1/2

q (H − λq))}

= 1

2π

∫
T

∫
R

P±(Ṽ (ω, b)) db dω =
∫

R

P±(t)dμ(t).

Combining this with (4.13), we get

lim sup
q→∞

λ
−1/2
q Tr �(λ1/2

q (H − λq)) ≤
∫

R

P+(λ)dμ(λ),

lim inf
q→∞ λ

−1/2
q Tr �(λ1/2

q (H − λq)) ≥
∫

R

P−(λ)dμ(λ).

Finally, by (4.12),

∫
R

(P+(λ)− P−(λ))dμ(λ) ≤ ε

∫
R

λ
0 dμ(λ).

By (1.6), the integral in the r.h.s. is finite. Since ε > 0 can be taken arbitrary small, we
obtain the required statement. ��
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Appendix A

A.1. Proof of formula (3.6). By definition,

�̂q(ζ )= 2(−1)q

(2π)2

∫
R2

e−i zζLq(2|z|2)e−|z|2 dz = (−1)q

(2π)2

∫
R2

e−iuζ/
√

2Lq(|u|2)e−|u|2/2du

(see (2.13)). Further, by [1, Eq. 22.12.6] we have

Lq(|u|2) = Lq(u
2
1 + u2

2) =
q∑

m=0

L(−1/2)
m (u2

1)L
(−1/2)
q−m (u2

2), u ∈ R
2,

where L(−1/2)
m , m ∈ Z+, are the generalized Laguerre polynomials of order −1/2. By

[1, Eq. 22.5.38] we have

L(−1/2)
m (t2) = (−1)m

m!22m
H2m(t), t ∈ R, m ∈ Z+,

where Hm are the Hermite polynomials. Therefore,

Lq(|u|2) = (−1)q

22q

q∑
m=0

H2m(u1)H2q−2m(u2)

m!(q − m)! ,

and

�̂q(ζ ) = 1

22q+2π2

q∑
m=0

1

m!(q − m)!

×
∫

R

e−iu1ζ1/
√

2H2m(u1)e
−u2

1/2du1

∫
R

e−iu2ζ2/
√

2H2q−2m(u2)e
−u2

2/2du2.

It is well known that the functions Hm(t)e−t2/2, t ∈ R, m ∈ Z+, are eigenfunctions of
the unitary Fourier transform with eigenvalues equal to (−i)m (see e.g. [5]). Hence,

�̂q(ζ ) = (−1)q

22q+1π

q∑
m=0

1

m!(q − m)!H2m(2
−1/2ζ1)H2q−2m(2

−1/2ζ2)e
−|ζ |2/4

= (2π)−1Lq(2
−1|ζ |2)e−|ζ |2/4 = (−1)q�q(2

−1ζ )/2.

A.2. Proof of estimate (3.10). Denote uq(x) = e−x/2 Lq(x), vq(x) = J0(
√
(4q + 2)x).

Using the differential equations for the Laguerre polynomials and for the Bessel func-
tions, one easily checks that uq and vq satisfy

xu′′
q(x) + u′

q(x) + (q +
1

2
)uq(x) = x

4
uq(x),

xv′′
q (x) + v′

q(x) + (q +
1

2
)vq(x) = 0.
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Using these differential equations and the initial conditions for uq(x), vq(x) at x = 0,
it is easy to verify that uq satisfies the integral equation

uq =vq + Kquq , (Kq f )(x) =
∫ x

0
Fq(x, y) f (y)dy, (A.1)

Fq(x, y)=−π
4

y
(
J0(

√
(4q + 2)x)Y0(

√
(4q + 2)y)−Y0(

√
(4q + 2)x)J0(

√
(4q + 2)y

)
.

This argument is borrowed from [30]. Iterating (A.1), we obtain

uq − vq = Kqvq + K 2
q uq . (A.2)

Now it remains to estimate the two terms in the r.h.s. of (A.2) in an appropriate way.
Using the estimates

|J0(x)| ≤ C/
√

x, |Y0(x)| ≤ C/
√

x, x > 0,

we obtain

|Fq(x, y)| ≤ Cq−1/2x−1/4 y3/4, q ∈ N, x > 0.

This yields∣∣∣∣
∫ x

0
Fq(x, y)vq(y)dy

∣∣∣∣ ≤ Cq−3/4x−1/4
∫ x

0
y1/2dy = Cq−3/4x5/4. (A.3)

Next, using the estimate |uq(x)| ≤ 1 (see [1, Eq. 22.14.12]), we obtain

|(Kquq)(x)| ≤ Cq−1/2x−1/4
∫ x

0
y3/4dy = Cq−1/2x3/2,

and so

|(K 2
q uq)(x)| ≤ Cq−1x−1/4

∫ x

0
y

3
2 + 3

4 dy = Cq−1x3. (A.4)

Combining (A.2) with (A.3) and (A.4), we obtain the required estimate (3.10).
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